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 VALVE 1                                           VALVE 2 

  

   

 

(d) 
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Figure 6.6. Continuation of Figure 4. Comparison of later stages of valve closure 
between valve 1 and valve 2.  
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 VORTICITY                         SHEAR STRESS                      ACTIVATION
 

 

 

 

(a) 

(b) 

(c) 

 

Figure 6.7. Rebound stages of valve 1. The first panel shows vorticity contours, the 
second shows shear stress and the third shows activation level. Qualitatively, both valve 
show similar flow behavior. However, intensity of vorticity is much higher for valve 2.  
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 VORTICITY                         SHEAR STRESS                      ACTIVATION
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Figure 6.8. Rebound stages of valve 2. The first panel shows vorticity contours, the 
second shows shear stress and the third shows activation level.  
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CHAPTER 7  

CONCLUSIONS AND FUTURE WORK 

7.1 Contributions of the Current Thesis 

The contributions of the current thesis can be summarized as follows: 

1. A generalized and highly efficient Sharp Interface Cartesian Grid Method for 

simulating moving boundary problems has been developed in this thesis. The 

formulation allows the method to be applied to both solid-fluid and fluid-fluid 

interfaces with equal ease. The method has been extensively validated on moving 

boundary problems involving solid-fluid and fluid-fluid interfaces as well as phase-

change applications. 

2. An algebraic multigrid solver has been implemented to complement the sharp 

interface method to speed up the solution of the pressure Poisson equation. Local 

coarsening has made the re-generation of grids more efficient in the presence of 

moving boundaries. 

3. A particle tracking algorithm has been integrated with the sharp interface flow solver 

for calculations involving transport of particulate matter and their interaction with 

moving boundaries.  

4. A quadtree based local mesh refinement scheme has been formulated and 

implemented to complement the sharp-interface Cartesian grid solver in 2D and 3D to 

considerably speed-up and optimize the solution process. Mesh generation is 

automatic and solution dependent.  
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5. The local refinement scheme has been validated extensively against benchmark 

solutions on a wide variety of applications and tested for optimizing the parameters 

that control the refinement process.  

6. The above developed method has been applied to detailed analysis of flow during 

mechanical heart valve closure process. Platelets in blood have been modeled as 

particles and tracked with the particle tracking algorithm. Shear history on the 

platelets has been recorded to predict regions with a high likelihood of platelet 

activation and subsequent thrombus growth. Two geometries of mechanical vales are 

compared and the factors that affect their performance are explored.   

7.2 Future Work on the Numerical Front 

A generalized and highly efficient Sharp Interface Cartesian Grid Method for 

simulating moving boundary problems has been developed in this thesis. The formulation 

allows the method to be applied to both solid-fluid and fluid-fluid interfaces with equal 

ease. The above method has been extended by including a Local mesh refinement scheme 

which considerably reduces the mesh requirement for the solution of complex moving 

boundary problems. As the solution evolves, the mesh is adapted according to pre-set 

criteria which minimize user intervention during initial meshing. The optimum criteria 

for mesh adaptation have been explored by the solution of varied applications and 

comparison with benchmark solutions and speed-ups have been recorded. The refinement 

scheme has proved to be highly efficient in reducing memory CPU time requirement for 

several applications with some cases showing a 100 time speed-up over uniform fine 

mesh solutions.  

The solution time for the simulation of mechanical heart valve closure through the 
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entire closure and rebound phases which required several months previously has been 

reduced to the order of several days with the refinement scheme. Particularly, the 

refinement scheme has been shown to be essential for resolving the small gaps at valve 

closure. There are however, several extensions to the current method that need to be 

implemented to make it more versatile.  The immediate improvements suggested on the 

numerical aspects are as follows: 

1. Though the local refinement scheme has been implemented in 3D, the actual solution 

of moving boundary problems in 3D within the framework of sharp interface 

Cartesian grid method is still formidable in terms of the heavy mesh requirement. 

These calculations are still time intensive owing to the large scales of these problems. 

Parallelization of the code is essential for effective solution of 3D problems in real-

time. Hence parallelization of the solver is a necessity if calculations are to be 

performed with accuracy in real time. Parallel algorithms have been shown to achieve 

almost linear speed up of computational time by distributing tasks among multiple 

processors optimally with minimum communication requirements between them. To 

achieve optimum scalability, parallel simulations need the computational domain to 

be partitioned equally between the processors such that no processor will remain idle 

while it waits for the other processors to finish their job. Hence load balancing or 

domain partitioning is an important consideration when applied to locally refined 

meshes. Efficient grid partitioning and load balancing strategies have been 

investigated by many researchers for locally refined meshes [99, 100]; [50, 51] 

2. Currently, solution gradient and curvature based criteria have been adopted to control 

mesh adaptation. Every problem is different and intelligent choices of the refinement 
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control parameters may be necessary to obtain fast reliable solutions. Improvement of 

the refinement criteria are needed to make mesh adaptation more user-independent 

such that boundary layers and shear layers can be resolved effectively. Wavelet based 

criteria are being explored for this purpose. 

3. Formulation of finite volume schemes are infinitely complicated especially in 3D. 

The current work adopts a finite difference scheme for the discretization around 

interfaces. For mass conservation, this entails the mesh around immersed objects to 

be of the same refinement level. In some problems, this places severe restriction on 

the mesh refinement scheme. An improved formulation around immersed interfaces 

needs to be explored to allow mesh interfaces across immersed objects.  

4. A second order central difference scheme is used for the discretization of the 

governing equations. In certain cases, this can be highly restrictive because of its 

dispersive nature. A natural way of switching between higher order and lower order 

schemes needs to be adopted as the complexity of the problems under consideration is 

increased. 

5. The current particle tracking algorithm assumes a dilute particle loading. 

Improvement of the particle tracking algorithm is required to account for the effects 

of particle-particle interactions as well as effect of the presence o particles on the 

fluid flow. 

6. Most of the flows encountered in nature are turbulent in nature. The current method 

needs to be extended by including turbulent flow models. 

7. Extending the framework of the current method to solve compressible flow problems 

will enormously increase the range of applications that can be tackled with the code. 



 

 

 

179

7.3 Improving the Mechanical Heart Valve Simulations 

Flow analysis of mechanical heart valve closure indicates that the interaction of 

boundary layer separating from the valve housing with the boundary layer separating 

from the valve leaflet during the rebound phase causes the formation of a region of high 

shear stress at the tip of the valve leaflet. This is also a region of highly re-circulating 

flow indicating high platelet residence time. The current simulations indicate that this is a 

region with high likelihood of platelet activation and thrombus formation. Comparison of 

performance of two commercially available replacement heart valves indicates that the 

orientation of the valve in open and closed positions and the angle through which the 

leaflet swings during closure is the major factor that affects the intensity of interaction of 

wall and leaflet boundary layers. Consecutively, this may be the single important factor 

that determines the performance of replacement valves vis-à-vis platelet activation and 

thrombus formation. Further insights into the valve performance may be obtained by 

simulating the entire valve cycle including the opening phase. Simulation of consecutive 

valve cycles may further indicate pockets of flow stagnation and persisting high shear 

stress regions.  

Previous studies [28, 29] have shown that while 2D flow analysis is able to 

capture the valve closure dynamics qualitatively, quantitative comparison will require 3D 

models. Meaningful 3D simulations, i.e. those that will capture the details of the leakage 

flow, require very dense meshes and will require parallel computing to obtain results with 

reasonable computational effort. Work is currently underway to accomplish this. 

With regard to potential sites of platelet activation, a limitation of the 2D model is 

that hinge geometry cannot be incorporated in the flow simulation. Platelet activation and 
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thrombus formation is reported to occur due to the leakage flow in the hinge region and 

much  previous research has concentrated on this aspect [47, 64, 88, 120]. The dimension 

of the hinge region is two orders of magnitude lower than the valve dimension and will 

need to be considered in the computational analysis.   

With regard to the flow field features, it has been suggested [163, 164]  that 

turbulent flow can ensue in the leakage jet and the resulting turbulent stresses can have a 

significant impact on the platelet activation and thrombus initiation.   In the present 

simulations, the average Reynolds number based on average velocity in the gap is around 

300 while that based on the peak velocity of the leakage jet was approximately 1800. 

These Reynolds numbers indicate that, at best the flow in the valve may approach the 

transitional regime for brief durations during the flow. The local velocities in the leakage 

region approach high values in confined regions for short time durations. The advent of 

turbulence for flow under such conditions is unlikely. The computations performed in the 

present work did not require any models to represent the increased dissipation due to 

turbulent Reynolds stresses. However, the finest (5-level) mesh explored was found 

necessary to capture the rather steep gradients that occur as the flow from the ventricular 

side turns the corner into the atrial side at the right edge of the leaflet.  

The present platelet activation model is purely based on the shear stress-time 

integral experienced by the platelets in flowing through the gap width between the leaflet 

edge and the valve housing. Previous studies have suggested a specific shear stress-time 

relationship for platelet activation in arterial flows [68, 73]. Tambasco et al., [134] 

suggested a minimum shear stress beyond which the platelets will be activated in the 

shear stress-time integral employed in the current thesis. However, the process of platelet 
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activation, aggregation, and thrombus initiation particularly in the presence of foreign 

surfaces such as a mechanical valve leaflet is not clear.   

There are many other factors like agonist synthesis and release by activated 

platelets and concentration, platelet-phospholipid-dependent thrombin generation, and 

thrombin inhibition by heparin that need to be incorporated to build a comprehensive 

activation model [122, 123]. Inclusion of biochemical effects on platelets accounting for 

all these factors will improve the prediction of thrombus formation. In this study, a 

particle dynamics analysis was incorporated in the computational fluid dynamic analysis 

code in order to compare the concentration of platelets and their residence time in the gap 

between the leaflet edge and the valve housing and the central gap between the leaflets 

during the closing phase of a bi-leaflet valve. It was shown that the flow dynamics and 

the behavior of the vortices are significantly different in the two regions and the platelet 

activation and deposition is more likely in the clearance gap region.    

The current particle tracking algorithm assumes a dilute flow with low platelet 

loading in blood. It neglects the effect of platelet loading on blood flow as well as 

interaction of platelets with other platelets and red blood cells. Capturing the full 

dynamics of platelets, in the presence of red blood cells of biconcave shape in appropriate 

physiological concentrations, requires multi-scale modeling that will incorporate the 

effects of the particulate nature of blood, including cell-cell and cell-surface interactions. 

Efforts are underway to incorporate multi-scale models into the macro-scale simulations.       
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