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ABSTRACT

Ranking is a popular machine learning problem that has been studied extensively for

more then a decade. Typical machine learning algorithms are generally built to optimize

predictive performance (usually measured in accuracy) by minimizing classification error.

However, there are many real world problems where correct ordering of instances is of

equal or greater importance than correct classification. Learning algorithms that are built

to minimize classification error are often not effective when ordering within or among

classes. This gap in research created a necessity to alter the objective of such algorithms to

focus on correct ranking rather then classification.

Area Under the ROC Curve (AUC), which is equivalent to the Wilcoxon-Mann-

Whitney (WMW) statistic, is a widely accepted performance measure for evaluating rank-

ing performance in binary classification problems. In this work we present a linear pro-

gramming approach (LPR), similar to 1-norm Support Vector Machines (SVM), for ranking

instances with binary outputs by maximizing an approximation to the WMW statistic. Our

formulation handles non-linear problems by making use of kernel functions. Results on

several well-known benchmark datasets show that our approach ranks better than 2-norm

SVM and faster than the support vector ranker (SVR).

The number of constraints in the linear programming formulation increases quadrati-

cally with the number of data points considered for the training of the algorithm. We tackle

this problem by implementing a number of exact and approximate speed-up approaches

inspired by well-known methods such as chunking, clustering and subgradient methods.

The subgradient method is the most promising because of its solution quality and its fast

convergence to the optimal solution.

We adopted the LPR formulation to survival analysis. With this approach it is possi-

ble to order subjects by risk for experiencing an event. Such an ordering enables determi-

nation of high-risk and low-risk groups among the subjects that can be helpful not only in
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medical studies but also in engineering, business and social sciences. Our results show that

our algorithm is superior in time-to-event prediction to the most popular survival analysis

tool, Cox’s proportional hazard regression.
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formulation handles non-linear problems by making use of kernel functions. Results on
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The number of constraints in the linear programming formulation increases quadrati-

cally with the number of data points considered for the training of the algorithm. We tackle

this problem by implementing a number of exact and approximate speed-up approaches

inspired by well-known methods such as chunking, clustering and subgradient methods.
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our algorithm is superior in time-to-event prediction to the most popular survival analysis

tool, Cox’s proportional hazard regression.
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CHAPTER I
INTRODUCTION

Many real world data mining problems require an ordering instead of a simple clas-

sification. For example in direct mail marketing, the marketer may want to know which

potential customers to target for mailing new catalogs so as to maximize the revenue. If the

number of catalogs the marketer is sending is limited then it is not enough to know who

is likely to buy a product after receiving the catalog. In this case it would be more useful

to distinguish the top n-percent of potential customers who yield the highest likelihood of

buying a product. By doing so, the marketer can more intelligently target a subset of her

customer base, increasing the expected profit. A slightly different example is collaborative

book recommendations. To intelligently recommend a book, an algorithm must distinguish

the similarities of book preferences of people who have read and submitted a score for the

book. Combining these scores it is possible to return a recommendation list to the user. Ide-

ally this list would be ranked in such a way that the book on the top of the list is expected

to appeal the most to the user. It is not hard to see that there is a slight difference between

these two ranking problems. In the marketing problem the ranking is based on binary out-

put (purchase, non-purchase) whereas in the book recommendation problem the ranking is

based on a collection of partial rankings. In this dissertation we will be concentrating on

the ranking problem with binary output.

Over the years, rank-optimizing versions of several learning algorithms have been

developed as well as methods that directly optimize some ranking metric, which will be

summarized in the next chapter. Among such methods, optimization-based approaches are

quite promising, especially large margin methods such as support vector machines. One

drawback of such methods have been the computational cost arising from the quadratic

form of the optimization problem. Also, rank optimization requires a quadratic or greater

number of constraints with respect to the number of data points. Each of these problems
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has been addressed in the literature, yielding promising yet mixed results. In this work we

tackle these problems in one comprehensive algorithm that utilizes linear programming.

Throughout this dissertation we consider the problem of ranking in the context of binary

classification where the data has binary outputs.

This dissertation first reviews the literature leading up to our work. The review in-

troduces several key concepts necessary to follow our work and gradually leads the reader

from general to specific in terms of the research done in this field. The review also points

out the challenges and solutions that appear in the literature as a motivation to our work.

Chapter 3 introduces our formulation of a linear program that optimizes ranking of points

for problems where cases have only two possible outputs. In the same chapter we compare

our approach with some state-of-the-art classification and ranking algorithms and point out

the differences and benefits between these algorithms. In Chapter 4, we address the scaling

issues of these algorithms. We introduce several exact and approximate heuristics to reduce

the complexity of the problem and present our results. At the end of Chapter 4 we present

a case study, where we solve a relatively large real world problem that would otherwise be

unsolvable with the original formulation. Chapter 5 concentrates on how survival analysis

problems can benefit from our algorithm. We demonstrate the performance on a number

of real world problems and show that our approach produces favorable results compared to

one of the most popular survival analysis approach, Cox’s proportional hazard regression.

We finish this dissertation with conclusions and possible future directions.
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CHAPTER II
LITERATURE REVIEW

This chapter introduces ranking and algorithms that are built to perform ranking in

problems with binary outputs. We first motivate the ranking problem. Then we focus on

the class of ranking problems with binary outputs. We introduce ROC curves and the area

under the ROC curve (AUC) as a performance evaluation metric. We survey the literature

for ranking algorithms, more specifically the algorithms that optimize an approximation

to the AUC metric or, equivalently, Wilcoxon-Mann-Whitney statistic. We specifically

concentrate on rank-optimizing algorithms based on large margin classifiers such as support

vector machines. We point out the common problems with such algorithms and possible

solutions introduced in the literature. We finish the chapter with an overview of the other

rank optimization approaches covered in the literature.

2.1 The Ranking Problem

As a broad subfield of artificial intelligence, machine learning is concerned with the

design and development of algorithms and techniques that allow computers to learn. The

major focus of machine learning research is to extract information from data automati-

cally by computational and statistical methods. Hence, machine learning is closely related

to data mining and statistics as well as theoretical computer science. Machine learning

algorithms are organized into groups such as: supervised learning, unsupervised learn-

ing, semi-supervised learning and reinforcement learning, where the first two are the most

popular. The goal of supervised learning is to find a function that maps inputs (indepen-

dent variables) to outputs (dependent variables), given a set of points with known outputs.

Well-known supervised learning algorithms include decision trees [76, 77], artificial neural

networks [81, 25], naive Bayes classifier [27], nearest neighbor algorithm [24] and support

vector machines (SVMs) [91, 12]. On the other hand, unsupervised learning is a method
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of machine learning where a model is fit to unlabeled observations. The most common

algorithms include clustering [55] and self organizing maps [60].

Traditional supervised machine learning algorithms are built to minimize classifica-

tion error. Most of these algorithms also produce a numeric output, such as class member-

ship probabilities or a distance measure usually to a decision surface, etc. Relative values

of such numeric outputs are generally ignored by classification algorithms when determin-

ing a class label. Many real world applications on the other hand require a ranking or at

least a metric for evaluation, such as class membership probabilities. In other words, the

real world question asks how positive (or negative) a point actually is. In the light of such

research questions, ranking has become a popular machine learning problem that has been

addressed extensively in the literature [14, 17, 92, 34, 22, 56].

A wide range of applications can be formulated as ranking problems. Ranking can

be as simple as correctly ordering two data points, or it can be finding a total ranking

from a collection of partial rankings. Learning to rank in problems with binary outputs

can be seen as pairwise ranking of points belonging to one class against points belonging

to the other class. This class of problems frequently occurs in the real world. A direct

mail marketing example is already given in the introduction section. Another application

would be ranking of company stocks in terms of expected return based only on their past

up or down movements. Assume that the prediction problem is recommending a stock for

buy or sell. One may want to maximize the expected profit or minimize the expected loss.

Typically in this type of ranking problem, a subset of data from a category (or multiple

categories) is the primary focus of the research problem such as the top k% of positives

(buys) or bottom k% of negatives (sells). Another type of problem is the one where there is

no definite class label but simply some ordered data. A book recommendation example is

given in the introduction. Another example would be aggregation of search results on the

web. Assume a scenario that a search engine provides search results and asks for feedback.

Then a user can reorder a subset of such search results (or this process can be simulated
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implicitly) to aid the algorithm towards finding a more accurate ranking.

Classification algorithms are optimized to label unseen instances correctly. However,

there are a number of them that can rank fairly well. Caruana at al. showed that stand-alone

algorithms such as neural networks, support vector machines, and ensemble methods (such

as boosted or bagged decision trees), yield very good ranking performance in problems

with binary outputs [15]. The authors also found out that among the individual methods

SVM’s are good rankers, especially when paired with radial basis function (RBF) kernels.

Neural networks with a large number of hidden layers and the k-nearest neighbor algorithm

with a large k are also shown to rank well.

In the recent literature many well-known machine learning algorithms have been

specifically modified to focus on the problem of ranking rather then minimizing the classi-

fication error. For instance, decision trees are known to provide poor probability estimates

because their focus is minimizing classification error and size of the tree. With some mod-

ifications it is possible to make them produce better probability estimates and subsequently

use those estimates to rank better [73, 62]. For neural networks, the back-propagation al-

gorithm [25] can be modified such that the target values of a neural network are set to be

the ranks instead of classes [14]. A similar approach can also be applied to the perceptron

algorithm [81] to find rank prediction rules that assign each instance a rank which is as

close as possible to its original rank [22].

Optimization-based learning algorithms, most notably SVMs [91], are some of the

best classification algorithms in existence. SVMs are also known to be good rankers by na-

ture of margin maximization [96]. They can be further modified to rank better by adjusting

the constraints to focus on pairwise ordering [10, 79]. Other optimization-based ranking

algorithms have been developed to directly optimize metrics related to ranking such as d’

[92], which is a measure from signal detection theory [28] indicating how well an algorithm

performs on a classification task and is given by

d′ =
p− n

σn
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where p is the mean score on all positive points, n is the the mean score for the negatives,

and σn is the standard deviation of negative example scores where the scores that are used

are context dependent.

Instance ranking has also been applied to scenarios where user feedback is available

on an initial set of rankings [56, 78]. This approach is very popular for ranking search

engine results or items (e.g., products) where users can provide feedback. This feedback

can be in the form of a user evaluating the initial rankings and reporting mis-ranked items

or simply returning a partial ranking where only a subset of items are ranked. A good ex-

ample to this type of research is Yu’s work on SVM selective sampling for ranking [96].

Yu introduces an SVM-based approach where a ranking function is built by using partial

feedback provided by the user. At each iteration user feedback is accumulated to a training

set and additional constraints are created to enforce the rankings provided by the user. This

is repeated until the ranking function is accurate enough, that is, when the user is satisfied

by the rankings provided by the algorithm. It is not possible to judge which algorithm per-

forms best since all these investigations target different problems and do not treat common

datasets to observe the relative performance.

The literature also includes powerful ensemble methods such as Rankboost by Fre-

und et al. [34]. This algorithm is based on the machine learning method called boosting,

in particular, Freund and Schapire’s AdaBoost algorithm [35] and its successor developed

by Schapire and Singer [82]. Boosting is an algorithm that produces very accurate rules

by combining weak rules that are less accurate. Rankboost selectively combines different

rankings at each iteration, and checks for incorrectly ranked pairs. If such pairs exist then

the algorithm adjusts the weak rank learner to correct those misrankings. Similar to Ad-

aBoost, the RankBoost algorithm focuses on ranking difficult pairs over easier ones making

it vulnerable to noisy data.
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2.2 Receiver Operating Characteristics (ROC) Curves
and Area Under the ROC Curve (AUC)

The most commonly used performance measure to evaluate a classifier’s ability to

rank instances in binary classification problems is the area under the ROC curve. This

section first introduces ROC curves and later defines the area under the ROC curve and

how it is related to evaluation of ranking performance.

2.2.1 ROC Curves

ROC curves are widely used for visualization and comparison of performance of bi-

nary classifiers. ROC curves were originally used in signal detection theory. They were

introduced to the machine learning community by Spackman [86] in 1989, who showed

that ROC curves can be used for evaluation and comparison of classification algorithms.

ROC analysis is used in radar technology [28], psychology [89], medicine [64], pattern

recognition [7], and in machine learning [74]. The main reason that ROC curves became a

mainstream performance evaluation tool is the fact that the produced curve is independent

of class distribution or underlying misclassification costs [75]. This is a very important

property because in most real world problems the true distributions and misclassification

costs are unknown, which is problematic for correct performance evaluation of learning

algorithms. For example, it is difficult to quantify the cost of errors from incorrectly diag-

nosing a patient to have cancer versus diagnosing a true cancer patient as healthy.

At this point it is important to understand the basics of ROC curves. We first start

by introducing some useful metrics which will be used to construct ROC curves. Given

a two-class classifier and an instance there are four possible outcomes. If the instance is

positive and if the classifier predicts that it is positive, it called a true positive, and if it is

predicted negative, it is called a false negative. If the instance is negative and the prediction

is negative, it is called a true negative, and if the prediction is positive, then it is called a

false positive. Given a classifier and set of data points, a 2 × 2 matrix, called a confusion
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Figure 2.1: Confusion Matrix

matrix, can be constructed that displays the distribution of outcomes as shown in Figure

2.1. Common performance metrics that can be obtained from a confusion matrix are listed

in (2.1),(2.2) and (2.3).

fprate =
FP

allN
tprate =

TP

allP
= recall (2.1)

precision =
TP

TP + FP
accuracy =

TP + TN

allP + allN
(2.2)

F measure =
2

1/precision + 1/recall
(2.3)

ROC curves are two-dimensional graphs that plot true positive rate versus false pos-

itive rate. An ROC curve plots the relative trade-off between benefits (true positives) and

costs (false positives), by varying the classification threshold, which is usually the probabil-

ity of membership to a class, distance to a decision surface or simply a score produced by a

decision function. Each threshold represents a single classifier and corresponds to a single

point on the ROC curve. Some classifiers such as neural networks or naive Bayes naturally



9

provide these thresholds in the form of probabilities, or SVMs in the form of scores, while

other classifiers such as decision trees do not. It is still possible to produce ROC curves for

any type of classifier using minor adjustments. Domingos [26] introduced an algorithm that

employs bagging [11], a popular ensemble algorithm by Breiman, to generate an ensemble

of discrete classifiers, where each classifier produces a vote. The set of votes in this case

can be used to generate a score.

In the ROC space shown in Figure 2.2, the upper left corner represents perfect clas-

sification while any point on the diagonal line represents random classification. A point

in ROC space that lies to the upper left of another point represents a better classifier. A

classifier below the diagonal may be said to have useful information, but it is applying the

information incorrectly [31]. Classifiers appearing on the left hand-side of an ROC graph,

near the x-axis, may be thought of as conservative; they make positive classifications only

with strong evidence so they make few false positive errors, but they often have low true

positive rates as well. Classifiers on the upper right-hand side of an ROC graph may be

thought of as liberal; they make positive classifications with weak evidence so they clas-

sify nearly all positives correctly, but they often have high false positive rates [29].

As pointed out earlier, ROC curves have the nice property of being insensitive to the

class distribution and misclassification costs in data. If the proportion of positive points to

negatives changes, the ROC curve will not be affected. Large distribution skew is typical

in machine learning data, simply because investigating rare data is a common purpose of

data mining. However, many algorithms are vulnerable to large skew. In such cases an

algorithm may always choose the majority class, and will have substantially small error

without learning anything at all. Similarly, when classifying instances, it is typical that the

cost of misclassification is different for false-positives and false-negatives. For example, in

the spam filtering problem, cost of missing a spam and letting it pass through the filter is not

as high as labeling an important email as spam for discarding. However, in general the true

misclassification costs are very hard or impossible to obtain and most classifiers assume



10

Figure 2.2: A typical ROC curve

that they are equal, hence providing unreliable accuracy values. Therefore, it is typical to

use the ROC curve of a classifier, instead of accuracy, to identify the performance especially

when the true costs of misclassifications are unknown.

Once ROC curves became mainstream for classifier comparison, in-depth analysis of

how to correctly compare classifiers using ROC curves appeared as an important research

question. A substantial amount of work in this area was already in place in medical re-

search. Macskassy and Provost provided some of the popular approaches from the medical

field to the machine learning community [65]. They performed empirical evaluations on

the confidence bands for ROC curves for statistically sound performance comparison. They

tested relevant techniques to create confidence intervals such as pooling, vertical averaging

and threshold averaging. An in-depth study of the behavior of popular performance metrics

such as accuracy, precision and F-measure through the ROC isometrics (contour plots for

the metric under investigation) was carried out by Flach [32].

An obvious extension of ROC curves to multi-class problems has been studied by
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Fieldsen et al. [30]. The authors extended the two-class ROC analysis to multi-class prob-

lem by considering the trade-offs between the misclassification rates from one class into

each of the other classes. Rather then considering true and false positive rates, they defined

the multi-class ROC surface to be the solution of a multi-objective optimization problem in

which these misclassification rates are simultaneously optimized.

An intuitive research question is how to find ways to push the ROC curve further

toward the upper left corner of the ROC graph, which in turn would improve the overall

performance of classifier. There are several methods for modifying classifiers so that they

will get better performance on specific regions of the ROC curve [68]. Mozer et al. pro-

posed four different methods to specifically optimize the performance in the low FP-rate

region (lower left) of the ROC curve. The authors used two different weighting scheme for

data points to manipulate the the effect of each point when training. They also proposed an

optimization based approach and a genetic-algorithm-based approach to obtain better ROC

curves.

2.2.2 Area Under the ROC Curve (AUC)

Area under the ROC Curve (AUC) is a single scalar value for classifier comparison

[7, 45]. Statistically speaking, the AUC of a classifier is the probability that a classifier will

rank a randomly chosen positive instance higher than a randomly chosen negative instance.

Since AUC is a probability, its value varies between 0 and 1, where 1 represents all posi-

tives being ranked higher than all negatives. Larger AUC values indicate better classifier

performance across the full range of possible thresholds. Even though it is possible that a

classifier with high AUC can be outperformed by a lower AUC classifier at some region

of the ROC space, as shown in Figure 2.3, in general the high AUC classifier is better on

average when the underlying distribution is not known.

The machine learning community has explored the relationships between AUC and

accuracy [18] as well as the weaknesses of accuracy compared to AUC. The common use
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Figure 2.3: Comparison of Area Under the ROC Curve

of accuracy as a performance measure is critically investigated by Provost et al., providing

an in depth study using ROC analysis and standard benchmark datasets [74]. The research

showed that in order to prove a classifier’s dominance over another without knowing the

target misclassification cost, the algorithm should perform better for every possible thresh-

old on the ROC curve. Without knowing true misclassification costs, it is not correct to

conclude that one classifier is better then the other one.

AUC is found to be statistically consistent and a more discriminating value than ac-

curacy [61]. Ling and Huang’s work is significant in that it presents formal proofs to

rigourously establish that AUC is a better measure for comparison of learning algorithms.

In a follow-up work [51], they compared some of the well-known classifiers such as naive

Bayes, decision trees and SVMs by both accuracy and AUC on some popular machine

learning problems from the UCI data repository. The authors established a common ground

for evaluating the two metrics, accuracy and AUC, in terms of consistency and discrimi-

nancy defined as:
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Consistency: For two measures f, g on domain Ψ, f , g are (strictly) consistent if

there exists no a, b ∈ Ψ such that f(a) > f(b) and g(a) < g(b).

Discriminancy: For two measures f, g on domain Ψ f is (strictly) more discriminat-

ing then g if there exists a, b ∈ Ψ such that f(a) > f(b) and g(a) = g(b) and there exists

no a, b ∈ Ψ such that g(a) > g(b) and f(a) = f(b).

To illustrate with an example the authors used numerical grades and letter grades that

evaluate student performance. A numerical mark gives 100, 99, 98, ..., 1, or 0 to students,

while a letter mark gives A, B, C, D, or F to students. Obviously, grades are ordered as

A>B>C>D>F and this makes numerical marks consistent with letter marks (and vice

versa). In addition, numerical marks are more discriminating than letter marks, since two

students who receive 91 and 93 respectively receive different numerical marks but the same

letter mark, but it is not possible to have students with different letter marks (such as A and

B) but with the same numerical mark.

In a similar study Bradley [7] evaluated six machine learning algorithms (C4.5, mul-

tiscale classifier, perceptron, multi-layer perceptron, k-nearest neighbors, and a quadratic

discriminant function) on six medical diagnostics data sets. He compared and discussed

the use of AUC to the more conventional overall accuracy and found that AUC exhibits

a number of desirable properties when compared to overall accuracy, such as; increased

sensitivity in Analysis of Variance (ANOVA) tests; a standard error that decreased as both

AUC and the number of test samples increased; decision threshold independence; and in-

variance to a priori class probabilities. The paper concludes with the recommendation that

AUC be used in preference to overall accuracy for “single number” evaluation of classifi-

cation algorithms.

Hand and Till [44] provide a very straightforward way of estimating the AUC given

in (2.4). They also draw important conclusions on the relations between AUC, Wilcoxon-

Mann-Whitney (WMW)statistic and Gini coefficient. They compute AUC as

AUC = 1− S+ − p(p + 1)/2

pn
, (2.4)
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where p and n represent the number of positive and negative data points respectively, and

S+ is the sum of the ranks of the positive class (after the points are ranked by a ranking

function). According to the authors this estimation is also immune to the errors that may be

introduced by smoothing procedures. The fractional part of the equation on the right hand

side is equivalent to the test statistic used in the WMW two-sample test. The next section

provides an in-depth explanation of the relationship between the WMW statistic and AUC.

Before moving to the next section, we look at some examples from [61] that illus-

trate a comparison of accuracy and AUC in terms of performance evaluation. Assume a

dataset with 10 data points, 5 positive and 5 negative examples. Let two classifiers produce

probability estimates for those points, and order the data points using these estimates (de-

scending from left to right in the tables provided). Also assume that both classifiers label 5

data points as positive and 5 as negative.

Table 2.1 illustrates a case where two classification algorithms have the same error

rate (20%). Although the accuracies are equal it is not hard to imagine picking classifier

1 over 2 since it orders more positives correctly above the negatives. Using equation (2.4)

we can calculate the AUC of classifier 1 to be 24
25

where classifier 2 has an AUC of 16
25

.

Table 2.1: Example 1: Two classifiers
with equal accuracy and different AUC

CLASSIFIER 1 + + + + – + – – – –

CLASSIFIER 2 – + + + + – – – – +

It is not always true that the higher-AUC classifier is better. Table 2.2 shows the case

where classifier 4 has a lower error rate (20%) than classifier 3 (40%). On the other hand

classifier 3 has a better AUC performance with 21
25

while classifier 4 has 16
25

. Therefore a

good AUC performance does not guarantee a lower error rate for classifiers which is also

consistent with the findings in [74].
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Table 2.2: Example 3: One classifier
with higher AUC but lower accuracy

CLASSIFIER 3 + + + – – + + – – –

CLASSIFIER 4 – + + + + – – – – +

The opposite of the last paragraph is also true. In other words a lower error rate does

not guarantee better AUC performance. In the example given in Table 2.3 classifier 5 has a

lower error rate (40%) then classifier 6 (60%) but both have the same AUC (15
25

).

Table 2.3: Example 3: Two classifiers
with same AUC and different accuracy

CLASSIFIER 5 + – – + + – + + – –

CLASSIFIER 6 + – + – – + + + – –

2.3 Relationship of AUC to the Wilcoxon-Mann-
Whitney Statistic

AUC has been introduced as an evaluation criterion for ranking problems where the

data has binary outputs. In these problems, data points belong to one of two classes, usually

given as positive and negative, and the goal is to learn a ranking such that each positive data

point is ranked higher then each negative data point.

Consider the classification task with binary outputs with p positive data points and

n negative data points. We assume that a classifier produces a numeric output that can

strictly order all the data points using the indicator function, I(·). Let c be a classifier with

classification function f(·), where f(xi) is the output of positive examples and f(xj) is the

output of negative examples. Then the value of the Wilcoxon-Mann-Whitney statistic [45]

is given by



16

W =

∑p−1
i=0

∑n−1
j=0 I(xi, xj)

pn
(2.5)

I(xi, xj) =

 1 if f(xi) > f(xj)

0 otherwise
,

which is also the value of the AUC for c.

The proof is based on the observation that the AUC is the probability P (X+ > X−)

where X+ is the random variable corresponding to the distribution of outputs for positive

points and X− is the one corresponding to the negatives [43]. The WMW statistic is the

expression of this probability in the discrete case [45].

2.4 Optimization of the AUC by WMW Statistic

At this point it seems intuitive that an algorithm maximizing the WMW statistic will

also maximize the AUC and hence the ranking performance. An algorithm trained to max-

imize the WMW statistic will increase the number of correctly-ordered positive-negative

pairs in a given dataset, as well as correctly ordering positives and negatives among them-

selves. Also, any improvement of this metric will result in a larger area under the ROC

curve. The WMW statistic itself is not a continuous function, making it a combinatorial

problem which is difficult to solve directly. Also, if the positive and negatives are separable

the problem is ill-posed since there exist infinitely many optimal solutions. Therefore the

formulation needs to be stabilized by regularization, such as error minimization. Several

papers suggested an approximation approach to the WMW statistic. Both Yan et al. [95]

and Herschtal and Raskutti [48] used a continuous function as an approximation to the

WMW statistic. By doing so they were able to use gradient methods to solve the optimiza-

tion problem.

Herschtal and Raskutti’s formulation (2.6) approximates the WMW statistic by a

differentiable sigmoid function to calculate a rank statistic, R(β),
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R(β) =
1

pn

p,n∑
i,j

s(β(xi − xj)) ∀xi ∈ X+, xj ∈ X−, (2.6)

where p is the number of positives and n is the number of negatives, β is the vector of

coefficients of the predictor variables and s(x) is a sigmoid function given as,

s(x) =
1

1 + e−x
.

For large ||β|| the sigmoid rank statistic is a good approximation to the AUC.

Yan et al.’s formulation approximates the indicator function I(xi, xj) in (2.5) by

R(xi, xj) =

 (f(xi)− f(xj)− γ)2 if f(xi)− f(xj) ≤ γ

0 otherwise,
(2.7)

where γ is a margin with 0 ≤ γ ≤ 1 to approximate I(−xi,−xj) and f is a numeric

output of the algorithm. With this formulation it is possible to use a gradient-based method,

such as a limited memory BFGS method, to train a classifier by minimizing the objective

function given as
p−1∑
i=0

n−1∑
j=0

R(xi, xj),

where i and j are the same indices used in (2.5) with p positive and n negative data points.

2.5 AUC Optimization by SVMs

2.5.1 Support Vector Machines

SVMs are among the best classification algorithms and they also rank very well.

This is mostly due to the property of margin maximization in the optimization problem. To

better understand a rank optimizing SVM, we need to examine the SVM formulation.

A standard SVM learner solves the quadratic optimization problem given in (2.8) to

obtain an optimal hyperplane (wx + b = 0) that minimizes the classification error [91]:

min
w,b

1

2
||w||2

s.t. yi((wxi) + b) ≥ 1,∀i = 1, ...., l,

(2.8)
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where w is the vector of attribute weights and yi is the class label of the data point xi. The

constrained optimization problem given in (2.8) can be dealt with by introducing Lagrange

multipliers αi ≥ 0 to obtain

L(w, b, α) =
1

2
||w||2 −

m∑
i=1

αi(yi((xiw) + b)− 1). (2.9)

The Lagrangian L is minimized with respect to the primal variables w and b and maximized

with respect to the dual variables αi. Intuitively, if a constraint given in (2.8) is violated,

then yi((wxi) + b) < 1, in which case L can be increased by increasing the corresponding

αi. At the same time, w and b will have to change such that L decreases. To prevent

−αi(yi((wxi) + b)− 1) from becoming arbitrarily large, the change in w and b will ensure

that, provided that the problem is separable, the constraint will eventually be satisfied.

For non-separable problems, which are more typical in the real world, a soft margin

hyperplane can be used by introducing slack variables:

min
w,ξ

1

2
||w||2 + C

l∑
i=1

ξi

s.t.
yi((w.xi) + b) ≥ 1− ξi,∀i = 1, ...., l

ξi ≥ 0,

(2.10)

where C > 0 is the trade-off parameter in the objective function and ξi are the slack

variables for each constraint [19]. Usually the dual form of (2.10) is solved to obtain an

optimal hyperplane. The dual is given as:

min
α

−
l∑

i=1

αi +
1

2

l∑
i,j=1

αiαjyiyjxixj

s.t.
C ≥ αi ≥ 0, i = 1, ...., l∑l

i=1 αiyi = 0.

(2.11)

Note that in (2.11) data points appear as dot products, xi ·xj . Although we know that in the

current feature space the problem is linearly non-separable, it is very likely that in a much

higher dimension the problem may become linearly separable by a hyperplane. A mapping

function, Φ : <n → <m where m > n, can be used for such a transformation to a higher
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dimensional space. However, the transformation operation Φ is computationally expensive.

Instead a kernel function, k(xi, xj) = Φ(xi) · Φ(xj), can be used for mapping into the new

feature space. This yields a non-linear decision boundary in the original space. By the use

of the kernel function k(xi, xj), it is possible to compute the separating hyperplane without

explicitly carrying out the mapping calculation into the high-dimensional feature space.

This is also known as the kernel trick [83].

The quadratic optimization function given in equation (2.11) produces an optimal set

of α’s, and a set of weights for an optimal hyperplane can be recovered by

w =
l∑

i=1

αiyixi.

Also, using the optimal set of α’s, a decision function can be obtained to classify a new

data point xt:

f(x) = sgn

(
l∑

i=0

yiαik(xt, xi) + b

)
. (2.12)

Here, we would also like to define 1-norm SVM in the primal form given as (2.13)

since some of our later formulations will refer to 1-norm SVMs. The formulation is equiv-

alent to a 2-norm SVM except the 1-norm of w is minimized instead of the 2-norm.

min
w,ξ

||w||1 + C
l∑

i=1

ξi

s.t.
yi((w.xi) + b) ≥ 1− ξi,∀i = 1, ...., l

ξi ≥ 0,

(2.13)

Literature indicates there is no difference in terms of algorithm performance between

a 1-norm and a 2-norm SVM formulations [98, 9]. We adopted 1-norm to be able to formu-

late our problem as an linear program. Linear programs can be solved by simplex method

[23]. Although simplex method is known to be exponential in algorithmic complexity, gen-

erally in practice it solves much faster then QP algorithms such as interior point methods.
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2.5.2 Rank-optimizing SVMs

While SVMs do a good job among classifiers of ranking instances, recent research

has focused on further improving ranking performance of SVMs. An effort by Rakotoma-

monjy to investigate AUC maximizing SVMs led to the formulation given in (2.14) [79].

The dual form of his formulation included a form of kernel structure that optimize the AUC

performance and is given as:

min
α

−
p,n∑

i,j=1

αi,j +
1

2

p,n∑
i,j=1

p,n∑
u,v=1

αi,jαu,vkij,uv

s.t. C ≥ αi,j ≥ 0,

(2.14)

where xi, xu ∈ X+ and xj, xv ∈ X−. kij,uv is defined as k[(xi − xu) − k(xi − xv) −

k(xj − xu) + k(xj − xv)], where k(·) is a kernel function that maps the original feature

space to a higher-dimensional feature space. Typical kernel functions that can be used here

include radial basis function (RBF) kernels and polynomial kernels, which are explained

in the next chapter. Solving this quadratic optimization formulation yields the following

decision function:

f(x) =

p,n∑
i,j=1

αi,j(k(xi − xj, x) + b). (2.15)

The optimal α’s represent a weight for each positive-negative pair of points, therefore the

number of α’s is equal to the number of positives times the number of negatives. The

number of variables grows quadratically with the increasing number of training points.

Rakotomamonjy’s work led to more investigations in the area. Brefeld et al. worked

on the same formulation for both 2-norm and 1-norm SVMs which led to an improved

ranking performance [10]. The time complexity of AUC maximizing SVMs continued to

be a problem with both number of variables and constraints being quadratic with respect to

the number of data points. We will investigate this further in the following chapters.

Joachims et al. also introduced a very similar formulation to the two given above in

the context of web search with implicit feedback. The authors present their SVM ranker
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formulation as a quadratic programming problem given as:

min
w,ξi,j

1

2
w · w + C

p,n∑
i,j=1

ξi,j

s.t.
w · Φ(di, q) ≥ w · Φ(dj, q) + 1− ξi,j

ξi,j ≥ 0,

(2.16)

where di, dj represents documents from a set of documents D, q represents a user query

and ξi,j represents the error of ranking a more relevant document below a less relevant

one. The mapping function Φ is similar to k(·) from the previous algorithms. The logic

behind this formulation is that each of the constraints represents the similarity between

two documents evaluated in the context of a single query. Using this formulation a preset

number of documents can be evaluated and ranked based on a query. In such a setup the

queries (typically constructed by the user) are the key for constructing an implicit ranking

of documents.

2.6 Other AUC Optimization Methods

As can be seen from the recent line of work, AUC optimization has become very

popular in the machine learning literature. Several other ways to maximize the AUC are

summarized in this section.

Bostrom investigated the use of incremental reduced error pruning for maximizing

AUC instead of accuracy. This is a technique that has been extensively used for efficient

separate-and-conquer rule learning [37, 16, 33]. While a commonly employed pruning cri-

terion, based on precision, has been shown to maximize AUC [38], the author showed that a

commonly-used exclusion criterion, based on accuracy, may include rules that result in con-

cave ROC curves, as well as exclude rules that result in convex ROC curves. The empirical

investigation over a span of 34 datasets showed an improved AUC compared to any other

accuracy-based criteria. Another method introduced by Sebag et al. tackled AUC optimiza-

tion for learning linear hypotheses in medical data mining, using evolutionary computation
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techniques [84, 41]. The stochastic nature of the setup provides scalability for very large

datasets. This approach also provides the advantage of exploitation of a subset of solutions

generated in the evolutionary process (sensitivity analysis) without any extra computation

cost.

Ordinal regression is another tool that can be utilized for rank optimization problems

in binary classification. It is similar to regression, where data points are mapped to scalar

values which help to classify (or rank) pairs of points. A large margin algorithm based

on ordinal regression modeled by Herbrich et al. [47] ranks points by intervals on the real

line and then finds a scoring function that maps each point to its ordinal value. The result-

ing task is also known as preference learning [46]. Learning of preference reduces to a

standard classification problem if pairs of objects are considered. For each ordinal regres-

sion problem there is a corresponding preference learning problem on pairs of objects. In

fact, previous algorithms discussed under section 2.5.2 are all special cases of the ordinal

regression method.

In this chapter we thoroughly surveyed the literature starting from problem of rank-

ing. We then moved to ranking in problems with binary outputs. We defined the met-

ric, AUC, that evaluates the ranking performance for problems with binary outputs. The

equivalency of AUC and the WMW statistic was also introduced. We briefly summarized

AUC/WMW-optimizing algorithms, including rank-optimized support vector machines.

We present AUC-maximizing SVM formulations and point out the major drawback of such

algorithms which is the time and space complexity arising from the quadratic expansion of

the required constraints for optimization. In the next chapter we introduce our version of a

ranker and evaluate its performance against similar algorithms.
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CHAPTER III
THE LINEAR PROGRAMMING FORMULATION

3.1 Motivation

The area under the ROC curve (AUC) is a commonly-used measure for evaluating the

quality of the ranking performance of an algorithm for data with binary output. It is a good

general-purpose evaluation method because it is invariant to cost and class distribution.

Thus, it makes sense to directly optimize some approximation of the AUC (which is equiv-

alent to the Wilcoxon-Mann-Whitney (WMW) statistic [93]) by, for example, attempting

to correctly rank every positive/negative pair of points. Our formulation given in the next

section constructs a linear-programming-based 1-norm SVM and uses a rank-optimizing

kernel function that reduces the size of the resulting problem previously introduced in the

literature [10, 79] while avoiding their drawbacks.

In this chapter, we first introduce a linear-programming-based ranking algorithm.

Then we look at its similarities and differences to SVM. Later we compare its AUC perfor-

mance against regular 2-norm SVM and a recently published variation of an SVM formula-

tion optimized for AUC performance using popular benchmark datasets. We also evaluate

the classification performance of these algorithms.

3.2 The Algorithm: Linear Programming Ranker
(LPR)

Let (x, y) be an instance in the training set X , where x is the data vector and y ∈

{−1, 1} is the class label for that instance. We refer to the set of positive points in the data

set as X+ and negatives as X−, such that X+∪X− = X . To maximize the WMW statistic,

we would like to have all positive points ranked higher than all negative points, such as:

f(xi) > f(xj) ∀xi ∈ X+, xj ∈ X−,

where f is some scoring function which will be defined in the next paragraph. A perfect

separation of classes is impossible for most real world datasets. Therefore a linear program
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is constructed to minimize some error term corresponding to the number of incorrect or-

derings. We construct a linear program with soft constraints penalizing negatives that are

ranked above positives. This requires p (number of positive points) times n (number of

negative points) constraints in total.

The problem of ordering instances is hard, especially when the number of items

to order goes up. There are k! possible ways to order k instances, which generates an

extremely large search space with a large k. Obviously, we would prefer not to wander

in the search space until we obtain a good solution (or better yet find the global optimum

if we are lucky). We use the set of generated constraints to guide us by systematically

reducing the search space. However, for many real world problems, use of hard constraints

(constraints that must be satisfied) may make the optimization problem impossible to solve

since all constraints cannot be satisfied at the same time. Soft constraints (constraints that

can be violated with a cost of slack) can be used to avoid this problem. Our formulation

avoids combinatorial complexity by minimizing the error, z, which is the difference in

scores of incorrectly ordered pairs.

We select a scoring function, f(x), such that it assigns a real-valued score to each

data point while making the optimization problem continuous. This leads to the following

set of constraints:

f(xi)− f(xj) ≥ ε− zij ∀xi ∈ X+, xj ∈ X−, (3.1)

where ε is a small quantity usually set to 1 and added to the right hand side to avoid strict

inequalities in the constraints.

The scoring function we use here is similar to an SVM decision function (Equation

2.12) without the intercept, b. The intercept is not necessary since it would add a constant

amount for all the points in the scoring function and would have no influence on either the

relative scores or the overall ranking. The scoring function is defined as

f(x) =
∑
l∈X

ylαlk(x, xl) (3.2)
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where αl represents a weight for each point in the training set. The function k(·) is a kernel

function. With this formulation we can obtain a score for any x using the training points

xk’s and the trained set of weights, α’s.

In our objective function we would like to minimize the errors, z, along with the

magnitudes of the coefficients, α. We minimize α to prevent them from getting arbitrarily

large as well as to maximize the separation margin between the data points. The proposed

objective function and linear program can be obtained as follows by substituting the scoring

function (3.2) in (3.1) and rearranging the left side of the inequality:

min
α,z

∑
l∈X

αl + C
∑

i∈X+,j∈X−

wi,jzi,j

s.t.

∑
l∈X ylαl[k(xi, xl)− k(xj, xl)] ≥ 1− zi,j ∀xi ∈ X+, xj ∈ X−

α, z ≥ 0

(3.3)

where C is the tradeoff parameter between the two parts of the objective, wi,j is the weight

on each pairwise error (usually set to a constant value in our experiments), and zi,j repre-

sents an error term for each positive/negative pair. In this formulation we set C as a single

scalar value that increases or decreases the importance of errors relative to the sum of the

α’s. The parameter w lets the user to explicitly manipulate the weight on each error term.

In our experiments with the benchmark datasets the w’s are set to 1 making all the pairwise

errors equal. However, there may be certain cases where a domain expert knows the rela-

tive importance of errors. In such cases those individual error weights can be beneficial to

improve the performance.

In our experiments we use RBF kernels of the form

k(x, xl) = e−γ‖x−xl‖2 , (3.4)

where γ is the RBF parameter that controls the smoothness of the function. For comparison

versus 2-norm SVM we also used polynomial kernel in the form

k(x, xl) = (xxl + 1)p, (3.5)

where p is the power term that adjusts the complexity. RBF will be our choice of kernel
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function throughout the dissertation. It yields better performance compared to polynomial

kernels, which we show later in this chapter, as well as the literature supporting the choice

of RBF kernels for AUC maximization [15].

The output of the linear program (3.3) gives the optimal set of weights, α∗. The

instances with non-zero weights, which we call ranking vectors, represent the unique

points that influence the ranking. By using a kernel function, we are mapping the input

space to a feature space defined by the kernel function. This makes it possible to rank the

data with reduced error, in the mapped space. Once the optimal weights α∗ are found for

each point in the training set we can use the scoring function

f(xtest) =
∑
l∈X

ylα
∗
l k(xtest, xl) (3.6)

to obtain scores for each test point. Finally we can rank the test points by the scores

obtained.

At this point it is important to understand the differences between our approach and

similar formulations. Radlinski and Joachims [78] presented a formulation for rank opti-

mization where each constraint represents a pairwise ordering of points. While their kernel

structure is similar to ours, each of their constraints represents the similarity between two

documents evaluated in the context of a single query. In such a setup the queries are the

key for constructing an implicit ranking of documents. Our formulation, on the other hand,

sums the similarities across a training set of labeled pairs of training points.

The kernel structure we use in the constraints to enforce the ranking of positives

over negatives is [k(xi, xl) − k(xj, xl)] as opposed to Rakotomamonji’s or Brefeld et al.’s

[k(xi, xu) − k(xi, xv) − k(xj, xu) + k(xj, xv)], where i, u are indices from the set of pos-

itive points and j, v are from the set of negatives. Our formulation reduces the complexity

of the problem by reducing the number of variables from (pn) to (p + n), while the num-

ber of constraints in each of the algorithms remain as (pn). The intuition behind this is,

instead of comparing the difference of positive-negative pairs to each other in the feature

space, we simply compare each positive and negative pair of points to a fixed point in the



27

dataset and measure the difference. An RBF kernel evaluating two points produces a score

between 0 and 1. The more the similarity between two points the closer the score to 1.

Our approach compares each data point, xl, to a positive/negative pair, xi and xj , and the

difference k(xi, xl)− k(xj, xl) produces a positive value if the data point(xl) is more sim-

ilar to the positive point(xi) in the pair or negative value if the point is more similar to

the negative(xj). The partial scores from each evaluated pair are summed to generate an

overall score for each data point which can then be used for ranking. This process captures

the idea presented in Rakotomamonji’s and Brefeld et al.’s formulations while reducing the

complexity of the problem.

When an RBF kernel is used, our approach is similar to distance-weighted k-nearest

neighbor (kNN) algorithm, where k is equal to the number of ranking vectors. Consider

the scoring function of distance-weighted kNN where only the ranking vectors are used as

training points, f(xtest) =
∑

r∈X yr×D(xtest, xr)
−1, where xr’s are ranking vectors. If the

inverse of RBF is used as the distance function such that D(xi, xj) = eγ‖xi−xj‖2 , the above

scoring function differs from (3.6) only by the coefficients αr, which are obtained by the

optimization procedure in our approach.

3.3 Ranking Vectors vs. Support Vectors

Although similar in formulation, there is still a difference in nature of ranking and

support vectors. To visualize the differences between ranking vectors and support vectors,

we created a simple artificial dataset that represents an XOR problem. XOR is one of the

basic forms of linearly non-separable problems. We can utilize a kernel function to make

this problem separable in a higher-dimensional space. We used RBF as the kernel of our

choice for both LPR and SVM. After training both algorithms we obtain the following

Figure 3.1, which plots both ranking and support vectors in the original feature space, as

well as the decision boundary of the SVM .
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Figure 3.1: Ranking vectors vs. support vectors

As we can see from Figure 3.1 ranking and support vectors appear in different loca-

tions in the feature space. Ranking of points can be evaluated based on iso-score lines from

the figure. The feature space is divided into regions of scores represented by iso-score lines.

Therefore the algorithm tries to order points such that points from the positive class appear

in the high-score regions and points from the negative class in the low-score regions. As

expected, the support vectors appear close to the support vector decision boundary. Rank-

ing vectors on the other hand appear around either regions that are representative of a class

or at locations where it can bend the iso-score lines just a bit such that locally more pairs

are ranked correctly. The number of ranking vectors are proportional with the difficulty of

the problem such that for harder problems we observe more ranking vectors. Also, as the

RBF parameter γ increases, which increases the complexity of the model, the number of

ranking vectors increase similar to support vector machines.
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3.4 Comparison of AUC performance vs. 2-norm SVM

In our experiments we used 13 data sets from the UCI repository [6]. Multi-class

data sets are converted to two-class problems by using one class vs. others scheme. Details

of these conversions are given in Table 3.1. As a first step we compared the performance

of LPR with a regular 2-norm SVM using RBF and polynomial kernels [4].

Table 3.1: Overview of the datasets and modification details

Datasets # of pts # attrib. % rare class # of class - Comments

BOSTON 506 14 9 (MEDV<35)=1,REST=0

ECOLI 336 8 15 “PP”=1,REST=-1

GLASS 214 10 14 “7”=1,REST=-1

HEART 270 14 44 2

SONAR 208 61 47 2

SPECTF 351 45 28 2

CANCER(WPBC) 194 34 24 2

IONOSPHERE 351 35 36 2

HABERMAN 306 4 26 2

LIVER(BUPA) 345 7 42 2

CANCER(WBC) 699 10 34 2

CANCER(WDBC) 569 32 37 2

SEGMENT 210 20 14 “BRICK”=1,REST=-1

We implemented LPR in Matlab [54] and used CPLEX [53] for optimization in the

Matlab environment. For performance comparisons, we used SVM implementation by

Sequential Minimal Optimization (SMO) algorithm [72] available in WEKA [94]. We

constructed a grid search to find the best RBF and polynomial kernel parameter settings

for both LPR and SVM using γ = {0.01, 0.1, 1}, p = {1, 2, 3} and C = {1, 10, 100}. For
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all the datasets, we averaged 5×10-fold cross-validation results. In each cross-validation

the data is split into 80% for training, 10% for validating (parameter tuning) and 10% for

testing. For each fold, the algorithm trains with training data using all possible parameter

combinations. Each trained model is evaluated on the validation set to find the optimal

parameter for that fold. Finally, we use the model with the optimal parameters on the test

set. This procedure is repeated 10 times in each cross-validation run. We make sure that

each point is tested only once in the cross-validation procedure.

Here, we would like to note that for a number of runs in our experiments in Chapters

3 and 4, CPLEX ran out of memory solving the WBC and WDBC datasets. We include the

results from the ones that were solvable in performance comparisons.

Table 3.2: AUC results using RBF kernel from
5×10-fold cross-validation

Dataset LPR SVM

BOSTON 0.9654(0.0100) 0.9484(0.0082)

ECOLI 0.9598(0.0080) 0.9494(0.0022)

GLASS 0.9708(0.0064) 0.9511(0.0064)

HEART 0.9072(0.0044) 0.8566(0.0039)

SONAR 0.9244(0.0055) 0.9027(0.0089)

SPECTF 0.9156(0.0060) 0.8926(0.0042)

WPBC 0.7314(0.0203) 0.7160(0.0159)

IONOSPHERE 0.9735(0.0068) 0.9529(0.0018)

HABERMAN 0.6564(0.0212) 0.6974(0.0064)

LIVER 0.7198(0.0190) 0.7239(0.0058)

SEGMENT 0.9878(0.0010) 0.9842(0.0026)

WDBC 0.9920(0.0012) 0.9868(0.0012)

(W,L,T) (10,1,1)
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Table 3.2 shows that our ranking algorithm performed better in general then 2-norm

SVM in AUC performance and when RBF kernel is used. The last row of the table shows

statistical comparisons in the form of (win, loss, tie) where the statistical significance was

set at the 0.05 level. As a side note, for all our significance tests throughout this dissertation

we use paired t-test at the 0.05 level. LPR, optimized for ranking, was significantly better

in AUC performance for ten datasets.

Table 3.3: Accuracy results using RBF kernel from
5×10-fold cross validation

Dataset LPR SVM

BOSTON 0.9510(0.0090) 0.9440(0.0071)

ECOLI 0.9458(0.0054) 0.9476(0.0033)

GLASS 0.9701(0.0070) 0.9645(0.0053)

HEART 0.7919(0.0198) 0.8022(0.0062)

SONAR 0.6890(0.0334) 0.8706(0.0098)

SPECTF 0.9038(0.0060) 0.8436(0.0122)

WPBC 0.7705(0.0139) 0.6908(0.0262)

IONOSPHERE 0.9359(0.0077) 0.9380(0.0069)

HABERMAN 0.7219(0.0107) 0.7403(0.0104)

LIVER 0.6916(0.0156) 0.7105(0.0062)

SEGMENT 0.9743(0.0064) 0.9743(0.0043)

(W,L,T) (2,1,8)

To investigate the effects of AUC optimization on classification performance we also

compiled accuracy results from both algorithms which are provided in Table 3.3. We

believe that the nature of AUC optimization that ranks positive points above negatives

could have a favorable effect on accuracy since the process also enforces separation of

two classes. To obtain accuracy for our algorithm we find the threshold (score) that gives
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the best accuracy value on the validation set. We used the same threshold on the test set to

classify the test points.

When accuracies were compared, LPR was in general as good as 2-norm SVM, tying

in 8 datasets. Although the classification performance is similar, SVMs have the advantage

of being significantly faster than LPR. Still it is interesting to observe a rank optimized

algorithm performing as well as a state-of-the-art classification algorithm.

Table 3.4: AUC results using polynomial kernel from
5×10-fold cross validation

Datasets LPR SVM

BOSTON 0.9571(0.0180) 0.9420(0.0128)

ECOLI 0.9485(0.0065) 0.9409(0.0033)

GLASS 0.9662(0.0118) 0.9506(0.0090)

HEART 0.8564(0.0113) 0.8164(0.0012)

SONAR 0.8851(0.0172) 0.8739(0.0109)

SPECTF 0.8921(0.0123) 0.8829(0.0079)

WPBC 0.7534(0.0171) 0.7189(0.0227)

IONOSPHERE 0.8926(0.0210) 0.8758(0.0104)

HABERMAN 0.6823(0.0132) 0.6935(0.0069)

LIVER 0.7231(0.0222) 0.7286(0.0047)

SEGEMENT 0.9770(0.0119) 0.9873(0.0025)

(W,L,T) (4,0,7)

We have experimented with using polynomial kernels with LPR (p = 1,2,3). We

compared the results to 2-norm SVM with polynomial kernel using the same datasets. The

comparison results using polynomial kernel are given in Table 3.4. We observed that LPR

was significantly better in 4 out of 11 datasets and tied with SVM on the others. We con-

clude that any of the two kernel functions we used shows a better AUC performance against
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SVM, however the improvement achieved using polynomial kernel is not as impressive as

RBF.

We also compared the accuracy performance results when polynomial kernels are

used. The results presented in table 3.5 were similar to the RBF performance. LPR per-

forms as well as SVM in classification performance tying in 10 datasets and and signifi-

cantly winning only in one. Again the drawback of LPR is that it is significantly slower

then SVM.

Table 3.5: Accuracy results using polynomial kernel
from 5×10-fold cross validation

Datasets LPR SVM

BOSTON 0.9483(0.0068) 0.9431(0.0080)

ECOLI 0.9285(0.0076) 0.9254(0.0060)

GLASS 0.9645(0.0021) 0.9626(0.0089)

HEART 0.7852(0.0148) 0.8022(0.0173)

SONAR 0.7952(0.0223) 0.8153(0.0133)

SPECTF 0.8741(0.0184) 0.8449(0.0081)

WPBC 0.7620(0.0172) 0.7421(0.0209)

IONOSPHERE 0.8860(0.0107) 0.8860(0.0077)

HABERMAN 0.7311(0.0188) 0.7320(0.0069)

LIVER 0.7032(0.0178) 0.7246(0.0132)

SEGMENT 0.9838(0.0043) 0.9743(0.0072)

(W,L,T) (1,0,10)
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3.5 LPR vs. Support Vector Ranker (SVR)

As a next step we compared the performance of LPR against Brefeld’s rank optimized

support vector machine (SVR), which is a recently published state-of-the-art AUC optimiz-

ing algorithm. We implemented the SVR as a quadratic programming (QP) problem, which

is formulated as an AUC maximizing 1-norm SVM as given in [10]. The comparison setup

is implemented in Matlab and the optimization problem is solved using CPLEX. The major

problem with SVR is that its space complexity is O(n4). Because the size of the constraint

matrix can get insolvably large based on the size of the data, it was not possible to use

10-fold cross-validation that uses 80% of the data to train. Therefore we used a sampling

methodology to reduce the training data size such that we sampled as many points as pos-

sible to train the SVR in reasonable time and used the remaining data points for parameter

tuning and testing. We used exactly the same training, tuning and testing data points for

LPR for fair comparison. We repeated this procedure 25 times and averaged the results.

Table 3.6 shows the results of AUC performance comparison between LPR and SVR

as well as algorithm solving times in seconds. After significance testing we observe that

for 11 out of 12 datasets the results are not significantly different. This shows us that both

algorithms are equally good in maximizing the AUC. The strength of our formulation is the

speed, meaning that we can obtain the same performance much faster then SVR. We were

also able to compare the two algorithm in terms of classification accuracy. The results given

in Table 3.7 shows that LPR performs similar to SVR tying 9 times out of the 12 datasets.

We observe larger standard deviations here compared to performance tests vs. SVM. The

reason is that here we average 25 runs with random sampling as opposed to averaging 5

cross-validation runs which are already the average of results from 10 folds.

In conclusion, in this chapter we demonstrated that LPR produces significantly better

AUC results then 2-norm SVM using benchmark datasets from UCI machine learning data

repository. It also performs fairly well in terms of classification performance against a
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Table 3.6: AUC performance comparison: LP Ranker (LPR) vs. Sup-
port Vector Ranker (SVR) results averaged over 25 runs with random
sampling

Datasets LPR SVR tLPR(s) tSV R(s)

BOSTON 0.9456(0.0340) 0.9404(0.0337) 0.22 9.47

ECOLI 0.9595(0.0193) 0.9626(0.0195) 0.34 33.5

GLASS 0.9480(0.0614) 0.9435(0.0680) 0.20 23.9

HEART 0.8743(0.0319) 0.8751(0.0341) 1.23 196

SONAR 0.9246(0.0475) 0.9581(0.0271) 2.3 201

SPECTF 0.8697(0.0244) 0.8731(0.0293) 1.4 109

WPBC 0.7369(0.1032) 0.7609(0.1189) 1.6 79

IONOSPHERE 0.9657(0.0204) 0.9672(0.0187) 1.28 160

HABERMAN 0.6678(0.0628) 0.6759(0.0668) 1.52 98.3

LIVER 0.7330(0.0338) 0.7377(0.0341) 2.17 188

WBC 0.9947(0.0028) 0.9946(0.0026) 0.42 155

WDBC 0.9924(0.0039) 0.9930(0.0040) 0.42 167

(W,L,T) (0,1,11)

state-of-the-art classification algorithm. When we compare our algorithm against an AUC-

optimizing SVR we observe that LPR performs equally well as SVR while dramatically

reducing algorithm solving times.
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Table 3.7: Accuracy performance comparison: LP
Ranker (LPR) vs. Support Vector Ranker (SVR) re-
sults averaged over 25 runs with random sampling

Datasets LPR SVR

BOSTON 0.9373(0.0181) 0.9384(0.0156)

ECOLI 0.9408(0.0177) 0.9429(0.0189)

GLASS 0.9816(0.0230) 0.9708(0.0205)

HEART 0.7883(0.0422) 0.7889(0.0486)

SONAR 0.6753(0.1330) 0.5976(0.0852)

SPECTF 0.8160(0.0312) 0.8251(0.0316)

WPBC 0.7807(0.0650) 0.7748(0.0534)

IONOSPHERE 0.9112(0.0283) 0.7840(0.1251)

HABERMAN 0.7243(0.0340) 0.7306(0.0313)

LIVER 0.6969(0.0453) 0.6965(0.0356)

WBC 0.9616(0.0123) 0.9600(0.0160)

WDBC 0.9589(0.0133) 0.9636(0.0184)

(W,L,T) (3,0,9)
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CHAPTER IV
SPEEDING UP THE OPTIMIZATION

4.1 Motivation and Background

Optimization-based learning algorithms are usually not robust to increasing number

of data points. The solution times can increase dramatically with the number of data points

making it infeasible to apply such algorithms to large or even moderately-sized problems.

This issue has been addressed in the linear programming (LP) and SVM literature over

the years, providing a wide array of speed-up approaches for optimization problems in the

context of classification [8, 66, 36]. However, the nature of the ranking problem introduces

a different challenge making traditional constraint reduction methods, typically used in

classification problems, inappropriate.

The formulation of a mathematical program for ranking introduced in this disserta-

tion includes a constraint for each positive-negative pair, resulting in a quadratic number

of constraints, and limiting the size of solvable problems. Several methods have been pro-

posed in the literature to address the problem of solving a large number of constraints in

reasonable time, the most significant being the chunking algorithm [8]. Chunking divides

the data into manageable bins and optimizes the bins separately so that the whole problem

can be solved in shorter time. After solving for each chunk, the points that are the most

influential are added to the next bin as the algorithm iterates through the whole dataset.

Unfortunately chunking, in its original form, is not a good fit for the ranking problem. Un-

like classification problems, the influential points that determine the ranking in each chunk

are not necessarily relevant to other chunks. The location of influential points is highly

data dependent, and unlike support vectors they do not necessarily appear close to a deci-

sion surface. Because of this reason those points can be very different even for a slightly

different subproblem, making chunking-like approaches ineffective.
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Constraint reduction in ranking problems where constraints represent pairwise order-

ings has not been addressed consistently in the literature. Hueristics to reduce constraints

have included random selection of a subset of constraints, a nearest neighbor-like data re-

duction approach and clustering of data points [48, 10, 79, 97]. Herschtal et al. suggested

the redundancy of some of the positive-negative pairs. They proposed to randomly choose

a subgroup of pairs, which does not specifically remove the redundant pairs but reduces the

number of constraints and therefore reduces the space complexity toO(n). The authors did

not compare their results to any known algorithm making it difficult to judge the relative

performance. Brefeld et al.’s formulation has space complexity of O(n4) (pn variables and

pn constraints). The authors proposed a speed-up approach that reduced this to O(n2) by

approximating this problem, representing all the pairs by p+n cluster centers. They utilized

Goswami et al.’s fast k-means clustering [42] to reduce the data. Rakotomamonjy proposed

a nearest-neighbor approach, where only the k neighboring negatives of each positive point

are ranked lower then the positive. Most of the methods used are ad-hoc and employed data

that is not publicly available.

A common approach which is known to help in solving large scale optimization

problems faster but with reduced accuracy, is the subgradient approach. Subgradient meth-

ods are used to solve convex optimization problems where the objective function is non-

differentiable. They work similar to gradient methods with a few modifications and have

guaranteed convergence for certain step size strategies [69]. Originally introduced by Shor

[85], the approach has been shown to work for maximum-margin learning problems [80].

Despite being a powerful approach to approximate and solve large problems within reason-

able time, the subgradient method has the drawback of requiring several control parameters

(such as starting point, step size, convergence criteria) that need to be fine-tuned for good

performance.

To summarize, quadratic expansion of the number of constraints with the increasing

number of data points remains a challenge. In our formulation the number of constraints
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needed to obtain the optimal solution is equal to the number of positive points times the

number of negatives. This number grows very quickly as the number of data points in-

creases making the LP solution time unreasonably long. To tackle this issue we have

implemented a number of exact and approximate methods [1] to reduce the number of

constraints. Exact methods use heuristics to solve the original problem by iteratively build-

ing the set of required constraints needed for the exact solution. Approximate methods on

the other hand solve an approximation to the original problem either by a data reduction

approach or by an early termination of the algorithm by allowing a large tolerance.

4.2 Exact Methods

We have tried several speed up heuristics, related to chunking [8], to reduce the

number of constraints by removing potentially redundant ones. Chunking divides the data

into manageable bins and optimizes them separately so that the whole problem can be

solved in reasonable time. After solving for each chunk, points that are most influential

(points with nonzero α’s) are added to the next bin as the algorithm iterates through the

whole dataset. Unfortunately the original chunking algorithm did not work well for our

formulations. The reason is that in our case non-zero α’s represent ranking vectors. They

are far away from the decision boundary and in general are not necessarily relevant to other

chunks as in regular chunking. Therefore we made some adjustments to the algorithm

to better fit the structure of our problem. A general overview of the modified chunking

algorithm is shown in Figure 4.1. Note that the schemes we implement here can still obtain

the optimal LPR solution since the LP will always include the set of necessary constraints

to correctly rank the data points.

We experimented with two variations of chunking. In the first scheme, after each

chunk we evaluated the weights on the remaining data points, and for the next chunk we
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Create all possible constraints, C

Divide C into manageable chunks, Ci

Initialize empty constraint set S

while size of S not converged

for each chunk of constraints, Ci ⊂ C ,

Solve (3.3) with constraints S ∪ Ci, obtaining α∗

Evaluate α∗ on C \ Ci for pairwise violations

Add violated constraints to S

end for

end while

Figure 4.1: Chunking Algorithm Outline

add to the set of previously violated constraints only those constraints that represent pair-

wise violations. In this case we observed a majority of the violated constraints accumulat-

ing during the first few iterations instead of showing a gradual increase through iterations

as we expected. As a second approach, to reduce the effect of a sudden increase of con-

straints, for each chunk we added only the top 1000 most violated constraints in the LP.

This seemed to work well in most of the datasets. In this case the number of passes, hence

the number of iterations until convergence is increased, slowing the LP solution time. An

overview of the speed up comparisons are given in Table 4.1. The second column shows

the total number of possible constraints for the given dataset. Columns 3 to 5 show the

results for the first approach and columns 6 to 8 show the results for the second approach.

The column labeled “pass” in columns 3 and 6 represents the number of full passes by

the algorithm on the dataset until the number of retained constraints converged. With the

implemented approaches we were able to reduce the number of constraints needed to solve

the optimization problem in most of the datasets.

Table 4.2 shows the times in seconds for running each algorithm on the benchmark
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Table 4.1: Comparison of speed-up heuristics

1st Speed up Approach 2nd Speed up Approach

Dataset #cons. #pass #cons. %reduc. #pass #cons. %reduc.

BOSTON 18172 2 4920 72.92 5 4501 75.23

ECOLI 12336 3 4170 66.20 4 4312 65.05

GLASS 4509 3 3036 32.67 3 3039 32.60

HEART 14824 3 6730 54.60 5 4692 68.35

SONAR 8888 5 3874 56.41 5 3939 55.68

SPECTF 20240 3 4775 76.41 5 3186 84.26

CANCER(WPBC) 5628 3 3981 29.26 5 3585 36.30

IONOSPHERE 23142 2 5850 74.72 4 5060 78.13

HABERMAN 15022 2 12580 16.26 7 6409 57.34

LIVER(BUPA) 23711 2 22500 5.11 8 8250 65.21

CANCER(WBC) 86616 2 7370 91.49 2 3288 96.20

datasets. As we explained earlier, in general we did not achieve any improvements on the

solution times versus LPR even though we managed to reduce the number of constraints

generated. Although we solve a smaller size problem at each iteration, the number of

passes for convergence is the basic factor that dictates the overall solution times. Slow

convergence was the reason for these slower timings. The significance of these results is

that we were able to solve larger problems with especially the second speed-up approach

since the number of constraints solved is relatively small to the original problem size. In

other words, we were able to solve problems that were otherwise not solvable with LPR

because of memory limitations. We do not include those results here, because we cannot

run any performance comparison using the original formulation.
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Table 4.2: Comparison of algorithm run times
LPR vs 1st and 2nd speed up approaches, in
seconds

Dataset tLPR(sec) t1(sec) t2(sec)

BOSTON 35 62 52

ECOLI 23 16 24

GLASS 1.3 4.4 4.6

HEART 30 43 49

SONAR 11 26 42

SPECTF 66 83 39

CANCER(WPBC) 8.6 19 25

IONOSPHERE 54 69 47

HABERMAN 156 496 221

LIVER(BUPA) 195 1450 1070

CANCER(WBC) 172 167 60

4.3 Approximate Methods

4.3.1 Hierarchical Local Clustering

The quadratic expansion of the size of the problem becomes an issue as the dataset

sizes reach around 1000 points, especially with balanced class distributions. In this section

we propose a clustering approach to reduce the number of data points which in turn will

reduce the number of constraints.

Clustering, typically used to find a structure in a collection of unlabeled data, is

an unsupervised learning algorithm. Clustering can also been used as a data reduction

method, by representing all the points in a cluster by a representative center point. In this

way, clustering can be used to reduce the number of points in a large optimization problem.

Such methods have been shown to perform well in reducing the size of optimization-based
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classification and ranking algorithms [10, 97].

In a classification problem, only one class transition is needed, so clustering points

that are all on one side of the boundary will have little effect on the learning outcome as

long as the class of the clusters is correctly identified. To optimize ranking, however, our

scoring function needs to differentiate between all neighboring points of different classes.

Therefore, in order to obtain the best possible ranking vectors, regions containing class

transitions should not be clustered. This enables data points to be clustered in the regions

where the data is strictly from one class, forming cluster centers in characteristic regions.

At this point this approach is clearly different from then Brefeld’s reduction heuristic [10].

Brefeld used a k-means approach where each cluster may have members with both class

labels. Yu et al.’s heuristic [97] is similar around the boundary region in the sense that it

preserves boundary points from being clustered. However we do this all across the data

since our formulation does not have a single decision boundary. A critical decision when

constructing a clustering algorithm is the selection of an effective stopping criterion. Exces-

sive clustering would leave the optimization method unable to correctly score neighboring

points, while a conservative approach may not reduce the data to desired sizes. Here we

will use class transitions as a stopping criterion for the clustering approach we propose.

Our algorithm [3] clusters same-class regions into a single cluster center as long as

no point of the opposite class exists in those regions, and assigns a weight to that center

proportional to the number of points clustered. The algorithm is set up to build similar to an

agglomerative clustering approach, that is, the two nearest cluster neighbors are merged if

they are from the same class. If they are from the opposite class, those clusters are flagged

and cannot be used again. The algorithm stops when all neighboring clusters are from

opposite classes. Once we have the reduced number of data points, we create the regular

constraints to rank positives higher than negatives. Each constraint will have a significance

weight, based on the weights obtained from the clustering algorithm. Therefore a violated

constraint that is enforcing a large chunk of positives over a large chunk of negatives will
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get a much higher penalty in the objective function. The outline of the clustering heuristic

is given in Figure 4.2 and a graphical illustration of the clustering iterations is given in

Figure 4.3 on a simple two-dimensional problem.

initialize distance matrix using all data points

set each point xi as a cluster center and initialize wi = 1

while all centers are not flagged

find closest centers xi , xj

if xi and xj are from the same class

merge to the geometric center: xc =
wixi+wjxj

wi+wj

set wc = wi + wj

remove xi and xj from data

modify distance matrix

else

flag xi and xj

end if

end while

Figure 4.2: Agglomerative local clustering pseudocode

Figure 4.3: Progress of clustering iterations: Nearest same-class points are clustered itera-
tively (3a-3e) until every nearest neighbor is from the opposite class (3f).

Once the clustering is complete, the objective function is modified to add weights

to the error terms. The weight on error zi,j is the product of computed point weights wi
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and wj , representing the fact that the new constraint replaces wiwj old ones, one for each

positive/negative pair in the two clusters. We designate the set of cluster centers as Ω with

positive cluster centers Ω+ and negative cluster centers Ω− such that Ω+ ∪ Ω− = Ω. The

new objective is given as:

min
α,z

∑
l∈Ω

αl + C
∑

s∈Ω+,t∈Ω−

wswtzs,t. (4.1)

4.3.2 Solving the LPR by Subgradient Method

The subgradient method is used to solve convex optimization problems where the

objective function is non-differentiable and in particular can be expressed in the following

form:

min
x

f(x) =
m∑

i=1

fi(x)

s.t. x ∈ X,

(4.2)

where fi : <n → < are non-differentiable convex functions and X is a convex subset of

<n. It is not hard to see that, with a few adjustments, our problem can be written in this

form.

From (3.3) we can re-write the set of pairwise errors as

zi,j = max{0, 1−
∑
l∈X

ylαl[k(xi, xl)− k(xj, xl)]}, ∀xi ∈ X+, xj ∈ X−. (4.3)

For conciseness we refer to
∑

l∈X ylαl[k(xi, xl)− k(xj, xl)] as the LHS’s (left-hand-sides)

of the constraint matrix. We can rewrite the objective function in (3.3) as

f(α) =
∑
l∈X

αl + C
∑

i∈X+,j∈X−

max{0, 1− LHS}. (4.4)

In this form the formulation can be approximated by a subgradient method. The approach

we use here is very similar to a descent method with a few important modifications. We

will use the typical gradient descent update rule and the set of α’s will be updated at each
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iteration as

αk+1 = Pα(αk − skgk), (4.5)

where k is the current iteration, sk is a positive step size at k, gk is a subgradient (∂f(αk)) of

the function at αk at k, and Pα denotes projection of α onto the feasible region. The update,

αk − skgk, may cause some of the α’s to become negative which makes them infeasible for

the original problem. Therefore at each iteration we project the current solution back into

the feasible region, if necessary, by setting any negative α’s to 0. As with any subgradient

method, the objective value is not guaranteed to be monotonically decreasing, in contrast to

regular gradient decent methods. Therefore it is common to keep track of the best solution,

in our case the best set of α’s, throughout the iteration process.

In the literature there are many results on the convergence of the subgradient meth-

ods. For constant or diminishing step size, the algorithm is guaranteed to converge to within

a ε-range of the optimal value in a finite number of iterations [69]. Step size rules we con-

sidered for our problem are constant step size, sk = c, where c is a constant independent

of k, and diminishing step size, sk = a/
√

k, where a > 0 and constant. We also tested the

dynamic step size rule from Nedic and Bertsekas [69] given as

sk = λ
f(αk)− ftarget

‖gk‖2
, (4.6)

where λ is a convergence parameter given as 0 < λ ≤ 2 and ftarget is a targeted objective

function value. For our choice of λ we used the dynamic rule suggested by Lorena and

Senne [63], where λ is halved after a given number of iterations if the objective does not

improve. The algorithm terminates when a very small preset level of λ is reached. After

some experimentation we decided to use the dynamic step size approach since it was the

fastest in terms of convergence and required less parameter tuning when applied to different

problems.

The subgradient method with dynamic step size requires a number of parameters to

be set. The initial point, α0, is arbitrarily set, typically to a vector of zeros. However, it
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is possible to start from a more favorable point (warm start) if one has more information

about the problem. The step size parameter λ0 is the starting value for λ which is a value

between 0 and 2, and is typically set to 2. The parameter λ is updated, typically by halving

its current value (although that reduction can be dynamic as well), when the current best

objective function value does not improve for h iterations. λend is the stopping criterion of

the subgradient algorithm. The algorithm stops once the current λ falls below this thresh-

old, typically set to 0.005. Another parameter is the difference between current and target

objective function, given as the numerator in (4.6). This value designates how much im-

provement is desired toward the optimal value. For our experiments we set this difference

to be 10% of the current objective function value, such as f(αk) − ftarget = 0.1f(αk).

We have also experimented with 0.05f(αk) and 0.2f(αk) but did not observe significant

change in performance. This self-adjusting nature of the dynamic step size makes it favor-

able for the application to different datasets with minimal supervision (parameter tuning).

The pseudocode for the proposed subgradient method with dynamic step size is given in

Figure 4.4.

One requirement of our ranking formulation, different from its classification coun-

terparts, was that the whole constraint matrix needed to be built before solving. This was

a major problem since the number of constraints increases quadratically with the number

of data points. One important advantage of the subgradient method is that unlike the LP

formulation, it does not require the whole constraint matrix to be built, avoiding huge mem-

ory requirements for solving the problem. Another advantage of the subgradient method is

that each subgradient is cheaper to compute (linear complexity with respect to the number

of constraints) at each iteration as opposed to the LP pivoting (quadratic complexity with

respect to the number of constraints). Although the time for each iteration still increases

quadratically with the increasing number of data points, the amount of time it takes to solve

the problem is reduced dramatically, especially if subgradient converges fast, as we show

in the next section.
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initialize λ0, λend, α0, h

set fbest = ∞, k = 1, kbest = 0, hcount = 0

while λ > λend

if f(αk) < fbest

fbest = f(αk)

kbest = k

hcount = 0

else if hcount < h

hcount = hcount + 1

else

λ = λ/2

hcount = 0

end if

gk = ∂f(αk), sk = λf(αk)−ftarget

‖gk‖2

αk+1 = Pα(αk − skgk)

k = k + 1

end while

Figure 4.4: Pseudocode for subgradient approximation with dynamic stepsize

4.4 Results and Discussions of Approximate Methods

For the experiments in this chapter we used the datasets introduced in Chapter 3 from

UCI data repository. We constructed the same grid search to find the best RBF parameter

settings with C = {1, 10, 100} and γ = {0.01, 0.1, 1}. For all the datasets, we averaged

5×10-fold cross validation results. We ran our experiments on a 3.2 Ghz Pentium-IV with

2GB of memory.
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4.4.1 Clustering Approximation Results

According to the results given in Table 4.3 the reduction in the size of data is on

average about 57% causing an average reduction of about 76% in the number of constraints.

We can see a substantial speed-up in the LP solving times after adopting the clustering

heuristic (Table 4.4). The times shown for the clustering algorithm include the calculation

and updates of the distance matrix that are used to identify nearest points, the time to cluster

the data set and finally to solve the LP with the reduced data. With this approach we were

able to solve larger datasets in reasonable time. Results show that the time to solve the

approximate problem is faster by up to seven times in some cases.

Table 4.3: Reduction in number of points and constraints using agglomerative local
clustering

Dataset #points reduc.#pts %reduc. #con. reduc.#con. %reduc.

boston 406 83 79.56 14313 1416 90.11

ecoli 270 57 78.89 9576 702 92.67

glass 172 24 86.05 3552 108 96.96

heart 216 114 47.22 11520 3224 72.01

sonar 167 117 29.94 6942 3422 50.71

spectf 282 159 43.62 15912 4760 70.09

wpbc 156 100 35.90 4403 2139 51.42

ionosphere 281 125 55.52 18180 3204 82.38

haberman 245 137 44.08 11700 4510 61.45

liver 276 178 35.51 18560 7872 57.59

segment 168 38 77.38 3456 240 93.06

wdbc 456 122 73.25 48620 3696 92.40

Average 57.24 75.90
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We observe that the biggest performance gain was achieved for problems where large

chunks of same class data points were isolated from the other class. These are the cases

where it is possible to represent large number of points by only a few cluster centers main-

taining the high quality of the ranking generalization. As the classes mix up in the original

feature space the clustering becomes less effective in terms of data reduction.

Table 4.4: Comparison of algorithm run times LPR vs
LPR(clus), in seconds

Dataset tLPR(sec) tLPR(clus)(sec) %reduc.

boston 11.89 3.67 69.13

ecoli 4.99 1.29 74.15

glass 0.95 0.47 50.53

heart 7.97 1.88 76.41

sonar 4.33 1.91 55.89

spectf 12.99 3.49 73.13

wpbc 1.82 0.98 46.15

ionosphere 10.24 2.28 77.73

haberman 31.16 6.37 79.56

liver 107.43 22.34 79.21

segment 0.89 0.51 42.70

wdbc 47.77 5.83 87.92

We compared the AUC performance of our algorithm with clustering (LPR(clus))

vs. SVM (Table 4.5). Although there is a slight performance loss due to data reduction

from our results in the previous chapter, we still obtain better or comparable results to

SVM with this approach.

Here we would like to note that we obtain faster LPR timings for the same datasets
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in Table 4.4 compared to Table 4.2 from exact heuristics. We overhauled many of our

procedures in our Matlab code to run our implemented algorithms more efficiently with

less memory requirements. This happened while we were implementing the approximate

methods but long after the exact methods.

4.4.2 Subgradient Approximation Results

As a result of its heuristic nature, the subgradient algorithm relies on good parameter

selection for good performance. One very important parameter that affects the performance

is the step size. In our tests we used a number of different step size approaches. As

mentioned earlier all the step sizes we used are guaranteed to converge to some proximity

of the optimal solution. However, convergence may take quite some time depending on the

choice of step size. We tested convergence times with three different step size approaches:

constant c, diminishing 1/
√

k, where k is the current iteration, and the dynamic step size

given in (4.6). The convergence plot on a sample problem is given in Figure 4.5. The

comparison suggests that although 1/
√

k converges very fast in the first few iterations, it

slows down and falls behind the dynamic step size in the later iterations. On this sample

problem the subgradient approach using dynamic step size converges and terminates much

faster than the other two. Fast convergence and ability to self-adapt to different problems

made the dynamic step size was our choice for the rest of the experimentation.

We carried out a comprehensive performance comparison between LPR, LPR(clus),

LPR(sub) and 2-norm SVM in terms of AUC performance over 12 datasets from the UCI

repository. The results are given in Table 4.5. We carried out significance tests at 0.05

level using 5 × 10 fold cross-validation results. The total win-loss-tie results for all 12

datasets are given in Table 4.6. We observe that LPR and both constraint reduction heuris-

tics perform very well against SVM in terms of ranking performance. LPR is slightly better

than two heuristics. However it is the slowest since it solves the complete problem. The

two heuristics are comparable in performance with no significant performance difference
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in 9 datasets, although LPR(sub) is significantly better on the remaining 3 datasets. One

incident we would like to note here is that in one case LPR(sub) performed significantly

better then LPR. In other words the subgradient approximation performed better then the

original LP formulation. This is not unusual since the results are averaged over the unseen

test set, and it is possible that an early termination of subgradient method may have better

generalization, simply because of less over-fitting for that specific problem.
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Figure 4.5: Convergence rate with various step size approaches

One important question to pose at this point is how the solving times compare for

the introduced heuristics. For this purpose we compared solving times for LPR, LPR(clus)

and LPR(sub) with an increasing number of data points on a sample dataset. Experimental

results are given in Figure 4.6. As the figure shows LPR cannot solve the problem once

the number of data points is above 550, which corresponds to roughly 75,000 constraints,

because of memory limitations. LPR(clus) is significantly faster then LPR and can solve

this problem entirely. However, this heuristic will suffer from memory limitations once

the number of data points is increased further. LPR(sub) on the other hand seems to be the
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Table 4.5: Comparison of the AUC performance. LPR: LP Ranker, LPR(clus): LP
Ranker with clustering, LPR(sub): LP Ranker with subgradient method

Dataset LP Ranker LPR(clus.) LPR(sub) SVM

boston 0.9654(0.0100) 0.9632(0.0056) 0.9634(0.0039) 0.9484(0.0082)

ecoli 0.9598(0.0080) 0.9601(0.0019) 0.9599(0.0029) 0.9494(0.0022)

glass 0.9708(0.0064) 0.9426(0.0213) 0.9666(0.0051) 0.9511(0.0064)

heart 0.9072(0.0044) 0.9026(0.0025) 0.8961(0.0053) 0.8566(0.0039)

sonar 0.9244(0.0055) 0.9119(0.0155) 0.9485(0.0105) 0.9027(0.0089)

spectf 0.9156(0.0060) 0.9001(0.0090) 0.9089(0.0053) 0.8926(0.0042)

wpbc 0.7314(0.0203) 0.7234(0.0297) 0.7414(0.0225) 0.7160(0.0159)

ionosphere 0.9735(0.0068) 0.9669(0.0044) 0.9791(0.0036) 0.9529(0.0018)

haberman 0.6564(0.0212) 0.6434(0.0136) 0.6759(0.0106) 0.6974(0.0064)

liver 0.7198(0.0190) 0.7323(0.0177) 0.7391(0.0044) 0.7239(0.0058)

segment 0.9878(0.0010) 0.9804(0.0059) 0.9837(0.0040) 0.9842(0.0026)

wdbc 0.9920(0.0012) 0.9914(0.0028) 0.9884(0.0008) 0.9868(0.0012)

fastest of the three for this example. One scenario in which the LPR(clus) may be favorable

to LPR(sub) is when the dataset is distributed in somewhat distinct clusters in the feature

space, which is not unusual in some real world problems. This way the algorithm may take

full advantage of its strength. However, overall LPR(sub) is the clear winner among the

two heuristics in terms of problem solving times.

4.5 A Case Study: CoIL Challenge 2000 - Caravan In-
surance Data

Direct mailings to a companys potential customers, also knows as junk mail, can be a

very effective way to market a product or service. However, much of this junk mail is really

of no interest to the majority of the people that receive it. Most of it is discarded, not only
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Table 4.6: Comparison of the statistical signifi-
cance results

Test @ 0.05 Win Tie Loss

LPR vs. SVM 10 1 1

LPR(clus) vs. SVM 5 6 1

LPR(sub) vs. SVM 9 2 1

LPR vs. LPR(clus) 1 11 0

LPR vs. LPR(sub) 2 9 1

LPR(sub) vs. LPR(clus) 3 9 0
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Figure 4.6: Problem solving times vs. number of data points for all the rank optimization
approaches

wasting the money that the company spent preparing it, but also filling up landfill waste

sites or needing to be recycled. If the company had a better understanding of who their

potential customers were, they would know more accurately who to send it to, so some of

this waste and expense could be reduced.
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The CoIL Challenge 2000 [90], a data mining competition organized by the the Com-

putational Intelligence and Learning Cluster, sponsored by the EU, presented a real world

problem from the domain of direct marketing. The problem was from an insurance com-

pany that wished to gain a better understanding of who their potential customers are, so

that they would know more accurately who to send marketing information to.

The data was taken from a solicitation of 9,822 European households to buy insur-

ance for a recreational vehicle (RV). The data was provided for the CoIL 2000 forecasting

competition. For our analysis, we used a training set with 5,822 households and a testing

set with 4,000 households. The training data are used to train and calibrate the model. Of

the 5,822 prospects in the training data set, 348 purchased RV insurance, resulting in a hit

rate of 5.97%. From the marketers perspective, this is the hit rate that would be obtained

if solicitations were sent out randomly to consumers in the firms database. The problem

can be posed such that we can calculate the top k% of the customers who are most likely

to buy the insurance. We evaluate the performance of the model on the test set. In addition

to the observed RV insurance policy choices, each data entry contains 85 additional vari-

ables, containing information on both socio-demographic characteristics such as size of the

household, income level, education level, etc and ownership of various types of insurance

policies such as car insurance, life insurance, etc.

The CoIL competition consisted of two parts: prediction and description. In the pre-

diction task, the underlying problem is to find the subset of customers with a probability

of having a caravan insurance policy above some boundary probability. The known policy-

holders can then be removed and the rest receive a mailing. The boundary depends on the

costs and benefits such as of the costs of mailing and benefit of selling insurance policies.

To approximate and simplify this problem, the challenge was to find a set of 800 customers

out of 4000 in the test set that contains the most caravan policy owners. The purpose of

the description task was to give a clear insight to why customers have a caravan insurance

policy and how these customers are different from other customers.
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There were 238 policy holders in the test set of 4000 customers. The winning model

of the prediction task was by Charles Elkan. Using a naive Bayes approach he captured

121 of the 238 policy owners in the 800 customers selected out of 4000. A random selec-

tion would yield 42 policy owners. Runner ups were Petri Kontkanen from the University

of Helsinki, Finland (115 policy owners), Andrew Greenyer from The Database Group,

United Kingdom and Arnold Koudijs, Cap Gemini, The Netherlands (both 112). The win-

ner of the description task was Kim and Street using artificial neural networks guided by

an evolutionary attribute selection approach (ELSA/ANN) [58].

We approached this as a ranking problem such that we want to get as many policy

owners as possible in the top 20% (800 customers) of the test set. We set up LPR such

that it uses 2/3 of the 5822 points in the training set to train and the rest of the points for

parameter tuning. Using the best parameters obtained we evaluated the performance of

LPR on the test set of 4000 household. The number of constraints created by the LPR is

close to 1 million. Obviously, it is not possible to solve this problem as is by LPR because

of the memory limitations. Therefore we utilized a sub-gradient approach to approximate

the LPR formulation.

Table 4.7: Hit rates by % split on CoIL data

Top k% # Correct Hit rate: LPR Hit rate: ELSA Recall

5 43 21.5 19.6 18.1

10 70 17.5 17.5 29.4

20 116 14.5 14.4 48.7

50 186 9.3 9.6 78.2

Table 4.7 shows that LPR captures 116 of the policy owners out of 238, correspond-

ing to a 14.5% hit rate in the top 20% of the data. This number is significantly better than
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the 5.97% hit rate over the whole data set. This means that if the marketers used our al-

gorithm they would send solicitation to 1/5 of the customers capturing almost half (48.7%)

of the would-be owners. 116 hits would have ranked second to Charles Elkan’s model in

the COIL challenge. Table 4.7 also shows the comparison of the hit rates at different lev-

els for LPR and ELSA/ANN [58]. The results show that both algorithms perform equally

well. Training of the ELSA/ANN approach is very complex and time consuming. It uses

an evolutionary attribute selection approach as a wrapper to reduce the dimensionality of

the data, where it evaluates many models before solving the original problem with a neural

network algorithm. Our approach however is a straightforward optimization problem. The

lift curve obtained from LPR model is given in Figure 4.7.
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Figure 4.7: Lift curve of the model by subgradient approximation of LPR

One of the setbacks of subgradient approach is the number of parameters that need to

be optimized. Along with these parameters we also needed to optimize for RBF kernel pa-

rameters. For this case study, instead of using a grid search approach we simply tried a few

combinations that yielded good performance on the tuning set. A rigorous parameter search
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for this problem is set as a future work. The best results were obtained with RBF parameters

of C = 10, γ = 0.01 and subgradient parameters of λ0 = 1, λend = 0.005, ftarget = 0.05f

and h = 10. Also instead of dividing λ by 2 at each iteration we divided it by 1.5 to allow

more iterations. With these settings and roughly 1 million constraints each iteration took

about 15 minutes on a dual core Pentium 3.2Ghz with 2GB of ram. It took around 170 iter-

ations to solve the problem with these parameter settings. The convergence plot in Figure

4.8 and convergence of AUC in Figure 4.9 shows that after 20 iterations we were able to

obtain relatively good solutions. Both figures show fluctuations in the convergence curves

and the reason for this is the step size taken at each iteration. A large step size may lead to a

worse solution in the next iteration, however a small step size can increase the convergence

times dramatically. For this reason we used dynamic step size here, where the step sizes

gradually reduced based on the objective function value. As we can see from the figures,

the fluctuations are reduced as the number of iterations increases.
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Figure 4.8: Convergence of objective function using the subgradient method
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Figure 4.9: Convergence of training and validation AUC using the subgradient method

4.6 Chapter Recap

Optimization-based learning algorithms are usually not robust to increasing number

of data points. The solution times can increase dramatically with the number of data points

making it infeasible to apply such algorithms to large or even moderately-sized problems.

In this chapter we introduced a number of exact and approximate heuristics to speed-

up the LP we solve. We used variations to the chunking approach to construct two exact

heuristics. Although we were able to reduce the size of the problem, we were not able to

improve LP solving times by using these heuristics.

Next, we introduced two approximation heuristics. The first heuristic is a hierarchical

local clustering approach that reduces the size of the problem by systematically reducing

the number of data points. This approach clusters same-class regions and maintains class
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transition regions, which is essential for good performance in rank optimization. The clus-

tering approach reduced the number of constraints by 76% on average, while improving

the solution times by up to seven times with respect to LPR. The second heuristic is based

on the subgradient method which approximates the LP formulation. We have tested three

different step size approaches and observed that dynamic step size was the best choice. The

subgradient approximation was significantly faster then both LPR and LPR(clus) especially

for larger datasets.

The results presented show that our rank optimization algorithm with the proposed

heuristics performs better in general against regular 2-norm SVMs in terms of AUC per-

formance. Both approximate heuristics provide significant speed-up in solution times com-

pared to LPR. Of the two heuristics the subgradient approach was the clear winner. It was

not only faster, but also did not have any limiting memory requirements as the LP(clus) did

with increasing problem size.

Although not addressed in this thesis, we believe it is possible to combine the two

heuristic in order to solve even larger problems. Also, for larger problems we speculate

that it would be more time-efficient to use ensemble methods. Each individual ranker in

the ensemble maybe trained with a subset of training points such that every training point

is used in at least one of the rankers in the ensemble. Then, orderings from each ranker can

be aggregated to obtain a total ranking of all test points. We leave this as a future research

direction.

As a real world application to the proposed heuristics we used the CoIL Challenge

2000, caravan insurance dataset. The problem was from an insurance company that wishes

to gain a better understanding of who their potential customers are, so that they would know

more accurately who to send marketing information to. We were able to solve the problem,

which produced close to 1 million constraints without any memory limitations. The quality

of the results were on par with the best algorithms from the CoIL challenge. We used a

subgradient approximation to LPR and we were able to obtain good solutions as early as
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20 iterations. Although the solution times heavily depend on the selected parameters, we

were able to show that LPR is scalable when paired with the subgradient method proposed

here.
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CHAPTER V
SURVIVAL ANALYSIS BY RANK OPTIMIZATION

5.1 Motivation and Background

Survival analysis [59], also known as time-to-event analysis, is a branch of statistics

that deals with death in biological organisms and failure in mechanical systems. In engi-

neering it is also known as reliability theory or reliability analysis. Death or failure is called

an event in the survival analysis literature, and so models of death or failure are generically

termed time-to-event models. In the big picture it is not hard to see that the application

of survival analysis is not limited to health care or engineering problems. The event can

be virtually anything, such as time to divorce or dropping out of high school, time to a

customer churning from a service, time to filing an insurance claim, etc.

The analysis of survival data is complicated by issues of censoring, where events can

only be observed within a certain time window, and by truncation, where subjects enter the

study only if they survive a sufficient length of time or subjects are included in the study

only if the event has occurred by a given time. There are four different types of censoring:

right truncation, left truncation, right censoring and left censoring. Right censoring is the

most common of all. Right censoring means that the observation is incomplete because the

subject did not experience the event during the time frame of the study. Typically, a study

does not span enough time to observe the event for all the subjects in the study.

Another important concept in survival analysis is the hazard rate. Hazard rate is

defined as the probability that an individual will experience an event at time t while that

individual is at risk for the event. Thus, the hazard rate is really just the unobserved rate

at which events occur. Although hazard rate is an unobserved variable, it controls both

the occurrence and the timing of the events. A related representation is the survival rate,

which is the cumulative probability of the event not occurring up to time t. A survival curve,

therefore, always starts with unit probability of survival at time t = 0 (see Figure 5.1).
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In survival analysis every observation has two outputs: status and time-to-event. Sta-

tus is a binary output, {0,1}, where 1 means the event is observed and 0 means the observa-

tion is censored, or in other words the event has not occurred within the time frame of the

study (event-free survival). Every observation also has a time output, which either repre-

sents the time to an event or an observed event-free time. Because of this structure, survival

analysis does not map easily to either a regression or classification problem. Clearly regular

regression models are inappropriate since we only know event times for some of the exam-

ples. To apply classification, we could treat the cases with observed events as positives and

separate them from the non-events, but the fact that the events occurred at different times

limits the utility of the resulting model. A better approach would be to separate the class

“event by time t∗” but this fails to take advantage of some information (e.g., cases censored

before t∗ are left out completely).

A number of techniques have been developed to model and predict censored data

points. These techniques include non-parametric approaches such as Life-Table analysis

and Kaplan-Meier curves, parametric models such as Cox’s proportional hazard regression,

and models based on machine learning and optimization techniques.

One of the oldest methods for analyzing survival data is to compute a life-table [5]

(also called a mortality table or actuarial table). A life-table is simply a frequency distri-

bution table where the distribution of survival times is divided into a predefined number of

intervals. For each of those intervals the number and proportion of subjects that survived

the interval, the number and proportion of the cases that failed to survive the interval and

the number and proportion of subjects that are censored in the interval is calculated. Once

these numbers and proportions are known it is possible to calculate the survival function

and hazard rate.

Another popular non-parametric method to analyze survival data is using Kaplan-

Meier curves [57]. Kaplan-Meier curves are the maximum-likelihood estimates of the true

population survival function, showing the probability of survival through time (Figure 5.1)
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and can be computed as:

S(t) =
t∏

j=1

[
n− j

n− j + 1
]δ(j),

where S(t) is the estimated survival function, n is the total number of cases and δ(j) is 1

if the j’th case is censored and 0 otherwise. This estimate of the survival function is also

called the product-limit estimator. The advantage of the Kaplan-Meier method over the life

table method for analyzing survival and failure time data is that the resulting estimates do

not depend on the grouping of the data (into a certain number of time intervals). Actually,

the product-limit method and the life table method are identical if the intervals of the life

table contain at most one observation.

Kaplan-Meier curves allow the survival rates of different populations in a study to

be compared visually. For example, imagine in a medical study two groups of patients are

given separate drugs to prevent a disease from recurring. A Kaplan-Meier curve displaying

the estimated probability of disease-free time for each patient group can be plotted for

comparison. Then using comparison techniques such as Gehan’s generalized Wilcoxon

test [39], it is possible to evaluate the statistical significance of the difference.

Survival analysis offers several parametric regression models for estimating the re-

lationship of variables to survival times. These models are extensively used among re-

searchers because they can offer insight into various important parameters such as hazard

rate. Typical parametric models include fitting a survival function using Weibul, exponen-

tial, log-logistic, log-normal or gamma distributions.

The Cox proportional hazard model is the most general and extensively used of the

regression models because it is not based on any assumptions concerning the nature or

shape of the underlying survival distribution [20, 21]. A proportional hazards model has

the property that individuals of concern have hazard functions that are proportional to one

another. Although this is seemingly a strong statement, the method is still one of the most

popular and successful approaches to analyzing survival data. A hazard function can be
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Figure 5.1: Sample Kaplan-Meier curves for comparison of two subject groups

written as h(t|x) = h0(t)g(x), where g(x) is a function of the inputs and h0(t) is a baseline

hazard function. No particular shape is assumed for the baseline hazard; it is in general

estimated nonparametrically. Cox’s regression models the hazard function as the dependent

variable and estimates the hazard multiplier using a linear combination of the independent

variables yielding the common formulation

h(t|x) = h0(t)exp(
n∑

i=1

βixi),

where the β’s are regression coefficients.

Survival analysis has also gained attention in machine learning research providing

a wide array of algorithms. The literature shows that neural networks are the most com-

mon approach to survival analysis. Ohno-Machado’s study [70] showed that there is no

significant difference in terms of performance between Cox’s regression models and artifi-

cial neural networks (ANNs), and regression models provide more insight to the problem

by providing information on which attributes were most influential for prognosis. On the
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other hand we observe other studies where ANNs worked quite well for survival analysis

[87, 71], however these studies were on a single dataset from a certain domain and did not

have comparisons to common methods. A study by Zupan et al. suggested a weighting

scheme on the subjects that enables machine learning algorithms to perform better with the

survival data where the prediction of probability of an event (and not its probability depen-

dency on time) is of interest [99]. Their work showed that the weighting scheme helped the

machine learning algorithm to perform as well as or better than well-established statistical

techniques. Optimization-based algorithms have also been developed for survival analysis.

A linear programming approach applied to Wisconsin breast cancer study by Mangasarian

et al. showed increased accuracy of both diagnosis and prognosis [67]. The novelty of

their approach is that they were able to formulate an optimization problem that can handle

censored data. Although this algorithm worked well, it is limited to building linear models.

In this chapter we approach survival analysis with a modified version [2] of a linear

programming approach we introduced earlier. With this approach it is possible to order

subjects by the risk for experiencing an event. Such an ordering enables determination of

high-risk and low-risk groups among the subjects that can be helpful not only in medical

studies but also in engineering, business and social sciences.

5.2 Survival Prediction using LPR

In this section we explain the modifications to LPR necessary to make it applica-

ble to survival analysis with censored data. The primary observation here is that we no

longer have positive and negative points, so the set of constraints will be constructed differ-

ently. When comparing the survival characteristics of two sets of cases (such as shown in

Figure 5.1), we again use the Wilcoxon statistic, so the intuition is that we introduce con-

straints between “good” (long survival time) points and “bad” (short survival time) points.

To explain the constraint selection process we consider an example of a cancer prog-

nosis problem (see for example the WPBC data in next section). We denote a single patient
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as xi, the outcome for this patient as pi (pi = {0,1} where 0 = non-recur and 1 = recur) and

time as ti (where ti is observed disease-free time if pi = 0 or recurrence time if pi = 1).

In this data we cannot have constraints enforcing every recurring (pi = 1) case to be ranked

higher then every non-recurring (pi = 0) case. This is because some patients have left the

study (censored) and we do not know if the cancer recurred sometime in the future. All

we know is their cancer-free time. Therefore we cannot have pairwise comparison for all

the patients. We begin with constraints for pairs such that an earlier recurring case will

rank higher (worse) if both cases recurred (5.1). Further, an earlier recurring case will

rank higher than a longer cancer-free case (5.2). Therefore, we would ideally enforce the

constraints

f(xi) > f(xj) if (pi = 1, pj = 1) and (ti < tj) (5.1)

f(xi) > f(xj) if (pi = 1, pj = 0) and (ti < tj), (5.2)

where f(x) is the ranking function. As mentioned, we do not enforce a constraint between

a censored point and a recurring point with a later time. We also avoid enforcing con-

straints between non-recurring cases. Intuitively, one might think that longer event-free

times should be forced to rank lower than shorter ones, however, we find experimentally

that explicitly including these constraints (possibly with a different weight) does not im-

prove the results.

The objective function and the form of the constraints do not change from the classi-

fication formulation. However the sets of positive points and negative points, X+ and X−,

are replaced by the set of uncensored points, Xu (the points with observed events), and the

set of censored points, Xc. The new set of constraints is given as∑
l∈X

ylαl[k(xi, xl)− k(xj, xl)] ≥ 1− zi,j, (5.3)

∀xi, xj ∈ Xu, ti ≤ tj

∀xi ∈ Xu, xj ∈ Xc, ti ≤ tj
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5.3 Data and Experimentation

In this section we introduce the datasets that we use in this chapter. The datasets

are from four studies in which the main target is to analyze time-to-event in the presence

of censored data. Three of the datasets are from the field of health care and one from

marketing.

5.3.1 Wisconsin Breast Cancer Prognostic Data

Wisconsin Prognostic Breast Cancer (WPBC) is a famous benchmark dataset that

is also located in UCI Machine Learning Repository [6] for public access. This data has

been used in past publications [88, 67]. The dataset used here, which is a larger version of

the one found in the UCI Repository, contains 325 records. These are consecutive patients

seen at the University of Wisconsin Hospitals and Clinics after 1984, and include only those

cases exhibiting invasive breast cancer and no evidence of distant metastases at the time of

diagnosis. There are 32 features of which 30 are computed from a digitized image of a fine

needle aspirate of a breast mass. These attributes describe characteristics of the cell nuclei.

The last 2 attributes are tumor size and number of positive lymph nodes. The endpoint

(event) is cancer recurrence. We investigate the potential of effectively distinguishing high

and low-risk patients. Such information is very helpful for doctors and patients deciding

on a post-operative treatment regimen.

5.3.2 Seer Data

The National Cancer Act of 1971 mandated the collection, analysis, and dissemina-

tion of all data useful in the prevention, diagnosis, and treatment of cancer. The act re-

sulted in the establishment of the National Cancer Program under which the Surveillance,

Epidemiology, and End Results (SEER) program was developed. A continuing project

of the National Cancer Institute, the SEER Program collects cancer data from designated

population-based cancer registries in various areas. The dataset used in this work was
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obtained from this study [13] and contains five attributes (histological grade, tumor size,

tumor extent, number of positive and examined lymph nodes) for 44,135 breast cancer pa-

tients between the years 1977 to 1982. The endpoint in this data is cancer-related death.

Similar to the WPBC data, we investigate the potential of effectively identifying high and

low-risk cancer patients.

5.3.3 Burn Patients Data

Infection of a burn wound is a common complication resulting in extended hospital

stays and death in severe cases. In a study to evaluate a protocol change in disinfectant

practices in a large Midwestern university medical center, 154 patient charts and records

were reviewed [52]. The study used medical records of patients treated during an 18-month

study and provided burn wound infections and other medical information. In this problem

we would like to identify high-risk patients so that they get the utmost care to prevent an

infection. A successful evaluation of such a group can not only save lives but also reduce

the cost of treatment.

5.3.4 Customer Churn Data

We were provided a dataset by a telecommunications company to investigate the pre-

dictability of customer churn. The data contains information on the customers’ demograph-

ics, type of service, and payment details and has more than 150 attributes. It also contains

information on length of service and whether the customer is still with the company or not.

The complete dataset contains more then 400,000 records. We reduced the dimentions of

the problem for robust evaluation by picking 5 attributes, both by conventional attribute

selection techniques and by using expert domain knowledge. The most important problem

to address from a business perspective is to identify customers with a high risk of churning.

It is generally true that retaining customers is less costly for a company than obtaining new

ones. Therefore if such a high-risk subset of customers can be identified, those customers
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can be targeted with a stronger campaign to keep them. This will also result in reduced cost

because a smaller group of customers can be targeted.

5.3.5 Experimental Procedure

The experiments are designed to compare our ranking algorithm against Cox’s pro-

portional hazard regression for predicting time to event. The algorithms are tested using

ten-fold cross-validation, with the following procedure used to combine the folds. After a

model is trained for one fold, it ranks the test points in order from high to low risk. Each

point is then assigned a score from 0 to 100 based on the percentage of training points that

it ranks above. These scores give us a common measure for combining the test points from

different folds, creating a total ordering on the points in terms of testing prediction. Here

we avoid directly using the output scores obtained from each algorithm because each fold

is a different optimization problem and the range of scores obtained for test cases may not

be consistent across folds of the cross-validation. This causes inconsistency once the scores

from different folds are combined and results in reduced overall performance.

Since we know a true partial ordering of the cases, we are able to evaluate the per-

formance by counting the number of pairs that are ordered correctly among the ones that

can actually be ordered (remember that all subject pairs are not comparable because of

censoring). This ratio of correct pairs to all possible pairs provides a metric for ranking

performance which is similar but not equivalent to AUC. The higher this ratio, the better

the performance of the algorithm in terms of ordering subjects by risk. In our experi-

ments we repeated five 10-fold cross-validations and for each cross-validation we obtained

a ranking ratio for each algorithm. The ratios for the two competing algorithms were then

compared for statistical significance using a paired t-test at the 0.05 level.

We utilized Kaplan-Meier curves to visually compare the performance of the two

algorithms. For all datasets, the ordered data is repeatedly split into 2 groups (high-risk and

low-risk) by varying the cut-off points by the number of subjects. The split was performed
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at every 10% level (from 10% to 90%) to visualize and compare performance for different

cut-off points. Groups representing each split can be plotted with a Kaplan-Meier curve.

In the following section, we show only those splits with domain-specific relevance, i.e., we

isolate the top (and possibly bottom) 10% of the cases. We have also used the Wilcoxon test

to evaluate if the two curves are significantly different for each split. Our ranking algorithm

is optimized for all possible cut-offs, therefore we expected it to perform well for any given

split.

Table 5.1: RBF Pa-
rameters for LPR

Dataset C γ

WPBC 1 0.05

SEER 1 0.05

BURN 1 0.10

CHURN 10 0.01

Our ranking algorithm has three basic input parameters: C, γ and w as introduced

in Chapter 3. After preliminary analysis we obtained the parameters to be used for each

dataset (Table 5.1). The last parameter, which is the weight vector that adjusts each pairwise

ordering error in the objective function, is set to a vector of 1’s (w = 1).

5.4 Results and Discussions

Table 5.2 provides a comprehensive evaluation of ranking performance of both al-

gorithms (using the ratio defined in Section 4.2). For all the datasets, we observe that our

algorithm is significantly better in general, independent of what split is chosen. For exam-

ple, in the case of customer churn data, our algorithm correctly orders 95.36% of all the

possible pairs right, compared to 92% for Cox’s hazard regression.
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Table 5.2: Comparison of Algorithms: % of
correctly ordered pairs averaged over five cross-
validation runs

Dataset LPR Cox’s Regression p-value

WPBC 0.8926 0.8744 0.038

SEER 0.9238 0.8915 0.001

BURN 0.9097 0.8829 0.004

CHURN 0.9536 0.9200 0.001

Table 5.3: Comparison of 2 LPR’s
with different weighing schemes.
LPR: using regular survival con-
straints, LPRex: using additional weak
constraints

Dataset LPR LPRex p-value

WPBC 0.8926 0.8928 0.1797

SEER 0.9238 0.9214 0.0025

BURN 0.9097 0.8949 0.0003

CHURN 0.9536 0.9458 0.00003

We have experimented using different levels of error weighing schemes. For exam-

ple, we set wi’s to be a function of the time difference between each compared pair, penal-

izing more for incorrect ordering of pairs where the difference in time-to-event is larger.

We tried a few variations but these changes did not consistently achieve better ranking per-

formance for any of the datasets. Also, intuitively one might think that longer event-free

times should be forced to rank lower than shorter ones, however, in our experiments we

observed that explicitly including these constraints (possibly with a different weight) does

not improve the results significantly for any of the datasets we used. Table 5.3 shows that
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the results using additional (weaker) constraints (with w = 0.5) between non-recurrent pa-

tients (LPRex) either has negative or no effect on performance. We attribute this to our lack

of knowledge on the correct cost of relative errors. We believe that a domain expert who

can correctly hard-code such weights would benefit from such formulation.
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Figure 5.2: Kaplan-Meier curve for WPBC data: High-risk: Top 10%, Low-risk: Bottom
90%

As mentioned in the previous section, we evaluate the utility of our method on all the

datasets by splitting the top and/or bottom 10% to designate high and low-risk groups. This

threshold can be set differently based on domain knowledge. The first two Kaplan-Meier

curves (Figures 5.2 and 5.3) illustrate the comparison between our ranking algorithm (LPR)

and Cox’s proportional hazard regression (CHR) on the WPBC data. In cancer treatment it

is very important for the doctor to be able to identify a low-risk group, who might consider

foregoing some postoperative treatments, and a high-risk group, who might choose more

radical treatments. For this purpose we split the top 10% of the rank-ordered data from both
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algorithms to represent the high-risk group. Each of these groups has the same number of

people and is considered to have the highest risk of cancer recurrence. In Figure 5.2 we

observe that our algorithm is more successful in predicting the high-risk cancer patients,

while as expected the low-risk groups (remaining 90%) are not significantly different. At a

typical time horizon of five years (60 months), we observed that only 30% of the high-risk

group identified by our ranking algorithm were cancer-free, compared to about 60% for the

Cox’s regression model. This is a significant result because a doctor who evaluates these

curves will have more accurate information on which patients have a higher risk of cancer

recurrence.
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Figure 5.3: Kaplan-Meier curve for WPBC data: High-risk: Top 90%, Low-risk: Bottom
10%

For the low-risk group comparison we split the data from the bottom 10% for both

algorithms. The Kaplan-Meier curves for those groups are in Figure 5.3. We observe that

our ranking algorithm performs better on the low-risk group than Cox’s regression model.

Within five years we observe that about 95% of the subjects in the low-risk group from our
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algorithm have no recurrence of the illness. For the Cox’s regression model this percentage

is about 87%. The Wilcoxon test shows that the two curves for both high and low-risk

comparisons are significantly different. We note that our method does a much better job,

relative to Cox’s regression, at identifying a high-risk subgroup.
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Figure 5.4: Kaplan-Meier curve for Seer data: High-risk: Top 10%, Low-risk: Bottom 90%

We carried out the identical procedure for the Seer data. Figure 5.4 shows that our

approach is superior in predicting the high-risk group compared to Cox’s regression. Again

looking at a five-year horizon, about 50% of the high-risk group die, while the number

is about 30% for the Cox’s model. This means that our model is significantly better in

ordering the top 10% of the patients based on their risk of cancer recurrence.

For the comparison of the low-risk groups composed of the bottom 10% presented

in Figure 5.5, we observe that for a five-year horizon more then 95% of the low-risk group

from our algorithm is still alive while for Cox’s regression this number is about 90%. Over-

all, two curves are not significantly different when evaluated with the Wilcoxon test. Again,
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Figure 5.5: Kaplan-Meier curve for Seer data: High-risk: Top 90%, Low-risk: Bottom 10%

we see that the high-risk group is easier for our method to identify than the low-risk group.

Next, we compare the two algorithms on the burn patients data. In this problem

the target is to predict the group of burn patients who have the highest risk of getting an

infection again set as top 10%. Similar to the previous cases, if we set a time horizon of

30 days to predict infection potential the Kaplan-Meier curves in Figure 5.6 suggest that

about 65% of the subjects in the high-risk group from our algorithm got infection while

this number is about 35% for the Cox’s regression model. A Wilcoxon test shows that our

algorithm is significantly better in terms of predicting the burn patients who have a high

risk of infection. Such a significant difference would benefit doctors in term of correctly

targeting the patients that need more intensive care while potentially reducing expenses by

limiting extensive care to a smaller group of people. We also observed that Cox’s regression

model performed poorly here as its high-risk group did not show a survival rate that was

significantly different then the rest of the burn patients. We attribute this to the underlying

model being non-linear. Table 5.1 shows that our ranking algorithm picked a higher γ value
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Figure 5.6: Kaplan-Meier Curve for Burn patients data: High-risk: Top 10%, Low-risk:
Bottom 90%

which controls the non-linearity of the model supporting our reasoning.

The last dataset is from a business domain where the problem is detecting customers

with a high potential of churning. For this problem we set the split of high-risk customers to

be the top 10%. Figure 5.7 shows the comparison of Kaplan-Meier curves for two groups

from both algorithms. If we consider a time horizon of 3 years (about 1000 days) we

observe that about 50% of the customers in the high-risk group from our algorithm have

terminated services while this number is 20% for the Cox’s regression model. This would

be a significant result for a company with millions of customers. With more accurate

targeting it is possible to focus on those customers who posses high potential of leaving

the company and try to keep them with additional promotions. This also saves cost on

marketing campaigns by directly marketing to smaller segments.
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Figure 5.7: Kaplan-Meier Curve for Customer churn data: High-risk: Top 10%, Low-risk:
Bottom 90%

5.5 Chapter Recap

Accurate prediction of survival times for individual subjects or sub-populations is a

very important problem in many domains. Prediction of survival rates for cancer patients,

survival of marriages, time to violation of parole, time to machine part failure, time to a

customer defaulting a service, etc. are just a few examples. The common feature of such

problems that separates them from others is the presence of censored data. Machine learn-

ing algorithms designed for classification or regression tasks are in general not appropriate

for handling censored data.

In this chapter we introduced a modified version of LPR for survival analysis. Our

algorithm is constructed to handle censored data and has great flexibility for allowing avail-

able domain knowledge to be incorporated to improve performance. Although the formu-

lation is constructed as a linear program, our algorithm can handle non-linear problems by
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utilizing kernel functions in the formulation. Our experiments demonstrate that our algo-

rithm is superior to Cox’s regression, the most commonly used survival analysis method.

Here we used four real world problems from two domains, however it is not hard to see

that our algorithm will perform well independent of domain or type of survival problem.
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CHAPTER VI
CONCLUSIONS AND FUTURE DIRECTIONS

Typical machine learning algorithms are generally built to optimize predictive perfor-

mance (usually measured in accuracy) by minimizing classification error. However, there

are many real world problems where correct ordering of instances is of equal or greater

importance than correct classification. Learning algorithms that are built to minimize clas-

sification error are often not effective when ordering within or among classes. This gap

in research created a necessity to alter the objective of such algorithms to focus on correct

ranking rather then classification.

In this work we present a linear programming formulation (LPR), similar to 1-norm

SVM, for ranking instances with binary outputs by maximizing an approximation to the

WMW statistic. Our formulation handles non-linear problems by making use of kernel

functions. The results on several well-known benchmark datasets show that our approach

ranks better than 2-norm SVM and faster than the SVR. We believe that a logical next step

in this line of research would be to investigate extending the formulation for multi-class

problems.

Optimization-based learning algorithms are usually not robust to an increasing num-

ber of data points. The solution times can increase dramatically with the number of data

points making it infeasible to apply such algorithms to large or even moderately-sized prob-

lems. We introduced a number of exact and approximate heuristics to speed-up LPR. We

used variations to the chunking approach to construct two exact heuristics. Although we

were able to reduce the size of the problem, we were not able to consistently improve LP

solving times by using these heuristics. Next, we introduced two approximation heuristics.

The first heuristic is a hierarchical local clustering approach that reduces the size of the

problem by systematically reducing the number of data points. The clustering approach

reduced the number of constraints by 76% on average, while improving the solution times
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by up to seven times with respect to LPR. The second heuristic is based on the subgradi-

ent method which approximates the LP formulation. The subgradient approximation was

significantly faster then both LPR and LPR(clus) especially for larger datasets.

As a real world application of LPR with speed up heuristics, we used the CoIL Chal-

lenge 2000, caravan insurance dataset. We were able to solve the problem, which produced

close to 1 million constraints without any memory limitations. The quality of the results

were on par with the ones that are produced by the best algorithms from the CoIL challenge.

We used a subgradient approximation to LPR and we were able to obtain good solutions as

early as 20 iterations. Although the solution times heavily depend on the selected parame-

ters, we were able to show that LPR is scalable when paired with the subgradient method

proposed here.

Although not addressed in this work, we believe it is possible to combine the two

approximate heuristic in order to solve even larger problems. Also, for larger problems we

speculate that it would be more time-efficient to use ensemble methods. Each individual

ranker in the ensemble maybe trained with a subset of training points such that every train-

ing point is used in at least one of the rankers in the ensemble. Then, orderings from each

ranker can be aggregated to obtain a total ranking of all test points. We leave this as a future

research direction.

Clustering in the higher-dimensional feature space is investigated in the literature

yielding promising results [40]. As a promising future work, it is possible to perform

clustering in the transformed space as a data reduction heuristic such as the one presented

in Chapter 4. It is possible that an effective transformation to a higher dimensional feature

space may yield a better reduction in the data by creating a better isolation of negative

chunks from the positive ones.

Accurate prediction of survival times for individual subjects or sub-populations is

a very important problem in many domains. The common feature of such problems that

separates them from others is the presence of censored data. Machine learning algorithms
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designed for classification or regression tasks are in general not appropriate for handling

censored data. In Chapter 5, we introduced a modified version of LPR for survival analysis.

Our algorithm is constructed to handle censored data and has great flexibility for allowing

available domain knowledge to be incorporated to improve performance. Our experiments

demonstrate that our algorithm is superior to Cox’s proportional hazard regression, the

most commonly used survival analysis method.

Ensemble approaches are highly parallelizable and are robust to any size problem.

They have been applied in the context of survival analysis [50, 49] such as gradient boost-

ing or random forests. In this work we left out the comparison of our approach to such an

ensemble algorithm because we did not believe it would be fair to compare a single opti-

mization based learner to an ensemble of learners. However, we see such comparisons of

ensemble methods as a future work.
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