

50

Given ε ∈ (0, 1] and setting

m` =

⌊
O(1)` ln

2

ε

⌋
, ` = 1, · · · , d,

with properly chosen absolute constant O(1), it can be ensured that

β(m1, · · · ,md) ≤ ε

An important aspect of the ε-approximation (2.30) based on (2.33) is whether or not

its solution is “close enough” to the solution of the original SOCP problem (2.29).

As it turns out, there are examples that can be constructed where (2.29) is

infeasible, while all problem of the form (2.31) are feasible. However, there is a a

simple sufficient condition that will ensure that the feasible sets of (2.29) and (2.31)are

“O(ε)-close” to each other (see Ben-Tal and Nemirovski (2001b), Proposition 4.1).

Thus, we have (2.30) being a good approximation of (2.29) provided that the feasible

sets of (2.29) and (2.31) are within O(ε) of each other.

2.4.2 Gradient Approximation of 3D general p-order
cones

The “lifted” polyhedral approximation of 3D quadratic cones, due to Ben-Tal

and Nemirovski (2001b), does not seem to be extensible to the general p-order cones

with p ∈ [1,+∞). In light of this, we develop a simple “gradient” approximation of the

3D p-cone K(3)
p by circumscribed planes. With an external polyhedral approximation

we create a convex hull that approximates the p-cone, thus allowing the use of linear

programming techniques for handling the pOCP problem (2.1). Next we demonstrate

the construction of a gradient polyhedral approximation to cone K(3)
p located in the

positive orthant of R3
+.

51

In the positive quadrant of R2
+, the projection of the p-cone

xp + yp = zp0 (= const) (2.35)

can be parameterized using the polar coordinates as

x = z0ρ(θ) cos θ

y = z0ρ(θ) sin θ, θ ∈
[
0,
π

2

] (2.36)

Substituting the parameterization for x and y into the equality xp + yp = zp0 and

solving for ρ(θ) yields:

ρ(θ) =
z0

(cosp θ + sinp θ)1/p (2.37)

Therefore we have:

x = z0
cos θ

(cosp θ + sinp θ)1/p

y = z0
sin θ

(cosp θ + sinp θ)1/p
, θ ∈

[
0,
π

2

] (2.38)

Next, observe that the plane tangent to the surface zp = xp + yp of the p-cone at a

point (x0, y0, z0) ∈ R3
+ is given by

(z0)p−1z = (x0)p−1x+ (y0)p−1y.

Using the parametrization (2.38) of x0, y0, we arrive at the following expression for a

plane that is tangent to the p-cone xp + yp = zp at the polar angle θ:

z = x
cosp−1 θ

(sinp θ + cosp θ)
p−1
p

+ y
sinp−1 θ

(sinp θ + cosp θ)
p−1
p

, θ ∈
[
0,
π

2

]
.

52

Then, a polyhedral approximation of the p-cone K(3)
p ⊂ R3

+ given by m + 1 circum-

scribed tangent planes can be written as

Ĥ(3)
p,m =

{
ξ ∈ R3

+

∣∣∣∣ ξ3 ≥ α
(p)
i ξ1 + β

(p)
i ξ2, i = 0, . . . ,m

}
(2.39)

where the coefficients α
(p)
i , β

(p)
i have the form

α
(p)
i =

cosp−1 θi

(cosp θi + sinp θi)
p−1
p

β
(p)
i =

sinp−1 θi

(cosp θi + sinp θi)
p−1
p

(2.40)

and 0 = θ0 < θ1 < · · · < θm−1 < θm = π
2

is a partition of the segment
[
0, π

2

]
. As

it is shown in Chapter 3, of particular importance is the special case of the gradient

approximation (2.39) where the parameters θi represent a “uniform” partition of[
0, π

2

]
:

θi =
πi

2m
, i = 0, . . . ,m. (2.41)

The following proposition establishes approximation quality for the uniform gradient

approximation (2.39)–(2.41) of the cone K(3)
p .

Proposition 4. The set Ĥ(3)
p,m (2.39)–(2.40) defined by the uniform partition (2.41)

is a convex polyhedral approximation of the p-cone K(3)
p that satisfies properties (H1)–

(H2) with approximation accuracy

ε =

{
O(m−2), for p ∈ [2,∞)

O(m−p), for p ∈ (1, 2)

Proof. Since the polyhedral set (2.39)–(2.40) is formed by intersection of halfspaces

tangent to the p-cone K(3)
p , (H1) is obviously satisfied.

53

To demonstrate (H2), we need to show that a finite ε exists such that

ξ ∈ Ĥ(3)
p,m =⇒ ‖(ξ1, ξ2)‖p ≤ (1 + ε)ξ3 (2.42)

holds for any ξ ∈ Ĥ(3)
p,m. The accuracy in (2.42) can be chosen as the smallest ε that

satisfies:

ε ≥
∥∥∥∥(ξ1

ξ3

,
ξ2

ξ3

)∥∥∥∥
p

− 1.

for any ξ ∈ Ĥ(3)
p,m. Since we are concerned with an ordered pair

(
ξ1
ξ3
, ξ2
ξ3

)
, the problem

can be reduced to a two dimensional one by letting (x, y) =
(
ξ1
ξ3
, ξ2
ξ3

)
, thus reducing

the last inequality to

ε ≥ ‖(x, y)‖p − 1 (2.43)

where (x, y) belongs to the polygon

H′ =
{

(x, y) | 1 ≥ α
(p)
i x+ β

(p)
i y, i = 0, . . . ,m

}
From geometric considerations (see Figure 2.4), the approximation error will be

largest for vertices of the polygon H′. For a segment [θi, θi+1], with θ0 = 0 < θ1 <

· · · < θm−1 < θm = π
2
, define the largest approximation error on the segment as εi.

Thus, ε in (2.43) would be defined as:

ε = max
i=0,...,m

εi (2.44)

Consider the segment [θi, θi+1]. We construct the tangent lines to the p-curve xp+yp =

1 at the points (x1, y1) and (x2, y2) where:

x1 =
cos θi

(cosp θi + sinp θi)
1/p

y1 =
sin θi

(cosp θi + sinp θi)
1/p

x2 =
cos θi+1

(cosp θi+1 + sinp θi+1)1/p
y2 =

sin θi+1

(cosp θi+1 + sinp θi+1)1/p

54

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(x*,y*)

ε

(x1,y1)

(x2,y2)

Figure 2.4: Gradient Approximation (graphical representa-
tion of ε).

correspond to the points on the p-curve at the polar angles θi and θi+1 respectively.

The equation of the tangent line to the p-curve xp + yp = 1 at the point (x1, y1) and

(x2, y2) is given by x(x1)p1 + y(y1)p−1 = 1 and x(x2)p−1 + y(y2)p−1 = 1 respectively.

The set of simultaneous equations:

x(x1)p−1 + y(y1)p−1 = 1

x(x2)p−1 + y(y2)p−1 = 1
(2.45)

can be solved to obtain the intersection, (x∗, y∗), of these two tangent lines:

55

x∗ =
yp−1

2 − yp−1
1

(x1y2)p−1 − (x2y1)p−1

y∗ =
xp−1

1 − xp−1
2

(x1y2)p−1 − (x2y1)p−1

(2.46)

Thus, the vertex of H′ located within the segment [θi, θi+1] is determined by the

solution to (2.45) and has the form (2.46).

It can be seen from geometrical considerations that the approximation error εi

at a segment [θi, θi+1] is determined by the local curvature at this segment, and the

curvature of the p-curve is monotonic on
[
0, π

4

]
. Thus, the “local” approximation

errors εi will be largest at either the segment [θ0, θ1] =
[
0, π

2m

]
or [θm/2−1, θm/2] =[

π
4
− π

2m
, π

4

]
, where it can be assumed without loss of generality that m is an even

number.

Let us first consider the local approximation error ε0 at the segment
[
0, π

2m

]
.

Denoting π
2m

= t, t � 1, we consider the points (x1, y1) = (1, 0) and (x2, y2) =

(x2(t), y2(t)). Then, the vertex (x∗, y∗) of the polygonH′ within the segment [θ0, θ1] =[
0, π

2m

]
is given by

x∗(t) = 1

y∗(t) = cotp−1 t
((

1 + tanp t)
p−1
p

)
− 1
)
.

The asymptotic expression for y∗(t) at small t� 1 can be obtained as follows

y∗(t) ≈ t1−p
(

(1 + tp)
p−1
p − 1

)
≈ t1−p

(
1 +

(
p− 1

p

)
tp − 1

)
= t1−p

(
p− 1

p
tp
)

=
p− 1

p
t

56

Then, the approximation error ε0 at the segment [θ0, θ1]

ε0 = ‖(x∗(t), y∗(t))‖p − 1

can be asymptotically estimated as

ε0 = (1 + (y∗)p)1/p − 1 ≈ 1 +
1

p
(y∗)p − 1

=
1

p
(y∗)p

≈ 1

p

(
p− 1

p
t

)p
so that, finally,

ε0 ≈
1

p

(
1− 1

p

)p (π

2m

)p
= O(m−p) for m� 1.

The approximation error εm/2 at the segment [θm/2−1, θm/2] =
[
π
4
− π

2m
, π

4

]
can be

obtained in a similar manner as

εm/2 ≈
p− 1

8

(π

2m

)2

= O(m−2), for m� 1.

Thus, the uniform gradient approximation (2.39)–(2.41) satisfies (H2) with the ap-

proximation accuracy given by

ε ≈

p−1

8

(
π

2m

)2
, for p ≥ 2

1
p

(
1− 1

p

)p (
π

2m

)p
, for 1 < p < 2

(2.47)

The gradient polyhedral approximation (2.39)–(2.41) of the p-cone K(3)
p requires

much larger number of facets than Ben-Tal and Nemirovski’s lifted polyhedral approx-

imation (2.32) of of the quadratic cone K(3)
2 to achieve the same level of accuracy.

57

However, as it is shown in Chapter 3, the special structure of the uniform gradient ap-

proximation (2.39)–(2.41) makes the corresponding LP approximations of the pOCP

problem (2.1) particularly amenable to a cutting plane decomposition algorithm.

58

CHAPTER 3

A CUTTING PLANE ALGORITHM FOR POLYHEDRAL
APPROXIMATIONS OF P -ORDER CONIC PROGRAMMING

PROBLEMS

3.1 Introduction

In Chapter 2 we have presented the rationale for solving the p-order conic pro-

gramming problems

min c>x (3.1a)

s. t. Ax ≤ b (3.1b)∥∥D(k)x− f (k)
∥∥
pk
≤ h(k)>x− g(k), k = 1, . . . , K (3.1c)

by constructing their polyhedral approximations, effectively reducing the pOCP prob-

lem (3.1) to a LP of the form

min

c>x

∣∣∣∣∣ Ax ≤ b, H(Jk+1)
pk,mk

D(k)x− f (k)

h(k)>x− g(k)

u(k)

 ≥ 0, k = 1, . . . , K

 (3.2)

where the set

H(Jk+1)
pk,mk

ξ(k)

u(k)

 ≥ 0 (3.3)

defines a polyhedral approximation of the p-cone K(Jk+1)
pk ⊂ RJk+1

+ . A key strategy

that allows one to avoid polyhedral approximations of (3.1) that are exponentially

large in the dimensionalities (Jk+1) of the pk-conic constraints in (3.1) is the “tower-

of-variables” technique, which represents a (Jk+1)-dimensional p-cone as intersection

59

of Jk−1 three-dimensional p-cones. (Alternatively, in the case when all pk are rational:

pk = rk/sk, one can use the SOCP reformulation of the pOCP problem (3.2) that will

require O(Jk log rk) three-dimensional second order cones to represent each (Jk + 1)-

dimensional pk-cone. We will compare the performances of both these methods in

Chapter 4.)

Nevertheless, this approach generally leads to a linear programming problem

(3.2) whose size is much larger than the size of the original pOCP problem (3.1);

on the other hand, the constructed LP approximation possesses a special structure

induced by the “tower-of-variables” transformation, which can be exploited to con-

struct an efficient solution procedure. Next we present a cutting-plane formulation

of the approximating problem (3.2) for the case when the approximation (3.3) of

(Jk + 1)-dimensional pk-cones has been constructed using the “tower-of-variables”

approach.

3.2 A Cutting Plane Formulation for Polyhedral
Approximations of pOCP Problems

For simplicity, we assume from now on that the pOCP problem (3.1) contains

a single p-order conic constraint (K = 1) of dimension 2d + 1, d ∈ Z+. Evidently,

the presented approach and obtained results are generalizable to a pOCP with K

pk-order conic constraints of general dimensions (Jk + 1) in a straightforward way.

Invoking the “tower-of-variables” transformation, we reformulate the pOCP problem

60

(3.1) as follows:

min c>x (3.4a)

s. t. Ax ≤ b (3.4b)

w
(`)
j ≥

∥∥∥(w(`−1)
2j−1 , w

(`−1)
2j

)∥∥∥
p

j = 1, . . . , 2d−`, ` = 1, . . . , d (3.4c)

w
(d)
1 ≤ h>x− g (3.4d)

w
(0)
j ≥

∣∣∣(Dx− f)j

∣∣∣ , j = 1, . . . , 2d (3.4e)

w
(`)
j ≥ 0, j = 1, . . . , 2d−`, ` = 0, . . . , d (3.4f)

Problem (3.4c) is an equivalent reformulation of the original pOCP problem (3.1)

using 2d − 1 three-dimensional p-order conic constraints. In accordance with our

polyhedral approximation solution approach, we replace each of the 3-dimensional

p-cones

w
(`)
j ≥

∥∥∥(w(`−1)
2j−1 , w

(`−1)
2j

)∥∥∥
p

with its polyhedral approximation:

H(3)
p,m

w
(`)
j

u
(`)
j

 ≥ 0 (3.5)

where for given ` and j we denote w
(`)
j =

(
w

(`)
j , w

(`−1)
2j−1 , w

(`−1)
2j

)>
, and m is the parame-

ter of construction controlling the approximation accuracy. In such a way, the LP ap-

proximation (3.2) of the pOCP problem (3.1) that is based on the “tower-of-variables”

transformation and the polyhedral approximations (3.5) of three-dimensional p-cones

61

can now be stated as follows:

min c>x (3.6a)

s. t. Ax ≤ b (3.6b)

H(3)
p,m

w
(`)
j

u
(`)
j

 ≥ 0, ` = 1, . . . , d j = 1, . . . , 2d−` (3.6c)

w
(d)
1 ≤ h>x− g (3.6d)

w
(0)
j ≥

∣∣∣(Dx− f)j

∣∣∣ , j = 1, · · · , 2d (3.6e)

w
(`)
j ≥ 0, j = 1, . . . , 2d−`, ` = 0, . . . , d (3.6f)

The linear programming problem (3.6) has a large number of constraints induced by

the polyhedral approximation (3.5). However, only a few of these constraints will

be binding at optimality. This, in turn, potentially allows one to solve the linear

programming problem (3.6) iteratively, by generating only those linear constraints

that comprise (3.6c) that are “necessary” to achieve optimality.

To this end, we want to construct a “cutting plane” reformulation of problem

(3.6) that would be amenable to iterative generation of linear constraints using a

Bender’s-type approach. Therefore, we replace the constraint (3.6c) with the following

set:

w
(`)
j ≥ min v3 (3.7a)

s. t. H(3)
p,m

v

y

 ≥ 0 (3.7b)

v1 ≥ w
(`−1)
2j−1 (3.7c)

v2 ≥ w
(`−1)
2j (3.7d)

v,y ≥ 0 (3.7e)

62

where we suppress the indices ` and j of the auxiliary variables v and y in order to

unclutter the notation. The following simple fact is important for further develop-

ments:

Proposition 5. The linear programming problem in (3.7) is always feasible for any

w
(`−1)
2j−1 , w

(`−1)
2j ≥ 0.

Proof. For a given w
(`−1)
2j−1 , w

(`−1)
2j , consider v =

(
w∗, w

(`−1)
2j−1 , w

(`−1)
2j

)
where w∗ =

∥∥∥(w(`−1)
2j−1 , w

(`−1)
2j

)∥∥∥
p
.

Since, obviously, v ∈ K(3)
p , by property (H1) there exists y ≥ 0 such that H

(3)
p,m

v

y

 ≥
0. Therefore, the linear programming problem given by (3.7) is always feasible for

any w
(`−1)
2j−1 , w

(`−1)
2j .

Next we demonstrate that the set defined by (3.7) is a polyhedral approxima-

tion of the 3D p-cone w
(`)
j ≥

∥∥∥(w(`−1)
2j−1 , w

(`−1)
2j

)∥∥∥
p

featuring the same approximation

accuracy as the set (3.6c). Namely, we have the following proposition:

Proposition 6. The set given by (3.7) in the space of variables

w
(`)
j =

(
w

(`)
j , w

(`−1)
2j−1 , w

(`−1)
2j

)
is a polyhedral approximation of the p-cone w

(`)
j ≥

∥∥∥(w(`−1)
2j−1 , w

(`−1)
2j

)∥∥∥
p

with accuracy

εm, where εm is the accuracy of the the approximation (3.6c) (i.e. (H1) and (H2) are

satisfied with accuracy εm).

Proof. In order to show that (H1) is satisfied, consider some w
∗(`)
j ∈ K(3)

p , where

w
∗(`)
j =

(
w
∗(`)
j , w

∗(`−1)
2j−1 , w

∗(`−1)
2j

)>
.

We need to show that such a w
∗(`)
j also satisfies (3.7). From the properties of

the polyhedral approximation H(3)
p,m of the p-cone K(3)

p , there exists u∗ such that

63

H
(3)
p,m

w
∗(`)
j

u∗

 ≥ 0. This implies that
(
w
∗(`)
j ,u∗

)
is a feasible solution of the lin-

ear programming problem in (3.7). Thus, we have w
∗(`)
j ≥ v∗3 where (v∗,y∗) is

an optimal solution of the linear programming problem in (3.7). This implies that

w
∗(`)
j =

(
w
∗(`)
j , w

∗(`−1)
2j−1 , w

∗(`−1)
2j

)>
belongs to the set defined by (3.7).

In order to show that (H2) is satisfied, consider any w
∗(`)
j that satisfies (3.7).

Let (v∗,y∗) be the corresponding optimal solution of the linear programming problem

(3.7). By property (H2) of the approximation H(3)
p,m of K(3)

p we have that ‖(v∗1, v∗2)‖p ≤

(1 + εm)v∗3 and

∥∥∥(w∗(`−1)
2j−1 , w

∗(`−1)
2j

)∥∥∥
p
≤ ‖(v∗1, v∗2)‖p ≤ v∗3(1 + εm) ≤ w

(`)
j (1 + εm)

Therefore, we have that w
∗(`)
j (1 + εm) ≥

∥∥∥(w∗(`−1)
2j−1 , w

∗(`−1)
2j

)∥∥∥
p

which means that we

have found εm so that (H2) is satisfied.

To develop a cutting-plane representation of the approximating problem (3.6),

let us now rewrite the LP in (3.7) as follows:

min v (3.8a)

s. t. H̃m

v
y

 ≥

0

w
(`−1)
2j−1

w
(`−1)
2j

 (3.8b)

v ≥ 0, y ≥ 0 (3.8c)

where H̃m is reformulated so that y includes the variables v1 and v2. Then, the dual

64

of problem (3.8) can be written as follows:

max
(
0, w

(`−1)
2j−1 , w

(`−1)
2j

)
π (3.9a)

s. t. H̃>mπ ≤

1

0

 (3.9b)

π ≥ 0 (3.9c)

The feasible set of the dual problem in (3.9) can be represented as a sum of the convex

hull of its vertices π̂i and a (convex) cone generated by its extreme rays, or directions

π̄k (see, for instance, Prékopa, 1995). Namely, any π that is feasible to (3.9) we can

write as

π =
∑
i∈Pm

λiπ̂i +
∑
k∈Qm

µkπ̄k,
∑
i∈Pm

λi = 1, λi ≥ 0, and µk ≥ 0 (3.10)

where Pm is the set of extreme points of the feasible set

π

∣∣∣∣ H̃>mπ ≤

1

0

 ,π ≥ 0

 (3.11)

of the dual problem (3.9) and Qm is the set of its extreme rays.

Proposition 7. Observe that any extreme ray π̄k, k ∈ Qm of the set (3.11) must

satisfy

(
0, w

(`−1)
2j−1 , w

(`−1)
2j

)
π̄k ≤ 0

for any w
(`−1)
2j−1 , w

(`−1)
2j ≥ 0.

Proof. To see this, assume that the contrary holds for some k ∈ Qm and select the

corresponding µk very large. As µk →∞ the dual problem (3.9) becomes unbounded.

65

With this, the primal problem would become infeasible. However, by Proposition 5 we

know that the primal problem is feasible for any non-negative w
(`−1)
2j−1 and w

(`−1)
2j .

Because of this observation, we can now replace (3.7) with the following:

w
(`)
j ≥

(
0, w

(`−1)
2j−1 , w

(`−1)
2j

)
π̂i, i ∈Pm (3.12)

since the maximum of the dual problem will be achieved at some vertex π̂i of its

feasible set (3.11). This leads to the following “cutting plane” formulation of the LP

approximation to the pOCP problem (3.1):

min c>x (3.13a)

s. t. Ax ≤ b (3.13b)

w
(`)
j ≥

(
0, w

(`−1)
2j−1 , w

(`−1)
2j

)
π̂i, i ∈Pm, j = 1, . . . , 2d−`, ` = 1, . . . , d (3.13c)

w
(d)
1 ≤ h>x− g (3.13d)

w
(0)
j ≥

∣∣∣(Dx− f)j

∣∣∣ , j = 1, . . . , 2d (3.13e)

w
(`)
j ≥ 0, j = 1, . . . , 2d−`, ` = 0, . . . , d (3.13f)

where constraints (3.13c) are amenable to iterative generation and thus can be viewed

as “cutting planes” that “cut off” the portions of the feasible region where an optimal

solution cannot be achieved.

In the next section we present the corresponding cutting plane algorithm for

solving problem (3.13) iteratively.

66

3.3 A Cutting Plane Algorithm for Polyhedral
Approximations of p-Order Conic Program-
ming Problems

Assume without loss of generality that problem (3.13) is bounded, and consider the

master problem corresponding to the cutting plane formulation (3.13):

min c>x (3.14a)

s. t. Ax ≤ b (3.14b)

w
(`)
j ≥ σi,ν−1w

(`−1)
2j−1 + τi,νw

(`−1)
2j , i = 1, . . . , C

(`)
j ,

j = 1, . . . , 2d−`, ` = 1, . . . , d (3.14c)

w
(d)
1 ≤ h>x− g (3.14d)

w
(0)
j ≥

∣∣∣(Dx− f)j

∣∣∣ , j = 1, . . . , 2d (3.14e)

w
(`)
j ≥ 0, j = 1, . . . , 2d−`, ` = 0, . . . , d (3.14f)

where σi,ν−1 and τi,ν stand for the last two components π̂ν−1 and π̂ν of the vector

π̂i ∈ Rν . Let (x∗,w∗) be an optimal solution to the master problem (3.14) after a

given iteration (note that if (3.14) is infeasible, then (3.13) is infeasible too, and the

procedure stops). Then, for any ` = 1, . . . , d, j = 1, . . . , 2d−` solve the subproblem:

max
(
0, w

∗(`−1)
2j−1 , w

∗(`−1)
2j

)
π (3.15a)

s. t. H̃>mπ ≤

1

0

 (3.15b)

π ≥ 0 (3.15c)

and, given its optimal solution π∗ = π
∗(`)
j check if the condition

w
∗(`)
j ≥

(
0, w

(`−1)∗
2j−1 , w

(`−1)∗
2j

)
π
∗(`)
j (3.16)

67

is satisfied. If condition (3.16) is violated for some `, j then we add a new constraint

(3.14c) for the variable w
(`)
j by incrementing the corresponding counter of constraints

in (3.14c): C
(`)
j = C

(`)
j + 1, and setting

σ
(`)
j,i′ = π

∗(`)
j,ν−1, τ

(`)
j,i′ = π

∗(`)
j,ν for i′ = C

(`)
j (3.17)

After checking condition (3.16) for all variables w
(`)
j , the master problem (3.14) is

augmented with new constraints and is solved again. If (3.16) holds for all variables

w
(`)
j , and thus no new cuts are generated during the given iteration, the current

solution x∗,w∗ of the master problem is optimal for the original LP approximation

problem (3.13). In such a way, the proposed cutting-plane procedure obtains an

optimal solution, if it exists, of the original LP approximation problem (3.13) after a

finite number of iterations with, perhaps, some anticycling scheme employed.

A starting solution for the cut generation procedure can be constructed, for

example, by solving the master problem (3.14) with constraints

w
(`)
j ≥ w

(`−1)
2j−1 , w

(`)
j ≥ w

(`−1)
2j , j = 1, . . . , 2d−`, ` = 1, . . . , d,

in place of constraints (3.14c). Indeed, note that inequality

w
(`)
j ≥

∥∥(w(`−1)
2j−1 , w

(`−1)
2j

)∥∥
p

implies

w
(`)
j ≥ max

{
w

(`−1)
2j−1 , w

(`−1)
2j

}
.

More efficient methods of generating an initial solution can be suggested by exploiting

the particular structure of the feasible region of the pOCP problem (3.1).

68

3.4 Cut Generation Efficiencies

Effectiveness of the described cutting-plane scheme depends, in part, on how

fast the set of cuts (3.14c) can be updated. Here we demonstrate that the gradient

approximation (2.39)–(2.40), introduced in Chapter 2, admits quite an efficient gen-

eration of cuts. Indeed, when the gradient polyhedral approximation (2.39)–(2.40) is

used in (3.5), problem (3.9) takes the form

max w
∗(`−1)
2j−1 πm+1 + w

∗(`−1)
2j πm+2

s. t.
m∑
i=0

α
(p)
i πi ≥ πm+1

m∑
i=0

β
(p)
i πi ≥ πm+2

m∑
i=0

πi ≤ 1

πi ≥ 0, i = 0, . . . ,m+ 2

(3.18)

which is the dual of the problem obtained from (3.7) by using the gradient approxi-

mation (2.39)–(2.40)

min u3

s. t. u3 ≥ α
(p)
i u1 + β

(p)
i u2, i = 0, . . . ,m,

u1 ≥ w
∗(`−1)
2j−1 ,

u2 ≥ w
∗(`−1)
2j ,

u1, u2, u3 ≥ 0.

(3.19)

Clearly, an optimal solution of problem (3.18) is given by

π∗m+1 = α
(p)
i∗ , π∗m+2 = β

(p)
i∗ , and π∗i =

 1, i = i∗,

0, i ∈ {0, . . . ,m}\i∗,
(3.20a)

69

where the index i∗ is such that

i∗ ∈ arg max
i=0,...,m

{
α

(p)
i w

∗(`−1)
2j−1 + β

(p)
i w

∗(`−1)
2j

}
. (3.20b)

In other words, the cut-generating problem (3.15) reduces to selection of a maximum

element in a set of m + 1 numbers, and therefore can be solved in linear O(m)

time. However, as we show next, the special structure contained in the gradient

approximation (2.39)–(2.40) and, correspondingly, in problem (3.15), allows for a

more efficient solution.

Proposition 8. Consider the pOCP problem (3.1) with K conic constraints of dimen-

sion Jk+1 and order pk ∈ (1,∞). Assume that each conic constraint is approximated

using the “tower-of-variables” approach and the gradient polyhedral approximation

(2.39)–(2.40) with parameter of approximation m. Then, during an iteration of the

decomposition scheme described above, new cuts can be generated in O
(∑

k Jk logm
)

time. If the “uniform” polyhedral approximation (2.41) is used, the cuts can be gen-

erated in a constant O
(∑

k Jk
)

time.

Proof. To prove the first statement of the proposition, we consider the sequence

γi = ξ∗1 α
(p)
i + ξ∗2 β

(p)
i , i = 0, . . . ,m (3.21)

for some non-negative ξ∗1 , ξ
∗
2 ≥ 0 such that ξ∗1 + ξ∗2 > 0 (the case when both ξ∗1 =

ξ∗2 = 0 is trivial). Let us call a sequence {cn} strictly quasiconcave if it is generated

by a continuous strictly quasiconcave function f(·): cn = f(tn), where tn−1 < tn.

An important characteristic of a strictly quasiconcave function is that every local

maximum is also its global maximum (see, e.g., Bazaraa et al., 2006), hence every

local maximum of a strictly quasiconcave sequence will be its global maximum as

70

well. It is easy to see that {γi} is a strictly quasiconcave sequence. Indeed, using

the definition (2.40) of the coefficients α
(p)
i , β

(p)
i as functions of the polar angle θ, the

sequence γi (i = 0, . . . ,m) can be viewed as being generated by the function

f(θ) = ξ∗1α
(p)(θ) + ξ∗2β

(p)(θ)

= ξ∗1 (cosp θ + sinp θ)
1−p
p cosp−1 θ + ξ∗2 (cosp θ + sinp θ)

1−p
p sinp−1 θ (3.22)

evaluated at discrete points 0 ≡ θ0 < θ1 < . . . < θm ≡ π
2
. The derivative of the

function f(θ) is

f ′(θ) = (p− 1)
sinp−1 θ cosp−1 θ

(cosp θ + sinp θ)2−1/p

(
−ξ∗1
cos θ

+
ξ∗2

sin θ

)
, p > 1. (3.23)

Clearly, function f(θ) is strictly quasiconcave on [0, π/2] since it is continuous and

is either monotonic on [0, π/2] (when one of the parameters ξ∗1 , ξ
∗
2 is zero) or has a

unique global maximum at

θ∗ = arctan(ξ∗2/ξ
∗
1). (3.24)

Thus, the function f(θ) has a unique global maximum (e.g, either θ∗, or 0, or π
2
),

which can be found by solving the equation f ′(θ) = 0 using binary search.

Similarly, although the maximum of the corresponding sequence f(θi) = γi (i =

0, . . . ,m) may be not unique (i.e., two adjacent elements may have the same maximal

value), the largest element(s) in the sequence can be determined using a binary search

that requires O(log2m) time. Consequently, generation of new cuts for the polyhedral

approximation (2.39)–(2.40) of a p-order conic constraint in RJk+1 requires solving of

Jk − 1 instances of problem (3.18), which means that in the case of K pk-order conic

constraints, cut generation for the gradient polyhedral approximation (2.39)–(2.40)

can be done in O
(∑

k Jk logm
)

time.

71

The computational time needed to determine the maximum element(s) of se-

quence (3.21) can be improved drastically if the points θi(i = 0, . . . ,m) are uni-

formly spaced on [0, π/2]: θi = πi
m

. Then, the index i∗ of the maximum element(s) of

γi(i = 0, . . . ,m) is determined from

i∗ ∈ arg max
{
ξ∗1α

(p)
t + ξ∗2β

(p)
t , ξ∗1α

(p)
t+1 + ξ∗2β

(p)
t+1,

}
, where t =

⌊
2m

π
arctan

ξ∗2
ξ∗1

⌋
(3.25)

Indeed, given that the constants γi represent the values of function f(θ) at equally

spaced points θi = πi
2m

, the integer t in (3.25) identifies the segment [θt, θt+1] =[
πt
2m
, π(t+1)

2m

]
that contains the extremum θ∗ (3.24) of f(θ). Hence, the largest element

of sequence γi is selected among the values of function f(θ) evaluated at the endpoints

of the segment [θt, θt+1]. Note that (3.21) can have at most two optimal solutions,

which corresponds to the case of g(θt) = g(θt+1).

Thus, a solution of (3.18) can be obtained in a constant O(1) time that does not

depend on the number of facets m in the uniform gradient polyhedral approximation

(2.39)–(2.41). Given that each conic constraint of order pk and dimensionality Jk + 1

requires Jk−1 such operations, generation of new cuts in problem (3.14) that employs

a uniform gradient polyhedral approximation (2.39)–(2.41) requires O
(∑

k Jk
)

time.

The significance of Proposition 8 lies in the fact that increasing m, and, corre-

spondingly, the quality of the uniform gradient approximation (2.39)–(2.41) , comes

at no cost with regard to the time needed to generate new cuts during an iteration

of the decomposition scheme described above. Of course, this does not mean that

the number of iterations needed to obtain an optimal solution of (3.14) (if it exists)

remains constant with respect to m.

72

Observe also that when the polyhedral approximation (2.39)–(2.40) is employed,

the specific form (3.20) of optimal solutions of the subproblem (3.15) allows one to

write the cuts (3.14c) in the master problem (3.14) in the form

w
(`)
j ≥ α

(p)
i w

(`−1)
2j−1 + β

(p)
i w

(`−1)
2j , i ∈ C(`)

j , j = 1, . . . , 2d−`, ` = 1, . . . , d. (3.26)

Here C(`)
j are subsets of {0, . . . ,m} and contain the indices i of cuts that have been

generated for the variable w
(`)
j . Knowing the exact values of the coefficients in cuts

(3.14c) without having to solve problem (3.15), one can potentially improve the nu-

merical accuracy of the cutting-plane scheme.

73

CHAPTER 4

CASE STUDIES: PORTFOLIO OPTIMIZATION WITH P -ORDER
CONIC CONSTRAINTS

4.1 Introduction

In this chapter we discuss the computational efficiency of the developed al-

gorithmic approaches to solving p-order conic programming (pOCP) problems. In

particular, we will be comparing the cutting plane algorithm for polyhedral approxi-

mations of pOCP problems developed in Chapter 3 with the method of reformulating

pOCP problems as second-order conic programming (SOCP) in the case of rational

values of the parameter p presented in Chapter 2. In addition, we will consider the

computational efficiency of the “full” LP implementations of the polyhedral approx-

imations of pOCP problems. The computational comparisons will be conducted on

an example of a portfolio optimization problem with p-order conic constraints.

Later, we will consider methodological aspects of the coherent and deviation

measures that involve higher moments of loss distributions, such as HMCR, SMCR,

HMD, and SMD measures (see Chapter 1). We will be looking at how the risk mea-

sures based on higher moments perform when compared to each other and to more

conventional risk measures such as the CVaR, and the Mean-Variance models. This

comparison will be done at a later date after updating the current data set to incorpo-

rate the most recent market volatility that was experienced with the current market

melt down. In addition, we will consider performance of cardinality-constrained port-

folios based on the higher moment risk measures.

74

4.2 Computational Performance of p-Order
Conic Programming Algorithms

In this section we conduct numerical comparisons of the approaches discussed

in Chapters 2 and 3 to solving problems of type (2.1) on an example of a portfolio

optimization problem with p-order conic constraint.

Tracing back to Markowitz (1952, 1959), portfolio optimization problems are

typically stated in the form where portfolio (investment) risk is minimized while re-

quiring a certain level of expected return on the investment, or, alternatively, the

portfolio’s expected return is maximized subject to a constraint on portfolio risk. Yet

another formulation is employed in the literature where a “composite” objective rep-

resenting a linear combination of risk and reward (e.g., expected return) is optimized

(the so-called mean-risk models, see, e.g., Ogryczak and Ruszczyński, 1999, 2001,

2002). The particular formulation is usually chosen depending on the preferences of

the decision-maker (investor) and the application at hand; Krokhmal et al. (2002a)

discuss the conditions at which all three formulations are equivalent.

The portfolio selection models that will be employed in the case study have the

general form:

min
x

R(−r>x) (4.1a)

s. t. e>x = 1, (4.1b)

Er>x ≥ r0, (4.1c)

x ≥ 0, (4.1d)

where x = (x1, . . . , xn)> is the vector of portfolio weights, r = (r1, . . . , rn)> is the

random vector of return on portfolio instruments, and e = (1, . . . , 1)>. The risk mea-

sure R(X) in (4.1a) can be taken to be HMCR, SMCR, etc., of the negative portfolio

75

return, −r>x. Constraint (4.1b) is the budget constraint while (4.1d) together with

(4.1b) ensure that all of the available funds are invested. Constraint (4.1c) imposes

a minimal required level r0 of expected return of the resulting portfolio.

For the sake of simplicity and in order to conduct a useful comparison of the

effects of the risk measure selection in (4.1a) we purposely do not include any ad-

ditional trading or institutional constraints such as transaction cost, liquidity con-

straints, etc.. In keeping with what is traditionally done in portfolio optimization

problems, the distribution of random returns ri of asset i is modeled sing a set of J

discrete equiprobable scenarios {ri1, · · · , riJ}.

With the risk measure R(X) replaced with the HMCRp,α(X) measure, the port-

folio selection problem for our case study is transformed into a linear programming

problem with a single p-order conic constraint (4.2e)

min η +
J−

1
p

1− α
t (4.2a)

s. t.
n∑
i=1

xi = 1, (4.2b)

1

J

J∑
j=1

n∑
i=1

rijxi ≥ r0, (4.2c)

wj ≥ −
n∑
i=1

rijxi − η, j = 1, · · · , J, (4.2d)

t ≥ (wp1 + · · ·+ wpJ)1/p, (4.2e)

xi ≥ 0 i = 1, · · · , n, (4.2f)

wj ≥ 0 j = 1, · · · , J (4.2g)

Problem (4.2) will be solved through its various polyhedral approximations (e.g.,

“lifted” Ben-Tal and Nemerovki’s approximation, “gradient” approximation) as well

as the “exact” SOCP reformulation in the case of rational p.

76

Remark 2. In the context of benchmarking the LP approximations of the pOCP

portfolio optimization problem (4.2) against its SOCP-based implementation in the

case of a rational p, the adopted formulation of the portfolio optimization problem

(4.1), (4.2) has several notable characteristics. Firstly, the conic constraint (4.2e) is

feasible as long as constraints (4.2b)–(4.2d) are feasible; in other words, feasibility of

problem (4.2) is determined by the budget constraint and constraint on the expected

return. Secondly, the rather simple structure of linear constraints (4.2b)–(4.2d) that

correspond to linear constraints Ax ≤ b of the general pOCP problem (2.1) allows

for placing more weight on the efficiency of handling of p-order constraints by a

particular computational scheme, rather than on solver’s efficiency in handling of

linear constraints Ax ≤ b, in the interpretation of the computational results that

follows next.

Remark 3. Note that with the addition of the constraint

η =
1

J

J∑
j=1

n∑
i=1

rijxi

we can use the construct of problem (4.2) to implement the SMCR risk measure. This

reduces the problem by one variable and as such its effects on the computation time

can be considered negligible. Therefore we proceed with the computational results for

the HMCR model as shown in (4.2).

4.2.1 Set of Instrument and Scenario Data

In order to take advantage of the construct of the HMCR risk measures, which

quantify risk in terms of higher tail moments of loss distribution, the portfolio op-

timization case studies were conducted using return data of the fifty S&P500 stocks

with the so-called “heavy tails”. In order to look at computation time comparisons,

77

for scenario generations we used 10-day historical returns over J = 28, · · · , 213 overlap-

ping periods, calculated using daily closing prices from October 30, 1998 to January

18, 2006. The particular sizes of the scenario set has been chosen to accommodate

the linear approximation techniques in problem (3.6), and the sizes of the considered

scenario sets were limited only by availability of the data. From this set of S&P500

stocks, we selected n = 50 instruments by picking those with the highest value of

kurtosis of biweekly returns, calculated over a specific period.

4.3 Computation Time Comparisons

In this section we present the computational efficiency, as measured by the aver-

age running time,in seconds, of the developed algorithms for solving pOCP problems

on the example of the portfolio optimization problem with p-order conic constraint

(4.2). We compare the solution time of the cutting plane algorithm (CPA), the second

order conic programming (SOCP) reformulation, the full algorithm implementation

(FA) of the “tower of variables” construction, the Ben-Tal–Nemirovski (BN) lifted

polyhedral model for p = 2 and the gradient approximation (GA) with p = 2. For

CPA, SOCP, and GA formulations, the value of the parameter p in (4.2) varied as

p = 2, 3, 4, 5; the implementation based on Ben-Tal and Nemirovski’s (BN) approxi-

mation applies only to p = 2. The confidence level α and minimum required expected

return have been fixed at α = 0.9 and r0 = 0.5% for all algorithms.

A total of 76 instances of problem (4.2) corresponding to 76 bi-weekly rebal-

ancing periods from December, 2002 to January 2006 have been solved for each im-

plementation and each scenario size.

The computer that was used to perform the scenario runs was a Dell XPS

with a Dual Core Pentium processor and 2GB of RAM. The machine was running

78

Windows XP with CPLEX 10.0.0. The ILOG Concert Technology implementation

of the CPA algorithm utilized the CPLEX linear programming solver, and the SOCP

implementation used CPLEX Barrier solver. The BN and GA implementations were

done using AMPL. The accuracy of the polyhedral approximations were chosen at

ε < 10−5 that is consistent with the standard CPLEX computation accuracy.

Both the GA and CPA implementations are solving the following linear approx-

imation of the pOCP portfolio optimization problem (4.2) based on the “uniform”

gradient approximation developed in Chapter 2:

min η +
1

1− α
t
p
√
J

(4.3a)

s. t. (4.2b), (4.2c) and (4.2d) (4.3b)

w
(`)
j ≥ α

(p)
i w

(`−1)
2j−1 + β

(p)
i w

(`−1)
2j i = 0, . . . ,m,

` = 0, . . . , d, j = 1, . . . , 2d−` (4.3c)

w
(d)
1 = t (4.3d)

w
(0)
j = wj, j = 1, · · · , J (4.3e)

xi ≥ 0 i = 1, · · · , n, (4.3f)

w
(`)
j ≥ 0 ` = 0, · · · , d, j = 1, · · · , 2d−`. (4.3g)

where the coefficients α
(p)
i , β

(p)
i have the form (2.40).

For our computational comparisons, we use this idea to solve the linear pro-

gramming problem as either a “full” linear programming problem that contains all of

the constraints or through the cutting plane algorithm which generates the necessary

constraints for the optimization problem to reach optimality.

Here we would also like to discuss generation of the starting solution to the

master problem (3.14) that is solved as a part of the cutting plane implementation of

79

the LP (4.3): note that this problem is unbounded when constraints (3.14c) that in

the case of uniform gradient approximation have the form

w
(`)
j ≥ α

(p)
i w

(`−1)
2j−1 + β

(p)
i w

(`−1)
2j

are absent (i.e., when C(`)j = ∅ for all variables w
(`)
j). An initial feasible solution to

the master problem of (4.3) can be constructed as follows. First, a vector x∗ that

satisfies (4.2b) and (4.2d) is selected (this can be done by distributing portfolio weights

equally among all instruments whose expected return exceeds r0), and then value η∗

is chosen in such way that there is at least one w
∗(0)
j = max

{
0,
∑

j rijx
∗
i −η∗

}
> 0 for

both j ≤ J/2 and j > J/2. This last condition ensures that, when cuts for variables

w
(`)
j are generated by solving (3.18), the coefficients α

(p)
i and β

(p)
i in the cut for the

“top” variable w
(d)
1 are both non-zero, which, in turn, guarantees that the resulting

master problem will not be unbounded.

Alternatively, one can start with a master problem in which the set of cuts C(`)
j

for each variable w
(`)
j is non-empty: e.g., C(`)

j =
{
bm/2c

}
. Evidently, in this case the

master problem will be bounded and feasible as long as constraints (4.3b) and (4.3c)

are feasible. The downside of this method is that one starts with a larger problem

as compared to the case described above; on the other hand, it does not require the

introduction of new columns into problem (4.3) during iterations. In the context of

the present case study, the last method turned out to be more efficient by requiring

fewer iterations and reaching an optimal solution of (4.3) faster.

4.3.1 Computational Results for p = 2

In this section we compared the numerical efficiency of the approximate and

exact methods of solving the portfolio optimization problem (4.2) with second-order

80

conic constraint (p = 2). Precisely, we compared the full LP polyhedral approxima-

tions of (4.2) based on the Ben-Tal and Nemirovski’s lifted approximation (BN), the

uniform gradient approximation (GA), the cutting-plane algorithm implementation

(CPA) of the GA linear programming problem, and the native SOCP implementation

of (4.2) with p = 2.

As expected, the worst computational performance was demonstrated by the

gradient-based GA polyhedral approximation implemented as a “full” LP problem.

The more efficient BN implementation that relies on the lifted Ben-Tal and Ne-

mirovski’s approximation clearly outperformed the simpler GA implementation.

The results of the computational studies are represented in Figure 4.1 and in

Table 4.1, which report average running times in seconds for the four algorithms (BN,

GA, CPA, SOCP) applied to problem (4.2) with p = 2.

One of the unexpected results observed during this computational comparison

is that the SOCP implementation was outperformed by the polyhedral approxima-

tion that employs the cutting plane (CPA) algorithm. This can be attributed to

some inefficiencies in the current CPLEX barrier solver. We will further check this

particular result by running the CPA implementation against the “native” SOCP im-

plementation using MOSEK’s more efficient primal-dual interior point SOCP solver

(see Figure 4.2).

We would also like to mention that the solutions to the portfolio optimization

problem (4.2) obtained by different algorithms were consistent up to the specified

approximation accuracy.

81

Figure 4.1: Average runing times (in seconds) for the CPA,
BN and GA approximations and the SOCP reformulation
for p = 2.

Figure 4.2: Average running times (in seconds) of the cut-
ting plane (CPA) algorithm and the SOCP reformulation
using the MOSEK solver.

82

J BN CPA GA

256 0.438 0.040 4.133

512 1.472 0.156 13.332

1024 5.347 0.671 74.092

2048 15.487 2.231 103.860

4096 47.067 4.953 510.181

8192 59.892 5.469 910.035

Table 4.1: Average running times (in seconds) for the BN,
GA, and CPA approximations of problem (4.2) with p = 2,
α = 0.9, and r0 = 0.05%.

4.3.2 Computational Results for p 6= 2

The previous subsection discussed numerical comparisons for the case p = 2.

Our main interest, however, is in the case p 6= 2. Given the results of the p = 2

comparisons, it is evident that the most efficient methods (at least in application

to the portfolio optimization problem (4.2)) are represented by the cutting plane

algorithm (CPA) applied to the uniform polyhedral approximation of (4.2), and its

SOCP reformulation. Thus, in this section we discuss the computational performance

of these two methods in application to the pOCP problem (4.2) with the values of

parameter p varied as p = 3, 4, and 5. The SOCP reformulation of the pOCP problem

(4.2) was based on the pOCP→SOCP transformation for rational values of p that has

been presented in Chapter 2. Other than this, the setup of the numerical experiments

has remained the same as in the previous subsection.

The average running times of the CPA and SOCP implementations on 76 in-

stances of the portfolio optimization problem (4.2) are reported in Figures 4.3 – 4.5

83

Figure 4.3: Average running times (in seconds) of the cut-
ting plane (CPA) algorithm and the SOCP reformulation
for p = 3.

and Table 4.2.

The main conclusion of this computational study is that the developed cutting

plane algorithm (CPA) as applied to the uniform gradient approximation of pOCP

problem consistently outperforms the corresponding interior-point algorithm based

on “exact” SOCP reformulation of the problem.

We believe that the following factors can be contributing to the observed dif-

ferences in efficiencies of the polyhedral approximation/cutting plane procedure and

the SOCP-based solution approach. First, the specific structure of the uniform gradi-

ent approximations of p-cones developed in Chapter 2 allows for generating the cuts

in constant time that does not depend on the accuracy of approximation, i.e. the

number of facets that are used to approximate each 3D p-cone (see Proposition 8).

This, coupled with the “warm-start” capabilities of the simplex LP solver that

84

p=3 p=4 p=5

J CPA SOCP CPA SOCP CPA SOCP

256 0.034 0.67 0.034 0.636 0.033 0.726

512 0.109 3.485 0.103 3.416 0.103 3.68

1024 0.407 6.979 0.388 7.409 0.375 5.619

2048 1.712 9.45 1.645 9.153 1.582 14.85

4096 4.026 16.655 3.78 16.886 3.593 29.592

8192 5.546 33.692 5.048 40 4.837 77.637

Table 4.2: Average running times (in seconds) for the CPA
approximation and SOCP reformulation of problem (4.2)
with p = 3, 4, 5, and α = 0.9, r0 = 0.05%.

Figure 4.4: Average running times (in seconds) of the cut-
ting plane (CPA) algorithm and the SOCP reformulation
for p = 4.

85

Figure 4.5: Average running times (in seconds) of the cut-
ting plane (CPA) algorithm and the SOCP reformulation
for p = 5.

Figure 4.6: Average running times (in seconds) of the cut-
ting plane algorithm for p = 2, 3, 4 and 5.

86

are utilized during the iterative cutting plane procedure, can be considered as major

factors in the superior computational performance of the CPA algorithm.

The reasons for relatively poor performance of the SOCP-based algorithms may

include the fact that, in general, most current SOCP solvers do not perform as well

on instances of SOCP problems with a large number of quadratic conic constrains, as

compared to problems with a few (but possibly high-dimensional) cones. Secondly,

the inferior computational results may be due to possible performance limitations of

the CPLEX Barrier solver.

In order to verify the last assumption regarding the computational efficiency of

the CPLEX barrier solver we also used the MOSEK solver, with an interior-point al-

gorithm, to determine the solution time of the SOCP problem. We saw no marked im-

provement in solution time over the cutting plane algorhtim when using the MOSEK

solver in conjunction with the SOCP reformulation (see Figure 4.2).

Finally, we discuss the performance of the cutting plane algorithm at various

p = 2, 3, 4 and 5 (see Figure 4.6). Namely, we see that for larger values of p, the

computational time of the cutting plane algorithm generally decreases. This can be

attributed to the fact that as p increases the pcone approaches the polyhedral p =∞

cone, which can be natively handled by linear constraints.

4.4 Conclusions

In this chapter we conducted numerical experiments so as to determine the

computational efficiency of the developed methods for solving pOCP problem on

the example of a portfolio optimization problem with p-order constraints of small to

medium dimensionality. The main conclusion of this case study is that the proposed

approach based on polyhedral approximations of p-cones and subsequent solving of the

87

resulting LP problem using a cutting plane algorithm turned out to be quite efficient.

Namely, on the type and dimensionality of problems considered in this case study,

the cutting plane algorithm that is based on gradient polyhedral approximations

outperformed the “exact” SOCP implementations of the original pOCP problems.

This can be attributed to two factors: first, the efficiency of cut generation procedure

that was employed in the cutting plane algorithm (recall that in Chapter 3 we showed

that for uniform gradient approximations the cuts can be generated in a constant time

that does not depend on the accuracy of approximation). The second key factor that

allowed the approximate cutting-plane implementation to outperform the interior-

point SOCP solver seems to be the “warm-start” capability of linear programming

solvers.

In addition, we note that the solution times for cutting plane algorithm seem

to improve as the value of the parameter p increases. This can be explained by the

fact that for large p, the corresponding p-cones become very close to the p =∞ cone,

which can be handled using linear programming techniques “natively”.

88

CHAPTER 5

MIXED INTEGER P -ORDER CONIC PROGRAMMING

5.1 Introduction

Continuing our work within the general theme of p-order conic programming

problems and the corresponding stochastic programming models, we now extend the

results obtained in the context of polyhedral approximations for p-order conic pro-

gramming problems (Chapters 2 and 3) to mixed integer pOCP problems, i.e. linear

problems with p-order conic constraints where some of the variables are restricted to

be integer-valued. At the final stages of our research endeavor into risk optimization

with p-order conic constraints, we will conduct a case study intended to elucidate the

methodological advantages (and disadvantages) of using the various risk measures

that involve higher moments of loss distributions and can be incorporated in stochas-

tic optimization models using p-cone constraints. To estimate the practical “merits”

of decision models based on p-order conic programming, we will conduct a simulated

“out-of-sample” portfolio optimization case study using real-life financial data. Both

continuous and discrete models will be considered.

5.2 Mixed Integer p-Order Conic Programming
Problems

Discrete decision making models, where decision vector(s) are required to be

integer-valued are among some of the most difficult yet important problems in op-

erations research and management science. In this context, we are considering the

mixed-integer version of the general pOCP problem (2.1), where some decision vari-

ables may be restricted to integer-only values. By denoting the integer-valued part

89

of the decision vector as y ∈ Zm, and the real-valued components of the decision

vector as x ∈ Rn, we formulate the general mixed integer p-order conic programming

problem (MIpOCP) as follows:

max c>x + d>y (5.1a)

s. t. Dx + Ey ≤ f (5.1b)

‖Ax + By + e‖p ≤ a>x + b>y + e0 (5.1c)

x ∈ Rn (5.1d)

y ∈ Zm (5.1e)

where, for simplicity, it can be assumed that only a single p-order conic constraint

(5.1c) is present. Our goal is to develop an efficient exact (e.g., branch-and-bound)

solution algorithm for the MIpOCP problem (5.1). The proposed approach to the

MIpOCP problem follows the work of Vielma, Ahmed, and Nemhauser (2008) who

developed a branch-and-bound algorithm for solving mixed integer SOCP problems.

To address the MIpOCP problem (5.1), we assume that the cone order p is a

rational number: p ∈ Q, (i.e. p = r
s
, r, s ∈ Z+). With this assumption in place, we can

reformulate the p-cone constraint(5.1c) as a set of 3 dimensional second order conic

constraints and complemented linear constraints using the techniques developed in

Chapter 2. A key property of this transformation that was established in Proposition

2.2 is that the number of second order conic constraints necessary to represent a p-

cone of rational order with dimension J + 1 is equal to O(J log r). In such a way, the

MIpOCP problem (5.1) can be reformulated as a mixed integer second-order conic

90

programming problem (MISOCP) as follows:

max c>x + d>y (5.2a)

s. t. Dx + Ey ≤ f (5.2b)

Qx + Ty + Su ≤ 0 (5.2c)∥∥A(i)x + B(i)y + C(i)u + e(i)
∥∥

2
≤ a(i)>x + b(i)>y + h(i)>u + e

(i)
0 , i ∈ Ir,s

(5.2d)

x ∈ Rn, y ∈ Zm, u ∈ Rν (5.2e)

where |Ir,s| = O(J log r). Next, a polyhedral approximation of (5.2) is formed by

replacing each quadratic cone by its “lifted” polyhedral approximation due to Ben-

Tal and Nemirovski (2001b) (MILPPBN) or its gradient approximation (MILPPGA),

resulting in the following mixed integer linear programming problem:

max c>x + d>y (5.3a)

s. t. Dx + Ey ≤ f (5.3b)

Qx + Ty + Su ≤ 0 (5.3c)

H(3)
m

A(i)x + B(i)y + C(i)u + e(i)

a(i)>x + b(i)>y + h(i)>u + e
(i)
0

v(i)

 ≥ 0, i ∈ Ir,s (5.3d)

x ∈ Rn, y ∈ Zm, u ∈ Rν , v ∈ Rκm (5.3e)

Following Vielma, Ahmed, and Nemhauser (2008), the branch-and-bound al-

gorithm for problem (5.2) solves a continuous relaxation of the mixed integer linear

program (5.3) at each node of the branch-and-bound tree. If an integer-valued solu-

tion is found, its feasibility to (5.2) is tested by solving the corresponding continuous

91

relaxation of (5.2) at this node. If the current solution is, despite integrality, infeasi-

ble to the continuous relaxation of (5.2), further branching is performed on this node.

This will be looked at further in the Case Studies chapter and the results will be

compared with that of the MISOCP reformulation. We will also look at the portfolio

performance as compared to the traditional Mean-Variance and CVaR risk measures.

We will now look at the various ways in which we can create the continuous linear re-

laxation of our MIpOCP problem by using one of the two polyhedral approximations

that we are familiar with from Chapter 2.

5.3 Polyhedral Approximations of the MIpOCP
Problem

As stated above in problem (5.2), the MIpOCP problem can be reformulated

as a MISOCP problem with O(J log r) second order cones. Since the Branch and

Bound algorithm that will be employed requires a continuous relaxation solution at

each node of the algorithm, we can either employ the Ben-Tal and Nemerovski ap-

proximation of the p-order conic constraint or the gradient approximation in order to

reduce the MIpOCP problem to a linear programming problem. As was stated be-

fore, the algorithm that will be used to solve our MIpOCP problems will be a mixture

of the Branch-and-Bound Algorithm developed by Vielma, Ahmed, and Nemhauser

(2008) in conjunction with the polyhedral approximation developed by Ben-Tal and

Nemirovski (2001b).

5.3.1 Ben-Tal Nemerovski’s Lifted Polyhedral Approx-
imation

After the reformulation of the MIpOCP problem as a MISOCP problem, one

possible approximation that we can use is its ”lifted” polyhedral approximation. This

92

is done by replacing each of the corresponding second order cones in the MISOCP with

its approximation developed by Ben-Tal and Nemirovski (2001b) (MILPPBN). This

approximation is particularly effective because it allows for a compact and elegant

approximation to the p-cone problem.

5.3.2 Gradient Approximation

As before, in order to implement the branch-and-bound algorithm we must

be able to obtain a continuous relaxation solution at each node of the algorithm.

In order to create the linear programming relaxation of the p-order conic program-

ming problem, we employ our gradient approximation as it was defined in Chapter 3

(MILPPGA). Since the relaxation is used to help with the pruning process for the

branch-and-bound algorithm, a tight approximation is not needed.

5.4 Branch-and-Bound Algorithm for MIpOCP

As was stated before, the algorithm that will be used to solve our MIpOCP

problems will be an adaptation of the branch-and-bound algorithm developed by

Vielma, Ahmed, and Nemhauser (2008) in conjunction with our uniform gradient

polyhedral approximation. This is the natural choice since we are interested in finding

solutions for cones of ration order.

5.4.1 Pseudo Code for Branch-and-Bound Algorithm
For MIpOCP problem

The branch-and-bound algorithm that was developed by Vielma, Ahmed, and

Nemhauser (2008) was designed for the case p = 2. It is this algorithm that we have

adapted to the case of rational p. In order to take advantage of the branch-and-bound

93

algorithm for rational p, we use our uniform gradient polyhedral approximation so

that we can construct the MILPP for any cone of rational order. Thus, we use the

MILPPGA in our branch-and-bound algorithm.

1. Set global upper bound UB:= +∞

2. Set nodes l0i := −∞, u0
i := +∞, ∀i ∈ {1, · · · , n}

3. Set LB0 = −∞

4. Set node list N := {(l0, u0,LB0)}

5. while N 6= ∅ do

6. Select and remove node (lk, uk,LBk) ∈ N

7. Initialize and solve the master problem MILPPGA (lk, uk):

max c>x + d>y

s. t. Dx + Ey ≤ f

Qx + Ty + Su ≤ 0

H(3)
m

A(i)x + B(i)y + C(i)u + e(i)

a(i)>x + b(i)>y + h(i)>u + e
(i)
0

v(i)

 ≥ 0, i ∈ Ir,s

x ∈ Rn, y ∈ Zm, u ∈ Rν , v ∈ Rκm

8. if MILPPGA (lk, uk) is feasible and OBJMISOCP < UB then

9. Let (x̂k, ŷk, ŵk) be the optimal solution of MILPPGA (lk, uk);

10. if ŷk ∈ Z then

94

11. Solve MISOCP(x∗, y∗, w∗)

12. if MISOCP(x∗, y∗, w∗) is feasible and OBJMISOCP < UB then

13. UB := OBJMISOCP

14. end

15. if lk 6= uk and OBJMISOCP < UB then

16. Solve MISOCP(lk, uk)

17. if MISOCP(lk, uk) is feasible and OBJMISOCP < UB then

18. Let (x̄k, ȳk, w̄k) be the optimal solution of MISOCP(lk, uk)

19. if ȳk ∈ Z then

20. UB := OBJMISOCP

21. else

22. Pick i0 in {i ∈ {1, · · · , n}: x̄ki /∈ Z}

23. Let li = lki , ui = uki ∀i ∈ {1, · · · , n}\{i0}

24. Let ui0 = bx̄ki0c, li0 = bx̄ki0c+ 1

25. N := N ∪ {(lk, u,OBJMISOCP), (l, uk,OBJMISOCP)}

26. end

27. end

28. end

95

29. else

30. Pick i0 in {i ∈ {1, · · · , n}: x̂ki /∈ Z}

31. Let li = lki , ui = uki ∀i ∈ {1, · · · , n}\{i0}

32. Let ui0 = bx̂ki0c, li0 = bx̂ki0c+ 1

33. N := N ∪ {(lk, u,OBJMILPPGA), (l, uk,OBJMILPPGA)}

34. end

35. end

36. Remove every node (lk, uk,UBk) such that UB ≤ LBk

37. end

In order for the branch-and-bound algorithm to be effective, it must be shown

that it will terminate in a finite number of steps and that it will terminate with the

optimal solution to the mixed integer nonlinear programming problem. Vielma et al.

(2008), showed that the following proposition holds:

Proposition 9. For any polyhedral relaxation (MILPP) of the nonlinear program-

ming problem using a bounded polyhedron H
(3)
m , the lifted linear programming branch-

and-bound algorithm above terminates with lower bound equal to the optimal objective

value of the mixed integer nonlinear programming problem.

Proof. The arguments of Vielma et al. (2008) carry over to our case practically with-

out modifications. (See Vielma, Ahmed, and Nemhauser (2008), page 441)

96

5.5 Case Studies: Portfolio Optimization With
Integrality And p-order Constrains

In this section we discuss the computational efficiency of the developed branch-

and-bound algorithm for solving the p-order conic programming problem with inte-

grality constraints (MIpOCP). We will be comparing the MISOCP (5.2) reformulation

of the problem with the branch-and-bound algorithm that was developed in Chapter

5. The developed branch-and-bound algorithm will be tested for efficiency with re-

spect to solution time based on the size of the scenario set. Also of interest are the

optimal portfolios that the algorithm will yield.

As before, we will later consider methodological aspects of the coherent and

deviation measures that involve higher moments of loss distributions, such as HMCR,

SMCR, HMD and SMD measures (see Chapter 1). We will be looking at how the risk

measures based on higher moments of tail loss perform when compared to each other

and to more conventional risk measures such as the CVaR, and the Mean-Variance

models.

5.6 Computational Performance of Mixed In-
teger p-Order Conic Programming Branch-
and-Bound Algorithms

In this section we conduct numerical comparisons of the approaches discussed

above to solving problems of type (5.1). An application of the branch-and-bound

method for MIpOCP (5.1) will be demonstrated on a portfolio optimization problem

with cardinality constraints. Cardinality constrained portfolio allocation problems

typically arise in situations when no more than k assets are allowed to be in the

portfolio, or, equivalently, each asset is not allowed to exceed a certain fraction of the

97

portfolio value. In the case when no more than k assets are allowed in the portfolio, the

cardinality-constrained portfolio optimization problem corresponding to the problem

(4.1) considered in Chapter 4 can be written by introducing new binary decision

variables z:

min
x, z

R(−r>x) (5.4a)

s. t. e>x = 1 (5.4b)

Er>x ≥ r0 (5.4c)

e>z ≤ k (5.4d)

0 ≤ x ≤ z (5.4e)

z ∈ {0, 1}n (5.4f)

where x = (x1, . . . , xn)> is the vector of portfolio weights, r = (r1, . . . , rn)>

is the random vector of return on portfolio instruments, and e = (1, . . . , 1)>. The

risk measure R(X) in (5.4a) can be taken to be HMCR, SMCR, etc., of the nega-

tive portfolio return, −r>x. Constraint (5.4b) is the budget constraint while (5.4d)

together with (5.4b) ensure that all of the available funds are invested. Constraint

(5.4c) imposes a minimal required level r0 of expected return of the resulting portfo-

lio. Obviously, the meaning of variables z is zi = 1 if asset i is present in the portfolio,

and zi = 0 otherwise.

With the risk measure R(X) replaced with the HMCRp,α(X) measure, the

portfolio selection problem for our case study is transformed into a mixed integer

98

linear programming problem with a single p-order conic constraint (5.5e)

min η +
J−

1
p

1− α
t (5.5a)

s. t.
n∑
i=1

xi = 1, (5.5b)

1

J

J∑
j=1

n∑
i=1

rijxi ≥ r0, (5.5c)

wj ≥ −
n∑
i=1

rijxi − η, j = 1, · · · , J, (5.5d)

t ≥ (wp1 + · · ·+ wpJ)1/p, (5.5e)
n∑
i=1

zi ≤ k (5.5f)

xi ≥ 0 i = 1, · · · , n, (5.5g)

wj ≥ 0 j = 1, · · · , J (5.5h)

5.6.1 Set of Instrument and Scenario Data

In order to take advantage of the construct of the HMCR risk measures, which

quantify risk in terms of higher tail moments of loss distribution, the portfolio op-

timization case studies were conducted using return data of the fifty S&P500 stocks

with the so-called “heavy tails”. In order to look at computation time comparisons,

for scenario generations we used 10-day historical returns over J = 27, · · · , 210 overlap-

ping periods, calculated using daily closing prices from October 30, 1998 to January

18, 2006. The particular sizes of the scenario set has been chosen to accommodate

the linear approximation techniques in problem (5.1), and the sizes of the considered

scenario sets were limited only by availability of the data. From this set of S&P500

stocks, we selected n = 50 instruments by picking those with the highest value of

99

kurtosis of biweekly returns, calculated over a specific period.

5.7 Computational Time Comparisons

In this section we present the computational efficiency, as measured by the av-

erage running time, of the developed algorithm for solving MIpOCP problems on

the example of the portfolio optimization problem with integrality and p-order conic

constraint (5.5). We compare the solution time of the branch-and-bound algorithm

with MILPPGA as the continuous linear relaxation that is solved at each node of the

branch-and-bound tree and the second order conic programming (SOCP) reformula-

tion. For the branch-and-bound with gradient approximation and SOCP reformula-

tion, the value of the parameter p in (5.5) varied as p =, 3, 4, 5. The confidence level

α, number of instruments in the portfolio, k, and minimum required expected return

have been fixed at α = 0.9, k = 5 and r0 = 0.5% respectively for all algorithms.

A total of 10 instances of problem (5.5) corresponding to 10 bi-weekly rebal-

ancing periods from December, 2002 to January 2006 have been solved for each im-

plementation and each scenario size.

The computer that was used to perform the scenario runs was a Dell XPS

with a Dual Core Pentium processor and 2GB of RAM. The machine was running

Windows XP with CPLEX 10.0.0. The ILOG Concert Technology implementation

of the CPA algorithm utilized the CPLEX linear programming solver, and the SOCP

implementation used CPLEX Barrier solver. The BN and GA implementations were

done using AMPL. The accuracy of the polyhedral approximations were chosen at

ε < 10−5 that is consistent with the standard CPLEX computation accuracy.

100

p=3 p=4 p=5

J MIpOCP MISOCP MIpOCP MISOCP MIpOCP MISOCP

128 2.7 86.8 2.8 83.3 2.5 113.1

256 3.8 88.0 3.8 251.9 3.8 325.6

512 32.7 2114.5 22.3 1613.5 23.8 2483.0

1024 9.2 717.0 5.0 664.6 5.5 831.8

Table 5.1: Average running times (in seconds) for the
MIpOCP with Branch-and-Bound and SOCP reformulation
of problem (5.5) with p = 3, 4, 5, and α = 0.9,r0 = 0.05%.

5.7.1 Computational Results

The main conclusion of this computational study is that the developed branch-

and-bound algorithm as applied with the uniform gradient approximation of the

pOCP problem consistently outperforms the corresponding interior-point algorithm

based on the “exact” SOCP reformulation of the problem.

We believe that the following factors can be contributing to the observed differ-

ences in efficiencies of the polyhedral approximation/cutting plane procedure and the

SOCP-based solution approach. First, the reasons for relatively poor performance of

the SOCP-base algorithms may include the fact that, in general, most current SOCP

solvers do not perform as well on instances of SOCP problems with a large num-

ber of quadratic conic constrains, as compared to problems with a few (but possibly

high-dimensional) cones. Secondly, the inferior computational results may be due to

possible performance limitations of the CPLEX Barrier solver. Again, we plan to

verify these findings by implementing the SOCP reformulations of pOCP problems

using the more advanced MOSEK interior-point solver.

101

Figure 5.1: Average runtime (in seconds) of the MIpOCP
with Branch-and-Bound and MISOCP algorithm for p = 3.

Figure 5.2: Average runtime (in seconds) of the MIpOCP
with Branch-and-Bound and MISOCP algorithm for p = 4.

102

Figure 5.3: Average runtime (in seconds) of the MIpOCP
with Branch-and-Bound and MISOCP algorithm for p = 5.

5.8 Conclusions

In this chapter we developed the branch-and-bound algorithm for solving the

mixed integer p-order conic programming problem and conducted numerical experi-

ments so as to determine the computational efficiency of the developed methods for

solving MIpOCP problems on the example of a portfolio optimization problem with

integrality constraints and p-order constraints of small to medium dimensionality.

The main conclusion of this case study is that the proposed approach based on the

branch-and-bound algorithm turned out to be quite efficient.

In addition, we note that the difference in the solution times for the branch-

and-bound algorithm and the SOCP reformulation became larger as parameter J

increases. This would be expected given the size in the problem, however, the major

103

difference in time can be attributed to the handling of SOCP problems that contain

many second order cones of low dimensionality as opposed to one second order cone

of a high dimension.

Finally, we address the spike in the numerical data which we attribute to the

use of real life data. It is not guaranteed that the solution time will always increase

as the scenario size increases. Some problems are inherently more difficult to solve.

This spike in the numerical data was probably due to the problem having a hard time

meeting the requirement of having 5 instruments in the portfolio.

104

CHAPTER 6

CASE STUDY: A COMPARATIVE ANALYSIS OF PORTFOLIO
REBALANCING STRATEGIES BASED ON HIGHER MOMENT

COHERENT RISK MEASURES

6.1 Introduction

In this chapter we will look at the performance of the risk measures base on

higher moments of loss when compared to other industry standard risk measures

such as CVaR and Mean-Variance. We will see that in the case of the given portfolio

optimization model, the HMCR risk measures consistently outperforms the other risk

measures.

We revisit the portfolio optimization problems that were considered earlier in

Chapter 4 and Chapter 5 to determine the effectiveness of the HMCR risk measure.

First we will consider the general portfolio optimization problem:

min
x, z

R(−r>x) (6.1a)

s. t. e>x = 1 (6.1b)

Er>x ≥ r0 (6.1c)

e>z ≤ k (6.1d)

0 ≤ x ≤ z (6.1e)

z ∈ {0, 1}n (6.1f)

where x = (x1, . . . , xn)> is the vector of portfolio weights, r = (r1, . . . , rn)> is the

random vector of return on portfolio instruments, and e = (1, . . . , 1)>. The risk

measure R(X) in (5.4a) will be taken to be HMCR, SMCR and CVaR, of the negative

portfolio return, −r>x. Constraint (6.1d) will be included when we consider the

105

portfolio optimization problem with cardinality constraint. Obviously, the meaning

of variables z is zi = 1 if asset i is present in the portfolio, and zi = 0 otherwise.

With the risk measure R(X) replaced with the HMCR1,α(X) measure (CVaR),

the portfolio selection problem for our case study is transformed into a linear pro-

gramming problem:

min η +
J−1

1− α
t (6.2a)

s. t.
n∑
i=1

xi = 1, (6.2b)

1

J

J∑
j=1

n∑
i=1

rijxi ≥ r0, (6.2c)

wj ≥ −
n∑
i=1

rijxi − η, j = 1, · · · , J, (6.2d)

t ≥ w1 + · · ·+ wJ , (6.2e)

xi ≥ 0 i = 1, · · · , n, (6.2f)

wj ≥ 0 j = 1, · · · , J (6.2g)

106

With the risk measure R(X) replaced with the HMCR2,α(X) measure, and the

addition of the constraint η = E(X) (SMCR), the portfolio selection problem for our

case study is transformed into a linear programming problem with a single 2-order

conic constraint:

min η +
J−

1
2

1− α
t (6.3a)

s. t.
n∑
i=1

xi = 1, (6.3b)

η =
1

n

n∑
i=1

xi (6.3c)

1

J

J∑
j=1

n∑
i=1

rijxi ≥ r0, (6.3d)

wj ≥ −
n∑
i=1

rijxi − η, j = 1, · · · , J, (6.3e)

t ≥ (w2
1 + · · ·+ w2

J)1/2, (6.3f)

xi ≥ 0 i = 1, · · · , n, (6.3g)

wj ≥ 0 j = 1, · · · , J (6.3h)

107

With the risk measure R(X) replaced with the HMCR3,α(X) measure (HMCR3),

the portfolio selection problem for our case study is transformed into a linear pro-

gramming problem with a single 3-order conic constraint:

min η +
J−

1
3

1− α
t (6.4a)

s. t.
n∑
i=1

xi = 1, (6.4b)

1

J

J∑
j=1

n∑
i=1

rijxi ≥ r0, (6.4c)

wj ≥ −
n∑
i=1

rijxi − η, j = 1, · · · , J, (6.4d)

t ≥ (w3
1 + · · ·+ w3

J)1/3, (6.4e)

xi ≥ 0 i = 1, · · · , n, (6.4f)

wj ≥ 0 j = 1, · · · , J (6.4g)

108

With the risk measure R(X) replaced with the HMCR3,α(X) measure and the

inclusion of the cardinality constraint (HMCR3-Int), the portfolio selection problem

with cardinality constraint for our case study is transformed into a mixed integer

linear programming problem with a single 3-order conic constraint (6.5e)

min η +
J−

1
3

1− α
t (6.5a)

s. t.
n∑
i=1

xi = 1, (6.5b)

1

J

J∑
j=1

n∑
i=1

rijxi ≥ r0, (6.5c)

wj ≥ −
n∑
i=1

rijxi − η, j = 1, · · · , J, (6.5d)

t ≥ (w3
1 + · · ·+ w3

J)1/3, (6.5e)
n∑
i=1

zi ≤ k (6.5f)

xi ≥ 0 i = 1, · · · , n, (6.5g)

wj ≥ 0 j = 1, · · · , J (6.5h)

109

6.2 Out-of-Sample Simulation Case Studies

One of the primary goals of this research theme is to try and reflect a “true to

life” performance of the HMCR and related higher-order measures in risk management

applications. To this end, we will conduct the so-called out-of-sample experiments.

This method determines the merits of a constructed solution using the out-of-sample

data that have not been included in the scenario model that was used to generate the

solution. By using this method, the out-of-sample setup simulates a common situation

when the true realization of uncertainties are unknown to the decision-maker, and the

decision x must be made using the “known” (in-sample) data ω0, but the outcome

X(x, ω) of the decision will be evaluated using the “unknown-at-the-time”, or out-of-

sample data ω̂: X = X(x, ω̂).

We will employ the out-of-sample method to compare simulated historic per-

formances of several self-financing portfolio rebalancing strategies that will be based

on risk measures that involve higher moments of loss distributions,such as HMCR,

SMCR, and the corresponding deviation measures that have been presented in Chap-

ter 1, as well some of the industry standard risk measures such as CVaR and Mean-

Variance models. In addition, we will consider the effect of cardinality constraints as

described above on the efficiency of the corresponding trading strategies. The data

set for this case study will be updated to incorporate the most recent market reces-

sion, which is expected to make the results of this case study more interesting from

the practical risk management viewpoint.

110

6.2.1 Set of Instrument and Scenario Data

In order to take advantage of the construct of the HMCR risk measures, which

quantify risk in terms of higher tail moments of loss distribution, the portfolio op-

timization case studies were conducted using return data of the fifty S&P500 stocks

with the so-called “heavy tails”. In order to look at portfolio performance, for sce-

nario generations we used 10-day historical returns over J = 210 overlapping periods,

calculated using daily closing prices from October 30, 1998 to October 30, 2009. The

particular sizes of the scenario set has been chosen to accommodate the linear ap-

proximation techniques in problems (2.1) and (5.1). From this set of S&P500 stocks,

we selected n = 50 instruments by picking those with the highest value of kurtosis of

biweekly returns, calculated over a specific period. The experiments were conducted

with r0 = 0.5% and α = .9, r0 = 0.5% and α = .95, r0 = 1% and α = .9, r0 = 1% and

α = .95 and finally r0 = 1.3% and α = .9, the latter of which will be used to assess

the performance of a particulary agressive strategy.

6.2.2 Portfolio Performance

In all cases the clear winner is the HMCR3,α(·) as R(·) with cardinality con-

straint. In general we see that the portfolio based on the HMCR3,α(·) risk measure

dominates the SMCRα(·) and the CV aRα(·).

Interestingly, the portfolio optimization with cardinality constraint outperformed

all the other problem formulations (see figures 6.1 and 6.2). This can be attributed

to the inherent increase in risk, and thus increase in reward, that manifests with a

less diversified portfolio. We should note that as r0 increased, the branch-and-bound

algorithm became more unstable and required a more refined LP relaxation. If we

look at figures 6.3 and 6.4), we see that the cardinality constrained portfolio fell below

111

Figure 6.1: Portfolio performance comparison for CVaR,
SMCR and HMCR=3, r0 = 0.5% and α = .9.

all the other problem formulations. This can be attributed to instances of the LP

being infeasible due to the increase in r0 from 0.5% to 1%. We see this in the areas of

the graph where the portfolio flatlines, meaning that there was no change from one

instance to the next due to a problem with infeasibility.

We also notice that with an increase in r0 the value of the portfolio increases in

the case of all the risk measures. However, as r0 increases, the portfolio values, based

on its particular risk measure, become harder to discern from each other. If we look

at a particularly aggressive strategy where r0 = 1.3% and α = .9 (see figure 6.5) we

see that the portfolio’s are almost identical.

6.3 Conclusions

In this chapter we conducted numerical experiments so as to determine the effec-

tiveness of the higher moment coherent risk measures as compared to other industry

standard risk measures. We see that in all cases the HMCR3 risk measure was able

112

Figure 6.2: Portfolio performance comparison for CVaR,
SMCR and HMCR=3, r0 = 0.5% and α = .95.

Figure 6.3: Portfolio performance comparison for CVaR,
SMCR and HMCR=3, r0 = 1% and α = .9.

113

Figure 6.4: Portfolio performance comparison for CVaR,
SMCR and HMCR=3, r0 = 1% and α = .95.

Figure 6.5: Portfolio performance comparison for CVaR,
SMCR and HMCR=3, r0 = 1.3% and α = .9.

114

to outperform the CVaR and SMCR risk measures. This is accentuated by our choice

of ”heavy tailed” stock data which takes advantage of risk measures that are based

on tail moments of loss distribution.

As it was noted earlier, the infeasibility of the MIpOCP problem lies with the

budget and initial expected return constraint. We saw that as the initial expected

return, r0, increased, the branch-and-bound problem had some feasibility issues. In

order to correct this, we would have to increase the accuracy of our approximation

in order to ensure that the problem has a feasible solution. If, however, there are no

feasibility issues, we saw that the HMCR3-Int problem formulation led to the best

performing portfolio. This can be attributed to the fact that limiting the portfolio to

fewer instruments effectively increases the risk and thus the reward for the portfolio.

115

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

The goal of this research was to develop an efficient algorithmic method for solv-

ing the p-order conic programming problem. This was motivated by the implementa-

tion of higher moment coherent risk measures in stochastic programming problems.

The mathematical representation of HMCR measures in stochastic programming led

to a linear programming problem with a p-order conic constraint. Given the presence

of a p-order conic constraint in a stochastic programming problem, it was beneficial

to consider a linear approximation to the p-order cone in order to reduce our pOCP

problem to a linear programming problem. One of the major justifications for seeking

such a representation was to take advantage of the “warm start” capabilities of linear

programming solvers, which allows for quicker solutions to multistage stochastic pro-

gramming problems. Motivated by the need to solve the pOCP problem efficiently,

we considered different approximations for the p-order cone to see if we could improve

the solution time. Also, given the importance of integrality in practical applications,

we also considered the mixed integer p-order conic programming problem (MIpOCP).

During the course of this endeavor, we showed that the pOCP problem can

be reformulated as a SOCP problem with O(J log r) second order cones. We also

saw that there existed an eloquent mathematical reformulation of the SOCP problem

using the “lifted” polyhedral approximation developed by Ben-Tal and Nemirovski

(2001b). Although the “lifted” polyhedral approximation is a very efficient linear

approximation with excellent approximation error, it was shown that the practical

merits of the approximation did not help with the solution time of SOCP problems.

It was shown that, despite the efficiency of the approximation, the current interior

116

point SOCP solvers performed just as well due, in part, to the self-duality of the

second order cone. Another issues was the inability to extend the “lifted” polyhedral

approximation to values of p > 2.This led to the development of our uniform gradient

approximation.

The gradient approximation was shown to be a very good approximation if the

number of subdivisions were large enough. As the number of subdivisions increased,

so did the size of the resulting linear programming problem. This motivated the

development of a cutting plane algorithm to generate the constraints for the facets

of the linear approximation as needed. Given the special structure of the uniform

gradient approximation, we were able to generate the cuts in O(J) time. This meant

that, by exploiting this special structure, we could use a subdivision of any size while

the time to generate the cuts would remain constant.

Another aspect of the pOCP problem that was considered was the incorporation

of integrality constraints. This led to the development of another algorithm for the

mixed integer p-order conic programming problem (MIpOCP). The algorithm that

was developed was an adaptation of a branch-and-bound algorithm that Vielma,

Ahmed, and Nemhauser (2008) developed for solving mixed integer second order

conic programming problems (MISOCP). We employed our polyhedral approximation

to represent the mixed integer linear programming problem (MILPPGA) that was

used in the branch-and-bound algorithm. The MILPPGA is used for pruning in the

branch-and-bound algorithm and as such, a tight approximation is not needed. The

MISOCP reformulation was compared to the MIpOCP with branch-and-bound to

determine the efficiency of the algorithm.

The numerical experiments for the pOCP problem indicated that the cutting

plane algorithm offered an efficient alternative to solving the pOCP problem. This

117

could be seen clearly in the large difference in the solution times in the portfolio

optimization case study. It was also noted that the solution times decreased as p→

∞. This was attributed to the fact that at p = ∞ the problem becomes a linear

programming problem and it is no longer an approximation but a reformulation. The

MIpOCP numerical experiments also showed a marked difference in solution time

between the MISOCP reformulation and the MIpOCP with branch-and-bound. This

could be attributed to the effectiveness of the branch-and-bound algorithm and its

ability to branch on integer solutions.

When comparing the portfolio performance for risk measures HMCR3,α(·),

SMCRα(·) and CV aRα(·) we saw that the HMCR3,α(·) risk measure dominated

the others most of the time. We also saw that integrality, along with HMCR3,α(·),

led to a less diversified portfolio, based on the number of stocks that we limited the

portfolio to, and this led to greater returns over the long run when compared to all

the other portfolios. The data was chosen to reflect the most up to date closing stock

price information that was available. It included the current economic meltdown in

order to see how the self-balancing scheme would work to correct itself. Based on the

data in Chapter 6, we see that the risk measures that are based on higher moments

of tail loss generally outperform the current industry standard CVaR and SMCR risk

measures. This was accentuated by our choice of data in which we used stocks from

the S&P 500 that had the highest kurtosis.

Overall, the algorithms that were developed showed marked improvements in

their solution time when compared with trying to solve the problem through direct

implementation. We also saw that the overall performance of the HMCR risk mea-

sure outperformed the SMCR and CVaR risk measures when dealing with the “heavy

118

tailed” stock data. This can be attributed to the definition of the HMCR risk mea-

sure as a quantification of risk as tail moments of loss distribution. The underlying

methodology that was employed was to solve the problem in stages and exploit the

special structure that is inherent in the formulation of the pOCP problem.

It was our intention to incorporate the cutting plane algorithm, along with the

branch-and-bound algorithm, to develop an efficient MIpOCP solver. There were,

however, limitations in the CPLEX C++ API that did not allow us to employ the

cutting plane algorithm at each node of the branch-and-bound algorithm. It is our

intention to investigate this further to see if there are any other options to incorporate

this idea in the future.

BIBLIOGRAPHY

Acerbi, C. (2002) “Spectral measures of risk: A coherent representation of subjective
risk aversion,” Journal of Banking and Finance, 26 (7), 1487–1503.

Acerbi, C. and Tasche, D. (2002) “On the coherence of expected shortfall,” Journal
of Banking and Finance, 26 (7), 1487–1503.

Alizadeh, F. and Goldfarb, D. (2003) “Second-order cone programming,” Mathemat-
ical Programming , 95 (1), 3–51.

Andersen, E. D., Roos, C., and Terlaky, T. (2003) “On implementing a primal-dual
interior-point method for conic quadratic optimization,” Mathematical Program-
ming , 95 (2), 249–277.

Artzner, P., Delbaen, F., Eber, J.-M., and Heath, D. (1999) “Coherent Measures of
Risk,” Mathematical Finance, 9 (3), 203–228.

Bawa, V. S. (1975) “Optimal Rules For Ordering Uncertain Prospects,” Review of
Financial Studies , 2 (1), 95–121.

Bazaraa, M. S., Sherali, H. D., and Shetty, C. M. (2006) Nonlinear Programming:
Theory and Algorithms .

Ben-Tal, A. and Nemirovski, A. (2001a) Lectures on Modern Convex Optimization:
Analysis, Algorithms, and Engineering Applications , volume 2.

Ben-Tal, A. and Nemirovski, A. (2001b) “On polyhedral approximations of the
second-order cone,” Mathematics of Operations Research, 26 (2).

Ben-Tal, A. and Teboulle, M. (1986) “Expected Utility, Penalty Functions, and Du-
ality in Stochastic Nonlinear Programming,” Management Science, 32 (11), 1145–
1466.

Ben-Tal, A. and Teboulle, M. (2007) “An Old-New Concept of Convex Risk Measures:
An Optimized Certainty Equivalent,” Mathematical Finance, 17 (3), 449–476.

Birge, J. R. and Louveaux, F. (1997) Introduction to Stochastic Programming .

Burer, S. and Chen, J. (2008) “A p-Cone Sequential Relaxation Procedure for 0-1
Integer Programs,” Working paper .

Chekhlov, A., Uryasev, S., and Zabarankin, M. (2005) “Drawdown Measure in Portfo-
lio Optimization,” International Journal of Theoretical and Applied Finance, 8 (1),
13–58.

Cheridito, P. and Li, T. (2007) “Risk Measures on Orlicz Hearts,” Working paper .

119

120

Delbaen, F. (2002) “Coherent risk measures on general probability spaces,” 1–37.

Dembo, R. and Rosen, D. (1999) “The practice of portfolio replication. A practical
overview of forward and inverse problems,” Annals of Operations Research, 85,
267–284.

Dentcheva, D. and Ruszczyński, A. (2004) “Semi-Infinite Probabilistic Optimization:
First Order Stochastic Dominance Constraints,” Optimization, 53 (5–6), 583–601.

Duffie, D. and Pan, J. (1997) “An Overview of Value-at-Risk,” Journal of Derivatives ,
4, 7–49.

Fischer, T. (2003) “Risk capital allocation by coherent risk measures based on one-
sided moments,” Insurance: Mathematics and Economics , 32 (1), 135–146.

Fishburn, P. C. (1977) “Mean-risk analysis with risk associated with below-target
returns,” The American Economic Review , 67 (2), 116–126.

Giorgi, E. D. (2005) “Reward-Risk Portfolio Selection and Stochastic Dominance,”
Journal of Banking and Finance, 29 (4), 895–926.

Glineur, F. (2000) “Computational experiments with a linear approximation of second
order cone optimization,” Technical Report 0001 .

Glineur, F. and Terlaky, T. (2004) “Conic Formulation for lp-Norm Optimization,”
Journal of Optimization Theory and Applications , 122 (2), 285–307.

Jorion, P. (1997) Value at Risk: The New Benchmark for Controlling Market Risk .

Krokhmal, P. (2007) “Higher Moment Coherent Risk Measures,” 21.

Krokhmal, P., Palmquist, J., and Uryasev, S. (2002a) “Portfolio Optimization with
Conditional Value-At-Risk Objective and Constraints,” Journal of Risk , 4 (2),
43–68.

Krokhmal, P., Uryasev, S., and Zrazhevsky, G. (2002b) “Risk Management for Hedge
Fund Portfolios: A Comparative Analysis of Linear Rebalancing Strategies,” Jour-
nal of Alternative Investments , 5 (1), 10–29.

Markowitz, H. (1952) “Portfolio Selection,” Journal of Finance, 7 (1), 77–91.

Markowitz, H. M. (1959) Portfolio Selection.

Morgan, J. (1994) Riskmetrics .

Nesterov, Y. (2006) “Towards nonsymmetric conic optimization,” Working paper.

Nesterov, Y. E. and Nemirovski, A. (1994) Interior Point Polynomial Algorithms in
Convex Programming , volume 13.

121

Nesterov, Y. E. and Todd, M. J. (1997) “Self-scaled barriers and interior-point meth-
ods for self-scaled cones,” Mathematics of Operations Research, 22, 1–42.

Nesterov, Y. E. and Todd, M. J. (1998) “Primal-dual interior-point methods for self-
scaled cones,” SIAM Journal on Optimization, 8, 324–364.

Ogryczak, W. and Ruszczyński, A. (1999) “From stochastic dominance to mean-
risk models: Semideviations as risk measures,” European Journal of Operational
Research, 116, 33–50.

Ogryczak, W. and Ruszczyński, A. (2001) “On consistency of stochastic dominance
and mean–semideviation models,” Mathematical Programming , 89, 217–232.

Ogryczak, W. and Ruszczyński, A. (2002) “Dual stochastic dominance and related
mean-risk models,” SIAM Journal on Optimization, 13 (1), 60–78.

Pflug, G. (2000) “Some Remarks on the Value-at-Risk and the Conditional Value-at-
Risk,” .

Prékopa, A. (1995) Stochastic Programming .

Rockafellar, R. and Uryasev, S. (2002a) “Conditional Value-at-Risk for General Loss
Distribution,” Journal of Banking and Finance, 26, 1443–1471.

Rockafellar, R. T. and Uryasev, S. (2000) “Optimization of Conditional Value-at-
Risk,” Journal of Risk , 2, 21–41.

Rockafellar, R. T. and Uryasev, S. (2002b) “Conditional Value-at-Risk for General
Loss Distributions,” Journal of Banking and Finance, 26 (7), 1443–1471.

Rockafellar, R. T., Uryasev, S., and Zabarankin, M. (2006) “Generalized Deviations
in Risk Analysis,” Finance and Stochastics , 10 (1), 51–74.

Rothschild, M. and Stiglitz, J. (1970) “Increasing risk I: a definition,” Journal of
Economic Theory , 2 (3), 225–243.

Ruszczyński, A. and Shapiro, A. (2006) “Optimization of Convex Risk Functions,”
Mathematics of Operations Research, 31 (3), 433–452.

Schied, A. and Follmer, H. (2002) “Robust preferences and convex measures of risk,”
39–56.

Sturm, J. F. (1998) “Using SeDuMi 1.0x, a MATLAB toolbox for optimization over
symmetric cones,” Manuscript .

Terlaky, T. (1985) “On lp Programming,” European Journal of Operational Research,
22 (1), 70–100.

Testuri, C. and Uryasev, S. (2003) “On Relation Between Expected Regret and Con-
ditional Value-at-Risk,” .

122

van der Vlerk, M. H. (2003) “Integrated Chance Constraints in an ALM Model for
Pension Funds,” Working paper .

Vielma, J. P., Ahmed, S., and Nemhauser, G. L. (2008) “A Lifted Linear Program-
ming Branch-and-Bound Algorithm for Mixed-Integer Conic Quadratic Programs,”
INFORMS Journal on Computing , 20 (3), 438–450.

von Neumann, J. and Morgenstern, O. (1944) Theory of Games and Economic Be-
havior .

Xue, G. and Ye, Y. (2000) “An efficient algorithm for minimizing a sum of p-norms,”
SIAM Journal on Optimization, 10 (2), 551–579.

