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using the same argument for the fact that (c.v1, s) ∈ T . We can deduce that

(c.v3, c.v2) /∈ T and (c.v4, c.v1) /∈ T (because paths {c.v4, c.v1, s, r} and {c.v3, c.v2, s
′, r}

contain an edge having weight less than 0). So (c.v4, c.r) ∈ T and (c.v3, c.r) ∈ T .

Otherwise, (if c does not contain an positive literal s′ such that t(s′) = true),

(c.v2, c.r) ∈ T so that c.v2 is stable. So (c.v3, c.v2) ∈ T and (c.v3, c.v4) ∈ T .

Second, assume that there exists a stable tree T in G for metric w. From this

stable tree T , we construct an assignment t that satisfies all clauses of C. We consider

an element c = (s, s′, s′′) ∈ C.

Let us first notice that the maximun flow path according to w1 in G from c.r

to r is (c.r, r). This permits to deduce that for every c ∈ C, (c.r, r) ∈ T . Assume now

that the two paths from c.v1 to r and from c.v2 to r in T contain only nodes c.v1,

c.v2, c.v3, or c.v4. Then, by construction of G, to cover nodes c.v1, c.v2, c.v3, c.v4, c.r,

the spanning tree T must use a subset of the edges of the complete graph induced by

the set of nodes {c.v1, c.v2, c.v3, c.v4, c.r}. This brings us back to the case of Fig 4.1

where there exists no stable spanning tree. This contradicts the fact that the two

paths from c.v1 to r and from c.v2 to r in T contain only nodes c.v1, c.v2, c.v3, or c.v4.

Thus, this implies that there exists a literal s of clause c

1. such that the path from c.v1 to r is in {c.v1, s, r} if s is a negation of a variable

z (s = z).

2. or such that the path from c.v2 to r is in {c.v2, s, r} otherwise.

Without loss of generality, assume the path from c.v1 to r in T includes s. This
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path does not include s (otherwise, {c.v1, s, s, r} would have a weight of 6 whereas

{c.v1, c.r, r} would have a weight of 7). In this configuration, node c.v1 is not stable

in T . Thus, (s, r) ∈ T and (s, s) ∈ T . We now present the assignment t : U →

{true, false}, such that for each variable s ∈ U , t(s) = true if and only if (s, r) ∈ T .

From the previous remark, we deduce that t satisfies all clauses in C.

4.6 A Sufficient Condition for Stable Tree

Theorem 10. Let G = (V, E) be a graph and r be a node of V . Let P be a partition

of V with 2 elements V1 and V2, and such that V1 contains exactly one node x. Let w

be a function on E → N2. There always exists a stable tree T in G for metric w.

Proof. If x = r, we fall back to the known case of the construction of a maximum

flow spanning tree with metric w2. In the sequel, we assume that x 6= r. The theorem

is proved by induction on the degree d of x.

If d = 1, every maximum flow tree using metric w2 is a stable tree since x has

exactly one incident edge.

Suppose now that the theorem is true for any graph where the degree of x is

(strictly) lower than d. Let z1, . . . , zd be the neighbors of x. Let pcci be a maximum

flow path between x and r including zi according to metric w2. For simplicity, we

assume neighbors are sorted by decreasing values of w2(pcci). Let us now consider

the graph G1 that is constructed in the following way:

• V (G1) = V (G), E(G1) = E(G) \ {(x, z1)}

• ∀e ∈ E(G1), w′(e) = w(e)
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By induction hypothesis, there exists a stable tree T 1 in G1 according to metric

w′. Suppose that T 1 is not stable in G according to metric w. By definition of w′

and G1, only x may not be stable. Thus, we have:

min(w1((x, z1)), w1(T
1
z1→r)) > w1(T

1
x→r)

Consider T that is a copy of T 1 except that the parent of x is z1. Now, x

is stable in T . We now prove that T is stable in G according to metric w. Let

Y = V ∩ {y : x ∈ T 1
y→r}. First, every node in V \Y is stable. Now consider a node

y ∈ V2 ∩ Y . Let t be the neighbor of y that belongs to the path T 1
y→r. Now, y is

stable in G1 for metric w′ (since x 6= y), so we get:

∀s ∈ Γ(y)\{t}, w2(T
1
y→r) ≥ min(w2(T

1
s→r), w2((s, y))) (4.1)

By definition, we have:

w2(Ty→r) = min(w2(T
1
y→x), w2((x, z1)), w2(T

1
z1→r)) (4.2)

The path T 1
z1→r connecting r to z1 and belonging to T 1 is a maximal flow path

according to metric w2 since there exists a maximal flow path from r to w1 according

to metric w2 whose nodes all belong to V2. Then, by definition of pcc1 which is a

maximal flow path from x to r through z1, we have:

min(w2(T
1
z1→r), w2((x, z1))) = w2(pcc1) (4.3)

Combining Equations 4.2 and 4.3, we obtain:

w2(Tw→r) = min(w2(T
1
w→x), w2(pcc1)) (4.4)
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By definition, ∀zi ∈ ΓG(x), we have w2(pcci) ≤ w2(pcc1). Combining the

previous remark and Equation 4.4 gives:

w2(Ty→r) ≥ min(w2(T
1
y→x), w2(pcci)) (4.5)

w2(Ty→r) ≥ min(w2(T
1
y→x), w2(T

1
x→r)) (4.6)

w2(Ty→r) ≥ w2(T
1
y→r) (4.7)

Combining Equations 4.1 and 4.7, we deduce that y is stable in tree T for

metric w. Thus, T is stable in G for metric w. This concludes the proof.

Theorem 11. Let G = (V, E) be a graph and r a node of V not containing a dispute

wheel. Let P be a partition of V with two elements V1 and V2, and such that V1

contains two nodes x1 and x2. Let w be a function on E → N2. There always exists

a stable maximum flow spanning tree T in G for metric w.2

Proof. Without loss of generality, we assume that r ∈ V2. We prove the theorem by

constructing a sequence of spanning trees. First, we introduce some notations :

• br(z, T ) = maxx∈ΓG(z)(min(wi(x, z), wi(Tx→r))).

• BR(z, T ) = argmaxx∈ΓG(z)min(wi(x, z), wi(Tx→r)).

where z is a vertex belonging to Vi and T is a spanning tree of G.

Node x1 has d neighbors in G denoted by z1
1 , . . . , z

1
d. We prove by induction

on d that there exists a stable tree T in G for metric w.

2This theorem was proved with help from Johanne Cohen and Sébastien Tixeuil
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If d = 1, it is sufficient to compute the stable tree T in G ⊂ {x1} using metric

w (there exists such a tree by Theorem 10). Then, the edge incident to x1 is added

to T . Such a tree is stable in G for metric w.

Suppose now that the theorem is true for any graph where x1 has degree

(strictly) less than d. Let z1
1 , . . . , z

1
d be the neighbors of x1. Consider now the graph

G1 that is constructed in the following way:

• V (G1) = V (G) and E(G1) = E(G) \ {(x1, z
1
1)},

• ∀e ∈ E(G1), w′(e) = w(e)

By induction hypothesis, there exists a stable tree T (1) in G1 according to metric w′.

We prove the induction step by contradiction : all spanning trees T are not

stable in G according to metric w. So by assumption, T (1) is not stable in G according

to metric w. So we get:

min(w1((x1, z
1
1)), w1(T

(1)

z1
1→r

)) ≥ w1(T
(1)
x1→r) (4.8)

Consider T
′

, that is a copy of T (1) except that the parent of x1 is z1
1 . Now, x1

is stable in T
′

.

min(w1(T
(1)
z→r), w1(z, x1)) > w1(T

(1)
x1→r) (4.9)

Since vertices x1 and x2 belong to V1, x2 is also stable. By hypothesis, since

no tree is stable, some vertices in V2 are not stable: only neighbors of x1 may be not

stable in T
′

. And, vertex y in V2 which is not stable in T
′

is such that x1 ∈ T
(1)
y→r and

hence x1 ∈ T
′

y→r.
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We transform tree T
′

into tree T (2) such that

• all vertices in V2 will be stable,

• x2 has the same parent in T (2) as in T
′

Let U ⊆ ΓG(x1) be a set of unstable vertices in T
′

. We consider a vertex v such

that ∀y ∈ U , br(v, T
′

) ≥ br(y, T
′

). Tree T
′

is modified so that a vertex of BR(v, T
′

)

is a father of v. In this new tree, only neighbors of x1 or of v belonging to V2 can not

be stable. This modification can be performed with an other vertex not stable, and

so one until all vertices in V2 are stable.

By hypothesis, tree T (2) is not stable, hence the following properties are satis-

fied:

1 only x2 is not stable,

2 T
′

x1→r = T
(2)
x1→r (because all vertices in V2 are stable in T

(1)
x1→r.

The fact that x2 is not stable in tree T (2) is due to the following observations:

Case 1: w2(T
′

x1→r) > w2(T
(1)
x1→r). So it implies that there exists vertex y1 in

V2 such that T
(2)
y→r 6= T

′

y→r and such that there exists z ∈ BR(x2, T
(2)) with

y1 ∈ T
(2)
z→r.

Case 2: w2(T
′

x1→r) < w2(T
(1)
x1→r). So it implies there exists vertex y1 in V2 such

that T
(2)
y1→r 6= T

′

y1→r and such that y1 ∈ T
′

x2→r.

Case 1: Assume that y1 ∈ V2 is such that T
(2)
y1→r 6= T

(′)
y1→r and such that there exists

z ∈ BR(x2, T
(2)) with y1 ∈ T

(2)
z→r.
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From Property (2) of tree T (2) and from the definition of y1, we get

min(w2(T
(1)
y1→x1

), w2(T
(1)
x1→r)) ≥ w2(T

(2)
y1→r) (4.10)

min(w1(T
(2)
x2→z), w1(T

(2)
z→r)) ≥ w1(T

(2)
x2→r) (4.11)

We now build a tree T
′′

from T (2) such that x2 is stable : tree T
′′

is a copy of

T (2) except that the parent of x2 is z. Vertex x2 is stable in T (2).

Note that we build a sub-graph of G corresponding to a dispute wheel such

that y1 (resp. x2) is uj (resp. uj+1) with j 6= 0. Now, it remains to find which vertex

corresponds to vertex u0.

By definition T
′′

is not stable and x1 and x2 are stable. Tree T
′′

can be

transformed into tree T (3) so that all vertices in V2 were stable. We transform this

tree using the same way as we transform tree T
′

into T (2). So, for any vertex y in V2

unstable in T
′′

, we have

w2(T
(3)
y→r) > w2(T

′′

y→r) (4.12)

Using the same arguments as previously, only x1 is not stable in T (3). We will consider

two cases:

Case 1.1: w2(T
′′

x2→r) < w2(T
(2)
x2→r)

Case 1.2: w2(T
′′

x2→r) > w2(T
(2)
x2→r)

Note that the case where w2(T
′′

x2→r) = w2(T
(2)
x2→r) is impossible. If it is the

case, T
′′

would be stable. So there is a contradiction with the fact that all trees are

not stable.
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Case 1.1: Assume that w2(T
′′

x2→r) < w2(T
(2)
x2→r). By definition, all unstable vertex y

in T
′′

are V2 such that x2 ∈ T
′′

y→r and hence x2 ∈ T
(2)
y→r. So we can deduce that for

any unstable vertex y in T (2),

min(w2(T
(2)
y→x2

), w2(T
(2)
x2→y1

), w2(T
(2)
y1→r)) >

min(w2(T
′′

y→x2
), w2(T

′′

x2→r))

Hence, we get:

w2(T
(3)
y1→r) > min(w2(T

′′

y→x2
), w2(T

′′

x2→r))

Since x1 is not stable in T (3), there is y2 ∈ (T
′′

x1→r) such that y2 is not stable in

T
′′

. In other words, there is z ∈ BR(x1, T
(3)) such that min(w1(T

(3)
x1→z), w1(T

(3)
z→r)) >

min(w1(T
(3)
x1→y1), w1(T

(3)
y1→r)). By definition of stable node in T (1) in graph G1, we have

w1(T
(1)
x1→r) = min(w1(T

(3)
x1→z), w1(T

(3)
z→r))

In fact, G contains a dispute wheel where y2 corresponds to u0 of size 4. This

fact contradicts with the fact that G does not contains a dispute wheel. We can

conclude that this case is impossible.

Case 1.2: Assume that w2(T
(2)
x2→r) < w2(T

′′

x2→r).

Since x2 is not stable in T (2), we have:

min(w1(T
(′′)
x2→y1

), w1(T
(2)
y1→x1

), w1(T
(2)
x1→r))

> w1(T
(2)
x2→r)

Since x2 is stable in T (1), we get:

w1(T
(2)
x2→r) > min(w1(T

(′′)
x2→y1

), w1(T
(1)
y1→r))



73

In fact, G contains a dispute wheel where x2 corresponds to u0 of size 4. This

fact contradicts with the fact G does not contains a dispute wheel. We can conclude

that this case is impossible.

Case 2: These cases are also impossible. This fact can be shown by applying the

same arguments as previously. So, all cases are impossible. So there is a contradiction

with the fact that all spanning trees are not stable for metric w in G.

Theorem 12. If G contains no dispute wheel, there exists a stable maximum flow

tree.

Proof. The theorem is proved by induction on the cardinality α of V1. The case when

α = 2 corresponds to Theorem 11 and for the inductive step can be shown using the

same method in the proof of Theorem 11.

4.7 Different Types of Equilibria in the System

Note that there is a difference between the existence of an equilibrium and

the prospect of stabilization. In some settings, equilibrium may exist but the sched-

uler may choose actions to prevent the system from stabilizing, as we demonstrate

in subsequent sections. Obviously only configurations that enable the existence of

equilibria are relevant for executing algorithms whose purpose is to find them. We

categorize the diffrent equilibria scenario below:

1. No equilibrium: Figure 4.1 is an example where there exists no equilibrium

in the system.
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2. Single rooted equilibrium: Figure 4.7 is an example where there exists ex-

actly one rooted equilibrium in the system.

3. Single non-rooted equilibrium: Figure 4.5 is an example where there exists

exactly one non-rooted equilibrium in the system, comprising of all the nodes

except the root and the outer edges of the graph.

4. More than one rooted equilibrium: Multiple equilibria are also feasible in

a system. Figure 4.3 shows an example where cleverly chosen weight configu-

rations lead to multiple equilibria.

5. Rooted and non-rooted equilibria: There can be two equilibria in a system,

one with the root and another without the root. Figure 4.4 shows an example.

The four nodes except the root can constitute an equilibrium when their parent

pointers do not point to the root but point to the next outer node and thus

form a cycle, whereas if all the nodes except the root choose the root as their

parent, then the system stabilizes to a rooted equilibrium.

4.8 Weak Stabilizing Algorithm for Maximum Flow Tree

All nodes in V have a common goal and a private goal. The common goal

is as follows: starting from an arbitrary initial configuration, they collaborate with

one another to form a maximum flow tree with a given node designated as the root.

The private goal of each node is to maximize its flow value without violating the

flow constraints i.e., a node cannot push an amount of flow that is greater than its
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v1

v2 v3

v4

r

5, 2

5, 3

5, 3

5, 2

5, 3

3, 5 5, 3

3, 5

3, 5

5, 2

3, 5

5, 2
v1

v2 v3

v4

r

3, 5

3, 5

3, 5

3, 5

5, 3

3, 5 5, 3

3, 5

3, 5

5, 2

3, 5

5, 2

Figure 4.3: The two graphs are the same as their edge costs are the same. But it is
to be noted that the equilibria in the two cases are different as the flow values of the
nodes are different. So multiple equilibria are possible with the same setting.

parent’s flow value or the capacity value of the edge that joins it to its parent.

We assume that each node i is aware of N(i), the set of its neighbors (excluding

i itself). Similarly, each node i is aware of the cost of each of its adjacent edges

e = (i, j) : j ∈ N(i). The cost of an edge e is a vector

w(e) = (w1(e), w2(e), w3(e), . . . , wp(e))

where wk(e) denotes the cost of the edge e for a node of color k (1 ≥ k ≥ p).

Also, i maintains two variables: π(i) and flow(i). The variable π(i) denotes

the parent of i in the maximum flow tree. By definition, for the root node r, π(r)

is non-existent. Every other node picks a neighboring node as its parent (i.e. the

domain of the π(i) variable is NG(i)). The variable flow(i) denotes the vector

flow(i) = (flow1(i), f low2(i), f low3(i), . . . , f lowp(i))

where flowk(i) denotes the flow for a node of the kth color from node i to the root.

By definition, flow(r) = maximum capacity values for each color.
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b

r

x a
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1,1

1,1

1,1

1,1

1,1

1,1 1,1

1,1

Figure 4.4: Two equilibria - one with the root, the other without the root

b

r

x a

y

1,1

1,1

1,1

1,1

2,2

2,2 2,2

2,2

Figure 4.5: Single non-rooted equilibrium
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The algorithm has three rules, executed by all the nodes except root r, when

the guard of a node becomes true. These combined rules are able to find an equilib-

rium from configurations where there exists at least one equilibrium. Note that an

equilibrium configuration may exist without the root node (See Figure 4.4).

Our flow algorithm is weakly stabilizing in the sense, in configurations described

above for multiple equilibria, it may happen that the algorithm terminates without

finding the rooted maximum flow tree equilibrium, which is the desired solution.

Rather the algorithm may get stuck to the other equilibrium configuration which is

the non-rooted equilibrium. But weak stabilization implies that there exists at least

one computation that leads the system to the rooted maximum flow tree equilibrium

configuration. So even though some action sequences will fail to find the desired

solution, there is at least one action sequence which will be able to find the rooted

maximum flow tree equilibrium.

The algorithm has three rules, for every node i 6= r. When the guard of node

i of color k is true, it applies the following three rules in order:

R1 i of color k chooses a parent j from a set of nodes in its neighborhood such

that i can push the maximum flow, provided i is not the parent of j. This

parent-check condition is necessary to break short two-edge cycles where two

neighboring nodes think each is other’s parent.

R2 If i has only one neighbor j, then j becomes i’s parent. This ensures the

algorithm includes every node in the final maximum flow tree.
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Algorithm 4.1 The Maximum Flow Tree Algorithm

R1 fix parent(ik) ≡ π(ik) = j ∈ NG(ik) ∧ ik 6= π(j) ∧ NG(ik) >

1: {min [capk(i, j), f lowk(j)]}, k ∈ C

R2 fix parent(ik) ≡ π(ik) = j ∈ NG(ik) ∧ ik 6= π(j) ∧ NG(ik) =

1: {min [capk(i, j), f lowk(j)]}, k ∈ C

R3 fix flowk(i) ≡ flowk(i) = min (flowk(π(i), capk(i, π(i))) , k ∈ C

R3 R3 means i adjusts its flow value after choosing its parent.

Fig 4.6 is the redrawing of Fig 4.1 to show how in case where there exists no

equilibrium in the system; the algorithm, as expected, continues forever. The fact

that one can always apply one of the last three rules at one or more nodes of Z after

the first two rules makes the system oscillate forever.

The three set of numbers against each node denotes the flow values of that

node for white and black colors respectively. It is to be noted that if we start with

arbitrary initial values of the nodes (we chose 9, 9 for convenience, but it could be any

value), and let the scheduler choose any node whose guard is true, then the parent

pointer for each node continually keeps changing. As a result, the flow values of each

node also oscillates forever. In the above example, we choose the repetitive pattern of

execution sequence v2, v3, v4, v1, v2, v3, v4, v1 ... to illustrate this. The x sign against

an edge denotes at some point of the execution, it was (and again will be in the

future) the parent and the last two flow values of each node denote the perpetual flow
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v1

v2 v3

v4

r

9, 9
6, 9
9, 7

9, 9
7, 0
9, 7

9, 9
9, 1
6, 7

9, 9
9, 0
7, 9

7, 9

9, 7 7, 0

×

9, 1

×

6, 9 ×

9, 7

6, 7

9, 0

×

Figure 4.6: The graph Z with 5 nodes. Every node’s initial flow value is (9,9).
After rule 1) and 2) are applied, the repetitive pattern of execution sequence
v2, v3, v4, v1, v2, v3, v4, v1 ... makes the system oscillate forever. There is no equi-
librium for the above system no matter how the scheduler chooses the sequence of
actions.

values of that particular node. For example, when v2 chooses r as its parent, its flow

value is given by 9, 7 but when it chooses v1 as its parent, its flow value is 6, 9. This

is true for the other nodes too except the root.

Fig 4.7 shows an instance of equilibrium applying the algorithm in a different

system where equilibrium exists.

4.9 Proof of Correctness

Theorem 13 (Partial Correctness). Let G = (V, E) be a graph and r a node of V .

Let P be a partition of V with p elements. Let w be a function on E → Np. If no

node has enabled rules and there is a single rooted equilibrium, the structure induced

by the parent variables of each node induces a stable tree T rooted at r for metric w.

Proof. It is easy to show that the induced structure is a tree. Due to the fact that



80

v1

v2 v3

v4

r

3, 4
5, 1
4, 6

2, 2
5, 3

2, 5
6, 3

6, 9
2, 3

6, 96, 1

4, 6 3, 3

6, 3

5, 1 ×

2, 1

5, 4

2, 9

Figure 4.7: Example of the algorithm finding the equilibrium in a system. In the
above graph, the execution sequence is v3, v4, v2, v1, v2. After five moves, stabilization
is achieved. We chose some arbitrary initial flow values for the nodes to begin with
(which are (6, 9); (3, 4); (2, 2); (2, 5) respectively for v1, v2, v3, v4). The x against an
edge between v2 and v1 indicates that v2 initially chose v1 as its parent but later
changed its parent. The updated flow values of the nodes are written against each
node.

the parent variables always point to a neighbor (except r), the structure consists of

either a tree or a connected component consisting of a tree and a set of circuits.

Assume for the purpose of contradiction that there exists at least one such circuit.

As w only has costs in N , all flow values of nodes are strictly positive. As no rule is

enabled, this implies that all flow values are OK, and thus each flow value is either

equal or less than the flow value of the parent. Due to the well founded property of

the“lower than” relation on (positive) integers, such a circuit is impossible. Hence,

by contradiction we infer that the induced structure is a tree.

Now, we prove that the obtained tree T is stable for metric w. As no rules are

enabled, this means that the flow variables are all properly computed from the local

metric information. By induction on the flow path to the root r, this means that the
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flow variables contain the correct values for the cost of every path towards the root

according to metric w. Now, the parent changing rules are also not enabled. This

implies that the parent variables are actually selecting the best neighbor according to

the color k of node i ∈ Vk. This best neighbor being selected according to the metric

w, we conclude that the tree T that is induced by the parent variables is a stable tree

for metric w.

Theorem 14. Let G = (V, E) be a graph and r a node of V . Let P be a partition of

V with p elements. Let w be a function on E → Np. If there exists a configuration

where the parent variables induce at least a single maximum flow tree to the root, then

there exists an execution of the flow algorithm that leads to the maximum flow tree

configuration with a central demon.

Proof. Let us consider the execution of different rules of the algorithm. R3 does flow

adjustment, so nothing in terms of parent selection alters for applying this rule.

Now let us assume all nodes that have their fix flow (R3) rule enabled execute

it, and that nodes that have their parent fixing rule don’t execute it. Since the π

variables induce a tree to the root, only a fixed number of fix flow can be executed.

If in this configuration, no node has a rule to execute, the configuration is terminal.

Otherwise, this means that there exists at least one node that is willing to change

its parent. When one node changes its parent, there exists an execution in which

all nodes in its subtree update their flow value and no other parent fixing rule is

executed. By the acyclic nature of the tree, there is a finite number of such moves.

The only configuration where repetition can persist in the system is where there
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are equilibria in the system without a tree configuration. Then the acyclic property

will not hold anymore and R1 can lead the system to a non-rooted equilibrium which

involves dispute wheels. Otherwise, following the argument above, we can conclude

that R1 always finds the rooted maximum flow tree if there exists at least one such

tree in the system.

It is to be noted that R2 does not anyway conflict with finding the rooted tree

equilibrium configuration. If there is a node whose only neighbor is the root, then

the root is selected as the parent. Otherwise the node in question is a leaf node and

applying R2 just ensures that all nodes are included in the final maximum flow tree.

Hence there exists a configuration where the π variables induce at least a

single maximum flow tree to the root implies that there exists an execution of the

flow algorithm that that leads to the maximum flow tree configuration with a central

demon.

Theorem 15 (Weak Stabilization). Let G = (V, E) be a graph containing no dispute

wheel and r a node of V . Let P be a partition of V with p elements. Let w be a

function on E → Np. The flow algorithm is weakly self-stabilizing for the stable tree

construction problem according to metric w.

Combining the results from Theorem 13 and Theorem 14, we get the result

of the above theorem. Weak stabilization is in contrast with traditional stabilization

(call it strong stabilization) that allows the demon to pick an arbitrary process with

an enabled guard, and schedules its action. Strong stabilization requires that all

computations starting from an arbitrary configuration lead the system to an equilib-



83

v1

v2 v3

v4

r

6, 0

6, 0

6, 0

6, 0

9, 1

7, 9 9, 7

7, 7

9, 0

6, 9

9, 0

6, 7
v1

v2 v3

v4

r

7, 9

9, 1

9, 7

7, 7

9, 1

7, 9 9, 7

7, 7

9, 0

6, 9

9, 0

6, 7

Figure 4.8: An example to show that a synchronous demon can play the role of an
adversary and the configurations can repeat forever. If all the four nodes simultane-
ously make moves, then the two configurations alternately repeat. It is to be noted
there is an equilibrium in the above system though, which is reachable using a central
demon from the first configuration, with the execution sequence v3, v4, v1, v2.

rium configuration. Of course, our (weakly) self-stabilizing solution does not exclude

the existence of (strongly) self-stabilizing solutions, but proving the existence of such

solution is an open question.

Observation 7. Stabilization may not be feasible if at the same time, more than one

process make moves i.e., a synchronous demon can play the role of an adversary and

the configurations can repeat infinitely (see Fig 4.8).

4.10 Discussions

The paradigm of selfish stabilization can easily be extended in several ways.

First, it can easily be extended to systems involving more than two competing groups,

in the extreme case, each process caring for itself and no one else. Second, the metrics

used here - simple additive metric and strictly monotonic metric could be replaced

by some suitable other metric.
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CHAPTER 5
PROBABILISTIC FAULT-CONTAINMENT

5.1 Introduction

Research on fine tuning stabilization properties has received attention for more

than a decade. This chapter addresses the problem of fault-containment, and presents

a probabilistic algorithm for the persistent-bit protocol. The algorithm confines the

effect of any single fault to the immediate neighborhood of the faulty process, with

an expected recovery time of O(∆3), where ∆ is the maximum degree in the network

- while guaranteeing eventual recovery from arbitrary initial configurations.

We follow the general computational model for fault-containment described in

chapter 2. A basic problem for state-corrupting faults is the persistent-bit problem:

how to maintain the value of a single bit across a network of processes, when state

corruption occurs. Formally, the problem is defined as follows: each node i maintains

an externally observable output bit v(i). In a legal configuration LC ≡ ∀i, j : v(i) =

v(j). Failures can corrupt the value of v, but a stabilizing system must guarantee

that a legal configuration is eventually restored.

5.2 Contributions

Our solution to the persistent-bit protocol is weakly fault containing with a

randomized scheduler. Weak fault-containment means that from all single failures,

the expected recovery time of the transformed version is dependent only on the degree

of the nodes, and independent of the network size. Furthermore, observable changes
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are confined to only the immediate neighbors of the faulty processes with a high

probability. In addition to the weak fault-containment property, the system recovers

from all k-faulty (k > 1) configurations in an expected number of O(k.n) steps for an

array of n processes.

Why should anyone care about an algorithm that allows the neighbors to be

contaminated, when better solutions are available [25]? The answer lies in the small

fault-gap. Once a fault-containing system recovers from a single failure in constant

time, the fault-gap means how much time will elapse before the system becomes ready

to recover from the next single failure with the same efficiency. The dramatic growth

of the network size raises the probability of failures, and many solutions to fault-

containment that we know of achieve a fault-gap of O(n) or worse. As a result, when

two single faults occur relatively quickly, the system fails to provide the guarantee of

efficient recovery, and in fact the second single failure may require O(n) (or higher)

time for recovery depending on the problem to be solved. This seriously undermines

the availability of the fault-free system. Our solution guarantees that the fault-gap

depends only on the degree of the nodes, and is independent of the size of the network.

This will significantly increase the availability of the fault-free system. In fact, our

solution handles the recovery from simultaneous failures at nodes that are distance-3

or more apart with the same efficiency, as long as such failures occur at intervals of

O(∆3) or higher.
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5.3 Persistent-bit Protocol

For the sake of exposition, we consider the case of persistent-bit protocol, in

which a set of processes maintains the value of a replicated bit v ∈ {0, 1} across a

connected network. There are two distinct legal configurations: all 0’s or all 1’s. The

following protocol is weakly stabilizing:

Algorithm 5.1 Persistent-bit protocol: Program for process i

A1 do ∃j ∈ N(i) : v(j) 6= v(i) → v(i) := v(j) od

Note. With a deterministic demon, it is easy to verify that the protocol is not

stabilizing. With a weakly fair scheduler and a randomized demon, the protocol

stabilizes to a legal configuration with probability 1, but it is not fault containing.

Therefore in the next section, we present a probabilistic approach to make the protocol

fault containing.

Lemma 4. The persistent-bit protocol is not fault-containing with a randomized de-

mon.

Proof. Consider a linear array of processes numbered 0, 1, . . . , n−1 from left to right,

and assume that initially ∀i : v(i) = 1 holds. Let a failure of process 0 change v(0) to 0.

With this as the starting state, the computation can be reduced to a run of gambler’s

ruin1: whenever a process with v = 0 executes an action, the boundary between the

1The original study is by Coolidge[32] in 1909, where he showed that if two gamblers



87

dissimilar values of v shifts to the left, and whenever a process with v = 1 executes an

action, the boundary moves to the right. The game is over when the system reaches

LC, and per [32] the expected number of moves needed is (1 × n − 1), i.e. O(n).

Thus, the protocol is not fault-containing.

5.4 Probabilistic Algorithm for Fault-Containment

To make the protocol fault-containing, we add to each process i a secondary

variable x(i) whose domain is the set of non-negative integers. In a way, x(i) will

reflect the priority of process i in executing an action to update v(i). Process i will

update v(i), when the following three conditions hold:

1. The randomized scheduler chooses i,

2. ∃j ∈ N(i) : v(j) 6= v(i), and

3. ∀j ∈ N(i) : x(i) ≥ x(j).

After updating v(i), process i will increase x(i) to max {x(j) : j ∈ Ni} + m,

where m > 0. In case only the first two conditions hold, but not the third, process i

will increment the value of x(i) by 1, and leave v(i) unchanged. Algorithm 5.2 shows

the modified protocol:

Observe that once a process i updates v(i), it becomes difficult for its neighbors

to change their v-values, since their x-values will lag behind that of i. The larger is

start with capitals of x and N −x, and each fair coin toss transfers a dollar from one to the
other depending on the outcome of the toss, then the expected number of steps to finish
the game is x.(N − x).
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Algorithm 5.2 Probabilistic fault-containing algorithm: Program for process i

A1 ∃j ∈ N(i) : v(j) 6= v(i) ∧ ∀k ∈ N(i) : x(i) ≥ x(k) → v(i) := v(j); x(i) :=

max{x(k) : k ∈ N(i)} + m

A2 ∃j ∈ N(i) : v(j) 6= v(i) ∧ ∃ k ∈ N(i) : x(i) < x(k) → x(i) := x(i) + 1

A3 ∀j ∈ N(i) : v(j) 6= v(i) → v(i) := v(j)

the value of m, the greater is the difficulty. A neighbor j of i will be able to update

v(j) only if it is chosen by the random scheduler m times, without choosing i even

once. On the other hand, it becomes easier for i to update v(i) again in the near

future.

Failures can not only corrupt v, but also corrupt x. Assume that LC ≡ ∀j :

v(j) = 1, a single failure at process i changes v(i) to 0, and x(i) to some unknown

value. If ∀j ∈ N(i) : x(i) > x(j) then process i is likely to change its v(i) soon again.

As a result, the fault is contained in a small number of steps, and the contamination

number is one. However, a smart adversary injecting the failure at process i is likely

to set x(i) to the smallest value (i.e. 0). This makes the neighbors of process i better

candidates for changing their v, before process i executes a move to complete the

recovery. However, it also raises the x-values of these neighbors of i above those of

their neighbors. In order that the fault percolates to a node at distance-2 from the

faulty process i, such a distance-2 node has to be chosen by the scheduler at least

m times, without choosing its neighboring distance-1 node even once. With a large
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value of m, the probability of such an event is very low. This explains the mechanism

of containment. In the mean time, the condition ∀j ∈ N(i) : v(j) = 1 is likely to hold

several times. If on one such occasion the faulty process is chosen by the random

scheduler (the third action, note that its guard does not depend on x) then v(i) will

change to 1, and the recovery will be complete.

5.5 Results

We begin with an analysis of the spatial containment. Assume that all nodes

have a degree ∆. Then the following theorem holds:

Theorem 16. As m → ∞, the effect of a single failure is restricted to only the

immediate neighbors of the faulty process.

Proof. Suppose the faulty process has n1 neighbors and the contaminated process has

n2 neighbors that are distance-2 neighbors of the faulty process. The probability that

a distance-2 neighbor is contaminated is largest, when only one distance-1 process is

contaminated, then only one neighbor of that contaminated distance-1 process (which

is a distance-2 neighbor of the faulty process) is contaminated. The probability of

one distance-1 neighbor being contaminated is n1

n1+1
. To contaminate a distance-2

neighbor, the scheduler must select the specific process m times. So the probability

of one distance-2 neighbor being contaminated is 1
(n1+n2+1)m . Therefore, after a node

becomes faulty, the probability that some distance-2 neighbor of the faulty process

becomes contaminated is n1

n1+1
×n2×

1
(n1+n2+1)m . By choosing a large value of m, this

probability can be made as small as possible.
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Figure 5.1: Each node is a state corresponding to the size of the faulty region, and the
label on each edge represents the probability of the corresponding state transition.

Theorem 17. If ∆ << m then the expected number of steps needed to contain a

single fault is O(∆3).

Proof. Assume m (or M for the bounded solution presented later) is very large, so

the error is unlikely to propagate to the distance-2 neighbors of the faulty process.

In such a scenario, it is sufficient to consider the case when the error propagates to

the immediate neighbors of the 1-faulty process. The state transfer diagram showing

the transitions among various faulty configurations is shown in Figure 5.1.

As the error will propagate at most to the immediate neighbors, the system

can have at most ∆+1 errors. We use pi,j to denote the probability that the number
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of the errors changes from i to j. So the probabilities are listed below:

p1,0 =
1

∆ + 1
(5.1)

p2,1 =
1

2∆
(5.2)

p2,2 =
∆

2∆
(5.3)

p1,2 =
1

∆ + 1
(5.4)

and for 3 ≤ i ≤ ∆− 1

pi,i+1 =
i

(∆ + 1) + i(∆− 1)
(5.5)

pi+1,i+1 =
1 + i(∆− 1)

(∆ + 1) + i(∆− 1)
(5.6)

pi+1,i+2 =
∆− 1

(∆ + 1) + i(∆− 1)
(5.7)

and

p∆+1,∆ =
∆− 1

(∆ + 1) + ∆(∆− 1)
(5.8)

p∆+1,∆+1 =
1 + ∆(∆− 1)

(∆ + 1) + ∆(∆− 1)
(5.9)

We use P [X] to denote the probability that the system recovers using x moves. The

expected number of moves needed is

E = 1× P [1] + 2× P [2] + 3× P [3] + · · ·

=

∞∑

x=1

XP [X].

We can calculate P [X] as following using (5.1), (5.4), (5.2):

P [1] = p1,0 =
1

∆ + 1
(5.10)
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P [2] = 0 (5.11)

P [3] = p1,2p2,1p1,0 =
1

∆ + 1

1

2∆

1

∆ + 1
=

1

2∆(∆ + 1)2
(5.12)

P [4] = p1,2p2,2p2,1p1,0 =
1

∆ + 1

∆

2∆

1

2∆

1

∆ + 1
(5.13)

and for n ≥ 1, we get the following recursive function of P [2n + 2] using P [2n + 1]:

P [2n + 2] = 2
m∑

j=2

pj,jP [2n + 1] (5.14)

If n + 1 < ∆ + 1 then m=n. If n + 1 > ∆ + 1 then m = ∆ + 1. This is because

if n + 1 < ∆ + 1, using 2n + 2 steps, the system can reach at most the n + 1-th

state. So the repeated moves can happen in any state within the n-th state. But if

n + 1 > ∆ + 1, the system can move through all the states, so the repeated moves

can happen anywhere within the ∆ + 1 states.

We can also write P [2n + 3] using P [2n + 1] as:

P [2n + 3] = 2

m∑

j=2

m∑

i=2

pj,jpi,iP [2n + 1] + 2

m′∑

k=2

pi,i+1pi+1,iP [2n + 1] (5.15)

The values of m and m′ are the same as in (5.14). The system can have either two

additional moves that do not change the current state, or the system can first reach a

state in one step and come back in the next step. So we substitute P [1], P [2], P [3], P [4]

using (5.10), (5.11), (5.12), (5.13), (5.14), (5.15) in (5.10) and let pmax =
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max{pi,j , ∀i, ∀j}:

E = 1× P [1] + 2× P [2] + 3× P [3] + 4× P [4]

+

∞∑

n=2

{(2n + 1)P [2n + 1] + (2n + 2)P [2n + 2] + (2n + 3)P [2n + 3]}

= 1×
1

∆ + 1
+ 2× 0 + 3×

1

2∆(∆ + 1)2
+ 4×

1

4∆(∆ + 1)2

+
∞∑

n=2

{(2n + 1) + 2(2n + 2)
m∑

j=2

m∑

i=2

pi,ipj,j + (2n + 3)(2
m′∑

i=2

pi,i+1pi+1,i

+ 2
m′′∑

j=2

m′′∑

i=2

pi,ipj,j)} × P [2n + 1]

< O(
1

∆2
) +

∞∑

n=2

{(2n + 1)p2n+1
max + 2(2n + 2)∆2p2n+2

max + (2n + 3)(2∆ + 2∆2)p2n+3
max }

=
∞∑

n=2

(2n + 1)p2n+1
max + 2∆2

∞∑

n=2

(2n + 2)p2n+2
max + (2∆ + 2∆2)

∞∑

n=2

(2n + 3)p2n+3
max + O(

1

∆2
).

Let T1 =
∑∞

n=2(2n + 1)p2n+1
max , T2 = 2∆2

∑∞

n=2(2n + 2)p2n+2
max , T3 = (2∆ +

2∆2)
∑∞

n=2(2n + 3)p2n+3
max . As T3’s order is the same as T2 and larger than T1, we

just need to calculate T3.

T3 = (2∆ + 2∆2)
∞∑

n=2

(2n + 3)p2n+3
max

= (2∆ + 2∆2)(2p3
max

∞∑

n=2

np2n
max + 3pmax

∞∑

n=2

p2n
max)

= (2∆ + 2∆2)[2p3
max(

2p4
max

1− p2
max

+ p6
max) + 3p3

max

1

1− p2
max

]

= (2∆ + 2∆2)
4p7

max + 2p3
maxp

6
max(1− p2

max) + 3p3
max

1− p2
max

.



94

Let pmax = a
∆+a

, a = 1 + ∆(∆− 1):

T3 = (2∆ + 2∆2)
4a7(∆ + a)2 + 2a9 + 3a3(∆ + a)6

(∆2 + 2∆a)(∆ + a7)

= O(∆2)×
O(a9)

O(∆3)O(a7)

=
O(a2)

O(∆)

= O(∆3).

So we get

E = O(
1

∆2
) + O(∆3) = O(∆3) (5.16)

When the graph is dense, i.e. ∆ = O(n), the containment time is not inde-

pendent of the size of the network anymore. However, spatial containment property

still holds. The more dense the graph is, the smaller is the contamination number.

As m → ∞, contamination number tends to 1. Below, we separately analyze the

extreme case of a dense topology: a completely connected graph.

Theorem 18. For a completely connected graph, then the contamination number is

1 as m→∞.

Proof. At least one neighbor j of the faulty process i is likely to update v(j), and

raise x(j) at least m steps above the x-values of the rest. To prevent a second

neighbor k from updating v(k), the system must recover to L before the scheduler

chooses the neighbor k at least m times, without choosing j even once. We use

P{n0, n1, n2, . . . , ni, ni+1, . . . , n∆−1} to denote the probability that ∀i, 1 ≤ i ≤ ∆,
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node i is chosen ni times. So the probability of node k being chosen m times before

j being chosen even once is:

P{n0, n1, n2, . . . , nj−1, nj = 0, nj+1, . . . , nk = m, . . . , n∆−1} (5.17)

∀i, 0 ≤ i ≤ ∆− 1 ∧ i 6= j, ni ≤ m.

With increasing ni, 1 ≤ i ≤ ∆ ∧ i 6= j (5.17) is decreasing (see (Lemma 5 for the

proof). So the above probability is maximum when node k is consecutively chosen m

times, and other nodes are never chosen. The maximum probability is:

P{0, 0, . . . , 0, m, 0, . . . , 0, 0} =
1

∆m
(5.18)

Since ni, 0 ≤ i ≤ ∆ − 1 ∧ i 6= j can be any value between 0 and m, and there are

totally m∆−2 possible situations, we apply the maximum estimate to each such case.

As a result, the probability of the system having two contaminated processes is no

larger than m∆−2

∆m , which approaches 0 as m approaches ∞.

Theorem 19. For a completely connected graph, the containment time is O(n3),

where n is the number of nodes in the graph.

Proof. Following the same notation as in the previous theorem, We calculate the

probabilities on a complete graph.

The expectation formula is then given by the following:

E(X) =
∞∑

X=1

X × P (X)

= 1× P (1) + 2× P (2) + · · ·+ (i + 1)× P (i + 1) + · · ·
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Now we know:

P (1) =
1

n

P (2) = 0

P (3) =
1

n
×

n− 1

n
×

1

n

P (4) =
n− 1

n
×

n− 1

n
×

1

n
×

1

n

P (5) = (
n− 1

n
×

1

n
)2 ×

1

n
+

n− 1

n
× (

n− 1

n
)2 ×

1

n
×

1

n

We calculate the two general terms P (i + 2) and P (i + 3) in terms of P (i + 1):

P (i + 2) = (i− 2)×
n− 1

n
× P (i + 1)

P (i + 3) = [C2
i+1 + C1

i+1]× (
n− 1

n
)2 × P (i + 1)

Note that the combinatorial terms appear because of the fact, when we try to insert

two steps, it may occur in two ways: n−1
n
× 1

n
accounts for one case, and (n−1

n
)2

accounts for the other. As (n−1
n

)2 is the worst case scenario, we need to consider only

that.

From term P (6) onwards, we can proceed using the general terms P (i + 1), P (i + 2),

P (i + 2):

∞∑

i=5

[P (i + 1) + P (i + 2) + P (i + 3)]

=
∑∞

i=5 P (i + 1){1 + (i− 2)× n−1
n

+ [C2
i+1 + C1

i+1]× (n−1
n

)2}

Using the inequality

P (i + 1) ≤ (
n− 1

n
)i+1 (5.19)
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We get:

∞∑

i=5

[P (i + 1) + P (i + 2) + P (i + 3)]

≤
∞∑

i=5

{1 + (i− 2)×
n− 1

n
+ [C2

i+1 + C1
i+1]× (

n− 1

n
)2} × (

n− 1

n
)i+1

Let q = n−1
n

and m = i− 2 and

z =

∞∑

i=5

{1 + (i− 2)×
n− 1

n
+ [C2

i+1 + C1
i+1]× (

n− 1

n
)2} × (

n− 1

n
)i+1

So,

z =
∞∑

m=3

qm+3 +
∞∑

m=3

m× qm+4 +
∞∑

m=3

(m + 3)× (m + 2)

2
× qm+5 +

∞∑

m=3

(m + 3)× qm+5

(5.20)

Simplifying, we get the first term is O(n), the second term is O(n2), and the third

and fourth terms combined are O(n3). So, for a completely connected graph, the

containment time is O(n3), where n is the number of nodes in the graph.

Lemma 5. The probability that node k is chosen m times before node j is chosen

once is maximum when node k is consecutively chosen m times and other nodes are

never chosen.
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Proof. The probability that node k is chosen m times before node j is chosen once is:

P{nk = m, nj = 0} =

∆∑

i=1∧i6=j∧i6=k

m∑

ni=0

P{n1, n2, . . . , nj = 0, . . . , nk = m, . . . , n∆}

=




∑∆
i=1 ni

n1







∑∆
i=2 ni

n2


 . . .




∑∆
i=j ni

0


 . . .

×




∑∆
i=k ni

m


 . . .




∑∆
i=∆ ni

n∆




(
1

∆

)P∆
i=1 ni

= l ×

(
1

∆

)q

.

If we increase any ni, 1 ≤ i ≤ ∆ ∧ i 6= j ∧ i 6= k to ni + 1, we can see this selection

process as follows: first do the selection in the same way as before we increase ni,

then choose any one of the eligible process. There are in all ∆− 1 processes that can

be chosen for the last step, and the probability of choosing any one of them is 1
∆

, so

the probability will be l× (∆− 1)×
(

1
∆

)q+1
and this is smaller than l×

(
1
∆

)q
. So the

probability that node k is chosen m times before choosing node j chosen once will

decrease as ni increases.

The mechanism will reveal that a high clustering coefficient limits the prob-

ability of contamination to only a small fraction of the distance-1 neighbors. The

completely connected graph exhibits an extreme form of this property.

5.5.1 Computing the Availability

An interesting aspect of the proposed algorithm is that LCs = true, thus there

is no overhead for stabilizing the secondary variables. So, LC holds as soon as LCp
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holds. This leads to the following theorem:

Theorem 20. For single failures, the fault-gap equals the containment time.

As a consequence of this, within an expected time of O(∆3) after each single

failure, the system is ready to withstand the next single failure with the same effi-

ciency. Furthermore, since only the distance-1 neighbors are contaminated with high

probability, the proposed algorithm enables the system to recover from all concurrent

failures of nodes that are distance-3 or more apart with the same efficiency. This

significantly increases the availability of the system compared to existing solutions

that we know of.

5.6 A Bounded Solution

A drawback of the proposed solution is that the x-variables grow in an un-

bounded manner, and it affects the implementability of the protocol. To address this,

we will now transform the solution into one that relies on bounded variables only.

In Algorithm 5.2, when a process i executes action 1, it raises the value of

x(i) so that ∀j ∈ N(i) : x(j) < x(i) holds. This makes process i a local leader, and

when the local leader is chosen by the scheduler, it immediately executes its action to

update v(i). Let us set an upper bound M − 1 for x, where M is an odd integer and

M > 1 Furthermore, we let actions 1 and 3 increment x mod M . To make x(j) “less

than” x(i), we have to define the less than operation ≺ appropriately. We define it

as follows:

if x(j) ∈ {x(i) + 1 mod M , x(i) + 2 mod M , . . ., x(i) + M−1
2

mod M}
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Figure 5.2: The bounded solution: (a) Identifying the ports of a node, (b) With
M = 9, there is no local leader here.

then x(i) ≺ x(j) else x(j) ≺ x(i)

Clearly, ≺ is not transitive. In order that the condition ∀j ∈ N(i) : x(j) ≺ x(i)

holds, we will treat each x as a vector (and denote it henceforth by X) with ∆ elements

0, 1, . . . , ∆ − 1. Let the kth port of process i be connected to the lth port of process

j (Fig. 2(a)). We denote this by ((i, k), (j, l)) ∈ E. A process i will execute action 1

when

∃j ∈ N(i) : v(j) 6= v(i), ∧

∀k ∈ N(i) : ((i, u), (k, w)) ∈ E, X(k, w) ≺ X(i, u).

We also modify the last part of action 1 as:

∀k ∈ N(i) : ((i, u), (j, w)) ∈ E, X(i, u) := X(j, w) + M−1
2

mod M

The above modification explicitly forces the condition X(k, w) ≺ X(i, u) across each
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edge (i, k) of node i connecting to a neighbor, and establishes process i as a local

leader, by setting the components of X at a maximum distance “above” those of its

neighbors. Algorithm 5.3 shows the bounded version of Algorithm 5.2. The purpose

of the second action is to let the non-leaders gradually “catch up” with a neighboring

local leader, and is an adaptation of action 2 in Algorithm 5.2.

Algorithm 5.3 The bounded solution: Program for process i

A1 ∃j ∈ N(i) : v(j) 6= v(i) ∧ ∀k ∈ N(i) : ((i, u), (k, w)) ∈ E, X(k, w) ≺ X(i, u) →

v(i) := v(j); ∀k ∈ N(i) : ((i, u), (j, w)) ∈ E, X(i, u) := X(j, w) + M−1
2

mod M

A2 ∃j ∈ N(i) : v(j) 6= v(i) ∧ ∃k ∈ N(i) : ((i, u), (k, w)) ∈ E ∧ X(i, u) ≺ X(k, w)

→ X(i, u) := X(i, u) + 1 mod M

A3 ∀j ∈ N(i) : v(j) 6= v(i) → v(i) := v(j)

Using the modified interpretation of the “less than” relation ≺, and by re-

placing m by M−1
2

, Algorithm 5.3 becomes semantically equivalent to Algorithm 5.2.

However, by converting x into a vector X, there is no guarantee that there will be

always be a local leader (Figure 5.2) ready to execute action 1. If the initial config-

uration is 1-faulty, and the scheduler chooses the faulty process, then this is not a

concern, since action 3 does not rely on the x values at all. However, this may be an

issue when the system starts from a k-faulty configuration and k > 1 We close our

arguments by discussing the impossibility of deadlock in Algorithm 5.3.
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Theorem 21. Algorithm 5.3 guarantees that starting from any initial configuration,

eventually some node is elected as a local leader.

Proof. Assume that the system starts with a configuration where there is no local

leader eligible to execute action 1. The possibility of some non-leader becoming a

local leader requires that the scheduler chooses it M−1
2

times without choosing a

neighbor even once. The probability of this event is 2−
M−1

2 .

Once a local leader is elected, there always exists at least one local leader until

the recovery is complete. Thus the time 2
M−1

2 is an additional start-up cost that

needs to be added to the stabilization time.

Theorem 22. On an array of processes, the expected number of moves needed to

stabilize from a failure of k contiguous nodes is O(k.n).

Proof. On an array of processes numbered 0 through n− 1 from left to right, assume

that initially ∀i : v(i) = 1 holds. Let a failure change the values of v(0) through

v(k − 1) (1 < k < n) to 0. Whenever the node to the left of the boundary (between

0 and 1) executes move to update its v, the boundary moves one place to the left.

Similarly, when the node to the right of the boundary makes a move to update its

v, the boundary moves to the right. The system will stabilize when all v become

identical.

The probability of the boundary moving to the right (or to the left) is 2−
M−1

2 ,

and the balance reflects the probability of the boundary remaining unchanged. We

reduce this computation to a version of gambler’s ruin where to win or lose a dollar
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(call it a step), not one, but M−1
2

consecutive heads or tails of a fair coin will be

necessary2. It follows from [32] that, the expected number of steps needed to finish

the game is k×(n−k). Since each step here costs an expected number of 2
M−1

2 moves,

the expected number of moves needed to finish the game is 2
M−1

2 .k.(n− k).

To validate this result on a general topology, we need to analyze gambler’s ruin

in multiple dimensions. We have not done it, but leave this as a conjecture. Based

on the fact that a legal configuration is reachable from any initial configuration, the

following theorem holds.

Theorem 23. Algorithm 5.2 is weakly stabilizing.

5.7 Experimental Results

We ran simulation experiments to study the convergence property for graphs

with various degrees and with different values of m. For our experiments, we used

random graphs with 1000 nodes. For the first set of experiments presented in Figure

5.3, we set the edge probability value (denoted by p in the graphs) of the random

graphs to 0.5.

In the first set of experiments, we varied the value of m in powers of 2. The

initial values of x were randomly set. After a single fault was injected, the fraction of

cases where the fault was successfully contained was plotted. Because of the proba-

bilistic nature of our algorithm, there were instances when the system of nodes did not

2One extra step will be needed whenever the fortune changes from one player to the
other, but with large M , we ignore the impact of this, and map the computation to a
Markov process.
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converge. We set an upper bound (10, 000 moves) for the number of moves it required

for the system to converge. If convergence had not occurred within this bound, then

those instances were treated as failed cases of non-convergence. For each value of

m, we ran the experiments 1000 times and plotted the number of moves required for

convergence (X-axis) against fraction of converged instances (Y-axis). The empirical

distribution function is shown in Figure 5.3.

The larger the value of m, the greater is the difficulty for the fault to con-

taminate beyond its immediate neighborhood. With increasing m, the containment

in space is tighter, but stabilization from arbitrary initial configurations slows down.

A lower value of m allows faster recovery from single failures at the expense of an

increase in the contamination number. This is consistent with the analysis – the

value of m represents the effectiveness of the “fence” around the faulty zone. Also,

the stabilization time increases for smaller values of m, since the fault contaminates a

small number of nodes beyond the distance-1 neighbors, and recovery from multiple

failures is inefficient. These properties are evident from our graph.

It is to be noted that for m = 2 and for m = 32, the two extreme m values we

had chosen in our experiments, the system exhibits the expected behavior. But for

middle values of m, some anomaly can be observed. For example, m = 16, rises over

m = 8 and m = 4. This shows the potential for using m as the tuning parameter

in our experiments. There is a threshold value of m, beyond which the system may

be in a “stuttering mode” since neither the fault propagates beyond the distance-1

neighbors, nor the recovery is complete. In our case, between m = 4 and m = 8, this
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phenomenon was observed. Therefore fraction of converged instances for those values

lag behind.

In the second set of experiments, we set m = 2. Again the initial values of

x were randomly set. After a single fault was injected, the fraction of cases where

the fault was successfully contained was plotted. Because of the probabilistic nature

of our algorithm, there were instances when the system of nodes did not converge.

We set an upper bound (10, 000 moves) for the number of moves it required for the

system to converge. If convergence had not occurred within this bound, then those

instances were treated as failed cases of non-convergence. This time we varied p,

which denotes the edge probability for the random graph. For each value of p, we ran

the experiments 1000 times and plotted the number of moves required for convergence

(X-axis) against fraction of converged instances (Y-axis). The empirical distribution

function is shown in Figure 5.4.

Our second experiment captures the fact how node degrees can influence the

convergence of the system. For a ∆-ary tree, this is equivalent to varying the value of

∆ while keeping m fixed. As we used random graphs for our experiments, we could not

directly vary ∆. Rather we chose different values of p to control the sparseness/density

of the graphs. As expected, for dense graphs (e.g., p = 0.8), the fraction of converged

instances was low.
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Figure 5.3: Simulation results for various values of m with p as a parameter, where p
is the edge probability of the random graph.
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5.8 Discussions

The proposed algorithms allow the immediate neighbors of the faulty process

to be contaminated. However as m increases, it becomes increasingly difficult for the

failure to propagate to the distance-2 neighbors and beyond. However, a high value of

m increases the stabilization time. One can use m (or M for the bounded version of

the solution) as a tuning parameter to tune the performance of the protocol. A lower

value of m allows faster recovery at the expense of an increase in the contamination

number, and the recovery time from multiple failures also improves.

The major advantages of the proposed technique is that the fault-gap is inde-

pendent of the network size. This increases the availability of the system by restoring

the system’s readiness to efficiently tolerate the next single fault within a short time.

This is where our algorithm is different from other algorithms, where the fault-gap is

O(n) or worse.

As the degree of the nodes increases, the containment time increases fairly

rapidly. Therefore the algorithm is suitable for sparse topologies. When the topology

is dense or the clustering coefficient is large, although the containment time increases,

a smaller fraction of the distance-1 neighbors is contaminated.

The solution to the persistent-bit problem can be utilized to find fault-containing

algorithms for more general problems, one of them is presented in the next chapter.
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CHAPTER 6
FAULT-CONTAINMENT IN WEAKLY-STABILIZING SYSTEMS

6.1 Introduction

Chapter 5 introduced a new technique for adding fault-containment to a sta-

bilizing system by biasing the impact of the random scheduler. In this chapter, we

extend the approach by solving a non-trivial problem in stabilization: the problem

of leader election. The purpose is to establish that the proposed technique is indeed

useful enough to solve a wider class of problems in distributed systems.

We start from the leader election algorithm proposed by Devismes et al. in

[14]. The algorithm works on a tree of anonymous processes, and is weakly stabilizing.

Failures, however minor they are, put the system in an illegal configuration, from

which there is no guarantee for recovery under a deterministic scheduler. Even with

a randomized scheduler, the expected recovery time will depend on the size of the

network. In this chapter, we transform the algorithm in [14] for an array of anonymous

processes, and add fault-containment to it. The end result is that the containment

time is O(1), and the contamination number is 4 w.h.p, the bound is attained by

setting m to infinity, where m is a user defined tuning parameter.

We follow the general computational model introduced in Chapter 2. In ad-

dition, we introduce two additional variables P and x for each process. Each process

i has a primary variable P (i) ∈ N(i)U⊥. If j = P (i), then j is called the parent of
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v0 v1 v2 v3 v4 v5 v6

Figure 6.1: A legal configuration with v4 as the leader.

node i. In addition to P 1, there is a secondary variable x ∈ Z+ that will used for

containing the effect of a single failure. The system is in a legal configuration, when

the following two conditions hold:

1. For exactly one process i: P (i) = ⊥

2. for all j 6= i, P (i) = j implies P (j) 6= i

Here, we use the proceed ids for the sake of identification only. Being an

anonymous system, these ids are not used for any kind of decision-making. Figure 6.1

shows a system of processes in its legal configuration, where an arrow from i to j

implies that j is the parent of i and a node without a parent pointer implies that

its parent is ⊥. As in Chapter 5, the secondary variable x will reflect the priority of

process i in executing some of its actions to update its parent P (i).

Arbitrary configurations may be caused by transient failures that can corrupt

the system state. Due to the weakening of the stabilization property, it is not possi-

ble to bound the stabilization time under a deterministic scheduler, and randomized

scheduling becomes necessary to guarantee that the system recovers to a legal con-

figuration with probability 1.

1we use P (i) to denote the parent of node i in fault-containment whereas in selfish
stabilization π(i) denoted the parent of i



111

6.2 Contributions

Using a randomized scheduler, we present a solution for the leader election

problem on a line topology that is both weakly stabilizing and fault-containing. Our

algorithm confines the effect of any single fault to the constant-distance neighborhood

of the faulty process with high probability (w.h.p.2). More specifically, our algorithm

restricts the contamination number to 4 w.h.p., thus the algorithm is spatially fault-

containing. The expected recovery time from a single fault is independent of the array

size, i.e., the solution is fault-containing in time too.

6.3 Probabilistic Algorithm for Fault-Containment

Our starting point is the weakly stabilizing leader election algorithm on a

tree network presented in [14]. For implementing it on an array, we make minor

modifications for the stabilization rules. An array is a special case of a tree where

each node except the end nodes has a degree of 2. Therefore we replace the notations

of ∆ from [14], and just consider the two neighbors (or the only neighbor if it is an

end node) of a particular process. For the fault-containment part though, we need to

add new rules. The basic idea is the same as presented in Chapter 5. To make the

protocol fault-containing, we add to each process i a secondary variable x(i) whose

domain is the set of non-negative integers. In a way, x(i) will reflect the priority

of process i in executing an action to update P (i). Process i will update P (i) and

2An event e happens with high probability (w.h.p) if limm→∞ Pr (e) = 1, where m is a
user defined parameter. This is slightly different from the traditional definition of w.h.p.
[45] in randomized algorithms, but used in the same spirit.
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increase its x(i) value with respect to its neighbors when the following conditions

hold:

1. The randomized scheduler chooses i,

2. {(∃j ∈ N(i) : P (i) = j)},

3. {(∃k ∈ N(i) : P (k) = l 6= i)},

4. {x(i) ≥ x(k)}.

After updating P (i), process i will increase its x(i) value accordingly: {x(i)←

maxq∈N(i) x(q) + m}, m ∈ Z+ (m is a user defined parameter).

If the first three conditions hold, but not the fourth one, process i increases

its x(i) value by 1, but leaves P (i) unchanged. The same thing happens when the

first two conditions hold, but not the fourth, and the third condition is modified to

∃k ∈ N(i) : P (k) = ⊥.

Observe that once a process i updates x(i), it becomes difficult for its neighbors

to change their P -values, since their x-values will lag behind that of i. The larger

is the value of m, the greater is the difficulty. A neighbor j of i will be able to

update P (j) if it is chosen by the random scheduler m times, without choosing i even

once (except case R5 of Algorithm 1, where the update happens immediately when

recovery is in sight within a single future move). On the other hand, after making a

move, it becomes easier for i to update P (i) again in the near future. With a large

value of m, the probability of j being able to change its parent pointer compared to
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i is very low. This explains the mechanism of containment. The complete algorithm

is described below for a process i:

1. R1 describes the situation when a process i has a parent, but all its neigh-

bors consider i as their parent. So i sets its parent pointer to null and start

considering itself as the leader.

2. R2 describes the situation when a process i has no parent and one of its neigh-

bors q does not satisfy the condition P (q) = i. Note that for a single-fault

scenario it cannot happen that both of i’s neighbors do not satisfy the same

condition. This means i is not unanimously selected as the leader by its neigh-

bors. As a consequence, i stops considering itself as a leader by setting its

parent pointer to q, i.e., P (i) = q.

3. R3 a) describes the situation when parent of i is j, and i has a neighbor k whose

parent is a node l. Node l is at distance-2 from i. Now if x(i) ≥ x(k), then i sets

k as its new parent and increases its x(i) value with respect to its neighbors.

4. R3 b) describes the the situation when parent of i is j, j has a parent, and i

has a neighbor k whose parent is a node l. Node l is at distance-2 from i. Now

if x(i) < x(k), then i does not alter its parent pointer but it just increments its

x value by 1.

5. R4 a) describes the situation when parent of i is j, and i has a neighbor k whose

parent pointer is set to null. Now if x(i) ≥ x(k), then i sets k as its new parent.
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Algorithm 6.1 containment: Program for process i

• Variable: P (i) ∈ N(i) ∪ {⊥}.

• Macro: C(i) = {q ∈ N(i)|P (q) = i}

• Predicates: Leader(i) ≡ (P (i) = ⊥) ∧ (∀j ∈ N(i) : P (j) = i)

• Actions:

R1 (P (i) 6= ⊥) ∧ (|C(i)| = |N(i)|) −→ P (i)← ⊥

R2 (P (i) = ⊥) ∧ (|C(i)| < |N(i)|) −→ P (i)← (N(i) \ C(i))

R3 a) (∃j ∈ N(i) : P (i) = j) ∧ (P (j) 6= ⊥) ∧

(∃k ∈ N(i) : P (k) = l 6= i or ⊥) ∧ (x(i) ≥ x(k)) −→ (P (i)← k) ∧

(
x(i)← maxq∈N(i) x(q) + m

)
, m ∈ N

b) (∃j ∈ N(i) : P (i) = j) ∧ (P (j) 6= ⊥) ∧ (∃k ∈ N(i) : P (k) = l 6= i) ∧

(x(i) < x(k)) −→ x(i)← x(i) + 1

R4 a) (∃j ∈ N(i) : P (i) = j) ∧ (∃k ∈ N(i) : P (k) = ⊥) ∧ (x(i) ≥ x(k)) −→

P (i)← k

b) (∃j ∈ N(i) : P (i) = j) ∧ (∃k ∈ N(i) : P (k) = ⊥) ∧ (x(i) < x(k)) −→

x(i)← x(i) + 1

R5 (∃j ∈ N(i) : P (i) = j)∧(P (j) = ⊥) ∧(∃k ∈ N(i) : P (k) = l 6= i or ⊥) −→

P (i)← k
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6. R4 b) describes the situation when parent of i is j, and i has a neighbor k whose

parent is set to null. Now if x(i) < x(k), then i does not alter its parent pointer

but it just increments its x value by 1.

7. R5 is necessary for recovery. The intuition is if a node finds out that its change

of parent will help the system to recover in a single future move, then it makes

the move. When parent of i is j, and j has no parent, and there is a neighbor k

of i such that k whose parent is a node l. Node l is at distance-2 from i. Now

regardless of the value of x(i) i sets k as its new parent.

6.4 Recovery

In this section, we describe the different cases of single-fault configuration and

the recovery steps. It is to be noted that we have to consider cases up to distance-4

from the leader, as beyond distance-4, all cases of recovery are similar to each other

for single-fault configuration. For convenience, we consider an array of length n and

denote process i on the array as vi where i = 0, · · · , n − 1. In each figure; the gray

node denotes the original leader in the system, the node with a square is the node hit

by the single fault, and the nodes with a ⋆ above are the nodes whose guards are true

after the single fault hits the system. If there is an arrow from i to j, that indicates

P (i) = j.

6.4.1 Fault at the leader

In Fig. 6.2, v4 is the leader where the fault hits, and v3 becomes the parent of

v4. In this case, the system recovers trivially in a single step. If the scheduler chooses
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v0 v1 v2 v3

⋆

v4

⋆

v5 v6

Figure 6.2: Fault at leader v4. Due to the fault v3 becomes v4’s parent.

v0 v1 v2 v3

⋆

v4

⋆

v5 v6

Figure 6.3: Fault at distance-1 neighbor from the leader. v3’s parent pointer becomes
null due to the fault.

either of v3 or v4, R1 can be applied at v3 or v4. Note that, if v4 makes the move, the

system goes back to the initial legal configuration, whereas if v3 makes the move, v3

becomes the new leader of the system after recovery.

6.4.2 Fault at distance-1 neighbor from the leader

a) The parent pointer of distance-1 neighbor from the leader becomes null. The fault

hits v3 (Fig 6.3). If v3’s parent pointer becomes null, again the recovery happens

trivially in a single step. If the scheduler chooses either of v3 or v4, R2 can be applied

at v3 or v4 and a legal configuration can be reached in a single step. Note that, if v3

makes the move, the system goes back to the initial legal configuration, whereas if v4

v0 v1 v2

⋆

v3

⋆

v4

⋆

v5 v6

Figure 6.4: Fault at distance-1 neighbor from the leader. Due to the fault v2 becomes
v3’s new parent.
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v0 v1 v2

⋆

v3

⋆

v4 v5 v6

Figure 6.5: Fault at distance-2 from the leader. v2’s parent pointer becomes null due
to the fault.

makes the move, v3 becomes the new leader.

b) A new node becomes the parent of the distance-1 faulty node. In Fig 6.4, if

P (v3) = v2, then v2, v3, and v4’s guards are true. If v3 is selected first, and if

x(v3) ≥ x(v4), the system trivially recovers in a single step (by R4a at v3). Otherwise,

v3 would not make a parent change. If the scheduler chooses v4, then the recovery

happens in two steps. First, v4 applies R2 and after that either v2 or v3 makes a

move (R1). Note that if v3 makes the move, the leader shifts one place compared to

the original legal configuration, whereas if v2 makes the move, the leader shifts two

places.

If v2 makes the first move, R1 can be applied at v2. After that if the scheduler chooses

v4, recovery is immediate as R2 can be applied at v4. But if the scheduler chooses

v3 repeatedly and x(v3) ≥ x(v4) and x(v3) ≥ x(v2), oscillations can occur in the

system for some period of time due to the fact that R4a is applicable at v3. v2 and

v4 alternately becomes v3’s parent. But whenever v2 or v4 is chosen by the scheduler

next, the system recovers (R2). In the case, x(v3) < x(v2) or x(v3) < x(v4), recovery

is complete when the scheduler next chooses v2 or v4 respectively.
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Figure 6.6: Fault at distance-2 from the leader. v1 becomes the new parent of the v2

due to the fault.

6.4.3 Fault at distance-2 from the leader

a) The parent pointer of distance-2 neighbor from the leader becomes null. Consider

Fig 6.5. The fault hits the system at v2. If the scheduler chooses v2, the system

trivially recovers in a single step (R2). If v3 is chosen by the scheduler, the system

has a potential for oscillations, i.e., v4 or v2 alternately may become v3’s parent,

depending on the x values of v2, v3, v4. The system recovers by applying R2 at v2 or

v4 respectively when either of them is chosen next by the scheduler.

b) A new node becomes the parent of the distance-2 faulty node. Consider Fig 6.6.

If v1 becomes the new parent of v2, then either v1, v2 or v3 can make a move. If v2 is

selected first, the situation is like the one described in 4.2b), except that R3 a) can

be applied now at v2 as v3 has a parent if x(v2) ≥ x(v3). If v3 is selected first, v3

can select v2 as its new parent if x(v3) ≥ x(v2). The recovery is complete following

v2, v1’s (or v1, v2’s) moves (R1) followed by v4’s move (R2) or vice versa. If both v3

and v2 are unable to change their parents due to smaller x values, then recovery is

complete by v1’s move first (R1), followed by v3’s move (now R5 can be applied at

v3) and v4’s move (R2).
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v3 v4 v5 v6

Figure 6.7: Fault at distance-3 from the leader. v1’s parent pointer becomes null due
to the fault.

v0

⋆

v1

⋆

v2

⋆

v3 v4 v5 v6

Figure 6.8: Fault at distance-3 from the leader. v0 becomes the new parent of v1.

6.4.4 Fault at distance-3 neighbor from the leader

a) The parent pointer of distance-3 neighbor from the leader becomes null.

Consider Fig 6.7. If the scheduler chooses v1, recovery trivially happens in a single

step (R2). If v2 is chosen first, then it can alternately choose v1 or v3 as its parent

for a while, if its x value is greater than that of both v1 and v3. Recovery completes

when v1 is selected (R2). Note that, because of higher x value of v2, v3 is unlikely to

change its parent. If it does, then recovery happens by applying R5 at v3 followed by

R2 at v4.

b) A new node becomes the parent of the distance-3 faulty node. Consider Fig 6.8. If

v0 becomes the new parent of v1, then v0, v1, and v2’s guards are true. If v1 is selected

first, then the situation is the same as described above in 4.3b). If v0 is chosen by

the scheduler first, R1 can be applied at v0. The system recovers when v1 chooses

v2 as its parent afterwards (using R3a if applicable) and v0 makes a move next (R2

can be applied at v0 possibly after some oscillations of v1). If v2 is selected to make a
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v0 v1

⋆

v2

⋆

v3 v4 v5 v6

Figure 6.9: Fault at distance-4 from the leader. v1’s parent pointer becomes null.

v0

⋆

v1

⋆

v2

⋆

v3 v4 v5 v6

Figure 6.10: Fault at distance-4 from the leader. v0 becomes the new parent of v1.

move and if x(v2) ≥ x(v1), then v2 chooses v1 as its parent and increases its x value

(R3a). Now v3 is still able to change its parent to v2 regardless of the value of x at v2

(R5) provided v0 had made a prior move. Recovery is completed by v4’s move (R2).

Otherwise, if v0 had not made a move prior to v3, the higher x value of v2 will prevent

v3 to change its parent. Then the recovery is completed by v1’s move (R5) followed

by v0’s move (R2). Note that even if v0 is not an end node, this still applies.

6.4.5 Fault at distance-4 neighbor or beyond from the leader

a) The parent pointer of distance-4 neighbor from the leader becomes null.

Consider Fig 6.9. If v1 is selected by the scheduler, recovery occurs immediately by

R2 or after some oscillations at v2. Otherwise, if x(v2) ≥ x(v1), then v1 becomes v2’s

new parent (R4a). Similarly v2 may become v3’s new parent, but this time v3 sets its

x value higher (R3a). Recovery is completed by v4’s move (R5) followed by v5’s move

(R2). Note that for fault occurring at distance-4 and beyond from the leader, R5

will no more applicable at the distance-1 neighbor from the leader (v4 in this case).
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Therefore, we do not consider hereafter the cases beyond fault at distance-4 beyond

the leader.

b) A new node becomes the parent of the distance-4 faulty node. Consider Fig 6.10.

If v0 becomes the new parent of v1, then v0, v1, and v2’s guards are true. If v1 is

selected to make a move first, then the situation is the same as described above in

4.4b). If v0 is chosen by the scheduler first, R1 can be applied at v0. The system

recovers when v1 chooses v2 as its parent afterwards (R3a if applicable) and v0 makes

a move next (R2 can be applied at v0 possibly after some oscillations of v1). If v2

is selected to make a move and if x(v2) ≥ x(v1) , then v2 chooses v1 as its parent

and increases its x value (R3a). Now v3 cannot apply R5 anymore and it is unlikely

that the fault will propagate beyond v2. The recovery proceeds through the following

steps - v0 makes a move (R1), after some oscillations at v2, v1 chooses v2 as its parent

(R5), and finally v0 selects v1 as its parent (R2). Note that even if v0 is not an end

node, this still applies.

Note that all cases of single-fault configuration beyond distance-4 from the leader will

not involve any different recovery steps that are already not covered in the previous

scenarios. This is because even if we shift the original place of the fault further away

from the leader, its neighborhood that is going to be affected by subsequent recovery

steps will remain unchanged. In the recovery mechanism, R3b) and R4b) are not

shown as we only highlighted the moves where the change of parent pointers occurs

leading to the recovery of the system.
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6.5 Results

6.5.1 Fault-containment in space

Theorem 24. As m→∞, the effect of a single failure is restricted within distance-4

of the faulty process on an array, and the contamination number is 4, i.e., algorithm

containment is spatially fault-containing.

To prove the result of spatial containment, we need to find out how far the

observable variables change from the faulty node w.h.p. We consider all the subcases

of the recovery mechanism.

1. Fault at leader: The fault propagates to at most distance-1.

2. Fault at distance-1 neighbor from the leader:

(a) Parent pointer of the distance-1 neighbor becomes null: The fault prop-

agates to at most distance-1.

(b) A new node becomes the parent of the distance-1 faulty node: In the

recovery steps, we showed that in Fig 6.4, at most v2 or v4’s parent might

change. Thus, the fault propagates to at most distance-1.

3. Fault at distance-2 neighbor from the leader:

(a) The parent pointer of the distance-2 neighbor becomes null: Consider

Fig 6.5. If v2 is selected the system recovers immediately. Another possible

recovery is through the sequence of moves of v3 followed by v4. In the latter
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case the contamination happens up to distance-2 of the original faulty

node.

(b) A new node becomes the parent of the distance-2 faulty node: Consider

Fig 6.6. The worst case scenario happens when v3 makes a move and after

that v4 completes the recovery. Contamination happens up to distance-2

of the original faulty node in this case.

4. Fault at distance-3 neighbor from the leader:

(a) The parent pointer of the distance-3 neighbor becomes null: Consider

Fig 6.7. The worst case scenario happens when v4 has to change its parent.

The fault propagates to at most distance-3.

(b) A new node becomes the parent of the distance-3 faulty node: Consider

Fig 6.8. The worst case scenario happens when v4 has to change its parent.

The fault propagates to at most distance-3.

5. Fault at distance-4 from the leader:

(a) The parent pointer of the distance-4 neighbor becomes null: This is the

scenario where the highest spatial contamination occurs. Consider Fig 6.9.

In the worst case, a distance-4 node from the faulty node might have to

change its parent pointer. In Fig 6.9, v5 is this node.

(b) A new node becomes the parent of the distance-4 faulty node: Consider

Fig 6.10. The fault propagates up to distance-1 w.h.p. The probability
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of the fault contaminating beyond distance-1 is (1 − 1/2m) × 1/2m and

limm→∞(1− 1/2m)× 1/2m = 0.

Note that for fault occurring at distance-4 and beyond from the leader, R5 will no

more be applicable to the distance-1 neighbor from the leader. Hence algorithm

containment is spatially fault-containing and the highest contamination number is 4

w.h.p.

6.5.2 Fault-containment in time

Theorem 25. The expected number of steps needed to contain a single fault is inde-

pendent of n, i.e., the number of nodes in the array. Hence algorithm containment is

fault-containing in time.

Proof. To prove that algorithm containment is fault-containing in time, we again

consider each individual subcase of fault. We show that each subcase can be bounded

and each of them is independent of n, i.e., the size of the array. For each individual

case, we calculate the expected number of moves required for recovery. Essentially

that means we are considering the probabilities of the system recovering in a single

move, in two moves, in three moves etc. We denote the number of moves (which is

a random variable) as X, and Pr (X = x) denotes the probability that the system

recovers using x moves.

1. Fault at leader: Consider Fig. 6.2. This is a trivial case. In this scenario, both v4

and v3 have their guards true. Each of them has an equal probability to execute,

given a chance. The system recovers in a single move if either of them executes.
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So the expected number of moves required for recovery is 1×1/2+1×1/2 = 1.

2. Fault at distance-1 from the leader:

(a) The parent pointer of the faulty node becomes null: Consider Fig. 6.3.

This is again a trivial case. The system recovers in a single move if either

v4 or v3 executes. The expected number of moves for recovery is the same

as before, i.e., 1× 1/2 + 1× 1/2 = 1.

(b) A new node becomes parent of the faulty node: The system can recover

following different sequences:

• v4, v2 or v4, v3.

• v3, · · · , v3 (x(4)− x(3) times)

• v3, · · · , v3 (x(4)− x(3)− 1 times) followed by v4, v2 or v4, v3

• v2, v4

• v2, v3, · · · , v3 followed by v2 or v4.

The length of recovery sequences of the first four situations is finite and

independent of n, and only the last sequence may be arbitrarily long. We

show that its expectation is finite. After v2 makes a move applying R2,

both of v3’s neighbor consider themselves as the leader. Hence depending

on the parent of v3, each time there are at most two enabled nodes: v2 and

v3 or v3 and v4. Therefore, the probability that the scheduler chooses v3 is

1/2 before recovery completes. Hence, the probability of v3 being selected

consecutively n times is 1/2n. Therefore, if v2 is selected by the scheduler
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first, the expected length of the recovery sequence is 2 +
∑∞

n=1 n/2n = 4.

3. Fault at distance-2 from the leader

(a) The parent pointer of the faulty node becomes null: Regardless of the

values of x(2), x(3) and x(4), no matter which node the scheduler chooses,

there is always 1/2 probability that the system recovers after the selected

node makes a move. Hence, the expected recovery time is
∑∞

n=1 n/2n = 2.

(b) A new node becomes parent of the faulty node: In our proof so far, we

assumed the value of x to be different. Proceeding in the same manner, the

rest of the expectation calculation can be done. However, for subsequent

cases, the computation will be more complex. The constant factors in the

result will still hold, since the time complexity calculation for each subcase

will involve products of several terms like (1 − 1/2m) and 1/2m. For the

sake of simplicity, we assume the value of x to be identical for the rest of

the proof.

Following the above assumption, the expected number of moves for recov-

ery will be:

E(X) = 1×
1

3
+ 3

(
1

3
×

1

2
×

1

2
+

1

3
×

1

2
×

1

2
+

1

3
×

1

4
×

1

2
+

1

3
×

1

4
×

1

2

)

+
2

3

∞∑

n=2

2n + 1

22n

=
151

108

4. Fault at distance-3 from the leader:
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(a) Parent pointer of the faulty node becomes null: In this case, the expected

number of moves for recovery will be

E(X) = 1×
1

2
+ 3×

(
1

23
+

1

23

)
+ 5×

(
4×

1

25

)
+ · · ·

=
1

2
+

∞∑

n=1

(2n + 1)× 2n
1

22n+1
=

131

54

(b) A new node becomes parent of the faulty node: In this case, the expected

number of moves for recovery will be:

E(X) = 1×
1

3
+ 2× 0 + 4×

(
1

3

1

2

(
1−

1

2m

)
1

2m

1

2

)
+ 3×

(
1

3

1

2

1

2

)
+ 5×

(
1

3

1

24

)
+ · · ·

≤
1

3
+

25

9
+ 4×

1

3

1

2

1

4

1

2
=

115

36

(The term
(
1− 1

2m

)
1

2m is bounded by 1/4).

5. Fault at distance-4 from the leader:

(a) The parent pointer becomes null: In this case, the expected number of

moves for recovery will be: E(X) = 1
2

+
∑∞

n=1(2n + 1) 1
22n+1 = 10/9.

(b) A new node becomes parent of the faulty node: In this case, the expected

number of moves for recovery will be: E(X) = 1× 1
3
+ 2× 0+ 3×

(
1
3

1
2

1
2

)
+

4× 1
3

1
4

1
2

1
2

+ 5× 1
3

1
24 + 7× 1

3
1
26 + · · · = 29/27

6. Fault beyond distance-4 from the leader:

(a) The parent pointer becomes null: In this case, the expected number of

moves for recovery will be: E(X) = 1
2
+3×

(
1
2

+ 1
2

+ 1
2

)
+5×

(
4× 1

25

)
= 33

32
.
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(b) A new node becomes parent of the faulty node: In this case, the expected

number of moves for recovery will be:

E(X) = 1×
1

3
+ 2× 0 + 4×

(
1

3

1

2

(
1−

1

2m

)
1

2m

1

2

)
+ 3×

(
1

3

1

2

1

2

)
+ 5×

(
1

3

1

24

)
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≤
1

3
+

25

9
+ 4×

1

3

1

2

1

4

1

2
=

115

36

In all individual subcases, the calculation shows that the recovery happens in a finite

number of moves and it is independent of n, where n is the size of the array. The

maximum expected number of moves required for recovery is 115/36, when a fault

occurs at distance-3 from the leader and a new node becomes parent of the faulty

node, or when a fault occurs at more than distance-4 from the leader and a new

node becomes parent of the faulty node . Therefore algorithm containment is fault

containing in time.

6.6 Computing The Availability

An interesting aspect of the proposed algorithm is that there is no overhead

for stabilizing the secondary variables. LCs = true as long as x(i) ∈ Z+. So, LC

holds as soon as LCp holds. This leads to the following theorem:

Theorem 26. For single failures, the fault-gap equals the containment time.

6.6.1 Convergence

We use martingale convergence theorem to prove the convergence of algorithm

containment. We first give the definition of martingales, and then we provide the

statement of martingale convergence theorem with a corollary derived by the martin-

gale convergence theorem [45]. Finally we show that the corollary can be applied in
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our problem.

Definition 12. Let Fn be an increasing sequence of σ-fields, and let Xn ∈ Fn for all

n. X is said to be a martingale with respect to Fn if the following conditions hold:

1. E(|Xn|) <∞,

2. Xn is adapted to Fn,

3. E(Xn+1|Fn) = Xn for all n

If = in the last condition is replaced by ≤ or ≥, then Xn is said to be a supermartingale

or submartingale, respectively.

Theorem 27 (The martingale convergence theorem). If Xn is a submartingale with

sup E(X+
n ) <∞ then as n→∞, Xn converges almost surely (i.e. the probability that

Xn converges is 1) to a limit X with E(|X|) <∞.

Corollary 1. If Xn ≥ 0 is a supermartingale then as n→∞, Xn → X almost surely

and E(X) ≤ E(X0).

Theorem 28. Algorithm containment is weakly-stabilizing.

Proof. We denote the number of nodes whose guards are true at step i by Xi. Let

Fi = σ < X0, X1, · · · , Xi >, we first prove that the sequence of Xi is a supmartingale

with respect to Fi: (a) E(Xi) <∞ is trivially true as there are n nodes in the system,

so E(Xi) ≤ n. (b) Xi ∈ Fi by the definition of Fi; (c) We show that E(Xi+1|Xi) ≤ Xi

by enumerating all possible values of Xi. Xi can only be 0, 2 or 3. Note that Xi’s
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value cannot be 1. There is no single-fault configuration for which only one node’s

guard can be true in the system.

1. When Xi = 0, Xi+1 = 0 as the system has reached the non-faulty configuration.

2. When Xi = 2, E(Xi+1|Xi) = 1/2× 0 + 1/2× 2 = 1 ≤ 2.

3. When Xi = 3, E(Xi+1|Xi) = 1/3× 0 + 1/3× 2 + 1/3× 4 = 2 ≤ 3.

As the number of nodes whose guards are true are nonnegative, we apply

corollary 1 and thus Xn → X, i.e., the number of nodes whose guards are true

converge.

6.7 Discussions

The proposed algorithm allows up to distance-4 neighbors of the faulty process

to be contaminated by a single failure. With high probability, the failure does not

propagate beyond that. The major advantage of the proposed technique is that the

fault-gap is independent of the array size. The expected number of moves required

for recovery is constant. This increases the availability of the system by restoring the

system’s readiness to efficiently tolerate the next single fault within a short time.



131

CHAPTER 7
CONCLUSION AND FUTURE WORK

7.1 Summary

7.1.1 Selfish Stabilization

Selfish stabilization reduces to classical stabilization when the private goals

of the constituent processes do not conflict. The following issues are relevant to the

approach taken in this dissertation:

The first is the separation of cooperation and competition. Assume that pro-

cesses first cooperate to form a tree, then try to optimize it to improve their individual

payoffs. In presence of arbitrary initializations, failures, and selfish motives, such seg-

regation of actions is difficult to implement.

The uniqueness of the equilibrium point is another significant issue. When the

system of processes has a unique equilibrium point, it reflects the Nash equilibrium.

However, in several cases, multiple equilibria configurations are possible, and final

configuration will depend on the schedule of actions. If the costs of these configura-

tions are distinct, then it leaves open the possibility that after reaching an inferior

equilibrium configuration, an unhappy (or ambitious) process can deliberately in-

troduce a perturbation (by corrupting a local variable) to possibly reach a different

equilibrium configuration with a better payoff. This underscores the importance of

identifying cases where a single equilibrium exists.



132

7.1.2 Fault-Containment

Historically fault-containment has been studied for (strongly) stabilizing sys-

tems, but little attention has been paid to adding fault-containment to weakly stabi-

lizing systems. Our work fills this gap. Randomized scheduling guarantees that the

system reaches a legal configuration with probability 1, so the choice of randomized

scheduler is automatic in the context of containment.

The proposed algorithm of Chapter 5 allows the immediate neighbors of the

faulty process to be contaminated. However, with high probability, the failure does

not propagate to the distance-2 neighbors and beyond. One can use m (or M for the

bounded version of the solution) as a tuning parameter to tune the performance of

the protocol. A lower value of m allows faster recovery at the expense of an increase

in the contamination number. A larger value of m, on the other hand, decreases the

contamination number, but this comes with an increase in the recovery time from

multiple failures. It is up to the user to choose an appropriate value of m in a given

scenario.

In the solution of Chapter 6, the unbounded variable x(i) can be bounded using

the method described in Chapter 5.The proposed algorithm allows up to distance-4

neighbors of the faulty process to be contaminated. With high probability, the failure

does not propagate beyond that. The expected number of moves required for recovery

is independent of the size of the network.

The major advantages of the two proposed techniques is that the fault-gap

is independent of the network size. This increases the availability of the system by
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restoring the system’s readiness to efficiently tolerate the next single fault within a

short time. This is where our algorithms are different from other algorithms, where

in some cases, the fault-gap is O(n) or worse.

For the persistent bit problem solution, as the degree of the nodes increases,

the stabilization time increases fairly rapidly. Therefore the algorithm is suitable

for sparse topologies. When the topology is dense or the clustering coefficient is

large, although the stabilization time increases, a smaller fraction of the distance-1

neighbors is contaminated.

7.2 Future work

7.2.1 Selfish Stabilization

The stabilizing algorithms of Chapters 3 and 4 are weakly stabilizing solu-

tions. Weak stabilization is strictly weaker than (strong) self-stabilization and it is a

good approximation of (strong) self-stabilization. But whether there exists a strongly

stabilizing solution of these problems remains an open question.

While the problems of shortest path tree and maximum flow tree investigated

here are essentially global in nature, many self-stabilizing protocols exist where the

legal configurations are defined by local predicates, such as maximal independent set

or maximal matching, and one can come up with selfish versions of them. It is worth

investigating whether the results presented in this thesis still hold for those problems,

or pose new challenges.

In the context of “inferior” or “superior” equilibria, it is worth exploring how
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good our solution is compared with the best solution. it is to be noted that non-

compliance to global mandates can have an overall negative impact on the payoffs

when the Nash equilibrium corresponds to an inferior equilibrium. There are different

approaches to handle this problem. Development of a payment scheme to reward com-

pliance is one possible approach, while another approach involves detecting cheaters

and appropriately penalizing them to force compliance. Quantification of these issues

in the current setting is an open problem, and is a topic of future research. In certain

cases, our methods may allow situations where the system does not converge to an

equilibrium configuration despite the fact there exists at least one such equilibrium

in the system. This is different from the case where there exists no equilibrium in the

system. The system may exhibit oscillatory behavior forever as described in Chapter

3. Penalties or rewards can be used in such cases too to force cooperation. The

selfishness property for each individual class of nodes is partially sacrificed when co-

operation is employed, and from the context of individual payoff of each class, the

solution may not be optimal anymore, yet the global goal is accomplished, and the

system stabilizes.

Selfishness is not the only challenge in todays distributed systems. Often,

modern systems have to cope with malicious adversaries who seek to degrade the

utility of the system independently of their own cost. Design of algorithms in the

presence of malicious nodes is a challenging issue.
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7.2.2 Fault Containment

The algorithm for array in Chapter 6 can easily be extended for tree networks.

An array is a special case of a tree network. In case of a general tree topology, one

will have to consider all the neighbors of a process i when executing the rules of the

algorithm, instead of considering at most two neighbors for an array. The analysis

will involve ∆, the maximum degree of a node, and instead of expected recovery time

being constant, it will involve an expression in terms of ∆. Note that this result

will satisfy the definition of weak fault-containment described in Chapter 2. How to

extend our fault-containing leader election algorithm for general graphs remains an

open problem.

For the two problems we addressed, in both cases we handcrafted the solutions

for adding fault-containment by biasing the schedule of the random scheduler in

different ways. Whether a general transformer can be built for the purpose remains

an open problem.
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