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Figure 7.7: Comparison of separation distance between MD and MP simulations 

 

7.2.7 Frequencies of Nanotube-based Oscillator 

We employ (10, 10) carbon nanotubes with various lengths as the outer tube to 

study its length effects on the oscillation mechanism of (10, 10)/(5, 5) nanotube-based 

oscillators. In the following simulations, we maintain the length of the inner tube to be 

2.2nm  and the initial extrusion to be half of the inner tube length, 1.1nm . Due to the 

interlayer van der Waals force, the inner tube is accelerated at the beginning release. The 

accelerating distance could be estimated as accl extru inner / 2 1.1nmL L L= = = , through which 

the center-of-mass velocity of the inner tube increases from zero to a constant, maxV . For 

simplification, we assume the mean interlayer force applied on the inner tube remain 

constant when the inner tube travels through the accelerating distance so that the elapsed 

time can be approximately by accl accl max2 /t L V= . It is reasonable especially when the inner 
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tube is long enough since the nonlinear force only occurs when the inner tube end is close 

to the outer tube end. The acceleration can be calculated from the mean interlayer force 

and the mass of the inner tube. Here, they are vdw 0.6nNF =  and 24
0 3.4 10 kgm −= × . So, 

the maximum center-of-mass velocity is max accl2 623m/sV aL= ≈ . Therefore, the 

oscillatory frequency can be estimated once the length of the outer tube is given through 

the following formula 

 
( )

max

outer innerouter accl
accl

max

1
222 2

Vf
L LL Lt

V

= =
+⎛ ⎞−

+⎜ ⎟
⎝ ⎠

 (7.15) 

Fig. 7.8 illustrates the effect of the length of the outer tube on the nano-oscillator 

frequency. The oscillatory frequency can be as high as 72GHz  when length of the outer 

tube equals that of the inner tube, which was also predicted by Xiao et al. [8]. It also 

shows the frequencies from MP and MD simulations. They agree with the estimation 

very well. 

Next we investigate the length effects on the oscillation mechanism from the inner 

tube. We employ (5, 5) carbon nanotube with various length as the inner tube of the (10, 

10)/(5, 5) nanotube-based oscillators and maintain the length of the outer tube to be 

25nm . The initial extrusion is still the half of the inner tube length. The mean interlayer 

force applied on the inner tube is still 0.6nN , but the mass of the inner tube and the 

accelerating distance vary with the length of the inner tube. However, since accl innerL L∝  

and inner1/a L∝ , the maximum center-of-mass velocity is still a constant around 623m/s . 

Therefore, the oscillatory frequency also can be predicted by Eq. (7.15). 
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Figure 7.8: Frequencies of the nanotube-based oscillators with different outer tube 

lengths 

 

  

Figure 7.9: Frequencies of the nanotube-based oscillators with different inner tube 

lengths 
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Fig. 7.9 shows the comparison of the frequencies of different inner tube length 

from both Eq. (7.15) and MP simulations. The results agree with each other especially 

when we have a large inner tube length. That’s because the non-constant interlayer force 

is negligible for a long inner tube. It should be noted that Eq. (7.15) worked for various 

cases as long as the initial extrusion was half of the inner tube length and the interlayer 

distance between outer and inner tube was around 0.34nm . However, it is easy to modify 

Eq. (7.15) by the same methodology for different extrusion lengths.  

7.3 NEMS Design for CNT-based Nano Devices 

7.3.1 Motivation 

Due to their extraordinary mechanical, thermal and electrical properties, carbon 

nanotubes (CNTs) have attracted tremendous interest from fundamental science and 

technological perspectives. Nanotube-based electronics is one of the main potential uses 

of carbon nanotubes. The flexibility of nanoscale design and availability of both 

semiconducting and metallic nanotubes enable a wide variety of device configurations 

[78, 96, 100, 101]. These devices include metallic wires, field-effect transistors, 

electromechanical sensors and displays [96]. Another exciting application of the CNT is 

the development of the CNT-based high-density data storage devices [96]. This new type 

of memory can have up to 100-times the storage density of existing random access 

memories (RAMs) by taking the advantage of the unique electromechanical properties of 

CNTs.   

With the interest to develop the nanotube-based memory cell, we have analyzed 

the mechanism of the nanotube-based oscillator in the previous sections. An example of a 
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(5, 5)/(10, 10) nanotube-based oscillator illustrates the evolution of the separation 

distance while the inner tube oscillates inside the outer tube. The calculated frequency is 

55GHz and is referred to as the natural oscillatory frequency of this particular nano-

oscillator. We also showed that the natural oscillatory frequency depends on the structure 

and the length of nanotubes. However, when an oscillator is subject to a finite 

temperature as discussed in [8, 94], mechanical energy dissipation will be observed and 

the oscillation will cease. Such energy dissipation was found to be strongly dependent on 

the morphology combination of the tubes. MD simulations led to the conclusion that a 

carbon nanotube itself could not be used as a steady nano-oscillator at finite temperatures. 

Therefore, to make the steady nanotube-based oscillator capable of functioning at specific 

temperatures, special treatment needs to be considered in the nanoelectromechanical 

systems (NEMS) design to overcome the energy dissipation.   

7.3.2 NEMS Design for CNT-based Memory Cell 

  

 Figure 7.10: A NEMS design for memory cells 

  

Fig. 7.10 illustrates a simple example of the proposed NEMS design. The outer 

tube is a capped (17, 0) zigzag tube while the inner tube is a capped (5, 5) armchair tube. 
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It has been known that carbon nanotubes with different chiralities exhibit different 

electrical properties. It is known that if (m-n)/3 is an integer, the carbon nanotube is 

metallic, otherwise the tube is semiconducting. In the proposed design, the outer tube is 

semiconducting while the inner tube can be either metallic or semiconducting. In the 

example depicted in Fig. 7.10, the (17, 0) nanotube is semiconducting and the (5, 5) 

nanotube is metallic. The outer tube is positioned on the top of a conducting ground 

plane. Atomic materials for the conducting electrodes 1 and 2 are deposited on the top of 

the outer nanotube. In this configuration the inner tube sits in a double-bottom 

electromagnetic potential well. The depth of the potential well under electrode 1 is 

proportional to the voltage applied to electrode 1; similarly, the depth of the potential 

well under electrode 2 is proportional to the voltage applied to electrode 2. The induced 

quasi-static electromagnetic forces exerted on the inner tube will overcome interlayer 

friction if the applied voltage is sufficiently large.  This large applied voltage is referred 

to as the WRITE voltage. When a WRITE voltage is applied to the electrode, the inner 

tube may move due to the induced electromagnetic forces [102, 103]. It is because the 

electromagnetic force due to the applied WRITE voltage is sufficiently strong to 

overcome the interlayer friction acting upon the inner nanotube. Consequently, lateral 

motion of the inner tube will be induced as a result. Here, a capped outer tube is 

employed because the inner tube can easily escape from an open outer tube due to the 

induced electromagnetic forces. The capacitance of the NEMS gate can be read by a 

distinct READ process.  A constant-current pulse is applied to one of the electrodes.  If 

the inner CNT is present under that electrode, a relatively large capacitance will be 

observed, and the time required to charge the electrode will be longer.  If the inner tube is 
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not present under that electrode, a relatively small capacitance will be observed, as will a 

concomitant fast charging time for the electrode.  As a result, the logic state of the NEMS 

gate can be determined, as schematically shown in Fig. 7.11. It should be noted that all 

READ voltages are sufficiently small so that the motion of the inner tube will not be 

influenced. Whether the inner tube is underneath electrode 1 or electrode 2 will result in 

two different physical states determined by the READ voltage. These two different 

physical states can be interpreted as Boolean logic states. Therefore, the system can be 

used as a static random access memory (SRAM) cell. 

 

  

 Figure 7.11: Schematic read voltage 

 

7.3.3 Electromechanical Properties of CNT-based Memory Cell 

Since the outer carbon nanotube is chosen as semiconducting, its electric property 

is very similar to that of the insulator. Including two electrodes and the conducting 
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ground plane, the whole device can be viewed as a two-conductor capacitor with the 

dielectric spaces between them. The capacitance of the system varies with the presence or 

absence of the inner carbon nanotube. In other words, the electric energy stored in the 

system varies with different positions of the inner tube when a constant voltage is applied 

on the electrode. Consequently, the inner tube will be driven by the induced 

electromechanical force due to the gradient of the electric energy. 

Poisson’s equation is the general way to find the electric potential for a given 

charge distribution [104], 

 2

0

ρ
ε

∇ Φ = −  (7.16) 

where Φ  is the potential (in volts), ρ  is the charge density (in coulombs per cubic meter) 

and 12
0 8.854 10 F/mε −= ×  is the permittivity of free space (in farads per meter). In a 

region of space where there is no unpaired charge density, we have 

 0ρ =  (7.17) 

and the equation for the potential becomes Laplace's equation: 

 2 0∇ Φ =  (7.18) 

The solution of the Laplace and Poisson equations can be obtained by the numerical 

methods such as finite differences, finite elements, Fourier transformations, or method of 

moments [105]. And the electric field at a point is equal to the negative gradient of the 

electric potential there. In symbols, 

 = −∇ΦE  (7.19) 

Capacitance is a measure of the amount of electric charge stored (or separated) for 

a given electric potential. In a capacitor, there are two conducting electrodes which are 
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insulated from one another. The charge on the electrodes is Q+  and Q− , and ΔΦ  

represents the potential difference between the electrodes. 

 QC =
ΔΦ

 (7.20) 

We can determine Q  by a surface integral over the positive conductors, and we find ΔΦ  

from the difference of the potential between the electrodes. 

 
0

1 0

d
SC
V V

ε⋅
=

−
∫ E S�  (7.21) 

where 1V  and 0V  are the potentials for two electrodes respectively. In our design, the 

capacitor is made of an electrode of potential V  with the ground plane which has the zero 

potential, so 1V V= , 0 0V = , and the capacitance is further expressed as 

 
0dSC

V

ε⋅
= ∫

E S�  (7.22) 

The energy stored in a capacitor is 

 21
2

W CV=  (7.23) 

If the length of the electrode along the longitude direction of the nanotube is sufficiently 

large compared with the diameter of the outer nanotube, we can assume that the electric 

field is uniformly distributed along the longitude direction and the fringing regions at the 

both ends of the electrode are negligible. Therefore, Eq. (7.18) can be simplified as a 

two-dimensional case. In this chapter, we can consider the following two cases: the 

capacitor with or without the presence of the inner tube, respectively. For each case, the 

electric field and the capacitance can be easily calculated by taking the advantage of the 

two-dimensional model. If the inner tube is partially under the electrode, the system is 
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effectively the combination of two capacitors in parallel. We denote 0C′  and  1C′  as the 

capacitances of unit length capacitor without and with inner tube respectively, and yield 

the total capacitance of the system,  

 ( )
1 0

0 1 0

0 0

with inner tube
with part of inner tube
without inner tube

C l
C C l C l l

C l

′⎧
⎪ ′ ′= + −⎨
⎪ ′⎩

 (7.24) 

where 0l  is the length of the electrode and l  is the length of the inner tube underneath the 

electrode, which varies with the positions of the inner nanotube, ( )l f z= . And the 

electromstatic force applied on the inner tube can be calculated as 

 ( ) 21
2

W CF z V
z z

∂ ∂
= =

∂ ∂
 (7.25) 

However, if the diameter of the outer nanotube is large and the length of the 

electrode is short, the fringing regions cannot be neglected. In this case, three-

dimensional calculation would be appropriate for this case. 

7.3.4 Capacitance Calculation 

7.3.4.1 Two-dimensional Capacitance Calculation 

The capacitance is the intrinsic property of an electric device. It is a function of 

the physical dimensions of the system of conductors and the permittivity of the dielectric. 

Due to the Gauss’s law, the calculation of the capacitance should be independent of the 

potential and the total charge because the ratio of the pontential to the toal charge is 

constant. Therefore, we can arbitrarily choose the potential on the electrode. Here we 

assume the electrode has a constant potential of 10V .  
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 Figure 7.12: Cross-sectional view of the nanotube-based memory cell 

 

Fig. 7.12 schematically shows the cross section of the nanotube-based memory 

cell. In the considered NEMS, the inner (5, 5) tube has a radius of 0.34nm, and the outer 

(17,0) has a radius of 0.68nm. It is known that the thickness of graphene is 0.34nm . 

Therefore, the (5, 5) inner tube is viewed as a solid rod with the radius of 0.34nm , while 

the (17, 0) outer tube is viewed as a hollow cylinder with the inner radius of 0.34nm and 

the outer radius of 0.68nm . The outer tube sits on the ground plane and is attached 

1.1nm  long electrode on the center top. The region between the electrode and the ground 

plane composes two kinds of dielectrics as indicated in Fig. 7.12. The pink region is free 

space if the inner tube is absent or CNT if the inner tube is present in the system. The 

dielectric constant (relative permittivity) of CNT is chosen to be 5.0, which is also used 

in Crujicic’s work [106].   
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By Gauss’s law, the charge induced on a conductor is equal to the flux ending 

there. The charge calculated from Eq. (7.22) should be independent of the integral path as 

long as the electrode is included in the region. To perform the line integral (surface 

integral in 3-D case), we employ a circle (sphere in 3-D case) with the radius 0.32nm at 

the center top of the outer tube, which is also called “Gaussian surface”.  

Fig. 7.13, Fig. 7.14, and Fig. 7.15 show the two-dimensional electric potential, 

electric field, and electric field on the integral path respectively when the inner tube is 

absent. The calculated capacitance is 191.03 10 F−× . Similarly, Fig. 7.16, Fig. 7.17, and 

Fig. 7.18 show the s electric potential, electric field, and electric field respectively when 

the inner tube is present. The calculated capacitance is 191.11 10 F−× , which is larger than 

the one when the inner tube is absent. 

 

  

 Figure 7.13: 2-D electric potential when the inner tube is absent 
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 Figure 7.14: 2-D electric field when the inner tube is absent 

 

  

 Figure 7.15: 2-D electric field on the integral path when the inner tube is absent 
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 Figure 7.16: 2-D electric potential when the inner tube is present 

 

  

 Figure 7.17: 2-D electric field when the inner tube is present 
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 Figure 7.18: 2-D electric field on the integral path when the inner tube is present 

 

7.3.4.2 Three-dimensional Capacitance Calculation 

We also calculate the capacitance of the nanotube-based memory cell for different 

inner tube position by a three-dimensional model. The 7.5-nm-long (17, 0) outer tube has 

a radius of 0.68nm  and sits on the ground plane with the dimensions of 7.5nm 3.0nm× . 

The (5, 5) inner tube is 1.6nm  long and has a radius of 0.34nm . The electrode attached 

on the center top of the outer tube is 0.3nm  long in the longitude direction and 1.1nm  

wide along the lateral direction. The CNTs in the model are solid rod and hollow cylinder 

with a 0.34nm  thickness. The dielectric constant of CNT is also 5.0.  
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 Figure 7.19: 3-D electric field for different inner tube positions 
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Figure 7.20: 3-D electric field on the integral surface for different inner tube positions 

 

  

 Figure 7.21: Comparison of capacitance from 2-D and 3-D calculations 

 

Fig. 7.19 shows the three-dimensional electric fields when the separation distance 

is 2.5nm− , 0.8nm−  and 0.0nm . The integral is conducted on the surface of a sphere 

located in the middle of the electrode. Fig. 7.20 gives the three-dimensional electric field 

on the integral surface for different inner tube positions. And the comparison of the 
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capacitance calculated from two-dimensional and three-dimensional model is presented 

in Fig. 7.21, in which we can conclude that the two-dimensional model is a good 

approximation. 

7.3.5 CNT-based Memory Cell 

 

 

Figure 7.22: Geometry of the nanotube-based memory cell 

 

An example of the proposed nanotube-base memory cell is indicated in Fig. 7.22. 

The length of (17, 0) outer CNT has the length of 6.4nm , while the (5, 5) inner CNT has 

the length of 3.7nm . There are 884 particles in the MP model. We attach two 2.0nm long 

electrodes symmetrically on the top of the outer CNT. Initially, the inner tube is at the 

center of the outer tube. The voltage applied on the electrodes can not too large otherwise 

the CNT could start unraveling carbon chains from the exposed edge. Lee et al. claimed 

that the breakdown voltage of the CNT is round 2.0V/Å [107]. Therefore, the CNTs in 

our design could afford a potential of several hundreds volts to maintain its 

electrochemical stability. Here we apply 16V  constant voltage on the two electrodes 

alternatively for the time interval of 1ns . The total electromagnetic force applied on the 
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inner tube is around 1.0nN  which is calculated via Eq. (7.10) and the capacitance came 

from the two-dimensional model. 

 

  

Figure 7.23: Separation distance of the short nanotube-based memory cell in SRAM 

configuration 

 

Fig. 7.23 shows the separation distance of the nanotube-based memory cell when 

constant voltage is applied on the electrodes alternatively. After we apply the voltage on 

electrode 2, the inner tube is stimulated to move due to the induced electromagnetic force. 

Under electrode 2, the amplitude of the oscillation is getting smaller and smaller due to 

the interlayer friction and the electromagnetic force. Finally, the inner tube ceases under 

electrode 2 after about 500ps. When the voltage is shifted to electrode 1, the inner tube 

moves again and ceases under electrode 1. Such a motion of the inner tube repeats as 

long as the shifting voltage is applied on the electrodes. When the inner tube is under 
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electrode 1 or electrode 2, its position can be detected by the READ process and the logic 

states 0 and 1 are produced. Fig. 7.24 shows the position of the inner tube at different 

logic state. The red color on the electrode indicates the applied voltage. The frequency of 

the memory cell depends on the frequency of the voltage shifting, which means the 

device works as a SRAM.  In this case, the frequency of this SRAM is 500MHz. Since it 

takes 500ps for the inner tube to cease under an electrode, the recommended maximum 

frequency is 1GHz. 

 

  

  

  

Figure 7.24: Positions of the inner tube at different logic states in SRAM configuration 
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Next, we consider the same SRAM device with longer CNTs. We maintain the 

diameter of the CNTs but change the lengths of the outer and inner tube to 32nm  and  

18nm  respectively. The electrodes are elongated to 10nm  so that the inner tube can be 

stimulated at any position. The voltages applied on the electrodes are still 16V  but the 

electromagnetic forces are increased due to the change of electrode lengths. There are 

2834 particles in the MP model. Fig. 7.25 shows the separation distance of the nanotube-

based memory cell when constant voltage is applied on the electrodes alternatively. It can 

be seen that we can also obtain different logic states with the frequency around 500MHz.  

Obviously the maximum frequency of a nanotube-based memory cell depends on lengths 

of the inner tube, the out tube, and the electrodes.  

 

  

Figure 7.25: Separation distance of the long nanotube-based memory cell in SRAM 

configuration 
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It is obvious that the frequency of the proposed NEMS cannot exceed the natural 

frequency of its embedded nanotube-based oscillator. Since the nanotube-based oscillator 

is an underdamped system, the proposed design can be extended for application as a 

dynamic random access memory (DRAM) cell. In this configuration, the oscillator will 

continue to oscillate at its natural frequency. A WRITE voltage pulse is applied every 

several oscillation periods to stimulate oscillation of the oscillator. The period of the 

WRITE voltage pulse should not be larger than natural period of the oscillator so that the 

induced voltage acts to enhance oscillation from time to time. Consequently, a steady 

oscillation can be generated. 

Fig. 7.26 shows the separation distance of the nanotube-based memory cell in the 

DRAM configuration. In this case the DRAM still composes of a 32-nm-long (17, 0) 

outer tube and a 18-nm-long (5, 5) inner tube. Here, we use an open-ended outer tube 

instead of the capped one. Two 10-nm-long electrodes are attached on the top of the outer 

tube. Initially, the inner tube is at the position where the separation distance is 4nm− and 

with the velocity of 400m/s . With such an initial condition, the natural oscillating 

frequency of the oscillator is 6.75GHz.  We apply a voltage of 48V  at the electrode 2 

and last it for 2ps . The inner tube is accelerated but the oscillatory amplitude decreases 

due to the interlayer friction. After the oscillator oscillates four cycles, we give the same 

voltage pulse on the electrode 2 to increase the oscillatory amplitude. Then, the inner tube 

keeps oscillating. Figure 7.26 shows that stable oscillation can be reached for DRAM 

cells.  

Fig. 7.27 gives the periodic voltages applied on the electrode 2, and Fig. 7.28 

shows the positions of the inner tube at different logic states in DRAM configuration. It 
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should be noted that we applied the periodic voltage pulses on the electrode 2 in this case. 

However, voltage pulses on the electrode 1 or on both electrodes 1 and 2 alternatively can 

also maintain the oscillation of oscillators. 

 

  

Figure 7.26: Separation distance of the long nanotube-based memory cell in DRAM 

configuration 
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Figure 7.27: Voltage on electrode 2 of the long nanotube-based memory cell in DRAM 

configuration 

 

 

 

Figure 7.28: Positions of the inner tube at different logic states in DRAM configuration 
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7.4 Summary and Conclusions 

The mechanism of the nanotube-based oscillator has been studied by the 

nanoscale meshfree particle method. Since the rigid body motion dominates the 

oscillation of oscillators, the nanoscale meshfree particle model is simplified to calculate 

interlayer interaction between the outer tube and inner tube. A NEMS design, containing 

nanotube-based oscillators has been proposed as a memory cell. The electric properties of 

the nanotube-based memory cell have been analyzed. Numerical analyses demonstrated 

that the superposed electric field overcomes the interlayer friction in the embedded 

nanotube-based oscillator so that the steady oscillatory mechanism can be obtained and 

the representation of the Boolean logic states is possible. 
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CHAPTER 8  

SUMMARY AND FUTURE WORK 

8.1 Summary 

It has been known that temperature has significant effects on material behaviors at 

the nanoscale. Although multiscale methods can overcome the limitations of length/time 

scale that molecular dynamics has, they have difficulties in investigating temperature-

dependent physical phenomena because most homogenization techniques have an 

assumption of zero temperature. A new homogenization technique, the temperature-

related Cauchy-Born (TCB) rule, was developed in this thesis with the consideration of 

the free energy instead of the potential energy. The TCB rule assumes that atoms have 

locally harmonic motion in addition to homogeneous assumption. When employing the 

TCB rule in the nanoscale continuum approximation, the first Piola-Kirchhoff stress can 

be explicitly computed as the first derivative of the Helmholtz free energy density to the 

deformation gradient. Since the Helmholtz free energy is temperature-dependent, 

multiscale methods consisting of the TCB rule embedded continuum model can be used 

to elucidate temperature-related physical phenomena at the nanoscale. Stress analyses of 

canonical ensembles verify the continuum approximation with the TCB rule by 

comparing the calculated Cauchy stresses with the outcomes of molecular dynamics 

simulations. Temperature-related material instability was also studied in this thesis. The 

von Neumann stability analysis showed that the temperature-dependent intrinsic stability 

of a crystalline solid could be reflected by TCB rule. Stability analyses of a 1D molecule 

chain and 2D lattices verified that the stability states from TCB rule are the same as the 

ones from molecular dynamics simulation at given temperature. We also found that 
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stiffer materials can sustain larger deformations than softer materials at the same 

temperature. 

A nanoscale meshfree particle method with the implementation of a temperature-

dependent homogenization technique was also developed in this thesis. The intrinsic 

properties of the material associated with each particle could be sought from the atomic 

level via the TCB rule. Therefore, numerical simulations in nanotechnology can be 

beneficial from the advantages of the meshfree particle methods. This progress makes it 

possible to treat extremely large deformation problems and the problems involving 

discontinuities, such as fractures, at nanoscale. In addition, we developed a thermo-

mechanical coupling model through implementing the thermal diffusion equation into 

nanoscale continuum approximation. Crack propagation at a nanoplate was studied as an 

example. Since the nanoscale phenomenon of bond breaking is involved when crack 

propagates, temperature increasing around the crack tip due to the released potential is 

considered in our thermo-mechanical coupling model. 

With the interest to study the electromechanical behavior of nanoscale devices, a 

design of nanotube-based memory cells is proposed and analyzed via nanoscale meshfree 

particle method. In this design, the superposed electric field overcomes the interlayer 

friction in the embedded nanotube-based oscillator so that the steady oscillatory 

mechanism can be obtained.  Under different voltage schemes applied on the attached 

electrodes, our numerical simulations indicated that the motions of the inner nanotube 

represent different Boolean logic states. 
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8.2 Future Work 

In the design of the nanotube-based memory cell, the setup scheme indicates that 

both the inner tube and the outer tube consist of single-walled carbon nanotubes (SWNT). 

However, during fabrication, carbon nanotubes assemble as either multi-walled 

nanotubes (MWNTs) or bundles consisting of individual SWNTs that are rather difficult 

to separate. Given there is no doubt that the proposed memory cell design can be easily 

extended for practical use, an extended design is assumed, in which an MWNT will be 

employed as the shell. At the very least, the most outer tube must be capped. The core 

can consist of either an MWNT or an SWNT bundle. When an open MWNT is used as 

the core, it is suspected that interlayer slippage may be observed when the core oscillates 

within the shell. Similar slippage may occur between SWNTs if a SWNT bundle is used 

as the core. These potential instances of slippage will result in an unstable oscillation 

mechanism and in turn preclude the use of the proposed NEMS design as a memory cell. 

The potential for occurrence of the above possible phenomena will be investigated using 

numerical simulation. In our future research, experiment will also be employed to 

ascertain and verify slippage phenomena as predicted from numerical methods. If 

slippage is confirmed, only capped MWNT or the SWNT (capped or open) will be used 

as the oscillator. 

Bounds on the WRITE voltage are critical and must be determined in the practical 

design. If the applied voltage is too small, an electrostatic force sufficient to overcome 

the static friction between the inner and outer tubes will not be obtained.  In contrast, a 

WRITE voltage that is too large may cause the inner tube to impact and possibly damage 

the outer tube due to the large forces and high energy placed on the inner tube.  Lee et al 
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claimed that the breakdown voltage of the CNT is round 2.0V/Å [107]. If the electric 

field is larger than this value, the CNT could start unraveling carbon chains from the 

exposed edge. A voltage range sufficient to permit a reliable WRITE will be determined. 

It has been shown that certain conditions [95] may result in interlayer friction of 

various values between the outer tube and the inner tube, including: 1) chiralities of the 

outer tube and the inner tube; 2) topology and vacancy defects in carbon nanotubes; 3) 

temperature. Some conditions can have a significant effect on interlayer friction and, in 

turn, influence the predicted interval of the WRITE voltage. Several NEMS designs of 

various outer tube and inner tube configurations will be investigated in the future. The 

effects of the temperature in the mechanisms of the proposed memory cell design will 

also be investigated. 
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APPENDIX A 

MOLECULAR MECHANICS/DYNAMICS 

Molecular mechanics/dynamics are one of the standard numerical methods used 

to study nanoscale systems. Molecular mechanics uses mathematical techniques to yield 

an equilibrium position of the system. Classical molecular dynamics methods solve 

Newton’s equations of motion numerically for a set of atoms or molecules, which interact 

via a given potential energy. 

A.1 Molecular Dynamics 

Molecular dynamics (MD) is a computer simulation technique in which the time 

evolution of a set of interacting atoms is followed by integrating their equations of 

motion. We consider a set of atoms labeled by integers [ ], 1,I I n∈  with coordinates 

( )I tx . The mass of the nucleus is denoted by Im . The displacement is defined by 

 ( ) ( ) ( )0I I It t= −u x x  (A.1) 

The governing equations are Newton’s second law: 

 I I Im =u f&&  (A.2) 

where 

 ext int
I I I= −f f f  (A.3) 

where If  is the net force acting upon the atom I . int
If  are forces arising from the same 

body; ext
If  are any external forces, such as Van der Waals forces. 

The internal forces are obtained from the first derivative of potential energy W  

with respect to the displacement: 
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 int
I

I I

W W∂ ∂
= =
∂ ∂

f
u x

 (A.4) 

The second-order Verlet scheme is used for time integration algorithm (it is 

identical to the central difference method): 
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 (A.5) 

A.2 Molecular Mechanics 

Molecular mechanics neglects the motion of atoms, so strictly speaking, it only 

applies to 0K. However, considerable insight to molecular behavior can be gained by 

molecular mechanics. The governing equations, Eq. (A.2), are then become 

 0I =f  (A.6) 

where If  is the force applied on the atom I . 

The nonlinear conjugate gradient method [108] is used with the secant method 

here to solve these equations. It finds the configuration 
0
x  that minimizes the total 

potential energy of the system, which means at this configuration Eq. (A.6) holds. 
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 APPENDIX B 

BERENDSEN THERMOSTAT 

Temperature is a thermodynamic quantity. For a system containing N  particles, 

the temperature can be related to the average kinetic energy K  of the system through 

the principle of equipartition of energy, which states that every degree of freedom has an 

average energy of 2BTκ  associated with it [109, 110]. That is 

 2 f1
2 2

N
B

i i
i

N TK m v κ
= =∑  (B.1) 

where fN  is the number of degrees of freedom per atom, Bκ  is the Boltzmann constant, 

and T  is the thermodynamic temperature.  

The Berendsen thermostat [54] can be thought of as a system that is coupled to a 

thermal bath held at the desired temperature. The coupling is simulated by random 

“collisions” of system particles with thermal bath particles. After each collision, the 

velocity of a randomly chosen system particle is modified by a factor λ  corresponding to 

the desired temperature. This λ  is given by 

 
1 2

01 1
T

Tt
T

λ
τ

⎡ ⎤Δ ⎛ ⎞= + −⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

 (B.2) 

where tΔ  is the time step and Tτ  is the time constant of the coupling. In this way, the 

velocities of the particles are adjusted such that the instant temperature T  approaches the 

desired temperature 0T . 
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APPENDIX C 

NONLINEAR CONJUGATE GRADIENT METHOD 

The nonlinear conjugate gradient (CG) [108, 111] method finds the stationary 

point of the system, i.e. the configuration for which the first derivatives of potential 

function with respect to any coordinate vanish 

 ( )
0

0
W∂

=
∂

x

x
x

 (C.1) 

This configuration 
0
x  is the solution to 0I =f  in molecular mechanics. 

Given a potential function W , a starting value x , a maximum number of CG 

iterations maxi , a CG error tolerance 1ε < , the minimum point will be found by iteration. 

In each iteration, a general line search is used to find the proper α  that minimizes 

( )W α+x d , where ( )W ′= −d x  is the searching direction, so that 

 ( ) 0
W α

α
∂ +

=
∂
x d

 (C.2) 

Two iterative methods for this zero-finding are the Newton method and the Secant 

method. Both methods require that W  be twice continuously differentiable. The Newton 

method also requires that it is possible to calculate the second derivative of ( )W α+x d  

with respect to α . 

The Newton method relies on the Taylor series approximation 

 ( ) ( ) ( )T Td
d

W W Wα α
α

′ ′′+ ≈ +⎡ ⎤⎣ ⎦x d x d d x d  (C.3) 

The function ( )W α+x d  is approximately minimized by setting Eq. (C.3) to zero, giving 
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T

T

W
W

α
′

= −
′′
d

d d
 (C.4) 

The repeated steps of Eq. (C.4) must be taken until TW ′ d  is zero so that the 

values of TW ′ d  and TW ′′d d  must be evaluated at each step. These evaluations may be 

expensive. Therefore, the Secant method is used here because it avoids calculating the 

second derivatives of function W . To perform an exact line search without computing 

W ′′ , the Secant method approximates the second derivatives of ( )W α+x d  by evaluating 

the first derivative at the distinct points 0α =  and α σ= , where σ  is an arbitrary small 

nonzero number: 

 ( ) ( ) ( )T T
2

2

d
d

W W
W

σ
α

α σ

′ ′+ −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦+ =
x d d x d

x d  (C.5) 

The above becomes a better approximation to the second derivative as α  and σ  

approaches zero. Substituting Eq. (C.5) into the Taylor expansion of the first derivative of 

( )W α+x d , the following equation is given: 

 ( ) ( ) ( ) ( ){ }T T Td
d

W W W Wαα σ
α σ

′ ′ ′+ ≈ + + −⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦x d x x d d x d  (C.6) 

Minimize ( )W α+x d  by setting its derivatives to zero: 

 
( )

( ) ( )

T

T T

W

W W
α σ

σ

′⎡ ⎤⎣ ⎦= −
′ ′+ −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

x d

x d d x d
 (C.7) 

An arbitrary σ  is chosen on the first Secant method iteration; on subsequent 

iterations σ+x d  is chosen to be the value of x  from the previous Secant method 

iteration and the negative calculated value of α  is to be the value of σ  for the next 

interation. 



 

 

166

APPENDIX D 

ATOMIC LEVEL CAUCHY STRESS 

The atomic-level Cauchy stresses [112, 113], Aσ , of the simulated molecular 

system with the volume of 0V  can be calculated via 

 
( )0

1 1
2

A
ij ij

i j iV ≠

⎛ ⎞
= ⊗⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑σ r f  (D.1) 

where ( )ij j i= −r r r  represents interatomic distance between atoms j  and i , and ⊗  

denotes the tensor product of two vectors. The sign convention adopted here for 

interatomic forces, ijf ,  is positive for attraction and negative for repulsion. Accordingly, 

a positive stress indicates tension and a negative stress indicates compression. The 

interatomic force from bond-stretching potential is 
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( )s ij ij ij
ij s ij

ij ij ij

r
r

r r r
ϕ

ϕ
∂
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r r
f  (D.2) 

For angle-bending potential, the angle jikθ  between two vectors ijr  and ikr  can be 

calculated as 

 arccos ij ik
jik

ij ikr r
θ

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠

r r�
 (D.3) 

So, the interatomic force from the angle-bending potential [114] is 

 22

1 ( )
1 cos

ij ik ijik
ij a jik

ij ik ij ik ijjik
r r r r r

ϕ θ
θ

⎛ ⎞
′= − −⎜ ⎟⎜ ⎟− ⎝ ⎠

r r rrf
�

 (D.4) 

We should note here that the Monte Carlo method could result in the same state of 

stresses as molecular dynamic simulations for canonical ensembles.  
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The continuum-level Cauchy stress, Cσ , is computed [33] as 

 1C J −= ⋅σ F P  (D.5) 

where P  is the nominal stress, ( )detJ = F  is the determinant of deformation gradient F . 
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APPENDIX E 

MESHFREE METHOD FOR THE DIFFUSION EUQATION 

In a two-dimensional problem subject to the Lagrangian description, the thermal 

diffusion equation is  

 
2 2

0 2 2
1 2

v
T Tc T k

X X
ρ

⎛ ⎞∂ ∂
= +⎜ ⎟∂ ∂⎝ ⎠

&  (E.1) 

In order to use the Galerkin’s method, we need to develop an appropriate weak form first. 

Assuming 0Ω  refers to volume of an arbitrary element in the reference configuration, 

moving all terms in the differential equation to the left-hand side, multiplying by the test 

function Tδ  and integrating over the volume, the Galerkin weighted residual for the 

problem is 

 
0

2 2

0 02 2
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k T TT Td
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ρ δ
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Using integration by parts, 
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 (E.3) 

where the boundary terms in the right hand sides vanish due to the essential boundary 

condition requirement. Rearrange all the terms and the weak form is written as 

 ( ) ( )
0 0

0 0 0
1 1 2 2v

T Tk T TT Td d
c X X X X

δ δ
δ ρ

Ω Ω

∂ ∂⎛ ⎞∂ ∂
Ω = − + Ω⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

∫ ∫&  (E.4) 

In meshfree particle methods [40], the fields of temperature can be approximated 

as 
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 ( ) ( ) ( ),h
I I

I
T t T tω=∑X X  (E.5) 

Substituting Eq. (E.5) into weak form Eq. (E.4), the left hand side is 
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where IV  is the volume of particle I . In order to simplify the equation, we diagonalize 

the mass matrix and take the advantage of the property of kernel function, ( ) 1j I
j

ω =∑ X , 
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where 0I Im Vρ=  is the mass of particle I . The right hand side is 
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Since the integral domain is arbitrary, finally we got 

 I I IJ Jm T K T=&  (E.9) 

where 
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APPENDIX F 

CALCULATION OF THE THERMAL PARAMETERS 

F.1 Thermal Conductivity 

Thermal conductivity k  is the intensive property of a material that indicates its 

ability to conduct heat. It is defined as the quantity of heat, Q , transmitted in time t  

through a thickness L , in a direction normal to a surface of area A , due to a temperature 

difference TΔ , under steady state conditions and when the heat transfer is dependent 

only on the temperature gradient.  

For the hexagonal-triangular lattice in which the bond length is 1.0nm and the 

atom mass is 221.0 10 kg−× , the thermal conductivity is calculated when the atomic 

interaction is described by the harmonic potential 594 N mk = . 

Fig. F.1 shows the specimen we used in this numerical experiment. The nanoplate 

with the hexagonal-triangular lattice has the dimension as 80nm 26nm× . At the initial 

state, the left boundary and right boundary have the temperature of 100K and 1000K 

respectively and remain those numbers in the whole process. The heat will transfer from 

left to right due to the given temperature gradient. The total energy in the center part of 

the plate is measured as a function of time, so that we can calculate the thermal 

conductivity using below formula 

 ( )
( )

18 9

12 9 9

8.22 5.48 10 J 65 10 m
10 10 s 26 10 m 10 m 900K

0.76 w m K

Q Lk
t A T

− −

− − −

= ×
×Δ
− × ×

= ×
× × × ×

= ⋅

 (F.1) 
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 Figure F.1: Temperature profile of the hexagonal-triangular lattice 

 

  

 Figure F.2: Total energy evolution of the hexagonal-triangular lattice 
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F.2 Specific Heat Capacity 

Specific heat capacity c  is the measure of the heat energy required to raise the 

temperature of a specific quantity of a substance by certain amount. There are two 

distinctly different experimental conditions under which specific heat capacity is 

measured and these are denoted with a subscripted suffix modifying the symbols c. The 

specific heat of substances could be measured under constant pressure (Symbols: pc ) or 

constant volume (Symbols: vc ). Here we conduct the numerical experiment to calculate 

vc . 

The same nanoplate as last experiment is used here. Fig. F.3 and Fig. F.4 gave the 

temperature and total energy of two different thermal state with the temperature 

300.0KT =  and 500.0KT =  respectively. In this case we maintain the volume of the 

material and the specific heat capacity is calculated as   
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22
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0.141J kg K

v
v
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m dT

δ
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⎛ ⎞= ⎜ ⎟
⎝ ⎠

⎛ ⎞− ×
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 (F.2) 

 

Combine those parameters above,  

 0.76 5.40kg m s
0.141v

k
c

⇒ = = ⋅  (F.3) 
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 Figure F.3: Total energy of the hexagonal-triangular lattice at T = 300K 

 

      

 Figure F.4: Total energy of the hexagonal-triangular lattice at T = 500K 
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