








Figure 32. CATS File Selection Window
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Figure 33. CATS Data Integrity Window

Data integrity is monitored by CATS by assessing the 10S recorded files and
checking for gaps in the data. Data is then permitted or denied into the CATS analysis
depending on user definition within the interface. Compromised data points can either be

permitted to exist as gaps in the data set analysis or ignored altogether.
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Figure 34. CATS Data Query Window
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Data sets within CATS can be further broken down by querying the data in

several ways. Depending on the tags associated with the data set, CATS can be

programmed to split the data depending on these tags and perform analysis strictly on that

particular section of data as specified by the user. This is very beneficial in eye tracking

analysis that discriminates between phases of flight and task specific operations and their

associated workloads.
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Figure 35. CATSWorld Viewer Window

CATS incorporates a world viewer that is created using aircraft state information
embedded in the 10S output files. This is particularly useful when selecting particular
sections of flight and performing analysis strictly on the data points associated with the
region selected. Aircraft state is further visible by tracking the flight path and color
designating particular aspects of flight, such as roll (shown in Figure 35. CATS World
Viewer Window), altitude, speed, reported workload, or any of the user specified query-

able tasks specified in the data set.
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Figure 36. CATS Eye Tracking Histogram Window

Specific to eye tracking, heat mapping of fixation maps is also performed within
CATS to aid in identifying scan patterns and particular areas of interest over a scaled
amount of time specified in CATS user interface. With implementation of empirical data
analysis specific to eye gaze fixations and scan pattern, quantitative analysis will be an

available output from the CATS software.

Algorithm | mplementation

To fuel CATS’ ability to perform analysis on each of its physiological inputs,
groundwork must be completed to determine what forms of analysis should be made and

what metrics are usable for meaningful analysis. This thesis provides CATS with useful
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information pertaining to the eye tracking facet of CATS’ physiological analysis suite.
Acquisition and analysis of empirical data creates algorithms for each metric, and

ultimately one metric to assess workload based upon the pertinent eye tracking metrics.

Real-Time Workload Estimation

CATS currently utilizes neural analysis, eye tracking, heart rate (ECG), and flight
performance as general metrics that feed an overall workload estimation of the subject
being analyzed. Development of regression models in eye tracking is utilized in CATS
from this research, derived from empirical data collected in this study. For real time
assessment of the pilots’ fixation behavior, the average duration of fixations can be
calculated for a window of 15 seconds, which typically includes a series of 10 to 20
fixations sufficient enough to provide a statistically significant average. The real time
fixation behavior variables are then assessed based upon empirical analysis following the
results of this research initiative with coefficients dependent on relativity to the

normalization of these behaviors.

Utility of Algorithm for Real-Time Classification

The regression models developed based upon the composite results of this study is
statistically significant and can be utilized as a classifier algorithm to be validated in real-
time assessment tests in future studies. E3eer! Reference source not found.Figure
26. Subject 2 Waypoint Regression Analysigrror! Reference source not
found.Figure 27. Subject 7 Waypoint Regression Analysis Bndor! Reference

source not found.Figure 31. Fixation Frequency Composite Regression. The
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coefficients relating each metric analyzed are the important components to generating a
general real-time classification algorithm.

For analysis of real-time classification, it is recommended to use a window of
time to perform general statistics of the various metrics that make sense. Average
fixation duration was calculated over a moving time frame of 15 seconds to be able to
capture enough fixations to produce a significant average of the metric. Entropy was
calculated with a moving time frame of 30 seconds, since it is a metric assessing the
variability that exists in a scan pattern or the spread of fixations. Shorter time frames for
this metric will not provide enough time for a pattern to be recognizable, yielding no
significance to the standard deviation values, but too long of a time frame will not be
capable of observing the short term changes in fixations that occur in flight deck

operations.

Industry Utilization of Operator State Classification | nfor mation

There are several applications that are capable of utilizing real-time operator state
classification. Training of pilots can be enhanced by importing knowledge of the
student’s workload, allowing the instructor to increase or decrease the pace of the training
to maximize the efficiency of the training for the student based upon their cognitive
capacity. Allowing the avionics of flight decks to be aware of the pilot’s cognitive state
provides an entirely new avenue for avionics to follow; adaptive automation systems,
enhanced visual ergonomics that adapt to rare situations such as unusual attitude, pilot

attention retention systems, sleep mitigation systems, etc.
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CHAPTER 6.
FUTURE RESEARCH

Further Initiativesto Be Pursued

Analysis of potentially useful metrics, such as eye blinks should be pursued. Eye
blinks were not analyzed due to eye tracker outputs not transmitting the correct data to be
recorded in the data set. Unfortunately this was unrecoverable for any of the subjects in
this study, and it still holds strict interest due to eye blink as a metric being a very rich
source of operator state information in previous studies.

Continued research of the present data set could be pursued to further the
interaction effects of the various areas of interest. Further preprocessing of the data must
be completed to fully fill the data set so balanced ANOVAs can be performed to gain full
insight of variance across subjects for all eye tracking metrics. A stepwise regression
would also be beneficial in determining which metrics yield the greatest impact on the
regression model against workload. Validation of the data set regression models should
also be completed to determine the overall effectiveness of a developed model based
upon this data set.

A similar study could be performed with a new method to induce workload and
collect the subjective baseline results at a higher resolution than was done with the
Bedford workload ratings collected in this study (1 data point / 2 min). A possible

approach would include shorter test runs with a precisely induced workload enforced
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upon the pilot. A post run subjective response would be sufficient to produce a subjective
baseline to regress against. This is necessary to attain increasingly accurate real-time
analysis algorithms for any physiological response system such as an eye tracker. A
bottom up approach study could be done that induces workload in a situation by situation
manner that requires pilots to react and that reaction could tag a set of data and their
associative metrics. Bottom line requires a closing of the gap between data collection
rates and subjective workload response rates to limit the error brought about by
regression interpolation of real-time metrics.

This study provides a simple insight into the trends of eye movement metrics as
they respond to induced workload in a cockpit performing an approach task. Further
studies to determine which metrics are useful in classifying workload during specific
tasks and which metrics classify workload generically can still be completed. Further
research initiatives can also be done to assess the connection between standard eye
movement behaviors in a flight deck as they pertain to individual tasks versus workload.
It is believed that certain tasks performed on the flight deck induce specific eye
movement behaviors. If this is the case, it is theoretically possible to assume that
changes in expected eye tracking behavior may occur depending on the flight task, such

as cruising and performing an approach.
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APPENDIX

Boxplot of Mean Fixation Duration vs Workload
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Figure Al. Mean Fixation Duration vs. Workload Boxplot
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Boxplot of Fixation Frequency vs Workload
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Figure A3. Mean Saccade Length vs. Workload Boxplot
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Max Saccade Length

Mean Airspeed Fixation Duration

Boxplot of Max Saccade Length vs Workload
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Figure A4. Max Saccade L ength vs. Workload Boxplot

Boxplot of Mean Airspeed Fixation Duration vs Workload
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Figure A5. Mean Airspeed Fixation Duration vs. Workload Boxplot
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Max Airspeed Fixation Duration

Airspeed Fixation Frequency

Boxplot of Max Airspeed Fixation Duration vs Workload
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Figure A6. Max Airspeed Fixation Duration vs. Worklaod Boxplot

Boxplot of Airspeed Fixation Frequency vs Workload
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Figure A7. Airspeed Fixation Frequency vs. Workload Boxplot
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Mean Altitude Fixation Duration

Max Altitude Fxation Duration
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Boxplot of Mean Altitude Fixation Duration vs Workload
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Figure A8. Mean Altitude Fixation Duration vs. Workload Boxplot
Boxplot of Max Altitude Fixation Duration vs Workload
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Figure A9. Max Altitude Fixation Duration vs. Workload Boxplot



Altitude Fixation Frequency

Mean Heading Fixation Duration

Boxplot of Altitude Fixation Frequency vs Workload
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Figure A10. Altitude Fixation Frequency vs. Wor kload Boxplot
Boxplot of Mean Heading Fixation Duration vs Workload
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Figure A11. M ean Heading Fixation Duration vs. Workload Boxplot
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Heading Fixation Frequency

Mean OTW Fixation

Boxplot of Heading Fixation Frequency vs Workload
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Figure A12. Heading Fixation Frequency vs. Wor kload Boxplot
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Figure A13. Mean OTW Fixation Duration vs. Workload Boxplot
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Max OTW Fixation Duration

Mean MCP Fixation Duration

Boxplot of Max OTW Fixation Duration vs Workload
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Figure A14. Max OTW Fixation Duration vs. Workload Boxplot
Boxplot of Mean MCP Fixation Duration vs Workload
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Figure A15. M ean M CP Fixation Duration vs. Workload Boxplot
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Max MCP Fxation Duration

MCP Fixation Frequency

Boxplot of Max MCP Fixation Duration vs Workload
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Figure A16. Max M CP Fixation Duration vs. Workload Boxplot
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Figure A17. M CP Fixation Frequency vs. Workload Boxplot
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Mean MPD Fixation Duration

Max MPD Fixation Duration
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Boxplot of Mean MFD Fixation Duration vs Workload
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Figure A18. Mean MFD Fixation Duration vs. Workload Boxplot
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Figure A19. Max MFD Fixation Duration vs. Workload Boxplot



Boxplot of MFD Fixation Frequency vs Workload
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Figure A20. MFD Fixation Frequency vs. Workload Boxplot

Boxplot of Mean Y StdDev vs Workload
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Figure A21. Mean Y StdDev vs. Workload Boxplot
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Mean X StdDev

Boxplot of Mean X StdDev vs Workload
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Figure A22. Mean X StdDev vs Workload Boxplot
The regression equation is
AVERAGE BEDFORED = 1.28 + 0.116 NASA-TIH Total
Predictor Coef SE Coef T P
Constant 1.2817% 0.2489 5.15 0.000

NAZA-TLX Teotal 0.1157Z% 0.008%85 1Z.838 0.000

g = 1.07239 R-8q = 69.2% R-Sq{adj) = 68.7%

Analvsiz of Variance

hource DF == M3 F
Regression 1 190.81 1%90.81 1eb.85Z
Rezidual Error 74 85.10 1.15

Total 75 275,91

Figure A23. NASA-TL X vs. Bedford Regression

F
0. o000
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The regression equation is
AVERASE BEDFOED = 7.4% - 0.131 SART SCORE

Predictor Coef SE Coef T E
Congstant 7.4835/ 0.8134 12.20 0. ooao
SART SCORE  -0.13121 0.02248% -5.84 0.000

5 = 1.59785 R-8q = 31.5% R-Sq(adj) = 30.

Analvsiz of Variance

hource DF 830 M3 F
Regression 1 g6.978 86,978 34,07
Rezidusl Error 74 188.93Z2 2.553

Total 75 275,910

Figure A24. SART vs. Bedford Regression

6%

0. o000
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General Linear Model: Workload versus Subject, Mean Fixation Du, ...

Factor Type Lewels Walues
fubject randon 1z 1, 2, 3,4, &5, 6, 7, 8, 9, 10, 11, 1Z

Analysis of Wariance for Workload, using Adjusted 33 for Tests

Source Model DF Reduced DF Seq 83
Subject 11 11 196, 2004
Mean Fixation Duration 76 584+ 109.7476
Subject¥Mean Fixation Duration G36 0+ 0.ooo0
Max Fixation Duration 4] 0+ 0.00o0
Subject*Max Fixation Duration 451 0+ O.oo0o00
Fixation Fredquency = 0+ O.0o000
Subject*Fixation Fredquency 836 0+ 0.a00oo
Mean Saccade Length 76 0+ 0.00o0
Subject*Mean Saccade Length 336 0+ 0.ooo0
Max Zaccade Length 76 0+ 0.ooo0
Subject®Max Saccade Length G36 0+ 0.ooo0
Error -4075 7 10,0000
Total 76 76 315.9451

+ Rank deficiency due to ewmpty cells, unbalanced nesting, collinearity, or an
undeclared covariate. No storage of results or further analysis will he
done.

5 = 1,19523 R-Sq = 96.83% R-Sqladj) = 65.64%

Figure A25. Global Composite M etric Repeated M easures ANOVA
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Regression Analysis: Workload versus Mean Fixatio, Max Fixation, ...

The regressicn

equation is

Workload = &.23
+ 12.0 Mean Fixation Duration

- 0.06]1 Max Fixaticn Duraticn

+ 0.41 Fixaticn Frequency

- 0.021 Mean Saccade Length

+ 0.0210 Max Saccade Length

- B.33 Mean Altitude Fixaticn Duraticn

+ 0.38 Max Rltitude Fixaticn Duraticn

+ 0.0853 Altitude Fixaticon Freguency

- 1.8]1 Mean Heading Fixaticn Duraticn

- 0.871 Max Heading Fixaticn Duraticn

- 0.00245 Heading Fixaticn Freguency

- 3.3% Mean MFD Fixaticn Duraticn

- 2.48 Max MFD Fixaticn Duraticn

+ B8.13 MFD Fixaticn Freguency

- 2.05 Mean MCP Fixaticn Duraticn

+ 1.49 Max MCP Fixaticn Duraticn
Predictor Coef SE Cocef
Cocnstant 6.233 3.623
Mean Fixaticn Duraticn 11.98 13.88
Max Fixation Duraticn -0.0608 0.6174
Fixaticn Freguency 0.411 1.423
Mean Saccade Length -0.0209 0.1130
Max Saccade Length 0.02097 0.01534
Mean Altitude Fixaticon Duraticn -8.32¢ 7.021
Max Rltitude Fixaticon Duraticn 0.375 1.024
Rltitude Fixaticn Frequency 0.06534 0.063889
Mean Heading Fixaticon Duraticn -1.805 4,336
Max Heading Fixaticon Duraticn -0.8708 0.7037
Heading Fixaticn Freguency -0.002448  0.007714
Mean MFD Fixaticn Duraticn -3.389 3.538
Max MFD Fixaticn Duraticn -2.47492 0.8313
MFD Fixaticn Freguency 8.135 3.847
Mean MCP Fixaticn Duraticn -2.04% 3.482
Max MCP Fixaticn Duraticn 1.45854 0.7349

s = 1.11789 R-5g = 73.7% R-5g

Enalysis of Variance

(adj) = 41.4%

Scurce DF 55 M5 F P
Regressicn le 45.621 2.8531 2.28 0.070
Rezidual Errcr 13 le.Z24e 1.250

Total 29  gl.B8e7

Figure A26. ET Metric vs. Workload Regression
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Repeated Measures ANOVA -

General Linear Model: Workload versus Subject, Mean Fixation Du, ...

Factor Type Levels

Subject random

12

Values

2, 3

BZnalysis of Variance for Weorklead, wusing Adjusted

Scurce Mcdel DF
Subject 11
Mean Fixation Duraticn Te
Subject*Mean Fixaticn Duraticn 836
Max Fixation Duraticn 41
Subject¥Max Fixation Duraticn 451
Fixation Frequency Ta
Subject¥Fixation Fredquency 836
Mean Saccade Length Te
Subject*Mean Saccade Length 836
Max Saccade Length Te
Subject¥*Max Saccade Length 836
Error -4075
Total Te

+ Rank deficiency due te empty cells,

done.

Reduced

4, 3, &

1, 8

53 for Tests

LF S5eq 355
11 1%6.2004
38+ 109.747¢
o+ 0.0000
a+ 0.0000
a+ 0.0000
o+ 0.0000
a+ 0.0000
0+ 0.0000
0+ 0.0000
0+ 0.0000
0+ 0.0000
7 10.0000
T8 315.9481

unkalanced nesting,

5= 1.19523 R-Sg = 96.83%  R-Sg(adj)

Figure A27. ET Metricsvs. Workload Repeated M easures ANOVA

= 65.64%

cocllinearity,
undeclared covariate. No storage of results or further analysis
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Regression Analysis: Workload versus Mean Fixatio, Max Fixation, ...

The regression edquation is
Workload = 7.69 + 11.9 Mean Fixation Duration - 0,134 Max Fixation Duration

- 0.5%4 Fixation Frecuency - 0.050 HMean Zaccade Length

+ 0.0211 Max Zaccade Length - 7.49 Mean Altitude Fixation Duration
+ 0.075 Max Altitude Fixation Duration

+ 0.0%9:2 Altitude Fixation Fredquency

- 2.71 Mean Heading Fixation Duration

- 0.50% Max Heading Fixation Duration

- 3.38 Mean MFD Fixation Duration - 2.0% Max MFD Fixation Duration
+ 6.63 MFD Fixation Frequency - 1.59 Mean MCP Fixation Duration

+ 1.31 Max MCP Fixation Duration - 0.6581 F/D Bi - 0.133 Autopilot Bi

30 casez uzed, 54 cases contain mizsing walues

Predictor Coef 3E Coef T P
Constant 7.688 3.393 2.27 0.043
Mean Fixation Duration ll.88 12,72 0.92 0,369
Max Fixation Duration -0.1342 0.eloo -0.22 0.830
Fixation Frequency -0.541 l.e7%2 -0.32 0.7582
Mean 3Jaccade Length -0.0500 0.1150 -0.42 0.6879
Max Saccade Length 0.02111 0.01878 1.12 0.283
Mean aAltitude Fixation Duration -7.4388 T.171 -1.04 0,317
Max altitude Fixation Duration 0.0753 0.735d 0,10 0,921
Altitude Fixation Fredquency 0.0951a 0.05555 1.64 0.127
Mean Heading Fixation Duration -2.714 2.002 -1.36 0.200
Max Heading Fixation Duration -0.5088 0.8306 -0.61 0,552
Mean MFD Fixation Duration -3.385 S.682 -0.60 0,562
Max MFD Fixation Duration -2.0925 0.95387 -2.18 0.050
HMFD Fixation Fredquency 6.629 4,236 1.57 0.144
Mean MCP Fixation Duration -1.58%9 3.397 -0.56 0,588
Max MCP Fixation Duration 1.3123 0.7234 1.81 0.095
F/I' Bi -0.65811 0.9011 -0.76 0,464
butopilot Bi -0.1328 0.e8l5 -0.19 0.849

8 = 1,12717 R-8Sq = 75.4% R-3qiadj) = 40.4%

Analysizs of Wariance

Source DF 35 M= F P
Regression 17 de.620 2.74:2 Z.16 0.090
Fesidual Error 12 15.246 1.271

Total 29 6l.367

Figure A28. Task + ET Metricsvs. Workload Regression
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General Linear Model: Workload versus Subject, Mean Fixation Du, ...

Factor Type Lewels Walues

Subject random 12 1, 2, 3, 4, 5, 6, 7, &, 9, 10, 11, 12
F/I Bi fixed zZ 0,1

Autopilot Bi fixed 2 0,1

Analysizs of Variance for Workload, using Adjusted 33 for Tests

Source Model DF Eeduced DF Seq 33
Subject 11 11 196,2004
hean Fixation Duration 76 S8+ 109.74746
Subject*Mean Fixation Duration 836 0+ 0.00o0
Maw Fiwation Duration 41 0+ 0.00o0
Subject®Max Fixation Duration 451 0+ 0.oo0o
Fixation Frequency 76 0+ 0.oo0o
Subject¥*Fixation Fredquency 836 0+ 0.oo0o
Mean Saccade Length 76 0+ 0.0000
Subject*Mean Jaccade Length g36 0+ 0.0000
Max Saccade Length 76 0+ 0.0oaoo
Subject*Max Saccade Length 836 0+ 0.00o0
F/I Bi 1 1 0.7000
Subject*F/D EBi 11 0+ 0.ooon
Autopilot EBi 1 1 4.5000
SJubject*iutopilot Ei 11 0+ 0.ooon
Error -4099 5 4, 5000
Total 76 TG 315.94581

+ Rank deficiency due to empty cells, unbalanced nesting, collinearity, or an
undeclared cowvariate. No storage of results or further analvysis will be

daone.

3 = 0.9436353 R-3q = 9§.558%

Figure A29. Task + ET Metricsvs. Workload Repeated M easures ANOVA

B-Sogiad])
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Repeated Measures ANOVA - Task against Workload
General Linear Model: Workload versus Subject, F/D, Autopilot

Facter Type Levels Values

Subject randeom 12 1, 2, 3, 4, 5, & 7, 8, 9, 10, 11, 12
F/D fixed 2 OFF, ON

ntopilet  fixed Z2 OFF, W

Znalysis of Variance fer Werklecad, wusing 2Zdjusted 55 feor Tests
Scurce DF Seq S5 REdj 55 Rdj MS F E
Subject 11 217.274 14%.008 13.534e 7.07 0.014 =
F/D 1 19.201 4,083 4.083 3.77 0.07B
Subject*E/D 11 13.383 11.817 1.082 0.83 0.el2
Zutopilot 1 8.025 8.025 8.025 4.14 0.0&7
Subject*Butopilet 11 24.008 24.008 2.183 1.e7 0.109
Error 48 B2.a67 g2.a67 1.308

Total B3 345.560

X Not an exact PF-test.

5 = 1.14261 R-S5g = 81.87% RE-Sg(adj) = 6B.64%

Figure A30. Task (including land decision) vs. Wor kload ANOVA



Repeated Measures ANOVA - Task against Workload

General Linear Model: Workload versus Subject, F/D, ...

Factor Type
Subject randcoin
F/D fixed
Muteopileot fixed
Land or Go Around fixed

knalysis of Variance for Workleoad,

Source

Subject

F/D

Subject*F/D

Ruteopileot
Subject*Butecpileot

Land or Go Arcund
Subject*Land or Go Arcund
Error

Total

X Not an exact F-test.

5 = 1.42887 R—-Sqg = B85.B82%

&,

Levels Values
12 1, 2, 3, 4, 3,
2 OFF, ON
2 OFF, N
3 Engine Failure,

DF

Seq 55
217.274
18.201
13.385
9.025
24.008
3.230
10.417
.0o0
.560

R-5q (ad])

using Adjusted

zdj S5
.694
.083
.917
. 000
.500
L2350
10.417
. 000

= 50.%96%

Te

for

dj MS

11.

4,
.083
.000
.045
L8235
473
.042

[l I S I e

=]

bl

790
083

=N

G0 RROUND,

100

9, 10, 11, 12
LMD
Tests
F 1=
282.497 0.98% x
3.77 0.078
0.53 0.8e3
5.87 0.0324
1.00 0.473
3.43 0.050
0.2 0.5948

Figure A31. Task (incl. land decision) vs. Wor kload Repeated M easures ANOVA
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