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CHAPTER 9
CONCLUSION

The dissertation presents a novel method belonging to discrete solvers, which

work directly on nodal values and discrete differentials without introducing continuous

approximation of the primary unknown. The gradient of the field variable is computed

using discrete differentials for arbitrary nodes and then is incorporated into a weak

form of Galerkin formation. The most noteworthy attribute in the present method is

the absence of continuous interpolation (or approximation) of the unknown variable.

Compared to other continuum based average strain methods, the gradient in the

present approach is computed directly from discrete nodal values using a closed-form

formula. The method therefore bypasses the numerical difficulties associated with the

construction of implicit shape functions in either meshfree methods or element-base

methods. Meanwhile, it avoids the loss of interpolantory property, which is common

to meshfree shape functions.

Voronoi diagram and general convex polygons are employed to tessellate the

domain into a set of non-overlapping nodal cells for the identification of nodal supports

in discrete differentials. The tessellation process is fully automatic and does not

require algorithmic parameters such as the size of influence region. Over each nodal

cell, the constructions of gradient interpolants are proposed to compute gradient

of field variable. In addition, all developed gradient interpolants show that they

have a common tensorial identity property, although the constructions of gradient

interpolants are different with various definitions of supporting domain,
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Mathematically and numerically, it has been proved that this discrete gra-

dient method automatically satisfies the derivative consistency conditions and the

patch test. In addition, with the Kronecker delta properties, it is straightforward

to introduce essential boundary condition and to couple the method with the finite

element method. Moreover, numerical tests show that the method not only has com-

parable accuracy and convergence rate as the displacement finite element method,

but also displays robustness for large deformation simulations and hyper-elasticity.

This method resists numerical locking in the incompressibility limit too.

The stability of discrete gradient method is fully investigated. With analytic

solution and numerical examples, the existence of spurious modes in current method

is exhibited. To suppress the instability, a stabilization scheme is presented under the

Galerkin framework with penalized strain energy. The modified formulation is tested

against several benchmark problems. Moreover, the penalty influence to stability,

accuracy and convergence is studied. Overall, the modified formulation shows to be

stable and gives a superior performance for both compressible and nearly incompress-

ible material.

Since of the newly developed method is feasible to be implemented in the stress

analysis of point-cloud models, applications in biomechanical field are demonstrated.

To fulfill the promise of delivering automated analysis, an efficient method is devel-

oped to automatically extract point-cloud models from medical images, which pro-

vide depiction for complicated anatomies. With exhibited two and three-dimensional

examples, the method demonstrates its advantages as a flexible numerical tool for
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engineering analysis, particularly in biomechanical applications.
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