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ABSTRACT

This dissertation investigates part of the strong nuclear force in point form

QCD. The quark sector is neglected to focus on gluons and their self-interactions.

The structure of gluons is investigated by building up a �eld theory for massless

particles. Single gluon states are de�ned, and a condition is implemented to make

the wave function inner product positive de�nite. The transformation between gluon

and classical gluon �elds generates a di�erentiation inner product, and the kernels

allow for transition between momentum and position space. Then, multiparticle

gluon states are introduced as symmetric tensor products of gluon Hilbert spaces

generated by creation and annihilation operators. In order to assure that the resulting

Fock space inner product is positive de�nite, an annihilator condition is needed and

gauge transformations are introduced. The four momentum operator consists of the

stress-energy tensor integrated over the forward hyperboloid. The free gluon four

momentum operator introduced via the Lagrangian and stress-energy tensor is shown

to be equivalent to that generated by gluon irreducible representations when acting

on the physical Fock space.

Next the vacuum problem is discussed, where the vacuum state is the state

that is annihilated by the the four momentum operator and is invariant under Lorentz

and color transformations. To �nd such a state, the vacuum problem is simpli�ed

by considering a one degree of freedom model. The Hamiltonian for such a model,

the one dimensional energy operator, is solved under a variety of di�erent ansatzes.
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It is shown that the Hamiltonian has a continuous eigenvalue spectrum, and that

the vacuum can be constructed in a way that eliminates the interaction term of the

Hamiltonian. This one dimensional vacuum model is adapted to the full problem

where it is shown that such a result cannot be replicated.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

1.1.1 Background

One of the major goals in nuclear physics is to understand the nature of the

strong nuclear force. In traditional nuclear physics, protons and neutrons, known

collectively as nucleons, are the fundamental building blocks out of which nuclei are

built. Historically, nuclear forces were generated phenomenologically and the resulting

Hamiltonians were used to calculate the bound and scattering states of nuclei [10].

In a modern understanding of the fundamental forces of nature, forces are pro-

duced by the exchange of mesons between fermions. In a �rst attempt to understand

the strong nuclear force in this way, the fermions were taken to be nucleons, spin 1
2

particles with mass, while the mesons were taken to be the three pions, having spin

0, and charge 0, +e, and − e [8]. Nuclear forces are then produced by the exchange

of pions between nucleons. Moreover, the quantum �eld theory (QFT) that under-

lies such a notion of forces is also able to explain particle production, wherein the

collision between nucleons, or between pions and nucleons, produce new particles by

converting energy into mass. One of the main drawbacks with such a theory is that

the coupling strength between pions and nucleons is large, meaning that perturbative

methods are not very useful in calculating cross sections for scattering and production

reactions. Nevertheless, using this QFT to explore the nature of the strong nuclear
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force is still actively pursued.

A more serious di�culty with such a theory is that it is known experimentally

that nucleons and pions are not fundamental, but are themselves comprised of more

fundamental entities called quarks. There are a number of di�erent experiments that

point to this conclusion, starting with the anomalous magnetic moments of protons

and neutrons [10]. That is, in contrast to the electron, which is thought to be funda-

mental and has a magnetic moment predicted by the Dirac equation, the magnetic

moments of the proton and neutron deviate signi�cantly from the electron magnetic

moment. Additionally, there is a spectrum of excited states of the nucleons that would

indicate that they have a composite nature. The most signi�cant experiments, how-

ever, involve the scattering of protons o� of protons, the spectrum of which indicates

the existence of entities that make up the proton [7].

To account for these experimental facts, a quantum �eld theory in which the

fermions are quarks and the mediating mesons are gluons provides the theoretical

basis for understanding the strong nuclear force. Such a �eld theory, called quantum

chromodynamics (QCD), has a number of peculiar features [13]. Perhaps the most

prominent is that the forces between quarks, produced by the mediating gluons,

increase as the distance between the quarks increase. This results in the quarks being

con�ned and unable to exist as free particles. Conversely, when the quarks are close

together, they behave almost as free particles.
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1.1.2 Gluons and Quantum Chromodynamics

The main objects of study in this dissertation are the gluons, uncharged mass-

less particles of spin 1 which carry an internal symmetry called color. The internal

symmetry group is SU(3) [7], so that the fundamental representation carries three

�colors�, red, green and blue, named because the three can combine to make white

or �colorless�. Quarks transform as the fundamental representation and hence come

in three �colors�. Gluons transform as the adjoint representation of SU(3), so that

there are eight gluons which consist of color-anticolor pairings. Color as an internal

symmetry was originally introduced to solve a problem involving the permutation

symmetry of hadronic wave functions [4] (hadron is the general term given to ex-

perimentally observed strongly interacting particles). Color was then incorporated

as a gauge symmetry to generate QCD. In this dissertation, we will take the color

symmetry as given and focus on its role in the structure of gluons.

One of the most striking features of gluons is that they can self-interact. That

is, though the gluons mediate the forces between quarks, they can also interact among

themselves. This raises a host of questions [2, 6]. Is it possible to express the self-

interaction as a potential between gluons? If so, are there bound states of gluons?

Here both the experimental and theoretical situation is quite clouded. There are

claims and counterclaims for the existence of so called �glueballs�, alleged experimental

bound states of gluons [2]. There are also (usually non-relativistic) potential models

which compute glueball spectra [6]. Chapter 3 will discuss some simple models of

the gluon sector of QCD in which the in�nite degree of freedom nature of QCD is
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reduced to one degree of freedom, where it will be shown that the self-interaction can

be transformed away. In Chapter 4, the full in�nite degree of freedom structure is

restored and insights gained from Chapter 3 are used to address the gluon structure

in its full complexity.

Hadrons are all color singlets or �colorless�; they are bound states of quarks

and gluons that transform as the identity representation of color SU(3). In contrast,

quarks and gluons, which do not exist as free particles, transform as the fundamental

(3 dimensional) and adjoint (8 dimensional) representations of color SU(3) respec-

tively. Hadronic wave functions are tensor products of quark, antiquark and gluon

wave functions, made in such a way that they transform as the identity representa-

tion of color SU(3). In particular, glueballs, if they exist, must be made from tensor

products of multiparticle gluon states that transform as the identity representation

of color SU(3). In Chapter 2, the structure of gluons will be studied in detail and

the many particle nature of gluons analyzed using gluon creation and annihilation

operators. Products of gluon �elds, which are invariant under color SU(3) and made

from the gluon creation and annihilation operators, will play an important role in the

study of gluons in Chapter 4.

1.2 Point Form Quantum Field Theory

1.2.1 The Poincaré Group

A main objective of a relativistic many body quantum theory is to �nd a

realization of the Poincaré algebra on some generalized Fock space. Once this has
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been accomplished, the vacuum and one particle states can be computed, as well as

scattering data and other particle correlations.

The Poincaré group is the set of all isometries of Minkowski spacetime. It is a

ten dimensional group consisting of six Lorentz elements (boosts and rotations) and

four spacetime translations. Its irreducible representations (or irreps) generate one

particle Hilbert spaces for massive and massless particles. In Chapter 2, the one par-

ticle representations of gluons will be generated by the massless spin 1 representations

of the Poincaré group.

The Lie algebra of the Poincaré group consists of Lorentz generators, written

Mµν , and spacetime generators, P µ, called the four momentum operator. They satisfy

the commutation relations

[P µ, P ν ] = 0

[Mµν , P ρ] = ηµρP ν − ηνρP µ

[Mµν ,Mρσ] = ηµρMνσ − ηµρMνσ − ηνρMµσ + ηνσMµρ (1.1)

where η is the Minkowski metric de�ned as

η =



1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


The general four vector product is written

p · q = pαηαβq
β
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which is summed over the indices as in the standard Einstein summation notation.

A relativistic quantum theory is one in which the operators P µ and Mµν act

on some Hilbert (Fock) space and satisfy the Poincaré commutation relations in Eq.

1.1.

1.2.2 Possible Approaches

There are several ways of generating operators that satisfy the Poincaré com-

mutation relations. The traditional way is via a Lagrangian which is given in terms

of free �elds [8]. In turn, the Lagrangian generates the stress-energy tensor, T µν , and

the integral over some spacelike surface, σ, then gives the four momentum operator

P µ =

∫
dσνT

µν

If the stress-energy tensor is conserved, ∂Tµν

∂xν
= 0, then the four momentum operator

P µ will be conserved as well.

In the early days of relativistic QFT, Schwinger, Tomonaga, and others [9, 11]

proved that any spacelike surface could be used to obtain the Poincaré generators. In

this dissertation we will take the spacelike surface to be the forward hyperboloid in

Minkowski space. This has the consequence that interactions occur only in the four

momentum, and the Lorentz generators are purely kinematic (contain no interactions)

[1]. Other choices for spacelike surfaces lead to interactions occurring in di�erent sets

of Poincaré generators. The most common choice, a time constant surface (used

prominently in textbooks, for example [13]), leads to what is called instant form

QFT, while the choice of a light front in Minkowski space leads to what is called front
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form QFT [3].

The main advantage of the point form, wherein the spacelike surface is the

forward hyperboloid, is that Lorentz transformations can be treated globally and

quantities can be written that explicitly exhibit global Lorentz transformation prop-

erties. In that case the Poincaré commutation relations can be integrated to

[P µ, P ν ] = 0

UΛP
µU−1

Λ = (Λ−1)µνP
ν (1.2)

where UΛ is the unitary operator representing the Lorentz transformation Λ. The

goal of a point form QFT is to �nd the four momentum operator satisfying these

�point form� equations, with the interpretation that the energy (P µ=0) and momentum

(P µ=1,2,3) commute so that energy and momentum can be simultaneously measured,

even though both energy and momentum operators contain interactions. In this

dissertation, the four momentum operator will be that of self-interacting gluons only;

a complete point form QCD would include the four momentum operator for quarks

as well. The form of the four momentum for gluons is discussed in detail in Chapter

2.

An alternate way to build up a many particle quantum theory is to start with

the irreducible representations of the Poincaré group [12]. These irreps act on Hilbert

spaces, which are the underlying one particle spaces of the theory. A many particle

theory can then be generated by introducing creation and annihilation operators that

have the same transformation properties as the one particle operators. In particular,

in the point form, the unitary operators representing Lorentz transformations arise
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from the one particle irreps.

In Chapter 2, the irreducible representations of gluons will be induced from

a �nite dimensional non-unitary representation of E(2), the Euclidean group in two

dimensions, which is the little group for massless particles [5]. Since the representation

of E(2) is non-unitary, a special inner product is required for Lorentz invariance. This

inner product, however, is not positive de�nite. Chapter 2 also shows how to restrict

the polarization degrees of freedom to make the inner product positive de�nite while

at the same time showing how to introduce gauge transformations into the theory.

1.2.3 Extension to Many Body Theory

A many body gluon structure is obtained with gluon creation and annihilation

operators. In order to assure that the resulting Fock space inner product stays posi-

tive de�nite, an annihilator operator condition is introduced. This operator condition

also serves to de�ne the physical Fock space, and the resulting free four momentum

operator is shown to be gauge invariant. From gluon creation and annihilation op-

erators, free gluon �elds are introduced. The most important theorem of Chapter 2

is that the free gluon four momentum operator introduced via the Lagrangian and

stress-energy tensor is the same as that generated from gluon irreps (the details are

provided in Appendix B). A similar theorem was previously proven for scalar charged

mesons and spin 1
2
fermions [1], but here we show it also holds for massless particles.

Given the gluon �elds, self-interacting gluons are obtained with the help of

the �eld tensor. The four momentum operator is shown to be the sum of free, cubic
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and quartic gluon �elds. This leads to the generalized eigenvalue problem

P µ|Ψp >= pµ|Ψp > (1.3)

where P µ is the total four momentum operator including self-interactions, and pµ is

the eigenvalue for the generalized eigenvector |Ψp >.

The vacuum problem for gluons is then given by

P µ|Ω > = 0

UΛ|Ω > = |Ω >

Uh|Ω > = |Ω >

with h ∈ SU(3), and |Ω > is the vacuum state, a state which has zero energy and

momentum and is invariant under Lorentz and color symmetry.

How to obtain |Ω > is the subject of Chapter 3. The gluon degrees of freedom

are suppressed to one degree of freedom and the eigenvalue problem analyzed with this

greatly simpli�ed model. The main result of Chapter 3 is to show that if the vacuum

state is written as |Ω >= eS|0 >, where |0 > is the Fock vacuum, then choosing

S as a product of three gluon �elds e�ectively transforms away the self-interactions

of the four momentum operator. In Chapter 4, the full gluon vacuum problem is

considered in light of this result, and the method is duplicated. It is determined that

despite transforming away the interactions for the one degree of freedom problem in

Chapter 3, the corresponding form of S for the full problem is unable to eliminate

the self-interactions.

Chapter 5 summarizes the results and indicates how the earlier chapters can be
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used to investigate the full vacuum problem for gluons. Additionally, some properties

of glueballs are introduced for consideration of future work.
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CHAPTER 2

THE STRUCTURE OF GLUONS

The goal of this chapter is to investigate the structure of gluons in the context

of point form quantum �eld theory.

2.1 Gluons and Their Properties

Gluons are massless, spin 1 bosons carrying the color charge. Because gluons

are massless, they only have two spin states, despite being spin 1 bosons; convention-

ally the spin projector is chosen to be the helicity, which is the spin projection in the

direction of the momentum of the particle. A simple way to understand the nature

of gluons is by comparing it to the photon (which is discussed in [5]).

2.1.1 The Little Group E(2)

As in the photon case, the structure of the gluon stems from representations

of the Poincaré group for massless particles, for which the little group is the two

dimensional Euclidean group, E(2).

De�nition 2.1. E(2) consists of all continuous transformations on the Euclidean

space R2 which leave the length of all vectors invariant.

A general transformation sends x→ x′ = R(φ)x+ b where R(φ) is a rotation

matrix through an angle φ and b is a translation.

If Λ ∈ SO(1, 3), the proper Lorentz group, then E(2) can also be de�ned as

the subgroup of the proper Lorentz group leaving a standard four-vector invariant:
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E(2) := {Λ ∈ SO(1, 3)|Λkst = kst} (2.1)

where kst := (1, 0, 0, 1). Eq. 2.1 is essentially a four-dimensional non-unitary repre-

sentation of E(2) for which the representation of e2 ∈ E(2) is written as Λ(e2), to

indicate the Lorentz transformation representing the group element e2.

To verify this is a representation of E(2), the elements of the Euclidean group

in this representation can be written explicitly as

Λ(φ) =



1 0 0 0

0 cosφ − sinφ 0

0 sinφ cosφ 0

0 0 0 1


(2.2)

Λ(b) =



1 + |b|2
2

bx by − |b|
2

2

bx 1 0 −bx

−by 0 1 by

|b|2
2

bx −by 1− |b|
2

2


(2.3)

where it is trivial to show that Λ(φ),Λ(b) ∈ E(2) as de�ned in Eq. 2.1.

De�nition 2.2. A helicity boost, BH(k), is a Lorentz transformation satisfying k =

BH(k)kst.

This assures that

k · k = kαηαβk
β = kst

α

ηαβk
stβ = 0
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as required for massless gluons.

Any Lorentz transformation can be written as a boost times a Euclidean group

element, where BH(k) is a coset representative of SO(1, 3) with respect to E(2). The

helicity boost choice for massless particles is

BH(k) = R(k̂)Λz(|k|)

=

 coshχ 0 0 sinhχ

sinhχk̂ k̂1 k̂2 coshχk̂


where R(k̂) is a rotation matrix taking ẑ to the unit vector k̂, Λz(|k|) is a Lorentz

transformation about the z-axis with |k| = eχ, k̂1 = (cosφ cos θ, sinφ cos θ, − sin θ),

and k̂2 = (− sinφ, cosφ, 0).

2.1.2 Gluon Basis States and Their Properties

A standard gluon basis state is de�ned in terms of the standard four-vector,

kst, spin projection ρ and color a such that it transforms as a representation of E(2),

Ue2|kst, ρ, a > =
∑
ρ′
|kst, ρ′, a > Λρ′ρ(e2), ∀e2 ∈ E(2)

De�nition 2.3. The one particle gluon state is given by boosting the standard gluon

basis state,

|k, ρ, a > := UB(k)|kst, ρ, a >

From this de�nition the transformation properties of a one particle gluon state

under Lorentz and spacetime transformations are then determined. This will allow

for conversion to or from the standard vector via a unitary Lorentz transformation.
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UΛ|k, ρ, a > = UΛUB(k)|kst, ρ, a >

=
∑
ρ′

|Λk, ρ′, a > Λρ′ρ(eW ) (2.4)

Ub|k, ρ, a > = eık·b|k, ρ, a >

Uh|k, ρ, a > =
∑
a′

|k, ρ, a′ > Daa′(h)

where b is a spacetime translation and h ∈ SU(3). D(h) are the adjoint representation

matrices of color SU(3). Λ(eW ) is the massless analogue of a Wigner rotation de�ned

by

Λ(eW ) := B−1(Λk)ΛB(k) (2.5)

Notice that Λ(eW ) ∈ E(2), since

Λ(eW )kst = B−1(Λk)ΛB(k)kst

= B−1(Λk)Λk

= kst

2.1.3 Single Particle Wave Function

De�nition 2.4. A general gluon state can be written in terms of gluon wave functions

and basis states,

|φ >:=
∑
ρ,a

∫
d3k

2k0

φ(k, ρ, a)|k, ρ, a >

where φ(k, ρ, a) is a single particle gluon wave function. Here d3k
2k0

is the Lorentz

invariant measure where k0 := |k|.
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An immediate consequence of this de�nition is that the transformation prop-

erties of gluon wave functions are inherited from those of the states. Speci�cally, the

action of the Lorentz transformation in Eq. 2.4 on states is transferred to the wave

function, resulting in

(UΛφ)(k, ρ, a) =
∑
ρ′

Λρ′ρ(eW (k,Λ−1))φ(Λ−1k, ρ′, a)

using the notation Λ(eW (k,Λ−1)) = B−1(k)ΛB(Λ−1k) instead of eW as de�ned in Eq.

2.5.

The usual Hilbert space of square integrable gluon wave functions is not

Lorentz invariant. Modify the gluon inner product to be

(φ, ψ) := −
∑
a

∫
d3k
2k0
φ?(k, ρ, a)ηρρψ(k, ρ, a) (2.6)

Then ‖UΛφ‖2 = ‖φ‖2. However, as de�ned, this inner product is not positive

de�nite as can be seen by setting φ(k, ρ, a) = 0, for ρ = 1, 2, 3 with φ(k, 0, a) 6= 0. In

such a case, ‖φ‖2 < 0. Therefore, constraints must be imposed on φ for the inner

product to be positive de�nite.

Lemma 2.1. The wave function condition,

kst
ρ

φ(k, ρ, a) = 0 (2.7)

which sets φ(k, 0, a) = φ(k, 3, a), makes the wave function inner product positive

de�nite.

Proof.
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(φ, φ) =
∑
a

∫
d3k

2k0

[−φ?(k, 0, a)φ(k, 0, a) + φ?(k, 1, a)φ(k, 1, a) +

φ?(k, 2, a)φ(k, 2, a) + φ?(k, 3, a)φ(k, 3, a)]

=
∑
a

∫
d3k

2k0

[φ2(k, 1, a) + φ2(k, 2, a)]

≥ 0

Corollary 2.2. Eq. 2.7 is Lorentz invariant.

Proof (of Corollary).

UΛk
stρφ(k, ρ, a) = kst

ρ

Λρ′ρ(eW (k,Λ−1))φ(Λ−1k, ρ′, a)

= kst
ρ′

φ(Λ−1k, ρ′, a)

= 0

The one gluon Hilbert Space is then Hg = {(φ, φ)|φ(k, 0, a) = φ(k, 3, a)},

where the equality of the zero and third components of the spin means there are only

two independent gluon spin/helicity states.

2.1.4 Classical Gluon Fields

De�nition 2.5. Classical free gluon �elds are four vector �elds over spacetime that

carry color; they are de�ned as

Gµ
a(x) =

∫
d3k

(2π)3/22k0
Bµρ(k)φ(k, ρ, a)e−ik·x (2.8)
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with a norm extracted from a di�erentiation inner product

(ψ, χ)σ = −ı
∫
σ

dσµ(x)[ψ?(x)
∂χ(x)

∂xµ
− χ(x)

∂ψ?(x)

∂xµ
]

where σ is a space-like hypersurface of Minkowski spacetime [8].

For point form QFT the natural hypersurface is the forward hyperboloid στ :

xµx
µ = τ 2, with measure

dσµ(x) = 2d4xδ(x · x− τ 2)θ(x0)xµ

Then the norm for a classical free gluon �eld,

(G,G) = − ı
∑
a

∫
2d4x δ(x · x− τ 2)θ(x0)xα(Gµ?

a (x)
∂Gµa(x)

∂xα
− ∂Gµ?

a (x)

∂xα
Gµa(x))

=
∑
a

∫
d3k

(2π)3/22k0

d3k′

(2π)3/22k′0
Bµρ(k)Bρ′

µ (k′)φ?(k, ρ, a)φ(k′, ρ′, a)∫
2d4x δ(x · x− τ 2)θ(x0)xα(k′ + k)αe

ix·(k′−k)

The spatial integral is the Lorentz invariant distribution W (p, q) where p =

k′ + k and q = k′ − k. As shown in the Appendix of Ref. [1], W (p, q) = (2π)3p0δ
3(q)

so that

(G,G) = −
∑
a

∫
d3k

(2π)3/22k0

d3k′

(2π)3/22k′0
Bµρ(k)Bρ′

µ (k′)φ?(k, ρ, a)φ(k′, ρ′, a)W (k′ + k, k′ − k)

= −
∑
a

∫
d3k

2k0

d3k′

2k′0
Bµρ(k)Bρ′

µ (k′)φ?(k, ρ, a)φ(k′, ρ′, a)(k0 + k′0)δ3(k− k′)

= −
∑
a

∫
d3k

2k0

φ?(k, ρ, a)ηρρ
′
φ(k, ρ′, a)

= (φ, φ)

where Bµρ(k)Bρ′
µ (k) = ηρρ

′
has been used.
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Similarly, φ(k, ρ, a) can be written in terms of gluon �elds by introducing the

kernel

Kµ
ρ(k, x) = Bµ

ρ (k)eik·x

and the other direction can also be shown. Therefore, the inner product of free gluon

�elds over the forward hyperboloid is equivalent to that of the gluon momentum space

wave functions.

2.2 Multiparticle Gluon States

Because gluons are bosons, multiparticle gluon states are symmetric tensor

products of gluon Hilbert spaces. The in�nite direct sum of all symmetrized ten-

sor products forms the gluon Fock space. Multiparticle gluon states are naturally

generated by creation and annihilation operators.

2.2.1 Creation and Annihilation Operators

Let g†(k, ρ, a) be the creation operator for a gluon with momentum k, spin ρ

and color a. The adjoint g(k, ρ, a) is the annihilation operator.

De�nition 2.6. Creation and annihilation operators act on the Fock vacuum, |0 >,

the state of no gluons, as follows

g(k, ρ, a)|0 > = 0, ∀k, ρ, a

g†(k, ρ, a)|0 > = |k, ρ, a >

and satisfy boson commutation relations

[g(k, ρ, a), g†(k′, ρ′, a′)] = −ηρρ′k0δ
3(k− k′)δaa′
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With these operators it is possible to generate multiparticle gluon states, as el-

ements in the gluon Fock space. The following transformation properties are inherited

from the one particle gluon properties in Eq. 2.4:

UΛg(k, ρ, a)U−1
Λ =

∑
ρ′

g(Λk, ρ′, a)Λρ′ρ(eW ) (2.9)

Uhg(k, ρ, a)U−1
h =

∑
a′

g(k, ρ, a′)Da′a(h)

The free four momentum operator, P µ
fr, can be written

P µ
fr = −

∑
a

∫
d3k

k0

kµg†(k, ρ, a)ηρρg(k, ρ, a) (2.10)

which gives the free four momentum of a multiparticle gluon state.

As with the one particle Hilbert space, the Fock space inner product will not

be positive de�nite unless the 0th and 3rd components of multiparticle wave functions

are equal.

Theorem 2.3. The annihilator condition that guarantees that the Fock space inner

product is positive de�nite is

∑
a

kst
ρ
g(k, ρ, a)|φ > = 0 (2.11)

Proof.

Consider the two gluon state,

|φ2 > =
∑

ρ1,ρ2,a1,a2

1

(2π)3

∫
d3k1

2k01

d3k2

2k02

φ2(k1, ρ1, a1; k2, ρ2, a2)|k1, ρ1, a1; k2, ρ2, a2 >

=
∑

ρ1,ρ2,a1,a2

1

(2π)3

∫
d3k1

2k01

d3k2

2k02

φ2(k1, ρ1, a1; k2, ρ2, a2)|k1, ρ1, a1 > ⊗|k2, ρ2, a2 >
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Then applying Eq. 2.11,

∑
a

kst
ρ
g(k, ρ, a)|φ2 > =

∑
a

∑
ρ1,ρ2,a1,a2

kst
ρ
g(k, ρ, a)

1

(2π)3

∫
d3k1

2k01

d3k2

2k02
φ2(k1, ρ1, a1; k2, ρ2, a2)|k1, ρ1, a1 > ⊗|k2, ρ2, a2 >

=
∑
a

∑
ρ1,ρ2,a1,a2

kst
ρ 1

(2π)3

∫
d3k1

2k01

d3k2

2k02
φ2(k1, ρ1, a1; k2, ρ2, a2)g(k, ρ, a)g†(k1, ρ1, a1)g†(k2, ρ2, a2)|0 >

=
∑
a

∑
ρ1,ρ2,a1,a2

kst
ρ 1

(2π)3

∫
d3k1

2k01

d3k2

2k02
φ2(k1, ρ1, a1; k2, ρ2, a2)[−ηρρ1k01δ

3(k− k1)δaa1g
†(k2, ρ2, a2)

+g†(k1, ρ1, a1)g(k, ρ, a)g†(k2, ρ2, a2)]|0 >

=
∑
a

∑
ρ1,ρ2,a1,a2

kst
ρ 1

(2π)3

∫
d3k1

2k01

d3k2

2k02
φ2(k1, ρ1, a1; k2, ρ2, a2)[−ηρρ1k01δ

3(k− k1)δaa1g
†(k2, ρ2, a2)

−ηρρ2k02δ
3(k− k2)δa,a2g

†(k1, ρ1, a1)]|0 >

= −
∑
a

∑
ρ2,a2

kst
ρ 1

(2π)3

∫
d3k2

2k02
ηρρ1φ2(k, ρ1, a; k2, ρ2, a2)|k2, ρ2, a2 >

−
∑
a

∑
ρ1,a1

kst
ρ 1

(2π)3

∫
d3k1

2k01
ηρρ2φ2(k1, ρ1, a1; k, ρ2, a)|k1, ρ1, a1 >

= −
∑
a

∑
ρ2,a2

1

(2π)3

∫
d3k2

2k02
[φ2(k, 0, a; k2, ρ2, a2)− φ2(k, 3, a; k2, ρ2, a2)]|k2, ρ2, a2 >

−
∑
a

∑
ρ1,a1

1

(2π)3

∫
d3k1

2k01
[φ2(k1, ρ1, a1; k, 0, a)− φ2(k1, ρ1, a1; k, 3, a)]|k1, ρ1, a1 >

= 0

Recall that the wave function condition from Eq. 2.7 was introduced to assure

that the inner product be positive de�nite. For the two particle state, the above

calculation shows that there are now two conditions that need to be satis�ed,

φ2(k, 0, a; k′, ρ′, a′) = φ2(k, 3, a; k′, ρ′, a′)

and (2.12)

φ2(k′, ρ′, a′; k, 0, a) = φ2(k′, ρ′, a′; k, 3, a)

It is clear how this generalizes for a many gluon state.
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For a generic φn, this leaves

(φn, φn) = (−1)n
∑
ai,ρi

∫ ∏
i

d3ki
2k0i

|φn(k1, ρ1, a1 . . . kn, ρn, an)|2ηρ1ρ1 · · · ηρnρn

=
∑
ai

∑
ρi=1,2

∫
d3k

2k0

|φn(k1, ρ1, a1 . . . kn, ρn, an)|2

≥ 0

where all of the 0th components have cancelled with the 3rd components by the gen-

eralized conditions of Eq. 2.12.

Corollary 2.4. Eq. 2.11 is Lorentz invariant.

Proof (of Corollary).

UΛk
stρg(k, ρ, a)|φ > = kst

ρ

UΛg(k, ρ, a)U−1
Λ UΛ|φ >

= kst
ρ

g(Λk, ρ′, a)Λρ′ρ(eW )UΛ|φ >

= kst
ρ′

g(Λk, ρ′, a)UΛ|φ >

= 0

With the result of Thm 2.3, it seems that the 0th and 3rd components of

a multiparticle gluon wave function play no role in the structure of gluons. That,

however, is not the case. Under Lorentz transformations the 0th and 3rd components

of a multiparticle wave function change, although in such a way that the components

remain equal (Cor. 2.4). If the 0th and 3rd components are simply suppressed, the

gluon wave functions do not have the correct Lorentz transformation properties. For

example, Weinberg starts with 2 component gluons and then shows that they do
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not have good Lorentz transformation properties [13]. By retaining the 0th and 3rd

components, the gluons are guaranteed to have the correct Lorentz transformation

properties.

A more important consequence of retaining the 0th and 3rd components has

to do with gauge transformations and gauge invariance. A gauge transformation is

an automorphism on the algebra of gluon creation and annihilation operators that

preserves their commutation relations:

g(k, ρ, a)→ g′(k, ρ, a) = g(k, ρ, a) + kstρ f(k)I

g†(k, ρ, a)→ g′†(k, ρ, a) = g†(k, ρ, a)

[g′(k, ρ, a), g′†(k′, ρ′, a′)] = [g(k, ρ, a), g†(k′, ρ′, a′)]

Here f(k) is a Lorentz invariant distribution and I is the identity operator. It is then

straightforward to show that the wave function condition in Eq. 2.7 is invariant under

a gauge transformation.

2.2.2 Gluon Fields Using Creation and Annihilation Operators

De�nition 2.7. De�ne the gluon �eld at the space-time point zero

Gµ
a(0) := −

∑
ρ

∫
d3k

(2π)3/22k0
Bµρ(k)(g(k, ρ, a) + g†(k, ρ, a))

The free gluon �eld for a general x can then be determined by

Gµ
a(x) := eıPfr·xGµ

a(0)e−ıPfr·x

= −
∑
ρ

∫
d3k

(2π)3/22k0

Bµρ(k)(e−ık·xg(k, ρ, a) + eık·xg†(k, ρ, a))
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with Pfr de�ned as in 2.10. The second equality uses

eıPfr·xg†(k, ρ, a)e−ıPfr·x = eık·xg†(k, ρ, a)

eıPfr·xg(k, ρ, a)e−ıPfr·x = e−ık·xg(k, ρ, a)

which are found by applying

[g†(k′, ρ′, a′),−ıP µ
fr(k) · x] = ı(

∑
a

∫
d3k

k0

kµxµg
†(k, ρ, a)ηρρ[g†(k′, ρ′, a′), g(k, ρ, a)])

= ık · x g†(k, ρ, a)

[g(k′, ρ′, a′),−ıP µ
fr(k) · x] = −ık · x g(k, ρ, a)

to the Taylor expansion for the exponential.

As a result, the free gluon �eld is now given in terms of creation and annihi-

lation operators as

Gµ
a(x) = −

∫
d3k

(2π)3/22k0
Bµρ(k)(e−ik·xg(k, ρ, a) + eik·xg†(k, ρ, a))

and satis�es �2Gµ
a(x) = 0. The spatial derivative is

∂Gµ
a

∂xν
= ı

∫
d3k

(2π)3/22k0

kνBµρ(k)(e−ik·xg(k, ρ, a)− eik·xg†(k, ρ, a))

Moreover a gauge transformation on free �elds now takes the form

Gµ
a(x)→ G′µa (x) = Gµ

a(x) +
∂f̃(x, a)

∂xµ
I

where

f̃(x, a) =

∫
d3k

(2π)3/22k0

e−ık·xf(k, a)
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From the gluon �eld point of view a gauge transformation is an element of a map

group, mapping a point in Minkowski space to an element of the internal symme-

try group SU(3). With the notion of a gauge transformation, the condition on the

physical gluon Fock space can be written as

∂Gµ
a(x)

∂xµ
|φ >= 0

and is gauge invariant [5].

2.2.2.1 Gluon Field Commutation Relations

A free gluon �eld is local, meaning

[Gµ
a(x), Gν

b (y)] = 0, (x− y)2 < 0 (2.13)

It will also be useful to calculate

[∂G
µ
a(x)
∂xβ

, Gν
b (y)] = ηµνδab

∂4(x−y)
∂xβ

I (2.14)

These properties are veri�ed in Appendix A. The commutator in Eq. 2.14 is a

multiple of the identity, with the multiple a derivative of the Pauli-Jordan function,

4(x − y) = 1
(2π)3

∫
d3k
2k0

(eik·(x−y) − e−ik·(x−y)). When extended to a product of �elds

one has

[∂G
µ
a(x)
∂xβ

,
∏
i

Gνi
bi

(yi)] =
∑
i

ηµνiδabi
∂4(x−yi)

∂xβ

∏
j 6=i

G
νj
bj

(yj)
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and furthermore

[∂G
µ
a(x)
∂xβ

, e

∏
i
G
νi
bi

(yi)
] = e

∏
k
G
νk
bk

(yk) ∑
i

ηµνiδabi
∂4(x−yi)

∂xβ

∏
j 6=i

G
νj
bj

(yj)

The goal of the later chapters is to write the physical vacuum in terms of gluon

�elds, so these commutation relations will be needed when investigating the vacuum

problem.

2.3 The Gluon Four Momentum

As in quantum electrodynamics, the gluon �eld tensor is built up from gluon

�elds and derivatives in such a way to be gauge invariant. From any standard book

in QCD [7] the �eld tensor is given by

F µν
a (x) =

∂Gν
a

∂xµ
− ∂Gµ

a

∂xν
+ αcabcG

µ
b (x)Gν

c (x)

where α is the bare coupling constant and cabc are the structure constants for the

color charge. Notice that the �eld tensor is antisymmetric in its four-vector indices,

F µν
a = −F νµ

a , because the structure constants are antisymmetric in all three indices.

The stress-energy tensor in terms of the �eld tensor is given by

T µν(x) =
∑
a

Fαβ
a (x)[ηµα′η

ν
αηββ′ + ηνα′ηµαηββ′ − 1

2
ηµνηαα′ηββ′ ]Fα′β′

a (x)

from which it follows that the gluon four momentum operator is

P µ =
∫
dxνT

µν(x)
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where the integration is over the forward hyperboloid. Further, P µ satis�es the point

form equations given in Eq. 1.2.

The four momentum operator consists of a product of �eld tensors with dif-

fering coe�cients dependent on the metric. It is useful to break the four momentum

into parts,

P µ = P µ
KE + P µ

tri + P µ
quar

The parts are separated by breaking the �eld tensor into a term dependent on α and

one not. The quartic part inherits its name from the product of the two α dependent

pieces of the �eld tensor, the trilinear from the two pairings of one α dependent with

an independent piece, and the kinetic energy part from the two α independent pieces.

The general structure for the resulting parts are

P µ
KE = −

∑∫
dxµ

d3k

k0

(Bνρ1(k1)kµ1 −Bσρ1(k1)kν1)(Bρ2
ν (k2)kµ2 −Bρ2

σ (k2)kν2)

(e−ik1·xg(k1, ρ1, a)− eik1·xg†(k1, ρ1, a))

(e−ik2·xg(k2, ρ2, a)− eik2·xg†(k2, ρ2, a))

P µ
tri = iα

∑
cabc

∫
dxµdk1dk2dk3

(Bνρ1(k1)kµ1 −Bσρ1(k1)kν1)Bρ2
σ (k2)Bρ3

ν (k3)

(e−ik1·xg(k1, ρ1, a)− eik1·xg†(k1, ρ1, a))

(e−ik2·xg(k2, ρ2, b) + eik2·xg†(k2, ρ2, b))

(e−ik3·xg(k3ρ3, c) + eik3·xg†(k3, ρ3, c))
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P µ
quar = α2

∑∫
dxµdk1dk2dk3dk4cabccab′c′

Bσρ1(k1)Bνρ2(k2)Bρ3
σ (k3)Bρ4

ν (k4)

(e−ik1·xg(k1, ρ1, b) + eik1·xg†(k1, ρ1, b))

(e−ik2·xg(k2, ρ2, c) + eik2·xg†(k2, ρ2, c))

(e−ik3·xg(k3, ρ3, b
′) + eik3·xg†(k3, ρ3, b

′))

(e−ik4·xg(k4, ρ4, c
′) + eik4·xg†(k4, ρ4, c

′))

This leads to the key theorem of this chapter.

Theorem 2.5. On the physical Fock space, P µ
KE is equivalent to P µ

fr,

P µ
fr = −

∑
a

∫
d3k

2k0

kµηρρ(g†(k, ρ, a)g(k, ρ, a) + g(k, ρ, a)g†(k, ρ, a))

The proof of this result is lengthy and given in detail in Appendix B.

Recall that for point form QFT the dynamics resides in the four momentum

operator. With the four momentum de�ned in terms of creation and annihilation

operators, the physical vacuum can be investigated as the state for which the following

equations hold,

P µ|Ω > = 0

UΛ|Ω > = |Ω >

Uh|Ω > = |Ω >
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meaning that the vacuum, |Ω >, is a state having zero energy and momentum and is

invariant under Lorentz and color symmetry.

The next two chapters center on how to choose |Ω > using free gluon �elds in

such a way to satisfy these equations.
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CHAPTER 3

THE ONE DEGREE OF FREEDOM PROBLEM

Given the gluon four momentum operator, P µ, the �rst problem to be ad-

dressed is the vacuum problem, P µ|Ω >= 0, where

P µ =
∑
a

∫
dxνF

αβ
a (x)[ηµα′ηναηββ′ + ηνα′ηµαηββ′ − 1

2
ηµνηαα′ηββ′ ]Fα′β′

a (x) (3.1)

and

F µν
a (x) = ∂Gνa

∂xµ
− ∂Gµa

∂xν
+ αcabcG

µ
b (x)Gν

c (x)

Gµ
a(x) =

∫
dk Bµρ(k)(e−ik·xg(k, ρ, a) + eik·xg†(k, ρ, a))

∂Gµa(x)
∂xν

= −ı
∫
dk kνBµρ(k)(e−ik·xg(k, ρ, a)− eik·xg†(k, ρ, a))

with |Ω > the state to be found. How to solve such a generalized eigenvalue problem

isn't obvious, so to investigate the structure of the vacuum without the complications

of the in�nite degrees of freedom, the problem will initially be truncated to one degree

of freedom. Then the four momentum operator is replaced by a 1-D Hamiltonian

operator, H. The resulting vacuum problem becomes �nding an |Ω > that satis�es

H|Ω >= 0.

The 1-D Hamiltonian should have the same basic structure as the four mo-

mentum with the following simpli�cations

g†(k, ρ, a) → g†

Gµ
a(x) → g + g†

∂Gµa
∂xν

→ ı(g − g†)

[g, g†] = 1
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which results in

H = [ı(g − g†) + α(g + g†)2]2 (3.2)

or

H = HKE + Htri + Hquar

= −(g − g†)2 + ıα[(g − g†)(g + g†)2 + (g + g†)2(g − g†)] + α2(g + g†)4

when broken into components.

It is worth noting that F µν
a is antisymmetric in its indices, but the simpli�-

cation to one degree of freedom no longer allows for this antisymmetry. As a result,

for the one degree case, ∂Gνa
∂xµ
− ∂Gµa

∂xν
→ ı(g − g†) since that is the overall structure of

creation and annihilation operators in the full problem.

3.1 A Discrete Spectrum for H

3.1.1 The Anharmonic Oscillator

The Hamiltonian problem under consideration is a 1-D eigenvalue problem

that has been rewritten in terms of creation and annihilation operators, similar to the

study of the 1-D harmonic oscillator Hamiltonian problem where H = p2

2m
+ 1

2
mω2x2.

Investigation of the harmonic oscillator Hamiltonian involves constructing raising and

lowering operators a and a†, where the position x ∝ (a+ a†), and the momentum p ∝

ı(a−a†). The similarity of our Hamiltonian, H = [ı(g−g†)+α(g+g†)2]2 ∼ [p+αx2]2

to the anharmonic oscillator, p2 + x2 + α3x
3 + α4x

4, suggests that the Hamiltonian

from Eq. 3.2 might have a discrete eigenvalue spectrum.

As a preliminary ansatz, the vacuum will be written as a polynomial of creation

operators acting on the Fock vacuum. Since the Hamiltonian, H, is assumed to have
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a discrete spectrum, the goal is to calculate the value of α which makes the lowest

eigenvalue zero. If such a procedure could be generalized, it would be possible to ��ne

tune� the value of the strong interaction coupling constant.

3.1.2 Bargmann Space Realization

A concrete realization of the creation and annihilation operators is given by

g† → z

g → ∂z

which then transforms H|Ω >= λ|Ω > into a di�erential equation. This identi�cation

is possible since [∂z, z] = 1, where z and ∂z are adjoints on a Bargmann space for

holomorphic functions. The inner product for this space is

(F,G) = F ?(∂z)G(z)|z=0 (3.3)

In this formulation, |Ω > is a holomorphic function of z, where |0 > is a constant,

since g|0 >= 0 ⇒ ∂z|0 >= 0.

Substituting in for H and using the commutation relation to attain a normal

ordering gives

H = z∂z + ıα[(∂z − z)(∂z + z)2 + (∂z + z)2(∂z − z)] + α2(∂z + z)4

= z∂z + 2ıα[∂3
z + z∂2

z + (1− z2)∂z − (z + z3)] + (3.4)

α2[∂4
z + 4z∂3

z + 6(1 + z2)∂2
z + (12z + 4z3)∂z + (3 + 6z2 + z4)]
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Note that, for the full problem,

P µ
KE =

∑
a

∫
dxν(

∂Gβ
a

∂xα
− ∂Gα

a

∂xβ
)[ηµα′η

ν
αηββ′ + ηνα′ηµαηββ′ − 1

2
ηµνηαα′ηββ′ ](

∂Gβ′
a

∂xα′ −
∂Gα′

a

∂xβ′ )

= −
∑
a

∫
d3k

k0

kµηρρ(g†(k, ρ, a)g(k, ρ, a) + g(k, ρ, a)g†(k, ρ, a))

which is proven in Appendix B. In our 1-D realization, the kinetic energy is chosen

HKE = z∂z, although z∂z 6= −(∂z − z)2 in the one degree of freedom case.

3.1.2.1 The Polynomial Approach

The simplest ansatz for the vacuum state is |Ω >= S(z)|0 > where S(z) is a

polynomial in z. An orthonormal basis for the inner product de�ned in Eq. 3.3 is

determined by noticing

(zn, zm) = ∂nz z
m|z=0

=


0 n 6= m

n! n = m

Therefore an orthonormal basis has the form zn√
n!
. Thus S(z) =

∞∑
i=0

fi
zi√
i!
. Since

H has up to four derivatives, a truncation of S(z) should be at least fourth order,

S(z) = f0 + f1z + f2
z2√

2
+ f3

z3√
6

+ f4
z4

2
√

6
. Calculating H|Ω > using Eq. 3.4 for this

vacuum representation results in a polynomial in terms of z.

The eigenvalue equations for H|Ω >= λ|Ω > can be extracted by utilizing the

orthonormality of the basis states. Taking the inner product,

(
zn√
n!
, HS(z)) = (

zn√
n!
, λS(z))

= λfn



33

gives the following �ve equations

3α2f0 + 2ıαf1 + 6
√

2α2f2 + 2
√

6ıαf3 + 2
√

6α2f4 = λf0

−2ıαf0 + (1 + 15α2)f1 + 4
√

2ıαf2 + 10
√

6α2f3 + 4
√

6ıαf4 = λf1

6
√

2α2f0 − 4
√

2ıαf1 + (2 + 39α2)f2 + 6
√

3ıαf3 + 28
√

3α2f4 = λf2 (3.5)

−2
√

6ıαf0 + 10
√

6α2f1 − 6
√

3ıαf2 + (3 + 75α2)f3 + 16ıαf4 = λf3

2
√

6α2f0 − 4
√

6ıαf1 + 28
√

3α2f2 − 16ıαf3 + (4 + 123α2)f4 = λf4

The goal is to �nd the value of the coupling constant, α, which gives a minimum

eigenvalue, λ1 = 0. Writing Eq. 3.5 in matrix form gives,



3α2 2ıα 6
√

2α2 2
√

6ıα 2
√

6α2

−2ıα 1 + 15α2 4
√

2ıα 10
√

6α2 4
√

6ıα

6
√

2α2 −4
√

2ıα 2 + 39α2 6
√

3ıα 28
√

3α2

−2
√

6ıα 10
√

6α2 −6
√

3ıα 3 + 75α2 16ıα

2
√

6α2 −4
√

6ıα 28
√

3α2 −16ıα 4 + 123α2





f0

f1

f2

f3

f4


= λ



f0

f1

f2

f3

f4


(3.6)

where the matrix representation for the Hamiltonian (labeled H4 for this truncation)

is Hermitian, since H is a Hermitian operator.

Setting the characteristic polynomial of H4 to zero gives the value(s) of α

corresponding to the state having lowest eigenvalue of 0. Due to the choice of HKE =

z∂z, α = 0 will automatically be a solution. The characteristic polynomial for H4 is

symmetric about α = 0 and has only one positive root at α ≈ 1.27941.
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Figure 3.1: Characteristic polynomial plot for H4

The same method can be applied for higher order polynomials. Due to the

structure of the matrix equations, the Hamiltonians are nested, Hi ⊂ Hi+1, with

new information only appearing in the additional row/column resulting from the ad-

ditional coe�cient, fi+1. All the characteristic polynomial plots pass through the

origin. Additionally, the kinetic energy term appears to pull the characteristic poly-

nomial down, while the trilinear and quartic terms pull P (α) up until α becomes

large enough for the higher order terms to dominate as in Fig. 3.1. Thus, in this

simple model it is possible to ��ne tune� the coupling constant. The following table

summarizes the nonzero alpha value calculations for truncations from fourth order up

to tenth.



35

Matrix Truncation α value

H4 1.27941

H5 1.44213

H6 1.91875

H7 2.10005

H8 2.60845

H9 2.8079

H10 3.3482

Table 3.1: α results for selected truncations

3.1.2.2 The Exponential Approach

The attractiveness of the polynomial vacuum representation is the ease of the

calculation. However, as seen in Table 3.1, it is not clear whether increasing the order

of the polynomial converges to the exact solution. Rather than continue increasing

the length of a �nite order polynomial, consider a vacuum of the form

|Ω >= e

∞∑
i=0

fiz
i

= eS(z)

This has the advantage that a �nite polynomial, S(z), will still result in what is

equivalent to an overall in�nite polynomial for |Ω >, but the linear structure from

the previous case is sacri�ced making it impossible to solve the problem as simply as

before.

The major obstacle comes from the quartic component of the Hamiltonian.
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Hquare
S(z) = (∂z + z)4eS(z) will result in four additional equations for each increase in

degree of S(z), an increase of only one unknown.

∂4
z (e

fiz
i

) = O((zi−1)4)

∂4
z (e

fi+1z
i+1

) = O((zi)4)

The ansatz for the vacuum state should minimize the e�ect of the quartic

component. Thus consider |Ω >= eS(∂z+z)|0 >, with [Hquar, e
S(∂z+z)] = 0. By allowing

the quartic term to commute with the vacuum operator, the problem is transformed

from

HeS(∂z+z)|0 >= λeS(∂z+z)|0 >

to

(H̃ − λ)|0 >= 0

where H̃ = e−S(∂z+z)HeS(∂z+z). H̃quar = Hquar is a direct consequence of the choice of

the vacuum structure.

The following commutation relation will be useful to determine the other pieces

of H̃

[∂z − z, ∂z + z] = 2

[∂z − z, (∂z + z)2] = 4(∂z + z)

[∂z − z, (∂z + z)3] = 6(∂z + z)2 (3.7)

...

[∂z − z, S(∂z + z)] = 2Ṡ(∂z + z)
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or uncoupled

[z, S(∂z + z)] = −Ṡ(∂z + z)

[∂z, S(∂z + z)] = Ṡ(∂z + z)

Recall

H = HKE +HTri +HQuar

or

H = z∂z + ıα[(∂z − z)(∂z + z)2 + (∂z + z)2(∂z − z)] + α2(∂z + z)4

First write

(e−S(∂z+z)HeS(∂z+z) − λ)|0 >= (H̃ − λ)|0 >= 0

where solving for H̃ is a matter of commuting the exponential through the Hamilto-

nian operator. Solving for the components gives
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H̃KE|0 > = e−S(∂z+z)z∂ze
S(∂z+z)|0 >

= e−S(∂z+z)z(ṠeS(∂z+z) + eS(∂z+z)∂z)|0 >

= e−S(∂z+z)z(ṠeS(∂z+z))|0 >

= e−S(∂z+z)(−(S̈eS(∂z+z) + Ṡ2eS(∂z+z)) + ṠeS(∂z+z)z)|0 >

= e−S(∂z+z)eS(∂z+z)(−S̈ − Ṡ2 + Ṡz)|0 >

= (−S̈ − Ṡ2 + Ṡz)|0 >

H̃Tri|0 > = ıαe−S(∂z+z)[(∂z − z)(∂z + z)2 + (∂z + z)2(∂z − z)]eS(∂z+z)|0 >

= ıαe−S(∂z+z)[(∂z − z)(eS(∂z+z)(∂z + z)2) + (∂z + z)2eS(∂z+z)(2Ṡ + (∂z − z))]|0 >

= ıαe−S(∂z+z)[(2ṠeS(∂z+z)(∂z + z)2 + eS(∂z+z)4(∂z + z)

+eS(∂z+z)(∂z + z)2(∂z − z)) + eS(∂z+z)(∂z + z)2(2Ṡ − z)]|0 >

= ıα[4Ṡ · (∂z + z)2 + 4(∂z + z) + (∂z + z)2(∂z − z)− (∂z + z)2z]|0 >

= ıα[4Ṡ · (∂z + z)2 + 4z − 2(∂z + z)2z]|0 >

H̃Quar|0 > = e−S(∂z+z)(α2(∂z + z)4)eS(∂z+z)|0 >

= α2(∂z + z)4|0 >

Condensing the terms back together results in
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H̃|0 > = [−S̈ − Ṡ2 + Ṡz + ıα(4Ṡ · (∂z + z)2 + 4z − 2(∂z + z)2z) + α2(∂z + z)4]|0 >

= [−S̈ − Ṡ2 + Ṡz + ıα(4Ṡ · (1 + z2)− 2z − 2z3) + α2(3 + 6z2 + z4)]|0 >

Since H̃ depends on Ṡ and S̈, choose Ṡ = f0 + f1(∂z + z) + f2(∂z + z)2. Notice

that the Ṡ2 term is responsible for the loss of linearity. The resulting set of equations

are

3α2 + 4ıαf0 − f 2
0 − f 2

1 + 12ıαf2 − 2f0f2 − 3f 2
2 = λ

(−2ıα + f0 + 12ıαf1 − 2f0f1 + f2 − 6f1f2)z = 0

(6α2 + 4ıαf0 + f1 − f 2
1 + 24ıαf2 − 2f0f2 − 6f 2

2 )z2 = 0

(−2ıα + 4ıαf1 + f2 − 2f1f2)z3 = 0

(α2 + 4ıαf2 − f 2
2 )z4 = 0

Unlike the polynomial case, where we had an equation for each coe�cient

of S(z), here there are �ve equations but only four unknowns (f0, f1, f2, andα). A

truncation must be made, but it is not clear which equation to truncate. Truncating

the highest term and solving for λ = 0 results in α = 0, 1
6
√

2
≈ 0.117581. Truncating

the z3 term instead gives α = 0,

√
5
√

11
3
−7

576
≈ 0.0668522. All other truncations have

no nontrivial (α = 0) solutions.

To test the stability of the exponential model, additional terms in Ṡ are needed,

but each increase in one term of Ṡ results in two additional equations due to the Ṡ2

term, meaning more arbitrary truncations will be necessary.



40

3.1.3 Bound States

If the spectrum of H is discrete, the vacuum eigenvalue problem is only the

�rst eigenvalue problem leading to bound states, which in this simpli�ed model gives

the analogue of a glueball spectrum.

For the full problem it is impossible to have a color singlet with only one

gluon. Therefore, any bound state calculation will require at least two gluon creation

operators, or z2|0 >. Calculating properties for glueballs requires consideration of

HeS(∂z+z)z2|0 >= λeS(∂z+z)z2|0 >

which results in two additional equations with one new variable λ, where λ is no

longer zero. It is important to note that the coe�cients found for the polynomial

S(z) in the vacuum case will not be the same as those in the bound state problem,

although the method will be similar. Instead of solving for α when λ = 0, λ will

be solved by using the α found from the vacuum case, which will give the �glueball�

eigenvalue.

3.2 H has a Continuous Spectrum

In the previous section it was assumed that H has a discrete spectrum, and

the consequences of this assumption were explored. We will now show that despite

the similarity to the anharmonic oscillator, the spectrum of H is actually continuous.

Further, the main insight of the previous section, that the vacuum state be written

as an exponential in gluon �elds, will be used to prove this result.
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Instead of considering the vacuum problem in pieces, H = HKE +Htri+Hquar,

recall from Eq. 3.2 that the 1-D Hamiltonian is

H = [ı(g − g†) + α(g + g†)2]2

Writing |Ω >= eS(g+g†)|0 >, we need to solve

[ı(g − g†) + α(g + g†)2]2eS(g+g†)|0 > = λeS(g+g†)|0 >

e−S(g+g†)[ı(g − g†) + α(g + g†)2]2eS(g+g†)|0 > = λ|0 >

e−S(g+g†)[ı(g − g†) + α(g + g†)2]eS(g+g†)e−S(g+g†)[ı(g − g†) + α(g + g†)2]eS(g+g†)|0 > = λ|0 >

(e−S(g+g†)[ı(g − g†) + α(g + g†)2]eS(g+g†))2|0 > = λ|0 >

where the ground state eigenvalue λ = 0. The pertinent operator commutation

relations adapted from Eq. 3.7 are

[g, g†] = 1

[g − g†, S(g + g†)] = 2Ṡ(g + g†)

We can use these commutation relations to get

e−S(g+g†)[ı(g − g†) + α(g + g†)2]eS(g+g†) = [2ıṠ(g + g†) + ı(g − g†) + α(g + g†)2]

(e−S(g+g†)[ı(g − g†) + α(g + g†)2]eS(g+g†))2|0 > = [2ıṠ(g + g†) + ı(g − g†) + α(g + g†)2]2|0 >

If S is chosen so that Ṡ = ıα
2

(g + g†)2, the quadratic terms are cancelled,

leaving the free kinetic energy which has a continuous spectrum!
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H̃|0 > = −(g − g†)2|0 >

= HKE|0 >

Therefore H has a continuous spectrum and the vacuum state |Ω > converts

the Hamiltonian with trilinear and quartic interactions to one with only kinetic energy.

The gluon interaction terms have been transformed away.

Theorem 3.1. The spectrum of H is continuous and agrees with HKE.

The question is whether such a procedure also works for the full in�nite degree

of freedom problem.



43

CHAPTER 4

THE INFINITE DEGREE OF FREEDOM PROBLEM

4.1 The In�nite Degree of Freedom Problem

The major result from the one degree of freedom problem in Chapter 3, was

that setting Ṡ = ıα
2

(g+ g†)2, where |Ω >= eS(g+g†)|0 > resulted in the cancellation of

the interaction term of the Hamiltonian. To apply a similar approach to the full four

momentum problem, properties of gluons derived in Chapter 2 will be needed.

Recall that the gluon four momentum operator is

P µ =
∑
a

∫
dxνF

αβ
a (x)[ηµα′ηναηββ′ + ηνα′ηµαηββ′ − 1

2
ηµνηαα′ηββ′ ]Fα′β′

a (x)

where

F µν
a (x) =

∂Gν
a

∂xµ
− ∂Gµ

a

∂xν
+ αca,b,cG

µ
b (x)Gν

c (x)

Gµ
a(x) =

∫
dk Bµρ(k)(e−ik·xg(k, ρ, a) + eik·xg†(k, ρ, a))

∂Gµ
a

∂xν
= −ı

∫
dk kνBµρ(k)(e−ik·xg(k, ρ, a)− eik·xg†(k, ρ, a))

Also from Chapter 2,

[∂G
µ
a(x)
∂xβ

,
∏
i

Gνi
bi

(yi)] =
∑
i

ηµνiδabi
∂4(x−yi)

∂xβ

∏
j 6=i

G
νj
bj

(yj)

which we will need for calculations on the vacuum, which we will be writing as an

exponential of a product of gluon �elds.
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4.1.1 The Structure of S

If S is chosen to be a product of three gluon �elds, calculating

e−S(
∂Gα

a

∂xβ
− ∂Gβ

a

∂xα
)eS =

∂Gα
a

∂xβ
− ∂Gβ

a

∂xα
+ ()GαGβ

should make it possible to choose the coe�cients of S in such a way to cancel o� the

interaction term of the �eld tensor, αcabcG
µ
b (x)Gν

c (x).

A general form for S is given by

S =

∫
dx1dx2dx3ca1a2a3fµ1µ2µ3(x1, x2, x3)Gµ1

a1
(x1)Gµ2

a2
(x2)Gµ3

a3
(x3)

Since the vacuum state is written |Ω >= eS|0 >, S must be invariant under Lorentz

and color transformations. S is a function of three triplets of indices (a1, a2, a3),

(µ1, µ2, µ3), and (x1, x2, x3). The gluon �elds are local so they commute with one an-

other for x−y spacelike, meaning that a permutation of (ai, µi, xi)→ (aj, µj, xj) must

leave S unchanged. To cancel the structure constant, ca1a2a3 , from the �eld tensor,

f is chosen to be proportional to ca1a2a3 which is antisymmetric in the color indices,

(a1, a2, a3). As a result, fµ1µ2µ3(x1, x2, x3) must be antisymmetric under permutations

of (µi, xi)→ (µj, xj) where i 6= j.
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The �eld tensor can be rewritten into two similar terms,

F µν
a (x) =

∂Gν
a

∂xµ
− ∂Gµ

a

∂xν
+ αcabcG

µ
b (x)Gν

c (x)

=
∂Gν

a

∂xµ
− ∂Gµ

a

∂xν
+
α

2
(cabcG

µ
b (x)Gν

c (x) + cabcG
ν
c (x)Gµ

b (x))

=
∂Gν

a

∂xµ
− ∂Gµ

a

∂xν
+
α

2
(cabcG

µ
b (x)Gν

c (x) + cacbG
ν
b (x)Gµ

c (x))

=
∂Gν

a

∂xµ
− ∂Gµ

a

∂xν
+
α

2
(cabcG

µ
b (x)Gν

c (x)− cabcGν
b (x)Gµ

c (x))

= (
∂Gν

a

∂xµ
− α

2
cabcG

ν
b (x)Gµ

c (x))− (
∂Gµ

a

∂xν
− α

2
cabcG

µ
b (x)Gν

c (x))

so that if coe�cients of S are chosen in such a way that

e−S(
∂Gα

a

∂xβ
− α

2
caa2a3G

α
a2

(x)Gβ
a3

(x))eS =
∂Gα

a

∂xβ

then

e−SF µν
a (x)eS =

∂Gν
a

∂xµ
− ∂Gµ

a

∂xv

which transforms away the self-interaction and converts the gluon four momentum

operator into the free four momentum operator, P µ|Ω >= P µ
fr|Ω >.

From Chapter 3 we know to choose S in such a way to commute with the free

gluon �elds, thereby commuting with the interaction term of the �eld tensor.

Consider the noncommuting term,

e−S
∂Gα

a (x)

∂xβ
eS =

∂Gα
a (x)

∂xβ
+

∫
dx1dx2dx3ca1a2a3fµ1µ2µ3(x1, x2, x3)

[ηαµ1δaa1
∂4(x− x1)

∂xβ

1

2
(Gµ2

a2
(x2)Gµ3

a3
(x3) +Gµ3

a3
(x3)Gµ2

a2
(x2))

+ηαµ2δaa2
∂4(x− x2)

∂xβ

1

2
(Gµ1

a1
(x1)Gµ3

a3
(x3) +Gµ3

a3
(x3)Gµ1

a1
(x1))

+ηαµ3δaa3
∂4(x− x3)

∂xβ

1

2
(Gµ1

a1
(x1)Gµ2

a2
(x2) +Gµ2

a2
(x2)Gµ1

a1
(x1))]
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which accounts for the fact that the gluon �elds commute.

Re-indexing and contracting gives

e−S
∂Gα

a (x)

∂xβ
eS − ∂Gα

a (x)

∂xβ
=

1

2

∫
dx1dx2dx3

∂4(x− x1)

∂xβ
ηαα

[caa2a3fαµ2µ3(x1, x2, x3)Gµ2
a2

(x2)Gµ3
a3

(x3)

+caa3a2fαµ3µ2(x1, x3, x2)Gµ3
a3

(x3)Gµ2
a2

(x2)

+ca2aa3fµ2αµ3(x2, x1, x3)Gµ2
a2

(x2)Gµ3
a3

(x3)

+ca3aa2fµ3αµ2(x3, x1, x2)Gµ3
a3

(x3)Gµ2
a2

(x2)

+ca3a2afµ3µ2α(x3, x2, x1)Gµ3
a3

(x3)Gµ2
a2

(x2)

+ca2a3afµ2µ3α(x2, x3, x1)Gµ2
a2

(x2)Gµ3
a3

(x3)]

=
1

2

∫
dx1dx2dx3

∂4(x− x1)

∂xβ
caa2a3 [fαµ2µ3(x1, x2, x3)

−fαµ3µ2(x1, x3, x2)− fµ2αµ3(x2, x1, x3)

+fµ3αµ2(x3, x1, x2)− fµ3µ2α(x3, x2, x1)

+fµ2µ3α(x2, x3, x1)]ηααGµ2
a2

(x2)Gµ3
a3

(x3)

The last equality results from the antisymmetry of the structure constants for

color SU(3). To cancel the �eld tensor interaction term, the f 's must be chosen so
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that

α

2
caa2a3G

α
a2

(x)Gβ
a3

(x) =
1

2

∫
dx1dx2dx3

∂4(x− x1)

∂xβ
caa2a3 [fαµ2µ3(x1, x2, x3)

−fαµ3µ2(x1, x3, x2)− fµ2αµ3(x2, x1, x3)

+fµ3αµ2(x3, x1, x2)− fµ3µ2α(x3, x2, x1)

+fµ2µ3α(x2, x3, x1)]ηααGµ2
a2

(x2)Gµ3
a3

(x3)

The interaction term of the �eld tensor can be rewritten

α
2 caa2a3G

α
a2(x)G

β
a3(x) =

α
2 caa2a3

∫
dx2dx3δ(x− x2)δ(x− x3)η

α
µ2η

β
µ3G

µ2
a2 (x2)G

µ3
a3 (x3)

so that the equation for the f 's simpli�es to

∫
dx1

∂4(x−x1)
∂xβ

[fαµ2µ3(x1, x2, x3)− fαµ3µ2(x1, x3, x2)− fµ2αµ3(x2, x1, x3) + fµ3αµ2(x3, x1, x2)

−fµ3µ2α(x3, x2, x1) + fµ2µ3α(x2, x3, x1)]ηαα − α
2
δ(x− x2)δ(x− x3)ηαµ2η

β
µ3

= 0

(4.1)

4.2 Determining the f 's

Consider setting fµ1µ2µ3(x1, x2, x3) = f1(µ1, µ2, µ3)f2(x1, x2, x3). If f1 is an-

tisymmetric in its indices and f2 is symmetric in its indices, then f is antisym-

metric overall as needed. However, applying the symmetry of f2 by permuting

(xi, xj, xk) → (x1, x2, x3) results in the cancellation all of the f terms from Eq. 4.1,

meaning that the equality cannot hold. Similarly, if f1 is symmetric and f2 anti-

symmetric, applying the symmetry of f1 by permuting (µi, µj, µk) → (α, α, β) and
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noticing that x2 = x3 = x in order for the equality in Eq. 4.1 to hold, again all of the

terms cancel and the equality cannot hold.

The only other way to satisfy Eq. 4.1 when separating f into a product of

separate indices is to require f1 and f2 to have a mixed symmetry where the individual

functions are neither symmetric nor antisymmetric but have an overall antisymmetry

under permutations (µi, xi)→ (µj, xj) for i 6= j. Mixed symmetry is discussed further

in Appendix C.

4.2.1 Mixed Symmetry

The mixed representation is a two dimensional representation with projection

operators from Appendix C:

P+ =
∑
g

D−1
11 (g)U(g)

P− =
∑
g

D−1
22 (g)U(g) (4.2)

where D(g) is a 2x2 irrep (shown in Eq. C.1) and U(g) is the permutation operator

for the group element g ∈ S3.

The most general way of writing the antisymmetric

fµ1µ2µ3(x1, x2, x3) = f1(µ1, µ2, µ3)f2(x1, x2, x3)

is in terms of Clebsch-Gordan Coe�cients (or CGK) as
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fAµ1µ2µ3(x1, x2, x3) = CAMM
++P+f1(µ1, µ2, µ3)P+f2(x1, x2, x3) +

CAMM
+−P+f1(µ1, µ2, µ3)P−f2(x1, x2, x3) +

CAMM
−+P−f1(µ1, µ2, µ3)P+f2(x1, x2, x3) +

CAMM
−−P−f1(µ1, µ2, µ3)P−f2(x1, x2, x3)

where A is for antisymmetric, M is for the mixed representation and +,− represent

the projection operators.

Since f is antisymmetric under interchange of both its indices (µi, xi) →

(µj, xj), where i 6= j, permuting the indices will change the sign of f , for example

U(12)f
A
µ1µ2µ3

(x1, x2, x3) = −fAµ1µ2µ3(x1, x2, x3)

It is shown in Appendix C that U(12)P+ = P+ and U(12)P− = −P−. Therefore

U(12)f
A
µ1µ2µ3

(x1, x2, x3) = CAMM
++P+f1(µ1, µ2, µ3)P+f2(x1, x2, x3)−

CAMM
+−P+f1(µ1, µ2, µ3)P−f2(x1, x2, x3)−

CAMM
−+P−f1(µ1, µ2, µ3)P+f2(x1, x2, x3) +

CAMM
−−P−f1(µ1, µ2, µ3)P−f2(x1, x2, x3)

= −fAµ1µ2µ3(x1, x2, x3)

or

CAMM
++P+f1(µ1, µ2, µ3)P+f2(x1, x2, x3) + CAMM

−−P−f1(µ1, µ2, µ3)P−f2(x1, x2, x3) = 0
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which requires CAMM
++ = CAMM

−− = 0.

This leaves

fAµ1µ2µ3(x1, x2, x3) = CAMM
+−P+f1(µ1, µ2, µ3)P−f2(x1, x2, x3) + CAMM

−+P−f1(µ1, µ2, µ3)P+f2(x1, x2, x3)

Applying the projection operators from Eq. 4.2 to f1(µ1, µ2, µ3) gives

P+f1(µ1, µ2, µ3) = f1(µ1, µ2, µ3) + f1(µ2, µ1, µ3)− 1

2
f1(µ3, µ2, µ1)−

1

2
f1(µ1, µ3, µ2)− 1

2
f1(µ3, µ1, µ2)− 1

2
f1(µ2, µ3, µ1)

P−f1(µ1, µ2, µ3) = f1(µ1, µ2, µ3)− f1(µ2, µ1, µ3) +
1

2
f1(µ3, µ2, µ1) +

1

2
f1(µ1, µ3, µ2)− 1

2
f1(µ3, µ1, µ2)− 1

2
f1(µ2, µ3, µ1)

In order for the equality in Eq. 4.1 to hold, µ1 = µ2 = α, and µ3 = β giving

P+f1(µ1, µ2, µ3) = 2f1(α, α, β)− f1(β, α, α)− f1(α, β, α)

P−f1(µ1, µ2, µ3) = 0

The fact that P−f = 0, means that even in the mixed symmetry, there is no way to

write f as a product of functions of the x indices and the µ indices.

4.2.2 The Kernel

Although f cannot be factored any further, there is the possibility that an f

exists to transform away the gluon interaction. To further investigate, it is necessary

to study the structure of the kernel ∂4(x−y)
∂xβ

and in particular see if it has an inverse.
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Recall from the calculation in Appendix A, that

∂4(x− y)

∂xβ
=

1

(2π)3

∫
d3k

2k0

ıkβ(eik·(x−y) + e−ik·(x−y))

=
1

(2π)3

∫
d3k

k0

ıkβ cos(k · (x− y))

meaning that the kernel is symmetric under interchange of x− y.

4.2.2.1 Does the Kernel Have an Inverse?

In Chapter 2 the Lorentz invariant distribution was introduced, namely

W (p, q) = 2

∫
d4xδ(x · x− τ 2)Θ(x0)xνp

νe−ıq·x

where p = k + k′, and q = k − k′. For ∂4(x−y)
∂xβ

, there is an integral over a di�erent

Lorentz invariant measure, d3k
2k0

, but an otherwise identical structure. Renaming p =

x+ y and q = x− y and substituting the measure transforms to

W (p, q) =

∫
d3k

2k0

pβk
βe−iq·k

and ∫
d3k
2k0

ıkβe−ik·q = pβ

p2
(2π)3p0δ

3(q) + qβ

q2
W (q, q)

as in Appendix 2. Similarly

∫
d3k
2k0

ıkβeik·q = pβ

p2
(2π)3p0δ

3(q) + qβ

q2
W (q,−q)

Putting these pieces together gives

∂4(x−y)
∂xβ

= pβ

p2
(2π)32p0δ

3(q) + qβ

q2
W̃ (q)
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where W̃ (q) =
∫

d3k
k0
ıq · k(e−iq·k + eiq·k) which is odd in q or antisymmetric under

interchange of x− y. This leaves the kernel in the form M = D + N where the �rst

part, D, is diagonal which makes it plausible to assume that an inverse exists.

4.2.2.2 Finding the f 's Using the Inverse Kernel

We want to solve for the function f that satis�es

∫
dx1

∂4(x−x1)
∂xβ

[fαµ2µ3(x1, x2, x3)− fαµ3µ2(x1, x3, x2)− fµ2αµ3(x2, x1, x3) + fµ3αµ2(x3, x1, x2)

−fµ3µ2α(x3, x2, x1) + fµ2µ3α(x2, x3, x1)]ηαα − α
2
δ(x− x2)δ(x− x3)ηαµ2η

β
µ3

= 0

Let us assume that the kernel is invertible. In order for the above equation to be

satis�ed, the β term must match up with the µ3 term. Focusing on the �rst f term

and writing f in terms of the inverse kernel, K−1, leaves

∫
dx1

∂4(x−x1)
∂xβ

fαµ2µ3(x1, x2, x3)ηαα =
∫
dx1

∂4(x−x1)
∂xβ

K−1
µ3

(x1 − x3)f̃(x2, α, µ2)

Matching to the interaction term of the �eld tensor gives

α
2
(x+ x3)0δ(x− x3)δ(x− x2)ηαµ2η

β
µ3

=
∫
dx1

∂4(x−x1)
∂xβ

K−1
µ3

(x1 − x3)f̃(x2, α, µ2)

so that f̃(x2, α, µ2) ∝ δ(x− x2)ηαµ2 . Finally, this gives

∫
dx1

∂4(x−x1)
∂xβ

K−1
µ3

(x1 − x3) = (x+ x3)0δ(x− x3)ηβµ3
(4.3)

For µ3 = β, Eq. 4.3 shows that f can be chosen in such a way to transform away the

gluon self interaction. It is only possible to satisfy the condition in Eq. 4.3 with the

inverse kernel, so if no inverse exists the gluon self-interactions cannot be eliminated

by this method either.
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Lastly, when µ3 6= β the interaction term is zero since the metric is diagonal,

but there is no reason to expect

∫
dx1

∂4(x− x1)

∂xβ
K−1
µ3

(x1 − x3) = 0 (4.4)

Without calculating the inverse kernel explicitly, it is impossible to guarantee Eq. 4.4

cannot hold, but it is reasonable to assume that such a condition will not be satis�ed.

Based on this reasoning it is the conclusion of this chapter that in the full

degree of freedom problem, the results of the one degree of freedom case cannot be

replicated. Therefore the gluon four momentum self-interactions cannot be trans-

formed away such that P µ|Ω >= P µ
fr|Ω >.
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CHAPTER 5

CONCLUSIONS AND FUTURE WORK

5.1 Summary and Conclusions

The goal of this dissertation has been to investigate the structure of gluons in

point form QCD. Chapter 1 discussed historical approaches to studying the strong

nuclear force, where it was determined that in order to understand the strong force,

it is necessary to �rst understand gluons and their self-interactions. Chapter 2 builds

up a �eld theory for gluons starting with representations of the Poincaré group for

massless particles, using the little group E(2). Helicity boosts were then de�ned

to boost from a standard gluon basis state to a single particle gluon state. Then

single particle gluon wave functions were de�ned where the Hilbert space arose from

restricting the polarization degrees of freedom to assure that the wave function inner

product be positive de�nite. Next, classical gluon �elds were de�ned which allowed for

a transformation from position space to momentum space. Then, multiparticle gluon

states were introduced as symmetric tensor products of gluon Hilbert spaces generated

by creation and annihilation operators. An annihilator condition was included to

assure that the resulting Fock space inner product remained positive de�nite. The

four momentum operator, where all dynamics are located in the point form, was

de�ned in terms of free gluon �elds via the stress-energy tensor, which was integrated

over the forward hyperboloid. Gauge transformations were introduced for the gluon

�elds to ensure that the four momentum was gauge invariant. The major result
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from Chapter 2 was that the free gluon four momentum operator introduced via the

Lagrangian and stress-energy tensor was shown to be equivalent to that generated by

gluon irreps when acting on the physical Fock space.

After the four momentum was constructed in Chapter 2, it was implemented

in Chapter 3 for the simplest case, the one degree of freedom problem. Some results

for the coupling constant, α, were generated corresponding to the ground state eigen-

value, λ = 0 when writing the vacuum as a polynomial of gluon creation operators.

Increasing the degree of the polynomial resulted in the α values climbing and did not

appear to stabilize. A better ansatz for the vacuum was to express |Ω > as an expo-

nential of gluon creation and annihilation operators (the 1-D equivalent of free gluon

�elds). This formulation allowed for |Ω > to be chosen in such a way to eliminate the

dependence on α, transforming the Hamiltonian problem into just the kinetic energy

component, H|Ω >= HKE|Ω >.

Chapter 4 tested this structure for the full four momentum operator, by ad-

justing the 1-D vacuum to satisfy the in�nite degree of freedom case. The full vacuum

was now written |Ω >= eS|0 >, where

S =

∫
dx1dx2dx3ca1a2a3fµ1µ2µ3(x1, x2, x3)Gµ1

a1
(x1)Gµ2

a2
(x2)Gµ3

a3
(x3)

Chapter 4 involved solving for fµ1µ2µ3(x1, x2, x3) that would eliminate the α depen-

dence from the �eld tensor, transforming away the gluon self-interactions. It was

shown that unlike in the 1-D case, it is doubtful that a formulation for fµ1µ2µ3(x1, x2, x3)

exists allowing P µ|Ω >= P µ
fr|Ω > . If such a result were possible and gluon self-

interactions were eliminated, gluon bound states or glueballs could not exist. How-
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ever, it is the conclusion of this dissertation that although the gluon self-interactions

can be eliminated in the one degree of freedom problem, a similar approach does not

yield similar results in the full degree of freedom case.

5.2 Open Questions and Future Work

One of the main goals of this dissertation is to lay the groundwork for studying

gluon eigenvalue problems in the context of point form QCD. The �rst question to

be answered is whether or not an inverse to the kernel, ∂4(x−y)
∂xβ

, exists. If an inverse

for one component of the kernel can be determined, say K−1
0 , it will be possible

to determine whether or not the gluon self-interactions can actually be transformed

away entirely. Although an argument was given that these interactions cannot be

eliminated, it is still a possiblity until either an inverse is calculated or it is shown

that no inverse can exist.

The framework has been provided for further investigation into the vacuum

and bound state problems for gluons using the full degree of freedom four momentum

operator, P µ. One possible approach would be to adapt the models from the discrete

spectrum Hamiltonian in Chapter 3 to the full degree of freedom case. Starting with

an ansatz of a vacuum consisting of a polynomial in terms of gluon �elds, |Ω >=

F |0 >, here

F = f0I+
∑∫

dk1dk2f2((k1+k2)2)Bµρ1(k1)Bρ2
µ (k2)δa1a2g

†(k1, ρ1, a1)g†(k2, ρ2, a2)+. . .

where f2((k1 + k2)2) is a Lorentz invariant function. It is possible to factor out the

in�nite Lorentz volume leaving a set of recursive equations which have no in�nities.
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Similarly, one can consider an exponential vacuum ansatz where the quartic

term commutes with the vacuum, although the self-interactions cannot be removed

entirely. As in Chapter 3, the next step would be to consider the bound state problem

where gluon bound states can be investigated. The simplest glueballs are bound states

of two gluons held together via their self-interactions and written

|k1, ρ1, a1 > ⊗|k2, ρ2, a2 >= g†(k1, ρ1, a1)g†(k2, ρ2, a2)|0 >

such that k1 + k2 = 0. Then a velocity state can be de�ned

|v,k >:= UB(v)|k1, ρ1, a1; k2,−ρ1, a2 > δa1a2

where k = k1 and v is the four velocity of the glueball state. A unitary Lorentz

transformation on this velocity state gives

UΛ|v,k > = UΛUB(v)|k1, ρ1, a1; k2,−ρ1, a1 >

= UB(Λv)URW |k1, ρ1, a1; k2,−ρ1, a1 >

= UB(Λv)|RWk1, ρ1, a1;RWk2,−ρ1, a1 >

= |Λv,RWk >

where RW is a rotation.

Again a set of bound state equations in powers of gluon creation operators

results generated by

P µ|v,k >= Mvµ|v,k >

where M is the mass of the glueball.
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APPENDIX A

GLUON FIELD COMMUTATION RELATIONS

Within this appendix are proofs and calculations that were omitted from Chap-

ter 2. These calculations pertain to commutation relations of free gluon �elds which

are written in terms of creation and annihilation operators. Recall the creation and

annihilation operator commutator is

[g(k, ρ, a), g†(k′, ρ′, a′)] = −ηρρ′k0δ
3(k− k′)δaa′

The following is the calculation for Eq. 2.13,

[Gµ
a(x), Gν

b (y)] = 0, (x− y)2 < 0

which means that gluon �elds are local.
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[Gµ
a(x), Gν

b (y)] =

∫
d3k

(2π)3/22k0

d3k′

(2π)3/22k′0
Bµρ(k)Bνρ′(k′)

[e−ik·xg(k, ρ, a) + eik·xg†(k, ρ, a), e−ik
′·yg(k′, ρ′, b) + eik

′·yg†(k′, ρ′, b)]

=
1

(2π)3

∫
d3k

2k0

d3k′

2k′0
Bµρ(k)Bνρ′(k′)

(e−ik·xeik
′·y[g(k, ρ, a), g†(k′, ρ′, b)] + eik·xe−ik

′·y[g†(k, ρ, a), g(k′, ρ′, b)])

=
1

(2π)3

∫
d3k

2k0

d3k′

2k′0
Bµρ(k)Bνρ′(k′)(−e−ik·xeik′·yηρρ′k0δ

3(k− k′)δab

+eik·xe−ik
′·yηρρ′k0δ

3(k− k′)δab)

=
δab

(2π)3

∫
d3k

2k0

Bµρ(k)Bνρ′(k)ηρρ′(−eik·(y−x) + eik·(x−y))

= ηµν
δab

(2π)3

∫
d3k

2k0

(eik·(x−y) − e−ik·(x−y))

= ηµνδab4(x− y)

= 0, ∀(x− y)2 < 0

The last equality holds because when x− y is spacelike, a continuous Lorentz trans-

formation can take (x− y)→ −(x− y). [7]

A similar calculation can be done for Eq. 2.14,

[∂G
µ
a(x)
∂xβ

, Gν
b (y)] = ηµνδab

∂4(x−y)
∂xβ

I
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[
∂Gµ

a(x)

∂xβ
, Gν

b (y)] =
−ı

(2π)3

∫
d3k

2k0

d3k′

2k′0
kβBµρ(k)Bνρ′(k′)[e−ik·xg(k, ρ, a)− eik·xg†(k, ρ, a),

e−ik
′·yg(k′, ρ′, b) + eik

′·yg†(k′, ρ′, b)]

=
−ı

(2π)3

∫
d3k

2k0

d3k′

2k′0
kβBµρ(k)Bνρ′(k′)(e−ik·xeik

′·y[g(k, ρ, a), g†(k′, ρ′, b)]

−eik·xe−ik′·y[g†(k, ρ, a), g(k′, ρ′, b)])

=
ı

(2π)3

∫
d3k

2k0

d3k′

2k′0
kβBµρ(k)Bνρ′(k′)(e−ik·xeik

′·yηρρ′k0δ
3(k− k′)δab

+eik·xe−ik
′·yηρρ′k0δ

3(k− k′)δab)

= ηµνδab
1

(2π)3

∫
d3k

2k0

ıkβ(eik·(x−y) + e−ik·(x−y))

= ηµνδab
∂

∂xβ
(

1

(2π)3

∫
d3k

2k0

(eik·(x−y) − e−ik·(x−y)))

= ηµνδab
∂4(x− y)

∂xβ
I

The fact that this commutator is a multiple of the identity is essential to the ansatz

of writing the physical vacuum as a product of free �elds.
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APPENDIX B

DERIVATION OF THE KINETIC COMPONENT OF THE FOUR

MOMENTUM

The full four momentum operator, P µ results from integrating the stress-

energy tensor, T µν , over the forward hyperboloid

P µ =

∫
d4xδ(x · x− τ 2)Θ(x0)xνT

µν

where Θ(x0) is the Heaviside function and

T µν(x) =
∑
a

Fαβ
a (x)ηββ′ [ηµα′η

ν
α + ηνα′ηµα −

1

2
ηµνηαα′ ]Fα′β′

a (x)

T µν is de�ned in terms of the �eld tensor, F µν , which is de�ned in terms of the free

gluon �elds Gµ
a(x),

F µν
a (x) =

∂Gν
a

∂xµ
− ∂Gµ

a

∂xν
+ αcabcG

µ
b (x)Gν

c (x)

where cabc are the color structure constants and α is the strong bare coupling con-

stant. Recall that the free �elds are de�ned in terms of the fundamental creation and

annihilation operators,

Gµ
a(x) =

∫
d3k

(2π)3/22k0

Bµρ(k)(e−ik·xg(k, ρ, a) + eik·xg†(k, ρ, a))

∂Gµ
a

∂xν
= −ı

∫
d3k

(2π)3/22k0

kνBµρ(k)(e−ik·xg(k, ρ, a)− eik·xg†(k, ρ, a))

as discussed in Chapter 2.

The four momentum consists of a product of two �eld tensors. It is useful to

break the four momentum into parts,

P µ = P µ
KE + P µ

tri + P µ
quar



62

based on this product. The three parts are distinguished by their dependence on α.

The quartic piece depends on α2 and inherits its name from the product of four free

�elds, the trilinear consists of the two ways of garnering an α dependence, while the

kinetic energy part is independent of α. It is not apparent that P µ
KE de�ned in this

way is equivalent to the free four momentum operator

P µ
fr = −

∑
a

∫
d3k
2k0
kµηρρ(g†(k, ρ, a)g(k, ρ, a) + g(k, ρ, a)g†(k, ρ, a))

Proving this equivalence is the purpose of this Appendix.

For the following calculations, set the strong bare coupling constant, α, to zero

to isolate the free terms. Then

Fαβ
a =

∂Gβ
a

∂xα
− ∂Gα

a

∂xβ

= −ı
∫

d3k

(2π)3/22k0

(kαBβρ(k)− kβBαρ(k))(e−ık·xg(k, ρ, a)− eık·xg†(k, ρ, a))

P µ =
∑
a

2

∫
d4xδ(x · x− τ 2)Θ(x0)xνF

αβ
a Fα′β′

a ηββ′(ηµαη
ν
α′ + ηναη

µ
α′ −

1

2
ηµνηαα′)

The product of the two �eld tensors results in four terms which will be treated

individually according to their creation/annihilation pairs and labeled accordingly;

P µ
gg, P

µ
g†g†

, P µ
g†g
, P µ

gg†
.
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First consider

P µ
gg =

∑
a

2

∫
d4xδ(x · x− τ 2)Θ(x0)xν

1

(2π)3

∫
d3k

2k0

d3k′

2k′0
e−ı(k+k′)·x

[(kµBαρ(k)− kαBµρ(k))(k′νBρ′

α (k′)− k′αBνρ′(k′)) +

(kνBαρ(k)− kαBνρ(k))(k′µBρ′

α (k′)− k′αBµρ′(k′))−

1

2
ηµν(kδBαρ(k)− kαBδρ(k))(k′δB

ρ′

α (k′)− k′αB
ρ′

δ (k′))]

g(k, ρ, a)g(k′, ρ′, a) (B.1)

Notice that for the other three terms of the four momentum, the only di�er-

ences are the overall sign, the term in the exponential, and the creation/annihilation

operator pairing.

De�ne a Lorentz invariant distribution as

W (p, q) = 2

∫
d4xδ(x · x− τ 2)Θ(x0)xνp

νe−ıq·x (B.2)

where p = k+ k′, and q = k− k′. As a result, the spatial integral in Eq. B.1 becomes

2

∫
d4xδ(x · x− τ 2)Θ(x0)xνe

−ı(k+k′)·x =
pν
p2
W (p, p)

which is shown in the Appendix of Ref. [1]. Also recall that k2 = k
′2 = 0 since gluons

are massless particles, meaning p · p = 2k · k′ and q · q = −2k · k′.

The common boost terms from Eq. B.1 can now be factored out to give
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P µ
gg =

∑
a

1

(2π)3

∫
d3k

2k0

d3k′

2k′0
(
kν + k′ν
2k · k′

W (p, p))Bαρ(k)Bα′ρ′(k′)

[(kµk′νηαα′ − kµk′αδνα′ − k′νkα′δµα + k · k′δνα′δµα) +

(kνk′µηαα′ − kνk′αδ
µ
α′ − k′µkα′δνα + k · k′δναδ

µ
α′)

−ηµνk · k′ηαα′ + ηµνkα′k′α)]g(k, ρ, a)g(k′, ρ′, a)

=
∑
a

1

(2π)3

∫
d3k

2k0

d3k′

2k′0
(
W (p, p)

2k · k′
)Bαρ(k)Bα′ρ′(k′)

[(kµk · k′ηαα′ − kµk′α(kα′ + k′α′)− k · k′kα′δµα + k · k′(kα′ + k′α′)δµα) +

(k′µk · k′ηαα′ − k · k′k′αδ
µ
α′ − k′µkα′(kα + k′α) + k · k′(kα + k′α)δµα′)

−(kµ + k′µ)k · k′ηαα′ + (kµ + k′µ)kα′k′α)]g(k, ρ, a)g(k′, ρ′, a)

=
∑
a

1

(2π)3

∫
d3k

2k0

d3k′

2k′0
(
w(P, P )

2k · k′
)Bαρ(k)Bα′ρ′(k′)

[−kµk′αk′α′ + k · k′k′α′δµα − k′µkα′kα + k · k′kαδµα′ ]g(k, ρ, a)g(k′, ρ′, a)

Each of the remaining terms has the form Bαρ(k)kαg(k, ρ, a) = kst
ρ
g(k, ρ, a)

which is zero from the wave function condition

∑
a

kst
ρ
g(k, ρ, a)|φ > = 0 (B.3)

leaving P µ
gg = 0 when acting on the physical subspace.

In calculating the remaining three terms of P µ, the major di�erence is the

exponential term. For P µ
g†g†

, e−ı(k+k′)·x → eı(k+k′)·x, with W (p, p) → W (p,−p) the

only change. Although the wave function condition in Eq. B.3 no longer applies, we

can require an operator condition

∑
a

kst
ρ

g†(k, ρ, a) = 0 (B.4)
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Each of the four P µ
g†g†

terms has the form Bαρ(k)kαg
†(k, ρ, a) = kst

ρ
g†(k, ρ, a) = 0,

leading to the same conclusion, P µ
g†g†

= 0 on the physical subspace.

For P µ
gg†

, e−ı(k+k′)·x → e−ı(k−k
′)·x, changing the spatial integral to

∫
2d4xδ(x · x− τ 2)Θ(x0)xνe

−ı(k−k′)·x =
pν
p2

(2π)3p0δ
3(q) +

qν
q2
W (q, q)

=
kν + k′ν
2k · k′

(2π)3(k0 + k′0)δ3(k−k′) +
kν − k′ν
−2k · k′

W (q, q)

as calculated in the Appendix of Ref. [1]. However, this result is only valid for

particles with mass, because otherwise k · k′ → 0 as k → k′ causing the �rst term to

blow up.

The second term avoids this complication and carrying out the same calcula-

tions for qν instead of pν gives

P µ
gg†

= P̃ µ
gg†

+
∑
a

1

(2π)3

∫
d3k

2k0

d3k′

2k′0
(
W (q, q)

−2k · k′
)Bαρ(k)Bα′ρ′(k′)

[kµk′αk
′
α′ − k · k′k′α′δµα − k′µkα′kα + k · k′kαδµα′ ]

g(k, ρ, a)g†(k′, ρ′, a′)

where the latter two parts are eliminated by the wave function condition, and the

former two by the operator condition, leaving P µ
gg†

= P̃ µ
gg†

In order to calculate the �rst piece, it will be useful to de�ne

k := lim
ε→0


√
k2 + ε2

k


so that k · k = lim

ε→0
ε2 = 0.
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P µ
gg†

is now

P µ
gg†

= −
∑
a

∫
d3k

2k0

d3k′

2k′0
(
k0 + k′0
2k · k′

δ3(k−k′))(kν + k′ν)B
αρ(k)Bα′ρ′(k′)

[(kµk′νηαα′ − kµk′αδνα′ − k′νkα′δµα + k · k′δνα′δµα) +

(kνk′µηαα′ − kνk′αδ
µ
α′ − k′µkα′δνα + k · k′δναδ

µ
α′)

−ηµνk · k′ηαα′ + ηµνkα′k′α]g(k, ρ, a)g†(k′, ρ′, a)

= − lim
ε→0

∑
a

∫
d3k

4k0ε2
Bαρ(k)Bα′ρ′(k)(2kν)

[(kµkνηαα′ − kµkαδνα′ − kνkα′δµα + ε2δνα′δµα) +

(kνkµηαα′ − kνkαδµα′ − kµkα′δνα + ε2δναδ
µ
α′)

−ηµνε2ηαα′ + ηµνkα′kα]g(k, ρ, a)g†(k, ρ′, a)

= − lim
ε→0

∑
a

∫
d3k

2k0ε2
Bαρ(k)Bα′ρ′(k)

[ε2kµηαα′ − kµkαkα′ − ε2kα′δµα + ε2kα′δµα +

ε2kµηαα′ − ε2kαδµα′ − kµkα′kα + ε2kαδ
µ
α′

−kµε2ηαα′ + kµkα′kα]g(k, ρ, a)g†(k, ρ′, a) (B.5)

Seven of the ten terms from Eq. B.5 are eliminated by Eqs. B.3 and B.4.
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This leaves

P µ
gg†

= − lim
ε→0

∑
a

∫
d3k

2k0ε2
Bαρ(k)Bα′ρ′(k)

[ε2kµηαα′ + ε2kµηαα′ − kµε2ηαα′ ]g(k, ρ, a)g†(k, ρ′, a)

= −
∑
a

∫
d3k

2k0

Bαρ(k)Bα′ρ′(k)ηαα′kµg(k, ρ, a)g†(k, ρ′, a)

= −
∑
a

∫
d3k

2k0

kµηρρ
′
g(k, ρ, a)g†(k, ρ′, a)

= −
∑
a

∫
d3k

2k0

kµηρρg(k, ρ, a)g†(k, ρ, a)

An identical argument can be made for P µ
g†g

leaving

P µ
g†g

= −
∑
a

∫
d3k
2k0
kµηρρg†(k, ρ, a)g(k, ρ, a)

and

P µ
KE = −

∑
a

∫
d3k

2k0

kµηρρ(g†(k, ρ, a)g(k, ρ, a) + g(k, ρ, a)g†(k, ρ, a))

as desired.
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APPENDIX C

MIXED SYMMETRY

The group S3 is the set of all rotations of three elements, usually represented

by its six group elements written, I, (12), (13), (23), (123), (321). In this notation

(12) represents switching the �rst two elements. (12) can be represented as a 3x3

matrix by


0 1 0

1 0 0

0 0 1

, since the �rst and second elements of a three vector are

swapped and the third is left unchanged. This matrix representation, however, is

reducible.

The six irreducible representations of S3 can be calculated by block diago-

nalizing the three dimensional representations into irreducible representations. The

eigenvalues of the three dimensional representation of (12) are 1, 1, and − 1. Diago-

nalizing


0 1 0

1 0 0

0 0 1

, and using the diagonalization matrices on the remaining �ve

representations block diagonalizes the three dimensional representations into a 1 and
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the following 2x2 irreps,

D(I) =

 1 0

0 1



D((12)) =

 1 0

0 −1



D((13)) =
1

2

 −1
√

3

√
3 1



D((23)) =
1

2

 −1 −
√

3

−
√

3 1



D((123)) =
1

2

 −1
√

3

−
√

3 −1



D((321)) =
1

2

 −1 −
√

3

√
3 −1

 (C.1)

De�nition C.1. The generalized projection operator for the mixed representation is

Pij :=
∑
g

D−1
ij (g)U(g) where U(g) is the permutation operator for the group element

g ∈ S3.

To show that these are generalized projection operators, two properties must

hold.

1. Pij must transform irreducibly for the mixed representation or U(g)Pij =
∑
k

PkjDik(g).

2. PijPkl = δjkPil.

These properties are shown in most group theory books, for example Ref. [12].
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De�nition C.2. Pii are the projection operators since they satisfy the property that

PiiPjj =


Pii i = j

0 i 6= j

.

The mixed representation is a two dimensional representation and the two

projection operators will be renamed P11 = P+ and P22 = P−. A consequence of the

choice to diagonalize D((12)) is that U(12)P+ = P+ and U(12)P− = −P−.
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