




 

 

78 

78 

 

Figure 16. 5-Aza-2-deoxycytidine treatment increases the invasiveness of rat 
chondrosarcoma cells.  Invasiveness was measured in control SRC cells (SRC 
Control), SRC cells that were treated for 5 passages with 5-Aza-2-
deoxycytidine (SRC 5AZA), and SRC cells 5-with 5 passages Aza-2-
deoxycytidine and then grown for 5 additional passages without treatment 
(5AZA-STOP). The invasiveness was calculated for all samples and the 
results are displayed as experimental sample compared to the untreated 
control SRC cells (100% invasion).  The bar represents the average invasion 
indices of biologic replicates, and the error bars represent the standard 
deviation of the biologic replicates. ‘*’ Indicates values that are significantly 
different than the “SRC Control” sample (p<.05). 
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Figure 17. Heat map of differentially expressed genes between SRC cells treated 5-Aza-
2-deoxycytidine and untreated control SRC cells. Genes with at least a 5-fold 
difference were selected for analysis using the pathway program Ingenuity.  
Ingenuity revealed that, of the 977 differentially expressed genes (603 genes 
upregulated and 374 downregulated), 135 were identified as cancer related.  A 
subset of these cancer related genes (see Materials and methods; see Appendix 
E for complete gene list and expression values) was then used for hierarchical 
clustering, and the results of that clustering are presented in this figure. Each 
vertical column represents microarray hybridizations from separate individual 
experiments.  Microarray hybridizations were carried out on SRC cells treated 
with 5-Aza-2-deoxycytidine for 5 passages (SRC-5-AZA-P6 [1] and  [2]), and 
microarray hybridizations were also carried out on SRC cells grown for 5 
passages without 5-Aza-2-deoxycytidine treatment (SRC-No-Treat-P6 [1], 
[2], and [3]). ‘*’ Indicates midkine and ‘**’ indicates sox-2 in the heat map. 
The color bar corresponds the to the expression level in relative fluorescent 
units. 
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Figure 18. Expression analysis of midkine. Quantitative real time PCR analysis of 
midkine expression in control SRC cells (SRC Control), SRC cells that were 
treated for 5 passages with 5-Aza-2-deoxycytidine (SRC 5AZA), and SRC 
cells 5-with 5 passages Aza-2-deoxycytidine and then grown for 5 additional 
passages without treatment (5AZA-STOP). Treatment with 5-Aza-2-
deoxycytidine induces midkine expression.  Five passages following 5-Aza-2-
deoxycytidine removal the expression of midkine has dropped but it is greater 
than that of untreated control cells.  Bars represent the average expression of 
three biologic replicates, and error bars represent the standard deviation of 
these replicates. ‘*’ Indicates values that are significantly different than the 
“SRC Control” sample (p<.05).  Note that for graphical representation two 
different vertical scale bars are shown; the vertical scale bar on the left 
corresponds to the SRC Control and SRC 5AZA-STOP samples, and the 
vertical Scale bar on the right corresponds with the SRC 5AZA-STOP sample.   
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Figure 19. Epigenetic analysis of Midkine methylation in SRC cells.  Schematic 
representation of analyzed CpG islands in relation to the midkine 
transcriptional start site (TSS). Green bars indicate regions that were targeted 
for bisulfite sequencing. Bisulfite sequencing of midkine CpG Island 1 and 
CpG Island 2.  Each row indicates an individual cloned sequence.  Circles 
represent CpG sites. Black circles indicate a methylated CpG site and white 
circles indicate a unmethylated CpG site. These results demonstrate that 5-
Aza-2-deoxycytidine treatment leads to the hypomethylation of CpG islands 
that span regions of the rat midkine gene. 

 

 



 

 

82 

82 

 

Figure 20. Expression analysis of sox-2 in SRC cells.  Quantitative real time PCR 
analysis of sox-2 expression in control SRC cells (SRC Control), SRC cells 
that were treated for 5 passages with 5-Aza-2-deoxycytidine (SRC 5AZA), 
and SRC cells 5-with 5 passages Aza-2-deoxycytidine and then grown  for 5 
additional passages without treatment (5AZA-STOP). Treatment with 5-Aza-
2-deoxycytidine induces sox-2 expression.  Five passages following 5-Aza-2-
deoxycytidine removal the expression of sox-2 has dropped.  Bars represent 
the average expression of three biologic replicates, and error bars represent the 
standard deviation of these replicates. ‘*’ Indicates values that are 
significantly different than the “SRC Control” sample (p<.05).  
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Figure 21.  Epigenetic analysis of sox-2.  Schematic representation of analyzed CpG 
islands in relation to the sox-2 transcriptional start site (TSS). Green bars 
indicate regions that were targeted for bisulfite sequencing.  Bisulfite 
sequencing of sox-2 CpG Island 47 and CpG Island 154.  Each row indicates 
an individual cloned sequence.  Circles represent CpG sites. Black circles 
indicate a methylated CpG site and white circles indicate an unmethylated 
CpG site. (A) CpG 47 Island was methylated in untreated SRC cells but 
following 5-Aza-2-deoxycytidine treatment it became hypomethylated. (B) 
CpG Island 154 was not methylated in either control or treated cells. 
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Figure 22. Pyrosequencing of the midkine and sox-2 promoter.  CpG sites in the midkine 
(A) and sox-2 (B) promoter sequence are methylated in untreated SRC cells 
but following 5-Aza-2-deoxycytidine treatment they become hypomethylated. 
The promoter regions of midkine and sox-2 were analyzed for DNA 
methylation status. Pyrosequencing was used to analyze bisulfite treated DNA 
with primers specific for midkine or sox-2. The bar represents the average 
DNA methylation of technical replicates, and the error bars represent the 
standard deviation of the technical replicates. ‘*’ Indicates that the values are 
significantly different than the “SRC Control” sample (p<.05).  Five CpG sites 
were examined with the midkine promoter analysis.  Eight CpG sites were 
examined in the sox-2 analysis. 
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Figure 23. 5-Aza-2-deoxycytidine treated SRC cells produced larger tumors than 
untreated SRC cells.  (A) In vivo bioluminescent imaging of SRC cells in nude 
mice.   5x106 Control cells [animal a; left] and 5x106 5-Aza-2-deoxycytidine 
treated cells [animal B; right] were injected subcutaneously.  This image was 
collected 6 weeks after tumor induction. This Image corresponds to animal 3a 
and 3b in Table 8.  
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Figure 24. Summary of in vivo SRC injections.  Tumors induced with 5-Aza-2-
deoxycytidine-treated SRC cells produced larger tumors than the tumors 
induced with SRC control cells.  A linear regression method was applied to 
analyze tumor weight between two tumor groups (SRC Control and SRC 
5AZA) after adjusting for the number of cells injected. For graphical 
representation the tumor weights and the number of cells injected was log 
transformed.  p-value is for comparison of the two tumor groups (SRC 
Control and SRC 5AZA), and indicates that there is a significant difference in 
tumor weight between the two groups.  Results are shown for 7 animals with 
tumors induced from untreated cells (SRC control) and for 7 animals with 
tumors induced from 5-Aza-2-deoxycytidine-treated cells (SRC 5AZA).  
Detailed in vivo tumor summary is presented in Table 8. 
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Figure 25. Photomicroscopy of histological sections obtained from SRC tumors (20x 
magnification).  (A) Subcutaneous tumor induced from untreated SRC control 
cells.  (B) Subcutaneous tumor induced from 5-Aza-2-deoxycytidine SRC 
cells. Approximately 60 days following tumor induction animals were 
sacrificed and tumors were removed for histology.   Tumors from the SRC 
control cells and the 5-Aza-2-deoxycytidine cells showed considerable 
heterogeneity. There was no clear histological difference between tumors 
initiated from control cells or treated cells.  Low grade (Grade 1) – Small 
nuclei with low variation in size and abundant cartilage matrix.  Intermediate 
grade (Grade 2) – Higher cellularity, larger nuclei with increased atypia and 
hyperchromasia.  High grade (Grade 3) – Pleomorphic cells with greater 
degree atypia and nuclear size.  The SRC cells are stained with Safranin O 
(red). 
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Figure 26. Macrometastasis detected in the lungs of mice injected with 5-Aza-2-
deoxycytidine treated SRC cells.  Macrometastases were detected in 3 of 9 
animals injected with 5-Aza-2-deoxycytidine treated cells, but no 
macrometastases were detected in the lungs of mice injected with untreated 
cells. Metastases of varying size were detected in the in the lungs of the same 
animal. The SRC tumor cells form nodules of different sizes and resemble 
hyaline cartilage. Lungs from 3 separate mice are displayed in the figure. 
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Figure 27. Pyrosequencing of LINE and Satellite 1 and 2 in vivo.  Pyrosequencing results 
are also displayed from tumor samples: tumors initiated from untreated SRC 
cells (SRC Control) and tumors initiated from SRC cells that were treated for 
5 passages with 5-Aza-2-deoxycytidine (SRC 5AZA).  Results are shown for 
3 SRC Control tumors and 3 SRC 5AZA tumors. Pyrosequencing assay: 
LINE1-S1; [2481 CpG’s], LINE1-S2; [3308 CpG’s], Satellite I [15CpG’s], 
Satellite II [411 CpG’s].  In all regions examined by pyrosequencing the SRC 
5AZA tumors have a significantly lower level of methylation than the SRC 
Control tumors.  Bars represent the average DNA methylation % of biologic 
replicates, and error bars represent the standard deviation of these replicates. 
‘*’ Indicates values that are significantly different than the “SRC Control” 
sample (p<.05). 

 

 

 

 

 



 

 

90 

90 

 

Figure 28. Identification of Sox-2 regulated genes. Genes with a 5-fold difference 
between control and 5-Aza-2-deoxycytidine treated cells were imported into 
the pathway program GeneGO.  GenGO identified a network whereby sox-2 
putatively activates the expression of Dppa5, Alpha crystallin B, and P-
cadherin.  Microarray data demonstrates that Dppa5, CryaB, Cdh3, and Sox2  
are upregulated following 5-aza-2-deoxycytidine treatment (Table 9). The 
relative expression ratios of Dppa5, Alpha crystallin B, and P-cadherin are 
similar to that of sox-2, suggesting that sox-2 may play a role in the regulation 
of these genes. 
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CHAPTER IV 

CONCLUSION 

Over 1.4 million new cases of cancer are diagnosed each year in the United 

States, and it is estimated that more than half a million people die each year to this 

disease (Jemal et al. 2008).  Research is needed to uncover the molecular mechanisms 

underlying tumorigenesis and metastasis so that non-invasive, sensitive methods can be 

developed for improved detection, diagnosis, prognosis, and ultimately for safer and 

more effective treatment of cancer. 

In this thesis we characterize a rat model (SRC: Swarm rat chondrosarcoma) of 

human cancer chondrosarcoma, with the goal of attaining a greater understanding of the 

molecular basis for its development and progression.  Specifically, we examined the 

impact of genome-wide hypomethylation and the contribution of the tumor 

microenvironment in the SRC model.  The microenvironment has a direct impact on 

tumor cells and epigenetic alterations constitute a hallmark of cancer (Hanahan and 

Weinberg 2000).  Albeit regarded as a common epigenomic alteration in cancer 

(Pogribny and Beland 2009), the genome-wide pattern of DNA hypomethylation and its 

consequence to tumorigenesis are still poorly understood. 

Previous studies indicated that the SRC tumor microenvironment can influence 

SRC malignancy (Kenan and Steiner 1991).  However, no studies had previously 

examined its biologic basis.  To address this issue we carried out epigenetic and gene 

expression studies on the SRC tumors that were initiated at different transplantation sites.   

Global methylation analysis revealed that the DNA of the SRC tumor was 

hypomethylated compared to that of normal tissue, and it also revealed that the tumor 

transplantation site influenced the extent of DNA hypomethylation.   

To complement the epigenetic analysis, SAGE (Velculescu et al. 1995) was used 

to derive gene expression profiles from the SRC tumors.  This study revealed that the 
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gene expression profiles of the SRC tumors were unique to each transplantation site.  We 

identified several site-specific alterations in gene expression that may contribute to the 

increase in malignancy that is observed in SRC tumors grown in the tibia.  For example, 

the expression of mRNAs coding for structural extracellular matrix proteins decreased, 

and that of proteases increased in SRC tumors.  Changes to the extracellular matrix are 

necessary for tissue invasion and metastasis (Hanahan and Weinberg 2000), and these 

gene expression alterations may contribute to the invasive phenotype of the tibia SRC 

tumors (Kenan and Steiner 1991).  Such alterations in gene expression of extracellular 

matrix proteins have also been observed in human chondrosarcoma (Aigner et al. 2002), 

which provides further evidence for the similarity between the SRC rat model and human 

chondrosarcoma. 

Additional analysis revealed changes in the expression of genes regulating 

skeletal development, cell proliferation and cell motility.  Expression of two of these 

genes, c-fos and thymosin-β4, has been documented in human chondrosarcoma 

(Papachristou et al. 2005).  These genes have been implicated in several aspects of 

tumorigenesis (Cha et al. 2003; Kobayashi et al. 2002; Tuckermann et al. 2001).  To 

investigate the role of these genes, we independently overexpressed c-fos and thymosin-

β4 in a SRC cell line.  Overexpression of neither c-fos nor thymosin-β4 affected 

tumorigenesis based on average tumor weights.  It is noteworthy, however, that multiple 

lung metastases were detected in one animal with a thymosin-β4-overexpressing tumor.  

More studies are needed to determine the significance of this finding but, the detection of 

SRC lung metastases is in agreement with previous studies that indicated that thymosin-

β4 can regulate tumor cell motility and metastasis (Kobayashi et al. 2002). 

Taken together these studies indicate that the microenvironment can induce 

significant alterations in the epigenetic and gene expression profiles of SRC tumors, 

which in turn affect tumorigenesis.  
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In the third chapter of this thesis we examined the influence of DNA 

hypomethylation on SRC tumorigenesis.  The occurrence of DNA hypomethylation in 

tumors is well documented (Jones and Baylin 2002).  DNA hypomethylation can lead to 

genomic instability (Howard et al. 2008), and it may also result in the expression of genes 

that should otherwise be silenced (Pogribny and Beland 2009).   Evidence suggests that 

hypomethylation promotes tumor formation, but the role of DNA hypomethylation in 

chondrosarcoma is unclear.  In the second chapter we examined the methylation profiles 

of the SRC tumors.  Interestingly, we found that the tumor most aggressive tumor, that 

which was grown in the tibia, was also the most hypomethylated.  

To further investigate the role of DNA hypomethylation in tumorigenesis we 

induced DNA hypomethylation with 5-Aza-2’-deoxycytidine.  5-Aza-2’-deoxycytidine 

inhibits DNA methyltransferases (Chen et al. 1991) thus leading to reduced levels of 

DNA methylation (Mund et al. 2005).   

5-Aza-2’-deoxycytidine was used to induce DNA hypomethylation in the SRC 

cells.  The resulting decrease in  methylation was accompanied by an increase in the 

invasiveness of the SRC cells.  In vitro, methylation was reestablished following removal 

of 5-Aza-2’-deoxycytidine.  Once reestablished, the invasiveness of the cell line returned 

to a level similar to that observed in control cells.  In vivo, DNA hypomethylation led to 

the formation of tumors that were more aggressive than those derived from control cells. 

Microarray analysis revealed that DNA hypomethylation induced several gene 

expression alterations in the SRC cells.  Two of these genes, midkine and sox-2, were 

selected for further analysis based on their differential expression and putative role in 

tumorigenesis (Kato et al. 2000; Sanada et al. 2006; Tanabe et al. 2008).  Analysis of the 

promoter regions of these genes revealed the presence of CpG dinucleotides that were 

methylated prior to but not post treatment with 5-Aza-2’-deoxycytidine.  This result 

suggests that both midkine and sox-2 genes may be epigenetically regulated and that their 
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expression may contribute to the increased tumorigenicity that is observed following 

treatment with 5-Aza-2’-deoxycytidine. 

Although 5-Aza-2-deoxycytidine has previously been shown to have clinical 

benefits in the treatment of specific forms of leukemia (Plimack et al. 2007), our results 

suggest that 5-Aza-2-deoxycytidine treatment may promote certain aspects of 

tumorigenesis in SRC cells.  The clinical benefits of 5-Aza-2-deoxycytidine are thought 

to be mediated by the drug's ability to induce DNA hypomethylation.  However, it has 

been shown that chromosomal instability and tumor formation are also promoted by 

genome-wide loss in DNA methylation (Eden et al. 2003).  Additionally, 5-Aza-2-

deoxycytidine has been shown to induce DNA damage (Juttermann et al. 1994; Palii et al. 

2008).  Our studies in SRC cells demonstrate that 5-Aza-2-deoxycytidine treatment can 

lead to the induction of genes that can regulate pluripotency in stem cells (Figure 28).  

The expression of pluripotency related genes may lead to the activation of transcriptional 

programs that could confer stem cell-like properties to the tumor cells (Schoenhals et al. 

2009), and this would ultimately promote further tumor progression.  Taken together, our 

results highlight the potential negative impact that epigenetic drugs may have on tumor 

outocome.  Experimental treatment of other tumor types with 5-Aza-2-deoxycytidine 

should therefore be done with great caution. 

Overall this thesis demonstrates that the tumor microenvironment can induce 

epigenetic alterations and changes in gene expression in the SRC cells.  Subsequent 

functional analysis of differentially expressed genes provided insight into the role that 

two genes, c-fos and thymosin-β4, may play in chondrosarcoma tumorigenesis.  This 

thesis also demonstrates that DNA hypomethylation can promote aspects of 

chondrosarcoma tumorigenesis.  These changes in tumorigenesis may be mediated by the 

expression of genes that are epigenetically silenced in normal cells.  Interestingly, 

thymosin-β4 was found to be upregulated in both the SAGE data derived from SRC 

tumors, and the microarray data obtained from hypomethylated SRC cells.  Examination 
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of the thymosin-β4 promoter revealed that both human and rat thymosin-β4 genes have 

CpG islands in their promoter regions (Figure 29), thus suggesting that thymosin-β4 

expression in chondrosarcoma cells may be epigenetically regulated by DNA 

methylation. 

  



 

 

96 

96 

 

Figure 29. Schematic representation of the thymosin-β4 promoter.  The thymosin-β4 
promoter sequence in human (A) and rat (B) was examined for CpG islands.  
CpG islands were found to cover the first two exons of the thymosin-β4 gene 
in both species. Diagram is drawn to scale.  Blue boxes represent exons.  The 
green boxes represent the location of the CpG islands. 
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APPENDIX A 
COMPLETE SAGE DATA 

The gene expression data generated with the SAGE experiments are provided in 

Appendix A.  The data is presented as a table.  The first row of the table describes each 

column of the table.  Each subsequent row corresponds to a single SAGE tag.  Each tag is 

identified by its 10 base-pair nucleic acid sequence.  The adjacent columns provide the 

expression value for each tag in a given SAGE library.  The raw expression data and the 

normalized expression values are given for each SAGE library (for the normalized data 

the tags were normalized to 100,000 tags/library).  For each SAGE tag, the Unigene 

number and gene name description are given if known. 

This SAGE data file is documented as a file named Appendix_A with Microsoft 

Excel, and stored in the attached DVD.  
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APPENDIX B 
DIFFERENTIALLY EXPRESSED SAGE TAGS 

The complete list of differentially expressed genes obtained from the comparison 

of  “Rat Normal Cartilage” vs. all 3 SRC SAGE libraries (“Subcutaneous SRC tumor”, 

“Tibia SRC tumor”, and “Lung SRC tumor”) is provided in Appendix B.  The criteria for 

section was as follows: z-value>1.96 (for differential gene expression) and expression of 

at least 25 tags in one SAGE library. The data is presented as a table.  The first row of the 

table describes each column of the table.  Each subsequent row corresponds to a single 

SAGE tag.  Each tag is identified by its 10 base-pair nucleic acid sequence.  The adjacent 

columns provide the expression value for each tag in a given SAGE library. For each 

SAGE tag, the Unigene number and gene name description are given if known. 

This SAGE data file is documented as a file named Appendix_B with Microsoft 

Excel, and stored in the attached DVD. 
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APPENDIX C 
GENE LIST OF UNIQUE SAGE PROFILES 

The complete list of differentially expressed genes for the following comparisons 

are presented in Appendix C: “Subcutaneous SRC tumor” vs. “Tibia SRC tumor” and 

“Lung SRC tumor”, “Tibia SRC tumor” vs. “Subcutaneous SRC tumor” and “Lung SRC 

tumor”, and “Lung SRC tumor “ vs. “Subcutaneous SRC tumor” and “Tibia SRC tumor”.  

The criteria for selection was as follows: z-value>1.96 (for differential gene expression) 

and expression of at least 25 tags in one SAGE library. The first row of the table 

describes each column of the table.  Each subsequent row corresponds to a single SAGE 

tag.  Each tag is identified by its 10 base-pair nucleic acid sequence.  The adjacent 

columns provide the expression value for each tag in a given SAGE library. For each 

SAGE tag, the Unigene number and gene name description are given if known. 

 This SAGE data file is documented as a file named Appendix_C with 

Microsoft Excel, and stored in attached DVD.  Each tab of the spreadsheet corresponds to 

an as specific comparison of expression data as follows:  Tab 1=“Subcutaneous SRC 

tumor” vs. “Tibia SRC tumor” and “Lung SRC tumor, Tab 2= “Tibia SRC tumor” vs. 

“Subcutaneous SRC tumor” and “Lung SRC tumor”, and Tab 3= “Lung SRC tumor “ vs. 

“Subcutaneous SRC tumor and “Tibia SRC tumor”. 
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APPENDIX D 
COMPLETE MICROARRAY DATA 

The complete microarray data for the gene expression experiment (Chapter III) is 

provided in Appendix D. The data for 5 microarray hybridizations is presented in a table.  

The five hybridizations:  SRC-5AZA-1(treated sample), SRC-5AZA-2(treated sample), 

SRC-No-Treat-1(control sample), SRC-No-Treat-2(control sample), and SCR-No-Treat-

3(control sample). The first row of the table describes the annotation for of each column 

of the table.  The unique identifier for each set of probes on the microarray is listed under 

the column “SEQ_IDs”.  The annotation for each of the “SEQ_IDs” is presented in the 

second tab of the excel workbook.  For the expression analysis, a “SEQ_ID” occupies the 

first column in a row, and the adjacent columns contain the expression values( Tab 1: 

Normalized data).  The microarray was carried out using the NimbleGen microarray 

service.  The Rattus norvegicus 1-plex array (14 probes/target; 26739 genes; cat#: 

A6184-00-01) was used for each hybridization. 

All presented microarray data is MIAME compliant.  The raw microarray data has 

been deposited in a MIAME compliant database. The microarray data has been deposited 

at the Gene Expression Omnibus database (GEO accession number: GSE17598). 

This microarray data file is documented as a file named Appendix_D with 

Microsoft Excel, and stored in the attached DVD. 
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APPENDIX E 
DIFFERENTIALLY EXPRESSED GENES IDENTIFIED 

BY MICROARRAY ANALYSES 

The complete list of differentially expressed genes for the comparison of 5-AZA-

2-deoxycytidine treated SRC-LTC cells (SRC-5AZA) vs. untreated SRC-LTC cells 

(SRC-No-Treat) are presented in Appendix E.  For inclusion in this analysis the genes 

had to have a 5-fold difference between control and 5-Aza-2-deoxycytidine treated cells. 

The data is presented as a table.  The first row of the table describes each column 

of the table.  Each subsequent row corresponds to a gene/set of probes on the miroarray 

data. The first column lists the GenBank number.  The adjacent columns provide the 

expression value for each tag in a given hybridization. 

This microarray data file is documented as a file named Appendix_E with 

Microsoft Excel, and stored in the attached DVD. 
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