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ABSTRACT

Many traditional approaches to statistical analysis cease to be useful when

the number of variables is large in comparison with the sample size. Penalized re-

gression methods have proved to be an attractive approach, both theoretically and

empirically, for dealing with these problems. This thesis focuses on the development

of penalized regression methods for high-dimensional variable selection. The first

part of this thesis deals with problems in which the covariates possess a grouping

structure that can be incorporated into the analysis to select important groups as

well as important members of those groups. I introduce a framework for grouped

penalization that encompasses the previously proposed group lasso and group bridge

methods, sheds light on the behavior of grouped penalties, and motivates the pro-

posal of a new method, group MCP.

The second part of this thesis develops fast algorithms for fitting models with

complicated penalty functions such as grouped penalization methods. These algo-

rithms combine the idea of local approximation of penalty functions with recent

research into coordinate descent algorithms to produce highly efficient numerical

methods for fitting models with complicated penalties. Importantly, I show these

algorithms to be both stable and linear in the dimension of the feature space, al-

lowing them to be efficiently scaled up to very large problems.

In the third part of this thesis, I extend the idea of false discovery rates to

penalized regression. I show how the Karush-Kuhn-Tucker conditions describing pe-

nalized regression estimates provide testable hypotheses involving partial residuals,

thus connecting the previously disparate fields of multiple comparisons and penal-

ized regression. I then propose two approaches to estimating false discovery rates

for penalized regression methods and examine the accuracy of these approaches.
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Finally, the methods from all three sections are studied in a number of simu-

lations and applied to real data from microarray and genetic association studies.
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ABSTRACT

Many traditional approaches to statistical analysis cease to be useful when

the number of variables is large in comparison with the sample size. Penalized re-

gression methods have proved to be an attractive approach, both theoretically and

empirically, for dealing with these problems. This thesis focuses on the development

of penalized regression methods for high-dimensional variable selection. The first

part of this thesis deals with problems in which the covariates possess a grouping

structure that can be incorporated into the analysis to select important groups as

well as important members of those groups. I introduce a framework for grouped

penalization that encompasses the previously proposed group lasso and group bridge

methods, sheds light on the behavior of grouped penalties, and motivates the pro-

posal of a new method, group MCP.

The second part of this thesis develops fast algorithms for fitting models with

complicated penalty functions such as grouped penalization methods. These algo-

rithms combine the idea of local approximation of penalty functions with recent

research into coordinate descent algorithms to produce highly efficient numerical

methods for fitting models with complicated penalties. Importantly, I show these

algorithms to be both stable and linear in the dimension of the feature space, al-

lowing them to be efficiently scaled up to very large problems.

In the third part of this thesis, I extend the idea of false discovery rates to

penalized regression. I show how the Karush-Kuhn-Tucker conditions describing pe-

nalized regression estimates provide testable hypotheses involving partial residuals,

thus connecting the previously disparate fields of multiple comparisons and penal-

ized regression. I then propose two approaches to estimating false discovery rates

for penalized regression methods and examine the accuracy of these approaches.
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Finally, the methods from all three sections are studied in a number of simula-

tions and applied to real data from microarray and genetic association studies.
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CHAPTER 1

INTRODUCTION

Variable selection is an important issue in regression. Typically, measurements

are obtained for a large number of potential predictors in order to avoid missing an

important link between a predictive factor and the outcome. However, to reduce

variability and obtain a more interpretable model, we are often interested in selecting

a smaller number of important variables. The low cost and easy implementation of

automated methods for data collection and storage has led to a recent abundance

of problems for which the number of variables is large in comparison to the sample

size.

For these high-dimensional problems, many traditional approaches to variable

selection cease to be useful due to computational infeasibility, model nonidentifia-

bility, or both. Incorporating additional information into such problems becomes a

necessity. Penalized regression models are one attractive approach that has proven

successful – both theoretically and empirically – for dealing with high-dimensional

data.

This chapter introduces the concepts behind penalized regression and provides

background on several previously proposed penalized regression methods. More

specific introductions will be presented at the beginning of the relevant chapters,

and overlap somewhat with the general introduction here.

1.1 Ridge regression and the lasso

Problems in which p is large in comparison to n present a problem for regres-

sion models. Solutions become unstable or no longer uniquely defined and models

become difficult to interpret. Furthermore, searching through subsets of potential

predictors for a good model is both unstable (Breiman, 1996) and computationally

unfeasible even for moderately sized p. Penalized regression methods are much less
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susceptible to these issues and have become a popular approach to dealing with

these problems.

Suppose we have n observations indexed by i. Each observation contains

measurements of an outcome yi and p features {xi1, . . . , xip} indexed by j. We

assume without loss of generality that the features have been standardized such

that
∑n

i=1 xij = 0 and 1
n

∑n
i=1 x

2
ij = 1. Typically, an intercept term β0 is also

included in the model, and left unpenalized. As we shall see, this ensures that

the penalty is applied equally to all covariates in an equivariant manner. This is

standard practice in regularized estimation; estimates are then transformed back to

their original scale after the penalized models have been fit.

The problem of interest involves estimating a sparse vector of regression coeffi-

cients β. Penalized regression methods accomplish this by minimizing an objective

function Q that is composed of a loss function L plus a penalty function P :

Q(β) =
1

2n
L(β|y,X) + Pλ(β), (1.1)

where P is a function of the coefficients indexed by a parameter λ which controls

the degree of penalization. Typically, the penalty function P has the following

properties: it is symmetric about the origin, P (0) = 0, and P is nondecreasing in

‖β‖.

This approach produces a spectrum of solutions depending on the value of λ;

such methods are often referred to as regularization methods, and λ is called the

regularization parameter. The majority of the regularization literature concerns the

least squares loss function, but least absolute deviation and negative log-likelihood

loss functions are also common. In this chapter, we will leave the loss function

unspecified.

Regularization naturally lends itself to a Bayesian interpretation in which P

is the negative log-prior of the coefficients; the difference is that instead of sampling
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from the posterior distribution, regularization methods find the posterior mode.

Typically, penalties are chosen such that the standardized covariates are treated

equally. More specific prior beliefs regarding the nature of the coefficients might

motivate one to propose other penalties; this thesis, however, deals only with “ob-

jective” cases.

Regularization methods date back to the proposal of ridge regression by Hoerl

and Kennard (1970). They proposed the objective function

Qridge(β) =
1

2n
L(β|y,X) + λ

J∑
j=1

β2
j . (1.2)

Ridge regression shrinks coefficients towards 0 by imposing a penalty on their size.

In an unpenalized, underdetermined model, a very large positive coefficient on one

variable may be canceled by a very large negative coefficient on another variable;

ridge regression prevents this from happening and yields unique solutions for all

λ > 0, even when p > n.

Ridge regression produces very stable estimates and performs very well in

certain settings, but it has two central flaws. First, ridge regression heavily penalizes

large coefficients, leading to badly biased estimates when some of the coefficients

are large. Second, ridge regression does not produce sparse solutions and thus fails

to improve the interpretability of the model.

To remedy these flaws, Tibshirani (1996) proposed the least absolute shrinkage

and selection operator (lasso), which minimizes the objective function

Qridge(β) =
1

2n
L(β|y,X) + λ

J∑
j=1

|βj|. (1.3)

Provided that λ is sufficiently large, a portion of the values that make up β̂ will be

exactly 0 for the lasso penalty function. Thus, the lasso provides a continuous subset

selection procedure. Furthermore, the solutions to the lasso are less downwardly

biased than those of ridge regression.
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ββ

0
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0 1
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0 1

P'

γγ == 0.5 Lasso Ridge

Figure 1.1: Shapes of the bridge family of penalties. On the horizontal axis is the
absolute value of the regression coefficient. For the panel on the left, the penalty
itself is on the vertical axis, while for the panel on the right, the derivative of the
penalty is plotted on the vertical axis.

The form of the lasso and ridge penalties are very similar, the only difference

being the exponent to which |β| is raised, which we will denote γ. Indeed, even

prior to the publication of the lasso, Frank and Friedman (1993) proposed a general

family of penalties in which γ is allowed to vary over all nonnegative values. The

members of this family include both ridge and lasso and are known collectively as

the “bridge” penalties. The shapes of three members of this family are illustrated

in Figure 1.1, with the exponent γ equal to 2 (ridge), 1 (lasso), or 1/2.

The differences between the bridge penalties are apparent from the plots in

Figure 1.1, in particular the plot of their derivatives. The rate of penalization for

ridge regression increases with |β|, thus applying little to no penalization near 0

while strongly discouraging large coefficients. Meanwhile, the rate of penalization
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for the lasso is constant – and, notably, greater than zero at |β| = 0, thereby

producing sparse solutions. Finally, setting γ = 1/2 results in a rate of penalization

that is very high near 0 but steadily diminishes as β grows larger. This square-

root penalty produces solutions that are even more sparse and less biased than the

lasso. However, the rate of penalization goes to ∞ as |β| goes to 0, which produces

computational and analytic problems. Furthermore, the objective function for this

penalty is no longer convex, and will therefore possess multiple minima.

1.2 SCAD and MCP

Another type of penalty outside of the bridge family was proposed by Fan

and Li (2001). The penalty they propose, the smoothly clipped absolute deviation

(SCAD) penalty, begins by applying the same rate of penalization as the lasso, but

continuously relaxes that penalization until, when |β| ≥ aλ, the rate of penalization

drops to 0. The minimax concave penalty (MCP), proposed by (Zhang, 2007),

behaves similarly, and the connection between the two methods are explored in

detail by its author. The two penalties are plotted in Figure 1.2.

The goal of both penalties is to eliminate the unimportant variables from the

model while leaving the important variables unpenalized. This would be equivalent

to fitting an unpenalized model in which the truly nonzero variables are known

in advance (the so-called “oracle” model). Both MCP and SCAD accomplish this

asymptotically and are said to have the oracle property (Fan and Li, 2001; Zhang,

2007).

From Figure 1.2, we can observe that λ is the regularization parameter that

determines the magnitude of penalization and a is a tuning parameter that affects

the range over which the penalty is applied.
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Figure 1.2: Shapes of SCAD and MCP penalties. On the horizontal axis is the
absolute value of the regression coefficient. For the panel on the left, the penalty
itself is on the vertical axis, while for the panel on the right, the derivative of the
penalty is plotted on the vertical axis.
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1.3 Overview of the thesis

In Chapter 2, I discuss penalized variable selection in the context of grouped

covariates, in which the goal is to select important groups as well as important

members of those groups – a problem of bi-level selection. This chapter introduces

a framework which lends insight into previously proposed approaches and motivates

a new method which I call group MCP.

In Chapter 3, I develop algorithms to fit penalized regression models with

complicated penalties such as the group penalization methods discussed in Chapter

2. I demonstrate that these algorithms are stable and numerically efficient for high

dimensional regression problems and can therefore be efficiently scaled up to very

large problems.

The false discovery rate (FDR) is a statistically sound and intuitively ap-

pealing approach for assessing the number of false positives likely to arise when

identifying important features from a large number of candidates. Chapter 4 ex-

tends the FDR idea to penalized regression and develops estimators for the FDR of

penalized regression approaches.

Within these chapters, the empirical properties of the methods are investigated

under a variety of simulations as well as applied to real data sets from two important

high-dimensional problems in modern biomolecular research: gene expression and

genetic association studies. Finally, the results of this thesis will be discussed and

summarized in Chapter 5.
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CHAPTER 2

PENALIZED METHODS FOR BI-LEVEL VARIABLE SELECTION

There is a large body of available literature on the topic of variable selection,

but the majority of this work is focused on the selection of individual variables.

In many regression problems, however, predictors are not distinct but arise from

common underlying factors. Categorical factors are often represented by a group of

indicator functions; likewise for continuous factors and basis functions. Groups of

measurements may be taken in the hopes of capturing unobservable latent variables

or of measuring different aspects of complex entities. Some specific examples include

measurements of gene expression, which can be grouped by pathway, and genetic

markers, which can be grouped by the gene or haplotype that they belong to.

Methods for individual variable selection may perform inefficiently in these settings

by ignoring the information present in the grouping structure, or even give rise to

models that are not sensible.

In this chapter, I consider xi as being composed of an unpenalized intercept

and J groups xij, with Kj denoting the size of group j. The quantity xijk is therefore

the kth covariate of the jth group for the ith observation. The coefficient vector β

is composed likewise. Covariates that do not belong to a group may be thought of

as a group of one.

Methods that take into account grouping information have recently begun to

appear in the penalized regression literature. Yuan and Lin (2006) proposed the

group lasso, in which β̂ is defined to be the value that minimizes the objective

function

Q(β) =
1

2n
L(β|y,X) + λ

J∑
j=1

√
Kj‖βj‖, (2.1)

where ‖·‖ is the L2 norm. This penalty enforces sparsity at the group level, rather
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than at the level of the individual covariates. Within a group, the covariates are

either all equal to zero or else all nonzero.

The group lasso has some attractive qualities, such as the fact that its objective

function is convex (i.e., there are no local minima, only a single global minimum).

However, the group lasso also has a number of drawbacks: it produces a strong bias

towards zero, it tends to overselect the true number of groups, and it is incapable

of selecting important elements within a group. To address these shortcomings,

Huang et al. (2007) proposed the group bridge, whose estimate minimizes

Q(β) =
1

2n
L(β|y,X) + λ

J∑
j=1

Kγ
j ‖βj‖

γ
1 , (2.2)

where ‖·‖1 is the L1 norm. Throughout this paper, we take γ = 1/2 for group

bridge.

The group bridge produces sparse solutions both at the group level and at

the level of the individual covariates within a group (we will refer to this as bi-

level selection). Furthermore, its solutions tend to exhibit less bias than those of

the group lasso and have been shown to be asymptotically consistent for group

selection. Unlike the group lasso, however, the group bridge objective function is

nonconvex and not differentiable at |βj| = 0, which in practice can lead to problems

with model fitting.

Instead of considering these methods to be entirely distinct, in this chapter

we will view them as part of a general framework for group penalization, which not

only lends insight into their behavior but opens the door for further methodological

development along these lines. We will take advantage of this general framework

to develop and explore the behavior of a new method for bi-level selection, group
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MCP.

2.1 A general framework for group penalization

As discussed in Chapter 1, the effect of a penalty upon the solution is deter-

mined by its derivative. To better understand the action of these penalties and to

illuminate the development of new ones, we can consider grouped penalties to have

a form in which an outer penalty fO is applied to a sum of inner penalties fI . The

penalty applied to a group of covariates is

fO

 Kj∑
k=1

fI(|βjk|)

 (2.3)

and the partial derivative with respect to the jkth covariate is

f ′O

 Kj∑
k=1

fI(|βjk|)

 f ′I(|βjk|). (2.4)

Note that both group lasso and group bridge fit into this framework with an outer

bridge (γ = 1/2) penalty; the former possesses an inner ridge penalty, while the

latter has an inner lasso penalty. We have intentionally left the above framework

general in the sense of not rigidly specifying the role of constants or tuning param-

eters such as λ, γ, or
√
Kj. A more specific framework would obscure the main

point as well as create the potential of excluding useful forms.

From (2.4), we can understand group penalization to be applying a rate of

penalization to a covariate that consists of two terms: the first carrying information

regarding the group; the second carrying information about the individual covariate.

Variables can enter the model either by having a strong individual signal or by being

a member of a group with a strong collective signal. Conversely, a variable with a

strong individual signal can be excluded from a model through its association with

a preponderance of weak group members.

However, one must be careful not to let it oversimplify the situation. Casually
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combining penalties will not necessarily lead to reasonable results. For example,

using the lasso as both inner and outer penalty is equivalent to the conventional

lasso, and makes no use of grouping structure. Furthermore, properties may emerge

from the combination that are more than the sum of their parts. The group lasso,

for instance, possesses a convex penalty despite the fact that its outer bridge penalty

is nonconvex. Nevertheless, the framework described above is a helpful lens through

which to view the problem of group penalization which emphasizes the dominant

feature of the method: the gradient of the penalty and how it varies over the feature

space.

2.2 Group MCP

Zhang (2007) proposes a nonconvex penalty called MCP which possesses at-

tractive attractive theoretical properties. MCP and its derivative are defined on

[0,∞) by

fλ,a(θ) =

{
λθ − θ2

2a
if θ ≤ aλ

1
2
aλ2 if θ > aλ

f ′λ,a(θ) =

{
λ− θ

a
if θ ≤ aλ

0 if θ > aλ
(2.5)

for λ ≥ 0. The rationale behind the penalty can again be understood by consid-

ering its derivative: MCP begins by applying the same rate of penalization as the

lasso, but continuously relaxes that penalization until, when θ > aλ, the rate of

penalization drops to 0. MCP is motivated by and rather similar to SCAD. The

connections between MCP and SCAD are explored in detail by Zhang (2007). The

derivatives of MCP and SCAD were plotted in Figure 1.2.

The goal of both penalties is to eliminate the unimportant variables from the

model while leaving the important variables unpenalized. This would be equivalent

to fitting an unpenalized model in which the truly nonzero variables are known

in advance (the so-called “oracle” model). Both MCP and SCAD accomplish this

asymptotically and are said to have the oracle property (Fan and Li, 2001; Zhang,
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2007).

From Figure 1.2, we can observe that λ is the regularization parameter that

determines the magnitude of penalization and a is a tuning parameter that affects

the range over which the penalty is applied. When a is small, the region in which

MCP is not constant is small; when a is large, MCP penalty has a broader influence.

Generally speaking, small values of a are best at retaining the unbiasedness of the

SCAD penalty for large coefficients, but they also run the risk of creating objective

functions with problematic nonconvexity that are difficult to optimize and yield

solutions that are discontinuous with respect to λ. It is therefore best to choose an

a that is big enough to avoid problems but not too big. Zhang (2007) discusses the

issue of choosing a in depth; for the results of sections 2.4 and 2.5, we use a = 3 for

penalized linear regression and a = 30 for penalized logistic regression.

The group MCP estimate minimizes

Q(β) =
1

2n
L(β|y,X) +

J∑
j=1

fλ,b

 Kj∑
k=1

fλ,a(|βjk|)

 , (2.6)

where b, the tuning parameter of the outer penalty, is chosen to be Kjaλ/2 in order

to ensure that the group level penalty attains its maximum if and only if each of

its components are at their maximum. In other words, the derivative of the outer

penalty reaches 0 if and only if |βjk| ≥ aλ for all k ∈ {1, . . . , Kj}. The relationship

between group lasso, group bridge, and group MCP is illustrated for a two-covariate

group in Figure 2.1.

One can see from Figure 2.1 that the group MCP penalty is capped at both

the individual covariate and group levels, while the group lasso and group bridge

penalties are not. This illustrates the two rationales of group MCP: (1) to avoid

overshrinkage by allowing covariates to grow large, and (2) to allow groups to remain

sparse internally. Group bridge allows the presence of a single large predictor to

continually lower the entry threshold of the other variables in its group. This
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Group Lasso Group Bridge Group MCP

Figure 2.1: Shapes of group penalties. The penalty applied to a two-covariate
group is plotted, with the two coefficients on the horizontal axes and the penalty
on the vertical axis. The group lasso, group bridge, and group MCP penalties are
illustrated. Note that where the penalty comes to a point or edge, there is the
possibility that the solution will take on a sparse value; all penalties come to a
point at 0, encouraging group-level sparsity, but only group bridge and group MCP
allow for bi-level selection.

property, whereby a single strong predictor drags others into the model, prevents

group bridge from achieving consistency for the selection of individual variables.

Group MCP, on the other hand, limits the extent to which a single predictor can

reduce the penalty applied to the other members of the group.

2.3 Loss functions

Much of the work in the field of penalized regression has focused on squared

error loss:

1

2n
L(β|y,X) =

n∑
i=1

(yi − x′iβ)2.

In principle, however, a given penalty may be applied to any loss function, the

most important class of which being likelihood-derived loss functions such as the

(negative) log likelihood of a generalized linear model (McCullagh and Nelder, 1999)

or the partial likelihood of a Cox proportional hazards regression model.

The advantage of squared error loss is computational tractability: algorithms

are generally easy to implement and efficient. However, for many loss functions, we

can make a quadratic approximation to the loss function using the current estimate
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of the linear predictors η(m), and update coefficients using an iteratively reweighted

least squares algorithm:

L(η) ≈ L(η(m)) + (η − η(m))′v +
1

2
(η − η(m))′W(η − η(m)),

where v and W are the first and second derivatives of L(η) with respect to η,

evaluated at η(m). Now, letting z = η(m) −W−1v and dropping terms that are

constant with respect to β, we can complete the square to obtain

L(β) ≈ 1

2
(z−Xβ)′W(z−Xβ). (2.7)

For generalized linear models, W is a diagonal matrix, and the quadratic

approximation renders the loss function equivalent to squared error loss in which

the observations are weighted by w = diag(W). This allows algorithms developed

for squared error loss to be easily adapted to generalized linear models, with slight

modifications for the iterative reweighting. Chapter 3 will discuss algorithms for

fitting penalized regression models in greater detail.

2.4 Simulations

In this section, we will compare the performance of the group lasso, group

bridge, and group MCP methods across a variety of independently generated data

sets. Here, we use BIC as the model selection criterion; simulations I have conducted

for logistic regression and using AIC and GCV all illustrate the same basic trends.

Data were simulated from the generating model

yi = x′i1β
(0)
1 + . . .+ x′i10β

(0)
10 + εi, εi

iid∼ N(0, 1), (2.8)

with 100 observations and 10 groups, each of which contained 10 members (n =

p = 100). The sparsity of the underlying models varied over a range of true

nonzero groups J0 ∈ 2, 3, 4, 5 and over a range of nonzero members within a group

K0 ∈ 2, 3, . . . , 10. Furthermore, the magnitude of the coefficients was determined
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according to

β
(0)
jk = ajkI(j ≤ J0)I(k ≤ K0),

where a was chosen such that the signal to noise ratio (SNR) of the model was

approximately one (actual range from 0.84 to 1.45). This specification ensures that

each model covers a spectrum of groups ranging from those with with small effects to

those with large effects, and that each group contains large and small contributors.

Model error (ME), mean squared prediction error (MSPE), and SNR are defined as

follows:

ME = (β̂ − β(0))′E(xx′)(β̂ − β(0)),

MSPE =
1

n
(y −Xβ̂)′(y −Xβ̂),

and

SNR =
1

σ2
β(0)′E(xx′)β(0).

For each combination of J0 and K0, 500 independent data sets were generated.

We note the average number of groups and coefficients selected by the approaches

for two representative cases in Table 2.1, plot model errors in Figure 2.2, and plot

mean squared prediction error in Figure 2.3.

The most striking difference between the methods is the extent to which the

form of the penalty enforces grouping: group lasso forces complete grouping, group

MCP encourages grouping to a rather slight extent, and group bridge is somewhere

in between. This is seen most clearly by observing the average number of variables

selected per group for the cases listed in Table 2.1. For group lasso, of course, this

number is always 10. For group MCP, approximately two or three variables were

selected per group, while group bridge selected four or five per group.
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Table 2.1: Simulation: Selection of variables and groups by group MCP, group lasso,
and group bridge.

Variables Groups Variables

/ group Selected FP FN Selected FP FN

Generating model 3 groups, 3 variables per group

Group lasso 10.0 2.9 0.3 0.4 28.5 20.7 1.2

Group bridge 4.2 2.5 0.3 0.8 9.9 5.2 4.3

Group MCP 2.2 5.9 3.0 0.1 12.6 7.5 3.9

Generating model 3 groups, 8 variables per group

Group lasso 10.0 2.9 0.2 0.3 28.9 7.3 2.4

Group bridge 5.0 2.5 0.3 0.8 11.8 2.1 14.3

Group MCP 2.7 5.6 2.6 0.0 14.4 4.7 14.3

FP=False positive; FN=False negative

Number of nonzero members / group

M
E
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2 3 4 5 6 7 8 9 10
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2 3 4 5 6 7 8 9 10
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2 3 4 5 6 7 8 9 10

5

Group lasso Group bridge Group MCP

Figure 2.2: Simulation results: Model error of group penalization methods. In each
panel, the number of nonzero groups is indicated in the strip at the top. The x-axis
represents the number of nonzero elements per group. At each tick mark, 500 data
sets were generated. A lowess curve has been fit to the points and plotted.
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Group lasso Group bridge Group MCP

Figure 2.3: Simulation results: Prediction error of group penalization methods. In
each panel, the number of nonzero groups is indicated in the strip at the top. The
x-axis represents the number of nonzero elements per group. At each tick mark,
500 data sets were generated. A lowess curve has been fit to the points and plotted.

This number varies little with the true number of variables per group. Al-

though this may seem surprising, it is important to keep in mind that the study

design in question contains variables with heterogeneous effects within groups. The

main difference between the methods is the extent to which the selection threshold

is lowered for the group members given that the group has already been selected.

As remarked upon in section 2.2, the extent to which this occurs is lower for group

MCP than for group bridge. For group lasso of course, the threshold is lowered to

0 given that a group is selected, and thus all members are selected.

Based on these selection properties, we would expect group MCP to perform

best in settings where the underlying model is relatively sparse. Indeed, that is

exactly what is seen in Figures 2.2 and 2.3. Based on this simulation study, I would

put forward the following advice regarding the choice between group penalization

methods: if one expects that the proportion of nonzero group members to be greater
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than one-half, use group lasso; otherwise, use group MCP. If one expects this pro-

portion to be close to one-half, one may wish to use group bridge. However, as we

will see in Chapter 3, the fact that the gradient of the group bridge penalty goes to

∞ as βj goes to zero raises concerns about the model fitting process.

2.5 Application: Genetic association study of
age-related macular degeneration

Genetic association studies are an increasingly important tool for detecting

links between genetic markers and diseases. The example that we will consider

here involves data from a case-control study of age-related macular degeneration

consisting of 400 cases and 400 controls. We confine our analysis to 30 genes that

previous biological studies have suggested may be related to the disease. These

genes contained 532 markers with acceptably low rates of missing data (< 20% no

call rate) and high minor allele frequency (> 10%).

We analyzed the data with the group lasso, group bridge, and group MCP

methods by considering markers to be grouped by the gene they belong to. Logistic

regression models were fit assuming an additive effect for all markers (homozygous

dominant = 2, heterozygous = 1, homozygous recessive = 0). Missing (“no call”)

data was imputed from the nearest non-missing marker for that subject. In addi-

tion to the group penalization methods, we analyzed these data using a traditional

one-at-a-time approach, in which univariate logistic regression models were fit and

marker effects tested using a p < .05 cutoff. For group lasso and group bridge, using

BIC to select λ resulted in the selection of the intercept-only model. Thus, more

liberal model selection criteria were used for those methods: AIC for group lasso

and GCV for group bridge.

To assess the performance of these methods, we computed 10-fold cross-

validation error rates for the methods. For the one-at-a-time approach, predictions
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Table 2.2: Application of group penalization and a one-
at-a-time methods to a genetic association study of age-
related macular degeneration.

# of # of Error CV error

groups covariates rate rate

One-at-a-time 19 47 .302 .450

Group lasso 7 139 .318 .429

Group bridge 2 11 .372 .414

Group MCP 10 15 .354 .408

were made from an unpenalized logistic regression model fit to the training data

using all the markers selected by individual testing. The results are presented in

Table 2.2.

Table 2.2 strongly suggests the benefits of using group penalized models as

opposed to one-at-a-time approaches: the three group penalization methods achieve

lower test error rates and do so while selecting fewer groups. Although the fact that

the error rates exceed 0.4 indicate that these 30 genes likely do not include SNPs

that exert an overwhelming effect on an individual’s chances of developing age-

related macular degeneration, the fact that they are well below 0.5 demonstrates

that these genes do contain SNPs related to the disease. In particular, bi-level

selection methods seem to perform quite well for these data. Group bridge identifies

3 promising genes out of 30 candidates, and group MCP achieves a similarly low

test error rate while identifying 10 promising SNPs out of 532.

There are a number of important practical issues that arise in genetic associ-

ation studies that are beyond the scope of this paper to address. Nearby genetic

markers are linked; indeed, this is the impetus for addressing these problems us-

ing grouped penalization methods. However, genetic linkage also results in highly
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correlated predictors. We have observed that the choice of λ2 for group bridge

and group MCP has a noticeable impact on the SNPs selected. Furthermore, most

genetic association studies are conducted on much larger scales than we have in-

dicated here: moving from hundreds of SNPs to hundreds of thousands of SNPs

presents a new challenge to both the computation and the assigning of group labels.

The handling of missing data, the search for interactions, and the incorporation of

non-genetic covariates are also important issues. In spite of these complications,

the fact that markers are known to be grouped in genetic association studies is a

strong motivation for the further development of bi-level selection methods.
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CHAPTER 3

LOCAL COORDINATE DESCENT ALGORITHMS

The algorithms that have been proposed thus far to fit models with grouped

penalties are either (a) inefficient for models with large numbers of predictors, or

(b) limited to linear regression models, models in which the members of a group are

orthogonal to each other, or both. We combine the ideas of coordinate descent op-

timization and local approximation of penalty functions to introduce a new, general

algorithm for fitting models with grouped penalties. The resulting algorithm is sta-

ble and very fast even when the number of variables is much larger than the sample

size. We apply the algorithm to models with grouped penalties, but note that the

idea may be applied to other penalized regression problems in which the penalties

are complicated but not necessarily grouped. These algorithms are provided as an

R package, grpreg (available at http://cran.r-project.org).

3.1 Local coordinate descent

The approach that we describe for minimizing Q(β) relies on obtaining a first-

order Taylor series approximation of the penalty. This approach requires continuous

differentiability. Here, we treat penalties as functions of |β|; from this perspective,

penalties like the lasso are continuously differentiable, with domain [0,∞).

Coordinate descent algorithms optimize a target function with respect to a

single parameter at a time, iteratively cycling through all parameters until conver-

gence is reached. The idea is simple but efficient – each pass over the parameters

requires only O(np) operations. Since the number of iterations is typically much

smaller than p, the solution is reached faster even than the np2 operations required

to solve a linear regression problem by QR decomposition. Furthermore, since the

computational burden increases only linearly with p, coordinate descent algorithms

can be applied to very high-dimensional problems. Only recently has the power
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of coordinate descent algorithms for optimizing penalized regression problems been

fully appreciated; see Friedman et al. (2007) and Wu and Lange (2008) for additional

history and a more extensive treatment.

Coordinate descent algorithms are ideal for problems like the lasso where de-

riving the solution is simple in one dimension. The group penalties discussed in this

paper do not have this feature; however, one may approximate these penalties to

obtain a locally accurate representation that does. The idea of obtaining approx-

imations to penalties in order to simplify optimization of penalized likelihoods is

not new. Fan and Li (2001) propose a local quadratic approximation (LQA), while

Zou and Li (2008) describe a local linear approximation (LLA). The LQA and LLA

algorithms can also be used to fit these models, but as we will see in section 3.9.1,

the LCD algorithm is much more efficient.

Letting β̃ represent the current estimate of β, the overall structure of the local

group coordinate descent (LCD) algorithm is as follows:

(1) Choose an initial estimate β̃ = β(0)

(2) Approximate loss function, if necessary

(3) Update covariates:

(a) Update β̃0, if necessary

(b) For j ∈ {1, . . . , J}, update β̃j

(4) Repeat steps 2 and 3 until convergence

First, let us consider the updating of the intercept in step (3)(a). For squared

error loss, this step is unnecessary since β̂0 will always equal the mean of y. Nev-

ertheless, going through the procedure is a helpful introduction to the coordinate

descent idea. The partial residual for updating β̃0 is r̃0 = y −X−0β̃−0, where the

−0 subscript refers to what remains of X or β̃ after the 0th column or element has
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been removed, respectively. The updated value of β̃0 is therefore the simple linear

regression solution:

β̃0 ←
x′0r̃0

x′0x0

=
1

n
x′0r̃0.

Performing the above calculation directly is somewhat wasteful, however; a

more efficient way of updating β̃0 is to take advantage of the current residuals

r̃ = y −Xβ̃ (Friedman et al., 2008). Here, we note that r̃0 = r̃ + x0β̃0; thus

β̃0 ←
1

n
x′0r̃ + β̃0. (3.1)

Updating β̃0 in this way costs only 2n operations: n operations to calculate x′0r̃ and

n operations to update r̃. In contrast, obtaining r̃0 requires n(p − 1) operations.

Meanwhile, for iteratively reweighted optimization, the updating step is

β̃0 ← x′0Wr̃/x′0Wx0 + β̃0, (3.2)

requiring 3n operations.

Updating β̃j in step (3)(b) depends on the penalty. We discuss the updating

step separately for group MCP, group bridge, and group lasso.

3.2 Group MCP

Group MCP has the most straightforward updating step. We begin by re-

viewing the univariate solution to the lasso. When the penalty being applied to a

single parameter is λ|β|, the solution to the lasso (Tibshirani, 1996) is

β =
S( 1

n
x′y, λ)

1
n
x′x

= S(
1

n
x′y, λ),
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where S(z, c) is the soft-thresholding operator (Donoho and Johnstone, 1994) de-

fined for positive c by

S(z, c) =


z − c if z > c

0 if |z| ≤ c

z + c if z < −c.

Group MCP does not have a similarly convenient form for updating individual

parameters. However, by taking the first order Taylor series approximation about

β̃j, the penalty as a function of βjk is approximately proportional to λ̃jk|βjk|, where

λ̃jk = f ′λ,b

 Kj∑
m=1

fλ,a(|β̃jm|)

 f ′λ,a(|β̃jk|) (3.3)

and f , f ′ were defined in equation (2.5). Thus, in the local region where the penalty

is well-approximated by a linear function, step (3)(b) consists of simple updating

steps based on the soft-thresholding cutoff λ̃jk: for k ∈ {1, . . . , Kj},

β̃jk ← S

(
1

n
x′jkr̃ + β̃jk, λ̃jk

)
(3.4)

or, when weights are present,

β̃jk ←
S( 1

n
x′jkWr̃ + 1

n
x′jkWxjkβ̃jk, λ̃jk)

1
n
x′jkWxjk

. (3.5)

3.3 Group bridge

The local coordinate descent algorithm for group bridge is rather similar to

that for group MCP, only with

λ̃jk = λγKγ
j ‖β̃j‖

γ−1
1 . (3.6)

The difficulty posed by group bridge is that, because the bridge penalty is not

everywhere differentiable, λ̃jk is undefined at β̃j = 0 for γ < 1. This is not a problem

with the algorithm; 0 presents a fundamental issue with the penalty itself. For any

positive value of λ, 0 is a local minimum of the group bridge penalty. Clearly,
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this complicates optimization. Our approach is to begin with an initial value away

from 0 and, if β̃j reaches 0 at any point during the iteration, to restrain β̃j at 0

thereafter. Obviously, this incurs the potential drawback of dropping groups that

would prove to be nonzero when the solution converges. Essentially, this approach

screens groups from further consideration if they contain no members that show

significant correlation with the outcome given the current model parameters.

3.4 Group lasso

Updating is more complicated in the group lasso because of its sparsity prop-

erties: group members go to 0 all at once or not at all. Thus, we must update β̃j at

step (3)(b) in two steps: first, check whether β̃j = 0 and second, if β̃j 6= 0, update

β̃jk for k ∈ {1, . . . , Kj}.

The first step is performed by noting that β̃j 6= 0 if and only if

1

n
‖X′j r̃ + X′jXjβ̃j‖ >

√
Kjλ. (3.7)

The logic behind this condition is that if βj cannot move in any direction away

from 0 without increasing the penalty more than the movement improves the fit,

then 0 is a local minimum; since the group lasso penalty is convex, 0 is also the

unique global minimum. The conditions defined by (3.7) are in fact the Karush-

Kuhn-Tucker conditions for this problem, and were first pointed out by Yuan and

Lin (2006).

If this condition does not hold, then we can set β̃j = 0 and move on. Oth-

erwise, we once again make a local approximation to the penalty and update the

members of group j. However, instead of approximating the penalty as a function

of |βjk|, for group lasso we can obtain a better approximation by considering the

penalty as a function of β2
jk. Now, the penalty applied to βjk may be approximated
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by λ̃jkβ
2
jk/2, where

λ̃jk =
λ
√
Kj

‖β̃j‖
. (3.8)

This approach yields a shrinkage updating step instead of a soft-thresholding step:

β̃jk ←
1
n
x′jkr̃ + β̃jk

1 + λ̃jk
(3.9)

or, for weighted optimization,

β̃jk ←
1
n
x′jkWr̃ + β̃jk

1
n
x′jkWxjk + λ̃jk

. (3.10)

Note that, like (3.6), (3.8) is undefined at 0. Unlike group bridge, however,

this is merely a minor algorithmic inconvenience. The penalty is differentiable; its

partial derivatives simply have a different form at 0. This issue can be avoided by

adding a small positive quantity δ to the denominator in equation (3.8).

3.5 Convergence of the LCD algorithm

Let β(m) denote the value of the coefficients at a given step of the algorithm,

and let β(m+1) be the value after the next updating step has occurred. With the

exception of the sparsity check during the first stage of the group lasso algorithm,

β(m+1) and β(m) will differ by, at most, one element.

We now prove that the proposed algorithms for squared error loss decrease

the objective function with every step. For other loss functions, making a quadratic

approximation to the loss function will not in general decrease the objective function.

However, it is still the case that with every step that updates β, the approximated

objective function will be decreased.

Proposition 1. At every step of the algorithms described in sections 3.2-3.4,

Q(β(m+1)) ≤ Q(β(m)) (3.11)

Thus, all three algorithms decrease the objective function at every step and therefore
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are guaranteed to converge.

Proof. This result follows from the general theory of MM (majorization-minimization)

algorithms (Lange et al., 2000). A function h is said to majorize a function g if

h(x) ≥ g(x) ∀x and there exists a point x∗ such that h(x∗) = g(x∗).

Then, at a given updating step i, let g denote the objective function, h(i)

denote the approximation being made at the current step, β(i) the current value of

β, and β(i+1) the value that minimizes h(i),

g(β(i+1)) ≤ h(i)(β(i+1)) (h(i) majorizes g)

≤ h(i)(β(i)) (β(i+1) minimizes h(i))

= g(β(i)) (expansion is made about β(i))

Because the loss function is unchanged between g and h, all that remains to

prove the theorem is to show that the approximations referred to by (3.3), (3.6), and

(3.8) majorize their respective penalty functions. This is straightforward for group

bridge and group MCP, as both penalties are concave on [0,∞). They are therefore

majorized by any tangent line. For group lasso, we can demonstrate majorization

through inspection of second derivatives by observing that {h(βjk) − g(βjk)}′′ ≥ 0

for all βjk ∈ (0,∞).

The LCD algorithm is therefore stable and guaranteed to converge, although

not necessarily to the global minimum of the objective function. The group bridge

and group MCP penalty functions are nonconvex; group bridge always contains local

minima and group MCP may have them as well. Furthermore, coordinate descent

algorithms for penalized squared error loss functions are guaranteed to converge

to minima only when the penalties are separable. Group penalties are separable

between groups, but not within them. Convergence to a minimum cannot be guar-

anteed, then, for the one-at-a-time updates that we propose here. Nevertheless,

we have not observed this to be a significant problem in practice. Comparing the
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Figure 3.1: Coefficient paths for group penalization methods. Paths for group lasso,
group bridge, and group MCP are illustrated, with λ varying from 0 to λmax. The
simulated data set features two groups, each with three covariates. In the underlying
model, the solid group has two covariates equal to 1 and the other equal to 0; the
dashed group has two coefficients equal to 0 and the other equal to -1.

convergence of the LCD algorithms to LQA/LLA algorithms (which update all

parameters simultaneously) for the same data, the algorithms rarely converge to

different values, and when they do, the differences are quite small.

3.6 Pathwise optimization and initial values

The local coordinate descent algorithm requires an initial value β(0). Usually,

we are interested in obtaining β̂ not just for a single value of λ, but for a range of

values and then applying some criterion to choose an optimal λ.

Usually, the range of λ values one is interested in extends from a maximum

value λmax for which all penalized coefficients are 0 down to λ = 0 or to a minimum

value λmin at which the model becomes excessively large or ceases to be identifiable.

The estimated coefficients vary continuously with λ and produce a path of solutions

regularized by λ. Example coefficient paths for group lasso, group bridge, and group

MCP over a fine grid of λ values are presented in Figure 3.1; inspecting the path

of solutions produced by a penalized regression method is often a very good way to

gain insight into the methodology.

Figure 3.1 depicts a toy example, yet reveals much about the behavior of
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grouped penalties. In the example, there are two groups, each of which containing

three members. In the solid group, two of the members have nonzero coefficients,

while in the dashed group, member has a nonzero coefficient. Even though each

of the nonzero coefficients is of the same magnitude, the coefficients from the solid

group enter the model much more easily than the lone nonzero coefficient from the

dashed group. Note also, however, that this assumption is less pronounced for group

MCP. Finally, notice the extent to which solutions are shrunken toward zero. The

effect is quite strong for group lasso, much less so for group MCP, and in between for

group bridge. Indeed, for group MCP at λ ≈ 0.4, all of the variables with true zero

coefficients have been eliminated while the remaining coefficients are unpenalized.

In this region, the group MCP approach is equivalent to the oracle model.

Because the paths are continuous, a reasonable approach to choosing initial

values is to start at one extreme of the path and use the estimate β̂ from the

previous value of λ as the initial value for the next value of λ.

For group MCP and group lasso (and in general for any penalty function that

is differentiable at 0), we can easily determine λmax, the smallest value for which all

penalized coefficients are 0. From (3.7), it is clear that

λmax = max
j

‖X′jWr̃‖
n
√
Kj

,

where the current residuals and weights are obtained using a regression fit to the

intercept-only model. For group MCP,

λmax = max
j,k

√
|x′jkWr̃|

n
.

For these methods, we can start at λmax using β(0) = 0 and proceed towards λmin.

This approach does not work for group bridge, however, because β̃ must be

initialized away from 0. We must therefore start at λmin and proceed toward λmax

(i.e., work in the opposite direction as group MCP and group lasso). For the initial
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value at λmin, we suggest using the unpenalized univariate regression coefficients.

For all the numerical results in this paper, we follow the approach of Friedman

et al. (2008) and compute solutions along a grid of 100 λ values that are equally

spaced on the log scale.

3.7 Regularization parameter selection

Once a regularization path has been fit, we are typically interested in selecting

an optimal point along the path. Three widely used criteria are:

AIC(λ) = 2Lλ + 2dfλ, (3.12)

BIC(λ) = 2Lλ + log (n)dfλ, (3.13)

and

GCV (λ) =
2Lλ

[1− (dfλ/n)]2
, (3.14)

where dfλ is the effective number of parameters. The optimal value of λ is chosen

to be the one that minimizes the criterion.

We propose the following estimator for dfλ. Let β̂jk denote the fitted value of

βjk and β̂∗jk denote the unpenalized fit to the partial residual: β̂∗jk = x′jkr̃jk/n. Then

d̂fλ =
J∑
j=1

Kj∑
k=1

β̂jk

β̂∗jk
. (3.15)

This estimator is attractive for a number of reasons. For linear fitting methods

such that ŷ = Sy, there are several justifications for choosing d̂f = trace(S) (Hastie

et al., 2001). Ridge regression is an example of a linear fitting method in which

S = X(X′X + λI)−1X′. For the special case of an orthonormal design, (3.15) is

equal to the trace of S. The estimator also has an intuitive justification, in that

it makes a smooth transition from an unpenalized coefficient with df = 1 to a

coefficient that has been eliminated with df = 0. Another attractive feature is
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convenience: the estimator is obtained as a byproduct of the coordinate descent

algorithm with no additional calculation.

Yuan and Lin (2006) propose an estimator for the effective number of param-

eters of the group lasso, but it involves the ordinary least squares estimator, which

is undefined in high dimensions, so we do not consider it here. Another common

approach is to set d̂f equal to the number of nonzero elements of β̂ (Efron et al.,

2004; Zou et al., 2007). However, this has two drawbacks. One is that the esti-

mator (and, hence, the model selection criterion) is not a continuous function of λ.

The other is that this approach is inappropriate for methods that perform a heavy

amount of coefficient shrinkage like the group lasso. We examine the performance

of this estimator and estimator (3.15) using simulation studies in section 3.9.2.

3.8 Adding an L2 penalty

Zou and Hastie (2005) have suggested that incorporating an additional, small

L2 penalty can improve the performance of penalized regression methods such as

the lasso, especially when the number of predictors is larger than the number of

observations or when large correlation exists between the predictors. This does

not pose a complication to the above algorithms. When minimizing the previously

defined objective functions plus λ2

∑
j,k β

2
jk/2, the updating step (3.4) becomes

β̃jk ←
S( 1

n
x′jkr̃ + β̃jk, λ̃jk)

1 + λ2

for group MCP and group bridge and the updating step (3.9) becomes

β̃jk ←
1
n
x′jkr̃ + β̃jk

1 + λ̃jk + λ2

for group lasso. We use λ2 = .001λ for the numerical results presented in the

remainder of this chapter, as well as for the results in Chapter 2.
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3.9 Simulations

3.9.1 Efficiency

We will examine the efficiency of the LCD algorithm by measuring the average

time to fit the entire path of solutions for group lasso, group bridge, and group

MCP, as well as the lasso as a benchmark. Besides LCD, we consider the following

algorithms: lars (Efron et al., 2004), the most widely used algorithm for fitting lasso

paths as of this writing; glmnet (Friedman et al., 2008), a very efficient coordinate

descent algorithm for computing lasso paths; glmpath (Park and Hastie, 2007), an

approach to fitting lasso paths for GLMs not based on coordinate descent; and the

LQA (Fan and Li, 2001) and LLA (Zou and Li, 2008) algorithms mentioned in

section 3.1.

We will consider three situations:

• Linear regression with n = 500, p = 200

• Logistic regression with n = 1000, p = 200

• Linear regression with n = 500, p = 2000

For the data sets with n > p, paths were computed down to λ = 0; for the p > n

data sets, paths were computed down to 5% of λmax.

The results of these efficiency trials are presented in Tables 3.1, 3.2, and 3.3.

All entries are the average time in number of seconds, averaged over 100 randomly

generated data sets.

These timings dramatically verify the efficiency of coordinate descent algo-

rithms for high-dimensional penalized regression. The LCD algorithm is not only

much faster than LLA/LQA for small p, its computational burden increases in a

manner that is roughly linear with p as opposed to the polynomial increase suf-

fered by LLA/LQA. Indeed, the LCD algorithms are, for large p, even faster than
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Table 3.1: LCD algorithm efficiency: Linear re-
gression, n = 500 and p = 200.

Penalty Algorithm Average Time (s)

Lasso glmnet .03

Lasso lars .43

Group lasso LQA 3.54

Group bridge LLA 7.02

Group MCP LLA 5.13

Group lasso LCD .63

Group bridge LCD .11

Group MCP LCD .10

Table 3.2: LCD algorithm efficiency: Logistic
regression, n = 1000 and p = 200.

Penalty Algorithm Average Time (s)

Lasso glmnet 0.24

Lasso glmpath 13.77

Group lasso LQA 21.78

Group bridge LLA 29.77

Group MCP LLA 15.08

Group lasso LCD 1.80

Group bridge LCD 0.67

Group MCP LCD 0.47
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Table 3.3: LCD algorithm efficiency: Linear re-
gression, n = 500 and p = 2000.

Penalty Algorithm Average Time (s)

Lasso glmnet 1.60

Lasso lars 22.69

Group lasso LQA 1900.49*

Group bridge LLA 1985.19*

Group MCP LLA 1823.32*

Group lasso LCD 23.00

Group bridge LCD 1.46

Group MCP LCD 3.47

*Only one replication

the LARS algorithm, a somewhat remarkable fact considering that the latter takes

explicit advantage of special piecewise linearity properties of linear regression lasso

paths.

Among the grouped penalties, group lasso is the slowest due to its two-step

updating procedure. Group bridge was timed here to be the fastest, although this is

potentially misleading. Group bridge saves time by not updating groups that reach

0 with no guarantee of converging to the true minimum. This is a weakness of the

method, not a strength, although it does result in shorter computing times.

3.9.2 Regularization parameter selection

In this section, we will conduct a simulation study to compare the performance

of our proposed estimator of the number of effective model parameters versus using

the number of nonzero covariates as an estimator. As in section 2.4, we will look at

simulations for penalized linear regression using BIC as the model selection criterion;
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Figure 3.2: Simulation: Comparison of degree of freedom estimators for group
penalization methods. The model error for each method is plotted, after selecting λ
with BIC using one of two estimators for the effective number of model parameters.
Dashed line: Estimator (3.15). Solid line: Using number of nonzero elements of β.

simulations for logistic regression and using AIC and GCV illustrate the same trend.

As before, data were simulated from model (2.8). Here, J0 = 3 and the

elements of β1 through β3 were randomly generated in such a way as to have

the models span SNR ratios over the range (0.5, 3) in a roughly uniform manner.

Data sets were generated independently 500 times. Model error was chosen as the

outcome; lowess curves were fit to the results and plotted in Figure 3.2.

As Figure 3.2 illustrates, the performance of estimator (3.15) is similar to

(although slightly better than) that of counting the nonzero elements of β for group

bridge and group MCP, but much better for the more ridge-like penalty group

lasso. We consider this sufficient justification for the use of (3.15) throughout the

remainder of this article; however, further study of this approach to estimating

model degrees of freedom is warranted.
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CHAPTER 4

FALSE DISCOVERY RATES FOR PENALIZED REGRESSION

In this chapter, I consider high-dimensional regression problems in which the

goal is to select a small number of covariates that contribute to the outcome from

a large number of potential features. In contrast to existing approaches, the meth-

ods introduced here select variables while limiting the expected fraction of falsely

selected features.

Feature selection is an important issue in high-dimensional data analysis.

Many contemporary studies collect information on a large number of features that

are potentially related to an outcome of interest with the expectation that only a

small number of those features will exhibit meaningful effects. Examples include

gene expression and proteomics studies, genetic association studies, signal process-

ing, image analysis, and financial applications (Donoho, 2000; Fan and Li, 2006).

Many of the successful approaches that have been proposed for prediction and

feature selection for high-dimensional data analysis fall into the general framework

of penalized regression models. These approaches seek to minimize an objective

function consisting of a loss function plus a penalty term. The loss function charac-

terizes the accuracy of the model’s fit to the data, while the penalty term encourages

both shrinkage and sparsity of the solution by penalizing large regression coefficients.

The balance between the loss function and penalty is controlled by a regularization

parameter. A well-chosen regularization parameter allows the model to explain the

data while limiting the amount of overfitting.

Despite the success of penalized regression methods, their practical utility for

feature selection has been limited by a lack of inferential results for these models.

Regularization parameters for these models are usually selected on the basis of infor-

mation criteria or cross-validation. These approaches may yield accurate prediction
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methods, but they provide little information regarding the significance of the se-

lected features. For univariate hypothesis testing, in comparison, the false discovery

rate (Benjamini and Hochberg, 1995) has proved to be an extremely valuable and

intuitive measure of feature significance in light of large-scale multiple comparison.

This chapter applies the idea of false discovery rates to penalized regression

models. In doing so, we obtain an easily interpreted measure of the significance

of the features selected by these models. The problem is defined explicitly in sec-

tion 4.1. Exact distributional results for penalized regression methods are difficult

to obtain, and the methods introduced here are approximations to the true false

discovery rate. We consider two approaches to this approximation. The first is

based a heuristic line of reasoning (section 4.2), while the second is based on ap-

proximating the penalized regression model with a linear predictor (section 4.3).

Section 4.4 examines the accuracy of the resulting estimators and compares the

methodology to competing approaches for feature selection, while section 4.5 ap-

plies this approach to a gene expression study of leukemia and a genetic association

study of age-related macular degeneration. We will concentrate primarily on the

simplest and most popular of these models, the lasso, but the idea may be applied

to other penalized regression methods as well.

4.1 The false discovery rate of the lasso

The following notation will be used throughout: suppose we have n observa-

tions indexed by i. Each observation contains measurements of an outcome yi and

p features {xi1, . . . , xip} indexed by j. We assume without loss of generality that

the features have been standardized such that
∑n

i=1 xij = 0 and 1
n

∑n
i=1 x

2
ij = 1 for

all j.

We will consider penalized linear and logistic regression. In both cases, the

mean of the outcome is assumed to depend on the covariates through the linear

function ηi = β0 +
∑

j xijβj. In this context, we define a feature xj to be a null
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Table 4.1: Schematic: Possible outcomes
of feature selection.

Selected Not selected Total

β = 0 F p0 − F p0

β 6= 0 T p1 − T p1

Total S p− S p

feature if βj = 0. If a null feature is selected by a given procedure, it becomes a

false discovery. Table 4.1 lists the outcomes of a feature selection procedure: p0

denotes the number of features whose coefficients are truly 0, and p1 denotes the

the number of features whose coefficients are not equal to 0. A given procedure

selects S features, of which T are correctly chosen and F are false discoveries.

The quantity F/S is of interest, as it is the proportion of selected features

which are false discoveries. However, F is an unknown quantity. A widely used

approach in univariate hypothesis testing is to estimate the expected number of

false discoveries E(F ) and then estimate the false discovery rate (FDR) by

F̂DR =
E(F )

S
. (4.1)

This is the general form that our FDR estimates will take.

Our goal is to select features which contribute to the outcome while limiting

the false discovery rate. Even though penalized regression methods such as the lasso

are not conventionally thought of as performing multiple comparisons, we will see

that for each feature, a statistic derived from that feature is compared to a threshold.

The central idea behind our FDR approach is to estimate the probability that a null

feature will exceed that threshold. Letting αj denote the probability that feature j

will exceed this threshold given that βj = 0, we will estimate the expected number
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of false discoveries with

E(F ) =

p∑
j=1

αj. (4.2)

Note that this is an overestimate of E(F ) in that the sum should be taken only over

the null features rather than all features. However, since we do not know which

of the features are null, a conservative approach is to treat all features as null. As

established by Benjamini and Hochberg (1995), this approach guarantees that the

resulting FDR estimate will be greater than or equal to the true FDR under all

configurations of null vs. nonnull features.

For univariate hypothesis testing, the probability that a feature will be selected

given that the null hypothesis is true is prespecified as α and thus E(F ) is simply

pα. For the lasso, the features are not necessarily tested at the same significance

level, and thus feature-specific subscripts are required in equation (4.2).

4.1.1 Linear regression

The lasso (Tibshirani, 1996) is a popular regression-based approach to feature

selection for sparse problems. For linear regression, the lasso estimate β̂ is defined

as the value of the coefficient vector that minimizes the objective function

Q(β) =
1

2n

n∑
i=1

(yi − ηi)2 + λ

p∑
j=1

|βj|. (4.3)

Note that we have eliminated the intercept; for linear regression with standardized

covariates, the intercept will equal the mean of the outcome. Without loss of gen-

erality, then, we can consider the outcome to have been centered prior to fitting

and ignore the intercept. Typically, this minimization is performed over a range of

values for λ and some criterion is used to choose an optimal value.

Algorithmic approaches to fitting lasso models have advanced drastically since

Tibshirani’s original proposal (Efron et al., 2004; Friedman et al., 2007; Wu and
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Lange, 2008; Friedman et al., 2008), making it feasible to fit lasso models to sparse

problems involving hundreds of thousands of variables. Because of this, the lasso

is now commonly used for problems in which the primary goal is to select a small

number of important variables from a large pool of potential predictors. It is desir-

able in these problems to obtain a measure of the accuracy of this feature selection,

which is what we propose here with false discovery rates.

Let r denote the n-dimensional residual vector with elements yi − ηi. Taking

the partial derivatives of (4.3), we can see that

1

n
x′jr = λsign(β̂j) ∀ β̂j 6= 0, (4.4a)

1

n
|x′jr| ≤ λ ∀ β̂j = 0. (4.4b)

For convex objective functions such as that of the lasso, these conditions are both

necessary and sufficient for any solution β̂. In the convex optimization literature,

they are known as the Karush-Kuhn-Tucker (KKT) conditions.

Introducing the notation −j to refer to the portion of X or β̂ that remains

after the jth column or element has been removed and defining r−j = y−X−jβ̂−j,

the above conditions imply that

1

n
|x′jr−j| > λ ∀ β̂j 6= 0, (4.5a)

1

n
|x′jr−j| ≤ λ ∀ β̂j = 0. (4.5b)

Thus, lasso feature selection is based on a series of multiple comparisons in-

volving the correlation of feature j with its partial residual vector r−j, and

αj = Pr(β̂j 6= 0|βj = 0)

= Pr

(
1

n
|x′jr−j| > λ|βj = 0

)
(4.6)

In regression problems, the covariates are generally treated as fixed. Thus, the

probability that n−1|x′jr−j| > λ given that βj = 0 is determined by the distribution
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of r−j. In general, r−j has a rather complicated distribution. Its elements are not

independent, homoskedastic, or normally distributed, which renders derivation of

the exact probability in equation (4.6) difficult. Sections 4.2 and 4.3 present two

approaches to approximating the above probability.

4.1.2 Logistic regression

The false discovery conditions are quite similar for lasso-penalized logistic

regression. Here, the covariates are assumed to have a linear relationship on the

log-odds of a binary response occurring. Specifically,

πi = Pr(yi = 1|ηi)

=
exp(ηi)

1 + exp(ηi)
.

The objective function of this model is then

Q(β0,β) =
1

2n

n∑
i=1

{yi log πi + (1− yi) log(1− πi)}+ λ

p∑
j=1

|βj|.

This model leads to the same conditions as linear regression:

1

n
x′jr = λsign(β̂j) ∀ β̂j 6= 0, (4.7a)

1

n
|x′jr| ≤ λ ∀ β̂j = 0. (4.7b)

and

1

n
|x′jr−j| > λ ∀ β̂j 6= 0, (4.8a)

1

n
|x′jr−j| ≤ λ ∀ β̂j = 0, (4.8b)

where r = y−π and the −j subscript again refers to quantities calculated by leaving

the contribution from the jth coefficient out of the model. Once again, sections 4.2

and 4.3 present two approaches to approximating the resulting probability.
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4.1.3 Other penalties

Note that the FDR conditions (4.5) presented above are not necessarily specific

to the lasso. The form of the penalty is only present in the sense that λ is the

correlation threshold set by the lasso. Specifically, λ is the derivative of the lasso

penalty as |β| → 0. The above conditions for the false discovery rates of penalized

regression models can therefore be applied to any penalized regression method that

is differentiable at 0 with respect to |β|. Examples of such methods include the

elastic net (Zou and Hastie, 2005), SCAD (Fan and Li, 2001), and MCP (Zhang,

2007).

Conveniently, all of the above methods are usually parameterized in such a

way that λ (or λ1 for the elastic net) represents the derivative of the penalty function

as |β| → 0; thus, the above equations apply equally well for those methods as for the

lasso. One notable exception, however, is bridge regression (Frank and Friedman,

1993) with γ < 1, for which the limit of the derivative as β → 0 goes to infinity.

Of course, the probability of n−1|x′jr−j| exceeding λ will certainly depend on

the penalty. Of the two approaches to estimating αj that will be presented in

sections 4.2 and 4.3, the linear predictor approach makes specific use of the form

of the lasso whereas the heuristic estimator does not. Thus, the heuristic estimator

could be applied with no modifications to FDR estimation for penalties such as

SCAD or the elastic net, whereas the estimate based on forming a linear predictor

would require further derivations specific to the penalty under investigation.
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4.2 Heuristic approach

In this section, I present a simple estimator of αj based on the observation

that residuals in regression problems tend to follow an approximately normal dis-

tribution. Thus, the following approximation may prove reasonable:

r−j
approx∼ N(0, τ 2

j I),

with the variance τ 2
j to be estimated from the data.

In unpenalized regression, the expectation of r−j is exactly 0 when βj = 0.

However, in penalized regression,

E(r−j) = E(y −X−jβ̂−j)

= X−j{β−j − E(β̂−j)}

when βj = 0. Thus, r−j will have nonzero mean proportional to the bias of the

estimator β̂. We will ignore this bias, however, and assume E(r−j) = 0 for null

features. Note that the lasso estimator β̂ is a consistent estimator of β; thus, this

assumption is justified asymptotically.

A reasonable estimate of τ 2
j given that feature j is a false discovery is the

observed variance of the residuals,

τ̂ 2
j =

r′r

n
. (4.9)

The elements of r always sum to 0, so there is no need to adjust for the mean

when estimating this variance. Also note that we are interested in the variance of

the fitted (as opposed to the true) residual; therefore, adjusting for the degrees of

freedom of the fit in the denominator is inappropriate. Finally, it is tempting to

replace r with r−j in the above equation, but this estimate fails to condition on j

being a false discovery and leads to the unattractive result that nonnull features

will contribute more to the FDR than null features.
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Applying the approximations described above, we have

αj ≈ 2Φ

(
−
√
nλ

τj

)
≈ 2Φ

(
− nλ√

r′r

)
,

where Φ(·) is the cdf of the standard normal distribution. Thus,

E(F ) ≈ 2pΦ

(
−nλ

r′r

)
.

Substituting this expression into equation (4.1) yields the FDR estimate

F̂DR =
2p

S
Φ

(
−nλ

r′r

)
(4.10)

Certainly, the above line of reasoning makes some rather strong assumptions

that may not hold true in all settings. However, as we shall see in section 4.4, the

above estimator performs quite well in practice.

Furthermore, in extending FDR estimation to other models and penalties, no

modification of the above estimator is necessary. The assumptions are made directly

upon the distribution of r−j. Certainly, these approximations will be more accurate

in certain settings than in others. For example, the approximation that E(r−j) = 0

for null features may be inaccurate for a penalty with heavy shrinkage (such as the

elastic net with a large L2 component), and may be exact for penalties that attempt

to eliminate the shrinkage of nonnull features (such as SCAD and MCP). We restrict

our attention here to the lasso, but further study would also be of interest.

4.3 Linear predictor approach

In this section, we take a different approach to approximating the distribution

of n−1x′jr−j based on representing the lasso predictor as ŷ = Hy, where H is akin

to the familiar “hat” matrix from linear regression. However, this approach is only

approximate in the sense that H depends on y. Thus, treating H as fixed (as
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we shall do) will not yield exact results. Furthermore, for logistic regression, ŷ

can only approximately be represented as Hy. Unlike the previous section, the

estimators developed below rely on forms specific to the lasso, and therefore are

not as readily adaptable to other penalties. Nevertheless, although new derivations

would be required, the basic approach of forming a linear predictor from the KKT

conditions can certainly be extended to methods other than the lasso.

4.3.1 Linear regression

The approach presented below in deriving a linear approximation to the lasso

estimates is similar to that of Osborne et al. (2000). Let A = {j : β̂j 6= 0}, and let

XA and β̂A denote the portions of X and β̂ that belong to the set A. Then (4.4a)

implies that

X′A(y −XAβ̂A) = nλsA,

where sA is a vector with elements {sign(β̂j) : j ∈ A}. Thus,

X′Ay = X′AXAβ̂A + nλsA

= X′AXAβ̂A + nλsAs
′
Aβ̂A‖β̂A‖−1

1 ,

because s′Aβ̂A = ‖β̂A‖1, where ‖·‖1 denotes the L1 norm. Thus,

β̂A = M−1X′Ay

= Sy,

where M = X′AXA + nλsAs
′
A‖β̂A‖−1

1 and S = M−1X′A.

We now have

1

n
x′jr−j =

1

n
x′j(y −H−jy)

=
1

n
x′j(I−H−j)y, (4.11)
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where H−j = (XA)−jS−j and I is the identity matrix. Here, the −j subscript refers

to the removal of the portion of XA or S that corresponds to the jth feature. Note

that this will not usually be the jth row or column of the matrix, and that if β̂j = 0,

the jth portion will not be present and (XA)−j = XA.

In the above, H−j is akin to the familiar “hat” matrix from linear regression

in the sense that ŷ = Hy, but there are two important differences: H is neither

idempotent nor fixed. Instead, it contains the random elements sA and ‖β̂A‖1.

Furthermore, it is important to note that H−j is not symmetric. Nevertheless, if

we assume, as is common in linear regression, that

yi = x′iβ + εi (4.12)

with

εi
iid∼ N(0, σ2), (4.13)

then the representation contained in equation (4.11) suggests that n−1x′jr−j follows

an approximate normal distribution. Thus,

αj = Φ

(
µj − λ
τj

)
+ Φ

(
−µj − λ

τj

)
, (4.14)

where µj and τ 2
j are the mean and variance of n−1x′jr−j under the null hypothesis

that βj = 0.

Based on (4.11), µj and τ 2
j can be reasonably estimated by

µ̂j =
1

n
x′j(I−H−j)Ê0(y) (4.15)

τ̂ 2
j =

σ̂2

n2
x′j(I−H−j)(I−H−j)

′xj, (4.16)

where σ̂2 is an estimate of σ2 and Ê0(y) is an estimate of the expected value of y

under the null hypothesis βj = 0.

Together, equations (4.15), and (4.16) allow us to estimate the probability of
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false selection αj needed to estimate the false discovery rate using equations (4.1)

and (4.6).

Before moving on, let us consider two interesting limiting cases. The first is

the case when x′jxj′ → 0 ∀j 6= j′; i.e., as the correlation between predictors tends

towards 0 and the design matrix becomes orthogonal. In this case, x′jH−j → 0,

causing µ̂j → 0 and τ̂ 2
j → σ̂2/n ∀j. Therefore, for the case of orthogonal design,

the above false discovery rate calculations are exact.

Furthermore, note that, as λ→ 0, the random contributions to H−j disappear

and the derivation is exactly that which would arise from a standard linear models

approach. Thus, in two limiting cases for which exact solutions are available, the

linear approximation is in agreement with the exact results.

However, there are several issues with implementing the above approach in

practice:

• Estimating σ2: Little work has been done regarding estimation of σ2 in high-

dimensional regression. One reasonable approach is to choose a value of λ

intended to achieve high predictive accuracy and then estimate σ2 as

σ̂2 =
r′λrλ
n− dfλ

, (4.17)

where dfλ is the degrees of freedom of the fit. For the lasso, this is commonly

taken to be the number of nonzero coefficients in the model (Zou et al., 2007).

We implement this approach for the results in section 4.4 and 4.5, using AIC

as the model selection criterion.

• Estimating Ê0(y): In a traditional regression setup, coefficient estimation is

unbiased, so X−jβ̂−j is an unbiased estimator of E0(y). However, in penal-

ized regression, coefficient estimation is biased towards zero, so X−jβ̂−j will

underestimate E0(y). Little research has been published regarding the bias of

the lasso, however, so the extent of this underestimation remains unclear. It
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is also unclear how to correct for it; therefore, we use X−jβ̂−j as an estimator

in section 4.4 and 4.5, with β̂ again chosen using AIC.

• The ramifications of treating H−j as fixed : Treating H−j as fixed even though

it contains the random elements sA and ‖β̂A‖1 will affect the accuracy of the

estimator. However, we note that the random elements pertain only to the size

of β̂ (the number of its nonzero elements and its L1 norm), not the coefficient

estimates themselves. The size of β̂ is controlled largely by λ, which is taken

to be fixed. It is possible, therefore, that the treatment of H−j as fixed will

not present major problems.

We will examine the impact of these issues upon FDR estimation in section 4.4.

4.3.2 Logistic regression

For logistic regression, π̂ is not a linear function of y. In order to apply the

approach here, we will therefore need to construct an approximate linear predictor.

Consider a Taylor series approximation of y − π̂ about β, the true value of the

regression coefficients:

y − π̂ ≈ y − π −WX(β̂ − β) (4.18)

where π is the true value of E(y) and W is a diagonal matrix with elements {πi(1−

πi)}. It is worth mentioning that for logistic regression, the intercept cannot be

eliminated from the objective functions as it can in linear regression; hence, in our

derivations of logistic regression, it is important to remember that X and β contain

entries for the intercept and therefore have p+ 1 elements.

Substituting this approximation into (4.7), we arrive at a set of approximate
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KKT conditions:

1

n
x′jW(z−Xβ̂) = λsign(β̂j) ∀ β̂j 6= 0, (4.19a)

1

n
|x′jW(z−Xβ̂)| ≤ λ ∀ β̂j = 0. (4.19b)

where z = W−1(y−π) + Xβ. Note that z here has the same form as the adjusted

response in the traditional quadratic approximation to model fitting and asymptotic

inference for logistic regression models. Letting r−j = z − X−jβ̂−j, we have the

familiar

1

n
|x′jWr−j| > λ ∀ β̂j 6= 0, (4.20)

1

n
|x′jWr−j| ≤ λ ∀ β̂j = 0, (4.21)

Starting from (4.19), we may follow the same approach as in section 4.3.1 to

obtain the relation β̂ = Sz as before, except with

S = M−1X′AW

and

M = X′AWXA + nλsAs
′
A‖β̂A‖−1

1 ,

where the first entry of sA here is zero, resulting from the unpenalized intercept.

If, as is done in traditional logistic regression, we treat z as following an

approximately normal distribution, and we again treat H−j = (XA)−jS−j as fixed,

then n−1x′jWr−j will follow an approximately normal distribution, with mean and

variance as follows:

µ̂j =
1

n
x′jW(I−H−j)Ê0(y) (4.22)

τ̂ 2
j = n−2x′jW(I−H−j)W

−1(I−H−j)
′Wxj, (4.23)

since E(z) = Xβ and Var(z) = W−1. The same issues will be present with this
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estimator as with the linear regression approach:

• Estimating Ê0(y)

• Estimating W

• The ramifications of treating H−j as fixed

However, with logistic regression, there is also another concern:

• The accuracy of approximation (4.18)

The estimation of Ê0(y) and W will again derive from the AIC-selected model for

the numeric results of section 4.4, in which the accuracy of the proposed approach

will be assessed.

4.4 Simulations

4.4.1 Accuracy

We begin by examining whether the estimators proposed in sections 4.2 and

4.3 provide accurate estimates of the true false discovery rate. We will test this by

simulating data sets from the following models:

yi =

p∑
j=1

xijβj + εi, where εi
iid∼ N(0, 1) (Gaussian) (4.24)

logit(yi) =

p∑
j=1

xijβj (binomial) (4.25)

The elements of the design matrix were generated from a standard normal

distribution: xij
iid∼ N(0, 1), while

βj =


1 if j ∈ {1, . . . , p1

2
}

−1 if j ∈ {p1
2

+ 1, . . . , p1}
0 otherwise,

(4.26)

where p1 denotes the number of features contributing to the outcome (i.e., the num-

ber of nonzero coefficients in the generating model). For the simulations presented
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below, p1 = 6, n = 100 for the Gaussian response and n = 200 for the binomial

response. Two values for p were considered (p = 50 and p = 500) in order to exam-

ine behavior in both low dimensional and high dimensional settings. Data sets were

independently generated 500 times and the estimated false discovery rates as well

as the true false discovery rate (proportion of features selected for which βj = 0)

as a function of λ were recorded. The smoothed average of these rates is plotted in

Figures 4.1 and 4.2.

As Figure 4.1 indicates, the heuristic approach seems to estimate the true

false discovery rate quite well for lasso-penalized linear and logistic regression in

both high- and low-dimensional settings. The estimated and true curves are rather

similar, and when discrepancy arises, the heuristic estimate is slightly conservative.

For the linear predictor approach, however, the agreement with the true FDR

is not as good. In order to separate the effect of estimating nuisance parameters from

the fundamental accuracy of the approach, we examine two forms of the estimator.

The first (“linear”) involves estimating σ2 and E0(y) as described earlier. The other

(“linear-true”) involves using replacing those quantities with their known values.

Clearly, the linear-true approach is not available in practice. Figure 4.2 illustrates

the performance of these approaches in estimating the FDR for the same data sets

as in Figure 4.1.

From the figure, it appears that while the linear approach performs well in

the low-dimensional Gaussian case, its accuracy in other settings is not as good as

the heuristic approach. For logistic regression cases, the linear predictor approach

produces very conservative FDR estimates, while for the high-dimensional Gaussian

case, it results in liberal estimates of the FDR at the key λ values where the true

FDR is close to 10%.

The linear-true approach is certainly more accurate than the linear approach,
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Figure 4.1: Simulation: Accuracy of FDR estimation for the heuristic approach.
In each panel, the response distribution and number of features are indicated in
strips at the top. The regularization parameter λ is on the horizontal axis, while
the true/estimated FDR is on the vertical axis. For each of the 500 independently
generated data sets, FDR estimation was carried out for 50 values of lambda. A
lowess curve was then fit to all the points and plotted.
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Figure 4.2: Simulation: Accuracy of FDR estimation for the linear predictor ap-
proach. In each panel, the response distribution and number of features are in-
dicated in strips at the top. The regularization parameter λ is on the horizontal
axis, while the true/estimated FDR is on the vertical axis. For each of the 500
independently generated data sets, FDR estimation was carried out for 50 values of
lambda. A lowess curve was then fit to all the points and plotted. The data sets
here are the same as those in 4.1, and thus the “true” line is the same in both plots.
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particularly for the high dimensional settings. However, the linear-true FDR es-

timates are rather inaccurate for the low dimensional binomial setting, indicating

that either (4.18) or the approximate normality of the adjusted response z is poor

in certain cases. Furthermore, it is the failure to estimate E0(y) accurately, not

σ2, that is the cause of this failure, as we can verify by replacing the estimates

with their known values separately (simulations not shown). Finally, we see that

the treatment of H−j as fixed leads to problems for heavily overfit models, as the

linear-true FDR estimates are far from the actual FDR for models in which λ is

small. Fortunately, however, the FDR estimates are conservative in these cases.

Although the linear predictor approach has merit, the inability to estimate

E0(y) well limits our ability to apply this approach in practice. Therefore, we

will consider only the heuristic estimator in the remainder of the simulations and

applications.

4.4.2 Lasso FDR vs. competing approaches

We now turn our attention to the merits of a lasso FDR-based approach to

feature selection in comparison with competing approaches. We consider lasso-based

approaches using AIC (Akaike, 1973) or BIC (Schwarz, 1978) to select the tuning

parameter λ as well as univariate approaches with the FDR controlled using the

Benjamini-Hochberg procedure (Benjamini and Hochberg, 1995).

As before, we will consider the generating model to be (4.24) for the Gaussian

response and (4.25) for the binomial response. However, we will now consider

correlated design matrices as well. In the correlated design, each feature for which

βj 6= 0 will be correlated with m features for which βk = 0 in the following manner:

xk = xj +
√

3Z,

where Z ∼ N(0, 1). This results in a correlation of 0.5 between the two features.
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Table 4.2: Simulation design: Number of causative, correlated, and spu-
rious features for each setting.

Dimension Features Causative Correlated Spurious Total

Low Uncorrelated 6 0 44 50

Low Correlated 6 12 32 50

High Uncorrelated 6 0 494 500

High Correlated 6 54 440 500

There will therefore be p1 “causative” features that contribute to the outcome, mp1

“correlated” features that are correlated with the outcome but only through their

mutual correlation with a causative feature, and p− (m+ 1)p1 “spurious” features

whose only association with the outcome is due to chance. For the low-dimensional

case, m = 2, while for the high-dimensional case, m = 9. The number of variables

in each category for the various simulation designs are summarized in Table 4.2.

As before, 500 data sets were generated independently for each combination of

response distribution, number of features, and design (correlated/uncorrelated). For

each data set, a lasso model was fit to the data and AIC/BIC/FDR used to select λ.

In addition, a (Wald) hypothesis testing procedure was carried out for each feature

individually in a one covariate linear/logistic regression model, with FDR used to

decide the significance level. The numbers of features of each type (“causative”,

“correlated”, and “spurious”) selected by the procedure were recorded. Note that

the uncorrelated design has no features in the “correlated” category. The results of

this simulation are shown in Figures 4.3 and 4.4.

We can draw a number of conclusions from Figures 4.3 and 4.4. First, the

FDR approaches are successful at limiting the fraction of selected features that arise

from spurious association. The fraction of the bar colored white is always small for

the FDR approaches, whereas a large portion of the features selected by AIC and
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Figure 4.3: Simulation: Causative and spurious features selected by various ap-
proaches (uncorrelated design). In addition to the lasso FDR approach (lFDR) and
FDR-controlled univariate hypothesis tests (uFDR), features were selected using
AIC and BIC to choose the lasso regularization parameter. For lFDR and uFDR,
the FDR threshold was set to 10%. In each panel, the response distribution and
number of features are indicated in strips at the top. The number of variables of
each type are stacked, with bars shaded by the type of feature selected: causative
features in black, spurious features in white. Each panel contains the averaged re-
sults of 500 independently generated data sets. Note that the total height of each
bar is the average number of features selected by each approach.
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Figure 4.4: Simulation: Causative, correlated, and spurious features selected by var-
ious approaches (correlated design). In addition to the lasso FDR approach (lFDR)
and FDR-controlled univariate hypothesis tests (uFDR), features were selected us-
ing AIC and BIC to choose the lasso regularization parameter. For lFDR and
uFDR, the FDR threshold was set to 10%. In each panel, the response distribution
and number of features are indicated in strips at the top. The number of variables
of each type are stacked, with bars shaded by the type of feature selected: causative
features in black, correlated features in gray, and spurious features in white. Each
panel contains the averaged results of 500 independently generated data sets. Note
that the total height of each bar is the average number of features selected by each
approach.
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BIC may be spurious. Second, univariate approaches are unable to distinguish be-

tween causative and correlated features, and thus select a large number of correlated

features. Third, in the settings considered here, an FDR of 10% is a more stringent

cutoff than BIC or AIC. Finally, the lasso FDR approach seems to be slightly more

powerful than the univariate FDR approach at selecting causative features, even

when the univariate FDR approach selects a much larger number of features.

4.5 Applications

4.5.1 Gene expression data

We now apply the FDR-regularized lasso methodology to applications in high-

dimensional biomedical research. First, we examine the gene expression study of

leukemia patients presented in Golub et al. (1999). In the study, the expression

levels of 7129 genes were recorded for 27 patients with acute lymphoblastic leukemia

(ALL) and 11 patients with acute myeloid leukemia (AML) (in the study, additional

samples were collected to form a testing set for prediction methods, but we will not

deal with the additional samples here).

Features were selected from the leukemia data set using t-tests to select differ-

entially expressed genes as well as using the lasso with λ chosen by FDR. For both

methods, logarithms of the expression levels were taken prior to model fitting. The

number of features selected by each method at three different FDR levels, as well

as the number of features in common, are presented in Table 4.3. No assumption

of equal variance was made for the t-tests.

From table 4.3, we can draw several conclusions. First, association with the

outcome conditional on the other variables in the model is clearly a much more strin-

gent criterion than marginal association with the outcome. Thus, the multivariate,

lasso-based approach selects far fewer features than the univariate, t-test approach.

However, the features selected by the lasso are contributing independently to the
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Table 4.3: Features selected at var-
ious FDR levels by t-test and lasso
approaches for a gene expression
study of leukemia.

FDR t-test Lasso In common

.01 165 4 4

.05 554 13 11

.10 898 13 13

outcome, whereas the features selected by the t-tests may be providing largely redun-

dant information. Second, as the FDR threshold is relaxed, the univariate approach

selects ever greater numbers of features. However, the lasso can never select more

than n features without the model ceasing to be identifiable. As a result, when

p� n, as the number of selected features becomes appreciable in size compared to

n, the false discovery rate increases rapidly while the number of selected features

remains relatively static. This sharp increase in the false discovery rate was also

observed in Figure 4.1. Lastly, the t-test approach fails to identify features chosen

by the lasso despite the t-test approach selecting hundreds of additional features.

In particular, at a false discovery rate of 5%, two of the 13 lasso-selected features

are not among the 554 most significant univariate results. Furthermore, of the 13

genes selected by the lasso at a 5% FDR, only 2 are among the 25 most significant

as selected by the t-test.

If the results of this gene expression study were used to select features, per-

haps to further investigate as biomarkers, obtaining the small set of features that

contribute independently to the outcome from the lasso FDR approach may be

preferable to the large set of possibly redundant features obtained from univariate

screening.
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Table 4.4: Number of features selected
at various FDR levels by univariate trend
test and lasso approaches for a genetic as-
sociation study of age-related macular de-
generation.

FDR Trend test Lasso In common

.01 2 1 1

.05 5 3 3

.10 5 3 3

4.5.2 Genetic association study

We also apply the lasso FDR approach to the genetic association study pre-

sented in Chapter 2. The data here is the same as that analyzed in section 2.5.

Again we compare the lasso-based approach with a univariate approach, here a

Cochran-Armitage linear trend test to reflect the categorical nature of the genetic

covariates. As in the previous section, the number of features selected by each

method at three at three different FDR levels, as well as the number of features in

common, are presented in table 4.4.

In sharp contrast to the leukemia gene expression study, in the genetic associ-

ation study, the lasso-based and multivariate approaches are largely in agreement.

The numbers of genetic markers selected by the two methods are similar, and all

the markers selected by the lasso approach were also identified by the univariate

approach. From these two examples, then, we see that depending on the situation,

FDR-guided feature selection may differ markedly between univariate and multi-

variate approaches, or the two approaches may be in close agreement.
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CHAPTER 5

SUMMARY

As the automated collection and storage of data becomes cheaper to obtain

and easier to implement, high-dimensional problems are becoming increasingly com-

mon. For these problems, traditional approaches to regression break down and new

methods are needed. Introducing additional information in the form of a penalized

objective function is an elegant, flexible, and practical approach for dealing with

these problems. However, penalized methods have been lacking in several areas,

three of which are addressed in this thesis.

First, there has been little work on incorporating specific prior covariate struc-

ture into penalized regression models. This is a particular problem in systems biol-

ogy, in which much is often known about relationships involving genes and genetic

markers prior to the study in question. Chapter 2 of this thesis deals with the incor-

poration of a specific type of structure: grouped covariates. I introduce a framework

that sheds light on the behavior of grouped penalization methods and apply these

methods to an important study design in modern genetics – genetic association stud-

ies. In addition, I develop a novel group penalty, group MCP, demonstrate that its

grouping assumptions are less severe than those of group lasso and group bridge,

and show that it performs better than those competing methods in situations with

substantial (> 50%) within-group sparsity.

Second, it is of crucial importance for high dimensional problems that algo-

rithms for fitting penalized regression models be as efficient as possible. In Chapter

3, I develop fast, stable algorithms for fitting models with complicated penalties,

such as group penalties. Importantly, I show these algorithms to require O(np)

computations and to decrease the objective function with every step, as well as

demonstrating their numerical efficiency compared with competing algorithms in a
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variety of simulations.

Third, and perhaps most importantly, meaningful inference has been limited.

Chapter 4 addresses this problem by applying the idea of false discovery rates to

penalized regression models. Through inspection of the Karush-Kuhn-Tucker con-

ditions, I demonstrate that penalized regression models involve a series of multiple

comparisons that can be used to define a false discovery rate. I propose two ap-

proaches to estimating these false discovery rates, investigate their accuracy, and

compare FDR-regularized model selection with competing approaches, demonstrat-

ing multiple attractive features of the proposed methodology.

As always, there is the possibility for much future work along these lines. As

illustrated in Chapter 2, group bridge, group MCP, and group lasso all have benefits

and drawbacks, with each method performing well in certain situations and not in

others. It would be desirable to develop a more robust method that performs well

across a variety of situations. Investigating false discovery rate estimation for penal-

ized regression models other than the lasso – in particular, for grouped penalization

methods – also warrants further study. Finally, comprehensive studies of the appli-

cation of penalized regression methods to specific applications would be extremely

valuable. One application of particular interest is genome-wide association studies,

where much study is needed regarding the impact of issues in genetics (such as

linkage, penetrance, and the genetic basis of the disease) upon the performance of

penalized regression and other approaches to analyzing these data.

In conclusion, the research described in this thesis, in addition to being valu-

able in and of itself, lays the foundation for future analyses of high-dimensional

data in which we can propose complex penalties that incorporate prior understand-

ing and specific covariate structure, fit such models efficiently, and obtain useful

and intuitive inferential measures.
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