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Figure 50. Line drawing augmentation of SUI 101977. Cl: cleithrum. De: dentary. Gp: 
gular plate. Gs: gular scale. Mx: maxilla. The unknown bone identified in the 
picture with a question mark is important because similar fragments occur in 
other specimens. 
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Figure 51. Part to SUI 101915, one of several that preserve the scales and bones of 
portions of the impression. The jaw is visible in the top middle, along with 
branchial arch elements and supraangular. In the lower left is part of the anal 
fin. Width approximately 20 mm. 
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Figure 52. SUI 101936, referred specimen of Aliuslater inmuri. Specimen is preserved in 
ventral view with the anterior to the right. The dentary and gular plate are at 
center, with an impression of a second gular plate below it. The maxilla may 
be at the bottom right in the picture. Denticles are visible around the edge of 
the dentary at the tooth row. Scale bar equals 10 mm. 
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Figure 53. SUI 101901, referred specimen of Aliuslater inmuri. The lot catalogue of the 
specimen number includes this putative left clavicle, associated with 
fragmentary scales. Note the linear sculpting. Approximate length of the 
clavicle is 7 mm. 
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Figure 54. SUI 101940, referred specimen of Aliuslater inmuri. A, partial fin with 
lepidotrichia and fulcra. B, Left cleithrum and associated bone. Scale bar is 10 
mm. 
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Figure 55. Line-drawing interpretation of a body scale of Aliuslater inmuri. In life, scales 
varied from orthogonal (shown here) to highly rhombic over the body. 
Unfortunately, if there is any pattern to their distribution over the animal's 
body it is impossible to interpret at this time. 
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Figure 56. Strict consensus of 26 MPTs from the data set derived from Gardiner et al. 
(2005). Aliuslater is in a polytomy with more derived Actinopterygii. 
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Figure 57. Adams consensus of 26 MPTs from the data set derived from Gardiner et al. 
(2005). Aliuslater is in a polytomy with Moythomasia basal to the clade that 
contains Kentuckia and all more derived actinopterygians. Numbers indicate 
Bremer support steps greater than one. 
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Figure 58. Adams consensus of 398 MPTs from the data set of Cloutier and Arratia 
(2004). Strict consensus is identical in its placement of Aliuslater, basal to all 
other actinopterygians. Numbers indicate Bremer support greater than 1. 
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Figure 59. Line drawing reconstruction of Aliuslater inmuri. Dotted lines indicate the 
inferred outline. The question mark indicates the estimated location of the 
pelvic fin based on other basal actinopts. Sculpturing is present on the 
posterior of the maxilla and the skull table, but it is difficult to interpret. 
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CHAPTER VI 

BIOGEOGRAPHY AND CONCLUSIONS 

Romer (1941) first noticed that, following the appearance of basal tetrapod taxa in 

the Devonian such as Ichthyostega and Acanthostega, the terrestrial tetrapod record falls 

largely silent until the Pennsylvanian. By the mid-Pennsylvanian, members of the stem-

groups Amphibia and Amniota have already appeared (e.g. Clack, 2002; Ruta et al., 

2003) and terrestrial communities are well established (Coates and Clack, 1995). Thus, 

the tetrapod invasion of the land has suffered from a lack of primary data. Coates and 

Clack (1995; Clack, 2002) called this gap during the Mississippian when terrestriality 

was established "Romer's Gap". The Hiemstra Quarry is one of the few sites around the 

world known from the gap (Fig. 60). 

By the end of the 20th Century, many new taxa had been discovered in the gap, 

filling it with some diversity. Smithson (1985) observed that the faunas then known from 

the Viséan and Lower Namurian (Mid-Late Mississippian) were dissimilar from those of 

the Upper Namurian and Westphalian (Early-Mid Pennsylvanian). This idea was 

extended by Milner (1993), who observed that the few Gap sites that were known shared 

very similar taxa: "The assemblages from the Mississippian localities are too small in 

number and too ecologically diverse in origin for robust conclusions to be drawn, but 

they do appear to be consistent with the presence of a single faunal province throughout 

the known tetrapod range" (Milner, 1993 p. 331). He referred to this homogeneity as the 

"Mississippian Tetrapod Province", or MTP. 

The idea of tetrapods on one side of the globe as part of one fauna with those on 

the other has received varied phylogenetic support over the intervening years (Ruta et al., 

2003; Clack, 2006; and references therein). Clack (2006) has recently suggested a mass 

terrestrial extinction, roughly coincident with the end of the Fammenian, as a cause of 
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both the absence of tetrapods during the Early and Middle Mississippian (Romer's Gap) 

and the homogeneity of the following tetrapod record (MTP). 

This dissertation is not directly concerned with the evolution of vertebrate life on 

land. But at the few well-known sites that cross the gap from the Lower to Upper 

Mississippian, the fish and tetrapod faunas bear similarity. Gyracanthids, rhizodontids, 

basal actinopterygians and elasmobranch are known from all of these localities (Fig. 60). 

Does basal vertebrate evolution and dispersal mirror that of the tetrapods? Can the 

evolution of one group be used to study the others? 

To examine this possibility, the biogeographic distribution of Gyracanthidae, 

Rhizodontida and Actinopterygii from the Devonian and Carboniferous were compared 

to stem-group Tetrapoda. If there is an MTP, then it should appear as one or more clades 

on the cladogram with broad spatial distributions in similar patterns. If the MTP does not 

exist, the cladograms should show no similar biogeographic patterns, even among clades 

with wide biogeographic diversity. It is important to note at the outset that by examining 

the effect—the area cladograms—we are assuming a common cause. This is a logical non 

sequitur, but increasing the observations (the number of concordant cladograms) we 

increase the likelihood of our assumption. Note also that the number of taxa and 

cladograms is small, and the effect of chance or uneven study can bias the results. 

After pruning outgroups and ingroups younger than the time of interest, the taxa 

were divided into eight biogeographic provinces. Hopefully these subdivisions will 

approximate natural biogeographic boundaries in the Devonian and Carboniferous. 

Canada, Greenland, Australia and Antarctica are self-explanitory. European taxa were 

divided into Western European ("Europe") and Eastern European and Baltic ("Baltic") 

taxa. Taxa from the continental United States were divided into an Eastern group 

("MidAmerica") and a Western group ("WestAmerica"). 

Rhizodontida has been assumed to be of Gondwanan origin as the oldest 

rhizodontids are found in Australia (Johanson, 2004). The present area cladogram is 
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much more equivocal (Fig. 61). Sauripterus and Floydus, both MidAmerican taxa, are 

found at the base of the cladogram. In both cases this may be due to incomplete 

preservation, but the most parsimonious interpretation at present is that they are 

primitive. Letognathus, the Canadian taxon, appears in the cladogram at the same time as 

Strepsodus, a wide-ranging taxon appearing chiefly in Europe. The presence of four 

Euramerican taxa at the top of the area cladogram suggests that they are all part of a 

single radiation, and the Australian occurence of Strepsodus (Parker et al., 2005) is a 

reversal. 

Gyracanthidae's cladogram itself (Fig. 62) is more complex because 

"Gyracanthus" incurvus was forced into the outgroup by the analysis. The area 

cladogram suggests parallel radiations of gyracanthids, one in Euramerica and one 

(primarially) in Gondwana, from a common Euramerica ancestor. The Horton Bluff 

gyracanthid is from the Lower Mississippian while Gyracanthides occurs later. It will be 

interesting to see whether improved resolution brings the Australian taxa closer together 

phylogenetically as well. 

The larger cladogram of actinopterygians (Fig. 63), derived from Cloutier and 

Arratia (2004), has two biogeographic advantages over Gardiner et al. (2005): first, larger 

taxon sampling can give finer taxonomic resolution; second, Cloutier and Arratia coded 

particular species rather than higher taxa, making it easy to identify geographic ranges. 

This cladogram is somewhat deceptive. At first glance, it appears to show a 

Pennsylvanian radiation into the western United States from the east. However, all of the 

WestAmerica taxa are from a single Lagerstätten, the Bear Gulch Limestone of Montana. 

Although certainly real, this radiation may not be representative of evolution within 

Actinopterygii at large. Another possibly misleading aspect of the cladogram is with the 

taxon selection. Wide-ranging actinopts in the MTP, such as Rhadinichthys and 

Elonichthys, are not included on the cladogram. Many of these actinopt taxa appear to be 
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polyphyletic (pers. obs.; Janvier, 1996) and will have to be hand-coded from multiple 

specimens at different institutions to ensure their taxonomic reality. 

The most pertinent aspect of the cladogram is the position of Aliuslater basal to 

Cheirolepis sp., Mimia and Moythomasia. This position would suggest that it is the only 

survivor of a Euramerican lineage that extends down towards the base of the Devonian. 

This is not so outlandish a suggestion as it might appear: Storrs (1987) reports ganoine-

covered peg-and-socket scales from a Devonian outlier in subsurface Iowa. These two 

independent lines of evidence suggest Aliuslater arrived at the Hiemstra Quarry sinkhole 

independent of other members of the MTP. 

The cladogram of Tetrapoda (Fig. 64A) is adapted from Warren and Turner 

(2004) and Lebedev and Coates (1995). At the moment it is tantalizingly incomplete: it 

does not include new material from China (Zhu et al., 2002), Ireland (Clack and Ahlberg, 

2004), and Horton Bluff (cited in Clack, 2006) that will broaden the picture of evolution. 

It is also somewhat biased by the presence of the many early tetrapods from the East 

Kirkton Lägerstatten. What the cladogram does show is that two taxa from the Hiemstra 

Quarry—Greererpeton and Whatcheeria—are parts of radiations that were relatively 

widespread (Fig. 64B). These closely-related taxa are geographically disperse; thus there 

is some positive evidence in support of the MTP. 

Compare this area cladogram with the cladograms from this dissertation. Within 

Rhizodontida, Floydus is separated from Strepsodus and Letognathus by evolutionary 

distance (Fig. 61) These three taxa are not clustering as we would expect them to do 

given the cladograms for Tetrapodamorpha. As for Actinopterygii (Fig. 63), Aliuslater is 

basal to other taxa. No matter where "Rhadinichthys", "Elonichthys" and other MTP taxa 

cluster, unless they are at the base of of Actinopterygii as well, the Hiemstra Quarry is its 

own locality. Preliminary study (Janvier, 1996) indicates that these widespread taxa are 

derived within Actinopterygii. It is unlikely that Actinopterygii evolved along with the 

MTP. 
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Gyracanthidae (Fig. 62) shows some similarity to the radiation of the Tetrapoda. 

On one branch of the cladogram is a group of fishes from Europe and North America; on 

another is a group of fishes from North America and Australia. On the other hand, the 

pattern of distribution is not the same: we would expect to see North American taxa basal 

to those from Europe (compare Fig. 62 with Fig. 64). Also, without a larger phylogenetic 

framework (i.e., where Gyracanthidae lies in relation to basal Acanthodii and 

Chondrichthyes), there is no comparison for breadth of diversity, as with Tetrapoda. 

In conclusion, there is no compelling evidence at this time for coevolution 

between tetrapods and the fish that they lived with. Future research will clarify the 

problem in a number of ways. First, important taxa from known MTP sites remain 

undescribed, while others need to be revisited phylogenetically. Second, new sites from 

the Devonian and Mississippian remain undescribed (Janvier et al., 1984; Janvier and 

Villaroel, 2000; Zhu et al., 2002). These can inform the phylogenetic and biogeographic 

hypotheses of early vertebrate diversity. Third, increasing computing power makes larger 

phylogenies possible, so that systematists can keep up with the first two areas of research. 

Finally, integration between vertebrate paleontology and other disciplines of the 

historical sciences will be essential. Vertebrate paleontology has much to learn from 

paleobotany, stratigraphy and geophysics, and just as much to contribute. 

As this body of data grows, the following questions can be answered: 

1.  Does the pattern of faunal similarity among tetrapods in the Mississippian stay 

constant, with a few widespread groups at the beginning and higher endemism 

later, or do new patterns emerge with new data? 

2.  Does basal vertebrate evolution and dispersal come to mirror tetrapods, or does it 

stay distinct? 

3.  Do other organisms have Mississippian diversity and greater endemism in the 

Pennsylvanian? Iannuzzi and Pfefferkorn (2002) suggest that there was 
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paleobotanical turnover between the Mississippian and Pennsylvanian in 

Gondwana. Other groups of organisms need to be examined as well. 

4.  What global causes can be invoked to explain origination and extinction during 

the tetrapod immigration to land? Potential driving forces include changing 

climate (Iannuzzi and Pfefferkorn, 2002), tectonics and ocean currents (Lasemi et 

al., 2003), oxygen levels (reviewed in Carroll et al., 2005) or a combination of 

these. 

The Jasper Hiemstra Quarry promises to be as important a site in the next 20 

years as it has been for the previous 20. It is in a crucial position for the study of the 

ancient environments of the Midwest and the evolution of vertebrate life on land. These 

are important issues that are still a long way from being resolved. But the Middle 

Mississippian of southeastern Iowa has a great deal to offer. 
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Figure 60. Coded faunal lists for seven of the eight well-described Mississippian tetrapod 
localities in Romer's Gap. 1, Delta, Iowa; 2, Goreville, Illinois; 3, Greer, West 
Virginia; 4, Middle Paddock, Australia; 5, East Kirkton, Scotland; 6, 
Hancock, Kentucky; 7, Horton Bluff, Nova Scotia. Not shown: Cheese Bay, 
Scotland, as the fish fauna is in need of reexamination. Colors: black, 
tetrapod; red, dipnoan; green, chondrichthyan; azure, gyracanthid; gold, 
rhizodontid; periwinkle, actinopterygian; violet, osteolepiform; orange, 
acanthodian. Data from Coates et al. (1994); Garcia (2005); Johanson et al. 
(2000); Milner et al. (1994a,b); Paton et al. (1994); Scott et al. (2005); 
Schulze and Bolt (1996); Smithson et al. (1994a,b). All paleogeographic 
positions approximate. 
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Figure 61. Area cladogram of Rhizodontida: (Gooloogongia((Aztecia, 
Sauripterus)Floydus(Barameda(Letognathus,Strepsodus(Rhizodus, 
Screbinodus)))). 
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Figure 62. Area cladogram for Gyracanthidae: ("Gyracanthus" incurvus(Greer 
gyracanthid,(Gyracanthides hawkinsi, Gyracanthides murrayi, Horton Bluff 
gyracanthid),(Gyracanthus formosus(Gyracanthus youngi(Illinois 
gyracanthid, Eustreptogyracanthus))))). The Eustreptogyracanthus-Illinois 
clade has been collapsed to a single radiation. 



 

 

133 

133 

 

Figure 63. Area cladogram for derived Actinopterygii: (Aliuslater((Cheirolepis 
canadensis, Cheiroleopis trailli, Cheirolepis n. sp.)((Mimia toombsi, 
Moythomasia durgaringa)(Limnomis delaneyi(Howqualepis 
rostridens(Melanecta anneae(Stegotrachelus finlayi, Mansfieldiscus 
sweeti(Woodichthys bearsdeni, Paramblypterus decorus, Novogonatodus 
kasantsevae, Mesopoma planti(Coccocephalus wildi((Osorioichthys marginis, 
Kentuckia hlavini)(Tegeolepis clarcki(Wendyichthys dicksoni, Cyranorhis 
bergeraci)((Kalops diophrys, Kalops monophrys)(Proceramala montanensis, 
Aesopichthys erinaceus)))))))))))). The Kalops-(Proceramala-Aesopichthys) 
clade has been collapsed to a single radiation. 
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Figure 64. Cladograms of Tetrapodamorpha. A, phylogeny; B, area cladogram. 
Phylogeny is adapted from Lebedev and Coates (1995) and Warren and 
Turner (2004). The Eucritta-(Loxomma,Baphetes) and 
Westlothiana,Adelogyrinus clades have been collapsed into single radiations.
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APPENDIX A 

NOTES ON THIN SECTIONS 

In addition to specimens prepared by Robert McKay (McKay et al., 1987), 33 thin 

sections were prepared for this dissertation. 

 

Slides 1a-e: Cabinet 29, drawer 15, Field Museum of Natural History. Main Fill, 

Heimstra Quarry, SW ¼ SW ¼ T75N R13W, Keokuk County, Iowa. Coll. 1986, John 

Bolt. Five samples from Matrix Bag 1. Prep begun January 24, 2005; completed February 

12, 2005. 

 

Slides 2a-e: Cabinet 29, drawer 15, Field Museum of Natural History. Main Fill, 

Heimstra Quarry, SW ¼ SW ¼ T75N R13W, Keokuk County, Iowa. Coll. 1986, John 

Bolt. Five samples from Matrix Bag 2. Prep begun January 31, 2005; completed February 

25, 2005. 

 

Slides 3a-e: Cabinet 29, drawer 16, Field Museum of Natural History. Main Fill, 

Heimstra Quarry, SW ¼ SW ¼ T75N R13W, Keokuk County, Iowa. Coll. 1986, John 

Bolt. Five samples from Matrix Bag 3. Prep begun February 14, 2005; completed March 

3, 2005. 

 

Slides 5a-e: Cabinet 29, drawer 17, Field Museum of Natural History. Main Fill, 

Heimstra Quarry, SW ¼ SW ¼ T75N R13W, Keokuk County, Iowa. Coll. 1986, John 

Bolt. Five samples from Matrix Bag 5. Prep begun February 26, 2005; completed March 

16, 2005. 
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Slides 6a-f: Cabinet 29, drawer 14, Field Museum of Natural History. Shale 

sample taken from around arthropod specimen #88-32. Unit C (Main Bone Bed), 

Heimstra Quarry, SW ¼ SW ¼ T75N R13W, Keokuk County, Iowa. Coll. 1986, John 

Bolt. Six samples. Prep begun March 6, 2005; date completed not recorded. 

 

Slides 7a-g: Cabinet 29, drawer 14, Field Museum of Natural History. Shale 

sample to work for arthropods. Position-centered around 79.5°, 3.55 m, 25 cm below top 

of shale, about 2 cm above boulder, Heimstra Quarry, SW ¼ SW ¼ T75N R13W, 

Keokuk County, Iowa. Coll. 1986, John Bolt. Seven samples. Prep begun April 4, 2005; 

completed May 9, 2005. 

 

Slides 8a-g. University of Iowa. Limestone conglomerate from lateral collapse 

features that preserves vertebrate bone, Heimstra Quarry, SW ¼ SW ¼ T75N R13W, 

Keokuk County, Iowa. Coll. 1986, Brian Witzke. Seven samples. Dates of preparation 

not recorded. 
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APPENDIX B 

PHYLOGENETIC DATA 

Phylogenetic data for Gyracanthidae: 

Eustreptogyracanthus: 

1111111101? 

Gyracanthides hawkinsi: 

11010002111 

Gyracanthides murrayi: 

11000002111 

Horton Bluff gyracanthid: 

1100000?01? 

Greer gyracanthid: 

11(01)10001??? 

Illinois gyracanthid: 

111(01)(01)01111? 

Gyracanthus formosus: 

110(01)0(01)01000 

Gyracanthus youngi 

11011011000 

Gyracanthus incurvus: 

100??00?10? 

Diplocanthus: 

100?0?10100 

Lupopsyrus: 

1000?00??1? 
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Rhizodontid characters from Johanson (2004) 

 

1. Parasymphysial plate contacts anterior first coronoid: 0, no; 1, yes 

2. Premaxillary fang: 0, absent; 1, present 

3. Posterior border of postparietals form midline process: 0, no; 1, yes 

4. Postotic canal enters parietal: 0, no; 1, yes 

5. Extratemporal contacts supratemporal: 0, no; 1, yes; 2, extratemporal absent 

6. Preopercular: 0, large; 1, narrow and barshaped. 

7. External nostrils: 0, two; 1, one 

8. Depressed flange on cleithrum: 0, absent; 1, poorly developed; 2, well developed. 

Ordered in Johanson (2004) 

9. Narrow waist on cleithrum: 0, no; 1, yes 

10. Ventral lamina of cleithrum broader than dorsal: 0, no; 1, yes 

11. Scapulocoracoid attachment on cleithrum: 0, ventral; 1, dorsal 

12. Overlap relationships of cleithrum and clavicle: 0, normal; 1, rhizodont condition 

13. Anocleithrum exposed: 0, no; 1, yes 

14. Caput humeri: 0, concave; 1, gently convex; 2, bulbous. Orderd in Johanson 

(2004) 

15. Trifurcations in pectoral fin skeleton: 0, yes; 1, no 

16. Branched radials in pectoral fin skeleton: 0, no; 1, yes 

17. Long basal lepidotrichial segments in pectoral fin: 0, no; 1, yes 

18. Long basal lepidotrichial segments in other fins: 0, no; 1, yes 

19. Short, jointed lepidotrhicial segments in other fins: 0, yes; 1, no 

20.  Main lateral line canal on body: 0, single; 1, more than one parallel along body 

21. Tail shape: 0, heterocercal; 1, diphycercal 

22. Braincase: 0, ossified; 1, unossified 

23. Lateral line pores on cleithrum: 0, absent; 1, present pores or pitlines 
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24. Number of nasal bones: 0, many; 1, reduced in number 

25. Postaxial process in ulnare: 0, present; 1, absent 

26. Ethmosphenoid region: 0, elongate; 1, shorter, more rounded 

27. Orientation of dorsal ridge on humerus: 0, towards the ulnar condyle/postaxial 

condylar region; 1, separated from the condyle 

28. Position of radius and ulna articulations: 0, on distal surface of humerus; 1, also 

present on dorsal surface of humerus 

29. Separation of ulnar/radial condyles: 0, distinct; 1, largely continuous 

30. Pelvic girdle: 0, elongate with pubis; 1, triangular with ilium and pubis 

31. Position of scapulocoracoid attachment on cleithrum: 0, on main part of 

cleithrum; 1, more posterior, associated with the posterior flange 

 

Rhizodontid characters from Brazeau (2005): 

 

32. Dentary symphysial tusks: 0, absent; 1, present 

33. Cosmine: 0, present; 1, absent 

34. Meckelian ossification: 0, strong, complete from articular to symphysial region; 1, 

most ossification incomplete; 2, absent 

35. Sigmoid tusks: 0, absent; 1, present 

36. Anterior projection of the dentary forming a dorsal border forthe anteromesial 

rugosity and symphysial plate: 0, absent; 1, present 

37. Accessory tooth row on dentary: 0, present; 1, absent 

38. Dentary extends posterior to the level of the articular: 0, yes; 1, no 

39. Anterior projection of prearticular covers mentomandibular rib in lingual view: 0, 

no; 1, yes 

40. Jaw profile: 0, dorsoventrally deep; 1, elongate, dorsoventrally shallow 

41. Coronoids flattened laterally: 0, no; 1, yes 



 

 

140 

140 

42. Coronoid tooth row interrupted by fangs: 0, no; 1, yes 

43. Second infradentary pit-line: 0, present; 1, absent 

 

Phylogenetic data for Rhizodontida: 

Gooloogongia: 

101010100?1?0?0?1001001111???1011?01??????1 

Aztecia: 

???????11?1102?11?????1???111?0???????????? 

Sauripterus: 

?????0?01111020111111?1?1?1?1?0???????????? 

Barameda: 

11101?121111?2011????01111000?011?01???1?0? 

Rhizodus: 

0111???21111?2011????11???010?1112001101111 

Screbinodus: 

?1110??20111???1111??11????????1120011?1??1 

Strepsodus: 

0111??121111020111111?1?11010?1112100?01111 

Letognathus: 

???????????????????????????????11101010111? 

Floydus: 

??1???1???1?????11?1?0???1?????11?111??1??1 

Glyptolepis: 

00010000000000100?0000001110?00010000000000 

Medoevia: 

10000110100011??0?0??00??1?0??000000??10000 

Eusthenopteron: 
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000021100000111000001000001001?010000?10000 

 

Phylogenetic data for Actinopterygii, based on Gardiner et al. (2005): 

Acanthodes: 

000?000?0??000??????0000?0???0000000 

Eusthenopteron: 

000000000000000?300?0000010?02000000 

Cheirolepis: 

00?0?0000000000?000000100000000001?1 

Acipenserformes: 

10012313234011?135531000210100002111 

Australosomus: 

011122?1021211?120010001111101101111 

Birgeria: 

10012203035211?334421200111100102111 

Boreosomus: 

00012201?221011??02102011?1100011111 

Howqualepis: 

0000?000?100010?011000100?0?00001111 

Kentuckia: 

00001101?200011?000?0?10000?00001111 

Mimia: 

00001000?000010?00000010000100011111 

Moythomasia: 

00001000?100011?00000010010100111111 

Neopterygian: 

21112202123111?043322201112111211111 
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Perleidus: 

11112202023111?023212101112111011111 

Polypterus: 

00020003146301?410640010000003301111 

Pteronisculus: 

00012201?201111?02110101011100011111 

Saurichthys: 

10012213234211?234400000110102002111 

Aliuslater: 

?????????????1????0??0???1???0?111?? 

Phylogenetic data for Actinopterygii, based on Cloutier and Arratia (2004): 

Diabolepis:          

??????000000??00??????0?0?10?000?1010?00??00???1??0?010???0

0?0?????00???020????????????????????????10???????????????00

0?01??201????0????00???????0???????????????????????0110?10?

?? 

 

 Miguashaia:          

????????0000?001????0?000?110000?0000?00000000?1?1000000000

020?????000000200?00?00?????000100?0??0??0001???1???1000200

1?????21???000???00100001010101000?0?005001000?0000020?0?00

00 

 

 Onychodus:           

??????110000010020112?0001111000?00002000?000?01?1000000000

100?????00?010000?00?00????0001?00?0??00100000111???0000200
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0?02002100???0???00000010010??1000?0?005001000?0?00020?0?00

00 

 

 Psarolepis:          

??????1100?1??10?0000?0?0?111000?00?1110???0???0??0?00??000

??0?????0?0??0?00?????0??????????0?0??0??00?1???0???0????10

1?00???0?????0???100????0000??0????????????????????0?????0?

?? 

 

 Acipenser:           

012000001??????1?????40?10???0??21200?0??0000?{0,1}1?1000?0

?0?02?1{1,2}1??011???1??1010?10??????10110??????0011????010

1101??1?001?00?0110??00?0101110000?0110000?020101010100001?

??000?00?? 

 

 Amia calva:          

1131100001002000200204101100011120000000200?1??1?100012?010

2?111??011???122111??10????1?11?10????010010??100001001??10

0100000102?00101011111000001??0000?0?01510200010?00020?0?00

00 

 

 Amblypterus:         

????????0001010022111?0?1????0?1100002002?111??1?10?0121000

2?110211002101200?1010100010?10001010100000000100001000111?

0?1???0000010100001?1??101101????1?????0101?0???01?0111?1?0

00 
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 Aesopichthys:        

????????001000102210130?10???1?1010002012?111??1?10?0231000

2?100010002111201210201001?0111?11011000100001110111000?0??

??000?0001000110011?0?1100000??111?12101101101?121?0111?010

00 

 

 Dialipina m.:        

????????????????????????????????00?0????20100201??0?100???0

0?1????????????????????????????????????????????????????????

??????10?????????????????0??????????????????????????111101?

?? 

 

 Dialipina s.:         

????????0000??000010010?0???00000000000020??0201?10?112?000

??11?1?0012??110?????????????1???0???????001????????1000?0?

??????10?10?????????00001110???011?100000001010010101111010

00 

 

 Cheirolepis tr.:     

????0000000000002210?30011000000000000002110020001011000010

10101300000201100?11200????01110010100000100001000000000000

0102100010000011011100000000011001000010100000?101?100?0?10

00 

 

 Cheirolepis can.:    

??????00000000002210?30011000000000000002010030{0,1}0{0,1}0

1001{0,1}010101013000{0,1}0201?00?11200????0111?01010000010
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0001000000000000010210001{0,1}00001101110000000001100100001

0100000?101?100?0?1000 

 

 Cheirolepis n. sp.:  

????????000000002210?10?1????00000000???2010??????010011010

10121300011201?00?11200????0?11?01000000010000100000???????

?????00?1???????????000?0?00011??10?0??????????????100?0?10

00 

 

 Coccocephalus:       

?1000???0????1?0?01???0?????????1?0???????????????0?0??????

??1101?1????1?????1??????????11?11?1?0?0??0?????0????0?????

?????????????????????1??0??????????????????????????????????

?? 

 

 Cyranorhis:          

????????1??????01110120010???0?10110020121101??1?10?0231020

2?10021000211121101000100010111?11010000100000110000010111?

??00010000010100211100110100121011?10200102100?121?0111?010

01 

 

 Discoserra:          

????????000021003001010110???0?111200200110003{0,1}1?111022

0021111113?00000112013101112?110011?00?0??11100001000001100

131???0?1?10?00101??211?00100101??121??12114102?1?0131?0111

?11010 
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 Guildahichthys:      

????????00002100300101011????0?111200000011003{0,1}1?111022

0011111113?000001120101001122010011?00?0??111000010?0101100

011???0?1?00?01011??211?00100101??121??12114102?1??131?0111

?11010 

 

 Howqualepis:         

?00?00?00011011021102200110020100110111021101??0110?0021010

2?100300001211000?10?00????01100110100001000001100000001110

0000010000000100211100100000111011110000100001?121?01111010

00 

 

 Kalops d.:           

????????000020002110100?10?????001000000210?0201?100023?120

1210101101211120101001122010?11?0101000000000000001000011??

??00010001010100011?0?100100121011?10001101100?1?1?0111?010

00 

 

 Kalops m.:           

????????000020002110100?10?????001000000210?0201?10002??000

1211101101201120101001110010?11?1101000000000001000000011??

0?00010001010100011?0?100100121011?12001101101?121?0111?010

00 

 

 Kentuckia:           

111001??00?111?0201???0?1?????1?0100000021111??1?10?0130010

2?1003??000?11200?100?1??01??1???1010000?1?00?110??????????
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???????????????????????????????0????????????01??0??01???11?

0? 

 

 Lepisosteus:         

11301100010021002000{0,2}4101100111121000?00200?1??1?100003

?02010111??011???1200?1??1122001?10010????01100011000111101

??10110?001101000101011111010001???000?0?0151020000001?0111

011?00 

 

 Leptolepis:          

0?31?100000020002012031010???01120010?0?200?1??1?100013?010

10111??011???121111??1100000211?10????01001001{0,1}00000001

??100100000011000101011111000001???000?0?00010200010?1?020?

0?1000 

 

 Limnomis:            

??????????10201021012?0?1????0??0110111021101??0110?0120010

2?100310000011200?10?00??????1??1101000000000000000?00010??

????????????????????1?110000101011?1200011?101?001?011110?0

00 

 

 Mansfieldiscus:      

????????00000100210010001000?0?001100?00211?1??1?10?022?010

2?100010011211201010101000?01100110100001100001100000?0?1??

??00?100010001??011?111000?0???011110000101101?101?01111011

00 
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 Melanecta:           

????????0011?1102010100?1?????1010101210210?1????10?012???0

2?1????0011201?00?1???0????0111?1??10000?000001?0000???????

??00011001???1??011?110000001??011?11000101101?101?0{1,2}??

???100 

 

 Mesopoma:            

????????00?101?021100?0?11???0??01000?00211?1??1?10?013?010

1?1000?0012111200?1010100100?100110100000000102?0001??0????

??????10?1??????????11000000???111110000102101?121?01111010

00 

 

 Mimia toombsi:       

1000000001110010211{0,1}?300100000100010020011101??0110?101

0010??100010000201?00?10200????011000101?000000021200000000

000011000000100000110111111000001200111020001011010101?0111

101000 

 

 Moythomasia:         

1100000001{0,1}100102210?300110000100000010011111??0110?101

0{0,1}20??100110000201{1,2}00?11200????01100010100000000201

000000000?00110000001001?0?10111111000001200?11??00?10??0?0

?01?0111101??? 

 

 Novogonatodus:       

???????????????01210110?10???0??0???????2?1????????????????

2?100?10???????0???01010001??11?11010000?000001?0?0????????
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?????????????1??01??1?0101101??211012001100101?121?01111010

00 

 

 Osorioichthys:       

????????0001110021110?0?11???011?000000021101??1?10?0010020

2?1001100001112012100010001011001101000010002020001000001??

??0011000001010?011101100000020??10????????????????011?1011

00 

 

 Paramblypterus:      

????????00?111?021000?0?1????0??0000000011101??1?10?0121100

0011?010001211?00?1010121{0,1}101100?111?10010000?1?0001000

11110?????00?10001?021??1?100100??0011010000100111?001?0111

101100 

 

 Paratarrasius:       

????????0000200021000?0011???????100020011000201?11002210?0

1010131000101120121000122010011?11010000100010100011000?10?

??00011110?001??211?0?1?0??001?000?0?02211?02??030111?????0

00 

 

 Polypterus:          

0020000001010100200104001000001120000000100?1??1?10?0030020

2?111??001???1200?10?00????1?10010?10000000011001???1000?10

110000000??00001211100000010121000?0022410201010?1?01110110

00 
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 Proceramala:         

????????0??????02210100?10??????0100????21111??1?10?0231120

2?10001000211120???001121010111?11011000100001010110???????

?????????0???11011??0?100000???111?12111101?11?121?0111?011

10 

 

 Pteronisculus:       

111001??00?0?100??10??0?1????01?1???0?0??????????10?0?3?120

??1?02?00?1?11?0??1??11000101110?0?1?000??00????0000???????

?????1???????1??????11100??0??10?11?????100???0??1?01?????0

00 

 

 Stegotrachelus:      

????????000101001110??0?1????010?100010021111??0?10?0131010

1?1010?0001201200?10?10??????11?10?1?00010000?110001?00????

??020100000?01??2111??0100001???1???????10??????????1??????

?? 

 

 Tarrasius:           

????????00002?0022110?0?1????0??010002001?000201?1100121010

10101010001111201210?00????0?11?1100??00000011100001?0?????

??000?00?00001?1111?00100110??1000?0?02311?02??020111?????0

00 

 

 Tegeolepis:          

????????000020001110{1,2}?0?10???010?12000002?101??1?10?002

1??02?1001?1001101201310101??????11?10?10000100001200000001
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??110?1???00000??1??111?1??????????0?1???????0?????????01??

1????? 

 

 Wendyichthys:        

????????1??????0211014001??????11100010121111??1?10?0231020

2?10011000211120111010100110111?11010000100?01110010010010?

0?00010000010100011110100000111011?10200101100?121?01111010

01 

 

 Woodichthys:         

?00001?000?101002110{0,1}10?11???0101110020021101??1?10?023

10202?120110002101200?10?00????0111?11010000000000110001?00

11000?000100000001??1111110000001??111110000101101?101?0111

101000 

 

 Aliuslater:          

???????????????02111?30?11????10???????????????1??0???10???

??10???0?0??????0??0??0?????????????????????????0???100?2??

??????????????????11????00?01??011?1??1????010?101?0111101?

?? 
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