
University of Iowa
Iowa Research Online

Theses and Dissertations

2008

VLSI circuit defect diagnosis: open defects and
run-time speed
Chen Liu
University of Iowa

Copyright 2008 Chen Liu

This dissertation is available at Iowa Research Online: http://ir.uiowa.edu/etd/8

Follow this and additional works at: http://ir.uiowa.edu/etd

Part of the Electrical and Computer Engineering Commons

Recommended Citation
Liu, Chen. "VLSI circuit defect diagnosis: open defects and run-time speed." PhD (Doctor of Philosophy) thesis, University of Iowa,
2008.
http://ir.uiowa.edu/etd/8.

http://ir.uiowa.edu?utm_source=ir.uiowa.edu%2Fetd%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=ir.uiowa.edu%2Fetd%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages

VLSI CIRCUIT DEFECT DIAGNOSIS:
OPEN DEFECTS AND RUN-TIME SPEED

by

Chen Liu

An Abstract

Of a thesis submitted in partial fulfillment
of the requirements for the Doctor of

Philosophy degree in Electrical and Computer Engineering
in the Graduate College of

The University of Iowa

August 2008

Thesis Supervisor: Professor Sudhakar M. Reddy

1

ABSTRACT

To shorten time-to-market of VLSI circuit chips, the yield must be ramped up by

quickly discovering and rectifying the causes for systematic defects. Due to the shrinking

feature size of devices 90nm and below, yield ramp up is becoming more and more

difficult. Volume diagnosis with statistical learning is needed to cost effectively discover

systematic defects. An accurate and high throughput diagnosis tool is required to

diagnose large numbers of failing devices to aid statistical yield learning. In this work, we

propose techniques to improve diagnosis accuracy and resolution, techniques to improve

run-time performance.

We consider the problem of determining the location of open defects in

interconnects of deep submicron designs. We investigate a procedure that uses minimal

information beyond the circuit net lists and give experimental results to demonstrate the

defect resolution obtained using the method. The additional information used by the

proposed method is a list of nodes in the neighborhoods of circuit nodes and the circuit

layout. Specifically, difficult to determine circuit parameters of manufactured instances

of a design such as coupling capacitances between circuit nodes and threshold voltages of

gates in the circuit are not needed to use the proposed diagnosis procedure.

A dictionary called NFB dictionary of small size and does not grow linearly with

pattern count is proposed. It further reduced dictionary size over previous dictionary

while still achieve higher failing pattern diagnosis performance than industry standard

Effect-Cause diagnosis procedures.

In this work we also propose a method to achieve higher speedup with a

marginally larger dictionary than the NFB dictionary. We achieve this by identifying a set

of faults called hyperactive faults for which we create a novel dictionary. Hyperactive

faults tend to propagate fault effects to many observation points and cost a large amount

of time to simulate.

2

In addition to speed-up of failing pattern diagnosis, we propose a method to

improve passing pattern performance. A pass-fail dictionary with high compression ratio

is proposed. The dictionary is stored in a database on disk with a small cache memory

and high diagnosis performance is demonstrated.

Abstract Approved: ____________________________________
 Thesis Supervisor

 Title and Department

 Date

VLSI CIRCUIT DEFECT DIAGNOSIS:
OPEN DEFECTS AND RUN-TIME SPEED

by

Chen Liu

A thesis submitted in partial fulfillment
of the requirements for the Doctor of

Philosophy degree in Electrical and Computer Engineering
in the Graduate College of

The University of Iowa

August 2008

Thesis Supervisor: Professor Sudhakar M. Reddy

Graduate College
The University of Iowa

Iowa City, Iowa

CERTIFICATE OF APPROVAL

PH.D. THESIS

This is to certify that the Ph.D. thesis of

Chen Liu

has been approved by the Examining Committee
for the thesis requirement for the Doctor of Philosophy
degree in Electrical and Computer Engineering at the August 2008 graduation.

Thesis Committee: ___________________________________
 Sudhakar M. Reddy, Thesis Supervisor

 Wu-Tung Cheng

 Jon G. Kuhl

 Sukumar Ghosh

 John P. Robinson

 Karl Lonngren

 ii

To my family

 iii

ACKNOWLEDGMENTS

First and foremost, I would like to express my sincere gratitude to my academic

advisor, Professor Sudhakar M. Reddy, for his excellent guidance and solid management

throughout this research. Without his guidance, this work would not be even possible.

Equal amount of thanks are given to Dr. Wu-Tung Cheng for his constructive advices and

knowledgeable explanations. I also want to thank my committee members Prof. Kuhl,

Prof. Zhang, Prof. Robinson, and Prof. Lonngren for serving on my committee and giving

valuable suggestions.

Mentor Graphics Corporation, Semiconductor Research Corporation (2007-TJ-

1642) provided a resourceful research environment and financial support. I hereby

express my sincere appreciation.

Many thanks to my friends and co-workers in my research: Huaxing Tang, Wei

Zou, Manish Sharma, Chen Wang.

I would like to thank my family for their understanding and encouragement.

 iv

ABSTRACT

To shorten time-to-market of VLSI circuit chips, the yield must be ramped up by

quickly discovering and rectifying the causes for systematic defects. Due to the shrinking

feature size of devices 90nm and below, yield ramp up is becoming more and more

difficult. Volume diagnosis with statistical learning is needed to cost effectively discover

systematic defects. An accurate and high throughput diagnosis tool is required to

diagnose large numbers of failing devices to aid statistical yield learning. In this work, we

propose techniques to improve diagnosis accuracy and resolution, techniques to improve

run-time performance.

We consider the problem of determining the location of open defects in

interconnects of deep submicron designs. We investigate a procedure that uses minimal

information beyond the circuit net lists and give experimental results to demonstrate the

defect resolution obtained using the method. The additional information used by the

proposed method is a list of nodes in the neighborhoods of circuit nodes and the circuit

layout. Specifically, difficult to determine circuit parameters of manufactured instances

of a design such as coupling capacitances between circuit nodes and threshold voltages of

gates in the circuit are not needed to use the proposed diagnosis procedure.

A dictionary called NFB dictionary of small size and does not grow linearly with

pattern count is proposed. It further reduced dictionary size over previous dictionary

while still achieve higher failing pattern diagnosis performance than industry standard

Effect-Cause diagnosis procedures.

In this work we also propose a method to achieve higher speedup with a

marginally larger dictionary than the NFB dictionary. We achieve this by identifying a set

of faults called hyperactive faults for which we create a novel dictionary. Hyperactive

faults tend to propagate fault effects to many observation points and cost a large amount

of time to simulate.

 v

In addition to speed-up of failing pattern diagnosis, we propose a method to

improve passing pattern performance. A pass-fail dictionary with high compression ratio

is proposed. The dictionary is stored in a database on disk with a small cache memory

and high diagnosis performance is demonstrated.

 vi

TABLE OF CONTENTS

LIST OF TABLES ... viii

LIST OF FIGURES ... ix

CHAPTER

1. INTRODUCTION ...1

2. REVIEW OF DEFECT DIAGNOSIS ALGORITHMS ...3

2.1 Fault Models ...3
2.2 Cause-Effect Diagnosis ..4
2.3 Effect-Cause Diagnosis ..6

2.3.1 Single Location at a Time (SLAT)..7
2.3.2 Multiple Fault Diagnosis ...8

2.4 Defect Diagnosis Using Open Fault Model16
2.4.1 Super Fault or Composite Stuck-at Open Fault Diagnosis17
2.4.2 Symbolic Simulation to Identify Open Defects18
2.4.3 Interconnect Open Diagnosis with Physical Information19

3. OPEN DEFECT DIAGNOSIS WITH MINIMAL PHYSICAL
INFORMATION ..23

3.1 Introduction ..23
3.2 Preliminaries ...26

3.2.1 Review of Previous Works ...26
3.2.2 Overview of the Proposed Diagnosis Procedure30

3.3 Identifying Open Defects with Only Neighborhood Node List
 Information ...31

3.3.1 Identifying the Open Nets Using Logic Diagnosis31
3.3.2 Identifying the Open Segments Using Segment Fault

 Model ...32
3.3.3 Identifying Open Vias by Solving Inequalities32
3.3.4 Open Via Driving Multiple Gates ...37

3.4 Experimental Results ..41
3.5 Discussion ..45
3.6 Conclusions ..47

4. IMPROVING DIAGNOSIS PERFORMANCE WITH MINIMAL MEMORY
OVERHEAD ..48

4.1 Introduction ..48
4.2 Motivations ...49

4.2.1 Terminology ..49
4.2.2 Review of Effect-Cause Diagnosis ...50
4.2.3 Review of Cause-Effect Diagnosis ...52
4.2.4 Signature-Based Small Dictionary ..54

4.3 Proposed Techniques and Diagnosis Procedure55
4.3.1 NFB Dictionary ..57
4.3.2 FFR Grouping ...57

 vii

4.3.3 Proposed Algorithm ..59
4.4 Experimental Results ..60

4.4.1 Memory Overhead ..61
4.4.2 Event Reduction ..64
4.4.3 Run Time Speedup ..67

4.5 Conclusion ..68

5. INCREASED FAULT DIAGNOSIS THROUGHPUT USING
DICTIONARY FOR HYPERACTIVE FAULTS ..70

5.1 Introduction ..70
5.2 Review of Previous Works ...72

5.2.1 Terminology ..72
5.2.2 Review of Cause-Effect Diagnosis ...73
5.2.3 Review of Effect-Cause Diagnosis ...73
5.2.4 Signature-based Small Dictionary ..75
5.2.5 NFB Dictionary ..77

5.3 Dictionaries for Hyperactive Faults ...81
5.3.1 Failing Bit Count Dictionary ...82
5.3.2 Hyperactive Faults Signature Dictionary83
5.3.3 Dictionary Sizes ..84
5.3.4 Flow of Diagnosis Procedure Using HF Dictionary86
5.3.5 Example of a Diagnosis Flow ...88

5.4 Experimental Results ..89
5.5 Conclusions ..93

6. PASSING PATTERN PERFORMANCE IMPROVEMENT94

6.1 Introduction ..94
6.1.1 Ideas on Passing Pattern Processing Speed Up96
6.1.2 Database for Pass-Fail Dictionary ...97
6.1.3 Pass-Fail Information Characteristics99

6.2 Review of Previous Works ...103
6.2.1 Frequency Directed Run-Length Codes (FDR)103
6.2.2 Golomb Codes ...106
6.2.3 Huffman Code ...108
6.2.4 Burrows-Wheeler Transformation ..110

6.3 Proposed Methods ..110
6.4 Experimental Results ..112

7. CONCLUSIONS...116

REFERENCES ..118

 viii

LIST OF TABLES

Table 1: Open Diagnosis Experiment Results ...44

Table 2: Inaccurate Neighbor Capacitances ..46

Table 3: Design Information and Dictionary Size ...53

Table 4: FFR Grouping Faults ...58

Table 5: Memory Overhead VS. Small Dictionary ...64

Table 6: Information on Some Industrial Circuits Used in the Study78

Table 7: Failing Bit Count (FBC) Dictionary ..83

Table 8: Hyperactive Faults Signature (HFS) Dictionary ...85

Table 9: Sizes (in MB) of Small Dictionary [37], NFB and HF Dictionaries86

Table 10: Average Failing Pattern Process Time for Each Case in Seconds92

Table 11: Information on Some Industrial Circuits Used in the Work94

Table 12: Circuit Data for Pass Fail Information Characteristics100

Table 13: FDR Uni-Phase Coding Example ..105

Table 14: FDR Alternating Coding Example ..106

Table 15: Golomb Uni-Phase Coding Example ..107

Table 16: Burrows-Wheeler Transformation ..111

Table 17: Pass-Fail Dictionary Circuit Info ..112

Table 18: Pass-Fail Dictionary Experiment Data ..114

 ix

LIST OF FIGURES

Figure 1: Flow of Diagnosis Procedure Using Effect-Cause Diagnosis6

Figure 2: Byzantine Effect ...17

Figure 3: Interconnect Open Model ...20

Figure 4: A Net’s Routing in the Layout ...27

Figure 5: Interconnect Open Model ...28

Figure 6: Circuit for Example 1 ...36

Figure 7: Example of Via Driving Multiple Gates ..38

Figure 8: Size of Small Dictionary for D1 ...54

Figure 9: Number of Failing Bit per Failing Pattern Distribution56

Figure 10: Intersection of Critical Path Tracing ..57

Figure 11: Fault Grouping Using FFR ...58

Figure 12: Memory Overhead Without Fault Grouping ..61

Figure 13: Memory Overhead With Fault Grouping ...63

Figure 14: Reduction of the Number of Events ...66

Figure 15: CPU Time Speedup (Failing Patterns) ...67

Figure 16: Flow of Diagnosis Procedure Using Effect-Cause Diagnosis74

Figure 17: Flow of Diagnosis Procedure Using Small Dictionary76

Figure 18: Flow of Diagnosis Procedure Using NFB Dictionary77

Figure 19: Distribution of the Number of Events ..79

Figure 20: Hyperactive Fault Characteristics ..80

Figure 21: Flow of Diagnosis Procedure Using NFB and HF Dictionaries87

Figure 22: Diagnosis Time SpeedUp ...90

Figure 23: Flow of Diagnosis Procedure Using Only HF Dictionary91

Figure 24: Hyperactive Fault Dictionary Only Approach Speed Up92

Figure 25: Diagnosis Time in Each Major Step ...95

 x

Figure 26: D1 Run of Zero...101

Figure 27: D1 Run of One ...101

Figure 28: D6 Run of Zero...102

Figure 29: D6 Run of One ...102

Figure 30: Example of a Huffman Tree ...109

1

CHAPTER 1. INTRODUCTION

The purpose of fault diagnosis is to determine the cause of failure in a

manufactured chip. To assist a designer or failure analysis engineer, the diagnosis tool

tries to locate the possible positions of the failure effectively and quickly. The quality of a

diagnosis impacts directly the time-to-market and the total product cost. Yield analysis

can use diagnosis results of multiple failed devices to collect statistical data to identify

yield limiting manufacture process issues or design errors. Due to the increasing

difficulty of physical inspection for today’s multi-layer deep sub-micron designs and the

increasing cost of inspection equipments, logic diagnosis becomes a very important step

in the process of silicon debug, yield ramp-up and field return analysis. We will briefly

review the field of defect diagnosis.

A state-of-the-art diagnosis tool should have the following properties:

High diagnosis resolution: The number of candidate locations reported should be

as small as possible. If the reported candidate set size is too large, the real defect will be

hidden in vast number of false candidates and makes physical failure analysis extremely

difficult. Cost of time and human power would be huge.

High diagnosis accuracy: The set of candidate locations reported should be close

to the set of real defects validated by physical analysis. Low accuracy wastes time and

resources in physical failure analysis because the reported candidate set has low

correlation with the real defects.

High runtime efficiency: The speed of performing quality diagnosis should be

high to facilitate volume diagnosis. With deep-submicron processes, especially 65nm

design and below, systematic defects have become dominant. In order to catch systematic

defects, a large volume of failed chips need to be diagnosed and the diagnosis results

used for the statistical analysis. To diagnose a large number of failed chips in a

reasonable time, the run time of diagnosis must be short.

2

The objective of diagnosis research is to improve diagnosis resolution and

accuracy as well as improve diagnosis runtime performance. To make the research

practical, the techniques developed were built on a commercial diagnosis tool and tested

with real industrial designs. More realistic problems would be discovered by industrial

circuits than small academic benchmarks.

Following the introduction, we will briefly review previous works on the defect

diagnosis in Chapter 2 and propose an open defect diagnosis technique in Chapter 3. In

Chapter 4 we will propose a method of using dictionary to improve failing pattern

diagnosis. In Chapter 5 we propose an additional dictionary to address the issue of

hyperactive faults. In Chapter 6, a compressed database dictionary method to improve

passing pattern diagnosis performance is proposed. Chapter 7 concludes the thesis.

3

CHAPTER 2. REVIEW OF DEFECT DIAGNOSIS ALGORITHMS

In this chapter, we review current fault model based diagnosis techniques,

including stuck fault model and open model. Also single fault diagnosis and multiple

fault diagnosis are reviewed.

2.1 Fault Models

We use fault models to model the effect of a defect for diagnosis. Currently

logical fault models are widely used due to speed of simulation and simplicity. A logic

fault model describes faulty behavior of a defect at the logic level. Model based defect

diagnosis is a procedure to identity defects by using fault model simulations. Popular

models are: stuck-at fault model, bridge fault model, open fault model, gate delay fault

model and path delay fault model.

Stuck-at fault model: Stuck-at is the simplest and most widely used model. Yet it

effectively describes the behavior of a large portion of defects. In the stuck-at fault

model, a node in the circuit always takes a fixed logic value, either 0 (stuck-at 0) or 1

(stuck-at 1). Stuck-at 0 could be the result of a short to the ground line. Stuck-at 1 could

be the result of a short to the power supply line.

Bridge fault model: The bridge fault model is used to describe logic behavior of

two nodes that are shorted in the circuit. Common bridge fault models are: wired-

AND/OR fault model, dominate fault model, 4-way bridge fault model. The wired-

AND/OR bridge model assumes that the faulty node of the bridge always has the logic

value 0(1). The dominate bridge model assumes that one node of the bridge always

dominates the other node by imposing its logic value. Bridge model is a important model

since bridging is a common defect in circuits.

Open fault model: Open fault model attempts to model the open defects, such as

electrical open, break, and disconnected via in a circuit. Opens can result in state-holding,

intermittent, and pattern-dependent fault effects, thus open models are more complex.

4

Delay fault model: To represent timing related defects, gate delay model and path

delay model are used. The gate delay model assumes the defect-induced delay is only

between a single gate input and output. The path delay model spreads the total delay

along a circuit path from a circuit input to a circuit output.

Most diagnosis is based on stuck-at fault model. When we don’t know what the

defect category is, we first run stuck-at diagnosis. Base on the stuck-at diagnosis result,

we can apply bridge and open model to determine whether the suspect is more like a

bridge or open.

There are two ways to use stuck-at fault model. One is the Effect-cause diagnosis

that assumes there is a stuck-at fault and back trace from erroneous circuit outputs to find

candidates, and then simulate the candidates to find the ones that best match the failure

responses observed from the tester. The other is the Cause-effect diagnosis which uses a

pre-simulated fault dictionary to lookup the failure response.

2.2 Cause-Effect Diagnosis

A fault dictionary is a record of the errors that the modeled faults in the circuit are

expected to cause [1]. It stores a mapping from the modeled fault to simulated response.

The procedure of fault dictionary diagnosis is to look up the mapping table to find the

suspect that is simulated to cause the faulty behavior. The fault candidate whose expected

faulty signature matches best with the observed faulty signature will be chosen as the

final fault candidate. If we assume a single stuck-at defect, there should be an exact

match between the expected signature of the fault candidate and the observed faulty

signature.

There are several ways to store the signature information: a pass-fail dictionary,

complete dictionary and compressed signature dictionary. The pass-fail dictionary only

stores a single bit (pass or fail) of failure information for each fault per test pattern. Since

it omits useful information of where the failing bits are, it renders distinguishing some

5

faults impossible. A complete dictionary is a full-response dictionary, which stores all

circuit outputs in the presence of each fault for each test pattern. The number of bits

required to store a complete dictionary equals F*V*O, where F is the number of faults, V

is the number of test patterns, and O is the number of primary outputs. The downside of a

complete dictionary is that the storage it requires is huge for designs with multi-million

gates. The compressed signature dictionary is obtained by feeding the output information

through a 32 or a 64 bit multiple input signature register (MISR) to get a compressed

signature. There is the problem of aliasing, that two different output responses may be

compressed to the same failure signature. But by choosing a MISR with more bits, the

chance of aliasing is slim. The compressed signature dictionary saves storage space and

provides about the same diagnosis resolution as the complete dictionary.

In order to reduce the memory requirement for a complete dictionary, a number of

procedures are proposed. In [2], dynamic creation, test set partitioning, and reduced fault

lists are used to achieve a reduced fault dictionary. Pomeranz and Reddy [3] proposed a

space compaction method that augments a pass-fail dictionary using a greedy algorithm

to choose the primary outputs of some test patterns from a full response dictionary, which

can distinguish the largest number of undistinguished fault pairs.

Two diagnostic tree structures: vector-based diagnostic experiment tree and

output-based diagnostic experiment tree are proposed in [4] to encode the full response

dictionary. Vector-based diagnostic experiment tree in which each level represents the

application of a test vector, and each edge e is associated with a list of outputs O(e) that is

the set of all the primary outputs of the circuit. Output-based diagnostic experiment tree

in which each level represents a (test vector, output) pair rather than a test vector, and

each edge is associated with a single primary output of the circuit.

Chess and Larrabee introduced an error set data structure in [5] to construct the

dictionary. An error set is a set of primary outputs that carry errors. A fault often has the

6

same error set for many test patterns. To reduce the redundancy, only one copy of each

error set is saved. It’s similar to signature based dictionary.

W. Zou et al. [6] proposed a technique that combines the benefits of effect-cause

and cause-effect diagnosis. For each fault and a test pattern that detects this fault, a 32-bit

MISR compressor is used to generate a signature for this fault. Only unique signatures

are stored for each fault. If for the same fault there are two patterns generating the same

signature, only one copy is stored. This lowers the size of the dictionary to 32*F*U,

where F is the number of faults and U is the average number of unique signatures for

each fault. When performing diagnosis, the dictionary of the signatures (called small

dictionary) are looked up to find the initial suspect lists and followed by fault simulation

and matching.

2.3 Effect-Cause Diagnosis

Effect-cause diagnosis procedures typically use Single Location at a Time

(SLAT) patterns [8]. SLAT patterns are those for which the observed failing response is

matched by the simulated response (to this pattern) of a single fault at a location.

Candidates from X-
algorithm
backtracing

Simulate
faults

Figure 1: Flow of Diagnosis Procedure Using Effect-Cause Diagnosis

Minimum set
covering

Simulate passing
patterns and rank
final candidates

7

An effect-cause diagnosis procedure uses the following steps (cf. Figure 1):

1) For each failing pattern, using X-algorithm [9] backtrace from the failing

observation points for each pattern to obtain the initial set of fault candidates.

Use fault simulation to remove or filter out the candidates which do not match

the observed failing bits of the pattern.

2) Perform minimum set covering on the candidates obtained in Step 1 above to

find a minimal set of candidates to explain a maximum number of failing

patterns. The selected candidates are referred to as suspects.

3) Simulate the suspects using all the passing patterns and compute a score based

on the passing/failing pattern match/mismatch.

The advantage of effect-cause diagnosis is the small memory requirement. No

dictionary is used and memory is available for holding larger designs and test patterns.

The disadvantage is also obvious for volume diagnosis. Fault simulation may waste time

repeatedly on some time consuming candidate faults that are filtered out. Using

dictionary could effectively alleviate this situation by filtering out such faults without

simulation. The other time consuming step in the standard effect-cause procedures is the

time for backtracing to find the initial set of candidates. Using a dictionary backtracing

can be completely avoided. Also, since the number of passing patterns is often very high,

passing pattern processing in Step 3 above is time consuming also.

2.3.1 Single Location at a Time (SLAT)

Waicukauski and Lindbloom [8] proposed a diagnosis procedure based on effect-

cause diagnosis. The steps can be stated as below.

1) Initialize the fault-candidate list using a path-tracing technique. Initial

fault candidates satisfy the following requirements to reduce the search

space and improve diagnosis efficiency:

8

• The fault must reside in the input cone of a failing primary output

(PO) of the given pattern

• There must exist a parity-consistent path from the faulty site to the

failing PO

• If a failing pattern affects more than one PO, that candidate fault

must reside in the intersection of all the input cones of those failing

POs. This is based on a single defect assumption that for a failing

pattern, only one defect is activated and propagated.

2) Simulate each fault on the initial candidate list to see if it explains

perfectly any of the failing patterns. If it does, assign to it a weight equal

to the number of patterns it explains in the current list. Store the candidate

fault with the greatest weight, and remove the failing pattern explained by

it.

3) After explaining the entire failing-pattern list, or when the candidate list

has all been examined, terminate the algorithm, and report the possible

candidate sites. Sort candidate faults by their weights, reporting first the

fault with the greatest weight.

2.3.2 Multiple Fault Diagnosis

Several papers on multiple fault diagnosis have been published. Multiple-fault

diagnosis mainly has the following difficulties:

If the multiple-fault problem is addressed directly, the error space grows

exponentially. Error space = (# of lines)(# of defects(errors))[10], where # of lines is the number

of signal lines in the circuit. This would be expensive to explore exhaustively.

Assumptions and heuristics are proposed to address this problem.

Multiple-faults may interact with each other and create fault masking that is hard

to diagnose.

9

2.3.2.1 Multiple Error Diagnosis Based on Xlists

In [43], the authors assumed that the logical errors are locally bounded. They use

Xlist to mark a region with X (don’t care) and perform 3-value simulation (0,1,X) to see

if X is propagated to the output. If there is no X at the output, this region cannot contain

fault. This method has good computation speed and generally good resolution when the

faults are in clusters. However, in real designs faults may scatter and are not related.

Using this method will not be effective to localize the fault locations.

Definition 1: (Xlist) A set of nodes whose actual values would be replaced during

simulation by the value X, and the X-values propagated to subsequent logic levels by 3-

valued logic simulation is called an Xlist.

Two forms of Xlists-Error models are defined. They are topologically bounded

errors and region based error. Let the circuit have n nodes. Let T = (1,2,…,n) be a

topological order on the nodes of the circuit.

Topologically bounded error: If the logic functions at the nodes in set E = {e1, e2,

…, ek} are erroneous and satisfy the following: Exist i, j, (1 ≤ i ≤ j ≤ n) such that {I ≤ eq ≤

j, for any l | 1 ≤ q ≤ k}. The integers i, j are the lower and upper bounds within which the

error lies.

Region based error: If the logic functions at the nodes in set E = {e1, e2, …, ek}

are erroneous and satisfy the following: For any l, 1 ≤ q ≤ k, Structual_Distance(eq, p) ≤ r.

When diagnosing topologically bounded errors, if the error is assumed to be

bounded by k topologically, then by choosing overlapping Xlists will guarantee that there

exists an Xlist containing all the error nodes: (1,2,…,2k), (k+1,k+2,…,3k), (2k+1,…,4k),

… ((roof(n/k)-2)k+1,…,n). The problem is again if the faults are scattered (k=n) then no

diagnosis is possible.

When diagnosing region-based errors, the errors are assumed to be bounded by a

radius r. By choosing a region-based Xlist at each node in the circuit that includes every

node within a radius of r from that node will be guaranteed to contain the fault region.

10

The Xlists are simulated and compared to the primary output. If an Xlist produces

a mismatch {(0,1) or (1,0)} (match {(0,0) or (1,1)}, partial match {(X,0) or (0,X)}, the

potential of that Xlist to contain the error nodes is reduced (increased, increased slightly),

the Xlist is scored accordingly. Xlists are ranked according to the scores.

Symbolic variables can also be used to improve the accuracy of the diagnosis

procedure. BDD representation of the symbolic function simulated removes the losses in

3-valued simulation. However there are circuits for which efficient BDD representation is

hard to obtain. For large circuits, BDD could be too large to be practical.

2.3.2.2 Curable Vectors and Curable Outputs

In [44] the author proposed a diagnosing procedure with measures of two

matching mechanisms: curable vectors (vector match) and curable outputs (failing PO

match). Each possible candidate error is ranked according to these two matches. When

single defect diagnosis does not explain the behavior, double defect diagnosis is

considered and a heuristic for multiple (more than two) defect diagnosis is proposed.

Curable output: Assume that the response of a primary output Zi is failing with

respect to an input vector v. It is called a curable output of a signal f with respect to test

vector v if v is able to sensitize a discrepancy path from f to Zi. By notation, Zi belongs

to curable_output(f,v).

This essentially implies that a fault injected at f matched the failing output Zi for

vector v. A curable output based heuristic is outlined as follows: First, the curable outputs

of each signal with respect to each failing input vector is calculated, either by fault

simulation, back propagation, or observability measure [45]. The signals are sorted based

on their total curable outputs for all the failing vectors. The signal with a large number of

curable outputs is regarded to be a more likely defect candidate.

Curable vector: An input vector v is curable by a signal f if the output response

can be fixed by replacing f with a new Boolean function (re-synthesize). Partially curable

11

vector: An input vector is partially curable by a signal f if the response of every failing

output reachable by f can be fixed by re-synthesizing f.

The diagnosis procedure will first assume only single defect existed and if there

exists signals that pass the curable output and curable vector filtering then the process

stops. Otherwise, double faults are assumed and every signal pair is enumerated to check

against the curable vector based criterion. The detail procedure of double-defect

diagnosis is referred to [46]. If any valid candidate is found, then the process stops.

Otherwise, it moves on to the next stage to apply a heuristic to generate a signal list

sorted by their defect possibilities. The heuristic algorithm records 2 ranks, rank1 records

the total number of partially curable vectors while the rank2 records curable outputs. The

signals are sorted according to rank1, if rank1 is the same, sort according to rank2.

2.3.2.3 Design Error Diagnosis and Correction via Test

Vector Simulation

In [10] the authors proposed “Design Error Diagnosis and Correction via Test

Vector Simulation” technique.

The algorithm guesses N or is given N, where N is the number of errors. First this

method performs an implicit enumeration of suspicious lines in an effort to avoid the

exponential explosion of the error space. Use path-trace [11] to collect candidate error

lines to form a graph. Then the graph is reduced to prune the error space. Next error

simulation is performed to output a set of candidate error lines Cerror. If Cerror is empty,

then diagnosis is repeated for higher N and other parameter. Otherwise, it proceeds to

correction and a logic verifier is used to output valid corrections.

Intersection Graph G = (V, E) is an undirected graph where each vertex contains a

set of lines from the circuit. Edge (Vi, Vj) belongs to E if and only if intersection of Vi

and Vj is not empty.

12

Each run of the path-trace will give a set of lines that will be added to one vertice.

For example, line a, b and e would be the result of one run of path trace. The reduction of

two adjacent vertices is actually taking the intersection of different fan-in cones from

different back-tracing. Actually in the reduction, the real defect might be removed if it is

not in the intersection of the merged vertices.

Implicit enumeration: all the N-error line tuples from G are enumerated. A tuple is

a set of lines from different vertices.

Error Simulation: Simulates all the excitation combination of the N-error line

tuple L. If for vector v that no error excitation scenario for L yields correct PO response,

L is removed from the error list. This could be time consuming if N is large.

In the Correction phase, the list of corrections is exhaustively compiled.

2.3.2.4 Incremental Diagnosis and Correction of Multiple

Faults and Errors

Veneris et al proposed an incremental diagnosis method in [47]. It is outlined

below. First, path-trace is used to mark suspect lines in the circuit. Then for each line a

fault is injected and propagated. Heuristic 1: Sort lines according to the number of failing

PO that are corrected by the fault on this line.

Second, some heuristics are used to guide the correction phase. Let Vl
err be the

logic value bit list of line l for the subset of vectors that activate the errors. The i-th bit of

Vl
err is the value on line l of simulating i-th input vector. Let l1, l2, …, lN be the set of

lines where a set of valid corrections can be applied and rectify a design. Heuristic 2: Any

qualifying correction must complement at least |Vl
err|/N bits in Vl

err. N is set initially at

70% of the total lines and reduced progressively when the algorithm returns no

corrections. Heuristic 3: Any qualifying correction may sensitize only a small number of

new paths to previously correct primary outputs. This is for fault masking that when

adding some valid corrections that some correct PO maybe wrong but finally adding

13

other faults will mask these PO and match the faulty behavior. So we cannot drop a

correction just because it creates some passing mismatches. The limit on the new

mismatch is around 3-8%.

When searching the error space and adding corrections, the algorithm searches in

a Breadth First Search/Depth First Search (BFS/DFS) trade-off way. This method

requires exhaustive searching, which may be impractical for modern large industrial

designs.

2.3.2.5 Incremental diagnosis and PO partition

In [30], Wang et.al proposed a version of incremental diagnosis and primary

output partition method.

A fault is defined as a hard fault when only one pattern detects it. The only pattern

that detects a hard fault is called the essential pattern of this fault. Suppose n faults can

perfectly explain some failing patterns. These n faults as a group are called the n-perfect

candidate for those explained patterns.

Failing pattern types: Type-1: SLAT pattern. Type-2: Different fault effect that

are not correlated. Type-3: Dependency on the faults. Type-2 can be dealt with PO

partition. Type-3 is hard to diagnose.

Functional congestion FC of a gate g. M is the number of faults in g’s fanin cone,

N is the total number of patterns in test T. If the fault i under pattern j can be observed by

g, Obij is 1; otherwise 0. Gates with high functional congestion are often the cause of

incomplete or wrong candidate fault sites, since multiple faults are more likely to interact

14

at functional congestion locations. N-detection test sets will increase the diagnosis results

since more patterns will be Type-1 or Type-2 than in the single detection test set.

The A_single Algorithm [26] is used as the base algorithm:

1) Initialize the fault-candidate list using a path-tracing technique. Initial fault

candidates satisfy the following requirements to reduce the search space and

improve diagnosis efficiency:

a. The fault must reside in the input cone of a failing PO of the given pattern

b. There must exist a parity-consistent path from the faulty site to the failing

PO

c. If a failing pattern affects more than one PO, that candidate fault must

reside in the intersection of all the input cones of those failing POs (SLAT

assumption)

2) Simulate each fault on the initial candidate list to see if it explains perfectly any of

the failing patterns. If it does, assign to it a weight equal to the number of patterns

it explains in the current list. Store the candidate fault with the greatest weight,

and remove the failing pattern explained by it.

3) After explaining the entire failing-pattern list, or when the candidate lists have all

been examined, terminate the algorithm, and report the possible candidate sites.

Sort candidate faults by their weights, reporting first the fault with the greatest

weight.

The n-perfect Algorithm:

1) Find a 1-perfect fault candidate: n=1. Apply A_single. Eliminate the explained

patterns.

15

2) Inject each n-perect candidate into the circuit and perform steps 3 and 4 until all

n-perfect candidates have been tried.

3) For each unexplained failing pattern, initialize the possible fault candidates.

4) Perform A_single on the modified circuit and construct (n+1)-perfect candidates

based on the targeted fault model.

5) Determine the (n+1)-perfect candidates that can further explain some failing

patterns no yet explained by those (1 through n)-perfect candidates.

6) Rank and weight the (n+1)-perfect candidates based on failing and passing

information. Eliminate those failing patterns that can be explained by (n+1)-

perfect candidates from the failing pattern list. Increase n by 1.

7) Perform steps 2-6 for the remaining unexplained failing patterns until no fault

candidate can be found, or until all failing patterns have been explained.

8) Post process all possible k-perfect candidates (1 ≤ k ≤ n) to eliminate the

candidates that cause many passing patterns to fail when multiple-fault candidate

are injected into the circuit. This is to eliminate wrong candidates assumed in the

very beginning, which may imply other wrong candidates.

Not all n-perfect candidates that explain all failing patterns will be found. In the

final step, the algorithm will find the minimum cardinality group of faults as the fault

candidates that can explain the most failure responses.

Failing PO partition algorithm:

1) Back trace from each failing PO. If back tracing from POi finds a possible fault

candidate, we mark it as reachable from POi.

16

2) For each failing pattern Pi, create failing PO connectivity graph, gPi. Each PO

corresponds to a vertex in gPi. If two failing POs can reach the same fault there is

an edge between them.

3) Collect gPi to form Gp. Gp has vertices corresponding to POs. There is an edge in

Gp if there is an edge between these vertices in any of the gPi. Assign a weight to

an edge in Gp equal to the number of corresponding gPi’s that contain that

contain that edge. If Gp is a disjoint graph, the heuristic stops. Perform the

diagnosis separately on each sub graph without losing any failing-pattern

information.

4) Partition Gp by removing low-weight edges.

5) Use each group of failing POs induced by the partition to filter out the original

failure responses, and generate the new failure responses.

6) Diagnose each group of POs separately and obtain the fault candidates.

In worst case, this method has exponential time complexity.

2.4 Defect Diagnosis Using Open Fault Model

Circuit open is a common defect type occurring in manufacturing. When the

interconnect is open, the driven node is floating. When a via is open, the driven poly or

metal is floating too. If the interconnect drives multiple gate, since the downstream gates’

input thresholds are different, the floating voltage will be interpreted as different logic

values. This phenomenon is called Byzantine effect.

For example, in Figure 2, gate G1 drives three gates. If there exists an open fault

on the stem interconnect to the three gates, the logic input value will be determined by

the corresponding gate’s input threshold. If the floating voltage is bigger than the

threshold, will be interpreted as logic 1, otherwise logic 0.

17

Figure 2: Byzantine Effect

2.4.1 Super Fault or Composite Stuck-at Open

Fault Diagnosis

Venkatarman and Drummonds [12] proposed a method to locate the interconnect

open using composite stuck-at signature. The composite signature is the union of all the

stuck-at faults at the stem and branch of the open net. One limitation is that multiple

errors on branches are not simultaneously simulated. Some errors which cause

propagation through multiple reconvergent paths may not be captured.

When matching the observed response, the super fault (composite) signature is

compare with the observed failing response. If the suspect’s composite signature is a

super set of the observed failing response, this fault is kept. The limitation is, not many

fault will be dropped which results in large candidate set size.

The matching algorithm looks for containment and weights intersection and non-

prediction high, weights mis-prediction low.

Liu et al. [13] proposed an incremental multiple open-fault diagnosis based on X

simulation. The first phase is to use critical path tracing to find a set of signal lines tuples

that could explain the pattern using X simulation. Logic unknown ‘X’ is placed at the

candidate sites and then logic simulated, the failed outputs should be covered by X for

G1 G3

G4

G2

18

each failing pattern. The critical path tracing is 3-valued, that can handle X in the path. A

line already is X will not be marked as a candidate. The second phase is to simulate all

the logic combinations of the signal lines in the tuple. If for a candidate tuple, any failing

pattern has an explanation by some combination, the fault is kept in the candidate list.

Otherwise, if there exist a failing pattern cannot be explained by all the logic

combinations, the fault is dropped from the candidate list. Since there are 2^n-1 faulty

combinations for a size n tuple, the simulation time could be impractical. The authors

propose to place the unknown value X on a subset of the signal line in the tuple and

perform the enumeration on other lines. But this does not solve the long simulation time

problem.

2.4.2 Symbolic Simulation to Identify Open

Defects

Huang [14] proposed a procedure using symbolic simulation to identify

interconnect open defects. The procedure first, for each failing pattern, injects a symbol at

each branch on the suspect open net. Then perform the symbolic fault simulation and the

symbols are propagated to outputs. Try to resolve the symbolic output expression to

match the failing output. If no assignment could be found, the candidate is dropped.

Ordered binary decision diagram (BDD) is used in storing symbolic simulations and

symbolic expressions are also resolved by BDD.

Also a segment fault model is proposed. The interconnect routing can be

represented as a binary tree. The edges of the segment-tree are the connections in the

layout. The leaves on the tree are driven gates. For a binary tree with K leaves, there are

2k-1 edges. So for an open interconnection driving K gates, there are 2k-1 open suspects

we need to target. For each open suspect, if the number of the gates it is driving is small,

all the combinations of the logic values of inputs of the driven gates are simulated to see

whether the open suspect can explain the failing pattern. If the number of the gates the

19

open suspect is driving is large, symbolic simulation is used to see whether the open

suspect is real defect or not.

The limitation is some circuit does not have an efficient BDD representation that

takes too much memory requirement to store them.

Wen et al, [15] uses a form of X simulation to identify the interconnect opens.

Different X’s (X1, X2 , …) are placed at the open branches and simulated. Instead of

using symbolic simulation, they use a new X to represent the output of a gate if it is an

expression of different Xs. When the X are all propagated to the outputs, the method tries

to resolve the output by simulating all combinations of the logic values of the symbols

injected at the branches to see whether there exists a combination which can explain the

pattern.

Per-test in the title of [15] means that failing vectors are processed one at a time.

The basic idea is that only one of the multiple defects in a circuit may be activated by on

failing vector in some cases. Same as a SLAT vector. The authors use relaxed matching

criterion, comparison is only conducted at primary outputs that are structurally reachable

from a fault.

The shortcoming of symbolic simulation is to encode the different Xs, if we

assume a net may have 10-32 branches, the simulation is not easily simulated in parallel.

The long simulation time is a hinder to practical use.

2.4.3 Interconnect Open Diagnosis with Physical

Information

The model used in [16] [17] to determine the voltage on a floating node is

illustrated in Figure 3, which shows an input node of a 2-input NOR gate completely

open. Floating node voltage Vf satisfies the following equations:

 (1)
gnd

trap
ddf C

Q
V

CC
C

V +
+

=
10

1

20

Figure 3: Interconnect Open Model

 (2)

 (3)

Where Ca0 (Ca1) is the sum of the capacitances between the floating node and its

neighboring nodes which have low (high) voltage values. Qtrap is the initial trapped

charge of the floating node. Cvdd and Cgnd are the capacitances between the floating node

and power supply and ground rail. Because the voltages on the adjacent nodes depend on

the test pattern P applied, we have Ca0 = Ca0(P) and Ca1 = Ca1(P). That is these

capacitances are pattern dependent. Cint0 and Cint1 are the internal capacitances inside the

driven gate and these depend on voltage Vf .

To avoid calculating Vf explicitly, [16] defines a variable E and assumes that Ca0

and Ca1 are dominant.

1int11 CCCC avdd ++=

0int00 CCCC agnd ++=

Ca0,0 Ca0,1 CGND

Ca1,0 Ca1,1 CVDD

L1 L2 GND

VDDL4

L3

Vf

Cint1

Cint0Open

21

 (4)

Since Qtrap / Cgnd is constant, variable E is sufficient to capture the change in Vf

with varying patterns. Furthermore the test patterns that imply logic value 0 and 1 at the

floating node of the circuit are divided into sets Ω0 and Ω1, respectively. Ω0 (Ω1) is the

set of test patterns under which the floating node voltage is less than (larger than) the

threshold voltage of the driven gate. In [16] the threshold voltages of all driven gates are

assumed to be identical. Next two ranges of values, E(Ω0) and E(Ω1), defined below are

introduced.

E(Ω0) = [min E(P), max E(P)] ∈∀P Ω0

E(Ω1) = [min E(P), max E(P)] ∈∀P Ω1

For a floating node due to an open defect the following should be true:

E(Ω0) < E(Ω1) (5)

Equation (5) implies that the range of values in E(Ω0) must be below the range in

E(Ω1).

The method in [16] was enhanced in [17] by computing the threshold voltages of

all library cells and using them in the diagnosis procedure. Each input of every gate type

has a threshold. Additionally, the capacitances internal to the driven gates are considered

in the form of trapped charge:
)(),(fgatefwiretrap VQVPQQ += (6)

)()()(),(10 PCVVPCVVPQ addfaffwire •−+•= (7)

Where Qwire(P, Vf) is the sum of the charge stored in the capacitors between the

floating node and its neighboring nodes. Qgate is the charge stored in the capacitors inside

the gate driven by the suspect via. The remaining symbols are as defined earlier. The test

patterns are also divided into two sets Ω0 and Ω1 as defined earlier. Let

.

)()(
)()(

10

1

10

1

PCPC
PC

CC
CPEE

aa

a

+
=

+
==

)(),(),(VQVPQVPQ gatewire +=

22

1,0 Ω∈∀Ω∈∀ ji PP

For patterns in Ω0, let Vi be the smallest threshold voltage of the driven gates that

has fault effect, then Vf < Vi and we have Qtrap < Q(Pi,Vi). For patterns in Ω1, let Vj be

the largest threshold voltage of the driven gates that has fault effect, then Vj < Vf and we

have Q(Pj,Vj) < Qtrap. Then for a candidate open via, the following should be true:

Max{Q(Pj,Vj)} < Min{Q(Pi,Vi)}, (8)

The method in [17] achieves better resolution than the method of [16] since it

includes different threshold voltages for different library cells and also implicitly includes

capacitances internal to driven gates. However as noted earlier, both methods require

values of inter node coupling capacitances and use threshold voltage information, both of

which may not be accurately known in the nanometer designs.

23

CHAPTER 3. OPEN DEFECT DIAGNOSIS WITH MINIMAL

PHYSICAL INFORMATION

We consider the problem of determining the location of open defects in

interconnects of deep submicron (DSM) designs. The target defect sites for this work are

the vias in interconnects which are known to be defect prone. It is known that in DSM

designs below 90 nm technology the circuit parameters may vary widely from nominal or

design values and process variations make them less predictable. Thus it becomes

necessary to develop methods for locating defect sites without accurate knowledge of

circuit parameters. Logic diagnosis which is based on gate level net lists is one such

method but the resolution of defect sites obtained by logic diagnosis is considered to be

unacceptably low for locating open vias. We investigate a procedure that uses minimal

information beyond the net lists and give experimental results to demonstrate the defect

resolution obtained using the method. The additional information used by the proposed

method is a list of nodes in the neighborhoods of circuit nodes and the circuit layout.

Specifically, difficult to determine circuit parameters of manufactured instances of a

design such as coupling capacitances between circuit nodes and threshold voltages of

gates in the circuit are not needed to use the proposed diagnosis procedure.

3.1 Introduction

In deep sub-micron (DSM) designs open is a common defect type. Opens most

frequently occur in contacts and vias. Open can be of finite resistance or infinite

resistance (complete opens). In this work we consider complete opens in vias in circuit

interconnects.

When a complete open occurs some circuit node is disconnected from the gate

driving it and the disconnected node is said to be floating. The open node is part of a

circuit net which typically contains many sections of interconnect and vias. Given a

circuit net with an open, the location of the open can be determined from attenuation and

24

phase shift measurements during physical failure analysis [18]. Fault diagnosis

procedures are first used to determine a list of candidate sites for physical failure

analysis. Depending on the fault diagnosis procedure used, the candidate sites could be

circuit nets or segments or vias. Methods that determine open segments narrow the sites

for failure analysis more than the methods that locate the opens to within circuit nets.

Similarly methods that resolve the opens to vias in circuit nets provide much shorter

interconnect sections for investigation during failure analysis. The work reported in this

paper considers locating interconnect opens to locations of vias in circuit nets.

The voltage on a floating node depends on several things including the state of the

neighboring nodes and coupling capacitances between the floating node and its

neighbors, the capacitances to power supply lines and substrate, initial trapped charge,

leakage currents and the internal capacitances of the gates driven by the floating node [19

– 21]. Additionally, depending on their threshold voltages, the voltage on the floating

node may be interpreted differently by different gates driven by the open node. This is

referred to as Byzantine effect [22]. Several methods have been proposed to diagnose

interconnect open defects [8], [12], [15], [16], [17], [23 – 28]. The methods in [8], [12],

[15], [23 – 26], [28] use gate level net lists only and do not use layout or cell library

information. Such diagnosis procedures are referred to as logic diagnosis procedures in

this work. The logic diagnosis methods include diagnosis based on the net fault model

[12, 23], symbolic simulations [15, 24], incremental heuristic using X simulations [25,

28] and location based diagnosis [8, 26, 29]. These logic diagnosis methods typically

report a candidate list that contains suspect circuit nets. Circuit nets may have many

sections of interconnects that span multiple metal layers and have many vias. Tracing a

suspect net during physical failure analysis to find the defect site could be a long and

expensive task.

To reduce the time and cost of physical failure analysis, Huang [27] proposed

segment fault model. A segment is a unique subset of gates driven by a gate through an

25

interconnect net. Segment fault model requires the layout of the circuit in addition to the

gate level net list to determine the gates in a segment. Symbolic simulation is proposed to

locate suspect segments of nets that are likely to contain the open via [27]. Thus the

method of [27] reports suspect segments instead of suspect nets as done by logic

diagnosis procedures. Hence diagnosis based on segments identifies smaller sections of

interconnects in circuit nets for physical failure analysis. Sato et al. [16] proposed to

identify open vias instead of open segments by using a physical interconnect open model.

This method uses the values of capacitances between the floating node and its

neighboring nodes and also considers the initial trapped charge on the floating node.

However the capacitances between internal nodes of the driven gates are not included in

the model. Additionally the threshold voltages of all gates driven by the floating node are

considered to be identical. In [17], Zou et al. investigated a procedure which takes into

account the capacitances between the floating node and its neighboring nodes, the initial

trapped charge, the internal capacitances of the driven gates and differing gate input

threshold voltages of the driven gates. The threshold voltages of library cells were

determined in a preprocessing step. This method is more accurate since essentially all the

circuit parameters that determine the behavior of the floating node are included. Since the

methods of [16] and [17] determine open vias the diagnosis resolution provided by them

is finer than that provided by [27] using segment fault model. However the methods of

[16] and [17] need accurate extraction of capacitances between circuit nodes which may

not be feasible in nanometer designs. Also the threshold voltages of different

instantiations of the same library cell in a design may vary considerably and hence

threshold voltages that are determined a priori may not accurately reflect the actual

values in a manufactured design. For nanometer devices which may have large process

variations and whose circuit parameters may deviate considerably from nominal values,

diagnosis procedures that do not use extracted capacitance values and parameters of

library cells may be needed.

26

In this work, we investigate a diagnosis method with the goal to determine open

vias. It uses knowledge of neighbors of a circuit node and the circuit layout only. The

information regarding the neighboring nodes can be obtained through proximity analysis

and hence can be regarded as a minimal requirement. Layout information is needed for

any method whose goal is determination of the location of open vias. Specifically, in the

proposed method the coupling capacitances between circuit nodes and parameters of

library cells, such as threshold voltages and internal capacitances are regarded as

unknowns. Hence, the method does not require extraction of coupling capacitances and

knowledge of inter node capacitances and threshold voltages of library cells in the

devices which failed manufacturing test.

The rest of the section is organized as follows. In Section 3.2 we briefly review

the previous related work and give an overview of the proposed procedure. In Section 3.3

we describe the proposed procedure. In Section 3.4 we present experimental results. In

Section 3.5 we have some discussions. Section 3.6 concludes the work.

3.2 Preliminaries

In this section we first give a brief review of previous works related to the

proposed method followed by an overview of the proposed diagnosis procedure to

identify open vias in interconnects.

3.2.1 Review of Previous Works

If a net in the gate level netlist drives multiple gates, the routing of the net in the

layout can be divided into several segments that drive different subsets of gates [27].

In Figure 4(a) we show a net driven by gate G1 driving gates G2, G3 and G4.

The net can be considered to contain five segments [27] as shown in Figure 4(b). Each

segment contains a part of the net that drives different subsets of gates. The five

segments S1, S2, S3, S4 and S5 in Figure 4(b) drive subsets of gates {G2, G3, G4},

{G2}, {G3, G4}, {G3} and {G4}, respectively.

27

In Figure 4(b) the smaller squares represent vias. From the layout we can

determine that segments S1, S2, S3, S4 and S5 contain subsets of vias {1}, {2}, {3, 4},

{5} and {6, 7}, respectively. The method by Huang [27] locates open vias up to

segments. For example if segment S3 is identified as containing the open via then the

actual open via could be via 3 or via 4. The methods of [16] and [17] attempt to obtain

better resolution using extracted capacitances coupled to the open net. For example in the

previous case these methods may determine which of the vias 3 or 4 is open. This is

possible because the capacitances coupled to the open node and the neighbors may be

different when via 3 is open compared to when via 4 is open. The neighbors are the nodes

that are in the neighborhood of the sections of interconnect downstream of the open.

Because of the distance between vias 3 and 4, their neighbors are quite likely to be

different. Similarly, in segment S5 it may be possible to locate the open via to 6 or 7. The

goal of our work is also to locate the open vias in segments similar to that of [16] and

[17] but without requiring the knowledge of circuit parameters whose values may not be

determinable precisely.

G1 G3

G4(a)

G2

G2
#1 #2

#3 #4

 #5

#6

#7
G1 G3

(b)
G4

Figure 4: A Net’s Routing in the Layout

28

Figure 5: Interconnect Open Model

The model used in [16, 17] to determine the voltage on a floating node is

illustrated in Figure 5, which shows an input node of a 2-input NOR gate open. The

voltage Vf on the floating node satisfies the following equations:

0int00 CCCC agnd ++=

1int11 CCCC avdd ++=

In the equations above, Ca0 and Ca1 are the sums of the capacitances between the

floating node and its neighboring nodes which have logic 0 and logic 1 values,

respectively. Qtrap is the initial trapped charge of the floating node. Cvdd and Cgnd are the

capacitances between the floating node and power supply and ground rail. Because the

voltages on the adjacent nodes depend on the test pattern P applied, we have Ca0= Ca0(P)

Ca0,0 Ca0,1 CGND

Ca1,0 Ca1,1 CVDD

L1 L2 GND

VDDL4

L3

Vf

Cint1

Cint0Open

gnd

trap
ddf C

Q
V

CC
CV +
+

=
10

1

29

and Ca1=Ca1(P). That is, these capacitances are pattern dependent. Cint0 and Cint1 are the

capacitances internal to the driven gate whose actual values depend on voltage Vf [9].

To avoid calculating Vf explicitly, [16] defines a variable E and also assumes that

Ca0 and Ca1 are dominant.

Since Qtrap / Cgnd is constant, variable E is sufficient to capture the change in Vf

with varying patterns. Furthermore the test patterns that imply logic value 0 and 1 at the

floating node of the circuit are divided into sets Ω0 and Ω1, respectively. Ω0 (Ω1) is the

set of test patterns under which the floating node voltage is less than (larger than) the

threshold voltage of the driven gate. In [16] the threshold voltages of all driven gates are

assumed to be identical. Next two ranges of values, E(Ω0) and E(Ω1), defined below are

introduced.

E(Ω0) = [min E(P), max E(P)] ∈∀P Ω0

E(Ω1) = [min E(P), max E(P)] ∈∀P Ω1

For a floating node due to an open defect the following must be true:

E(Ω0) < E(Ω1) (9)

The meaning of equation (9) is that the range of values in E(Ω0) must be below

the range of values in E(Ω1).

The method in [16] was enhanced in [17] by computing the threshold voltages of

all library cells and using them in the diagnosis procedure. Each input of every gate type

has a threshold. Additionally, the capacitances internal to the driven gates are considered

in the form of trapped charge:

)(),(fgatefwiretrap VQVPQQ += (10)

)()()(),(10 PCVVPCVVPQ addfaffwire •−+•= (11)

)()(
)()(

10

1

10

1

PCPC
PC

CC
CPEE

aa

a

+
=

+
==

30

In equations (10) and (11), Qwire(P, Vf) is the sum of the charge stored in the

capacitors between the floating node and its neighboring nodes. Qgate is the charge stored

in the capacitors inside the gate driven by the suspect via. The remaining variables are as

defined earlier. The test patterns are also divided into two sets Ω0 and Ω1 as defined

earlier. Let

)(),(),(VQVPQVPQ gatewiref +=

For patterns in Ω0, let Vi be the smallest threshold voltage of the driven gates that

has fault effect, then Vf < Vi and we have Qtrap < Q(Pi,Vi). For patterns in Ω1, let Vj be

the largest threshold voltage of the driven gates that has fault effect, then Vj < Vf and we

have Q(Pj,Vj) < Qtrap. Then for a candidate open via, the following should be true:

Max{Q(Pj,Vj)}< Min{Q(Pi,Vi)}, 1,0 Ω∈∀Ω∈∀ ji PP (12)

The method in [17] can achieve better resolution since it includes different

threshold voltages for different library cells and also implicitly includes capacitances

internal to driven gates. However as noted earlier, both methods require values of inter

node coupling capacitances and use threshold voltage information, both of which may not

be accurately known for nanometer designs.

3.2.2 Overview of the Proposed Diagnosis Procedure

The proposed diagnosis procedure first identifies a set of candidate segments that

are open using segment fault model [27] and determines the vias in the suspect segments.

Next, the vias in the suspect segments are analyzed to determine the suspect vias.

Interconnect open model discussed in the section above is used during this step.

However, the actual values of various capacitances and gate threshold voltages are

assumed to be unknown. Using variables to represent these unknown quantities, for each

via in a suspect segment certain sets of inequalities are set up. The inequalities which

have solution identify the vias which are suspected to be open by the proposed method.

31

As in earlier works [16] and [17] we assume that the defect in chip being diagnosed has a

single open via.

3.3 Identifying Open Defects with Only Neighborhood Node List

Information

In this section we describe the proposed diagnosis procedure. The procedure uses

three steps. In the first step candidate open nets are identified using logic diagnosis. In

the second step, the candidate open segments are identified using segment fault model. In

the third step suspect open vias are determined. These steps are described next.

3.3.1 Identifying the Open Nets Using Logic Diagnosis

In the first step the logic diagnosis procedure of [29] is used to derive a list of

candidate nets. We use only SLAT [8] (single location at a time) failing patterns in this

step. SLAT patterns are those patterns that can be explained by a single fault site [8].

That is, the circuit outputs produced by the failing chip when the pattern is applied are

matched by a single fault injected at a fault site. When all the single fault sites that can

explain some failing SLAT pattern(s) are determined a set of candidate circuit nodes are

obtained. At this point, typical logic diagnosis procedures [8, 26, 30, 31] determine

minimal sized subsets of the set of candidate sites that can explain all the failing SLAT

patterns. Each such subset corresponds to potential candidate sites for defects. Each

candidate subset is then analyzed based on fault models used. Since all the branches of a

fanout stem are the same net in the layout, in [29], if one or more branches of a fanout

stem are included in the set of candidate fault sites, all branches are replaced by their

parent fanout stem followed by determining a minimum set cover to find the subsets of

candidates with minimal size which can explain all the failing patterns. Thus, at the end

of logic diagnosis suspect nets are determined.

32

3.3.2 Identifying the Open Segments Using Segment Fault

Model

Next a segment fault model described in [27] is used to find the open segments

and only the vias on the open segment will be analyzed by the physical open model in the

next step described in Section 3.3.3. If a segment drives multiple gates, it may cause

failures on one or more driven gates. We simulate all the possible combinations for the

faults. Each driven input can have faulty or not faulty values. So for a segment including

N gates, (2^N – 1) multiple faults are simulated. A segment is added to the list of suspect

segments if any one of these faults explains the failing pattern. Otherwise the segment is

dropped from the candidate list. Since some gates are included in several segments we

simulate faults of increasing multiplicity (i.e. faults with multiple fault sites) as well as

use the results of fault simulation used in logic diagnosis of Step 1 discussed in the last

section. We also take advantage of the earlier proposed methods to fault simulate

multiple faults associated with stems of large fan outs described in [32]. These steps aid

in improving the efficiency of the procedure to simulate multiple faults at gates in a

segment.

3.3.3 Identifying Open Vias by Solving Inequalities

Diagnosis procedures for interconnect opens use the information regarding a fault

at a gate input explaining or not explaining the observed response from a tested device. In

determining the expected behavior of the device under test, when a candidate open defect

is considered, one needs to know the threshold voltage of the gate inputs driven by the

floating node. For primitive gates such as NAND, NOR etc. for each gate input only one

threshold voltage is needed, since inputs to such gates can be sensitized only if all other

inputs to these gates are at non-controlling value. In non-primitive gates a gate input may

be fanned out to more than one pair of NFET and PFET. For such gates one will have to

use more than one threshold voltage for a gate input. In general if a non-primitive gate

33

has n inputs then for each gate input one may have to use 2^(n-1) threshold voltage

values. Multiple threshold voltages at a non-primitive gate input are also needed for the

procedure in [17].

Next we give a sketch of the proposed method by giving the details for the case

when a suspect via drives a single gate. In Section 3.3.4 we discuss the general case of a

candidate open via driving multiple gates. In the following the failing patterns are

patterns that failed the device under test on the tester and the passing patterns are those

that passed the device under test. By a fault explaining a failing pattern we mean that

circuit with the fault produced outputs observed on the tester when the pattern was

applied.

Recall that prior to identifying suspect vias, suspect segments have been

determined in Step 2 discussed in Section 3.3.2. Corresponding to each suspect segment

the set of test patterns can be divided into failing and passing patterns. These patterns are

analyzed to set up inequalities corresponding to the gate driven by vias on the suspect

segments to determine potentially open vias.

In the model for interconnect opens described in Section 3.2.1, let Ctot = C0 + C1.

For each gate driven by the subnet that is floating due to an open via the set of test

patterns are divided into five classes, Cls1 to Cls5, defined below. Basically each failing

and passing pattern is analyzed to see if the logic value of the floating node can be

determined by comparing the tester fail log and fault simulation results. The information

needed for this classification is known from fault simulations used in Steps 1 and 2

discussed in Sections 3.3.1 and 3.3.2.

Cls1 = {P: a failing test pattern under which the driven gate has a fault value of

logic 1 that explains this pattern. That is, P detects a stuck-at 1 fault at the input of the

driven gate and produces the same circuit output fails as observed on the tester when P

was applied to the failing device}

34

Cls2 = {P: a failing test pattern under which the driven gate has a fault value of

logic 0 that explains this pattern. That is, P detects a stuck-at 0 fault at the input of the

driven gate and produces the same circuit output fails as observed on the tester when P

was applied to the failing device}

Cls3 = {P: a passing test pattern under which a faulty logic value of 1 at the input

to the driven gate would be detected but was not detected on the tester or a failing test

pattern which can detect a faulty logic value of 1 on the open node but the fault does not

explain the fail log for the pattern}. Note: In this case, Vf the voltage on the floating

node should be less than the threshold of the driven gate which causes the gate input to

have fault-free logic value 0.

Cls4 = {P: a passing test pattern under which a faulty logic value of 0 at the input

to the driven gate would be detected but was not detected on the tester or a failing test

pattern which can detect a faulty logic value of 0 on the open node but the fault does not

explain the fail log for the pattern}. Note: In this case, Vf the voltage on the floating node

should be greater than the threshold of the driven gate that causes the gate input to have

fault-free logic value 1.

Cls5 = {P: a test pattern that does not belong to the classes 1 to 4}.

The voltage, Vf on a floating node caused by an open via should simultaneously

satisfy the following sets of inequalities (note that each pattern in classes Cls1 through

Cls4 gives rise to one inequality):

(13)

As discussed earlier, the threshold voltage Vth(P) is pattern dependant for non-

primitive gates. However it is the same for two patterns that set the inputs of the driven

⎪
⎪

⎩

⎪
⎪

⎨

⎧

∈∀<+=

∈∀>+=

32),()()(

41),()()(

1

1

ClsClsPPV
C
Q

V
C

PCPV

ClsClsPPV
C
Q

V
C

PCPV

th
gnd

trap
dd

tot
f

th
gnd

trap
dd

tot
f

U

U

35

gate to the same value. The first set of inequalities are for the case when either a faulty

logic value of 1 is detected at the input of the driven gate (i.e. patterns in Cls1) or a faulty

logic value of 0 was not detected (i.e. a passing pattern Cls4) because Vf , the voltage on

the floating node was more than Vth . The second set of inequalities are for the case when

either a faulty logic value of 0 is detected at the input of the driven gate or a faulty logic

value of 1 was not detected (by a passing pattern) because Vf , the voltage on the floating

node, was less than Vth . If the set of simultaneous inequalities does not have a solution

for some set of values of capacitances, trapped charge and threshold voltage, then the via

under consideration is defect free and can be removed from the candidate list.

We convert the inequalities to linear restrictions as described next. Assume that

Ctot and Vdd are known to be constants. Assume Cint0 and Cint1 are pattern independent

constants. Let k = (Qtrap/Cgnd)*Ctot + (Cint1+Cvdd)*Vdd, and k is a pattern independent

variable. Then (9) becomes:

 (14)

Note that the above inequalities are linear. We can use a simplex method based

solver [33] to determine a solution if it exists. If the solver reports that inequalities in (14)

have no solution the suspect via is removed from the candidate list, otherwise it is

retained.

The following example is used to illustrate the proposed method.

Example 1: Consider the case, illustrated in Figure 3, of an open via driving

input A of an exclusive OR gate with two inputs A and B. Let the neighbors of node A be

nodes D, E and F. Because the XOR gate’s threshold on input A is dependent on the

input of B, we have two thresholds for A: VthB0 when B is 0 and VthB1 when B is 1. The

two thresholds are to address the fact that with B = 0 and B = 1 the gate output is effected

through different transistors/paths driven by input A. As discussed earlier, in general, the

⎩
⎨
⎧

∈∀<−+
∈∀>−+

32,0)()(
41,0)()(

1

1

ClsClsPCPVkVPC
ClsClsPCPVkVPC

totthdda

totthdda

U

U

36

use of multiple thresholds is necessary for non-primitive gates. Also assume that there are

three test patterns P1 a failing pattern, P2 a passing pattern and P3 a failing pattern

belonging to classes Cls1, Cls3 and Cls2, respectively. The remaining test patterns belong

to Cls5. Let Ci represent the capacitance between the floating node and neighbor i, i = D,

E or F. Let Vdd = 1.

Figure 6: Circuit for Example 1

Assume that for failing pattern P1, B = 0 and A stuck-at 1 (actually A having an

incorrect logic value of 1) explains this pattern. Also for P1 let D = 0, E = F = 1. Then we

have,

00 >−++ totthBFE CVkCC (15a)

For passing pattern P2, let B=0 and assume that an incorrect value of 1 on A

would have been detected but in actuality no fault was detected. Thus 32 ClsP ∈ . Let in

this D = E = 1, F = 0. We have:

00 <−++ totthBED CVkCC (15b)

X O R

O p e n
V ia A

B
D

E
F

37

For failing pattern P3, let B = 1 and an incorrect value of 0 on A explains this

pattern. Thus, 23 ClsP ∈ . Let D = 0, E = F = 1 for P3. We have:

01 <−++ totthBFE CVkCC (15c)

We have at least one solution for the three inequalities above with k= 1, CD = 2,

CE = 1, CF = 3, Cint0 + Cgnd = 1, Cint1 + Cvdd = 1, VthB0 = 0.6, and VthB1 = 0.7. Ctot = CD + CE

+ CF + Cint0 + Cgnd + Cint1 + Cvdd = 8. This via will be included in the list of suspect vias

reported by the procedure. Next an example of removing a candidate via is given.

Example 2: Consider the case of an open via driving input A of an AND gate

with inputs A and B. Let the neighbors of node A be nodes D and E. To detect the faults

on A, B has to be set to 1, and hence only one threshold voltage for input A need be used.

Assume two test patterns, P1 a passing pattern, P2 a failing pattern belonging to Cls4 and

Cls2 respectively, and let the remaining test patterns belong to Cls5. Let Ci represent the

capacitance between the floating node and neighbor i, i = D or E. For passing pattern P1,

assume that an incorrect value of 0 on A would have been detected but not actually

detected. Thus 41 ClsP ∈ . For this input let D = 0, E = 1, Cvdd=1. We have:

0>−+ totthE CVkC (16a)

For failing pattern P2, let an incorrect value of 0 on A explains this pattern. Thus,

22 ClsP ∈ . Let D = E = 1 for P2. We have:

0<−++ totthED CVkCC (16b)

It is easy to see that (16a) and (16b) are in conflict, and hence no solution

satisfying the inequalities exists. The suspect via is dropped from the candidate list.

3.3.4 Open Via Driving Multiple Gates

For a via that drives multiple gates, in order to set up the inequalities discussed

above, we use the results of multiple fault simulation performed during the segment fault

diagnosis step described in Section 3.3.2. The main difference in the treatment of the

general case of a via driving multiple gates and the special case of the via driving a single

38

gate discussed above is the fact that now we need to consider faults on multiple gates

which may mask some of the fault effects.

For example consider the circuit of Figure 7 showing a suspect via0 driving gates

G1, G2 and G3. Let b1 stand for branch 1 of the segment driving G1, b2 for branch 2

driving G2, and b3 for branch 3 driving G3. Branch b1 has neighbor node D, branch b2

has neighbor nodes E and F and b3 has neighbor G. The open fault at via0 could create a

Byzantine effect on the branches. Multiple faults on the branches may mask each other or

a multiple fault is detected when a single fault is not detected. Each inequality is for one

driven gate and involves all the neighbors of the interconnection section downstream of

the via. We use bi/1 (bi/0) to denote branch bi stuck-at 1(0) fault. A multiple fault is

denoted by a set of single faults. For example {b1/1, b2/1} is a double fault.

Figure 7: Example of Via Driving Multiple Gates

We evaluate each pattern to see if an inequality based on this pattern should be

added to the set of inequalities to be used for each gate driven by the open via. If the

pattern is a passing pattern, we determine whether a fault at the driven gate input can be

Via0

b1

b2

G2

G1

G3
b3 G

D

E

F

39

detected to add an inequality. If the pattern is a failing pattern, we look for faults that

explain this pattern or faults that will cause mismatches. That is, the fault will cause

different failing bits when simulated than in the fail log. A brief description of the

procedure we use is given next.

A. Passing patterns: If a passing pattern P can detect a fault on the driven input

to gate Gi as determined by fault simulation and no multiple fault including the fault on

Gi is undetectable then we conclude that the input to Gi must be at the fault free value

when the passing pattern P is applied. Otherwise, the passing pattern P should have been

a failing pattern. In this case we include an inequality for the gate as similar to the case of

passing patterns in classes Cls3 and Cls4 discussed in Section 3.3.

B. Failing patterns: We need to consider two scenarios in deriving the

inequalities for inputs of the driven gates using failing patterns. One is the set of faults on

the inputs of the driven gates that explain the failing pattern and the other is the set of

faults that cause mismatches.

B.1. Faults that explain the failing pattern

For a failing pattern P we determine all the multiple faults on the driven inputs of

the gates that explain the observed outputs on the tester when P is applied to the chip

being diagnosed. We use the simulation data saved in the step of logic diagnosis in

Section 3.3.2. Next we determine the intersection of the sets corresponding to these faults

and the faults in the intersection determine the gates for which we add an inequality

similar to those for the patterns in classes Cls1 and Cls2 discussed in Section 3.3.3.

B.2. Faults that cause mismatches

If a driven gate, say G, is not included in the faults that explains failing pattern P,

we can consider P to be a passing pattern for faults on G and add an inequality for G as

done in A above if the following conditions hold. Fault on the input to G driven by the

open via is detected by P in simulation but does not explain pattern P and every multiple

fault containing the fault on G is detected by P but none of the faults can explain the fail

40

log for P. It can be seen that these patterns are similar to the passing patterns in classes

Cls3 and Cls4 discussed in Section 3.3.3.

After all the patterns are processed, we solve for the inequalities to check whether

the suspect via is a valid candidate or not. We illustrate the general case discussed above

using Example 3 given next.

Example 3: For the circuit illustrated in Figure 7, let the test pattern set be {P1,

P2, P3} with P1 and P2 failing patterns and P3 a passing pattern.

Let the fault-free value under pattern P1 be 0. We use fault simulation results for

faults: b1/1, b2/1, b3/1, {b1/1, b2/1}, {b1/1, b3/1}, {b2/1, b3/1} and {b1/1, b2/1, b3/1}

and check which one of these faults explains pattern P1. Assume that only faults b1/1 and

{b1/1, b2/1} explain this pattern. We choose the intersection of the fault combinations

that explain the failing pattern which in this case is {b1/1}. Hence, 11 ClsP ∈ with respect

to branch b1. Suppose D = E = 1 and F = G = 0 for this pattern and let k1 and VthG1

denote the k and Vth variables for branch b1 in (14). We add the following inequality for

b1:

011 >−++ totthGED CVkCC (17a)

Next for P1 we look for the branch faults that cause a mismatch. We only

consider the branch faults that do not belong to the faults explaining P1. In this case only

b3/1 does not belong to any multiple fault that explains P1. Suppose b3/1 causes a

mismatch and {b2/1, b3/1} is not detected by P1. Since {b2/1, b3/1} is a super set of b3/1

we cannot conclude that b3 is fault-free. For this reason no inequality is added for b3

corresponding to pattern P1.

Let the fault free value of the open node under the failing pattern P2 be 1 and

assume that only the fault {b2/0, b3/0} explains P2. Suppose D = F = 1 and E = G = 0

under P2. We add the inequalities given below for b2 and b3, respectively:

41

 (17b)

For P2 b1/0 is not contained in the faults which explain P2. Suppose b1/0 is

detected and causes a mismatch and {b1/0, b2/0}, {b1/0, b3/0}, and {b1/0, b2/0, b3/0}

are all detected and cause mismatches. We conclude that b1 must be fault-free and we

add the following inequality to b1:

011 >−++ totthGFD CVkCC (17c)

For passing pattern P3, let the fault free value of the open node be 1 and assume

that faults b1/0, b2/0, {b1/0, b2/0}, {b2/0, b3/0} and {b1/0, b2/0, b3/0} can be detected

by P3. Since {b1/0, b3/0} is not detected and it is a super set of b1/0 as well as b3/0 no

inequality for b1 or b3 is added based on P3. For b2 we add an inequality. If D = E = G =

1 and F = 0 for pattern P3 we add the following inequality to the set for b2:

022 >−+++ totthGGED CVkCCC (17d)

We solve for inequalities (17a)-(17d) to check if this suspect via is a valid

candidate.

3.4 Experimental Results

In order to validate the proposed diagnosis procedure for opens, we conducted

experiments on CMU benchmark circuit [34] and on ISCAS-85 combinational circuits.

For each circuit a number of test cases were created with one open via defect injected into

each test case. The responses of the defective circuit to tests in a set of single stuck-at

fault detection test set were determined. We used SPICE simulation in evaluating the

responses of the gates driven by the open net. A set of parameters are defined as follows

to evaluate the quality of the diagnosis for the test cases of each circuit.

Exact: the number of test cases for which the set of candidate vias given by the

diagnosis procedure has only the via in which an open defect was injected.

⎩
⎨
⎧

<−++
<−++

0
0

33

22

totthGFD

totthGFD

CVkCC
CVkCC

42

Contain: the number of test cases for which the set of candidate vias given by the

diagnosis procedure included the via with the injected defect together with some other

candidates.

None: the number of test cases for which the set of candidate vias given by the

diagnosis procedure did not contain the via with the injected open.

Ave Net: average number of nets in the set of defect candidates reported by the

diagnosis procedure.

Ave Via: average number of vias in the set of defect candidates reported by the

diagnosis procedure.

The CMU benchmark [34] is a 4-bit ALU circuit fabricated with a 5-metal-layer

TSMC 180nm CMOS technology [35]. For this benchmark, the circuit layout and the

capacitances between two adjacent wires in the layout together with n-detection test sets

for up to n = 5 are provided. We used 5-detection test sets and created fail logs for 300

random open defects using SPICE simulations. For ISCAS-85 benchmark circuits, the

layouts and coupling capacitances between adjacent wires are obtained from a Texas A &

M University website [36]. The ISCAS-85 benchmark circuits are also fabricated with a

5-metal-layer TSMC 180nm CMOS technology. For each injected defect, fail logs for 1-

detect test sets for single line stuck-at faults were created using SPICE to simulate the sub

circuit involving the open defect to get the voltage on the floating node. The voltage on

the floating node was interpreted into logic values according to the threshold voltage of

the driven gates. The gate level logic simulation is used to simulate the remaining circuit

to get the failing and passing responses. During the creation of a test case, the initial

trapped charge is randomly chosen from a range of -1 volt to +1 volt. For the purposes of

comparison, we implemented five different diagnosis methods, LG, LGS, PHY, REF16

and PROP. LG is a gate level net list based logic diagnosis procedure that does not use

physical information. LGS is an implementation of the segment fault model based

diagnosis method of [27] which uses layout information to determine segments of nets.

43

PHY is the diagnosis procedure in [17]. REF16 is an implementation of the diagnosis

method of [16] reported in [17]. PROP is the proposed diagnosis method. The results

using the five methods are reported in Table 1. For procedure REF16 two additional

parameter values explained later are given. All methods used the same test sets.

The test cases for ISCAS-85 circuits are from the experiments used in [17] which

also used the procedures LG and REF16 for comparison purposes and thus the results for

LG, PHY and REF16 are produced by the implementation of the procedures in [17].

In Table 1, row 1 gives the circuit names. For each circuit diagnosis results using

the five diagnosis procedures are given. From Table 1 it can be seen that the proposed

method gives considerably smaller set of candidate defect nets and defect vias than the

logic diagnosis method. It also gives considerably fewer candidates than the segment

model based diagnosis procedure LGS. Compared to the segment method the additional

data used by the proposed method is the neighbors of the nodes. In comparison to REF16

the proposed method does not drop the real defect site as REF16 procedure which

typically drops 20% to 30% of the injected defects. The average number of nets and vias

reported by the proposed method are somewhat higher than those reported by REF16.

Since REF16 drops several real defect candidates we also computed the average numbers

of candidate nets and vias reported by REF16 for the cases when the real defect via is not

dropped as Ave Cnet and Ave Cvia, respectively. Both these numbers are mostly larger

than Ave Net and Ave Via for REF16 over all test cases. Comparing the values of Ave

Cnet and Ave Cvia for REF16 and the Ave Net and Ave Via for PROP we note that the

proposed procedure reports comparable numbers of candidate nets and vias. Procedure

PHY returns fewer suspect candidates than the proposed procedure. However procedure

PHY requires extracted capacitances as well as threshold voltages of library cells.

Reasonably accurate values of these required parameters may not be forthcoming in

nanometer designs.

44

In order to illustrate the potential effect of inaccuracies in extracted capacitance

values on the performance of procedures that depend on the extracted values

capacitances, we performed an experiment using the CMU benchmark.

Table 1: Open Diagnosis Experiment Results

Met
hod

Circuits c432 c499 c880 c135
5

c190
8

c267
0

c354
0

c531
5

c628
8

c755
2

CMU

LG Exact 0 0 0 0 0 0 0 0 0 0 0
 Contain 300 300 300 300 300 300 300 300 300 300 300
 None 0 0 0 0 0 0 0 0 0 0 0
 Ave Net 7.39 31.62 12.63 45.62 22.51 37.07 13.59 20.74 12.66 28.16 5.37
 Ave Via 53.98 214.7 81.57 372.5 140.6 242.4 102.1 184.2 77.84 234.2 39.64
LGS Exact 0 0 1 0 1 0 0 0 0 0 0
 Contain 300 300 299 300 299 300 300 300 300 300 300
 None 0 0 0 0 0 0 0 0 0 0 0
 Ave Net 6.15 28.89 9.18 27.63 14.1 28.14 10.05 12.05 5.63 18.07 4.26
 Ave Via 22.07 111.1 30.38 92.25 49.22 104 38.04 44.63 17.17 68.33 15.45
PHY Exact 11 8 4 6 16 10 4 15 3 21 22
 Contain 289 292 296 294 284 290 296 285 297 279 278
 None 0 0 0 0 0 0 0 0 0 0 0
 Ave Net 3 2.06 3.18 2.52 3.11 4.68 3.35 2.76 2.16 2.51 2.17
 Ave Via 10.66 7.36 10.98 8.63 10.98 17.44 12.78 9.84 7.02 9.04 7.64
REF
16

Exact 0 1 1 0 2 0 2 3 2 1 0
Contain 293 217 186 248 240 238 234 225 209 234 284
None 7 82 113 52 58 62 64 72 89 65 16
Ave Net 5.6 20.27 8.5 24.4 13.27 26.49 9.18 10.79 5 16.45 4.08
Ave Via 13.28 31.75 15.95 39.88 22.49 41.37 17.52 17.97 8.78 24.78 10.62
Ave
Cnet

5.53 26.58 9.45 27.85 13.65 28.61 9.4 11.21 5.66 17.18 4.12

Ave
Cvia

13.3 41.95 17.45 45.42 23.45 45.87 18.49 19.51 10.33 26.3 10.75

PR
OP

Exact 0 0 1 0 1 0 1 1 0 0 0
Contain 300 300 299 300 299 300 299 299 300 300 300
None 0 0 0 0 0 0 0 0 0 0 0
Ave Net 5.69 20.41 8.62 24.49 13.33 26.62 9.27 10.9 5.14 16.51 4.09
Ave Via 14.2 34.05 18.82 41.62 24.45 45.68 20.59 20.97 11.01 27.7 11.5

45

The coupling capacitances to a floating nodes used by the tools REF16 and PHY

were changed to random values over different ranges from the actual values in the

benchmark. For example let C be the value of coupling capacitance in the benchmark

and we set the capacitance used by REF16 and PHY to be different and over a range of

0.5C and 2.0C. In this case we randomly pick a different value in the range (0.5C, 2.0C)

for the capacitances for different instances of defective chips.

In choosing random values for capacitances and threshold voltages we used

uniform distribution of values over the specified ranges. For procedure PHY the

threshold voltages used were also randomly varied by ±15%. We used the 300 fail logs

used in Table 1 and report the results in Table 2. In Table 2 under C we report the results

when the capacitance values used by Procedures REF16 and PHY are the same as the

ones used in the CMU benchmark. Next three columns give the results when the

capacitances used by the procedures REF16 and PHY are randomly set over the range

indicated in the column headings. We also computed the average numbers of candidate

nets and vias reported when the real defect via is not dropped as Ave Cnet and Ave Cvia,

respectively.

From Table 2 it can be noted that procedures REF16 and PHY drop several actual

defect sites from the reported candidate lists as noted in the row None. Since the

proposed method does not use capacitance and threshold values, the number of None

cases remains 0.

3.5 Discussion

For the experimental results presented in the paper we used fault detection test

sets for single line stuck-at faults. We assumed that the test results are available for all the

tests in the test sets. In the future we plan to investigate the effectiveness of the proposed

method when only a limited set of failing patterns instead of results for all tests are

available. We also plan to investigate if using other test sets, such as diagnosis test sets

46

that resolve all resolvable pairs of stuck-at faults or n-detection test sets, will lead to

better diagnosis resolution.

In this work we assumed that the coupling capacitances and threshold voltages

gates are completely unknown. This requires considering (2N – 1) combinations of

multiple stuck-at faults when a candidate via drives N gates. One can reduce the number

of faults considered to (N - 1) if it is assumed that the threshold voltages of different

driven gates change from the nominal values in a correlated manner. One may also obtain

improved diagnosis results if it can be assumed that the coupling capacitances vary from

nominal values within some bounds.

Table 2: Inaccurate Neighbor Capacitances

 C 0.5C-2C 0.67C-1.5C 0.75C-1.25C
REF16 Exact 0 0 0 0
 Contain 284 272 277 282
 None 16 28 23 18
 Ave Net 4.08 4.09 4.09 4.10
 Ave Via 10.62 10.59 10.64 10.66
 Ave Cnet 4.12 4.22 4.18 4.14
 Ave Cvia 10.75 11.02 10.92 10.81
PHY Exact 22 17 22 18
 Contain 278 254 260 261
 None 0 29 18 21
 Ave Net 2.17 2.06 2.12 2.11
 Ave Via 7.64 7.38 7.47 7.45
 Ave Cnet 2.08 2.27 2.24 2.4
 Ave Cvia 7.15 8.15 7.93 8.54
PROP Exact 0 0 0 0
 Contain 300 300 300 300
 None 0 0 0 0
 Ave Net 4.09 4.09 4.09 4.09
 Ave Via 11.5 11.5 11.5 11.5

47

In this work we only considered complete opens of vias. Considering resistive

opens using the proposed framework will require use of tests for delay faults and

modeling the effects of opens on signal propagation through the defect sites. Such a study

will be part of our future work.

3.6 Conclusions

A new interconnect open defect diagnosis method using less physical information

is proposed. Specifically the method does not require the values of inter node

capacitances and gate threshold voltages which are difficult if not impossible to

determine for manufactured instances of nanometer designs. Experiments conducted on

benchmark circuits validated the effectiveness of the proposed method.

48

CHAPTER 4. IMPROVING DIAGNOSIS PERFORMANCE WITH

MINIMAL MEMORY OVERHEAD

In the circuit diagnosis industry, Effect-Cause diagnosis is the standard approach.

Accurate and fast diagnosis methods are important for statistics learning and volume

diagnosis. In this work, an improvement over previous methods is proposed, which uses

two heuristic techniques to limit the size of the dictionary and still provide good speed up

over standard Effect-Cause diagnosis.

4.1 Introduction

In order to identify the current design-specific systematic defects to improve the

yield, a large number of failing dies need to be diagnosed in a short time. Therefore a

defect diagnosis tool with high accuracy and throughput becomes very important in the

initial yield ramp. Current designs are growing larger and it dictates limited memory

allowance that the diagnosis tool is facing.

Defect diagnosis methods can be classified into two categories: cause-effect

diagnosis and effect-cause diagnosis. Cause–effect diagnosis, also called dictionary based

diagnosis, pre-computes and stores the faulty responses of modeled faults in a dictionary.

In the process of diagnosis, the observed failure responses are compared with the pre-

computed failure responses in the dictionary. The faults whose pre-computed failure

responses have the closest match with the observed failure responses will be chosen as

final candidates. Since dictionary based diagnosis doesn’t do fault simulations during

diagnosis, the speed at which it can diagnose is very high. However dictionary based

diagnosis needs a very large memory to store the pre-computed failures responses.

Although a number of techniques [3, 4, 5] are proposed to reduce the memory size, the

size of the reduced dictionary is still too large for current designs with millions of gates.

Moreover it may lose diagnosis accuracy due to information loss when dictionaries of

reduced size such as pass/fail dictionaries [3] are used. Instead of simulating faults

49

upfront, effect-cause diagnosis [41] only simulates the potential fault candidates obtained

during diagnosis by back tracing from failing outputs. Compared to cause-effect

diagnosis, effect-cause diagnosis doesn’t need a large memory to store pre-computed

faulty responses and also it can provide very high diagnosis accuracy. So it is widely used

in commercial diagnosis tools. However, the run time of the effect-cause diagnosis to

diagnose a failing chip is long due to a larger number of fault simulations used during the

diagnosis. Recently a method was proposed to reduce run time of effect-cause diagnosis

procedures by reducing the numbers of faults simulated during diagnosis [42]. A new

method to speed up effect-cause diagnosis by using a small sized dictionary was

proposed in [37]. While for large industrial designs of over 10 million gates, the small

dictionary still poses an expensive memory overhead. In this paper, we propose two

techniques to ease the memory requirement of small dictionary in [37]. It can reduce the

memory overhead of small dictionary by 80% and still keep about the same performance

speed up over effect-cause diagnosis without losing any diagnosis accuracy for majority

of the circuits tested.

The rest of the paper is organized as follows. In Section 4.2, after the introduction

of terminology, both the effect-cause diagnosis and the cause-effect diagnosis are

reviewed. Section 4.3 explains the proposed techniques to reduce the memory usage.

Experiment results are shown in Section 4.4. Section 4.5 concludes the work.

4.2 Motivations

In this section we explain terminology used and give a review of Effect-Cause

and Cause-Effect Diagnosis procedures.

4.2.1 Terminology

A faillog is the failure data recorded by a tester during testing process. Though

many tests are conducted during testing such as Iddq test, memory test, chain test and scan

50

test, only scan test results are considered in this work. All failure information is assumed

in pattern-based format.

A failing(passing) bit is an observing point for a die under test where a tester can

observe the discrepancy between the expected value from simulation and actual circuit

output.

A failing(passing) pattern is a pattern applied by a tester to a circuit under

response to which did (not) have failing bits.

Explain: Given a failing pattern P, if a fault fi under simulation predicts the same

failing response as the response of P on the tester, we call fault fi explains failing pattern

P.

A suspect is a diagnosis object that explains part of a fail log. All failing patterns

that can(not) be explained by a suspect are called failing pattern matches(mismatches) for

this suspect.

A symptom is a group of suspects which explain some failure information, and

tends to be associated with the same physical defect.

More than one defect may exist in a single die, diagnosis results may report more

than one symptom for each fail log. For each symptom, more than one suspect may be

identified because of the limitations of diagnosis. For each suspect, the defect type is

taken into account when determining the passing pattern matches (mismatches).

4.2.2 Review of Effect-Cause Diagnosis

Generally speaking, effect-cause diagnosis procedures have two phases. In the

first phase, for each failing pattern P, back-tracing is used to find a set Q of the faults

which can potentially explain the failing pattern. Next the faults are simulated to find a

subset Q’ of Q which can actually explain this failing pattern. A failing pattern P is said

to be explained by a fault if the circuit outputs with the fault injected are the same as the

outputs observed on the tester when pattern P is applied. After all the failing patterns in G

51

are analyzed, a minimum set covering algorithm is used to find a subset S, of minimum

size, of the set of faults which can explain all the failing patterns. The faults in S are the

final defect candidates. In the second phase of effect-cause diagnosis, the fault candidates

in S are simulated over all the passing patterns to find the number of passing pattern

mismatches for each candidate. A passing pattern mismatch or passing mismatch for

short is said to occur when ever a candidate fault is detected by a passing pattern.

There are two run time intensive steps in the effect-cause diagnosis procedure

described above. The first one is for failing pattern processing: the time for back tracing

and fault simulation time in the first phase for faults in Q to obtain the faults in Q’. This

is due to the fact that back tracing procedures typically use a version of critical path

tracing and we observed that the identified faults trigger a large number of evaluation

events during fault simulation. Potentially a large number of initial candidates, esp. for

EDT, are included in the initial candidate list. The worst case scenario for single failing

bit for EDT design with high compression ratio. For example, for an EDT design with

very high compression and very short chain, the initial candidate list may contain a lots of

suspects. The situation becomes even worse when the sequential pattern is used to detect

at-speed defects. By the way, the complicated clocking scheme used to reduce the power

consumption, such as clock gating, also reduce the effectiveness of critical path tracing.

The bottleneck of the effect-cause diagnosis is highly design dependent and

pattern dependent. Different designs, even with a similar number of test patterns, could

behave quite differently. Even for designs with similar number of gates and similar

number of scan flip-flops, the diagnosis bottleneck could be totally different. In general,

the first step of failing pattern processing takes more time if more sequential patterns are

used, because it is more expensive to simulate the sequential pattern for the initial

candidate list, which is typically much larger than the final suspect list to be simulated for

passing patterns. Also for designs with compression techniques, simulating failing patters

in direct diagnosis typically needs more efforts due to the reduced effectiveness of the

52

critical path tracing. For modern large designs, more and more complicated clock-gating

structures are used to reduce the power. Current critical path tracing cannot effectively

handle such clock gating mechanisms, and tends to include clock gating sits related faults

into initial candidate list, which create a huge number of events during simulating and

make the simulation extremely slow. If for a design and pattern set that there are vast

number of passing patterns or relative high ratio of faults remain after the fault simulation

of the initial candidate list, then passing pattern processing of the second step may be

more time consuming.

The first step of failing pattern processing is addressed in this Chapter-Chapter 4

and Chapter 5. The second one is the time for simulating passing patterns for fault

candidates in S. To address the performance issue of diagnosis at all major aspects, the

second performance hurting issue is addressed in Chapter 6.

4.2.3 Review of Cause-Effect Diagnosis

Another approach for diagnosing fail logs is called Cause-Effect diagnosis, where

a fault dictionary is pre-computed and stored for a specific design and a given set of test

patterns. During diagnosis, a quick lookup of fault dictionary is performed to determine

suspects, which can explain the targeted failing pattern(s). Additional analysis can be

performed to find out passing pattern matches(mismatches) information, compute the

suspect score and rank the suspect list. In the extreme case, where all needed information

is stored and simulation is totally bypassed, the cause-effect diagnosis could be extremely

fast because the table lookup can be done with little CPU time.

In Table 3 we report information on seven industrial designs used in this work.

We also include the sizes of dictionaries using single stuck-at faults. Sizes for two

dictionaries referred to as full and pass/fail (P/F) are shown. For each design, the number

of gates (NGate), the number of observation points (NObsPt) and the number of test patterns

(NPat) are presented.

53

For designs with compression technique implemented, the compression ratio

(RComp) is also reported.

Table 3: Design Information and Dictionary Size

 D1 D2 D3 D4 D5 D6 D7

NGate 314K 543K 1.1M 1.1M 2.0M 506K 1.3M

NObsPt 20K 46K 64K 70K 134K 13K 8K

NPat 5000 2252 1999 9415 1000 1000 1800

RComp N/A N/A N/A N/A N/A 6.5X 9.9X

NSAF 631K 1.1M 1.7M 1.8M 4.2M 817K 2.5M

SFull 7.9T 14.3T 27.2T 147T 70.4T 1.3T 4.5T

SP/F 394M 310M 425M 2.1G 525M 102M 563M

The main problem for this approach is the storage required is huge. For a full

dictionary straight forward implementation, the size can be computed as SFull = NSAF *

NPat* NObsPt/8, where NSAF is the total number of collapsed stuck-at faults of this design.

The size of a full dictionary is prohibitively high. As we can see from Table 3, even a

small design like D1 with 314K gates and 5K patterns would need 7.9 terabyte memory.

To reduce the memory, a simple approach is to use a single bit to indicate whether a

given fault is detected by a test pattern or not, which results in a pass/fail dictionary. The

size of pass/fail dictionary is reduced to SP/F = NSAF * NPat/8, which is smaller but suffers

from accuracy and resolution loss as to be unacceptable for high accuracy diagnosis

requirements.

54

4.2.4 Signature-Based Small Dictionary

W. Zou et al. [37] proposed a technique that combines the benefits of effect-cause

and cause-effect diagnosis. For each fault and a test pattern that detects this fault, a 32-bit

MISR compressor is used to generate a signature for this fault. Only unique signatures

are stored for each fault. If for the same fault there are two patterns generating the same

signature, only one copy is stored. This lowers the size of the dictionary to 32*F*U.

Where F is the number of faults and U is average number of unique signatures for each

fault. When performing diagnosis, the dictionary of the signatures (called small

dictionary) are looked up to find the initial suspect lists and followed by fault simulation

and matching.

Figure 8: Size of Small Dictionary for D1

55

The size of small dictionary [37] increases almost linearly with the number of test

patterns. And there was no sign of saturation. Such linear increase will cause small

dictionary to fail to be created on very large designs. In order to achieve high

performance with reduced dictionary size that does not grow linearly with number of

patterns, we propose a reduced small dictionary.

4.3 Proposed Techniques and Diagnosis Procedure

In this section we propose methods to efficiently combine the advantages of

cause-effect and effect-cause diagnosis procedures into an integrated diagnosis procedure

that is highly efficient and requires minimal memory overhead. The same high diagnosis

accuracy and resolution as the effect-cause diagnosis is achieved by the proposed

procedure. After discussing the proposed techniques to reduce the memory overhead of a

fault dictionary, the proposed diagnosis procedure using the reduced size fault dictionary

is presented.

The observation that inspired us to devise such a reduction scheme is as follows.

In Figure 9, we plot the number of failing patterns with a given number of failing bits in

tests that failed approximately 26, 000 different real chips during manufacturing test. The

curve gives the cumulative percentage of all failing patterns and the X-axis represents the

number of failing bits in the failing patterns. It can be seen that approximately 77% of the

failing patterns have a single failing bit and over 98% of the failing patterns have 5 or

less failing bits. Thus if one wants to improve the efficiency of effect-cause diagnosis

procedures one should focus on improving the run time for most likely failing responses

which contain very few failing bits as illustrated.

Secondly, in the process of back tracing, the intersections of the cones are used to

find the candidates. For example in Figure 10, the input cones of observation point O1,

O2 and O3 are shown. If the pattern has only one failing bit O1, then the suspect list is

the input cone of O1. On the other hand if the failing pattern has 3 failing bits O1, O2 and

56

O3, then the suspect after intersection is only area A, which is the intersection of the three

inputs cones and usually much smaller. The patterns that have a lot of failing bits will

have a much smaller intersection and cause fewer events during fault simulation. So the

choice of not storing these signatures in the dictionary will not affect the performance of

speed up in any significant way. The patterns that have less number of failing bits will

have a large intersection and lots of fault suspects. We choose to store them to speed up

the diagnosis process.

Figure 9: Number of Failing Bit per Failing Pattern Distribution

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

Num_pat Agg%

57

4.3.1 NFB Dictionary

We propose to use pre-computed failure information to handle failing patterns

with a few failing bits, which may not be efficiently processed by critical path tracing

used in effect-cause diagnosis procedures. A fault dictionary is used to store all unique

failing patterns for each fault, with NFB failing bits or less in a dictionary called the NFB

dictionary.

4.3.2 FFR Grouping

The faults in a fanout-free region (FFR) are likely to share many signatures. We

save these faults as a group. For all the signatures, we replace the fault with group and

save storage for the faults that share the same signature and in the same FFR group.

In Figure 11, before fault grouping using fan-out free region, we have essential

faults: A/1, B/1, C/0, D/0, E/1, F/1, G/0 and G/1. After grouping, we only record the fault

O1

O2

O3

A

Figure 10: Intersection of Critical Path Tracing

58

group G. Since all the faults will propagate through the common stem G, most signatures

will overlap for different faults under the same pattern. For example, in Table 4:

Table 4: FFR Grouping Faults

Fault S1 S2 S3 S4 S5
A/1 x x
B/1 x x x
C/0 x x
D/0 x x
E/1 x x x
F/1 x x
G/0 x x
G/1 x x x

E

F

A
B

C
D

G

FFR

Figure 11: Fault Grouping Using FFR

59

Here ‘x’ stands for the fault has this signature. Fault A/1 has signature S1, S3. In

small dictionary, all these pairs will be stored: <A/1, S1>, <A/1, S3>, <B/1, S1>, <B/1,

S2>…<G/1, S5>; after grouping only the 5 pairs will be stored: <G, S1>, <G, S2>, <G,

S3>, <G, S4>,<G, S5>. Thus we have a smaller dictionary. When diagnosing, after the

group id G is selected from the matched signature. All the faults in this group will be

reported as candidates for simulation.

4.3.3 Proposed Algorithm

The NFB dictionary is created by the following step as a preprocessing phase

before the diagnosis, this preprocessing is only executed once to create the dictionary:

1) For each fault fi, find all failing information by simulating all patterns.

2) Drop all failing patterns with more than NFB failing bits.

3) Find the unique failing bit combinations for all remaining failing patterns of fi.

4) Encode the unique failing bit combinations into 32-bit signatures and store them.

5) Repeat step (1) to (4) for all faults.

6) Reorganize unique signatures for failing patterns of all faults, such that they can

be efficiently queried during diagnosis. Save them for future use during diagnosis.

When diagnosing, for each failing pattern PF, if the number of its failing bits is

higher than NFB, use X-algorithm to trace for the initial candidate list. Otherwise,

computer the signature of PF and query the NFB dictionary to find the matching

candidates. If no fault grouping is used, the query results are directly used as initial

candidates. Otherwise, the query results (matched fault groups) need to be expanded first,

i.e. find all faults belonging to the matched fault groups, and then use the faults as initial

candidates. In case no matching result is found by query, the failing pattern is treated as

60

an unexplained failing pattern and may be ignored. After obtaining the initial candidates,

the remaining parts of diagnosis process is exactly the same as in the effect-cause

diagnosis. Remaining candidates go through fault simulation and minimum covering,

passing pattern scoring phases.

Since both the X-algorithm and the NFB dictionary querying guarantee to return a

list of initial candidates which is a superset of the real suspects, the diagnosis accuracy

and resolution are not compromised. The exact same results as the conventional effect-

cause diagnosis are guaranteed by the proposed algorithm. In addition, the proposed NFB

dictionary efficiently addresses the majority of failing patterns with a small number of

failing bits, and thus can achieve a significant performance improvement with minimal

memory overhead.

In addition, the proposed NFB dictionary provides a flexible tradeoff between

memory and performance. When the memory budget is tight, a small value of NFB can be

used to speed up diagnosis with a very small memory overhead. If more memory is

available, a bigger dictionary with a higher NFB limit can deliver a better performance

speedup. Unlike [37], where the X-algorithm is completely discarded and initial

candidates are identified only from from dictionary query, the proposed algorithm

seamlessly integrates X-algorithm and the NFB dictionary, to achieve a significant

performance improvement with minimal memory overhead. It is easy to see that the

proposed NFB dictionary without fault grouping will become same as the small

dictionary proposed in [37] if NFB is set as +∞.

4.4 Experimental Results

In order to validate the proposed techniques, various experiments were performed

on the industrial designs described in Table 3 and the results are presented next. In the

following sections, the memory overhead, the simulation event reduction and run time

performance are presented.

61

4.4.1 Memory Overhead

The memory overhead for the proposed NFB dictionary was first investigated. We

preformed experiments on the seven industrial designs listed in Table 3. The first

experiment is to measure the memory overhead of the NFB dictionary without fault

grouping. For each design, the memory usage of the conventional effect-cause diagnosis

is used as the baseline. The extra memory used to load the proposed dictionary is

considered as memory overhead. The NFB dictionary memory overhead for all seven

designs is normalized by dividing the memory usage for loading the design netlist and

test patterns and plotted in Figure 12. Results are reported for values of NFB = 2, 5, 10,

Figure 12: Memory Overhead Without Fault Grouping

62

100, 10e8 (all). The dataset All-bit simply means that all unique signatures with no more

than 10e8 failing bits are stored into the NFB fault dictionary, and is actually equivalent to

the dictionary of [37].

As we can see, the proposed NFB dictionary can significantly reduce the memory

overhead by selecting a reasonable value of NFB, such as 2 or 5, compared to the fault

dictionary storing all signatures, and thus is applicable to the largest modern designs. For

example, for D5, if only signatures for the failing patterns with no more than 2 failing bits

are stored, the memory overhead is less than 2% of the total memory needed to load the

design and the pattern set. Compared to All-bit, it is about 7X smaller. Even if a less

aggressive limit NFB = 5 is used, the normalized memory overhead, on the average, is still

low at 6.4%.

Another experiment was performed to investigate the effectiveness of the

proposed fault grouping technique. Similar to the previous experiment, the memory

overhead for the NFB dictionary with fault grouping based on fanout-free regions is

measured and normalized. The normalized results are plotted in Figure 13 as N-bit +

FFR. For ease of comparison, results for the dictionary without fault grouping are also

reported as N-bit. Data for two typical values, NFB = 2 and NFB = 5, are presented.

It can be seen that the proposed technique of grouping faults based on FFRs, can

effectively reduce the memory overhead of the proposed NFB dictionary. For instance, for

design D7, the fault grouping based on FFRs can reduce the normalized memory

overhead of NFB = 5 dictionary by about 53.7%, from 9.5% down to 4.4% of the total

memory for loading the design netlist and test patterns, which is even smaller than the

original NFB = 2 dictionary without fault grouping. On average, fault grouping can reduce

the memory overhead of the NFB dictionary by 65.0% for NFB = 2 and by 48.5% for NFB =

5.

63

In addition, the average memory overhead of NFB = 5 dictionaries with fault

grouping based on FFRs is only 3.3% of the total memory to load design and patterns,

and should not be an issue even for very large industrial designs. In cases where the

memory budget is extremely tight, we can use the NFB = 2 dictionary with fault grouping,

whose average memory overhead is less than 1% and thus almost negligible. For easy

comparison with the dictionary proposed in [37], the memory overhead of the proposed

NFB dictionary is normalized by dividing the memory overhead of All-bit dictionary, and

reported in Table 5.

Figure 13: Memory Overhead With Fault Grouping

64

Table 5: Memory Overhead VS. Small Dictionary

 D1 D2 D3 D4 D5 D6 D7

5-bit 0.298 0.389 0.375 0.287 0.366 0.479 0.417

2-bit 0.107 0.158 0.178 0.112 0.142 0.243 0.194

5-bit+FFR 0.160 0.202 0.187 0.151 0.216 0.251 0.192

2-bit+FFR 0.036 0.055 0.065 0.038 0.055 0.090 0.065

As explained before, the All-bit dictionary is equivalent to the small dictionary

proposed in [37]. It can be seen that the memory overhead of the proposed NFB dictionary

is significantly smaller than small dictionary [37]. For example, the NFB = 2 dictionary

with fault grouping for design D1 is only 3.6% of the size of the All-bit dictionary, i.e.

27.8X smaller than small dictionary. On average, the memory overhead of the NFB = 2

dictionary with fault grouping is 17.2X smaller than [37]. When NFB is increased to 5, the

average size of proposed dictionary with fault grouping is still 5.2X smaller than the size

of the dictionary in [26]. Even with such a dramatically reduced size, the proposed

dictionary can still achieve a similar performance improvement as small dictionary for

most designs.

4.4.2 Event Reduction

After investigating the memory overhead of the proposed NFB fault dictionary,

experiments were performed to determine performance improvement using the proposed

diagnosis algorithm. For each design listed in Table 3, 100 fail logs were created by

65

simulating randomly selected single stuck-at faults. Both clock-related faults and chain-

related faults are excluded. A conventional effect-cause diagnosis algorithm is used to

diagnose all fail logs, and the results are used as baseline for comparison. The same set of

fail logs are also diagnosed by the proposed diagnosis algorithm using the NFB fault

dictionary with/without utilizing fault grouping technique, NFB = 2, 5.

Since only the failing pattern processing is targeted in this work, our analysis will

focus on the improvement for processing failing patterns. For different diagnosis runs, the

number of events triggered and the CPU time consumed during processing failing

patterns are used as metrics for evaluating performance.

An event is defined as evaluating the value of a gate during fault simulation.

Unlike CPU time, the number of events is independent of run time environment and

specific implementation of the procedures. We first investigated the reduction of the

number of events triggered during simulating failing patterns on the initial set of

candidates by the proposed algorithm with the NFB fault dictionary. For each design, the

total number of events is computed for 100 fail logs diagnosed. The reduction of the

number of events is computed by dividing the total number of events for the conventional

effect-cause diagnosis by the number of the proposed algorithm. Results are plotted in

Figure 14.

It can be seen that the total number of events triggered during simulating failing

patterns can be dramatically reduced by using the proposed algorithm, and thus the

diagnosis performance can be significantly improved. For design D4, the NFB dictionary

can help to reduce the number of events by about 100X. On average, 16.1X 22.7 ׽X

reductions in the number of events are achieved by four different dictionaries.

Another interesting observation is that the proposed fault grouping technique

based on FFRs causes a minimal increase in the number of events relative to the case

when fault grouping is not used.

66

For example, for the NFB = 2 dictionaries, the average reduction in the number of

events only drop by 9.6%, from 17.8X down to 16.1X, when fault grouping based on

FFRs is adopted. The reason is that the extra candidates introduced by fault grouping

typically have a local effect and can be quickly dropped during simulation. Therefore,

there is no significant impact on the reduction of the number of events. Because of the

significant saving in dictionary size using fault grouping, for example, on average 65.0%

saving for NFB = 2, fault grouping should be preferred.

Figure 14: Reduction of the Number of Events

67

4.4.3 Run Time Speedup

The speedup of run time for processing failing patterns was also investigated. The

average CPU time for analyzing all failing patterns for a fail log is computed for all 100

fail logs for each design. The speedup for each run is computed by dividing the average

CPU time of the standard effect-cause algorithm by the run time of the proposed

procedure. The same set of NFB dictionaries as above are used and the results are

presented in Figure 15.

As we can see, a significant performance improvement is achieved by the

proposed algorithm using NFB = 2, 5 dictionaries. On average, a 2.9X 4.3 ׽X speedup is

Figure 15: CPU Time Speedup (Failing Patterns)

68

achieved by different runs for the seven designs. For design D6, higher than 6.0X

speedup is achieved by the proposed algorithm with NFB = 5 dictionaries, both with and

without fault grouping. In addition, it can be seen that the NFB = 5 dictionary with fault

grouping has a very similar speedup as the dictionary without fault grouping, but a much

smaller memory overhead, which makes it a preferred tradeoff.

Compared to the extreme case, where NFB = 10e8, the NFB = 5 dictionary with

fault grouping can achieve a similar high speedup for four out of seven designs, D1 to

D4, with a much smaller memory overhead. For the other three designs, D5 to D7, there

is still plenty of room for improving performance by increasing NFB, which means a

higher speedup can be achieved by using a larger dictionary if more memory is available.

For example, the speedup for D5 can be increased from 5.3X of the NFB = 5 dictionary

with fault grouping to 26.2X using All-bit with a cost of 4.6X memory overhead. One

proper way to use the proposed techniques is to first determine the memory budget and

then create a NFB dictionary as large as can be accommodated to achieve a higher

performance.

4.5 Conclusion

We proposed a new NFB dictionary with minimal size which seamlessly works

with the X-algorithm normally used in effect-cause diagnosis procedures to speed up the

conventional effect-cause algorithm. The diagnosis performance is significantly

improved by replacing X-algorithm with efficient dictionary query for failing patterns

with a small number of failing bits, which drastically reduces the number of events

triggered by simulating failing patterns. The same high accuracy and resolution of

diagnosis results as the standard effect-cause diagnosis is guaranteed. The memory

overhead of the proposed NFB dictionary is minimized by only storing unique signatures

for failing patterns with no more than NFB failing bits, and grouping faults based on

fanout-free regions. The minimal memory overhead makes sure that the proposed

69

dictionary and the diagnosis algorithm is applicable to the modern large designs with tens

of millions of gates. Flexible tradeoffs between memory overhead and performance

improvement can be easily achieved through the configurable parameter NFB of the

proposed dictionary. As to the creation time for the proposed dictionary, it only takes a

few hours for the largest design D5. Therefore such one-time cost could be justifiable

when one needs to process thousands of failed dies.

70

CHAPTER 5. INCREASED FAULT DIAGNOSIS THROUGHPUT

USING DICTIONARY FOR HYPERACTIVE FAULTS

For volume production of VLSI designs in future technologies fast and accurate

diagnosis of manufacturing defects on a large number of chips is necessary to ramp up

yields. Methods to speed up effect-cause fault diagnosis procedures which are commonly

used in commercial tools have been recently proposed. These include the use of fault

response dictionary. However, for very large industrial designs, these methods either

need very large dictionaries, that may not fit in the memories available even on large

workstations or they drastically reduce the speedup achievable by using dictionaries. For

example using the so called NFB dictionary [38], dictionary size is reduced but speed-up

is much reduced for larger designs. In this work we propose a method to achieve higher

speedup with a marginally larger dictionary than the NFB dictionary. We achieve this by

identifying a set of faults called hyperactive faults for which we create a novel dictionary.

Experimental results are presented to demonstrate the effectiveness of the proposed

method.

5.1 Introduction

In deep sub-micron (DSM) designs, feature related systematic manufacturing

defects are common and cause yield problems. Such defects include bridges of parallel

lines, bridges of lines over wide metal and single via that is prone to open defect. Yield is

the percentage of good dies over all the dies manufactured. Low yield devices are costly

to manufacture and the low rate of producing sufficient number of good devices gives

business opponents opportunities to seize market share. To shorten the time-to-market,

the yield must be ramped up by quickly discovering and rectifying the causes for

systematic defects. Due to the shrinking feature size of devices 90nm and below, yield

ramp up is becoming more and more difficult. Traditional test chip method for yield

learning is useful in calibrating manufacturing processes but a test chip is very expensive.

71

Another yield enhancing technique is physical analysis which is accurate but has a high

turnaround time and costs a lot in equipment and engineering time. In the future, volume

diagnosis with statistical learning [39] is needed to cost effectively discover systematic

defects.

An accurate and high throughput diagnosis tool is required to diagnose large

numbers of failing devices to aid statistical yield learning. Accuracy requires that the

reported fault suspects include the actual physical defect. To be effectively useful in

physical failure analysis or statistical learning, high diagnosis resolution is required.

Diagnostic resolution is the number of reported suspects for a failing device, which

should be small. High throughput is very important too. The ability to diagnose thousands

of failed chips on time is critical for yield learning tools. Traditional effect-cause

diagnosis programs are unable to handle the high volume data in time. A slow diagnosis

tool may cause significant delay in yield ramp up and time-to-market. Effect-cause

diagnosis assisted with dictionary approach [37] is fast but suffers from large dictionary

size. NFB dictionary proposed in [38] reduces dictionary size while being much slower in

diagnosing some designs.

This paper proposes a diagnosis approach that utilizes a marginally larger

dictionary than the NFB dictionary [38] while achieving much better diagnosis times for

large designs. The proposed method targets reduction of the effect of what are called

hyperactive faults on the runtime of diagnosis procedures using a novel dictionary to

store information on hyperactive faults.

The paper is structured as follows: In Section 5.2, we review the effect-cause and

the cause-effect diagnosis procedures followed by a review of the speed-up techniques

using signature-based small dictionary and the NFB dictionary. In Section 5.3, the

proposed method is discussed, including the construction of the dictionary for the

hyperactive faults and the diagnosis flow used. Experimental results are given in Section

5.4. Section 5.5 concludes the work.

72

5.2 Review of Previous Works

In this section we first define some terminology used in this work, then give a

brief review of the effect-cause and cause-effect diagnosis procedures, followed by an

overview of signature-based small dictionary and NFB dictionary proposed in [38] and

[37], respectively, to speed-up effect-cause diagnosis.

5.2.1 Terminology

Passing (Failing) Bit: An observed bit output on the tester found (not to) match

the expected value.

Failing response: The entire circuit outputs that have failing bit(s).

Passing (Failing) Pattern: A pattern applied by a tester to a circuit under response

to which did not have (has) failing bits.

Number of Failing Bits: the number of failing bits in a pattern. The number of

failing bits in a pattern Pj when a candidate fault fi is simulated under pattern Pj is

denoted as NFB(fi, Pj). The number of failing bits of a faulty response in the fail log

(obtained during test) under pattern Pj is denoted by NFB(Pj).

Minimum Number of Failing Bits: The Minimum Number of Failing Bits of a

fault candidate fi is the smallest number in the set {NFB(fi, Pj)| pattern Pj detects fault

candidate fi}, which is denoted by minFB(fi).

Explain: Given a failing pattern P, if a fault fi under simulation predicts the same

failing response as the response of P on the tester, we call fault fi explains failing pattern

P.

Mismatch: A failing pattern that cannot (can) be explained by a fault candidate fi

is called a failing pattern mismatch (match) for fi. A passing pattern that cannot (can) be

explained by a fault candidate fi is called passing pattern mismatch (match) for fi. The

match and mismatch information is used to assign a score to rank the final fault

candidates/suspects reported by the diagnosis procedure.

73

5.2.2 Review of Cause-Effect Diagnosis

Cause-effect diagnosis procedures perform fault simulation on all modeled faults

in the circuit once and record the faulty responses in a dictionary. When performing

diagnosis, the failing response of the faulty chip will be compared with the a priori

simulated responses in the dictionary. The modeled faults with the failing behavior which

matches closely the observed failing and passing responses will be reported as final

candidates. The advantage of cause-effect diagnosis approach is that it is fast as only

dictionary lookup is used to determine candidate defects. The problem is the

overwhelming dictionary size. Several techniques [3] - [5] have been proposed to discard

some information in the complete dictionary to reduce the dictionary size. The size of a

dictionary still tends to be prohibitive for designs with millions of gates. Additionally

using some incomplete dictionaries such as pass-fail dictionary [3], diagnosis accuracy

and resolution may be reduced.

5.2.3 Review of Effect-Cause Diagnosis

Effect-cause diagnosis procedures are normally used in industry. They typically

use Single Location at a Time (SLAT) patterns [8]. SLAT patterns are those for which

the observed failing response is matched by the simulated response (to this pattern) of a

single fault at a location. The single location faults simulated is a choice of the user/tool.

Typically though, the faults simulated in effect-cause diagnosis procedures are single

stuck-at faults. The appropriateness of using single stuck-at faults can be seen by the fact

that SLAT patterns used in diagnosis correspond to patterns that detect single stuck-at

faults. It is important to note that this does not mean that the diagnosis tool assumes that

the defect being diagnosed is a single stuck-at fault. It only means that a particular pattern

response is the same as the response to the test pattern due to a single stuck-at fault.

SLAT patterns based on single stuck-at faults have been successfully used to locate

defects such as bridges and opens including multiple defects.

74

An effect-cause diagnosis procedure uses the following steps (Figure 16):

1. For each failing pattern, using X-algorithm [9] backtrace from the failing

observation points for each pattern to obtain the initial set of fault

candidates. Use fault simulation to remove or filter out the candidates

which do not match the observed failing bits of the pattern.

2. Perform minimum set covering on the candidates obtained in Step 1 above

to find a minimal set of candidates to explain a maximum number of

failing patterns. The selected candidates are referred to as suspects.

3. Simulate the suspects using the passing patterns and compute a score

based on the passing/failing pattern match/mismatch. Rank the suspects

based on their scores.

The advantage of effect-cause diagnosis is the small memory requirement. No

dictionary is used and memory is available for holding larger designs and test patterns.

The disadvantage is also obvious, for volume diagnosis. Fault simulation may waste time

repeatedly on some time consuming candidate faults that are filtered out. Using

Candidates from X-
algorithm
backtracing

Simulate
faults

Figure 16: Flow of Diagnosis Procedure Using Effect-Cause Diagnosis

Minimum set
covering

Simulate passing
patterns and rank
final candidates

75

dictionary could effectively alleviate this situation by filtering out such faults without

simulation. The other time consuming step in the standard effect-cause procedures is the

time for backtracing to find the initial set of candidates. Using a dictionary backtracing

can be completely avoided.

A method to speed up effect-cause diagnosis with a small signature based

dictionary was proposed in [37]. However, the size of the signature based dictionary

increases almost linearly with the number of test patterns. The result is that the size of the

dictionary is too large to fit in the available large workstations for very large designs with

tens of millions of gates and thousands of patterns. A limited number of failing bits based

dictionary called the NFB dictionary was proposed in [38] to reduce the size of the

signature based dictionary but the speed up over the standard effect-cause diagnosis

relative to that obtained by using the dictionary of [37] is much reduced for some designs.

The contribution of this paper is a method to reduce the run time of the above

mentioned Step 1 of the effect-cause diagnosis procedures over and above the reduction

obtained by using the NFB dictionary whilst using a dictionary whose size is only

marginally larger than that of the NFB dictionary.

5.2.4 Signature-based Small Dictionary

For the signature based small dictionary proposed in [37], failing bit data for a

pattern is compressed into a 32-bit signature. Only unique signatures for each fault are

stored in the dictionary. Clocks pulsed to obtain failing responses are also used to help to

bypass the simulation of passing patterns that do not pulse the required clock(s) for a

candidate fault. Information regarding which patterns cause a given signature is not kept

leading to the relatively small size of the dictionary.

During Step 1 of effect-cause diagnosis process, described in Section 5.2.2, the

initial list of fault candidates are obtained by looking up the dictionary with the signature

of observed failing response as the key. Figure 17 shows the manner in which the initial

76

list of fault candidates are obtained when a dictionary is used instead of using backtracing

as shown in Figure 16. However, since the saved dictionary does not contain information

on the patterns that caused a stored signature, the initial candidates from the dictionary

will need to be fault simulated to verify if they match the observed failing response for a

pattern. The candidate list may not be significantly smaller than the candidate list derived

by the traditional effect-cause backtracing. However, the simulation time for candidates

found from the dictionary is usually much shorter than that for candidates obtained using

backtracing. The main reason for reduced run-time is that hyperactive faults which are

included in the initial list of candidates by backtracing are not likely to be in the initial

candidate fault list given by fault dictionary approach and thus not get simulated.

Hyperactive faults refer to the faults that create many simulation events when simulated

and thus take long time to simulate.

As noted earlier, the limitation of the dictionary proposed in [37] is its size which

increases almost linearly with the number of test patterns [38]. For a 10 million gate

Candidates from
small dictionary by
look up signature

Simulate
faults

Figure 17: Flow of Diagnosis Procedure Using Small Dictionary

77

design with 27 thousand patterns, it was not possible to fit the small dictionary into the 16

GB RAM of an engineering workstation [38].

5.2.5 NFB Dictionary

In order to reduce the size of the signature based dictionary proposed in [38], a

dictionary called NFB dictionary was proposed in [37]. In NFB dictionary signatures

corresponding to failing patterns with only a few failing bits are stored. Typically

signatures for responses with only up to 5 or less failing bits were saved in the dictionary

based on the following observations. When the initial list of fault candidates is found by

backtracing using the X-algorithm the fault candidates are obtained essentially by

intersecting the logic in the input cones of the failing bits. Thus the initial set of

candidates tends to be large for patterns that have few failing bits. If signatures for

responses with few failing bits are stored in a dictionary, the initial list of fault candidates

for such patterns can be found by looking up the dictionary. For patterns with many

failing bits the initial set of fault candidates are found using backtracing as in the standard

effect-cause diagnosis procedures. This strategy can be expected to reduce the size of the

Candidates
from NFB
dictionary

Simulate
faults Cand. from

X-algorithm

Patt failing
bit ≤ NFB?

Y

N

Figure 18: Flow of Diagnosis Procedure Using NFB Dictionary

78

dictionary while at the same time take less time than the standard effect-cause

procedures.

The flow of diagnosis using the NFB dictionary is shown in Figure 18. For a

failing pattern if the number of failing bits in the observed response is ≤ NFB (typically

NFB = 5), the initial list of candidates are obtained by looking up the NFB dictionary. If the

number of failing bits for a patter is > NFB, the initial candidates are obtained using the

traditional backtracing. A problem with this approach is that when many patterns with

failing bits more than NFB occur the diagnosis procedure essentially becomes the same as

the traditional effect-cause procedure that does not use a dictionary.

Because of this it was noted that for some large designs NFB dictionary based

diagnosis procedures was considerably slower than the procedure using the small

dictionary of [38].

For example, consider the circuits given in Table 6 in which we list the circuits

that will be used in the experimental results section of this paper. In Table 6, NGate is the

number of gates in the design and NObspt is the number of observation points, including

the primary outputs and the scan cells. NPat is the number of patterns in the pattern set

used and NSaf is the number of collapsed stuck-at faults in the design.

For design C5, NFB dictionary based effect-cause diagnosis procedure takes 8X

times relative to the time taken by the small dictionary based procedure proposed in [37].

Table 6: Information on Some Industrial Circuits Used in the Study

Circuit C1 C2 C3 C4 C5 C6 C7 C8
NGate 314K 543K 1.1M 1.1M 2.0M 1.1M 2.0M 2.2M
NObspt 20K 46K 64K 70K 134K 58K 129K 144K
NPat 5000 2252 1999 9415 1000 2656 3167 22982
NSaf 631K 1.1M 1.7M 1.8M 4.2M 2.1M 4.1M 3.9M

79

We analyzed design C5, where the NFB dictionary based diagnosis is slow. The fault-

event distribution is shown in Figure 19. The X axis is the number of events in log scale.

The Y axis is the number of faults in linear scale. It can be seen that a majority of the

faults have low event count of 1-100. A handful of faults have much larger event count

of 1 million. We found that the top 0.4% of faults with high event count during fault

simulation account for 50% of the sum of events for all the collapsed stuck-at faults and

are responsible for a large proportion of the simulation time. However the faults causing

large simulation events also cause larger than 5 observed outputs to fail and hence the

Figure 19: Distribution of the Number of Events

80

signatures of the responses of these faults, called hyperactive faults in this work, were not

stored in the NFB dictionary using NFB=5. However if one adds dictionary entries for

faults which cause errors on more than 5 outputs to the NFB dictionary, we get back to the

dictionary of [37] which, as we pointed out earlier, could be too large for large designs.

So the solution one should consider would only store information for a small subset of

faults that cause errors on more than a limited number of outputs.

As noted above the run time of the NFB dictionary based procedures is high due to

faults that cause high event count during simulation. Such faults, called hyperactive faults

in this work, also tend to propagate fault effects to many observation points. Since NFB

dictionary does not save the signatures of patterns with a high number of failing bits, X-

algorithm is used to find the initial candidate list. The X-algorithm based backtrace tends

to include hyperactive faults in the initial list of candidates. This is illustrated by Figure

20.

In Figure 20, CUT is the circuit under test, fA is the actual fault which causes

observation points O1 … O6 to fail. Backtracing from these observation points (O1 … O6)

CUT

fA

 fH

Figure 20: Hyperactive Fault Characteristics

O1
.
.
.
O6

81

will likely include hyperactive fault (fH) in the initial candidate list. Then fault simulation

of hyperactive fault fH will create large number of events, denoted in the figure by

parallelograms. Fault fH is dropped after simulation since it affects additional outputs as

shown in Figure 20. Thus it is important to drop the hyperactive faults without simulating

them if they are to be ultimately dropped. Figure 20 also illustrates a key observation that

we used to develop a novel dictionary to facilitate dropping hyperactive faults from the

initial list of fault candidates without performing fault simulation. Hyperactive faults tend

to produce errors on many observed outputs. This suggests that we can avoid simulation

of hyperactive faults that will not match the failing response if the number of failing bits

in a failing response on the tester has less than some minimum number of failing bits.

5.3 Dictionaries for Hyperactive Faults

Dictionaries when used effect-cause diagnosis procedures help to reduce the run

time of diagnosis for the following reasons. One reason is the avoidance of backtrace to

determine initial list of fault candidates and the other reason is that the dictionaries

provide a list of initial candidates that are easy to filter as the fault simulation time for

them is smaller.

When a partial dictionary such as the NFB dictionary is used, backtracing is

necessary when the signature of a failing pattern is not stored in the dictionary and as

noted earlier this causes higher run times. In order to improve the run time while

preserving the small size of a dictionary we propose using two additional very small

dictionaries. These dictionaries can be used in addition to the NFB dictionary or by

themselves. Both the newly proposed dictionaries store information about faults that

cause high numbers of events during fault simulation. Next we describe these dictionaries

called Failing Bit Count Dictionary and Hyperactive Faults Signature Dictionary.

82

5.3.1 Failing Bit Count Dictionary

In the Failing Bit Count (FBC) Dictionary, we use hypertrophic faults to help

identify hyperactive faults. Hypertrophic faults are faults that cause many failing bits in a

failing pattern. By definition, a hyperactive fault is a fault with high number of simulation

events. During event driven simulation, a major reason for high number of events is

because the fault effects propagate through many paths and are likely to reach many

observation points. Thus hyperactive faults also tend to be hypertrophic faults as well.

A simple and cost effective way of identifying a hypertrophic fault and avoid

simulating it is to save the smallest number of failing bits such a fault causes over all

patterns. Then if a pattern that failed on a tester has fewer failing bits than the minimum

number of failing bits saved for a fault f, one can conclude that fault f will not match the

observed response and hence can be dropped from the initial list of candidates without

fault simulation. We next discuss creation of the FBC dictionary.

Let T be the set of tests used to diagnose defects in the circuit under test. Let Ti ⊆

T be a subset of tests that detect a fault fi. Then the minimum failing bit count of fault fi,

written as minFB(fi), is the smallest number of failing bits among responses to the tests in

Ti.

For example let f1 be a fault detected by tests t1, t4 and t7 in T. Let the number of

failing bits when t1, t4 and t7 are applied and fault f1 is present be 13, 22 and 8,

respectively. Then minFB(f1) = 8.

In deriving the FBC dictionary all tests in T are simulated without fault dropping.

During fault simulation to create the dictionary, we compute the average number

of events caused by a fault over all tests that detect it. Let Av_Event(fi) be the average

number of events caused by fault fi.

In the Failing Bit Count (FBC) Dictionary we enter a pair (fi, minFB(fi)) for each

fault which satisfies the following two conditions:

83

1. minFB(fi) ≥ MINFB, and

2. Av_Event(fi) ≥ MINEVENT, where

MINFB = NFB + 2, where NFB is the value used to generate NFB dictionary. When

NFB dictionary is not used, NFB = 0 and MINFB = 2. The reason for using MINFB = NFB

+ 2 is given in Section 5.3.4 after the flow of diagnosis using FBC dictionary is

described. MINEVENT is user specified minimum average event count, which qualifies a

fault to be recorded in the FBC dictionary. An example of FBC dictionary is shown in

Table 7.

Table 7: Failing Bit Count (FBC) Dictionary

5.3.2 Hyperactive Faults Signature Dictionary

To identify the hyperactive faults that are not hypertrophic, we need another

structure to save information about them. We can use fault signatures to distinguish

between the hyperactive faults that may match the response observed on the tester and

those that will not match observed response. The approach is to save the signatures of the

hyperactive faults and filtering out such faults by looking up the failing pattern signature

in a separate dictionary we call Hyperactive Faults signature (HFS) dictionary. If the

signature of the observed response is not found in the dictionary, the corresponding fault

Fault minFB(fi)
f1 40
f2 33
f3 7
f4 12
f5 14

84

can be dropped from the initial list of candidates without fault simulation. Next we

describe the HFS dictionary.

In the second dictionary we propose, called the Hyperactive Faults Signature

(HFS) Dictionary, the entries are similar to those in the signature based small dictionary

[37] and the NFB dictionary[38]. An entry in the HFS dictionary is a 32-bit signature si of

a faulty response and a set of associated faults Fi. Each fault in the set Fi produces a faulty

response for some tests whose signature is si. The signature si and the faults in the set Fi

must satisfy the following conditions:

1. Signature si corresponds to failing response in which the number of failing

bits is between a lower bound FB_Low and an upper bound FB_High. In

our experiments we used FB_Low = NFB + 1, where NFB is the value used

to generate NFB dictionary. When NFB dictionary is not used, NFB = 0 and

FB_low = 1. FB_High is used to limit the entries in the HFS dictionary

and usually set to 20 or a number that is the maximum number of failing

bits in all the failing patterns to be diagnosed.

2. A fault f in Fi produces a faulty response for some test whose signature is

si and the Av_Event(f) is such that f is among the top X% of all faults

arranged in decreasing order of their Average Event Count. In our

experiments we used X = 0.1. That is, a fault appears in the HFS

dictionary only if the average number of events created by it in fault

simulation places it at the top 0.1% of all faults in the circuit ordered by

the average number of events created by them.

5.3.3 Dictionary Sizes

As discussed earlier our goal is to improve the performance of effect-cause

diagnosis procedures using a dictionary whose size will permit accommodating large

85

designs in the memories of engineering work stations. The base line we use to evaluate

the proposed dictionary is the signature based small dictionary proposed in [37].

The FBC and HFS dictionaries proposed here are always used together and their

combination is referred to as Hyperactive Fault (HF) Dictionary. Examples of FBC and

HFS dictionaries are given in Table 7 and Table 8. The example FBC dictionary of Table

7 could be obtained when NFB = 5, MINFB = NFB + 2 = 7. The HFS dictionary of Table 8

could be obtained by setting FB_Low = NFB + 1 = 6 and FB_High = 20 for the same

circuit as the one used for Table 7. Note that faults f1 and f2 which appear in Table 7 do

not appear in Table 8 since minFB(f1) and minFB(f2) are 40 and 33 which are higher than

FB_High = 20 used for the HFS dictionary of Table 8. Also f6 appears in Table 8 and

does not appear in Table 7 since minFB(f6) = 6 which is less than MINFB used for the

FBC dictionary of Table 7.

Table 8: Hyperactive Faults Signature (HFS) Dictionary

In Table 9 we report the sizes of the NFB Dictionary [38] with NFB = 5 and the

Hyperactive Fault Dictionary for the eight circuits described in Table 6. The HF

dictionary was created with MINFB = 7, FB_Low = 6, FB_High = 20, MINEVENT = 50,

and X = 0.1. From Table 9, it can be noted that Hyperactive Fault (HF) dictionary size is

negligible relative to both the NFB dictionary and the signature based small dictionary.

Furthermore if both the NFB and the proposed HF dictionaries are used together for a

circuit, the total size of the resulting dictionary will only be marginally higher than the

Signature Fault
s1 f3
s2 f3, f4
s3 f4
s4 f6

86

size of the NFB dictionary alone. On average the size of the HF dictionary is about 9% of

the size of the NFB dictionary.

5.3.4 Flow of Diagnosis Procedure Using HF Dictionary

We modified a commercial effect-cause diagnosis procedure based tool to use

dictionaries. We used the NFB and HF dictionaries together. These are the dictionaries

discussed in Section 5.2 and 5.3. The flow of the modified diagnosis procedure using

these dictionaries is illustrated in Figure 21 and briefly explained below.

Since only the analysis of failing patterns in the diagnosis procedures is changed

when dictionaries are used, Figure 21 illustrates only the analysis of the failing patterns.

For a failing pattern Pi if NFB(Pi), the number of failing bits in the observed response, is

≤ NFB only the NFB dictionary is looked up to obtain the initial set of fault candidates,

which are filtered using fault simulation to obtain the final list of candidates. If the

number of failing bits for a pattern is > NFB, the initial set of candidate faults is obtained

using back tracing. This list is next filtered (pruned) by looking up the HF dictionary and

subsequently filtered again using fault simulation. In filtering fault candidate list using

HF dictionary we first filter using the FBC dictionary and then using the HFS dictionary.

Filtering of fault candidates using FBC dictionary is done in the following

manner. For a failing pattern Pj, for each fault fi in the fault candidate list, fi is looked up

in the FBC dictionary. If fi is found, the corresponding minimum number of failing bits

Table 9: Sizes (in MB) of Small Dictionary [37], NFB and HF Dictionaries

Size (MB) C1 C2 C3 C4 C5 C6 C7 C8
SD [37] 85 108 104 279 333 252 597 2,771
NFB5[38] 14 22 19 42 72 43 88 211
HF 1 1 3 4 1 3 5 53

87

minFB(fi) is found. If minFB(fi) > NFB(Pj), fault fi is dropped without fault simulation

because all the patterns that detect fi will have at least minFB(fi) failing bits while the

current failing pattern Pij has NFB(Pj) < minFB(fi) failing bits. Otherwise either the fault

fi is not found or minFB(fi) ≤ NFB(Pi) and fi is retained in the candidate fault list which

is filtered next using the HFS dictionary.

The reason of using MINFB = NFB + 2 in creating the FBC dictionary is explained

below. From the flow of Figure 21, when entering FBC dictionary filtering, NFB(Pi) is at

least NFB + 1, and knowing minFB(fi) = NFB + 1 cannot conclude minFB(fi) > NFB(Pj)

and drop fault fi. Only when the stored minFB(fi) ≥ NFB + 2 is useful. So MINFB is set to

NFB + 2 when creating FBC dictionary.

Candidates
from NFB
dictionary

Simulate
faults Cand. from

X-algorithm

Filter cands.
using FBC

NFB(Pi) >
FB_High?

Filter cands.
using HFS

Drop cand. if in
FBC & minFB >
NFB(Pi).

Drop cand. if in
HFS but sig.
does not match.

N

NFB(Pi)
≤ NFB?

Y

Y

N

Figure 21: Flow of Diagnosis Procedure Using NFB and HF Dictionaries

88

After FBC dictionary filtering, if NFB(Pi) > FB_High, filtering using HFS

dictionary is skipped and the candidate fault list is filtered using fault simulation. The

reason is that HFS dictionary does not include signatures for patterns with failing bits

over FB_High. If NFB(Pi) ≤ FB_High, then the fault candidate list is filtered using the

HFS dictionary in the following manner.

If the signature of the current pattern Pj is sig(Pj) it is looked up in the HFS

dictionary and the set F(sig(Pi)) containing faults that produced signature sig(Pj) is

acquired. If sig(Pj) is not found, then F(sig(Pj) is empty. For each fault fi in the initial

fault candidate list, lookup the HFS dictionary and determine if it is in the dictionary. If fi

is in the dictionary but does not belong to the set F(sig(Pi)) or if F(sig(Pi)) is empty drop

the fault candidate fi without fault simulation. After this filtering the remaining fault

candidates list are fault simulated.

5.3.5 Example of a Diagnosis Flow

An example using the diagnosis flow illustrated in Figure 21 is given next.

Suppose we created the NFB dictionary with NFB = 5 and assume that we have the FBC

dictionary of Table 7 and the HFS dictionary of Table 8.

Note that MINFB = NFB + 2 = 7 was used in creating the FBC dictionary.

FB_Low = NFB + 1 = 6 and FB_High = 20 was used in creating the HFS dictionary.

Suppose that there are two patterns P1 and P2 that failed on the tester. And let

NFB(P1) = 3 and NFB(P2) = 8.

For pattern P1, since NFB(P1) = 3 < 5, we know that the fault candidates are saved

in the NFB dictionary, and the candidate list is obtained by looking up the NFB dictionary.

For pattern P2, since NFB(P2) = 8 > 5, we first get the candidates from

backtracing. Suppose the candidate list is {f1, f3, f6, f7}. By checking the FBC dictionary

in Table 7, we know minFB(f1) = 40 > 8. Thus fault f1 is dropped without simulation.

Since minFB(f3) = 7 < 8, we keep fault f3. We cannot find entries in FBC dictionary for

89

the other two faults so we move on to the HFS dictionary. Suppose the failing pattern

signature is s2, then set F(sig(P2)) = F(s2) = {f3, f4}. Fault f3 is in HFS dictionary and also

belongs to set F(s2), so f3 is kept. Fault f6 is in HFS dictionary but does not belong to set

F(s2), so fault f6 is dropped. We cannot find entry for fault f7 in HFS dictionary so we

keep it. The final candidates before fault simulation are now {f3, f7}.

This candidate fault list goes through fault simulation to see if any of them match

the observed response.

5.4 Experimental Results

We used the diagnosis flow described in the last section on 100 randomly injected

stuck-at defects in each one of the eight circuits shown in Table 6. As discussed earlier

our goal is to increase the throughput of volume diagnosis by speeding up effect cause

diagnosis procedures. It is important to note that the speed-up is obtained without

sacrificing diagnosis quality measured by diagnostic resolution. All the methods return

the same final list of candidates as the base line standard effect-cause diagnosis procedure

independent of what type of fault was injected or diagnosed. The diagnosis result is also

guaranteed to be the same as effect-cause diagnosis independent of the size of the HF

dictionary.

We report the average speed up for the 100 defects diagnosed using a commercial

effect-cause diagnosis procedure using the signature based small dictionary of [12], the

NFB dictionary of [1] with NFB = 5 and the NFB dictionary supplemented by the HF

dictionary proposed in this work.

In Figure 22 we report the speed-up factor relative to the base line effect-cause

diagnosis procedure which does not use a dictionary. The speed-up factor is obtained by

averaging the ratio of the run time of the base line procedure and the procedure

augmented by using a dictionary and averaging the ratios for the 100 test cases. In Figure

22, SD stands for the procedure using the signature based dictionary of [37], NFB stands

90

for the procedure using the NFB dictionary of [38] and HFNFB stands for the procedure

using together the NFB and the HF dictionaries.

As expected, SD gives the best speed up but as we pointed out earlier the size of

the SD dictionaries could be too large to accommodate in a large workstation for very

large industrial designs. The HFNFB based procedure out performs the NFB based

procedure for all circuits. The dictionary sizes for HFNFB procedures are only

marginally higher than that for the NFB procedures. For six of the eight circuits the

Figure 22: Diagnosis Time SpeedUp

91

speed-up using HFNFB based procedure is close to that for the procedure using SD even

though, as noted earlier, the dictionary sizes for the HFNFB procedure is a fraction of the

dictionary for SD procedure. On average for the eight circuits the HFNFB procedure

achieves over 13X speed up relative to the base line effect-cause procedure.

Table 10 gives the absolute time of diagnosing the failing patterns. E-C stands for

the baseline effect-cause diagnosis without usage of any dictionary. The saving in

absolute time for HFNFB over NFB5 is considerable.

For circuits with a large proportion of hyperactive faults, using the HF dictionary

alone could provide better performance than using the NFB dictionary even though the HF

dictionary size is a fraction of the size of the NFB dictionary. The diagnosis flow for this

case is shown in Figure 23. All the initial candidate faults are obtained using backtracing.

The FBC and HFS dictionary based filtering is applied to these candidates.

Simulate
faults Cand. from

X-algorithm

Filter cands.
using FBC

NFB(Pi) >
FB_High?

Filter cands.
using HFS

Drop cand. if in
FBC & minFB >
NFB(Pi).

Drop cand. if in
HFS but sig.
does not match.

N

Y

Figure 23: Flow of Diagnosis Procedure Using Only HF Dictionary

92

Table 10: Average Failing Pattern Process Time for Each Case in Seconds

Time C1 C2 C3 C4 C5 C6 C7 C8
SD 0.65 7.69 3.86 71.53 8.38 9.19 18.01 49.70
NFB5 0.74 8.26 4.26 79.23 62.32 99.42 641.00 286.03
HFNFB 0.65 8.00 4.24 75.24 11.09 28.74 133.80 67.83
E-C 18.43 23.00 24.63 421.20 286.64 557.11 743.00 902.30

Figure 24: Hyperactive Fault Dictionary Only Approach Speed Up

93

In Figure 24 we report the speed up factors for circuit C5 for the procedures SD,

NFB5 and HFNFB and HFOnly which uses only the HF dictionary. It can be seen that

HFOnly procedure is 3X faster than the NFB5 procedure even though the HF dictionary

size is only 1.1% of the size of the NFB dictionary. The reason for the speed up with a HF

dictionary of alone for C5 is due to the fact that this circuit has a high proportion of

hyperactive faults that would have required large simulation times if they were not

eliminated without simulation by looking up the HF dictionary.

5.5 Conclusions

A new dictionary called Hyperactive Fault (HF) dictionary is proposed to speed

up effect-cause diagnosis procedures to achieve high throughput volume diagnosis.

Experimental results on several industrial designs show that using HF dictionary together

with an earlier proposed NFB dictionary speeds up effect-cause diagnosis procedures, on

an average, by over 13X. The sizes of the dictionaries are such that they can be used with

very large industrial designs where as the size of an earlier proposed signature based

small dictionary may be too large.

94

CHAPTER 6. PASSING PATTERN PERFORMANCE

IMPROVEMENT

In Chapter 4 and 5, we proposed methods for failing pattern diagnosis speedup

and achieved good results. The next step is naturally how to improve passing pattern

diagnosis performance. In this chapter we propose such a method to improve passing

pattern run-time performance.

6.1 Introduction

In Effect-Cause diagnosis procedures described in Section 5.2.3, the last step is to

simulate the suspects using the passing patterns and compute a score based on the

passing/failing pattern match/mismatch and rank the suspects based on their scores. Due

to the reason that the number of passing patterns is typically large, although the number

of suspects is much smaller than the number of initial candidates for failing pattern

processing, the time for passing pattern processing is a major component of total

diagnosis time.

In Table 11, we list the parameters of the circuits used in the experiments of

deciding how much time is taken by passing pattern diagnosis. NGate is the number of

gates in the design and NObspt is the number of observation points, including the primary

Table 11: Information on Some Industrial Circuits Used in the Work

Circuit D1 D2 D3 D4 D5 D6 D7
NGate 314K 543K 1.1M 1.1M 2.0M 506K 1.3M
NObspt 20K 46K 64K 70K 134K 13K 8K
NPat 5000 2252 1999 9415 1000 1000 1800
NSaf 631K 1.1M 1.7M 1.8M 4.2M 817K 2.5M

95

outputs and the scan cells. NPat is the number of patterns in the pattern set used and NSaf is

the number of collapsed stuck-at faults in the design.

For each circuit, 100 faillogs are randomly generated by injecting a random single

stuck-at fault into the circuit. Then Effect-Cause diagnosis is performed on the faillogs.

The time spent at each stage of diagnosis is recorded as shown in Figure 25.

Fail Proc Time is the time spent on the use of the X-algorithm to back trace from

the primary output to find fault candidates and simulate the faults for failing patterns to

see how they explain the failing patterns. Pass Proc Time is the time spent on simulating

passing patterns for suspects after failing pattern processing and min-cover to find the

remaining suspects. Other Time is the time taken except for failing pattern processing

time and passing pattern processing time and mainly for min-cover time.

Figure 25: Diagnosis Time in Each Major Step

96

 We can observe from Figure 25 that the failing pattern processing time and

passing pattern processing time are the majority of time spent and some designs are

dominated by passing pattern processing while some designs are dominated by failing

pattern processing. Normally the number of failing patterns is smaller than the number of

passing patterns. Failing pattern processing simulates a much larger number of faults with

considerable effort for smaller number of patterns. Passing pattern processing simulates a

much smaller number of faults for larger number of patterns. With the methods described

in Chapter 4 and 5 to deal with failing pattern processing, it is important to improve the

passing pattern processing speed in order to achieve a good overall speed up on the entire

diagnosis process.

6.1.1 Ideas on Passing Pattern Processing Speed Up

One idea on passing pattern processing speed up is, instead of simulating all the

passing patterns for scoring, just simulate a portion of them and estimate the pass-fail

result of other un-simulated patterns. The advantage of this method is the easy of

implementing pattern sampling. For example we can just simulate 5% of the patterns and

assume that the other patterns have similar property.

The disadvantage of this method is that it does not guarantee the exact same result

as traditional effect-cause diagnosis. As a high throughput, industrial grade diagnosis

software, consistency is an important property. We cannot allow the results to be

different between diagnosis of using passing pattern processing and diagnosis of

traditional effect-cause diagnosis. Pattern sampling is not a good method for speeding up

failing pattern processing because it will miss suspects. Pattern sampling is neither a good

method for improving the performance of passing pattern diagnosis since the scoring

would be different. Pattern sampling result could also be different between runs of

diagnosis if the patterns are selected randomly.

97

To deal with smaller number of suspects and large number of patterns to simulate,

we can take advantage of the requirement of only need to find out if the pattern is passing

or failing. No actual output failure information is needed. This turns out to be the same

approach as pass-fail dictionary described in Section 4.2.3. In Table 3, the size of pass-

fail dictionary is SP/F = NSAF * NPat/8 bytes, where NSAF is the total number of collapsed

stuck-at faults of this design, and NPat is the number of patterns. However the size of

pass-fail dictionary is still large. For a 1.1 million gate design with 9.4 K test patterns, the

size of pass fail dictionary is 2.1 G bytes. We will investigate methods to compress the

pass-fail dictionary. Also we can use fault dominance to store part of the faults in the

pass-fail dictionary and simulate what we have to during diagnosis.

6.1.2 Database for Pass-Fail Dictionary

Since the size of pass-fail information is large, using database to save it on disk

would be a good scheme. Database can accommodate large files on disk and only use a

small memory for database engine and data cache for query. Comparing to saving the

dictionary in memory rather than managed by database, in-memory dictionary has fast

look ups since it is usually a table look-up in memory. While for database to execute a

query, it has to go to the slower permanent storage of disk if the data is not in the cache

memory.

However, if we query the database for all pass-fail information for a suspect at a

time, the small number of suspects determines the slower Input/output of database is not

a problem. The advantage of database managing large size of data is more important.

Since it would not be possible to save that much information in memory, devising a

paging scheme or use of database is a must for large circuits.

In this work we will use Sqlite3 database [48]. SQLite is a software library that

implements a self-contained, serverless, zero-configuration, transactional SQL database

98

engine. It supports most of the industry standard SQL database language. It has the

following features:

• Transactions are atomic, consistent, isolated, and durable (ACID) even

after system crashes and power failures.

• Zero-configuration - no setup or administration needed.

• Implements most of SQL92.

• A complete database is stored in a single cross-platform disk file.

• Supports terabyte-sized databases and gigabyte-sized strings and blobs.

• Small program code footprint: less than 250KiB fully configured or less

than 150KiB with optional features omitted.

• Faster than popular client/server database engines for most common

operations.

• Simple, easy to use API.

• Written in ANSI-C. TCL bindings included. Bindings for dozens of other

languages available separately.

• Well-commented source code with over 99% statement test coverage.

• Available as a single ANSI-C source-code file that you can easily drop

into another project.

• Self-contained: no external dependencies.

• Cross-platform: Linux (unix), MacOSX, OS/2, Win32 and WinCE are

supported out of the box. Easy to port to other systems.

• Sources are in the public domain. Use for any purpose.

• Comes with a standalone command-line interface (CLI) client that can be

used to administer SQLite databases.

We created database with a major table containing the fault ID as the key for the

table, the other column is the encoded pass/fail information as a direct memory copy.

99

6.1.3 Pass-Fail Information Characteristics

We use 0 to indicate passing patterns and 1 for failing patterns. For a fault F and

12 test patterns, the pass fail information may be: 001111110000. This would be obtained

if the first two patterns: pattern 0 and pattern 1 are passing, followed by 6 failing patterns

pattern 2 to pattern 7, and the last 4 patterns are passing patterns.

A ‘run of zeros (ones)’ is consecutive ‘0’s(‘1’s) in the pass fail information. The

example pass fail information above consists of a run of zeros of length 2, a run of ones

of length 6 and a run of zeros of length 4. This characteristic is important for Run-Length

coding [49]. We will analyze the circuits for the runs to show the characteristics of the

pass fail information.

In Table 12, we show the circuit information of the analysis. Sizes for two

dictionaries referred to as full and pass/fail (P/F) are shown. For each design, the number

of gates (NGate), the number of observation points (NObsPt) and the number of test patterns

(NPat) are presented. For designs with compression technique implemented, the

compression ratio (RComp) is also reported.

For a full dictionary straight forward implementation, the size can be computed as

SFull = NSAF * NPat* NObsPt/8, where NSAF is the total number of collapsed stuck-at faults

of this design. The size of pass/fail dictionary is reduced to SP/F = NSAF * NPat/8.

In Figure 26, the run of zeros is shown. The X-axis is the run length. The run

length starts from 1, there is no run length of 0 in our data. Because there are 5000

patterns, so a failing pattern will have at most a run of zeros with length of 4999.

The Y-axis is the number of occurrences of certain run. We can observe that the

most frequent runs are of shorter run-length. Run length of 1 is the most frequent run

length for D1 run of zeros.

100

Table 12: Circuit Data for Pass Fail Information Characteristics

Figure 27 shows the run of ones, the run frequency of ones is usually considerably

lower than run of zeros. Except the run of ones with length 1 is more than run of zeros

with length 1. In this circuit there is no fault that fails all patterns. The maximum run

length of ones is 2894.

There are certain run frequency of ones much higher than adjacent run lengths.

This is mainly due to a set of faults fail a common block of test patterns. Test patterns are

usually grouped by the clocks activated during test. Some faults will just fail any test

pattern activating a certain clock.

D2-D5 and D7 runs of zeros and ones are similar to D1 runs of zeros and ones.

 D1 D2 D3 D4 D5 D6 D7

NGate 314K 543K 1.1M 1.1M 2.0M 506K 1.3M

NObsPt 20K 46K 64K 70K 134K 13K 8K

NPat 5000 2252 1999 9415 1000 1000 1800

RComp N/A N/A N/A N/A N/A 6.5X 9.9X

NSAF 631K 1.1M 1.7M 1.8M 4.2M 817K 2.5M

SFull 7.9T 14.3T 27.2T 147T 70.4T 1.3T 4.5T

SP/F 394M 310M 425M 2.1G 525M 102M 563M

101

Figure 26: D1 Run of Zero

Figure 27: D1 Run of One

102

Figure 28: D6 Run of Zero

Figure 29: D6 Run of One

103

Figure 28 and Figure 29 and illustrates the circuit D6 run of zeros and ones,

respectively. D6 run of ones is similar to D1 run of ones. But D6 run of zeros shows more

prominent featurpe that the frequency of run of zeros does not decrease monotonically.

There are run length 213, run length 450 that have significantly more frequency than

previous shorter run lengths. This is also due to a group of faults that were not detected

when certain section of patterns that did not activate the right clocks.

In the following section, we give a review of previous works on test pattern

compression. They are also sometimes useful for test response pass/fail information

compression. Because of the characteristics of the data we are going to compress, some

techniques are more appropriate than others.

6.2 Review of Previous Works

6.2.1 Frequency Directed Run-Length Codes (FDR)

Run-length codes try to encode consecutive zeros and ones by the length of the

consecutive equal value bits. There are mainly two basic types of encoding methods.

If the run of zeros and run of ones are balanced, then alternating coding [50] is

used to exploit the fact that run-length and frequency of zeros and ones are similar. For

example the source of 1111000000 can be encoded by a first 1, to indicate the bits start

with 1. And then followed by length information: 4 and 6. It is straight forward to decode

the run-length coding this way.

If the run of zeros are the majority and run of ones mostly have length of 1, then it

is better to use uni-phase coding. FDR codes [49] use such coding scheme. In FDR uni-

phase codes, a run length of r stands for (r-1) zeros terminated by a one. So there is no

need to code the single one specifically. The disadvantage is, if two or more ones are

consecutive, all except the first one have to be coded as a run length of 0. The runs of

ones are produced very inefficiently, the first one are encoded free of storage in the

preceding runs of zeros, if the run of ones is length r1, then overall 2(r1-1) bits are

104

required to encode it, assuming the encoding of code word for a run of zeros with length

zero is 2 bits, as in usual coding implementations.

Frequency directed coding means the more frequent run will be coded by a short

code word. Frequency Directed Run-Length Codes is a variable-to-variable-length code

which maps variable-length runs of zeros to code words of variable length. It corresponds

to a special case of the Golomb code [51] with code parameter k = 1. For more on

Golomb code, please see Section 6.2.2.

Specifically, FDR coding [49] uni-phase maps a run of ones or zeros of length r to

a code word consisting of a prefix and a tail. The prefix is of length g, consists of g-1

ones terminated by zero. Codewords within each group share the same prefix and have

different tails. The tail is of length g, and the tail is all combinations of g bits.

For example, in Table 13, a encoding of FDR codes is shown. The following

input data stream is separated by backslash (/) to mark the translation units:

0000001/1/0001/01/00001 is encoded to 110000/00/1001/1010.

We can see the Run-Length of 0, 2 have a longer codeword than the source data.

So the best to avoid for uni-phase encoding is when there are long runs of 1 or 001.

If we use alternating run-length coding, the need to encode run-length of 0 is

freed. In Table 14, we show such a shifted FDR code example eliminating the run-length

of 0.

For the same example:

Source: 000000/11/000/1/0/1/0000/1

Run-Length: 6 2 3 1 1 1 4 1

Encode: 0 1011/01/1000/00/00/00/1001/00

The encoded code’s first 0 is used to indicate the first run is run of zeros. If set to

1, that means the first run is run of ones.

105

We can observe that the alternating FDR code deals with the long runs but have

poor performance on short runs of length 1 and 3 where the encoded data is longer than

the source data.

Table 13: FDR Uni-Phase Coding Example

Group (g) Run-Length Prefix Tail Codeword

1 0 0 0 00

1 1 01

2 2 10 00 1000

3 01 1001

4 10 1010

5 11 1011

3 6 110 000 110000

7 001 110001

8 010 110010

9 011 110011

10 100 110100

11 101 110101

12 110 110110

13 111 110111

… … … … …

106

Table 14: FDR Alternating Coding Example

Group (g) Run-Length Prefix Tail Codeword

1 1 0 0 00

2 1 01

2 3 10 00 1000

4 01 1001

5 10 1010

6 11 1011

3 7 110 000 110000

8 001 110001

9 010 110010

10 011 110011

11 100 110100

12 101 110101

13 110 110110

14 111 110111

… … … … …

6.2.2 Golomb Codes

Golomb Codes [51] is a similar variable-to-variable-length statistical code to

Frequency Directed Run-Length (FDR) code [49].

The first step in determining a Golomb encoding is selecting a group size

parameter m. The group size m can be optimally determined. If the input data stream is

random with zero probability p, then m should be log(0.5)/log(p) [52]. However the data

107

we want to compress may not satisfy the random property, the m value has to be

determined experimentally.

Uni-phase Golomb code is given as an example in Table 15. The set of run-

lengths {0, 1, …, m-1} forms group 1. And every m adjacent run-length forms a group. If

m is chosen to be a power of two, that is m = 2N, each group has a tail of length N bits. If

g is the group index, then group g will have a prefix of 1(g-1)0.

Golomb code is good as each group will differ in codeword length by only one, so

it works well if the source has run length frequency which decreases as run-length

increases.

Table 15: Golomb Uni-Phase Coding Example

Group (g) Run-Length Prefix Tail Codeword

1 0 0 00 000

1 01 001

2 10 010

3 11 011

2 4 10 00 1000

5 01 1001

6 10 1010

7 11 1011

3 8 110 00 11000

9 01 11001

10 10 11010

11 11 11011

… … … … …

108

6.2.3 Huffman Code

Huffman code [53 - 55] is an optimal statistical code in which the average length

of a codeword is the closest to the entropy. If the probability of source symbols are all

negative to power of 2, for example 0.5, 0.25…, then Huffman code is the theoretically

optimal entropy code. Huffman code is a variable-length code. Huffman code is also a

widespread example of prefix-free code, that is, the codeword representing a symbol is

never a prefix of a codeword representing any other symbol. The FDR code and Golomb

codes are also prefix-free codes.

The way to create a Huffman code is by creating a binary tree. A node can be a

leaf node which does not have child nodes or an internal node which has child nodes. The

leaf node contains a symbol to encode, the weight (probability) of the symbol, and a link

to a parent node. Internal node contains symbol weight, links to child nodes and a link to

parent node.

The procedure to create a Huffman tree is as follows. The procedure uses two

queues, the first queue contains the initial symbol weights with pointers to the associated

leaves. The combined weights with pointer to the trees are put in the back of the second

queue. This assures that the lowest weight is always kept at the front of one of the two

queues.

Assume the number of symbols is N. To create the tree, first create N leaf nodes

and fill in the symbol and weight. Sort the leaf nodes by increasing weight order with

O(NlogN) time. The following steps are of linear time.

1. Push all the initial leaf nodes into the first queue in weight increasing order.

The head of the queue is the least weight node.

2. While there is more than one node in the queues:

a. Dequeue first two nodes with the lowest weight

b. Create a new internal node, with the just removed nodes as

children and the sum of weight as the new weight.

109

c. Push the new node into the rear of the second queue.

3. The remaining node is the root node. Generation of the tree is completed.

After the tree has been generated, assign the code from root to leaf nodes. Label 0

and 1 to different children.

An example of generating Huffman tree is shown below:

A source has four symbols: A(00), B(01), C(10), D(11) with probability {0.4,

0.35, 0.2, 0.05}. Generate Huffman tree as the procedure given above. Put D(0.05),

C(0.2), B(0.35), A(0.4) into the first queue. Dequeue the first two nodes D and C to make

a new node E with weight 0.05+0.2 = 0.25, D and C are marked as child nodes of E. Push

A: 0.40

D: 0.05

E: 0.25
111

C: 0.20

B: 0.35

110

F: 0.60

G: 1

11

10

0

1

Figure 30: Example of a Huffman Tree

110

E to the second queue. Dequeue E and B from the two queues since they are the smallest

weight. Make new node F with child nodes E and B, with weight 0.25+0.35= 0.6. Push F

to the second queue. Dequeue F and A, make new node G with child nodes F and A, with

weight 0.6+0.4 = 1. Push G to the second queue. There is only one node G in the queue.

Huffman tree is generated.

In Figure 30, the Huffman tree is shown. Each node has a weight. The encoding is

marked on the links between the child node and parent node. The final encoding is: A: 0,

B: 10, C: 110, D: 111. The entropy of Huffman coding is 1.83 bits/symbol, better than

encode originally A:00, B:01, C:10, D:11, which has an entropy of 2 bits/symbol.

6.2.4 Burrows-Wheeler Transformation

Burrows-Wheeler (BW) Transformation [56-58] is a method to decrease the

number of runs in a source sequence. For example, the BW transformation of

“000100010001” is “111000000000”, which is more efficiently coded by Run-Length

coding.

For example, we have a text input "^BANANA@". The first step of Burrows-

Wheeler Transformation is to make a matrix of all rotations of the source, as shown in

Table 16. Then take the final column as the output: "BNN^AA@A". The resulting code

has less number of runs. The decompression is simple and does not involve a sorting

process.

6.3 Proposed Methods

First, the proposed dictionary is created as follows:

Simulate all the faults without fault dropping, the small dictionary [37] and pass-

fail dictionary are created during the fault simulation.

The small dictionary can be saved as in [37] for usage of loading the entire

dictionary to memory. The small dictionary can also be saved in a separate database for

much smaller run-time memory cost at the price of run-time speed.

111

Table 16: Burrows-Wheeler Transformation

All Rotations Sort the Rows

^BANANA@ ANANA@^B

@^BANANA ANA@^BAN

A@^BANAN A@^BANAN

NA@^BANA BANANA@^

ANA@^BAN NANA@^BA

NANA@^BA NA@^BANA

ANANA@^B ^BANANA@

BANANA@^ @^BANANA

The pass fail information is saved to the pass-fail database dictionary. If a fault f

is detected on pattern 0 and 3 but not detected by pattern 1 and 2, then we mark 1001 as

the pass fail information for fault f for the first four patterns.

For each fault, a 32-bit fault ID is saved as the key to query the database. The

pass-fail information of the fault is saved in a compressed format pointed by the fault ID.

Second, during diagnosis, the dictionary is used as follows:

In the first phase of failing pattern processing, the small dictionary saved in either

memory or database is queried for initial fault candidates. Then the fault candidates are

fault simulated to find out how the failing patterns are explained.

112

Later in the min-cover phase, the set of candidates with minimum size that can

explain all the failing patterns is selected.

During the passing pattern processing phase, the candidate faults are not

simulated at all. For each candidate fault, the corresponding pass-fail information is

queried from the database. If the pass-fail information from the database was compressed,

decompression is performed to get the source pass-fail information. The pass-fail

information is used to directly mark the passing mismatch map used for scoring the

candidates.

All diagnosis results will be the same as the traditional effect-cause diagnosis

without using any dictionary at all.

6.4 Experimental Results

The following circuits in Table 17 are used to evaluate the effectiveness of the

method. For each design, the number of gates (NGate), the number of observation points

(NObsPt) and the number of test patterns (NPat) are presented. For each design, 100

diagnosis cases are used in the experiment. For each case, one stuck-at fault is randomly

placed on a node of the circuit. Then the case is diagnosed and speed measurement was

taken.

Table 17: Pass-Fail Dictionary Circuit Info

Circuit D1 D2 D3 D4 D5
N_gate 314K 543K 1.1M 1.1M 2.0M
N_ObsPt 20K 46K 64K 70K 134K
N_patt 5000 2252 1999 9415 1000
N_saf 631K 1.1M 1.7M 1.8M 4.2M
Circuit D6 D7 D8 D9 D10
N_gate 506K 1.3M 1.2M 1.2M 2M
N_ObsPt 13K 8K 964 57K 128K
N_patt 1000 1800 1023 2656 3167
N_saf 817K 2.5M 1.9M 2.1M 4.1M

113

The circuit D6 and D7 used space compactor compression techniques. The

numbers of observation points of these circuits are much smaller than the circuits with

similar number of gates. Circuit D8 utilized MISR compression technique which explains

the small number of observation points.

The experimental results are shown in Table 18, where the sizes of dictionaries on

disk are given in bytes. “Small Dict db” is the size of the small dictionary implemented in

database instead of in memory. “PF Dict Nocompress” is the size of pass fail dictionary

without compression. “PF Dict Gzip” is the size of pass-fail dictionary that utilizes gzip

(Lempel-Zive coding LZ77) to compress each pass-fail entry for corresponding fault. “PF

Dict Comp2” is the size of pass-fail dictionary that utilized a series of compression

algorithms. The algorithms are Burrows-Wheeler Transformation, run-length coding and

Huffman tree coding. Although the pass-fail dictionaries’ sizes are different on disk

depending on the compression, the pass-fail dictionaries only take 2M bytes in memory

during diagnosis. If the small dictionary is saved in database, the run-time memory is also

2M bytes. Since the pass-fail dictionary and small dictionary are not used simultaneously,

the peak memory usage for using both dictionaries in diagnosis is 2M bytes.

Using compression, the size of the pass-fail dictionary is reduced to 20%-60% of

the uncompressed size.

All the reported times are in seconds. “Fail Time NO Dict” is failing pattern

diagnosis time including critical path tracing time for NO dictionary diagnosis. “Fail

Time SD” is failing pattern diagnosis time for small dictionary implemented in memory,

not as database on disk. “Fail Time db” is failing pattern diagnosis time for small

dictionary implemented in database. We can see that using the small dictionary in

database requires querying the database on disk, it runs about 20% slower than small

dictionary in memory when processing failing patterns.

“Pass Time Orig” is passing pattern diagnosis time without pass-fail dictionary.

Use of small dictionary or not does not affect “Pass Time”. “Pass Time db” is passing

114

pattern diagnosis time for pass-fail dictionary. Please note that this time is not affected

whether the pass-fail dictionary uses compression techniques or not. Because there are on

average few candidates to query the database, whether the data needs compression or not

does not show measurable difference.

Table 18: Pass-Fail Dictionary Experiment Data

Database disk size D1 D2 D3 D4 D5
Small Dict db 157M 175M 169M 575M 636M
PF Dict Nocompress 467M 293M 421M 1556M 369M
PF Dict Gzip 86M 148M 159M 590M 231M
PF Dict Comp2 98M 205M 200M 592M 318M
Fail Time NO Dict 1 11.21 4.89 188.44 215.17
Fail Time SD 0.25 3.12 1.77 43.67 6.15
Fail Time db 0.33 4.07 1.93 46.77 6.65
Pass Time Orig 7.59 5.91 13.18 54.95 57.8
Pass Time db 0.005 0.005 0.01 0.01 0.01
Other Time 0.01 0.01 0.01 0.01 0.02
PassTime SpeedUp 1518 1182 1318 5495 5780
No Dict Total 8.6 17.13 18.08 243.4 272.99
SD Total 7.85 9.04 14.96 98.63 63.97
Database SD PF Total 0.35 4.09 1.95 46.79 6.68
Database disk size D6 D7 D8 D9 D10
Small Dict db 154M 422M 22M 448M 1.1G
PF Dict Nocompress 706M 457M 151M 665M 1.2G
PF Dict Gzip 46M 203M 32M 247M 560M
PF Dict Comp2 58M 265M 51M 320M 797M
Fail Time NO Dict 187.56 85.03 27.46 508 942
Fail Time SD 4.02 8.57 1.13 7.93 28.2
Fail Time db 4.74 9.32 1.38 9.37 29.48
Pass Time Orig 11.63 41.6 13.85 46.48 87.01
Pass Time db 0.01 0.01 0.02 0.01 0.02
Other Time 0.01 0.02 0.01 0.01 0.03
PassTime SpeedUp 1163 4160 692.50 4648.00 4350.50
No Dict Total 199.2 126.65 41.32 554.49 1029.04
SD Total 15.66 50.19 14.99 54.42 115.24
Database SD PF Total 4.76 9.35 1.41 9.39 29.53

115

Whether loading the pass-fail dictionary totally into memory or query database

when needed does not affect diagnosis time either. The reason is also the small number of

faults that need to be queried. “Other Time” includes time reading fail log, min-cover etc.

“Pass Time SpeedUp” is “Pass Time Orig” divided by “Pass Time db”. The speed up is

over 1000X for all cases. After using the pass-fail dictionary, the passing pattern

processing time is an insignificant component of the total diagnosis time.

“No Dict Total” is the original time used for effect-cause diagnosis without any

dictionaries. “SD Total” is the total diagnosis time if only in-memory small dictionary is

used to speed up the failing pattern processing. “Datbase SD PF Total” is the total time of

using both small dictionary in database and pass-fail database. Although using small

database dictionary is 20% slower than in memory, the time saving on passing pattern is

so significant that the overall time is greatly reduced.

Using pass-fail database dictionary achieves over 1000X speedup on passing

pattern processing. Using database for passing and failing pattern achieves a good overall

speedup for diagnosis. Comparing to only using small dictionary to speed up failing

patterns, database approach achieves 2X-20X total diagnosis time speed up while limiting

memory consumption to 2MB.

116

CHAPTER 7. CONCLUSIONS

Diagnosis is the process of locating the source of physical defects in failed chips

and identifying the cause of such failures. It is an important step toward effective silicon

debug and yield improvement. This thesis describes some methods to improve the speed

of Effect-Cause diagnosis and improve the accuracy of open defect diagnosis with limited

physical information.

In Chapter 2, we reviewed current literature on diagnosis techniques. We gave a

review of fault models: widely used stuck-at fault model, bridge fault model, open fault

model and delay fault model. Then Cause-Effect diagnosis and Effect-Cause diagnosis

procedures are described. Single Location at a time (SLAT) paradigm assumes in one

failing pattern, only one activated fault is observed. Multiple fault diagnosis methods are

also reviewed, including multiple fault diagnosis based on Xlists; curable vectors and

curable outputs; design error diagnosis and correction via test vector simulation; and

incremental multiple fault diagnosis. We also reviewed some techniques on open fault

diagnosis: super fault or composite stuck-at open fault diagnosis; symbolic simulation

diagnosis; and interconnect open diagnosis with physical information.

In Chapter 3, we proposed a procedure that uses minimal information beyond the

net lists and give experimental results to demonstrate the defect resolution obtained using

the method. The additional information used by the proposed method is a list of nodes in

the neighborhoods of circuit nodes and the circuit layout. Specifically, difficult to

determine circuit parameters of manufactured instances of a design such as coupling

capacitances between circuit nodes and threshold voltages of gates in the circuit are not

needed to use the proposed diagnosis procedure.

In Chapter 4, we introduced NFB dictionary method to improve the speed of

Effect-Cause diagnosis, which uses two heuristic techniques to limit the size of the

dictionary and still provide good speed up over standard Effect-Cause diagnosis. The first

117

technique is limit the number of failing bits in the dictionary and the second is use fan-out

free region (FFR) grouping to further reduce dictionary size.

In Chapter 5, we propose a method to achieve higher speedup with a marginally

larger dictionary than the NFB dictionary. We achieve this by identifying a set of faults

called hyperactive faults for which we create a novel dictionary. Hyperactive faults refer

to the faults that create many simulation events when simulated and thus take long time

to simulate. Experimental results are presented to demonstrate the effectiveness of the

proposed method.

In Chapter 6, we proposed a technique to improve the passing pattern diagnosis

performance, in addition to the failing pattern performance improvement methods

proposed in Chapter 4 and 5. We store a highly compressed pass-fail dictionary in

database with small memory cache to effectively speed up passing pattern diagnosis.

Finally in Chapter 7, we concluded this thesis. One future research topic is

accuracy of logic level open diagnosis and multiple fault diagnosis. Current tools are still

not of high quality in diagnosing open and multiple fault fail logs.

Another problem of diagnosis is timing defect diagnosis. In current technologies,

timing defects often cause manufactured chips to fail at-speed tests. However the current

diagnosis resolution of timing defect diagnosis is still low. This could be a good research

direction in the future.

118

REFERENCES

[1]. M. Abramovici, M. A. Breuer, and A. D. Friedman, Digital System Testing and
Testable Design, Computer Science Press, New York, 1990.

[2]. P. G. Ryan, S. Raeat and W. K. Fuchs, “Two-Stage Fault Locations”, in Proc.
International Test Conference, 1991, pp. 963-968.

[3]. I. Pomeranz and S. M. Reddy, "On the Generation of Small Dictionaries for
Fault Location", in Proc. International Conference on Computer-Aided Design,
1992, pp. 272-279.

[4]. V. Boppana, I. Hartantet and W. K. Fuchs, "Full Fault Dictionary Storage
Based on Labeled Tree Encoding", in Proc. VLSI Test Symposium, 1996, pp.
174-179.

[5]. B. Chess and T. Larrabee, "Creating Small Fault Dictionaries", IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
Vol. 18, No.3, 1999, 346 - 356.

[6]. W. Zou, W.-T. Cheng, S. M. Reddy, and H. Tang, “Speeding up Effect Cause
Defect Diagnosis Using a Small Dictionary”, Proc. of VTS, 2007.

[7]. H. Tang, C. Liu, W.-T. Cheng, S. M. Reddy, and W. Zou, “Improving
Performance of Effect-Cause Diagnosis with Minimal Memory Overhead”, Proc.
Asian Test Symposium 2007.

[8]. T. Bartenstein, D. Heaberlin, L. Huisman and D Sliwinski, “Diagnosing
Combinational Logic Designs Using the Single Location At-a-Time (SLAT)
Paradigm”, Proc. of ITC, pp287, 2001.

[9]. S. B. Akers, S. Park, B. Krishnamurthy, and A. Krishnamurthy, “Why is Less
Information from Logic Simulation More Useful in Fault Simulation”, Proc. of
ITC, pp. 786-800, 1990.

[10]. A. Veneris and I.N. Hajj. “Design Error Diagnosis and Correction via Test
Vector Simulation”. IEEE Trans. CAD, 18(12):1803-1816, December 1999

[11]. S. Venkatraman and W. K. Fuchs, "A Deductive Technique for Diagnosis of
Bridge Faults", 1997, ICCAD, pp. 562-567.

[12]. S. Venkatarman and S. B. Drummonds, "A Technique for Logic Fault Diagnosis
of Interconnect Open Faults", Proc. of VLSI Test Symposium, 2000, pp. 313-
318.

[13]. J. B. Liu, A. Veneris and H. Takahashi, "Incremental Diagnosis of Multiple
Open-Interconnects", International Test Conference, 2002, pp. 1085-1092.

119

[14]. Shi-Yu Huang, "A Symbolic Inject-And-Evaluate Paradigm for Byzantine Fault
Diagnosis", Journal of Electronic Testing, Theory and Applications, Vol. 9, No
2, 2003, pp. 161-172.

[15]. X. Wen et al., "On Per-Test Fault Diagnosis Using the X-Fault Model",
Computer Aided Design, 2004, pp. 633-640.

[16]. Y. Sato, I. Yamazaki, H. Yamanaka, T. Ikeda and M. Takakura, “A Persistent
Diagnosis Technique for Unstable Defects”, in Proc. ITC 2002, pp. 242-249

[17]. W. Zou, W.-T. Cheng, S. M. Reddy, “Interconnect Open Defect Diagnosis with
Physical Information”, in Proc. ATS 2006.

[18]. R. Rodriguez-Montanes and J. Figueras, “Electrical and Topological
Characterization of Interconnect Open Defects”, IEEE international Workshop
on Current and Defective Based Testing, 2005.

[19]. H. Konuk, “Fault Simulation of Interconnect Opens in Digital CMOS Circuits”,
in Proc. ICCAD, 1997, pp. 548-554.

[20]. S. Rafiq, A. Ivanov, S. Tabatabaei, and M. Renovell, “Testing for Floating
Gates Defects in CMOS Circuits”, in Proc ATS 1998, pp.228-236.

[21]. D. Arumi, R. Rodriguez-Montanes and J. Figueras, “Defective Behaviours of
Resistive Opens in Interconnect Lines”, Proc. of ETS 2005.

[22]. D. B. Lavo, T. Larabee, and B. Chess, “Beyond the Byzantine Generals:
Unexpected Behavior and Bridging Fault Diagnosis”, in Proc. ITC 1996, pp
611-619.

[23]. S. Venkatarman and S. B. Drummonds, “Poirot: A Logic Fault Diagnosis Too
and its Applications”, in Proc. ITC 2000, pp. 253-262.

[24]. S.-Y. Huang, “Speeding Up the Byzantine Fault Diagnosis Using Symbolic
Simulations”, in Proc. VTS 2003, pp. 193-198.

[25]. J. B. Liu, A. Veneris and H. Takahashi, “Incremental Diagnosis of Multiple
Open-Interconnects”, in Proc. ITC 2002, pp. 1085-1092.

[26]. J. Waicukauski and E. Lindbloom, “Failure Diagnosis of Structured VLSI”,
IEEE Design and Test of Computer, vol. 6, no. 4, 1989, pp.49-60.

[27]. S. Y. Huang, “Diagnosis of Byzantine Open-Segment Faults”, in Proc. ATS
2002, pp. 248-253.

[28]. X. Wen, H. Tamamoto, K. K. Saluja and K. Kinoshita, “Fault Diagnosis for
Physical Defects of Unknown Behaviors”, in Proc. ATS 2003, pp. 236-241.

120

[29]. W. Zou, W.-T. Cheng and S.M. Reddy, “On Methods to Improve Location
Based Logic Diagnosis” Proc. VLSI Design 2006.

[30]. Z. Wang, K-H. Tsai, M. M. Sadowska, and J. Rajski, “An Efficient and Effective
Methodology on the Multiple Fault Diagnosis”, in Proc. ITC 2003, pp. 329-338

[31]. D. B. Lavo, I. Hartanto, and T. Larrabe, “Multiplets, Models, and the Search for
Meaning: Improving Per-Test Fault Diagnosis,” in Proc. ITC 2002, pp. 250-
259.

[32]. S. M. Reddy, I. Pomeranz, H. Tang, S. Kajihara and K. Kinoshita, “On Testing
of Interconnect Open Defects in Combinational Logic Circuits with Stems of
Large Fanout”, Proc. ITC 2002, pp. 83-89.

[33]. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms, Second Edition. MIT Press and McGraw-Hill, 2001.
Section 29.3: The simplex algorithm, pp.790–804.

[34]. T. Vogels, T. Zanon, E. Desineni, S. Blanton, W. Maly, et al., “Benchmarking
Diagnosis Algorithms with a Diverse Set of IC Deformations”, in Proc. ITC
2004, pp 508-517.

[35]. The MOSIS Website, http://www.mosis.org

[36]. The TAMU Website, http://ece.tamu.edu/~xiang/iscas.html

[37]. W. Zou, W.-T. Cheng, S. M. Reddy, and H. Tang, “Speeding Up effect Cause
Defect Diagnosis Using a Small Dictionary”, Proc. of VTS, 2007

[38]. Huaxing Tang, Chen Liu, Wu-Tung Cheng , Sudahkar M. Reddy and Wei Zou,
“Improving Performance of Effect-Cause Diagnosis with Minimal Memory
Overhead”, ATS 2007

[39]. H. Tang, M. Sharma, J. Rajski, M. Keim, and B. Benware, “Analyzing Volume
Diagnosis Results with Statistical Learning for Yield Improvement”, Proc. of
ETS, pp. 145-150, 2007.

[40]. I. Pomeranz and S. M. Reddy, "On the Generation of Small Dictionaries for
Fault Location", Proc. ICCAD, 1992, pp. 272-279.

[41]. M. Abramovici and M. A Breuer, “Fault Diagnosis Based on Effect-Cause
Analysis: An Introduction”, Proc. DAC, 1980, pp.69-76.

[42]. B. Seshadri, I. Pomeranz, S. Venkataraman and S.M. Reddy, “Dominance Based
analysis for Large Volume Production Fail Diagnosis”, in Proc. VTS 2006, pp.
392-399.

121

[43]. B. Boppana, R. Mukherjee, J. Jain, and M. Fujita, “Multiple Error Diagnosis
Based on Xlists”, in Proc. 36th DAC, 1999, pp. 660-665.

[44]. S.-Y. Huang, “On Improving the Accuracy of Multiple Defect Diagnosis” in
Proc. 19th IEEE VLSI Test Symposium, 2001, pp.34-39

[45]. A. G. Veneris and I. N. Hajj, “A Fast Algorithm for Locating and Correcting
Simple Design Errors in VLSI Digital Circuits”, Proc. of Great Lake Symp. On
VLSI Design, pp 45-50, March 1997s

[46]. S.-Y. Huang, and K.-T. Cheng, “ErrorTracer: A Fault-Simulation-Based
Approach to Design Error Diagnosis”, IEEE Trans on CAD-ICS, pp. 1341-
1352, Sept. 1999

[47]. A. Veneris, J.B. Liu, M. Amiri, and M. S. Abadir, “Incremental Diagnosis and
Correction of Multiple Faults and Errors,” in Proc. DATE, 2002 pp. 716-721

[48]. http://sqlite.org/

[49]. A. Chandra and K. Chakrabarty, “Test Data Compression and Test Resource
Partitionaing for System-on-a-Chip Using Frequency-Directed Run-Length
(FDR) Codes”. IEEE Transactions on Computers, August 2003,

[50]. Wurtenberger, A.; Tautermann, C. S.; Hellebrand, S.; “A Hybrid Coding
Strategy for Optimized Test Data Compression”, International Test Conference,
2003

[51]. Chandra, A.; Chakrabarty, K.; “Test Data Compression and Decompression
Based on Internal Scan Chains and Golomb Coding”, Computer-Aided Design
of Integrated Circuits and Systems, IEEE Transactions on
Volume 21, Issue 6, June 2002 Page(s):715 – 722

[52]. H. Kobayashi and L. R. Bahl, “Image Data Compression by Predictive Coding,
Part I: Prediction Algorithm,” IBM J. Res. Dev., vol. 18, p. 164, 1974.

[53]. D.A. Huffman, “A Method for the Construction of Minimum Redundancy
Codes”, Proceedings of the IRE, Vol. 40, No.0, Sept. 1952, pp. 1908-1101.

[54]. Ichihara, H.; Kinoshita, K.; Pomeranz, I.; Reddy, S.M.; “Test Transformation to
Improve Compaction by Statistical Encoding”, VLSI Design, 2000. Thirteenth
International Conference on, 3-7 Jan. 2000 Page(s):294 – 299

[55]. http://en.wikipedia.org/wiki/Huffman_coding

[56]. M. Burrows and D. Wheeler, “Block Sorting Lossless Data Compression
Algorithm”, Research Report 124, System Research Center, Digital System
Research Center, Palo Alto, CA, May 1994

122

[57]. http://en.wikipedia.org/wiki/Burrows-Wheeler_transform

[58]. Yamaguchi, T.J.; Dong Sam Ha; Ishida, M.; Ohmi, T.; “”A Method for
Compressing Test Data Based on Burrows-Wheeler transformation”,
Computers, IEEE Transactions on, Volume 51, Issue 5, May 2002 Page(s): 486
- 497

	University of Iowa
	Iowa Research Online
	2008

	VLSI circuit defect diagnosis: open defects and run-time speed
	Chen Liu
	Recommended Citation

