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ABSTRACT

In this thesis, we propose to analyze panel count data using a spline-based

sieve generalized estimating equation method with a semiparametric proportional

mean model E(N(t)|Z) = Λ0 (t) e
βT
0 Z . The natural log of the baseline mean function,

logΛ0 (t), is approximated by a monotone cubic B-spline function. The estimates of

regression parameters and spline coefficients are the roots of the spline based sieve

generalized estimating equations (sieve GEE). The proposed method avoids assuming

any parametric structure of the baseline mean function and the underlying counting

process. Selection of an appropriate covariance matrix that represents the true cor-

relation between the cumulative counts improves estimating efficiency.

In addition to the parameters existing in the proportional mean function, the

estimation that accounts for the over-dispersion and autocorrelation involves an ex-

tra nuisance parameter σ2, which could be estimated using a method of moment

proposed by Zeger (1988). The parameters in the mean function are then estimated

by solving the pseudo generalized estimating equation with σ2 replaced by its esti-

mate, σ̂2
n. We show that the estimate of (β0,Λ0) based on this two-stage approach is

still consistent and could converge at the optimal convergence rate in the nonparamet-

ric/semiparametric regression setting. The asymptotic normality of the estimate of β0

is also established. We further propose a spline-based projection variance estimating

method and show its consistency.

Simulation studies are conducted to investigate finite sample performance of
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the sieve semiparametric GEE estimates, as well as different variance estimating meth-

ods with different sample sizes. The covariance matrix that accounts for the over-

dispersion generally increases estimating efficiency when overdispersion is present in

the data. Finally, the proposed method with different covariance matrices is applied

to a real data from a bladder tumor clinical trial.
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CHAPTER 1
INTRODUCTION

1.1 Motivating Examples

Panel count data are often seen in clinical trials, reliability studies, and epi-

demiological studies. A well known example is the superficial bladder tumor clinical

trail studied by Byar et al. (1980), Wei et al. (1989), Wellner & Zhang (2000), Sun

& Wei (2000), Zhang (2002), Wellner & Zhang (2007) and Lu et al. (2009) among

others. Patients with superficial bladder tumors were enrolled and randomized into

one of three treatment groups: pyridocine pills, thiotepa instillation or placebo group.

The number and size of the bladder tumors were measured for each subject at their

enrollment. Superficial bladder tumor has a high recurrent rate. During the follow-up

visits, the newly formed bladder tumors for each subject were counted and removed

and the assigned treatment was continued. The primary research interest was to eval-

uate and compare the effectiveness of the three different treatments and their abilities

on suppressing the recurrence of the bladder tumor while controlling for other covari-

ates. The number of visits and the time between visits varied from subject to subject.

Another interesting example is the data coming from the National Cooperative

Gallstone Study (NCGS), which is a 10-year, multicenter, double-blinded, placebo-

controlled clinical trial on the use of natural bile acid chenodeoxycholic acid (chen-

odiol) for the dissolution of cholesterol gallstones (Thall & Lachin (1988)). Patients

were randomly assigned to one of three treatment groups: high dose, low dose or
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placebo. Although they were scheduled to follow-up at 1, 2, 3, 6, 9, and 12 months,

the number of observations and each observation time differed from patient to patient.

The actual successive visit times and the associated counts of nausea were recorded.

The objective of this study was to estimate chenodiol’s effect on the incidence of

nausea.

Other interesting examples of panel count data include the number of seizures

in epileptics, number of damaged joints in patients with psoriatic arthritis (Gladman

et al. 1995), etc.

1.2 Literature Review

Panel count data share some special features with longitudinal data, survival

data and categorical data; as a mixture of these three, they also impose more chal-

lenges for the analysis. First of all panel count data are a special case of longitudinal

data, where subjects experience some events of interest multiple times. The result-

ing data are usually referred to as event history data. The event history data can

be further classified into two types. One monitors the process continuously, records

the exact event time and thus produces the recurrent event data (Byar et al. (1980);

Prentice et al. (1981); Pepe & Cai (1993)). Panel count data is the other type, in

which subjects are only observed at discrete observation time points. Instead of the

exact event time, only the numbers of events between observation times are known.

For the analysis of recurrent event data, a number of methods have been proposed.

Prentice et al. (1981) generalized the Cox proportional hazard function (Cox 1972)
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and developed a conditional likelihood model for subjects with multiple events. An-

dersen & Gill (1982) used an intensity-based counting process modeling techniques

and derived the asymptotic properties of the estimators based on the Martingale the-

ory. Lawless (1987) analyzed the data based on a nonhomogeneous Poisson process

plus some random effects. In the framework of marginal model, Wei et al. (1989)

analyzed the multivariate failure time model. Lawless & Nadeau (1995) discussed the

special case when the failure times were discrete. Other examples include Pepe & Cai

(1993), Lin et al. (2000) and Lin & Ying (2001).

In spite of the abundant discussions of the recurrent event history data, the

analysis of panel count data has started to attract attention in the past two decades.

Several parametric approaches have been discussed. Kalbfleisch & Lawless (1985)

and Gentleman et al. (1994) discussed the analysis of panel count data based on a

finite continuous Markov model. Breslow (1984) discussed the parametric analysis

using Poison regression. However, in medical settings, the disease progression is often

unknown. Parametric assumptions relating the outcomes and observation times are

susceptible to serious violations. In addition, the observation times vary from patient

to patient in panel count data. Even in clinical trial with scheduled follow-up times

like in NCGS, patients can still be early, late or absent. Neglecting the actual different

visit times and using the scheduled time may introduce bias and such analysis is

questionable.

Nonparametric and semiparametric analysis can relax parametric assumptions

and is applied to longitudinal data. Zhang et al. (1998), Lin & Zhang (1999) and



4

Rice & Wu (2001) among others adopted the linear mixed effect to analyze ordinary

longitudinal data nonparametrically. Random effects are included in the model to

account for part of the correlation between repeated measurement. A stochastic pro-

cess, such as nonhomogeneous Ornstein-Uhlenbeck (NOU) process, Weiner process,

integrated Weiner process, an integrated OU (IOU) or an ante-dependence process

for equally spaced time points, is specified in the regression model to account for the

autocorrelation. However, the choice of the stochastic process is arbitrary, and it is

unknown how these assumptions will influence the inference of the mean function. In

addition, the linear mixed effect model cannot deal with random observation times

and it dose not address the monotone constraint imposed by the counting process in

panel count data.

To deal with the special features of panel count data, Thall & Lachin (1988)

studied the data from NCGS using a marginal model. They proposed a nonparametric

estimation of the rate of the counting process. Sun & Kalbfleisch (1995) first discussed

the estimation of mean function of a specific counting process directly. They applied

the isotonic regression method and estimated the nonparametric mean function of the

counting process at specific time points. Wellner & Zhang (2000) proposed a non-

parametric maximum pseudolikelihood estimator(NPMPLE) and a nonparametric

maximum likelihood estimator(NPMLE) assuming the underlying counting process

as a nonhomogeneous Poisson process. They found out that NPMPLE is exactly the

nonparametric estimator proposed by Sun & Kalbfleisch (1995). They proved the con-

sistency of NPMPLE and NPMLE and derived their convergence rate. They showed
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the robustness of both estimators against the Poisson assumption. The NPMPLE

is based on the pseudolikelihood, which neglects the correlation between consecutive

counts and treats them as if they were independent. The NPMLE is based on the

likelihood, which incorporates the correlation between consecutive counts based on

Poisson assumption. In general, the NPMLE is more efficient than the NPMPLE at

the cost of more computing times.

In many clinical trials, comparison between treatment groups is of primary

interest. Based on their nonparametric estimation, Thall & Lachin (1988) proposed

a K-variate statistic to compare the intensities of two treatment groups. Sun &

Fang (2003) proposed a nonparametric test to compare the estimates from different

counting processes and proved the asymptotic normality of the test statistics. Later,

Zhang (2006) discussed a similar test comparing the mean functions of K populations

based on the asymptotic normality of a smoothing functional of the NPMPLE studied

in Wellner & Zhang (2000).

Recently, there are more interests in analyzing panel count data using a semi-

parametric model. In the literature of repeated measurement and longitudinal data,

a semiparametric model is often assumed,

E (Y |Z, T ) = µ
(
ZTβ + γ (T )

)
(1.1)

where µ is a known link function, β is the regression parameter and γ is the unknown

function. In the panel count setting, when µ is chosen as the exponential function,

and γ is chosen as the logarithm of the baseline mean function, e.g., γ = logΛ0 (t),
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this model reduces to a proportional mean model

E(N(t)|Z) = Λ0 (t) e
βT
0 Z . (1.2)

This model is widely studied in the literature, for example, in Lawless & Nadeau

(1995), Sun & Wei (2000), and Lin et al. (2000). The baseline mean function Λ0 is

monotone nondecreasing due to the nature of the counting process. The estimation

of β0 and Λ0 often involve complicated algorithms with heavy computing effort.

Other work has been focused on the intensity, namely,

λ (t|Z) = λ0 (t) e
βT
0 Z (1.3)

where λ0 (t) =
d
dt
Λ0 (t). For example, Kalbfleisch & Lawless (1985) generalized their

Markov model to handle the covariance analysis and used the proportional structure

to model the transition intensities. Lee & Kim (1998) used the same Markov model

for two or more correlated multi-state processes and modeled the correlation between

these processes based on marginal models using the proportional model. When the

outcome is a zero-one binary variable and λ is the intensity of the counting process,

this model simplifies to the proportional hazard model of Cox (1972).

Although using the model in Equation (1.3) does not require nonnegativity

and monotone nondecreasing constraint, in many cases, the mean function is of more

interest and modeling it directly is desirable. Wellner & Zhang (2007) modeled the

baseline mean function in Equation (1.2) directly and estimated the parameters using

isotonic regression. Wellner & Zhang (2007) discussed the semiparametric maximum

pseudolikelihood estimator and semiparametric maximum likelihood estimator based
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on a Poisson assumption in parallel to their two nonparametric estimators (Wellner &

Zhang 2000). Both the maximum pseudolikelihood estimator and the maximum like-

lihood estimator are shown to be consistent regardless of the true underlying counting

process. They studied the convergence rate of both estimators and showed that in

spite of the fact that the nonparametric estimator of the baseline mean function con-

verges at a slower rate, n1/3, the regression parameter for the parametric part still

converges at the standard rate, n1/2 and is asymptotically normally distributed. The

maximum likelihood estimator based on nonhomogeneous Poisson process assump-

tion accommodates some correlation between consecutive cumulative counts, and in

general is more efficient than the maximum pseudolikelihood estimator. However,

neither method considers the overdispersion problem commonly seen in count data,

and thus will not be very efficient when overdispersion is present. In this dissertation,

we avoid assuming any underlying counting process and use a generalized estimating

equation to estimate the parameters specified in the proportional mean function in

Equation (1.2). Selection of an appropriate covariance matrix that accounts for the

overdispersion will produce more efficient estimates when overdispersion is present in

the data.

1.3 Outline of the Dissertation

The rest of the dissertation is organized as follows. Chapter 2 introduces

the spline-based sieve semiparametric generalized estimating equation. Section 2.1

presents two commonly used smoothing techniques: kernel machine and splines in
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the analysis of longitudinal data. We use the regression splines to estimate the base-

line mean function. Section 2.2 reviews the spline-based sieve M-estimators. They

are sieve counterparts of the maximum pseudolikelihood estimator and the maximum

likelihood estimator based on nonhomogeneous Poisson process studied by Wellner &

Zhang (2007). Instead of maximizing some ‘likelihood’ function based on the assump-

tion of the entire process, we propose to estimate the unknown parameters by only

assuming the mean function of the counting process as shown in Equation (1.2), and

assuming a working correlation matrix between the consecutive cumulative counts.

The parameters are estimated by solving spline-based sieve semiparametric general-

ized estimating equations (sieve GEE). Section 2.3 presents the model in detail and

discusses different choices of the covariance matrices that can be used in the esti-

mating equation to accommodate different data structure. Chapter 3 discusses the

asymptotic properties of the spline-based sieve GEE estimator proposed in Chapter 2

using modern empirical process theory. Some basic terms and theorems in empirical

process theory are summarized in Section 3.1. General theorems of the consistency

and convergence rate of the estimates of both the baseline mean function and the

regression parameters as well as the asymptotic normality of the estimated regression

parameters in the presence of a nuisance parameter are then developed in Section

3.2. In Section 3.3, these general theorems are further applied to the special struc-

ture of the Gamma-Frailty Poisson model we discussed in Section 2. Three standard

error estimating methods for the spline-based sieve GEE estimator of the regression

parameter are discussed in Chapter 4. Section 4.1 presents an estimating procedure
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based on the projection of the infinite-dimensional parameter onto the tangent space

of the finite parameter spaces. Spline-based sieve method is applied again to ap-

proximate a so-called ‘least favorable direction’ used in the estimation. Instead of

using the projection algorithm proposed in Section 4.1, we could heuristically treat

spline coefficients as finite dimensional parameters and use the ordinary sandwich

estimator of the standard error proposed by Zeger & Liang (1986) in parametric

GEE model. Bootstrap method is also explored in Section 4.3. Chapter 5 discusses

the algorithms used in computing the spline-based sieve GEE estimates. Solution of

the spline-based sieve semiparametric generalized estimating equation subject to the

monotone constraint can be solved using a combination of Newton-Raphson iteration

and different projection algorithms. Section 5.1.1 discusses a Generalized Rosen (GR)

algorithm utilized by Lu et al. (2007) and Lu et al. (2009). It is also implemented

in our sieve GEE method. Isotonic regression is another commonly used algorithm

in the optimization problems subjecting to the monotone constraint. We propose to

combine Newton-Raphson algorithm and the isotonic regression (NR/IR) to compute

the spline-based sieve semiparametric GEE estimates in Section 5.1.2. Section 5.2

presents different estimation methods for the overdispersion parameter in the covari-

ance matrix, but not in the mean function. An extensive simulation study is done

to compare the performance of the spline-based sieve semiparametric GEE estimator

using different covariance matrices. Chapter 6 summarizes the simulation results.

The proposed spline-based sieve semiparametric GEE method is applied to the data

from a superficial bladder tumor clinical trial. Finally, we give some final remarks of
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the proposed method and discuss possible future works in Chapter 7.
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CHAPTER 2
SPLINE-BASED SIEVE SEMIPARAMETRIC GENERALIZED

ESTIMATING EQUATION

In this Chapter, a spline-based sieve semiparametric generalized estimating

equation method is proposed to analyze panel count data. As mentioned in section

1.2, the proportional mean model in Equation (1.2) is assumed in the analysis. The

baseline mean function is left unspecified. It can be estimated using step functions

with jumps at distinct observation times as shown in Wellner & Zhang (2007). How-

ever, the dimension of the estimation of Wellner & Zhang’s method increases rapidly

as sample size increases and hence their method is computationally intensive. In

most of applications, the true baseline mean function can be assumed as a smooth

function, therefore it is more desirable to have a smooth estimator of the baseline

mean function. Section 2.1 presents two common smoothing techniques used in the

estimation of infinite-dimensional parameters in statistical literature. See examples in

Huang (1996) and Wellner & Zhang (2007), etc. With the proportional mean assump-

tion, regression splines render a simple approximation of the baseline mean function

of the panel count data and facilitate an easy-to-implement estimating procedure.

Section 2.2 reviews the spline-based sieve semiparametric maximum pseudolikelihood

estimator and the spline-based sieve semiparametric maximum likelihood estimator

for panel count data studied by Lu et al. (2009). These two estimators are different

versions of the semiparametric maximum pseudolikelihood estimator and the semi-

parametric maximum likelihood estimator studied by Wellner & Zhang (2007). The
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spline-based sieve estimators have a faster convergence rate than their counterparts.

Section 2.3 presents a new method for the semiparametric inference using generalized

estimating equation approach. Different working covariance matrices are suggested in

the method for different data structure. The newly proposed method could produce

more efficient estimates for both the regression parameters and the baseline mean

function than the spline-based sieve semiparametric maximum likelihood estimators

studied by Lu et al. (2009) if the overdispersion problem is present in the panel count

data.

2.1 Smoothing and its application in the analysis of clustered data

Kernel regression and spline smoothing are the two techniques widely used

to estimate unknown functions in the nonparametric/semiparametric estimation lit-

erature. Both methods have been applied to the analysis of longitudinal data in

statistical literature. The kernel smoothing is the simplest smoothing method. It is

based on the weighted local average of available data points, e.g.

f̂ (x) =

∑n
i=1Kh (xi) yi∑n
i=1Kh (xi)

where the weights are explicitly determined by the kernel functionKh (x) =
1
h
Kh

(
x−xi

h

)
,

and the neighborhood is determined by h, so called bandwidth. Selections of the

kernel function and the bandwidth are the two main considerations in the kernel

smoothing.

The kernel function K can be any unimodal and symmetric function. In the

weighted average approximation, the center of the kernel is placed at each data point.
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Commonly used kernel functions include Uniform, Gaussian and Epanechnikov func-

tions. The performance of kernel smoothing is often measured by mean integrated

square error (MISE) or asymptotic mean integrated square error (AMISE). Epanech-

nikov kernel often minimizes AMISE and is therefore optimal.

The choice of the shape of the kernel function is less important than the band-

width, h. The bandwidth controls the level of smoothing. A wider bandwidth tends

to over-smooth the estimation in the sense that it is too biased and may not reveal

structural features of the data. A narrower bandwidth may result in a wiggly looking

estimate. Different methods have been proposed to select the bandwidth, such as

Rule of thumb discussed in Silverman (1986), maximal smoothing principle proposed

by Terrell (1990), least square cross-validation by Rudemo (1982) and Breslow (1984)

and other variants of cross-validation methods.

Many articles applied the kernel smoothing method to the analysis of clustered

data; see Severini & Staniswalis (1994), Wild & Yee (1996), Zeger & Diggle (1994)

and Lin & Carroll (2000) and Lin & Carroll (2001). Lin & Carroll (2000) and Lin

& Carroll (2001) applied the traditional kernel smoothing in the clustered nonpara-

metric and semiparametric regression respectively. In the nonparametric setting, the

traditional kernel-based nonparametric estimations are efficient only when ignoring

the correlations within a cluster. In the semiparametric setting, even when a work-

ing independent covariance matrix is used, the estimate of the parametric regression

parameter is still not efficient. These results are rather different from the results of

the parametric analysis. Wang (2003) proposed a different kernel function, the seem-
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ingly unrelated kernel (SUR), in the clustered nonparametric regression. Correctly

specifying the correlation can improve the estimation efficiency.

Polynomial function, f (x) =
∑K

i=0 aix
i, is another method that has long been

used to approximate some unknown function due to its linearity of the regression

parameters and easy calculation with respect to derivatives and integrations. A main

drawback of polynomial approximation is its ‘non-localness’, namely a slight change

of one data point may cause large changes in the regression parameters and poly-

nomial approximations. Substantial improvement can be gained by using piecewise

polynomial functions, splines. The regions that define the pieces are separated by a

series of breakpoints called knots. The function within each pair of adjacent knots is

approximated by a polynomial function with the same order K. In order to enforce

the smoothness of the estimate, the derivatives of the adjacent polynomials at any

knot are the same up to the order of K−1. For a given set of knots, such constructed

piecewise polynomial approximation can be expressed as a linear span of an appro-

priate set of basis functions. For example, the region of approximation [L,U ] can be

divided intomn+1 subintervals by a series of interior knots, Ξ = {ξi, i = 1, 2, · · · ,mn}

such that

L = ξ0 < ξ1 < · · · < ξmn < ξmn+1 = U

Given these knots, any function f (x) within this region can be approximated by

f̃ (x) =

qn∑
l=1

αlBl (x) (2.1)

where Bl (x) , l = 1, 2, · · · , qn are spline basis functions and are themselves a series of

piecewise polynomials that are smoothly connected at the knots; qn is the sum of the
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number of the interior knots mn and the order of the basis functions Bl. In order to

use this approximation, we need to determine the number and location of the interior

knots as well as the basis functions and their order used in the linear span.

The smoothing spline method chooses the order of the spline by minimizing a

modified function
n∑

i=1

(
Yi − f̃ (xi)

)2
+ λ

∫ (
f̃ ′′ (x)

)2
dx

where λ is a penalty term that controls the smoothness of the approximated f̃ (x). A

larger λ corresponds to a less smooth spline estimation. Wang et al. (2005) used the

smoothing spline in analyzing clustered data. They proved the asymptotic equivalence

between the smoothing spline and the SUR proposed by Wang (2003). In both

methods, using the true covariance matrix as a working covariance matrix increases

the estimating efficiency, and these two estimators outperform the traditional kernel

estimators studied by Lin & Carroll (2000) and Lin & Carroll (2001).

Zhu et al. (2008) studied longitudinal data using regression splines. Given a set

of interior knots, they studied an estimator based on weighted least square regression

splines by minimizing

n∑
i=1

(
Yi − f̃ (xi)

)T
V −1

(
Yi − f̃ (xi)

)
.

The bias of the estimator does not depend on working correlation matrix, and the

mean square error is minimized when the true correlation structure is used. However,

this method only deals with situations where subjects are followed at same observation

times. It cannot be readily applied to the scenario of panel count data where the

number of observations and each observation time vary from subject to subject.
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In this dissertation, the regression spline method is used to estimate the base-

line mean function of the counting process nonparametrically. As shown in Equation

(2.1), regression spline approximates the function in a sieve space made by a linear

span of some basis functions Bl (t) , l = 1, 2, · · · , qn. The dimension of the sieve space,

qn, increases as sample size increases. But it could increase, depending on the choice of

sieves, much slower than the sample size increases. Asymptotically, the closure of the

limiting approximation space contains the true infinite dimensional parameter space.

The definition of the spline function and the formulation of the regression splines in

panel count data are stated in details in Section 2.2. Lu et al. (2009) applied a similar

sieve approximation to the maximum pseudolikelihood estimator and the maximum

likelihood estimator of the panel count data by Wellner & Zhang (2007). Instead of

using the likelihood of the counting process as in Lu et al. (2009) or a weighted least

square estimate as in Zhu et al. (2008), we discuss a generalized estimating equation

in Section 2.3. Different working covariance matrices are discussed for improving the

efficiency of the estimation and they can be subject-specific.

2.2 Spline-based Sieve Maximum Likelihood Estimation

Suppose, N = {N(t) : t ≥ 0} is a univariate counting process. There are ran-

dom number K observations of this counting process at 0 ≡ T0 < TK,1 < · · · < TK,K .

We denote TK ≡ (TK,1, TK,2, · · · , TK,K), and N ≡ (N (TK,1) ,N (TK,2) , · · · ,N (TK,K)),

the cumulative event count at these discrete observation times. We assume the

number of observations and the observation times, (K,TK), are independent of the



17

point process N, conditioning on the covariate vector Z. Panel count data are com-

posed of a random sample of X1, X2, · · · , Xn, where the observation Xi consists of(
Ki, TKi

,N(i), Zi

)
with TKi

=
(
T

(i)
Ki,1

, T
(i)
Ki,2

, · · · , T (i)
Ki,Ki

)
and

N(i) =
(
N(i)

(
T

(i)
Ki,1

)
,N(i)

(
T

(i)
Ki,2

)
, · · · ,N(i)

(
T

(i)
Ki,Ki

))
.

Assume observation times are restricted in a finite interval [L,U ] and the true

function logΛ(t) is continuous and bounded in this interval. Let a sequence of knots

t = {L = t1 = t2 = · · · = tl < tl+1 < · · · < tl+mn < tl+mn+1 = · · · = tmn+2l = U}

partition the closed interval [L,U ] into mn + 1 subintervals, where mn ≈ nν is a

positive integer such that max1≤k≤mn |tl+k − tl+k−1| = O (n−ν). Denote ϕl,t as a

class of polynomial spline functions of order l, l ≥ 1. ϕl,t is spanned by a series of

polynomial spline basis functions {Bi, 1 ≤ i ≤ qn} where qn = mn + l.

The dimension of the sieve space, qn is determined by sample size and is

related to the asymptotic properties of the estimates. The discussion of these asymp-

totic properties is delegated to Chapter 3. The choice of the knots is suggested by

the data. Reducing the number of knots reduces the flexibility of the fitted spline,

and increasing the density of knots in different regions of the observation time allows

increased flexibility within those regions. Uniform partitions and partitions according

to the quantiles of the data are two commonly used convenient choices. In our sim-

ulation setup in Chapter 6, the observations scheduled at a later time have a higher

probability of missing. Knots allocated with the uniform partition scheme will end up

with fewer observations in the intervals in the later time and hence introduce a greater

bias to the estimation of the baseline mean function especially when sample size is
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small. In this case, knots allocated with the quantile-based scheme are preferred.

Different basis functions have been used in the literature, such as truncated

first order splines used in Zhang (1997) and piecewise second order splines used in

Huang (1996). And it is noteworthy that if the knots ti, i = 1, 2, · · ·mn are chosen

to be all distinct event times and the order of spline is one, we end up using step

functions to approximate the nonparametric function. In this thesis, we consider

to use cubic B-spline functions to approximate the logarithm of the baseline mean

function, logΛ0 (t). B-spline is easily interpretable. It is local so the coefficient can

be related to the behavior of the estimate at specific locations. And it is widely used

in the software packages. Transformations of B-splines to other bases are easy to

implement. Cubic spline is chosen since it is flexible and twice differentiable at the

knots without being overly complex. When using B-spline basis functions, a subclass

of ϕl,t, ψl,t = {
∑qn

l=1 αlBl (t) , α1 ≤ α2 ≤ · · · ≤ αqn} is a collection of monotone

nondecreasing splines as a consequence of the variation diminishing properties of B-

splines (Schumaker 1981). Therefore ψl,t is a proper space from which the estimates

of log Λ0 (t) can be found.

Using spline-based sieve approximation, the proportional mean function shown

in Equation (1.2) is rewritten as

E (N (T ) |Z) = exp{
qn∑
l=1

αlBl (t) + βT
0 Z}. (2.2)

Based on the same approximation, Lu et al. (2009) studied the spline-based sieve

semiparametric maximum pseudolikelihood estimator and the spline-based sieve semi-

parametric maximum likelihood estimator as counterparts of Wellner & Zhang’s es-
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timators (Wellner & Zhang 2007) assuming a nonhomogeneous Poisson process.

The pseudolikelihood is given by

lpsn (Λ, β|D) =
n∑

i=1

Ki∑
j=1

(
N(i)

(
T

(i)
Ki,j

)
βTZi + N(i)

(
T

(i)
Ki,j

)
logΛ

(
T

(i)
Ki,j

)
−exp

{
logΛ

(
T

(i)
Ki,j

)
+ βTZ

})
Its spline-based sieve counterpart is

l̃psn (α, β|D) =
n∑

i=1

Ki∑
j=1

(
N(i)

(
T

(i)
Ki,j

)
βTZi + N(i)

(
T

(i)
Ki,j

) qn∑
l=1

αlBl

(
T

(i)
Ki,j

)
−exp

{
qn∑
l=1

αlBl

(
T

(i)
Ki,j

)
+ βTZ

})
. (2.3)

Both likelihood functions are derived based on the assumption that the cumulative

counts follow an independent Poisson distribution and neglect the correlations be-

tween the cumulative counts within the same subject. Thus the two maximum pseu-

dolikelihood estimators are not efficient.

Using the independence of the count increment based on the nonhomogeneous

Poisson process assumption, the likelihood is given by

ln (Λ, β|D) =
n∑

i=1

Ki∑
j=1

[
∆N(i)

Ki,j
log∆Λ

(i)
Ki,j

+∆N(i)
Ki,j

βTZi − eβ
TZi∆Λ

(i)
Ki,j

]
(2.4)

where

∆Λ
(i)
Ki,j

= Λ
(
T

(i)
Ki,j

)
− Λ

(
T

(i)
Ki,j−1

)
; ∆N(i)

Ki,j
= N(i)

Ki,j

(
T

(i)
Ki,j

)
− N(i)

Ki,j

(
T

(i)
Ki,j−1

)
Its spline-based sieve counterpart is

l̃n (α, β|D) =
n∑

i=1

Ki∑
j=1

[
∆N(i)

Ki,j
log∆Λ̃

(i)
Ki,j

+∆N(i)
Ki,j

βTZi − eβ
TZi∆Λ̃

(i)
Ki,j

]
(2.5)
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where

∆Λ̃
(i)
Ki,j

= exp

(
qn∑
l=1

αlBl

(
T

(i)
Ki,j

))
− exp

(
qn∑
l=1

αlBl

(
T

(i)
Ki,j−1

))

∆N(i)
Ki,j

is defined the same as in Equation (2.4). The (sieve) maximum likelihood

estimators incorporate the correlations between cumulative counts and they are more

efficient than the (sieve) pseudolikelihood estimators at the cost of more computing

time. Both (sieve) maximum pseudolikelihood estimator and (sieve) maximum like-

lihood estimator are consistent. The maximum pseudolikelihood estimator and the

maximum likelihood estimator converges at a rate of n1/3, the regular convergence

rate of nonparametric estimator. However the spline-based sieve estimators converge

at a faster rate than their counterparts, but still slower than n1/2. Despite a slower

convergence rate of the nonparametric estimator, the estimate of the regression pa-

rameter still converges at n1/2, and the (sieve) maximum likelihood estimator is more

efficient than the (sieve) maximum pseudolikelihood estimator.

The (sieve) maximum likelihood estimator, though more efficient than the

(sieve) maximum pseudolikelihood estimator, is still based on the model assuming

independent increments. This assumption is often violated in medical settings because

a high incidence of a disease in an interval may indicate another high incidence of the

disease in the subsequent non-overlapping intervals. When this is the case, the (sieve)

maximum likelihood estimator may not be an efficient estimator either. Instead of

constructing a likelihood function based on specific distribution assumptions of the

underlying counting process, we propose to use a generalized estimating equation

(GEE) for the analysis of panel count data.
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2.3 Spline-based Sieve Semiparametric Generalized Estimating

Equation

Generalized Estimating Equation (GEE) method, originally developed by Liang

& Zeger (1986) is widely used in parametric regression settings. It provides a ro-

bust inference with only weak assumptions of the underlying distributions. A large

amount of literature generalized the same idea to semiparametric settings with a

mean response model given by Equation (1.1). Zeger & Diggle (1994), Hoover et al.

(1998), Lin & Ying (2001) and Wu & Zhang (2002) among others, used kernel-based

estimating equation and ignored the correlation structure. Lin & Carroll (2001), Fan

& Li (2004) and Wang et al. (2005) incorporated the correlation structure in their

estimating procedures within the kernel framework.

We use a spline-based sieve semiparametric generalized estimating equation

(sieve GEE), with the conditional mean function given by Equation (2.2), and esti-

mate (β0,Λ0) through finding the roots of the estimating equation

U (θ) =
n∑

i=1

(
∂µ(i)

∂θ

)T

V (i)−1 (N (Ti)− µ(i)
)
= 0 (2.6)

where µ(i) =
(
µ
(i)
Ki,1

, µ
(i)
Ki,2

, · · ·µ(i)
Ki,Ki

)T
with µ

(i)
Ki,j

= exp
(
βTZi +

∑qn
l=1 αlBl

(
T

(i)
Ki,j

))
for j = 1, 2, · · ·Ki and θ = (β, α) with the constraints α1 ≤ α2 ≤ · · · ≤ αqn . The

spline-based sieve GEE estimator of Λ0 is taken as exp (
∑qn

l=1 α̂lBl (t)) after the spline

coefficient estimates α̂l, l = 1, 2, · · · , qn are obtained from Equation (2.6). V (i) is the

working covariance matrix for the panel counts from the ith process. Different choices

of this covariance matrix could accommodate the characteristics of different counting

processes. We discuss three possible covariance matrices and they correspond to
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scores of different ‘likelihood’ functions. The equivalence is shown in Appendix A.

2.3.1 Diagonal Covariance Matrix

The easiest choice of the covariance matrix is to use a diagonal matrix, in which

the diagonal element is determined by the variance function of Poisson distribution,

e.g., V ar (N (TKi,j)) = E (N (TKi,j)) and

V
(i)
1 =



µ
(i)
Ki,1

0 · · · 0

0 µ
(i)
Ki,2

· · · 0

...
...

. . .
...

0 0 · · · µ
(i)
Ki,Ki


Ki×Ki

This is exactly the score equation of the log pseudolikelihood shown in Equa-

tion (2.3) (see Appendix A). However, the diagonal matrix implies an independence

between cumulative counts in the counting process, although these cumulative counts

are obviously positively correlated. The misspecification of the covariance matrix

causes a loss of efficiency in the estimation.

2.3.2 Covariance Matrix Based on the Poisson Process Assumption

Instead of using a diagonal matrix that ignores the correlation among the

cumulative counts, a covariance matrix that accommodates such correlation will in-

tuitively produce more efficient estimates. The covariance function based on the

Poisson counting process, i.e.,

Cov (N (t1) ,N (t2)) = E (N (t1)) , for t1 ≤ t2
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leads to the selection of the covariance matrix Vi in the form of

V
(i)
2 =



µ
(i)
Ki,1

µ
(i)
Ki,1

· · · µ
(i)
Ki,1

µ
(i)
Ki,1

µ
(i)
Ki,2

· · · µ
(i)
Ki,2

...
...

. . .
...

µ
(i)
Ki,1

µ
(i)
Ki,2

· · · µ
(i)
Ki,Ki


Ki×Ki

.

The spline-based sieve semiparametric GEE with this covariance matrix is exactly the

score equation of the log likelihood based on Poisson process model shown in Equation

(2.5) (see Appendix A). In spite of the improved efficiency of this estimation compared

to the one using V
(i)
1 as the covariance matrix, it still imposes possibly unrealistic

assumptions to the covariance structure of the data: first, it assumes the variance

of the counts equals to the mean, that is no over-dispersion is allowed in the count

data; Secondly, it assumes the independence between the count increments. When

either of these two assumptions is violated, the estimator based on V
(i)
2 will not be

very efficient.

2.3.3 Sieve GEE With Over-Dispersion Term

Although the results of Lu et al. (2009) have demonstrated that the sieve GEE

estimate of β0 with V
(i)
2 is more efficient than that with V

(i)
1 , it is not guaranteed that

using V
(i)
2 would always produce a highly efficient estimate, as it does not account

for either the over-dispersion or the correlation among the count increments. In lit-

erature, Poisson model with a frailty variable, namely E (N (t) |γ, Z) = γΛ0 (t) e
βTZ ,

is a common way in parametric regression analysis for count data to account for

possible over-dispersions. Chan & Ledolter (1995) and Hay & Pettitt (2001) dis-
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cussed a log normal frailty model by assuming a log normal distribution of the frailty

term γ. However, there is no close form for the marginal distribution of the count

and the estimation with this frailty variable is computationally demanding. Another

common frailty model assumes a gamma-distributed subject-specific frailty term as

studied in Thall (1988) and Diggle et al. (1994) among others. Integrating out the

gamma frailty variable results in a negative binomial distribution for the correlated

counts. Zhang & Jamshidian (2004) introduced a gamma frailty term to nonpara-

metric estimation of the mean function of the counting process. They constructed a

maximum pseudolikelihood estimate with a gamma frailty term and computed the

estimate using EM algorithm. Zeger (1988) considered a latent frailty process while

assuming only the mean of the frailty term and a covariance function. A similar idea

is adopted in the semiparametric sieve GEE setting in this manuscript. The expec-

tation of γ is specified as 1, e.g., E (γ) = 1, which guarantees the identifiability of

the model and does not violate the proportional mean model specified in Equation

(1.2). The variance of γ is denoted as σ2. The marginal variance function based on

such Frailty Poisson process is V ar (N (t)) = µt + σ2µ2
t , where µt = E (N (t)). The

correlation between successive counts is explained by the frailty parameter γ, namely

Cov (N (t1) ,N (t2)) = µt1 + σ2µt1µt2 , for t1 ≤ t2.
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This leads to a working covariance matrix V
(i)
3 of the form

µ
(i)
Ki,1

+ σ2µ
(i)
Ki,1

µ
(i)
Ki,1

µ
(i)
Ki,1

+ σ2µ
(i)
Ki,1

µ
(i)
Ki,2

· · · µ
(i)
Ki,1

+ σ2µ
(i)
Ki,1

µ
(i)
Ki,Ki

µ
(i)
Ki,1

+ σ2µ
(i)
Ki,1

µ
(i)
Ki,2

µ
(i)
Ki,2

+ σ2µ
(i)
Ki,2

µ
(i)
Ki,2

· · · µ
(i)
Ki,2

+ σ2µ
(i)
Ki,2

µ
(i)
Ki,Ki

...
...

. . .
...

µ
(i)
Ki,1

+ σ2µ
(i)
Ki,1

µ
(i)
Ki,Ki

µ
(i)
Ki,2

+ σ2µ
(i)
Ki,2

µ
(i)
Ki,Ki

· · · µ
(i)
Ki,Ki

+ σ2µ
(i)
Ki,Ki

µ
(i)
Ki,Ki


Ki×Ki

and it can be rewritten as,

V
(i)
3 = V

(i)
2 + σ2

(
µ(i)
) (
µ(i)
)T

The estimating equation using V
(i)
2 is a special case of V

(i)
3 with σ2 = 0. When

over-dispersion exists, the spline-based sieve semiparametric GEE method using this

working covariance matrix with σ2 replaced by its consistent estimate may lead to a

more efficient estimate than the spline-based sieve maximum likelihood estimate stud-

ied by Lu et al. (2009). The estimating equation using V
(i)
3 turns out to be the score

function of the marginal likelihood of the panel count data under the Gamma-Frailty

nonhomogeneous Poisson process model. That is, given the gamma distribution of the

frailty term, e.g., γ ∼ Γ (1/σ2, 1/σ2), the cumulative counts follow a nonhomogeneous

Poisson process with mean γΛ (t) eβ
TZ . The conditional likelihood of the counts given

the frailty term can be written as

f (N1,N2, · · · ,NK |γ) = Πk
j=1

e−γ∆Λje
βT Z
(
γ∆Λje

βTZ
)∆Nj

∆Nj!

where Nj = N (TK,j) ,∆Nj = Nj − Nj−1 and Λj = Λ (TK,j) ,∆Λj = Λj − Λj−1 for

j = 1, 2, · · · , K. We let TK,0 ≡ 0 and assume N (0) = Λ (0) = 0.
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Integrating out γ, we have

f (N1,N2, · · · ,NK) =

∫
γ

ΠK
j=1

e−γ∆Λje
βT Z
(
γ∆Λje

βTZ
)∆Nj

∆Nj!

(1/σ2)
1/σ2

Γ (1/σ2)
e−1/σ2γγ1/σ

2−1dγ

=

(
∆Λje

βTZ
)∆Nj

(1/σ2)
1/σ2

ΠK
j=1∆Nj!Γ (1/σ2)

∫
γ

e
−
(
ΛKeβ

T Z+1/σ2
)
γ
γNK+1/σ2−1dγ

=

(
∆Λje

βTZ
)∆Nj

(1/σ2)
1/σ2

ΠK
j=1∆Nj!Γ (1/σ2)

Γ (NK + 1/σ2)(
ΛKeβ

TZ + 1/σ2
)NK+1/σ2

The log likelihood based on this model is,

l
(
β,Λ, σ2;Xi

)
=

n∑
i=1

{
K∑
j=1

∆N(i)
Ki,j

log
(
∆Λ

(i)
Ki,j

eβ
TZi

)
−
(
N(i)

Ki,Ki
+ 1/σ2

)
×

log
(
Λ

(i)
Ki,Ki

eβ
TZ + 1/σ2

)
+ 1/σ2 × log1/σ2+

logΓ
(
N(i)

Ki,Ki
+ 1/σ2

)
− logΓ

(
1/σ2

)}
(2.7)

The score function of this likelihood is the same as the sieve GEE using V
(i)
3 as the

working covariance matrix (see Appendix A).

The sieve semiparametric GEE estimator with V
(i)
1 as the covariance matrix co-

incide with the sieve semiparametric maximum pseudolikelihood estimator
(
Λ̂ps

n , β̂
ps
n

)
and the sieve semiparametric GEE estimator using V

(i)
2 as the working covariance ma-

trix is the same as the sieve semiparametric maximum likelihood estimator
(
Λ̂n, β̂n

)
.

The consistency and convergence rate of
(
Λ̂ps

n , β̂
ps
n

)
and

(
Λ̂n, β̂n

)
and the asymptotic

normality of β̂ps
n and β̂n are proved in Lu et al. (2009). The asymptotic properties of

this sieve semiparametric GEE estimator using V
(i)
3 as the covariance matrix and σ2

replaced by its consistent estimate σ̂2
n are discussed in Chapter 3.
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CHAPTER 3
ASYMPTOTIC PROPERTIES OF SPLINE-BASED GEE

ACCOUNTING FOR OVERDISPERSION

In this chapter, we apply modern empirical process theory to prove the con-

sistency, convergence rate and the asymptotic normality of our sieve GEE estimator

with V
(i)
3 as the working covariance matrix and σ2 replaced by its consistent estimate

σ̂2
n. In Section 3.1 we present some technical terms and lemmas in modern empirical

process theory. In Section 3.2 we develop three general theorems for the asymptotic

properties of the pseudo GEE (or pseudo MLE) estimator. In Section 3.3 these the-

orems are further applied to the Gamma-Frailty nonhomogeneous Poisson process

model to prove the asymptotic properties of our proposed pseudo spline-based sieve

GEE estimators.

3.1 Basic elements of modern empirical process theory

In this section we present some technical terms and lemmas in modern empir-

ical process theory from the book by van der Vaart & Wellner (1996). These results

will be used to prove the asymptotic properties of our pseudo GEE (pseudo MLE)

estimator in the next two sections.

Let X1, X2, · · · , Xn be a random sample from a probability distribution P

on a measurable space (Ω,B). For a measurable function f : X 7→ R, let Pf

denote the integral
∫
fdP , equivalently it is the expectation of f under the prob-

ability measure P , i.e., EPf (X). Let Pn denote the discrete uniform measure, i.e.,
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Pnf = 1
n

∑n
i=1 f (Xi) . It is the expectation of f under empirical measure Pn. The

empirical process Gnf is the centered and scaled version of the empirical measure,

i.e., Gnf =
√
n (Pnf − Pf) = 1√

n

∑n
i=1 (f (Xi)− Epf (Xi)) .

By the law of large numbers and central limit theorem, for a fixed function f ,

it follows

Pnf →a.s. Pf and Gnf →d N
(
0, P (f − Pf)2

)
.

provided Pf exists and Pf 2 <∞, respectively.

When dealing with the set to which parameters belong, a uniform version of

law of large numbers and central limit theorem is defined in modern empirical process

theory. A class F of measurable functions f : F 7→ R is called P-Glivenko-Cantelli if

∥Pnf − Pf∥F = sup
f∈F

∥Pnf − Pf∥ → 0 almost surely.

A class F of measurable functions f : F 7→ R is called P-Donsker if the sequence

of processes {Gnf : f ∈ F} converges in distribution to a tight limit process in the

space l∞ (F).

Whether a class of functions F is a Glivenko-Cantelli or Donsker class depends

on the size of the class. A relatively simply way to measure the size of a class F is in

terms of entropy. For any probability measure P , define Lr (P ) =
{
f :
∫
f rdP <∞

}
.

For any element of F , f , define a metric as

∥f∥Lr(P ) = (P (|f |r))1/r =
(∫

Ω

|f (x)|r dP (x)

)1/r

The covering number N (ε,F , ∥·∥) is the minimal number of balls {g : ∥g − f∥ < ε} of

radius ε needed to cover the set F . The entropy (without bracketing) is the logarithm
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of the covering number. Given two functions l and u, the bracket [l, u] is the set of

all functions f with l ≤ f ≤ u. An ε − bracket in Lr (P ) is a bracket [l, u] with

∥u− l∥Lr(P ) < ε. The bracketing number N[ ] (ε,F , Lr (P )) is the minimum number

of ε−brackets needed to cover F . The entropy with bracketing is the logarithm of the

bracketing number.

Remark: If f is in the 2ε-bracket [l, u], then it is in the ball of radius ε around

(l + u) /2. So the covering and bracketing number are related by

N (ε,F , ∥·∥) ≤ N[ ] (2ε,F , ∥·∥)

The Glivenko-Cantelli Theorem as stated in Theorem 2.4.1 in van der Vaart

& Wellner (1996) relates Glivenko-Cantelli class with the bracketing number .

Lemma 3.1. (Glivenko-Cantelli Theorem) Let F be a class of measurable functions

such that N[ ] (ε,F , L1 (P )) <∞ for every ε > 0. Then F is P-Glivenko-Cantelli.

Theorem 2.4.3 in van der Vaart & Wellner (1996) as stated in the next lemma

relate the Glivenko-Cantelli with a random entropy condition.

Lemma 3.2. Let F be a P-measurable class of measurable functions with envelope F

such that PF <∞. Let FM be the class of functions f1 {F ≤M} when f ranges over

F . if logN (ε,FM , L1 (Pn)) = op (n) for every ε and M > 0, then ∥Pn − P∥F → 0

both almost surely and in mean. In particular, F is Glivenko-Cantelli.

The bracketing number N[ ] (ε,F , Lr (P )) grows to infinity as ε ↓ 0. A sufficient

condition for a class to be Donsker is that they do not grow too fast. The following
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theorem from Section 2.5 in van der Vaart & Wellner (1996) relates P-Donsker with

the bracketing integral defined therein.

Lemma 3.3. (Donsker Theorem) Let F be a class of measurable functions such that

its bracketing integral defined as

J[ ] (δ,F , L2 (P )) =

∫ δ

0

√
logN[ ] (ε,F , L2 (P ))dε <∞

for every ε > 0. Then F is P-Donsker.

Remark: The integrand is a decreasing function of ε. So the convergence of

the integral depends on the size of the bracketing number for ε ↓ 0. Because
∫ 1

0
ε−rdε

converges for r < 1, the integral condition requires the entropy grows no faster than

the order of (1/ε)2 for a Donsker class.

In our analysis of panel count data, the baseline mean function in Equation

(1.2) is a monotone nondecreasing function. Theorem 2.7.5 in van der Vaart &Wellner

(1996), as stated below, indicates that the class of uniformly bounded, monotone

functions on the real line is Donsker, the bracketing entropy of this class is of the

order 1/ε.

Lemma 3.4. The class F of monotone functions f : R 7→ [0, 1] satisfies

logN[ ] (ε,F , Lr (Q)) ≤ K

(
1

ε

)
,

for every probability measure Q, every r ≥ 1, and a constant K that depends on r

only.
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There is a nice relationship between Donsker class and the asymptotic equicon-

tinuity. We now state Corollary 2.3.13 from van der Vaart & Wellner (1996) about

this relationship in the following lemma.

Lemma 3.5. (Semi-equicontinuity Theorem) Let F be a class of measurable func-

tions. Define a seminorm ρP on F by

ρP (f) =
(
P (f − Pf)2

)1/2
, for f ∈ F

Let

Fδ = {f − g : f, g ∈ F , ρP (f − g) < δ}

Then the following are equivalent:

1. F is P-Donsker;

2. (F , ρP ) is totally bounded and

lim
δ↓0

lim sup
n→∞

P

(
sup

ρP (f−g)<δ

|Gn (f − g)| > ε

)
= 0.

3. (F , ρP ) is totally bounded and

E
√
n ∥Pn − P∥Fδn

→ 0, for every δn → 0.

Lemma 3.4.3 in van der Vaart & Wellner (1996) is used in the proof of the

convergence rate. It involves a specific norm and a different entropy integral from

that defined above. We define ‘Bernstein norm’ as

∥f∥P,B =
(
2P
(
e|f | − 1− |f |

))1/2
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A different bracketing integral using Bernstein norm is defined as

J̃[ ] (δ,F , ∥ · ∥P,B) =
∫ δ

0

√
1 + logN[ ] (ε,F , ∥ · ∥P,B)dε

Lemma 3.6. Let F be a class of measurable functions such that ∥f∥P,B ≤ δ for every

f ∈ F . Then

EP∥Gn∥F ≤ CJ̃[ ] (δ,F , ∥ · ∥P,B)

(
1 +

J̃[ ] (δ,F , ∥ · ∥P,B)
δ2
√
n

M

)
.

In this manuscript, we work with a spline-based sieve space. Given the number

of knots, qn, a set of knots is denoted by

t = {t1 = t2 = · · · = tl < tl+1 < · · · < tmn+l = tmn+l+1 = · · · = tmn+2l}

We approximate the compact original function space by ϕl,t with order l and knots t,

where

ϕl,t = {
qn∑
i=1

aiBi :Bi, i = 1, 2, · · · , qn are the basis functions with knots t

and

qn∑
i=1

a2i ≤ δ2 for some constant δ}

To apply either the Glivenko-Cantelli theorem or the Donsker theorem, we need

to calculate the entropy numbers with bracketing of this sieve space using different

norms. This can be done by applying Lemma 5 in Shen & Wong (1994) to the spline-

based sieve space ϕl,t with different norms. We first stated Shen & Wong (1994)’s

lemma below.
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Lemma 3.7. (A metric entropy calculation). Let S be a δ−sphere in Rn, that is,

S = {x = (x1, · · · , xn) ∈ Rn :
∑n

i=1 x
2
i ≤ δ2}. Let ∥·∥L1

be the usual L1−metric in

Rn. Then logN[ ]

(
ε, S, ∥·∥L1

)
≤ cnlog

(
n1/2δ/ε

)
for ε < δ and some constant c > 0.

Following the same line of Shen & Wong (1994)’s proof, we calculate the

bracketing entropies of the δ− sphere defined in Lemma 3.7 using L2− and L∞−norm.

That is

logN[ ]

(
ε, S, ∥·∥L2

)
≤ cnlog (δ/ε)

logN[ ]

(
ε, S, ∥·∥L∞

)
≤ cnlog

(
n−1/2δ/ε

)
To calculate the entropy number of ϕl,t, we apply Lemma 3.7 replacing the δ−sphere

with the sphere defined using the spline coefficients.

Lemma 3.8. The entropy numbers of ϕl,t with L1−, L2− and L∞− norms are

bounded by Cqnlog(q
1/2
n × δ

ε
), Cqnlog(

δ
ε
) and Cqnlog

(
δ

q
1/2
n ε

)
respectively.

For the estimation of the mean function of the panel count data specified in

Equation (1.2), we approximate the space of the log of the baseline mean function,

logΛ by a subspace of ϕl,t, ψl,t, defined as

ψl,t = {
qn∑
i=1

aiBi :Bi, i = 1, 2, · · · , qn are the basis functions defined at t

a1 ≤ a2 ≤ · · · ,≤ aqn and

qn∑
i=1

a2i ≤ δ2 for some constant δ}

Obviously, the ε−entropy numbers of ψl,t with L1−, L2− and L∞− norms are also

bounded by Cqnlog(q
1/2
n × δ

ε
), Cqnlog(

δ
ε
) and Cqnlog

(
δ

q
1/2
n ε

)
respectively.
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3.2 General theorems

3.2.1 Consistency

We generalize Theorem 5.7 in van der Vaart (1998) by including a nuisance

parameter η.

Theorem 3.9. Let Mn (θ, η) and M (θ, η) be a random function and a fixed function

in an index set Θ × H respectively. Denote H◦ the neighborhood of a fixed value η0

in H. If

sup
θ:d(θ,θ0)>ε

M (θ, η) <M (θ0, η) ∀ε > 0, η ∈ H◦ (3.1)

sup
{(θ,η):θ∈Θ,η∈H◦}

|Mn (θ, η)−M (θ, η) | →p 0, (3.2)

then any sequence of estimator θ̂n with

inf
η∈H◦

(
Mn

(
θ̂n, η

)
−Mn (θ0, η)

)
≥ −op (1) (3.3)

converges in probability to θ0.

Proof. By condition (3.2), we have Mn (θ0, η) = M (θ0, η) + op (1). Together with

condition (3.3), this further implies Mn

(
θ̂n, η

)
≥ Mn (θ0, η) − op (1) = M (θ0, η) −

op (1). So we have

M (θ0, η)−M
(
θ̂n, η

)
≤ Mn

(
θ̂n, η

)
−M

(
θ̂n, η

)
+ op (1)

≤ sup
{(θ,η):θ∈Θ,η∈H◦}

|Mn (θ, η)−M (θ, η) |+ op (1) →p 0 (3.4)

By condition (3.1), for any δ > 0, we can find ε > 0 such that M (θ0, η)−M (θ, η) ≥ δ

for every θ that satisfies d (θ, θ0) > ε. So the event [d (θ, θ0) ≥ ε] is a subset of
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[M (θ0, η)−M (θ, η) ≥ δ]. In view of the inequality (3.4), we have

d
(
θ̂n, θ0

)
→p 0.

Remark: This theorem is a direct generalization of the Theorem 5.7 in van der

Vaart (1998) by including a nuisance parameter η. Condition (3.1) indicates that θ0

maximizes M (θ, η) for any given nuisance parameter η.

In applications, with the extra condition specified in condition (3.1) a two-stage

estimating procedure could be implemented. Instead of estimating (θ, η) simultane-

ously by maximizing the original likelihood Mn (θ, η), we could estimate the nuisance

parameter η first and then estimate θ by maximizing a pseudo likelihood Mn (θ, η̂n).

The estimator, θ̂n based on such a two-stage estimating procedure still converges to

the true parameter θ0. The estimation of the sieve GEE using V
(i)
3 as the working co-

variance matrix can be implemented in such a two-stage procedure. The consistency

of the estimate is established in Section 3.3.

3.2.2 Convergence Rate

Theorem 3.10 is a generalization of the Theorem 3.4.1 in van der Vaart &

Wellner (1996) with an extra nuisance parameter, η.

Theorem 3.10. Let Mn (θ, η) andMn (θ, η) be stochastic processes indexed by Θn×H.

Denote H◦ the neighborhood of a fixed value η0 in H. Let θn ∈ Θn and 0 < δn < ζ be

arbitrary, and let θ 7→ dn (θ, θn) be an arbitrary map from Θn to [0,∞). Suppose that
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for every n and δn < δ ≤ ζ

sup
δ/2<dn(θ,θn)≤δ,θ∈Θn,η∈H◦

(Mn (θ, η)−Mn (θn, η)) ≤ −Cδ2 (3.5)

E

{
sup

δ/2<dn(θ,θn)≤δ,θ∈Θn,η∈H◦
| (Mn −Mn) (θ, η)− (Mn −Mn) (θn, η) |

}
≤ C

ϕn (δ)√
n

(3.6)

for functions ϕn such that δ 7→ ϕn (δ) /δ
α is decreasing on (δn, ζ) for some α < 2 (not

depending on n). If there is a rn = C/δn such that

r2nϕn (1/rn) ≤ C
√
n for every n (3.7)

and the sequence θ̂n takes its values in Θn and satisfies

inf
η∈H◦

(
Mn

(
θ̂n, η

)
−Mn (θn, η)

)
≥ −Op

(
r−2
n

)
(3.8)

and dn

(
θ̂n, θn

)
→p 0; then

rndn

(
θ̂n, θn

)
= Op (1)

Proof. We first partition the parameter space Θn into different ‘shells’ defined by

Sj,n = {θ : 2j−1 < rndn (θ, θn) ≤ 2j} with j = 1, 2, · · · . The event
{
rndn

(
θ̂n, θn

)
> 2M

}
for someM is a subset of the event

{
θ̂n ∈ Sj,n : for some j > M

}
. So for any η ∈ H◦

we have

P
(
rnd

(
θ̂n, θn

)
> 2M

)
≤ P

(
θ̂n ∈ Sj,n for some j > M

)
≤

∑
j>M,2j<rnε

P

(
sup
θ∈Sj,n

(Mn (θ, η)−Mn (θn, η)) ≥ −Cr−2
n

)

+ P
(
2dn

(
θ̂n, θn

)
> ε
)

By the consistency condition, the last probability goes to zero as n → ∞ for any

ε > 0.
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We choose small enough ε and δ < ε such that both conditions (3.5) and (3.6)

hold for θ ∈ Sj,n. By condition (3.5), supη∈H◦ (Mn (θ, η)−Mn (θn, η)) ≤ −C22jr−2
n .

Also,

sup
θ∈Sj,n

{Mn (θ, η)−Mn (θn, η)}

= sup
θ∈Sj,n

{(Mn −Mn) (θ, η)− (Mn −Mn) (θn, η) +Mn (θ, η)−Mn (θn, η)}

≤ sup
θ∈Sj,n

{(Mn −Mn) (θ, η)− (Mn −Mn) (θn, η)}+ sup
θ∈Sj,n

{Mn (θ, η)−Mn (θn, η)}

So

P

{
sup
θ∈Sj,n

[Mn (θ, η)−Mn (θn, η)] ≥ −Cr−2
n

}

≤P

{
sup
θ∈Sj,n

[(Mn −Mn) (θ, η)− (Mn −Mn) (θn, η)]

+ sup
θ∈Sj,n

[Mn (θ, η)−Mn (θn, η)] ≥ −Cr−2
n

}

=P

{
sup
θ∈Sj,n

[(Mn −Mn) (θ, η)− (Mn −Mn) (θn, η)]

≥ − sup
θ∈Sj,n

[Mn (θ, η)−Mn (θn, η)]− Cr−2
n

}

=P

{
sup
θ∈Sj,n

((Mn −Mn) (θ, η)− (Mn −Mn) (θn, η)) ≥ C22jr−2
n

}

≤C
E∥ (Mn −Mn) (θ, η)− (Mn −Mn) (θn, η) ∥Sj,n

22j/r2n
(by Markov’s Inequality)

≤Cϕn (2
j/rn)√

n22j/r2n
(by Condition 3.6) (**)

As ϕn (δ) /δ
α is decreasing,

ϕn(2j/rn)
(2j/rn)

α ≤ ϕn(1/rn)
1/rαn

. This further implies ϕn (2
j/rn) ≤

2αjϕn (1/rn). Thus by (**) and Condition (3.8),

P

(
sup
θ∈Sj,n

(Mn (θ, η)−Mn (θn, η)) ≥ −Cr−2
n

)
≤ C

2αjϕn (1/rn)√
n22j/r2n

≤ C2(α−2)j
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Therefore,

∑
j>M,2j<rnε

P

(
sup
θ∈Sj,n

(Mn (θ, η)−Mn (θn, η)) ≥ −Cr−2
n

)
≤ C

∑
j>M

2(α−2)j

The last quantity converges to zero as M → ∞,

3.2.3 Asymptotic Normality

We generalize Theorem 6.1 in Wellner & Zhang (2007) by including an ex-

tra nuisance parameter. Given i.i.d. observations X1, X2, · · · , Xn and the extra

nuisance parameter σ2, we estimate (β,Λ) by maximizing an objective function

1
n

∑n
i=1m (β,Λ, σ2;Xi) = Pm (β,Λ, σ2;X). We follow similar notations as those in

Huang (1996) and Wellner & Zhang (2007).

Let (β,Λ) be the parameter of our primary interest. Suppose that Λη is a

parametric path in the monotone nondecreasing function space F through Λ, i.e.

Λη ∈ F , and Λη|η=0 = Λ.

Let H =
{
h : h = ∂Λη

∂η
|η=0

}
and for any h ∈ H, we define

m1

(
β,Λ, σ2;x

)
= ▽βm

(
β,Λ, σ2;x

)
≡
(
∂m (β,Λ, σ2;x)

∂β1
, · · · , ∂m (β,Λ, σ2;x)

∂βd

)T

,

m2

(
β,Λ, σ2;x

)
[h] =

∂m (β,Λη, σ
2; x)

∂η
|η=0,

m11

(
β,Λ, σ2;x

)
= ▽2

βm
(
β,Λ, σ2;x

)
,

m12

(
β,Λ, σ2;x

)
[h] =

∂m1 (β,Λη, σ
2;x)

∂η
|η=0,

m21

(
β,Λ, σ2;x

)
[h] = ▽βm2

(
β,Λ, σ2; x

)
[h],

m22

(
β,Λ, σ2;x

)
[h1, h2] =

∂2m
(
β,Ληj , σ

2; x
)

∂η2
|ηj=0,j=1,2 ≡

∂m2 (β,Λη2 , σ
2;x) [h1]

∂η2
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To establish the asymptotic distribution of the pseudo-MLE of β̂n, we need the fol-

lowing assumptions:

A1: |β̂n − β0| = op (1), and ∥Λ̂n − Λ0∥ = Op (n
−γ) for some γ > 0.

A2: Pm1 (β0,Λ0, σ
2;X) = 0 and Pm2 (β0,Λ0, σ

2;X) [h] = 0, ∀h ∈ H, σ2 ∈ R+.

where R+ is a compact set in the neighborhood of a fixed point σ2
0 in R+.

A3: For any σ2 ∈ R+, there exists a h∗σ2 =
(
h∗1,σ2 , · · · , h∗d,σ2

)T
such that

P
(
m12

(
β0,Λ0, σ

2
)
[h]−m22

(
β0,Λ0, σ

2
)
[h∗σ2 , h]

)
= 0 ∀h ∈ H

Let

A
(
β0,Λ0, σ

2
)
= −P

(
m11

(
β0,Λ0, σ

2
)
−m21

(
β0,Λ0, σ

2
)
[h∗σ2 ]

)
A4: Estimators

(
β̂n, Λ̂n

)
satisfies

sup
σ2∈R+

Pnm1

(
β̂n, Λ̂n, σ

2;X
)
= op

(
n−1/2

)
; (1)

sup
σ2∈R+

Pnm2

(
β̂n, Λ̂n, σ

2;X
)
[h∗σ2 ] = op

(
n−1/2

)
(2)

A5: For any δn ↓ 0 and C > 0,

sup
|β−β0|≤δn,∥Λ−Λ0∥≤Cn−γ ,σ2∈R+

∣∣√n (Pn − P)m1

(
β,Λ, σ2

)
−

√
n (Pn − P)m1

(
β0,Λ0, σ

2
)∣∣ = op(1)

sup
|β−β0|≤δn,∥Λ−Λ0∥≤Cn−γ ,σ2∈R+

∣∣√n (Pn − P)m2

(
β,Λ, σ2

)
[h∗σ2 ]−

√
n (Pn − P)m2

(
β0,Λ0, σ

2
)
[h∗σ2 ]

∣∣ = op(1)
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A6: For (β,Λ) at the neighborhood of (β0,Λ0):

{
(β,Λ) : |β − β0| ≤ δn, ∥Λ− Λ0∥ ≤ Cn−γ;α > 1, αγ > 1/2

}
,

sup
σ2∈R+

∣∣P (m1

(
β,Λ, σ2

)
−m1

(
β0,Λ0, σ

2
)
−m11

(
β0,Λ0, σ

2
)
(β − β0)

−m12

(
β0,Λ0, σ

2
)
[Λ̂n − Λ0]

)∣∣∣ = o (|β − β0|) +O (∥Λ− Λ0∥α)

sup
σ2∈R+

∣∣P (m2

(
β,Λ, σ2

)
[h∗σ2 ]−m2

(
β0,Λ0, σ

2
)
[h∗σ2 ]

−m21

(
β0,Λ0, σ

2
)
[h∗σ2 ] (β − β0)−m22

(
β0,Λ0, σ

2
)
[h∗σ2 , Λ̂n − Λ0]

)∣∣∣
= o (|β − β0|) +O (∥Λ− Λ0∥α)

A7: There exist m1σ and m2σ such that for any σ2
1, σ

2
2 ∈ R+,

|m1

(
β0,Λ0, σ

2
1

)
−m1

(
β0,Λ0, σ

2
2

)
| ≤ m1σ

∣∣σ2
1 − σ2

2

∣∣
|m2

(
β0,Λ0, σ

2
1

)
[h∗σ1

]−m2

(
β0,Λ0, σ

2
2

)
[h∗σ2

]| ≤ m2σ

∣∣σ2
1 − σ2

2

∣∣
and {

Pm4
1σ (X)

}1/4
<∞;

{
Pm4

2σ (X)
}1/4

<∞

Theorem 3.11. (Asymptotic Normality of the regression parameter with extra nui-

sance parameter σ2). Suppose that Assumptions A1-A6 hold. The nuisance parameter

σ2 is replaced by its estimate σ̂2
n. Then

√
n
(
β̂n − β0

)
=− A−1

(
β0,Λ0, σ̂

2
n

)
Gn

(
m1

(
β0,Λ0, σ̂

2
n

)
−m2

(
β0,Λ0, σ̂

2
n

)
[h∗σ̂2

n
]
)
+ op (1)

Furthermore, if σ̂2
n −→p σ

2
0, the above asymptotic expansion and condition A7 lead to

√
n
(
β̂n − β0

)
=− A−1

0 Gn

(
m1

(
β0,Λ0, σ

2
0

)
−m2

(
β0,Λ0, σ

2
0

)
[h∗σ2

0
]
)
+ op (1)

−→d N
(
0, A−1

0 B0A
−1
0

)
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where

A0 = A
(
β0,Λ0, σ

2
0

)
= −P

(
m11

(
β0,Λ0, σ

2
0

)
−m21

(
β0,Λ0, σ

2
0

)
[h∗σ2

0
]
)

B0 = B
(
β0,Λ0, σ

2
0

)
= P

(
m1

(
β0,Λ0, σ

2
0

)
−m2

(
β0,Λ0, σ

2
0

)
[h∗σ2

0
]
)⊗2

Proof. By Condition A1 and A5
√
n (Pn − P )

(
m1

(
β̂n, Λ̂n, σ̂

2
n

)
−m1 (β0,Λ0, σ̂

2
n)
)
= op (1)

√
n (Pn − P )

(
m2

(
β̂n, Λ̂n, σ̂

2
n

)
[h∗σ̂2

n
]−m2 (β0,Λ0, σ̂

2
n)
)
[h∗σ̂2

n
] = op (1)

Together with Condition A2 and A4, this implies
√
nPm1

(
β̂n, Λ̂n, σ̂

2
n

)
+
√
nPnm1 (β0,Λ0, σ̂

2
n) = op (1)

√
nPm2

(
β̂n, Λ̂n, σ̂

2
n

)
[h∗σ̂2

n
] +

√
nPnm2 (β0,Λ0, σ̂

2
n) [h

∗
σ̂2
n
] = op (1)

So by condition A6,

P
{
m11 (β0,Λ0, σ̂

2
n)
(
β̂n − β0

)
+m12 (β0,Λ0, σ̂

2
n) [Λ̂n − Λ0]

}
+o
(
|β̂n − β0|

)
+O (∥Λ− Λ0∥α) = −Pnm1 (β0,Λ0, σ̂

2
n) + op

(
n−1/2

)
P
{
m21 (β0,Λ0, σ̂

2
n) [h

∗
σ̂2
n
]
(
β̂n − β0

)
+m22 (β0,Λ0, σ̂

2
n) [h

∗
σ̂2
n
, Λ̂n − Λ0]

}
+o
(
|β̂n − β0|

)
+O (∥Λ− Λ0∥α) = −Pnm2 (β0,Λ0, σ̂

2
n) [h

∗
σ̂2
n
] + op

(
n−1/2

)
By condition A1, |β̂n − β0| = op (1) , ∥Λ̂n − Λ∥α = Op (n

−αγ) and αγ > 1/2, so

√
n (Pm11 (β0,Λ0, σ̂

2
n) + o (1))

(
β̂n − β0

)
+

√
nPm12 (β0,Λ0, σ̂

2
n) [Λ̂n − Λ0] = −

√
nPnm1 (β0,Λ0, σ̂

2
n) + op (1) (1)

√
n
(
Pm21 (β0,Λ0, σ̂

2
n) [h

∗
σ̂2
n
] + o (1)

)(
β̂n − β0

)
+

√
nPm22 (β0,Λ0, σ̂

2
n) [h

∗
σ̂2
n
, Λ̂n − Λ0] = −

√
nPnm2 (β0,Λ0, σ̂

2
n) [h

∗
σ̂2
n
] + op (1) (2)
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Using (1)-(2), we have

√
nP
(
m11

(
β0,Λ0, σ̂

2
n

)
−m21

(
β0,Λ0, σ̂

2
n

)
[h∗σ̂2

n
] + o (1)

)(
β̂n − β0

)
+
√
nP
(
m12

(
β0,Λ0, σ̂

2
n

)
[Λ̂n − Λ0]−m22

(
β0,Λ0, σ̂

2
n

)
[h∗σ̂2

n
, Λ̂n − Λ0]

)
=−

√
nPn

(
m1

(
β0,Λ0, σ̂

2
n

)
−m2

(
β0,Λ0, σ̂

2
n

)
[h∗σ̂2

n
]
)
+ op(1)

By condition A3,

P
(
m12

(
β0,Λ0, σ̂

2
n

)
[Λ̂n − Λ0]−m22

(
β0,Λ0, σ̂

2
n

)
[h∗σ̂2

n
, Λ̂n − Λ0]

)
= 0

So

√
nP
(
m11

(
β0,Λ0, σ̂

2
n

)
−m21

(
β0,Λ0, σ̂

2
n

)
[h∗σ̂2

n
] + o (1)

)(
β̂n − β0

)
=−

√
nPn

(
m1

(
β0,Λ0, σ̂

2
n

)
−m2

(
β0,Λ0, σ̂

2
n

)
[h∗σ̂2

n
]
)
+ op(1)

And

√
n
(
β̂n − β0

)
=− A−1

(
β0,Λ0, σ̂

2
n

)√
nPn

(
m1

(
β0,Λ0, σ̂

2
n

)
−m2

(
β0,Λ0, σ̂

2
n

)
[h∗σ̂2

n
]
)
+ op (1)

=− A−1
(
β0,Λ0, σ̂

2
n

)
Gn

(
m1

(
β0,Λ0, σ̂

2
n

)
−m2

(
β0,Λ0, σ̂

2
n

)
[h∗σ̂2

n
]
)
+ op (1)

(This is true by condition A2)

Furthermore, we can rewrite the above expansion as

√
n
(
β̂n − β0

)
=A−1

(
β0,Λ0, σ̂

2
n

){
Gn

(
m1

(
β0,Λ0, σ

2
0

)
−m2

(
β0,Λ0, σ

2
0

)
[h∗σ2

0
]
)

+Gn

(
m1

(
β0,Λ0, σ̂

2
n

)
−m1

(
β0,Λ0, σ

2
0

))
−Gn

(
m2

(
β0,Λ0, σ̂

2
n

)
[h∗σ̂2

n
]−m2

(
β0,Λ0, σ

2
0

)
[h∗σ2

0
]
)
}+ op (1)
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By the consistency, condition A7 and the dominate convergence theorem it is easily

seen that

A
(
β0,Λ0, σ̂

2
n

)
→p A

(
β0,Λ0, σ

2
0

)
Define two classes,

M̃1 =
{
m1

(
β0,Λ0, σ

2
)
−m1

(
β0,Λ0, σ

2
0

)
: |σ2 − σ2

0| ≤ η
}

M̃2 =
{
m2

(
β0,Λ0, σ

2
)
[h∗σ2 ]−m2

(
β0,Λ0, σ

2
0

)
[h∗σ2

0
] : |σ2 − σ2

0| ≤ η
}

With the compactness of R+, similar to the proof of convergence, we can construct

an ε-net,
{
σ2
1, σ

2
2, · · · , σ2

q

}
, q = O(1/ε) over R+. By the Lipschitz condition specified

in Condition A7, both M̃1 and M̃2 are indexed by σ2, so their bracket numbers are

both O(1/ε) and hence both M̃1 and M̃2 are P-Donsker. And by condition A7

(
P
(
m1

(
β0,Λ0, σ̂

2
n

)
−m1

(
β0,Λ0, σ

2
0

))2)1/2
≤
(
Pm2

1σ

∣∣σ̂2
n − σ2

0

∣∣2)1/2 (by condition A7)

≤
(
Pm4

1σ

)1/4 (
P
(
σ̂2
n − σ2

0

)4)1/4 −→ 0 (by Hölder’s inequality)

Similarly

(
P
(
m2

(
β0,Λ0, σ̂

2
n

)
[h∗σ̂2

n
]−m2

(
β0,Λ0, σ

2
0

)
[h∗σ2

0
]
)2)1/2

−→ 0

By the semi-equicontinuity of Theorem 2.8.2 in van der Vaart & Wellner (1996)

(Lemma 3.5), this implies that both classes are Donsker class. Therefore,

Gn

(
m1

(
β0,Λ0, σ̂

2
n

)
−m1

(
β0,Λ0, σ

2
0

))
= op(1)

Gn

(
m2

(
β0,Λ0, σ̂

2
n

)
[h∗σ̂2

n
]−m1

(
β0,Λ0, σ

2
0

)
[h∗σ2

0
]
)
= op(1)
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So

√
n
(
β̂n − β0

)
=A−1

0 Gn

(
m1

(
β0,Λ0, σ

2
0

)
−m2

(
β0,Λ0, σ

2
0

)
[h∗σ2

0
]
)
+ op (1)

−→d N
(
0, A−1

0 B0A
−1
0

)

3.3 Asymptotic properties of the estimates based on Gamma-Frailty

Poisson Model

In this section, we first provide the regularity conditions and some preliminary

results that are used in the proof of the asymptotic properties of our estimator and

then apply the theorems in Section 3.2 to the Gamma-Frailty Poisson model.

3.3.1 Preliminary Results

The following regularity conditions are sufficient to guarantee the asymptotic

properties, including their consistency, convergence rate and asymptotic normality

of the regression parameter, of the spline-based sieve GEE estimate with V
(i)
3 as a

covariance matrix.

Condition 1. The true parameter (β0,Λ0, σ
2
0) ∈

◦

Rd × F ×
◦

R+, where
◦

Rd and
◦

R+

are the interior of some compact set of Rd and R+ in Rd and R+, respectively.

F is the monotone nondecreasing function space.

Condition 2. The observation time TK,j : j = 1, 2, · · · , K,K = 1, 2, · · · are bounded

in interval [0, τ ] for some τ ∈ (0,∞) and P (TK,j − TK,j−1 ≥ s0) = 1 for some

constant s0. P (K ≤ k0) = 1 for some constant k0.
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Condition 3. The true baseline mean function Λ0 is p
th differentiable and bounded.

The derivative has a positive and finite lower and upper bounds in the obser-

vation interval [0, τ ].

Condition 4. For some η ∈ (0, 1), aTV ar(Z|U, V )a ≥ ηaTE(ZZT |U, V )a a.s. for all

a ∈ Rd where (U, V, Z) follows distribution µ/µ(R+2 ×Z).

Condition 5. The covariate Z is bounded, i.e., P (|Z| ≤ z0) = 1 for some constant

z0. And P (aZ ̸= c) > 0 for all compatible vectors a and c.

Condition 6. E
{
eCN(t)

}
is uniformly bounded for t ∈ S[T ] = {t : 0 < t < τ} for

some τ > 0.

Condition 7. The number of knots qn = O (nν) for 1
2p+1

< ν < 1
2
.

Given the frailty parameter, σ2, the log likelihood of Gamma-Frailty Poisson process

in Equation (2.7) can be rewritten as

l
(
β,Λ, σ2;Xi

)
=

n∑
i=1

{
Ki∑
j=1

∆N(i)
Ki,j

log
(
∆Λ

(i)
Ki,j

eβ
TZi

)
−

(
N(i)

Ki,Ki
+ 1/σ2

)
log
(
Λ

(i)
Ki,Ki

eβ
TZi + 1/σ2

)}
up to a constant. LetM (β,Λ, σ2) = Pmβ,Λ,σ2 (X) andMn (β,Λ, σ

2) = Pnmβ,Λ,σ2 (X),

where

mβ,Λ,σ2 (X) =
K∑
j=1

∆Njlog
(
∆Λje

βTZ
)
−
(
NK + 1/σ2

)
log
(
ΛKe

βTZ + 1/σ2
)

(3.9)

We define probability measures µ, γ and the corresponding metrics d and dK

in a similar manner as those used to study the asymptotic property of the maximum
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likelihood estimators in Wellner & Zhang (2007), e.g.,

µ (B1 ×B2)

=

∫
Rd

∞∑
k=1

P (K = k|Z = z)
k∑

j=1

P (Tk,j−1 ∈ B1, Tk,j ∈ B2|K = k, Z = z) dH (z)

γ (B) =

∫
Rd

∞∑
k=1

P (K = k|Z = z)P (Tk,k ∈ B|K = k, Z = z) dH (z)

Based on the measure µ and γ, define the metrics

d (θ1, θ2) =
{
|β1 − β2|2 + ∥Λ1 − Λ2∥2L2(µ)

}1/2
=

{
|β1 − β2|2 +

∫
((Λ1 (u)− Λ1 (v))− (Λ2 (u)− Λ2 (v)))

2 dµ (u, v)

}1/2

dK (θ1, θ2) =
{
|β1 − β2|2 + ∥Λ1 − Λ2∥2L2(γ)

}1/2
=

{
|β1 − β2|2 +

∫
(Λ1 (u)− Λ2 (u))

2 dγ (u)

}1/2

Lemma 3.12. Suppose Conditions 1, 3-5 hold, then

(i) M (β0,Λ0, σ
2) ≥ M (β,Λ, σ2) for any (β,Λ) ∈ Rd×F , σ2 ∈ R+ and the equality

hold iff β = β0 and Λ = Λ0 a.e with respect to µ.

(ii) There exists a constant C, such that

M
(
β0,Λ0, σ

2
)
−M

(
β,Λ, σ2

)
≥ Cd2 ((β0,Λ0) , (β,Λ))

for any (β,Λ) in a neighborhood of (β0,Λ0) and σ
2 ∈ R+.
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Proof. First, we prove the uniqueness of the maximum.

M
(
β0,Λ0, σ

2
)
−M

(
β,Λ, σ2

)
= P

(
K∑
j=1

(
△Λ0,je

βT
0 Z log

△Λ0,je
βT
0 Z

△Λjeβ
TZ

)
−
(
Λ0,Ke

βT
0 Z + 1/σ2

)
log

Λ0,Ke
βT
0 Z + 1/σ2

ΛKeβ
TZ + 1/σ2

)

= P

{
K∑
j=1

(
△Λ0,je

βT
0 Z log

△Λ0,je
βT
0 Z

△Λjeβ
TZ

)
−
(
Λ0,Ke

βT
0 Z
)
log

Λ0,Ke
βT
0 Z

ΛKeβ
TZ

}

+ P

{(
Λ0,Ke

βT
0 Z
)
log

Λ0,Ke
βT
0 Z

ΛKeβ
TZ

−
(
Λ0,Ke

βT
0 Z + 1/σ2

)
log

Λ0,Ke
βT
0 Z + 1/σ2

ΛKeβ
TZ + 1/σ2

}

= PI1 + PI2

I1 =
K∑
j=1

(
△Λ0,je

βT
0 Z log

△Λ0,je
βT
0 Z

△Λjeβ
TZ

)
−
(
Λ0,Ke

βT
0 Z
)
log

Λ0,Ke
βT
0 Z

ΛKeβ
TZ

=
K∑
j=1

(
△Λ0,je

βT
0 Z

(
log

△Λ0,je
βT
0 Z

△Λjeβ
TZ

− log
Λ0,Ke

βT
0 Z

ΛKeβ
TZ

))

=
K∑
j=1

(
△Λ0,je

βT
0 Z log

△Λ0,j/Λ0,K

△Λj/ΛK

)

= Λ0,Ke
βT
0 Z

K∑
j=1

(
△Λ0,j

Λ0,K

log
△Λ0,j/Λ0,K

△Λj/ΛK

)
∑K

j=1

(
△Λ0,j

Λ0,K
log

△Λ0,j/Λ0,K

△Λj/ΛK

)
is the Kullback-Leibler’s informationKp0 (p0, p) with p0,j =

△Λ0,j

Λ0,K
and pj =

△Λj

ΛK
for j = 1, 2, · · · , K. So, it is nonnegative and the equality hold

when
△Λ0,j

Λ0,K
=

△Λj

ΛK
, j = 1, 2, · · · , K. Therefore, PI1 ≥ 0 and PI1 = 0 iff

Λ = CΛ0 a.e. w.r.t µ. for some constant C (3.10)

I2 =
(
Λ0,Ke

βT
0 Z
)
log

Λ0,Ke
βT
0 Z

ΛKeβ
TZ

−
(
Λ0,Ke

βT
0 Z + 1/σ2

)
log

Λ0,Ke
βT
0 Z + 1/σ2

ΛKeβ
TZ + 1/σ2

For the simplicity, denote x = Λ0,Ke
βT
0 Z > 0, b = ΛKe

βTZ − Λ0,Ke
βT
0 Z , So

I2 = xlog
x

x+ b
−
(
x+ 1/σ2

)
log

x+ 1/σ2

x+ 1/σ2 + b
, x > 0, x+ b > 0
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Let f (b) = xlog x
x+b

− (x+ 1/σ2) log x+1/σ2

x+1/σ2+b
, then

∂

∂b
f (b) = − x

x+ b
+

x+ 1/σ2

x+ 1/σ2 + b
=

b× 1/σ2

(x+ b) (x+ 1/σ2 + b)

This equals to zero only when b = 0 and

∂2

∂b2
f (b) =

1/σ2 (x (x+ 1/σ2)− b2)

(x+ b)2 (x+ 1/σ2 + b)2

When −x < b <
√
x (x+ 1/σ2), ∂2

∂b2
f (b) > 0 and when b >

√
x (x+ 1/σ2), ∂2

∂b2
f (x) <

0. Thus f (b) reaches its minimum at b = 0 and f (0) = 0. So PI2 ≥ 0 and the equality

hold when

Λeβ
TZ = Λ0e

βT
0 Z a.e. w.r.t. γ.

By the argument given by Wellner & Zhang (2007), this implies that

β = β0 and Λ = Λ0 a.e. w.r.t. γ

and furthermore by Equation (3.10), it implies that

β = β0 and Λ = Λ0 a.e. w.r.t µ

Now we prove the second part of the lemma. I1 can be rewritten as following,

I1 = Λ0,Ke
βT
0 Z

K∑
j=1

(
△Λ0,j

Λ0,K

log
△Λ0,j/Λ0,K

△Λj/ΛK

)

= Λ0,Ke
βT
0 Z

K∑
j=1

[
△Λj

ΛK

(
△Λ0,j/Λ0,K

△Λj/ΛK

log
△Λ0,j/Λ0,K

△Λj/ΛK

− △Λ0,j/Λ0,K

△Λj/ΛK

+ 1

)]

≥ 1

4
Λ0,Ke

βT
0 Z

K∑
j=1

△Λj

ΛK

(
△Λ0,j/Λ0,K

△Λj/ΛK

− 1

)2

=
1

4
Λ0,Ke

βT
0 Z

K∑
j=1

1

△Λj/ΛK

(
△Λ0,j

Λ0,K

− △Λj

ΛK

)2

≥ 1

4
Λ0,Ke

βT
0 Z

K∑
j=1

(
△Λ0,j

Λ0,K

− △Λj

ΛK

)2



49

The first inequality is due to the fact that xlogx − x + 1 ≥ 1
4
(x − 1)2 for x in a

neighborhood of x = 1, the equality hold only when x = 1.

I2 can be expanded by Taylor expansion as

I2 = f(b) = f(0) + f ′(0)b+
1

2
f

′′
(ξ)b2

=
1

2
f

′′
(ξ)b2 =

1/σ2 [x (x+ 1/σ2)− ξ2]

2 (x+ ξ)2 (x+ 1/σ2 + ξ)2
b2 where |ξ| < |b|

When b is at the neighborhood of zero, e.g. |b| < |x| at almost everywhere in ϕ, the

numerator

1/σ2
[
x
(
x+ 1/σ2

)
− ξ2

]
≥ 1/σ2

[
x
(
x+ 1/σ2

)
− x2

]
=
(
1/σ2

)2
x;

And the denominator

2 (x+ ξ)2
(
x+ 1/σ2 + ξ

)2 ≤ 2(2x)2(x+ 1/σ2 + x)2 = 8x2(2x+ 1/σ2)2.

Therefore f(b) ≥ (1/σ2)
2
x

8x2(2x+1/σ2)2
b2. And

I2 = f(b) ≥ (1/σ2)
2

8Λ0,Keβ
T
0 Z
(
2Λ0,Keβ

T
0 Z + 1/σ2

)2 (Λ0Ke
βT
0 Z − ΛKe

βTZ
)2

Combine the results from I1 and I2, we have,

I1 + I2

≥1

4
Λ0,Ke

βT
0 Z

K∑
j=1

(
△Λ0,j

Λ0,K

− △Λj

ΛK

)2

+
(1/σ2)

2

8Λ0,Keβ
T
0 Z
(
2Λ0,Keβ

T
0 Z + 1/σ2

)2×
(
Λ0Ke

βT
0 Z − ΛKe

βTZ
)2

=
1

4
Λ0,Ke

βT
0 Z × 1

k2

K∑
j=1

[
k2 (θj1 − θj2)

2 + (l1 − l2)
2]
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Where we denote θj1 =
△Λ0,j

Λ0,K
, θj2 =

△Λj

ΛK
, l1 = Λ0,Ke

βT
0 Z , l2 = ΛKe

βTZ and k =
√
2KΛ0,Keβ

T
0 Z

(
2Λ0,Keβ

T
0 Z+1/σ2

)
1/σ2 .

When l1 = l2, I1+I2 ≥ 1
4
Λ0,Ke

βT
0 Z×

∑K
j=1 (θj1 − θj2)

2. Therefore P (I1 + I2) ≥

CP
∑K

j=1

(
△Λ0,je

βT
0 Z −∆Λje

βTZ
)2
. We now show that this inequality is also true

when l1 ̸= l2. We claim that for C = 1
2
∧ k2

(l1∧l2)2 , we have

k2 (θ1 − θ2)
2 + (l1 − l2)

2 ≥ C (l2θ2 − l1θ1)
2 ∀0 ≤ θ1 ≤ 1, 0 ≤ θ2 ≤ 1, l1 ≥ γ1, l2 ≥ γ2

for some γ1 > 0 and γ2 > 0. First we discuss the case when l1, l2 and θ1, θ2 are

concordant, e.g. (l1 − l2) (θ1 − θ2) ≥ 0. Without a lost of generality, we assume

l1 > l2 and θ1 ≥ θ2.

k2 (θ1 − θ2)
2 + (l1 − l2)

2 ≥ 1

2
(k (θ1 − θ2) + (l1 − l2))

2

≥ 1

2
(k (θ1 − θ2) + (l1 − l2) θ1)

2

=
1

2
(l1θ1 − l2θ2 + (k − l2) (θ1 − θ2))

2 (*)

Since

k =

√
2KΛ0,Ke

βT
0 Z
(
2Λ0,Ke

βT
0 Z + 1/σ2

)
1/σ2

≥
√
2KΛ0,Ke

βT
0 Z ≥ Λ0,Ke

βT
0 Z

≥ min
(
Λ0,Ke

βT
0 Z ,ΛKe

βTZ
)
= l2.

By (*), k2 (θ1 − θ2)
2 + (l1 − l2)

2 ≥ 1
2
(l1θ1 − l2θ2)

2.

For discordant pair, say, l1 < l2, θ1 ≥ θ2, we further discuss the claim in two

cases:

(i) When l1θ1 ≥ l2θ2 we have

θ1 − θ2 =
1

l1
(l1θ1 − l1θ2) >

1

l1
(l1θ1 − l2θ2) ≥ 0
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So (θ1 − θ2)
2 > 1

l21
(l1θ1 − l2θ2)

2.

(ii) When l1θ1 < l2θ2 we have

l2 − l1 ≥ l2θ2 − l1θ2 ≥ l2θ2 − l1θ1 > 0

So (l2 − l1)
2 > (l1θ1 − l2θ2)

2.

Therefore, k2 (θ1 − θ2)
2 + (l1 − l2)

2 ≥ C (l1θ1 − l2θ2)
2 where C = 1

2
∧ k2

(l1∧l2)2 .

So,

P (I1 + I2) ≥P

{
1

4
Λ0,Ke

βT
0 Z ×

(
1

2k2
∧ 1

(Λ0,Keβ
T
0 Z ∧ ΛKeβ

TZ)2

) K∑
j=1

(l2θj2 − l1θj1)
2

}

(k is specified as before. )

≥CP
K∑
j=1

(
△Λ0,je

βT
0 Z −∆Λje

βTZ
)2

The last inequality is due to the compactness of the parameter space of β,Λ and the

boundness of the covariates (Z,K, T ) specified in conditions 1,2 and 5.

Following the same proof as in Wellner & Zhang (2007), with condition 4, the

above inequality further implies

M
(
β0,Λ0, σ̂

2
n

)
−M

(
β,Λ, σ̂2

n

)
≥ C

{
|β − β0|2 + ∥Λ− Λ0∥2L2(µ)

}

3.3.2 Asymptotic Properties of the pseudo-MLE

Theorem 3.13. (Consistency). Suppose that conditions 1-3,5 and 7 hold and the

counting process N satisfies the proportional mean regression model. Then given σ̂2
n,
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a consistent estimate of the overdispersion parameter σ2
0,

d
((
β̂n, Λ̂n

)
, (β0,Λ0)

)
→p 0

Proof. The proof of the consistency is done by checking the three conditions specified

in Theorem 3.9 with θ = (β,Λ) and η = σ2. Condition (3.1) is automatically true

by the result of Lemma 3.12. Now we prove the uniform convergence condition

specified in condition (3.2). Let L1 = {m (β,Λ, σ2) , β ∈ Rd, logΛ ∈ F , σ2 ∈ R+}.

Since F is a class of monotone nondecreasing functions, by Theorem 2.7.5 of van der

Vaart & Wellner (1996) (Lemma 3.4), F is covered by
{
[ΛL

i ,Λ
R
i ] : i = 1, 2, · · · , l

}
,

l = O (exp(1/ε)) and ∥ΛR
i − ΛL

i ∥L1(µ) =
∫ (

ΛR
i (t)− ΛL

i (t)
)
dµ (t) < ε. Let ΛR

i,j =

ΛR
i (TK,j) and ΛL

i,j = ΛL
i (TK,j). We further define

∆ΛL
i,j = ΛL

i,j − ΛL
i,j−1; ∆ΛR

i,j = ΛR
i,j − ΛR

i,j−1;

∆ΛRL
i,j = ΛR

i,j − ΛL
i,j−1; ∆ΛLR

i,j = ΛL
i,j − ΛR

i,j−1;

We can make these bracketing functions satisfy ΛR
i − ΛL

i ≤ γ1 and ΛL
i ≥ γ2 with

γ1, γ2 > 0 for all t ∈ [0, τ ] and 1 ≤ i ≤ l. And ∆ΛLR
i,j ≥ γ3 > 0. The proof of this

claim follows the same lines as given by Wellner & Zhang (1995). Then

K∑
j=1

(
∆ΛRL

i,j −∆ΛLR
i,j

)
=

K∑
j=1

{
ΛR

i (TK,j)− ΛL
i (TK,j) + ΛR

i (TK,j−1)− ΛL
i (TK,j−1)

}
≤C

K∑
j=1

(
ΛR

i,j − ΛL
i,j

)
= C

K∑
j=1

j∑
l=1

(
∆ΛR

i,l −∆ΛL
i,l

)
=C

K∑
l=1

(K − l + 1)
(
∆ΛR

i,l −∆ΛL
i,l

)
≤ CK

K∑
l=1

(
∆ΛR

i,l −∆ΛL
i,l

)
(3.11)
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Since Rd is compact, there exists a ε-net, {β1, β2, · · · , βp}, p = O
(
1/εd

)
such that

∀β ∈ Rd, ∃s ∈ {1, 2, · · · , p} such that |βTZ−βT
s Z| ≤ ε and |exp

(
βTZ

)
−exp

(
βT
s Z
)
| ≤

Cε. Similarly by the compactness of R+, there exists another ε-net,
{
σ2
1, σ

2
2, · · · , σ2

q

}
,

q = O (1/ε) such that ∀σ2 ∈ R+, ∃t ∈ {1, 2, · · · , q} such that | 1
σ2 − 1

σ2
t
| ≤ ε.

Let

mL
i,s,t =

K∑
j=1

∆Nj

(
log∆ΛLR

i,j +
(
βT
s Z − ε

))
−
(
NK + 1/σ2

t + ε
)
log
(
ΛR

i,K

(
eβ

T
s Z + Cε

)
+ 1/σ2

t + ε
)

mR
i,s,t =

K∑
j=1

∆Nj

(
log∆ΛRL

i,j +
(
βT
s Z + ε

))
−
(
NK + 1/σ2

t − ε
)
log
(
ΛL

i,K

(
eβ

T
s Z − Cε

)
+ 1/σ2

t − ε
)

So, L1 is covered by
{
[mL

i,s,t,m
R
i,s,t], i = 1, 2, · · · , l, s = 1, 2, · · · , p, t = 1, 2, · · · , q

}
. And

fi,s,t =m
R
i,s,t −mL

i,s,t

=
K∑
j=1

∆Nj

(
log∆ΛRL

i,j − log∆ΛLR
i,j + 2ε

)
+
(
NK + 1/σ2

t + ε
)
log
(
ΛR

K

(
eβ

T
s Z + ε

)
+ 1/σ2

t + Cε
)

−
(
NK + 1/σ2

t − ε
)
log
(
ΛL

K

(
eβ

T
s Z − ε

)
+ 1/σ2

t − Cε
)

=
K∑
j=1

∆Nj

(
log∆ΛRL

i,j − log∆ΛLR
i,j + 2ε

)

+
(
NK + 1/σ2

t

)
log

(
ΛR

K

(
eβ

T
s Z + Cε

)
+ 1/σ2

t + ε
)

(
ΛL

K

(
eβT

s Z − Cε
)
+ 1/σ2

t − ε
)

+ εlog
{(

ΛR
K

(
eβ

T
s Z + Cε

)
+ 1/σ2

t + ε
)(

ΛR
K

(
eβ

T
s Z − Cε

)
+ 1/σ2

t − ε
)}
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By Taylor expansion,

log∆ΛRL
ij − log∆ΛLR

ij =
1

ξij

{
∆ΛRL

ij −∆∆ΛLR
ij

}
(Where γ3 ≤ ∆ΛLR

ij ≤ ξij ≤ ∆ΛRL
ij )

≤ CK

K∑
l=1

(
∆ΛR

il −∆ΛL
il

)
( by Inequality in (3.11))

Similarly,

log
(
ΛR

i,K

(
eβ

T
s Z + Cε

)
+ 1/σ2

t + ε
)
− log

(
ΛL

i,K

(
eβ

T
s Z − Cε

)
+ 1/σ2

t − ε
)

=
1

ξiK

{
eβ

T
s Z
(
ΛR

i,K − ΛL
i,K

)
+
(
C
(
ΛR

i,K + ΛL
i,K

)
+ 2
)
ε
}

(Where ΛL
i,K

(
eβ

T
s Z − ε

)
+ 1/σ2

t − ε ≤ ξiK ≤ ΛR
i,K

(
eβ

T
s Z + ε

)
+ 1/σ2

t + ε)

≤C1

(
ΛR

i,K − ΛL
K

)
+ C2ε (by the boundness of ΛL

i,K ,Λ
L
i,K and Z)

=C1

(
K∑
j=1

(
∆ΛR

i,j −∆ΛL
i,j

))
+ C2ε

Therefore,

|fi,s,t| ≤ C1NKK

(
K∑
j=1

(
∆ΛR

i,j −∆ΛL
i,j

)
+ 2ε

)

+
(
NK + 1/σ2

t

)(
C2

K∑
j=1

(
∆ΛR

i,j −∆ΛL
i,j

)
+ C3ε

)

+ C4εlog
{(

ΛR
K

(
eβ

T
s Z + Cε

)
+ 1/σ2

t + Cε
)(

ΛR
K

(
eβ

T
s Z − Cε

)
+ 1/σ2

t − Cε
)}

≤ C1NK

K∑
j=1

(
∆ΛR

i,j −∆ΛL
i,j

)
+ C2ε

Then P |fi,s| ≤ P
(
C1NK

∑K
j=1

(
∆ΛR

j −∆ΛL
j

)
+ C2ε

)
≤ Cε. The total number of

brackets of L1 is Cexp(1/ε) · (1/ε)d+1. By Theorem 2.4.1 of van der Vaart & Well-

ner (1996) (Lemma 3.1), L1 is a Glivenko-Cantelli. This guarantees the uniform

convergence condition (3.2) in Theorem 3.9.
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Now we prove the nearly maximization condition in 3.3 in Theorem 3.9. Ac-

cording to page 148 in de Boor (2001), there exist a Λ0,n ∈ ψl,t of order m ≥ p + 2

such that ∥Λ0,n − Λ0∥∞ ≤ Cq−p
n = O(n−pν). Since,

Mn

(
β̂n, Λ̂n, σ

2
)
−Mn

(
β0,Λ0, σ

2
)

=Mn

(
β̂n, Λ̂n, σ

2
)
−Mn

(
β0,Λ0,n, σ

2
)
+Mn

(
β0,Λ0,n, σ

2
)
−Mn

(
β0,Λ0, σ

2
)

≥Mn

(
β0,Λ0,n, σ

2
)
−Mn

(
β0,Λ0, σ

2
)

=(Pn − P )
{
m
(
β0,Λ0,n, σ

2
)
−m

(
β0,Λ0, σ

2
)}

+

P
{
m
(
β0,Λ0,n, σ

2
)
−m

(
β0,Λ0, σ

2
)}

(3.12)

Let L2 = {m (β0,Λ0, σ
2) : σ2 ∈ R+}. Similar to the proof shown before, there exists

an ε-net,
{
σ2
1, σ

2
2, · · · , σ2

q

}
, q = O (1/ε) such that ∀σ2 ∈ R+,∃t ∈ {1, 2, · · · , q} such

that | 1
σ2 − 1

σ2
t
| ≤ ε. L2 is bracketed by

[
mL

t ,m
R
t

]
with t = 1, 2, · · · , q, where

mL
t =

K∑
j=1

∆Nj

(
log△Λ0,j + βT

0 Z
)
−
(
NK + 1/σ2

t + ε
)
log
(
Λ0,K + 1/σ2

t + ε
)

mR
t =

K∑
j=1

∆Nj

(
log△Λ0,j + βT

0 Z
)
−
(
NK + 1/σ2

t − ε
)
log
(
Λ0,K + 1/σ2

t − ε
)
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So

mR
t −mL

t

=
(
NK + 1/σ2

t + ε
)
log
(
Λ0,Ke

βT
0 Z + 1/σ2

t + ε
)

−
(
NK + 1/σ2

t − ε
)
log
(
Λ0,Ke

βT
0 Z + 1/σ2

t − ε
)

=
(
NK + 1/σ2

t + ε
){

log
(
Λ0,Ke

βT
0 Z + 1/σ2

t + ε
)
− log

(
Λ0,Ke

βT
0 Z + 1/σ2

t − ε
)}

+ ε
{
log
(
Λ0,Ke

βT
0 Z + 1/σ2

t + ε
)
+ log

(
Λ0,Ke

βT
0 Z + 1/σ2

t − ε
)}

=
(
NK + 1/σ2

t + ε
) 1

ξt
2ε+ Cε

Where Λ0,K +1/σ2
t −ε ≤ ξt ≤ Λ0,Ke

βT
0 Z +1/σ2

t +ε. Then P
(
mR

t −mL
t

)
≤ Cε. So the

bracket number of L2 is C(1/ε). L2 is a Glivenko-Cantelli by the Glivenko-Cantelli

Theorem (Lemma 3.1). Since Λ0,n ∈ F and L1 is Glivenko-Cantelli, the derivation in

(3.12) further implies

Mn

(
β̂n, Λ̂n, σ

2
)
−Mn

(
β0,Λ0, σ

2
)
≥ P

(
m
(
β0,Λ0,n, σ

2
)
−m

(
β0,Λ0, σ

2
))

− op (1)
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For Λ at the neighborhood of Λ0 and any σ2,

P
(
m
(
β0,Λ0, σ

2
)
−m

(
β0,Λ, σ

2
))

=P

{
K∑
j=1

∆Λ0je
βT
0 Z log

∆Λ0j

∆Λj

−
(
Λ0Ke

βT
0 Z + 1/σ2

)
log

Λ0Ke
βT
0 Z + 1/σ2

ΛKeβ
T
0 Z + 1/σ2

}

=P

{
K∑
j=1

∆Λ0je
βT
0 Z

[
− 1

∆Λ0j

(∆Λj −∆Λ0j) +
1

ξ21j
(∆Λi −∆Λ0i)

2

]
−

(
Λ0Ke

βT
0 Z + 1/σ2

)[
− 1

Λ0Keβ
T
0 Z + 1/σ2

(
ΛKe

βT
0 Z − Λ0Ke

βT
0 Z
)

+
1

ξ2

(
ΛKe

βT
0 Z − Λ0Ke

βT
0 Z
)2]}

( where ξ1j is between ∆Λ0j and ∆Λj; ξ2 is between ∆Λ0Ke
βT
0 Z and ∆Λje

βTZ)

=P

{
K∑
j=1

∆Λ0je
βT
0 Z 1

ξ21j
(∆Λj −∆Λ0j)

2 −
(
Λ0Ke

βT
0 Z + 1/σ2

)
× 1

ξ22

(
ΛKe

βT
0 Z − Λ0Ke

βT
0 Z
)2}

≤CP

{
K∑
j=1

(∆Λj −∆Λ0j)
2

}
= Cd2 ((β0,Λ) , (β0,Λ0)) .

The inequality is due to the boundness of Λ0 and Z by condition 3 and 5. Therefore,

Pm
(
β0,Λ0,n, σ

2
)
− Pm

(
β0,Λ0, σ

2
)
≥ −Cd2 (Λ0,n,Λ0) = −O(n−2pν)

hence for any given σ2,

Mn

(
β̂n, Λ̂n, σ

2
)
−Mn

(
β0,Λ0, σ

2
)
≥ −op (1) for any σ2

By the compactness of R+, this further implies

inf
σ2∈R+

(
Mn

(
β̂n, Λ̂n, σ

2
)
−Mn

(
β0,Λ0, σ

2
))

≥ −op (1)

Therefore by applying Theorem 3.9, we have d
((
β̂n, Λ̂n

)
, (β0,Λ0)

)
→p 0.
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Theorem 3.14. (Rate of Convergence). Suppose that Conditions 1-7 hold and the

counting process N satisfies the proportional mean regression model. Then given σ̂2
n,

a consistent estimate of the overdispersion parameter σ2
0,

d
((
β̂n, Λ̂n

)
, (β0,Λ0)

)
= Op

(
n−min(pν,(1−ν)/2)

)
.

Proof. The convergence rate of the estimator is derived by checking the conditions in

Theorem 3.10. We set Θn = Θ ≡ Rd × F . Let θn = θ0 = (β0,Λ0) and dn (θ, θn) =

d (θ, θ0) as previously defined. And let η = σ2.

First, in Lemma 3.12 we have shown that when (β,Λ) is in a neighborhood of

(β0,Λ0), M (β0,Λ0, σ
2)−M (β,Λ, σ2) ≥ Cd2 ((β,Λ) , (β0,Λ0)) for any σ

2 > 0 where C

is a constant related to σ2. By the compactness of R+, this further implies

inf
σ2∈R+

(
M
(
β0,Λ0, σ

2
)
−M

(
β,Λ, σ2

))
≥ Cd2 ((β,Λ) , (β0,Λ0))

with C being a constant independent of σ2. And

inf
δ/2<d((β,β0),(Λ,Λ0))≤δ,

(β,Λ)∈Rd×F ,σ2∈R+

(
M
(
β0,Λ0, σ

2
)
−M

(
β,Λ, σ2

))
≥ Cδ2

Second, we need to find ϕn (η) such that

E sup
δ/2<d((β,β0),(Λ,Λ0))≤δ,

(β,Λ)∈Rd×F ,σ2∈R+

| (Pn − P )
[
m
(
β,Λ, σ2

)
−m

(
β0,Λ0, σ

2
)]

| ≤ C
ϕn (δ)√

n

Define a class L3 as following,

L3 = {m
(
β,Λ, σ2

)
−m

(
β0,Λ0, σ

2
)
: β ∈ Rd, logΛ ∈ F , σ2 ∈ R+,

d ((β,Λ) , (β0,Λ0)) ≤ δ}
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Again, due to its monotonicity and by Theorem 2.7.5 in van der Vaart & Wellner

(1996) (Lemma 3.4) F is covered by
{
[ΛL

i ,Λ
R
i ] : i = 1, 2, · · · , l

}
, l = O (exp(δ/ε))

and

∥ΛR
i − ΛL

i ∥L2(µ) =

∫ (
ΛR

i (t)− ΛL
i (t)

)2
dµ (t) < ε2.

Since Rd is compact, there exists a ε-net, {β1, β2, · · · , βp}, p = [M/εd] such that ∀β ∈

Rd,∃s ∈ {1, 2, · · · , p} such that |βTZ−βT
s Z| ≤ ε and |exp

(
βTZ

)
−exp

(
βT
s Z
)
| ≤ Cε.

Similarly by the compactness of R+, there exists another ε-net,
{
σ2
1, σ

2
2, · · · , σ2

q

}
,

q = O (1/ε) such that ∀σ2 ∈ R+, ∃t ∈ {1, 2, · · · , q} such that | 1
σ2 − 1

σ2
t
| ≤ ε.

Let ∆ΛRL
ij ,∆ΛLR

ij ,Λ
R
iK ,Λ

L
iK ,m

L
i,s,t,m

R
i,s,t and m

L
t ,m

R
t defined same as those in

the proof of consistency. So, L3 is covered by

{
[mL

i,s,t −mR
t ,m

R
i,s,t −mL

t ], i = 1, · · · , l, s = 1, · · · , p, t = 1, · · · , q
}
.

Denote f̃i,s,t =
(
mR

i,s,t −mL
t

)
−
(
mL

i,s,t −mR
t

)
=
(
mR

i,s,t −mL
i,s,t

)
+
(
mR

t −mL
t

)
, we have

|f̃i,s,t| ≤
∣∣mR

i,s,t −mL
i,s,t

∣∣+ ∣∣mR
t −mL

t

∣∣
≤ C1NK

K∑
j=1

(
∆ΛR

i,j −∆ΛL
i,j

)
+ C2ε ≤ CNK

|f̃i,s,t|2 ≤

(
C1NK

K∑
j=1

(
∆ΛR

i,j −∆ΛL
i,j

)
+ C2ε

)2

≤ C

{
N2

K

K∑
j=1

(
∆ΛR

i,j −∆ΛL
i,j

)2
+ ε2

}

So,

∥f̃i,s,t∥2P,B ≤ P

(∣∣∣f̃i,s,t∣∣∣2 e|f̃i,s,t|) ≤ C1P

{
eC2NK

(
N2

K

K∑
j=1

(
∆ΛR

K,j −∆ΛL
K,j

)2
+ ε2

)}

≤ CP

(
K∑
j=1

(
∆ΛR

K,j −∆ΛL
K,j

)2
+ ε2

)
≤ Cε2
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This shows the number of ε-brackets for L3 is Cexp (δ/ε) · (1/ε)d+1.

By definition,

J̃[ ] (δ,L3, ∥ · ∥P,B) =
∫ δ

0

√
1 + logN[ ] (ε,L3, ∥ · ∥P,B)dε

≤
∫ δ

0

√
1 + C (δ/ε)dε

≤ C

∫ δ

0

√
(δ/ε)dε ≤ Cδ

Then by Lemma 3.4.3 in van der Vaart & Wellner (1996) (Lemma 3.6),we have

EP∥Gn∥L3 ≤ Cϕn (δ) where ϕn (δ) = δ + 1√
n
. Therefore,

E
∣∣√n (Pn − P )

(
m
(
β,Λ, σ2

)
−m

(
β0,Λ0, σ

2
))∣∣

L3
≤ Cϕn (δ)

Third, we prove infη∈H

(
Mn

(
θ̂n, η

)
−Mn (θ0, η)

)
≥ −Op (δ

2
n). As shown in

the proof of the consistency,

Mn

(
β̂n, Λ̂n, σ

2
)
−Mn

(
β0,Λ0, σ

2
)

≥ (Pn − P )
(
m
(
β0,Λ0,n, σ

2
)
−m

(
β0,Λ0, σ

2
))

+ P
(
m
(
β0,Λ0,n, σ

2
)
−m

(
β0,Λ0, σ

2
))

=I1,n + I2,n

I1,n = (Pn − P )
(
m
(
β0,Λ0,n, σ

2
)
−m

(
β0,Λ0, σ

2
))

By Taylor expansion,

m
(
β0,Λ0,n, σ

2
)
−m

(
β0,Λ0, σ

2
)
= ṁ

(
β0, (1− ξ) Λ0 + ξΛ0,n, σ

2
)
(Λ0,n − Λ0) , 0 < ξ < 1

Define a class L4 as following,

L4 =
{
ṁ
(
β0, (1− ξ) Λ0 + ξΛ, σ2

)
(Λ− Λ0) : Λ ∈ F , σ2 ∈ R+, 0 < ξ < 1

}
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It can be similarly shown that the bracketing number of L4 is bounded by Cexp (1/ε)·

(1/ε)2. By the Donsker Theorem (Lemma 3.3), L4 is a Donsker. Because ∥Λ0,n −

Λ0∥∞ = O (n−pν) and ṁ (β0, (1− ξ) Λ0 + ξΛ0,n, σ
2) is bounded by conditions 2-4,

P
{
ṁ (β0, (1− ξ) Λ0 + ξΛ0,n, σ

2) Λ0,n−Λ0

n−pν+ε

}2

→ 0. By the asymptotic equicontinuity

(Lemma 3.5), this implies

sup
σ2∈R+

| (Pn − P )

{
ṁ
(
β0, Λ̃, σ

2
) Λ0,n − Λ0

n−pν+ε

}
| = op

(
n−1/2

)
Hence,

sup
σ2∈R+

| (Pn − P )
(
m
(
β0,Λ0,n, σ

2
)
−m

(
β0,Λ0, σ

2
))

= op
(
n−pν+εn−1/2

)
| = op

(
n−2pν

)
And as shown in the proof of consistency, for any σ2 > 0,

I2,n = P
(
m
(
β0,Λ0,n, σ

2
)
−m

(
β0,Λ0, σ

2
))

≥ −Cd2 (Λ0,n,Λ0) = O
(
n−2pν

)
Thus by the compactness of R+,

inf
σ2∈R+

Mn

(
β̂n, Λ̂n, σ

2
)
−Mn

(
β0,Λ0, σ

2
)
≥ op

(
n−2pν

)
−Op

(
n−2pν

)
= −Op

(
n−2pν

)
= −Op

(
n−2min(pν,(1−ν)/2)

)
Let rn = nmin(pν,(1−ν)/2) ≤ n(1−ν)/2. Then

r2nϕn (1/rn) = r2n
(
r−1
n + n−1/2

)
= rn + r2nn

−1/2 ≤ n1/2−ν/2 + n1−ν−1/2 < Cn1/2

So rnd ((β,Λ) , (β0,Λ0)) = Op (1).

The Gamma-Frailty Poisson likelihood for one observation is specified in Equa-
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tion (3.9). Correspondingly,

m1

(
β,Λ, σ2;X

)
=

NK − ΛKe
βTZ

ΛKeβ
TZ + 1/σ2

× 1

σ2
× Z

m2

(
β,Λ, σ2;X

)
[h] =

K∑
j=1

∆Nj

∆Λj

∆hj −
NK + 1/σ2

ΛKeβ
TZ + 1/σ2

hKe
βTZ

m11

(
β,Λ, σ2;X

)
=− NK + 1/σ2(

ΛKeβ
TZ + 1/σ2

)2 × ΛKe
βTZ × 1

σ2
ZZT

m12

(
β,Λ, σ2;X

)
[h] =− NK + 1/σ2(

ΛKeβ
TZ + 1/σ2

)2 × 1

σ2
ZhKe

βTZ

m22

(
β,Λ, σ2;X

)
[h∗σ2 , h] =−

K∑
j=1

∆Nj

△Λ2
j

∆h∗σ2,j∆h
T
j +

NK + 1/σ2(
ΛKeβ

TZ + 1/σ2
)2 (h∗σ2,Ke

βTZ
)(

hke
βTZ
)

In order to apply Theorem 3.11 to the Gamma-frailty Poisson model, we first find

h∗σ2 such that

P
(
m12

(
β0,Λ0, σ

2;X
)
[h]−m22

(
β0,Λ0, σ

2;X
)
[h∗σ2 , h]

)
= 0 ∀h ∈ H.

P
(
m12

(
β0,Λ0, σ

2;X
)
[h]−m22

(
β0,Λ0, σ

2;X
)
[h∗σ2 , h]

)
= P

{
− NK + 1/σ2(

Λ0,Keβ
T
0 Z + 1/σ2

)2 × 1

σ2
ZhKe

βT
0 Z+

K∑
j=1

∆Nj

△Λ2
0,j

∆h∗σ2,j∆hj −
NK + 1/σ2(

Λ0,Keβ
T
0 Z + 1/σ2

)2 (h∗σ2,Ke
βT
0 Z
)(

hKe
βTZ
)}

= P

{
K∑
j=1

∆Nj

△Λ2
0,j

∆h∗σ2,j∆hj −
NK + 1/σ2(

Λ0,Keβ
T
0 Z + 1/σ2

)2 (Z × 1

σ2
+ h∗σ2,Ke

βT
0 Z

)(
hKe

βT
0 Z
)}

= P

{
K∑
j=1

[
∆Nj

△Λ2
0,j

∆h∗σ2,j −
NK + 1/σ2(

Λ0,Keβ
T
0 Z + 1/σ2

)2 (Z × 1

σ2
+ h∗σ2,Ke

βT
0 Z

)
eβ

T
0 Z

]
∆hj

}

= P

{
K∑
j=1

[
eβ

T
0 Z

△Λ0,j

∆h∗σ2,j −
1(

Λ0,Keβ
T
0 Z + 1/σ2

) (Z × 1

σ2
+ h∗σ2,Ke

βT
0 Z

)
eβ

T
0 Z

]
∆hj

}
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An obvious choice of h∗ is the one that satisfies,

E

(
eβ

T
0 Z∆h∗σ2,j

△Λ0,j

|K,T

)
= E

(
Z × 1/σ2 + h∗σ2,Ke

βT
0 Z

Λ0,Keβ
T
0 Z + 1/σ2

× eβ
T
0 Z |K,T

)

where T = (TK,1, TK,2, · · · , TK,K). Set h
∗
j =

Λ0,j

E
(
eβ

T
0 Z |K,T

)a for j = 1, 2, · · · , K and set

E

(
eβ

T
0 Z

△Λ0,j

∆h∗σ2,j −
Z × 1/σ2 + h∗σ2,Ke

βT
0 Z

Λ0,Keβ
T
0 Z + 1/σ2

× eβ
T
0 Z |K,T

)
≡ 0

we have

a = E

Z × 1/σ2 +
Λ0,Keβ

T
0 Z

E
(
eβ

T
0 Z |K,T

)a
Λ0,Keβ

T
0 Z + 1/σ2

× eβ
T
0 Z |K,T



⇒a =

E

(
Z×1/σ2

Λ0,Keβ
T
0 Z+1/σ2

× eβ
T
0 Z |K,T

)
E
(
eβ

T
0 Z |K,T

)
− E

(
Λ0,Ke2β

T
0 Z

Λ0,Keβ
T
0 Z+1/σ2

|K,T
)E (eβT

0 Z |K,T
)

So

h∗σ2,j = Λ0,j × S; S =

E

(
Z×1/σ2

Λ0,Keβ
T
0 Z+1/σ2

× eβ
T
0 Z |K,T

)
E
(
eβ

T
0 Z |K,T

)
− E

(
Λ0,Ke2β

T
0 Z

Λ0,Keβ
T
0 Z+1/σ2

|K,T
) (3.13)

m∗ (β0,Λ0, σ
2
)

= m1

(
β0,Λ0, σ

2;X
)
−m2

(
β0,Λ0, σ

2;X
)
[h∗σ2 ]

=
NK − Λ0,Ke

βT
0 Z

Λ0,Keβ
T
0 Z + 1/σ2

× 1

σ2
× Z −

K∑
j=1

∆Nj

∆Λ0,j

∆h∗σ2,j +
NK + 1/σ2

Λ0,Keβ
T
0 Z + 1/σ2

h∗σ2,Ke
βT
0 Z

=
NK − Λ0,Ke

βT
0 Z

Λ0,Keβ
T
0 Z + 1/σ2

× 1

σ2
(Z − S)
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And,

A
(
β0,Λ0, σ

2
)
=P

{
−m11

(
β0,Λ0, σ

2;X
)
+m12

(
β0,Λ0, σ

2;X
)
[h∗σ2 ]

}
=P

{
NK + 1/σ2(

Λ0,Keβ
T
0 Z + 1/σ2

)2 × Λ0,Ke
βT
0 Z × 1

σ2
ZZT

− NK + 1/σ2(
Λ0,Keβ

T
0 Z + 1/σ2

)2 × 1

σ2
Zh∗Tσ2,Ke

βT
0 Z

}

=P

{
Λ0,Ke

βT
0 Z × 1/σ2

Λ0,Keβ
T
0 Z + 1/σ2

× Z (Z − S)T
}

B
(
β0,Λ0, σ

2
)
=Pm∗ (β0,Λ0, σ

2;X
)⊗2

= P


(

NK − Λ0,Ke
βT
0 Z

Λ0,Keβ
T
0 Z + 1/σ2

× 1

σ2

)2

(Z − S)⊗2


Since S can be rewritten as following,

S =

E

(
Z×1/σ2

Λ0,Keβ
T
0 Z+1/σ2

× eβ
T
0 Z |K,T

)
E
(
eβ

T
0 Z |K,T

)
− E

(
Λ0,Ke2β

T
0 Z

Λ0,Keβ
T
0 Z+1/σ2

|K,T
) =

E

(
eβ

T
0 Z×1/σ2

Λ0,Keβ
T
0 Z+1/σ2

× Z|K,T
)

E

(
eβ

T
0 Z×1/σ2

Λ0,Keβ
T
0 Z+1/σ2

|K,T
)

We have

P

{
Λ0,Ke

βT
0 Z × 1/σ2

Λ0,Keβ
T
0 Z + 1/σ2

× S (Z − S)T
}

=P

{
Λ0,Ke

βT
0 Z × 1/σ2

Λ0,Keβ
T
0 Z + 1/σ2

× SZT

}
− P

{
Λ0,Ke

βT
0 Z × 1/σ2

Λ0,Keβ
T
0 Z + 1/σ2

× S⊗2

}

=P

Λ0,KSE

(
eβ

T
0 Z × 1/σ2

Λ0,Keβ
T
0 Z + 1/σ2

× Z|K,T

)T


− P

{
Λ0,KE

(
eβ

T
0 Z × 1/σ2

Λ0,Keβ
T
0 Z + 1/σ⊗2

|K,T

)
× S⊗2

}
= 0

And

A
(
β0,Λ0, σ

2
)
=P

{
Λ0,Ke

βT
0 Z × 1/σ2

Λ0,Keβ
T
0 Z + 1/σ2

(Z − S)⊗2

}



65

When the variance of NK is correctly specified as displayed in V
(i)
3 , i.e., V ar (NK) =

Λ0,Ke
βT
0 Z
(
σ2Λ0,Ke

βT
0 Z + 1

)
, then A (β0,Λ0, σ

2) = B (β0,Λ0, σ
2). They are the infor-

mation matrix. Otherwise, the sandwich form

A
(
β0,Λ0, σ

2
)−1

B
(
β0,Λ0, σ

2
)
A
(
β0,Λ0, σ

2
)−1

gives the robust variance estimate of the regression parameter.

Theorem 3.15. (Asymptotic Normality). Suppose that Condition 1-7 hold and the

counting process N satisfies the proportional mean regression model. Then given σ̂2
n,

a consistent estimate of σ2
0, it follows that

√
n
(
β̂n − β0

)
=− A−1

0 Gn

(
m1

(
β0,Λ0, σ

2
0

)
−m2

(
β0,Λ0, σ

2
0

)
[h∗σ2

0
]
)
+ op (1)

→d N
(
0, A−1

0 B0A
−1
0

)
where

A0 = A
(
β0,Λ0, σ

2
0

)
= −P

(
m11

(
β0,Λ0, σ

2
0

)
−m21

(
β0,Λ0, σ

2
0

)
[h∗σ2

0
]
)

B0 = B
(
β0,Λ0, σ

2
0

)
= P

(
m1

(
β0,Λ0, σ

2
0

)
−m2

(
β0,Λ0, σ

2
0

)
[h∗σ2

0
]
)⊗2

Proof. We prove the asymptotic normality of β̂n by checking the assumptions in

Theorem 3.11.

1. A1 is satisfied with the consistency and convergence rate of
(
β̂n, Λ̂n

)
.

2. Pm1 (β0,Λ0, σ
2) = 0 and Pm2 (β0,Λ0, σ

2) [h] = 0 as long as the proportional

mean model in Equation (1.2) hold.

3. h∗σ2 is specified as shown in Equation (3.13).
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4. Since
(
β̂n, Λ̂n

)
is estimated by solving the estimating equations, we have

Pnm1

(
β̂n, Λ̂n, σ

2;X
)
= 0 and Pnm2

(
β̂n, Λ̂n, σ

2;X
)
[h] = 0 ∀h ∈ H

The first part of condition 4 is automatically true. To prove the second part, it

suffices to show that

I = Pn

{
m2

(
β̂n, Λ̂n, σ

2;X
)
[h∗σ2 ]−m2

(
β̂n, Λ̂n, σ

2;X
)
[Λ̂nS]

}
= op

(
n−1/2

)
With h∗σ2 specified as in Equation (3.13) we have

I =Pn

{
m2

(
β̂n, Λ̂n, σ

2;X
)
[Λ0S]−m2

(
β̂n, Λ̂n, σ

2;X
)
[Λ̂nS]

}
=Pn

{
m2

(
β̂n, Λ̂n, σ

2;X
)
[Λ0S − Λ̂nS]

}
Since Pm2 (β0,Λ0, σ

2;X) [h] = 0 for any h ∈ H. I can be decomposed as I =

I1 + I2, where

I1 = (Pn − P )
{
m2

(
β̂n, Λ̂n, σ

2;X
)
[Λ0S − Λ̂nS]

}
I2 = P

{
m2

(
β̂n, Λ̂n, σ

2;X
)
[Λ0S − Λ̂nS]−m2

(
β0,Λ0, σ

2;X
)
[Λ0S − Λ̂nS]

}
.

We show that I1 and I2 are both op
(
n−1/2

)
. Let

ϕ (X; β,Λ) =m2

(
β,Λ, σ2;X

)
[Λ0S − ΛS]

=
K∑
j=1

∆Nj

∆Λj

(∆Λ0,j −∆Λj) · S − NK + 1/σ2

ΛKeβ
TZ + 1/σ2

eβ
TZ (Λ0,K − ΛK) · S

And define a class Φ (η) as

Φ (η) =
{
ϕ : (β,Λ) ∈ Rd ×F , σ2 ∈ R+ and d ((β,Λ) , (β0,Λ0)) ≤ η

}
.
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Due to its monotonicity and by Theorem 2.7.5 in van der Vaart & Wellner

(1996) F is covered by
{
[ΛL

i ,Λ
R
i ] : i = 1, 2, · · · , l

}
, l = O (exp(η/ε)) and

∥ΛR
i − ΛL

i ∥L2(µ) =

∫ (
ΛR

i (t)− ΛL
i (t)

)2
dµ (t) < ε2.

And we can construct an ε-net, {β1, β2, · · · , βp}, p = O
(
1/εd

)
such that ∀β ∈

Rd, ∃s ∈ {1, 2, · · · , p} such that |βTZ−βT
s Z| ≤ ε and |exp

(
βTZ

)
−exp

(
βT
s Z
)
| ≤

Cε. For a fixed σ2, Φ (η) is covered by [mL
i,s,m

R
i,s], i = 1, · · · , l, s = 1, · · · p, where

mL
i,s =S

K∑
j=1

(
∆Nj

∆ΛRL
i,j

∆Λ0,j −∆Nj

)
− NK + 1/σ2

ΛL
i,K

(
eβT

s Z − Cε
)
+ 1/σ2

×

Λ0,KS
(
eβ

T
s Z + Cε

)
+
(
NK + 1/σ2

)
S − (NK + 1/σ2)S · 1/σ2

ΛL
K

(
eβT

s Z − Cε
)
+ 1/σ2

mR
i,s =S

K∑
j=1

(
∆Nj

∆ΛLR
i,j

∆Λ0,j −∆Nj

)
− NK + 1/σ2

ΛR
i,K

(
eβT

s Z + Cε
)
+ 1/σ2

×

Λ0,KS
(
eβ

T
s Z − Cε

)
+
(
NK + 1/σ2

)
S − (NK + 1/σ2)S · 1/σ2

ΛR
K

(
eβT

s Z + Cε
)
+ 1/σ2

.

∆ΛL
i,j,∆ΛR

i,j,∆ΛLR
i,j and ∆ΛRL

i,j are defined the same as those in the proof of
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consistency. And

fi,s = mR
i,s −mL

i,s

=S
K∑
j=1

∆Nj∆Λ0,j

(
1

∆ΛLR
j

− 1

∆ΛRL
j

)

+
(
NK + 1/σ2

)
Λ0,KS

(
eβ

T
s Z + Cε

ΛL
i,K

(
eβT

s Z − Cε
)
+ 1/σ2

− eβ
T
s Z − Cε

ΛR
i,K

(
eβT

s Z + Cε
)
+ 1/σ2

)

+
(
NK + 1/σ2

)
S · 1/σ2

(
1

ΛL
i,K

(
eβT

s Z − Cε
)
+ 1/σ2

− 1

ΛR
i,K

(
eβT

s Z + Cε
)
+ 1/σ2

)

=S
K∑
j=1

∆Nj∆Λ0,j

∆ΛRL
i,j −∆ΛLR

i,j

∆ΛRL
i,j ∆ΛLR

i,j

+
(
NK + 1/σ2

)
Λ0,KS×

e2β
T
s Z
(
ΛR

i,K − ΛL
i,K

)
+
(
ΛR

i,K + ΛL
i,K

)
eβ

T
s ZCε+

(
ΛR

i,K − ΛL
i,K

)
Cε2 + Cε1/σ2(

ΛL
i,K

(
eβT

s Z − Cε
)
+ 1/σ2

) (
ΛR

i,K

(
eβT

s Z + Cε
)
+ 1/σ2

)
+
(
NK + 1/σ2

)
S · 1/σ2

(
ΛR

i,K − ΛL
i,K

)
eβ

T
s Z +

(
ΛR

i,K + ΛL
i,K

)
Cε(

ΛL
i,K

(
eβT

s Z − Cε
)
+ 1/σ2

) (
ΛR

i,K

(
eβT

s Z + Cε
)
+ 1/σ2

)
≤ C1

K∑
j=1

(
∆ΛR

i,j − ΛL
i,j

)
+ C2ε

The last inequality is due to the boundness of ∆ΛLR
i,j , Λ

L
K,i from 0 as stated in the

proof of consistency and conditions 1,2 and 5. By Cauchy-Schwartz inequality,

P |fi,s|2 ≤ P

(
C1

K∑
j=1

(
∆ΛR

i,j − ΛL
i,j

)2
+ C2ε

2

)
≤ Cε2.

Therefore with a fixed σ2, Φ (η) has a finite ε-bracketing number using L2(P )−norm,

C (exp (η/ε)) · (1/ε)d. Now we allow σ2 to vary freely. By Condition 2-4,

∂

∂σ2

{
m2

(
β,Λ, σ2

)
[Λ0S − ΛS]

}
is uniformly bounded. If m2 (β,Λ, σ

2) [Λ0S − ΛS] − m2 (β0,Λ0, σ
2) [h∗ − h] is

contained in a bracket [l, u], then m2 (β,Λ, σ̃
2) [Λ0S − ΛS] is contained in the

bracket [l−Cε, u+Cε] for σ̃2 with |σ̃2 − σ2| ≤ ε. With the compactness of the



69

parameter space of σ2, we can select an ε-net,
{
σ2
1, σ

2
2, · · · , σ2

q

}
, q = O(1/ε) over

R+ and construct brackets for each σ2
i with enlarged bracket size. So the total

number of brackets of Φ (η) is Cexp (η/ε) (1/ε)d+1, So Φ (η) is a P-Donsker.

By conditions 2, 5 and 6 and Cauchy-Schwarz inequality, we have

P

{
K∑
j=1

∆Nj

∆Λj

(∆Λ0,j −∆Λj)S − NK + 1/σ2

ΛKeβ
TZ + 1/σ2

eβ
TZ (Λ0,K − ΛK)S

}2

≤P

{
K∑
j=1

∆N2
j

∆Λ2
j

(∆Λ0,j −∆Λj)
2 S2+

(
NK + 1/σ2

ΛKeβ
TZ + 1/σ2

)2

e2β
TZ (Λ0,K − ΛK)

2 S2

}

≤CP
k∑

j=1

(∆Λ0,j −∆Λj)
2 ≤ Cη2

Then

sup
f∈Φ(η)

ρP (f) ≤ sup
f∈Φ(η)

{
Pf 2

}1/2 ≤ Cη → 0 as η → 0

Due to the relationship between P-Donsker and equicontinuity, I1 = op
(
n−1/2

)
.

I2 =P

{
K∑
j=1

∆NjS
(
∆Λ0,j −∆Λ̂n,j

) ∆Λ0,j −∆Λ̂n,j

∆Λ0,j∆Λ̂n,j

−
(
NK + 1/σ2

)
×

S
(
Λ0,K − Λ̂n,K

) (Λ0,K − Λ̂n,K

)
e(β̂n+β0)

T
Z +

(
eβ̂

T
nZ − eβ

T
0 Z
)
1/σ2(

Λ̂n,Keβ̂
T
nZ + 1/σ2

) (
Λ0,Keβ

T
0 Z + 1/σ2

)


≤P

{
C1

K∑
j=1

(
∆Λ0,j −∆Λ̂n,j

)2
+ C2

(
Λ0,K − Λ̂n,K

)(
eβ

T
0 Z − eβ̂

T
nZ
)}

(by conditions 1, 2 and 5)

≤P

{
C1

K∑
j=1

(
∆Λ0,j −∆Λ̂n,j

)2
+ C2

K∑
j=1

(
β0 − β̂n

)T
ZZT

(
β0 − β̂n

)}

≤Cd2 ((β,Λ) , (β0,Λ0)) = Op

(
n−min(2pν,1−ν)

)
= op

(
n−1/2

)
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5. Define a class,

M1 =
{
m1

(
β,Λ, σ2

)
−m1

(
β0,Λ0, σ

2
)
: ∥β − β0∥ < δ, ∥Λ− Λ0∥ < δ,

β ∈ Rd,Λ ∈ F , σ2 ∈ R+
}

where

m1

(
β,Λ, σ2

)
−m1

(
β0,Λ0, σ

2
)

=
(NK + 1/σ2)Z × 1/σ2(

ΛKeβ
TZ + 1/σ2

) (
Λ0,Keβ

T
0 Z + 1/σ2

) (Λ0,Ke
βT
0 Z − ΛKe

βTZ
)

Let ΛL
i,K ,Λ

R
i,K , i = 1, 2, · · · , l, l = Cexp (1/ε) and βs, s = 1, 2, · · · , p, p = C(1/ε)d

defined same as that in the proof of the consistency. So for a fixed σ2, M1 is

covered by
[
mL

1,i,s,m
R
1,i,s

]
where

mL
1,i,s =

[
NK − ΛR

i,K

(
eβ

T
s Z + Cε

)]
ΛR

i,K

(
eβT

s Z + Cε
)
+ 1/σ2

× 1/σ2 × Z −m1

(
β0,Λ0, σ

2
)

mR
1,i,s =

[
NK − ΛL

i,K

(
eβ

T
s Z − Cε

)]
ΛL

i,K

(
eβT

s Z − Cε
)
+ 1/σ2

× 1/σ2 × Z −m1

(
β0,Λ0, σ

2
)

f1,i,s =m
R
1,i,s −mL

1,i,s =
(NK + 1/σ2)× 1/σ2 × Z(

ΛR
i,K

(
eβT

s Z + Cε
)
+ 1/σ2

) (
ΛL

i,K

(
eβT

s Z − Cε
)
+ 1/σ2

)
×
[(
ΛR

i,K − ΛL
i,K

)
eβ

T
s Z + C

(
ΛR

i,K + ΛL
i,K

)
ε
]

And

P |f1,i,s|2 = CP
[(
ΛR

K,i − ΛL
K,i

)
eβ

T
s Z +

(
ΛR

K,i + ΛL
K,i

)
Cε
]2

≤ CP
[(
ΛR

K,i − ΛL
K,i

)2
e2β

T
s Z + C

(
ΛR

K,i + ΛL
K,i

)2
ε2
]

≤ CP

[
C1

K∑
j=1

(
∆ΛR

j,i −∆ΛL
j,i

)2]
+ C2ε

2

≤ Cε2
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Therefore with fixed σ2, M1 has a bracket number Cexp (1/ε) · (1/ε)d. Now we

allow σ2 to vary freely. By Condition 2-4, ∂
∂σ2 [m1 (β,Λ, σ

2)−m1 (β0,Λ0, σ
2)] is

uniformly bounded. If m1 (β,Λ, σ
2) −m1 (β0,Λ0, σ

2) is contained in a bracket

[l, u], then m1 (β,Λ, σ̃
2)−m1 (β0,Λ0, σ̃

2) is contained in the bracket [l−ε, u+ε]

for σ̃2 with |σ̃2 − σ2| ≤ ε. With the compactness of the parameter space of

σ2, we can select an ε-net,
{
σ2
1, σ

2
2, · · · , σ2

q

}
, q = O(1/ε) over R and construct

brackets for each σ2
i with enlarged bracket size. So the total number of brackets

of M1 is Cexp (1/ε) · (1/ε)d and it is Donsker.

Also for any d1 (β,Λ, σ
2) ∈ M1

d1
(
β,Λ, σ2

)
=

(NK + 1/σ2)× 1/σ2 × Z(
ΛKeβ

TZ + 1/σ2
) (

Λ0,Keβ
T
0 Z + 1/σ2

) × (Λ0,Ke
βT
0 Z − ΛKe

βTZ
)

P
∣∣d1 (β,Λ, σ2

)∣∣2 ≤ CP
(
Λ0,Ke

βT
0 Z − ΛKe

βTZ
)2

= CP

(
K∑
j=1

∆Λ0,je
βT
0 Z −

K∑
j=1

∆Λje
βTZ

)2

= CP

(
K∑
j=1

(∆Λ0,j −∆Λj) e
βT
0 Z +

K∑
j=1

∆Λj

(
eβ

T
0 Z − eβ

TZ
))2

≤ C1P
K∑
j=1

(∆Λ0,j −∆Λj)
2 + C2δ

2 = Cδ2 → 0 as δ → 0

By Corollary 2.3.12 of van der Vaart & Wellner (1996) (Lemma 3.3), this implies

sup
|β−β0|≤δn,∥Λ−Λ0∥≤Cnν ,σ2∈R+

∣∣Gnd1
(
β,Λ, σ2;X

)∣∣ = op(1)

where ν can be chosen as the convergence rate shown in Section 3.3.
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Similarly, define a class,

M2 =
{
m2

(
β,Λ, σ2

)
[h∗σ2 ]−m2

(
β0,Λ0, σ

2
)
[h∗σ2 ] : ∥β − β0∥ < δ, ∥Λ− Λ0∥ < δ,

β ∈ Rd,Λ ∈ F , σ2 ∈ R+
}

For our specific likelihood we have

m2

(
β,Λ, σ2

)
[h∗σ2 ]−m2

(
β0,Λ0, σ

2
)
[h∗σ2 ]

=

(
K∑
j=1

∆Nj

∆Λj

△Λ0,j −
NK + 1/σ2

ΛKeβ
TZ + 1/σ2

Λ0,Ke
βTZ

)
· S − NK − Λ0,Ke

βT
0 Z

Λ0,Keβ
T
0 Z + 1/σ2

1/σ2 · S

We first discuss the case when σ2 is fixed. Using a similar argument, M2 is

covered by
[
mL

2,i,s,m
R
2,i,s

]
where

mL
2,i,s =

[
K∑
j=1

∆Nj

∆ΛR
i,j

△Λ0,j −
NK + 1/σ2

ΛL
i,K

(
eβT

s Z − Cε
)
+ 1/σ2

Λ0,K

(
eβ

T
s Z + Cε

)]
× S−

m2

(
β0,Λ0, σ

2
)
[h∗σ2 ]

mR
2,i,s =

[
K∑
j=1

∆Nj

∆ΛL
i,j

△Λ0,j −
NK + 1/σ2

ΛL
i,K

(
eβT

s Z + Cε
)
+ 1/σ2

Λ0,K

(
eβ

T
s Z − Cε

)]
× S−

m2

(
β0,Λ0, σ

2
)
[h∗σ2 ]

And

f2,i,s = mR
2,i,s −mL

2,i,s

= S

{
K∑
j=1

∆Nj△Λ0,j

(
1

∆ΛL
i,j

− 1

∆ΛR
i,j

)
+
(
NK + 1/σ2

)
Λ0,Ke

βT
s Z×(

1

ΛL
i,K

(
eβT

s Z − Cε
)
+ 1/σ2

− 1

ΛL
i,K

(
eβT

s Z + Cε
)
+ 1/σ2

)
+

(
NK + 1/σ2

)
Λ0,K

(
1

ΛL
i,K

(
eβT

s Z − Cε
)
+ 1/σ2

+
1

ΛL
i,K

(
eβT

s Z + Cε
)
+ 1/σ2

)
Cε

}

≤ C1NK

K∑
j=1

(
∆ΛR

i,j −∆ΛL
i,j

)
+ C2

(
ΛR

i,K − ΛL
i,K

)
+ C3ε
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So we have

|f2,i,s|2 ≤ C1N2
K

K∑
j=1

(
∆ΛR

i,j −∆ΛL
i,j

)2
+ C2ε

2

P |f2,i,s|2 ≤ C1P

(
K∑
j=1

(
∆ΛR

i,j −∆ΛL
i,j

)2)
+ C2ε

2 ≤ Cε2

Again, if we allow σ2 vary across R+, the bracket number with an enlarged

bracket size is bounded by Cexp (1/ε) · (1/ε)d+1 and hence M2 is P-Donsker.

For any d2 (β,Λ, σ
2) ∈ M2, we have

d2
(
β,Λ, σ2

)
=m2

(
β,Λ, σ2

)
[h∗σ2 ]−m2

(
β0,Λ0, σ

2
)
[h∗σ2 ]

=S

{(
K∑
j=1

∆Nj

∆Λj

∆Λ0,j −
NK + 1/σ2

ΛKeβ
TZ + 1/σ2

Λ0,Ke
βT
0 Z

)
−(

K∑
j=1

∆Nj

∆Λ0,j

∆Λ0,j −
NK + 1/σ2

Λ0,Keβ
T
0 Z + 1/σ2

Λ0,Ke
βT
0 Z

)}

= S

{
K∑
j=1

∆Nj∆Λ0,j
∆Λ0,j −∆Λj

∆Λ0,j∆Λj

+

(
NK + 1/σ2

)
Λ0,Ke

βT
0 Z ΛKe

βTZ − Λ0,Ke
βT
0 Z(

Λ0,Keβ
T
0 Z + 1/σ2

) (
ΛKeβ

TZ + 1/σ2
)}

≤ C2

K∑
j=1

(∆Λ0,j −∆Λj) + C2

(
ΛKe

βTZ − Λ0,Ke
βT
0 Z
)

= C2

K∑
j=1

(∆Λ0,j −∆Λj) + C2

[
(ΛK − Λ0,K) e

βTZ + Λ0,K

(
eβ

TZ − eβ
T
0 Z
)]

≤ C2

K∑
j=1

(∆Λ0,j −∆Λj) + C2 (β − β0)
T Z.
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Therefore,

P |d2
(
β,Λ, σ2

)
|2 ≤ C2P

(
K∑
j=1

(∆Λj −△Λ0,j)
2

)
+ C2P

(
(β − β0)

T ZZT (β − β0)
)

≤ Cδ2 −→ 0 as δ → 0

By the Semi-equicontinuity Theorem (Lemma 3.5), this further implies,

sup
|β−β0|≤δn,∥Λ−Λ0∥≤Cnν ,σ2∈R+

∣∣Gnd2
(
β,Λ, σ2;X

)∣∣ = op(1)

where ν can be chosen as the convergence rate shown in Section 3.3.

6. By Taylor expansion of m1 (β,Λ, σ
2;X) at the point (β0,Λ0), we have

m1

(
β,Λ, σ2;X

)
=

m1

(
β0,Λ0, σ

2;X
)
+m11

(
β0,Λ0, σ

2;X
)
(β − β0) +m12

(
β0,Λ0, σ

2;X
)
[Λ− Λ0]

− 1

2
Z
(
Nk + 1/σ2

)
1/σ2 1/σ2 − Λ0,Ke

βT
0 Z(

Λ0,Keβ
T
0 Z + 1/σ2

)3Λ0,Ke
βT
ξ Z (β − β0)

T ZZT (β − β0)

−
(
Nk + 1/σ2

)
1/σ2 1/σ2 − Λ0,Ke

βT
0 Z(

Λ0,Keβ
T
0 Z + 1/σ2

)3 eβT
ξ Z (β − β0)

T ZZT (ΛK − Λ0,K)

+
(Nk + 1/σ2)(

Λξ,Keβ
T
0 Z + 1/σ2

)3 e2βT
0 Z1/σ2Z (ΛK − Λ0,K)

2

So,

P
∣∣m1

(
β,Λ, σ2;X

)
−m1

(
β0,Λ0, σ

2;X
)
−

m11

(
β0,Λ0, σ

2;X
)
(β − β0)−m12

(
β0,Λ0, σ

2;X
)
[Λ− Λ0]

∣∣
=P

∣∣∣∣∣−1

2
Z
(
Nk + 1/σ2

)
1/σ2 1/σ2 − Λ0,Ke

βT
0 Z(

Λ0,Keβ
T
0 Z + 1/σ2

)3Λ0,Ke
βT
ξ Z (β − β0)

T ZZT (β − β0)

−
(
Nk + 1/σ2

)
1/σ2 1/σ2 − Λ0,Ke

βT
0 Z(

Λ0,Keβ
T
0 Z + 1/σ2

)3Λ0,Ke
βT
ξ Z (β − β0)

T ZZT (ΛK − Λ0,K)
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+
(NK + 1/σ2)(

Λξ,Keβ
T
0 Z + 1/σ2

)3 e2βT
0 Z1/σ2Z (ΛK − Λ0,K)

2

∣∣∣∣∣
≤C

{
|β − β0|2 + ∥Λ− Λ0∥2

}
(by conditions 1, 2, and 5)

where βξ = β0 + ξ (β − β0) and Λξ,j = Λ0,j + ξ (Λj − Λ0,j) for some 0 ≤ ξ ≤ 1.

Similarly,

m2

(
β,Λ, σ2;X

)
= m2

(
β0,Λ0, σ

2;X
)
[h∗σ2 ] +m21

(
β0,Λ0, σ

2;X
)
[h∗σ2 ] (β − β0)+

m22

(
β0,Λ0, σ

2;X
)
[h∗σ2 ,Λ− Λ0]

− 1

2

(
NK + 1/σ2

)
1/σ2 1/σ2 − Λ0,Ke

βT
0 Z(

Λ0,Keβ
T
0 Z + 1/σ2

)3 eβT
ξ Z (β − β0)

T ZZT (β − β0)h
∗
σ2,K

− 2
(
NK + 1/σ2

)
1/σ2 eβ

T
0 Z(

Λξ,Keβ
T
0 Z + 1/σ2

)3Z (β − β0) (Λ− Λ0)h
∗
σ2,K

+
K∑
j=1

∆Nj

∆Λ3
ζ,j

∆h∗σ2,j (∆Λj −∆Λ0,j)
2 − NK + 1/σ2(

Λζ,Keβ
T
0 Z + 1/σ2

)3h∗σ2,Ke
3βT

ξ Z (ΛK − Λ0,K)
2

So,

P
∣∣m2

(
β,Λ, σ2;X

)
[h∗σ2 ]−m2

(
β0,Λ0, σ

2;X
)
[h∗σ2 ]−

m21

(
β0,Λ0, σ

2;X
)
[h∗σ2 ] (β − β0) +m22

(
β0,Λ0, σ

2;X
)
[h∗σ2 ,Λ− Λ0]

∣∣
=P

∣∣∣∣∣−1

2

(
NK − 1/σ2

)
1/σ2 1/σ2 − Λ0,Ke

βT
0 Z(

Λ0,Keβ
T
0 Z + 1/σ2

)3 eβT
ξ Z (β − β0)

T Zh∗σ2 (β − β0)

− 2
(
NK + 1/σ2

)
1/σ2 2eβ

T
0 Z(

Λζ,Keβ
T
0 Z + 1/σ2

)3ZZT (β − β0) (Λ− Λ0)h
∗
σ2,K

+
K∑
j=1

∆Nj

∆Λ3
ζ,j

∆h∗σ2,j (∆Λj −∆Λ0,j)
2−

NK + 1/σ2(
Λζ,Keβ

T
0 Z + 1/σ2

)3h∗σ2,Ke
3βT

ξ Z (ΛK − Λ0,K)
2

∣∣∣∣∣
≤C

{
|β − β0|2 + ∥Λ− Λ0∥2

}
(by conditions 1, 2, and 5)
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where βξ = β0 + ζ (β − β0) and Λζ,j = Λ0,j + ζ (Λj − Λ0,j) for some 0 ≤ ζ ≤ 1.

7. Since

m1

(
β0,Λ0, σ

2;X
)
=

NK − Λ0,Ke
βT
0 Z

σ2Λ0,Keβ
T
0 Z + 1

× Z

∂

∂σ2
m1

(
β0,Λ0, σ

2;X
)
= − NK − Λ0,Ke

βT
0 Z(

σ2Λ0,Keβ
T
0 Z + 1

)2Λ0,Ke
βT
0 Z × Z

Let m1σ =

∣∣∣∣∣ NK−Λ0,Keβ
T
0 Z(

σ2Λ0,Keβ
T
0 Z+1

)2Λ0,Ke
βT
0 Z × Z

∣∣∣∣∣, then
Pm4

1σ = P


(
NK − Λ0,Ke

βT
0 Z
)4

(
σ2Λ0,Keβ

T
0 Z + 1

)8 Λ4
0,Ke

4βT
0 Z × Z4

 <∞

by the boundness of Z,Λ0 and E
{
eCN(t)

}
.

Similarly

m2

(
β0,Λ0, σ

2;X
)
=

NK − Λ0,Ke
βT
0 Z

σ2Λ0,Keβ
T
0 Z + 1

× S

∂

∂σ2
m2

(
β0,Λ0, σ

2;X
)
= − NK − Λ0,Ke

βT
0 Z(

σ2Λ0,Keβ
T
0 Z + 1

)2Λ0,Ke
βT
0 Z × S +

NK − Λ0,Ke
βT
0 Z

σ2Λ0,Keβ
T
0 Z + 1

∂S

∂σ2

Let m2σ =

∣∣∣∣∣− NK−Λ0,Keβ
T
0 Z(

σ2Λ0,Keβ
T
0 Z+1

)2Λ0,Ke
βT
0 Z × S +

NK−Λ0,Keβ
T
0 Z(

σ2Λ0,Keβ
T
0 Z+1

)2
∂S
∂σ2

∣∣∣∣∣, then
Pm4

2σ ≤CP


(
NK − Λ0,Ke

βT
0 Z
)4

(
σ2Λ0,Keβ

T
0 Z + 1

)8 Λ4
0,Ke

4βT
0 Z × S4

+

CP


(
NK − Λ0,Ke

βT
0 Z
)4

(
σ2Λ0,Keβ

T
0 Z + 1

)8 ( ∂S

∂σ2

)4


=C (I1 + I2)

I1 =P


(
NK − Λ0,Ke

βT
0 Z
)4

(
σ2Λ0,Keβ

T
0 Z + 1

)8 Λ4
0,Ke

4βT
0 Z × S4
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Again, by the boundness of Z,Λ0, I1 <∞.

I2 = P


(
NK − Λ0,Ke

βT
0 Z
)4

(
σ2Λ0,Keβ

T
0 Z + 1

)8 ( ∂S

∂σ2

)4



∂S

∂σ2
= −

E

(
eβ

T
0 Z ·Z(

σ2Λ0,Keβ
T
0 Z+1

)2Λ0,Ke
βT
0 Z |K,T

)

E

(
eβ

T
0 Z ·Z

σ2Λ0,Keβ
T
0 Z+1

|K,T
) +

E

(
eβ

T
0 Z ·Z

σ2Λ0,Keβ
T
0 Z+1

|K,T
)

(
E

(
eβ

T
0 Z

σ2Λ0,Keβ
T
0 Z+1

|K,T
))2×

E

(
eβ

T
0 Z(

σ2Λ0,Keβ
T
0 Z + 1

)2Λ0,Ke
βT
0 Z |K,T

)

Let

J1 =

E

(
eβ

T
0 Z ·Z(

σ2Λ0,Keβ
T
0 Z+1

)2Λ0,Ke
βT
0 Z |K,T

)

E

(
eβ

T
0 Z ·Z

σ2Λ0,Keβ
T
0 Z+1

|K,T
) ,

J2 =

E

(
eβ

T
0 Z ·Z

σ2Λ0,Keβ
T
0 Z+1

|K,T
)

(
E

(
eβ

T
0 Z

σ2Λ0,Keβ
T
0 Z+1

|K,T
))2 , and

J3 = E

(
eβ

T
0 Z(

σ2Λ0,Keβ
T
0 Z + 1

)2Λ0,Ke
βT
0 Z |K,T

)
.

By the boundness of Z,Λ and σ2, J1, J2 and J3 are all bounded. And
(

∂S
∂σ2

)4 ≤
CJ4

1 + C (J4
2 × J4

3 ). Together with the boundness of K and T , this further

implies I2 is bounded.

Note: In the simulation studies in Chapter 6, Zeger’s method of moment is adopted

in the estimation of the overdispersion paraemter. The definition of σ2
0 and the

consistency of σ̂2
n is delegated in Section 5.2.
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CHAPTER 4
VARIANCE ESTIMATION OF THE SPLINE-BASED SIEVE GEE

ESTIMATOR

In Chapter 2, we show that the spline-based sieve GEE using either V
(i)
1 , V

(i)
2

or V
(i)
3 coincide with the scores of different ‘likelihood’ functions. The asymptotic

normality of the estimated regression parameter calculated from the sieve GEE is

correspondingly established in Chapter 3. A consistent estimator of the asymptotic

standard error of the sieve GEE estimator is needed to make inferences.

Three different methods are discussed to estimate the asymptotic standard

error. Section 4.1 presents a projection method based on the general theorem for the

maximum likelihood estimate of the finite dimensional parameter in the presence of

a nuisance infinite-dimensional parameter. Different from the sieve GEE estimates

using V
(i)
1 or V

(i)
2 , the estimate from the sieve GEE using V

(i)
3 involves an extra

over-dispersion parameter σ2. Replacing σ2 by its consistent estimate still provides a

consistent estimate of the standard error.

Section 4.2 presents an ad hoc estimator of the standard error based on the

ordinary sandwich formula in parametric GEE model. The spline coefficients are

treated the same as the parametric regression parameters. Simulation results from

Chapter 6 show the estimates based on GEE sandwich formula provide similar result

as the estimates based on the projection algorithm from Section 4.1. Computationally,

the sandwich estimator provides an easier standard error estimate for the spline-based

sieve GEE estimator.
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Spline-base sieve approximation largely reduces the dimension of the estima-

tion, which makes it feasible to estimate the standard error of the estimated regression

parameter using the bootstrap method. Section 4.3 briefly describes the bootstrap

estimate of the standard error.

4.1 Projection Method

It is shown in Section 3.3 that the spline-based sieve GEE estimate of β0, β̂n

satisfies

√
n
(
β̂n − β0

)
→d N

(
0, A−1

0 B0

(
A−1

0

)T)
Where

A0 = A
(
β0,Λ0, σ

2
0

)
= −E

(
m11

(
β0,Λ0, σ

2
0;X

)
−m21

(
β0,Λ0, σ

2
0;X

)
[h∗σ2

0
]
)

B0 = B
(
β0,Λ0, σ

2
0

)
= E

(
m1

(
β0,Λ0, σ

2
0;X

)
−m2

(
β0,Λ0, σ

2
0;X

)
[h∗σ2

0
]
)⊗2

,

with h∗
σ2
0
=
(
h∗
σ2
0 ,1
, · · · , h∗

σ2
0 ,d

)T
, h∗

σ2
0 ,j

∈ H for j = 1, · · · , d satisfies the equation

P
(
m12

(
β0,Λ0, σ

2
0;X

)
[h]−m22

(
β0,Λ0, σ

2
0;X

)
[h∗σ2

0
, h]
)
= 0 ∀h ∈ H

It is equivalent to the projection problem of solving h∗
σ2
0 ,s

by

h∗σ2
0 ,s

= argmin
h∈H

P
(
m1,s

(
β0,Λ0, σ

2
0;X

)
−m2

(
β0,Λ0, σ

2
0;X

)
[h]
)2

for s = 1, 2, · · · , d.

(4.1)

where m1,s is the s
th component of m1.

To consistently estimate A0 and B0, we take advantage of the spline-based

sieve method again and estimate each component of h∗
σ2
0
by a set of linear spans of the
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cubic B-spline functions, e.g., ĥn,s =
∑qn

j=1 γj,sBj for s = 1, 2, · · · , d where γj,s, j =

1, · · · , qn are estimated by minimizing the empirical version of Equation (4.1), namely,

Pn

(
m1,s

(
β̂n, Λ̂n, σ̂

2
n;X

)
−m2

(
β̂n, Λ̂n, σ̂

2
n;X

)
[ĥn,s]

)2
,

where β̂n, Λ̂n and σ̂2
n are consistent estimates of β0,Λ0 and σ2

0, respectively. Since

m2 is a bilinear operator, it is equivalent to solving a least square problem and the

solution of γ
s
= (γ1,s, γ2,s, · · · , γqn,s)

T is given by

(
mT

2

(
β̂n, Λ̂n, σ̂

2
n;X

)
[B]×m2

(
β̂n, Λ̂n, σ̂

2
n;X

)
[B]
)−1

×(
mT

2

(
β̂n, Λ̂n, σ̂

2
n;X

)
[B]×m1,s

(
β̂n, Λ̂n, σ̂

2
n;X

))
where m2

(
β̂n, Λ̂n, σ̂

2
n;X

)
[B] is the n× qn design matrix with (i,m)th entry being

Ki∑
j=1

∆N(i)
Ki,j

∆Λ
(i)
Ki,j

∆Bm,Ki,j −
N(i)

Ki,Ki

Λ
(i)
Ki,Ki

eβ̂
T
nZiBm,Ki,j

where ∆N(i)
Ki,j

and ∆Λ
(i)
Ki,j

are defined as same as in Equation (2.7), Bm,Ki,j = Bm

(
T

(i)
Ki,j

)
and ∆Bm,Ki,j = Bm,Ki,j − Bm,Ki,j−1 for m = 1, 2, · · · , qn. With this estimate of h∗

σ2
0

we can empirically construct A and B respectively and show they are consistent.

Theorem 4.1. Let
(
β̂n, Λ̂n, σ̂

2
n

)
be a consistent estimate of (β0,Λ0, σ

2
0) and ĥn =(

ĥn,1, ĥn,2, · · · , ĥn,d
)T

. Under regularity conditions 1, 2 and 5, ĥn is a consistent

estimate of h∗
σ2
0
. Denote

Ân = −Pn

(
m12

(
β̂n, Λ̂n, σ̂

2
n;X

)
−m22

(
β̂n, Λ̂n, σ̂

2
n;X

)
[ĥn]
)

B̂n = Pn

(
m1

(
β̂n, Λ̂n, σ̂

2
n;X

)
−m2

(
β̂n, Λ̂n, σ̂

2
n;X

)
[ĥn]
)⊗2

.

Then Ân →p A0 and B̂n →p B0.
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Proof. Denote ρs (β,Λ, σ
2, h;X) = (m1,s (β,Λ, σ

2;X)−m2 (β,Λ, σ
2, h;X) [h])

2
, s =

1, 2, · · · , d. First, we show a class of function S = {ρs (β,Λ, σ2, h;X) : β ∈ Rd, logΛ ∈

ψl,t, σ
2 ∈ R+, h ∈ ϕl,t}, is Glivenko-Cantelli by evaluating its bracket number with

L1(Pn) norm.

For the moment, we fix σ2. By Lemma 3.8, ψl,t is covered by

{
[ΛL

i ,Λ
R
i ], i = 1, · · · , O

(
q1/2n /ε

)cqn}
and

∥∥ΛR
i − ΛL

i

∥∥
L1(µ)

=
∫ (

ΛR
i (t)− ΛL

i (t)
)
dµ (t) < ε. Similarly we can construct a

set of brackets
{
[hLl , h

R
l ] : l = 1, · · · , O

(
q
1/2
n /ε

)cqn}
and

∥∥hRl − hLl
∥∥
L1(µ)

=

∫ (
hRl (t)− hLl (t)

)
dµ (t) < ε

such that ∀h ∈ ϕl,t, h
L
l ≤ h ≤ hRl for some l. We can also construct an ε−net,

{β1, β2, · · · , βp} , p = O
(
1/εd

)
such that ∀β ∈ Rd,∃s ∈ {1, 2, · · · , p} such that∣∣βTZ − βT

s Z
∣∣ ≤ ε and

∣∣exp (βTZ
)
− exp

(
βT
s Z
)∣∣ ≤ Cε. We further define

∆ΛL
i,j = ΛL

i,j − ΛL
i,j−1; ∆ΛR

i,j = ΛR
i,j − ΛR

i,j−1;

∆ΛRL
i,j = ΛR

i,j − ΛL
i,j−1; ∆ΛLR

i,j = ΛL
i,j − ΛR

i,j−1;

Following the same lines as those in Wellner & Zhang (1995), we can make these

bracketing functions satisfy ΛR
i − ΛL

i ≤ γ1 and ΛL
i ≥ γ2 with γ1, γ2 > 0 for all

t ∈ [0, τ ] and 1 ≤ i ≤ l. And ∆ΛLR
i,j ≥ γ3 > 0. Similarly, we define

∆hLl,j = hLl,j − hLl,j−1; ∆hRl,j = hRl,j − hRl,j−1;

∆hLRl,j = hLl,j − hRl,j−1; ∆hRL
l,j = hRl,j − hLl,j−1.
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Let

ML
i,s,l =

NK − ΛR
i,K

(
eβ

T
s Z + Cε

)
ΛR

i,K

(
eβT

s Z + Cε
)
+ 1/σ2

· 1/σ2Z−[
K∑
j=1

∆Nj

∆ΛLR
i,j

∆hRL
l,j − NK + 1/σ2

ΛR
i,K

(
eβT

s Z + Cε
)
+ 1/σ2

hLl,K

(
eβ

T
s Z − Cε

)]

MR
i,s,l =

NK − ΛL
i,K

(
eβ

T
s Z − Cε

)
ΛL

i,K

(
eβT

s Z − Cε
)
+ 1/σ2

· 1/σ2Z−[
K∑
j=1

∆Nj

∆ΛRL
i,j

∆hLRl,j − NK + 1/σ2

ΛL
i,K

(
eβT

s Z + Cε
)
+ 1/σ2

hRl,K

(
eβ

T
s Z + Cε

)]

And we write MR
i,s,l −ML

i,s,l = dM1
i,s,l + dM2

i,s,l + dM3
i,s,l, where

dM1
i,s,l =

 NK − ΛL
i,K

(
eβ

T
s Z − Cε

)
ΛL

i,K

(
eβT

s Z − Cε
)
+ 1/σ2

−
NK − ΛR

i,K

(
eβ

T
s Z + Cε

)
ΛR

i,K

(
eβT

s Z + Cε
)
+ 1/σ2

 · 1/σ2Z

≤ C
[
NKe

βT
s Z
(
ΛR

i,K − ΛL
i,K

)
+ NK

(
ΛR

i,K − ΛL
i,K

)
Cε−(

ΛR
i,K − ΛL

i,K

)
eβ

T
s Z1/σ2 + C

(
ΛR

i,K − ΛL
i,K

)
1/σ2Cε

]
≤ C1

(
ΛR

i,K − ΛL
i,K

)
+ C2ε = C1

K∑
j=1

(
∆ΛR

i,j −∆ΛL
i,j

)
+ C2ε

dM2
i,s,l =

K∑
j=1

∆Nj

∆ΛLR
i,j ∆ΛRL

i,j

(
∆ΛRL

i,j ∆h
RL
l,j −∆ΛLR

i,j ∆h
LR
l,j

)
=

K∑
j=1

∆Nj

∆ΛLR
i,j ∆ΛRL

i,j

(
∆ΛRL

i,j

(
∆hRL

l,j −∆hLRl,j
)
+∆hLRl,j

(
∆ΛRL

i,j −∆ΛLR
i,j

))
≤ C1

K∑
j=1

(
∆ΛRL

i,j −∆ΛLR
i,j

)
+ C2

K∑
l=1

(
∆hRL

l,j −∆hLRl,j
)

≤ C1K

K∑
j=1

(
∆ΛR

i,j −∆ΛL
i,j

)
+ C2K

K∑
l=1

(
∆hRl,j −∆hLl,j

)
( by inequality in (3.11))
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dM3
i,s,l =

 hRl,K

(
eβ

T
s Z + Cε

)
ΛL

i,K

(
eβT

s Z − Cε
)
+ 1/σ2

−
hLl,K

(
eβ

T
s Z − Cε

)
ΛR

i,K

(
eβT

s Z + Cε
)
+ 1/σ2

(NK + 1/σ2
)

≤ C
[(
ΛR

i,Kh
R
l,K − ΛL

i,Kh
L
l,K

)
e2β

T
s Z + 2

(
ΛR

i,Kh
R
l,K + ΛL

i,Kh
L
l,K

)
eβ

T
s ZCε+(

ΛR
i,Kh

R
l,K − ΛL

i,Kh
L
l,K

)
eβ

T
s ZCε2 +

(
hRi,K − hLi,K

)
eβ

T
s Z · 1/σ2 +

(
hRi,K + hLi,K

)
· 1/σ2Cε

]
≤ C1

(
ΛR

i,K − ΛL
i,K

)
+ C2

(
hRl,K − hLl,K

)
+ C3ε

≤ C1

K∑
j=1

(
∆ΛR

i,j −∆ΛL
i,j

)
+ C2

K∑
j=1

(
∆hRl,j −∆hLl,j

)
+ C3ε

Therefore

MR
i,s,l −ML

i,s,l ≤ C1

K∑
j=1

(
∆ΛR

i,j −∆ΛL
i,j

)
+ C2

K∑
j=1

(
∆hRl,j −∆hLl,j

)
+ C3ε

(
MR

i,s,l −ML
i,s,l

)2 ≤ C1

K∑
j=1

(
∆ΛR

i,j −∆ΛL
i,j

)2
+ C2

K∑
j=1

(
∆hRl,j −∆hLl,j

)2
+ C3ε

2

Thereforem1,s (β,Λ, σ
2, h;X)−m2 (β,Λ, σ

2, h;X) [h] is covered by [ML
i,s,l,M

R
i,s,l]. When

both ML
i,s,l and MR

i,s,l are positive, (m1,s (β,Λ, σ
2, h;X)−m2 (β,Λ, σ

2, h;X) [h])
2
is

covered by [
(
ML

i,s,l

)2
,
(
MR

i,s,l

)2
].

Pn

((
ML

i,s,l

)2 − (MR
i,s,l

)2)
= Pn

((
ML

i,s,l +MR
i,s,l

) (
ML

i,s,l −MR
i,s,l

))
≤ Cε

Similarly, when bothML
i,s,l andM

R
i,s,l are negative, the brackets are [

(
MR

i,s,l

)2
,
(
ML

i,s,l

)2
].

WhenML
i,s,l < 0 < MR

i,s,l, the brackets are [0,
(
−ML

i,s,l ∨MR
i,s,l

)2
] and

(
−ML

i,s,l ∨MR
i,s,l

)2 ≤(
MR

i,s,l −ML
i,s,l

)2
. So

Pn

(
−ML

i,s,l ∨MR
i,s,l

)2 ≤ Pn

(
MR

i,s,l −ML
i,s,l

)2 ≤ Cε2 ≤ Cε

Therefore the bracket number of S with fixed σ2 is O (1/ε)d+2Cqn . Now we allow σ2

to vary. As shown before ∂
∂σ2 [m1 (β,Λ, σ

2)−m2 (β,Λ, σ
2) [h]] is uniformly bounded.
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We can find an enlarged brackets for σ̃2 with |σ̃2 − σ2| ≤ ε. With the compactness

of the parameter space of σ2, we can select an ε-net,
{
σ2
1, σ

2
2, · · · , σ2

q

}
, q = O(1/ε)

over R+ and construct brackets for each σ2
i with this enlarged bracket size. So

the total number of brackets of S is C (1/ε)d+2Cqn+1. The entropy with bracketing

logN[ ] (ε,FM , L1 (Pn)) = op (n). Also logN (ε,FM , L1 (Pn)) = op (n). By Lemma 3.2

S is a Glivenko-Cantelli. Similarly we can show S̃ = {ρs
(
β,Λ, σ2, h∗σ2 ;X

)
: β ∈

Rd, logΛ ∈ F , σ2 ∈ R+}, is a Glivenko-Cantelli as well.

Following the similar arguments used in the proof of consistency in Theorem

3.13 in Section 3.3, there exists a h∗σ2,n,s ∈ ϕl,t of order m ≥ p+2 such that ∥h∗σ2,n,s −

h∗σ2,s∥∞ = O(n−pν). By definition, ĥn,s = argminh∈ϕl,t
Pnρs

(
β̂n, Λ̂n, σ̂

2
n, h;X

)
, with

the consistency of
(
β̂n, Λ̂n, σ̂

2
n

)
, we have

Pnρs

(
β̂n, Λ̂n, σ̂

2
n, ĥn,s;X

)
− Pnρs

(
β̂n, Λ̂n, σ̂

2
n, h

∗
σ2,s;X

)
=Pnρs

(
β̂n, Λ̂n, σ̂

2
n, ĥn,s;X

)
− Pnρs

(
β̂n, Λ̂n, σ̂

2
n, h

∗
σ2,n,s;X

)
+ Pnρs

(
β̂n, Λ̂n, σ̂

2
n, h

∗
σ2,n,s;X

)
− Pnρs

(
β̂n, Λ̂n, σ̂

2
n, h

∗
σ2,s;X

)
≤ (Pn − P )

(
ρs

(
β̂n, Λ̂n, σ̂

2
n, h

∗
σ2,n,s;X

)
− ρ

(
β̂n, Λ̂n, σ̂

2
n, h

∗
σ2,s;X

))
+

P
(
ρs

(
β̂n, Λ̂n, σ̂

2
n, h

∗
σ2,n,s;X

)
− ρs

(
β̂n, Λ̂n, σ̂

2
n, h

∗
σ2,s;X

))
= op(1).

This leads to

Pnρs

(
β̂n, Λ̂n, σ̂

2
n, ĥn,s;X

)
≤ Pnρs

(
β̂n, Λ̂n, σ̂

2
n, h

∗
σ2,s;X

)
+ op(1)

= (Pn − P ) ρs

(
β̂n, Λ̂n, σ̂

2
n, h

∗
σ2,s;X

)
+ Pρs

(
β̂n, Λ̂n, σ̂

2
n, h

∗
σ2,s;X

)
+ op(1)

=Pρs

(
β̂n, Λ̂n, σ̂

2
n, h

∗
σ2,s;X

)
+ op (1) . (4.2)
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Therefore, by the Glivenko-Cantelli Theorem, consistency of
(
β̂n, Λ̂n, σ̂

2
n

)
, continuous

mapping and dominant convergence theorem (DCT),

P
(
ρs

(
β0,Λ0, σ

2
0, ĥn,s;X

)
− ρs

(
β0,Λ0, σ

2
0, h

∗
σ2,s;X

))
=P

(
ρs

(
β0,Λ0, σ

2
0, ĥn,s;X

)
− ρs

(
β̂n, Λ̂n, σ̂

2
n, ĥn,s;X

))
− P

(
ρs
(
β0,Λ0, σ

2
0, h

∗
σ2,s;X

)
−

ρs

(
β̂n, Λ̂n, σ̂

2
n, h

∗
σ2,s;X

))
+ P

(
ρs

(
β̂n, Λ̂n, σ̂

2
n, ĥn,s;X

)
− ρs

(
β̂n, Λ̂n, σ̂

2
n, h

∗
σ2,s;X

))
=op(1) + P

(
ρs

(
β̂n, Λ̂n, σ̂

2
n, ĥn,s;X

)
− ρs

(
β̂n, Λ̂n, σ̂

2
n, h

∗
σ2,s;X

))
(by continuous mapping and DCT)

≤op(1)− (Pn − P ) ρs

(
β̂n, Λ̂n, σ̂

2
n, ĥn,s;X

)
(by inequality in (4.2))

=op (1) (by Glivenko-Cantelli Theorem)

With the uniqueness of h∗
σ2
0 ,s
, the event

∥∥∥ĥn,s − h∗
σ2
0 ,s

∥∥∥
∞
> ε is a subset of the event

Pρs

(
β0,Λ0, σ

2
0, ĥn,s;X

)
> Pρs

(
β0,Λ0, σ

2
0, h

∗
σ2
0 ,s
;X
)

and the latter goes to zero in

probability as n→ ∞. Let ε→ 0 we conclude ∥ĥn,s − h∗
σ2
0 ,s
∥∞ → 0.

Denote ρ1 (β,Λ, σ
2, h;X) = (m1 (β,Λ, σ

2;X)−m2 (β,Λ, σ
2;X) [h])

⊗2
andS1 =

{ρ1 (β,Λ, σ2, h;X) : β ∈ Rd, logΛ ∈ ψl,t, σ
2 ∈ R+, h ∈ ϕl,t}. By the consistency of

β̂n, Λ̂n, σ̂
2
n and ĥn and S1 being a Glivenko-Cantelli, we can show

B̂n = Pnρ1

(
β̂n, Λ̂n, σ̂

2
n, ĥn;X

)
= (Pn − P ) ρ1

(
β̂n, Λ̂n, σ̂

2
n, ĥn;X

)
+ Pρ1

(
β̂n, Λ̂n, σ̂

2
n, ĥn;X

)
−→ Pρ1

(
β0,Λ0, σ

2
0, h

∗
σ2
0
;X
)
= B0

Let ρ2 (β,Λ, σ
2, h;X) = m12 (β,Λ;σ

2, X) −m22 (β,Λ, σ
2;X) [h], we can simi-

larly show that the class S2 = {ρ2 (β,Λ, h; σ2, X) : β ∈ Rd, logΛ ∈ ψl,t, σ
2 ∈ R+, h ∈
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ϕl,t} is Glivenko-Cantelli. And

Ân = −Pnρ2

(
β̂n, Λ̂n, σ̂

2
n, ĥn;X

)
= − (Pn − P ) ρ2

(
β̂n, Λ̂n, σ̂

2
n, ĥn;X

)
− Pρ2

(
β̂n, Λ̂n, σ̂

2
n, ĥn;X

)
−→ −Pρ2

(
β0,Λ0, σ

2
0, h

∗
σ2
0
;X
)
= A0

4.2 GEE Sandwich Estimator

In Section 4.1 we prove the consistency of the spline-based sieve estimate of

ĥn using the general theorem of the maximum likelihood estimation and the projec-

tion algorithm. However, we may not be able to use this projection method if the

generalized estimating equation does not coincide with the gradient of any objective

function. The projection algorithm treats the baseline mean function as the infinite

dimensional parameter. The estimation is complicated and another spline-based sieve

approximation is needed to estimate the ‘least favorable direction’, i.e., h∗σ2 first.

In this section, we present an alternative ad hoc method for the estimation

of the standard error of the estimated regression parameter. By treating the spline

coefficients as same as the regression parameters, we propose to estimate the standard

error of the estimated regression parameter s using the ordinary sandwich form in the

generalized estimating equation for parametric model as follows.

In a parametric regression setting, we consider the observations (yij, xij) for

times tij, j = 1, · · · , Ki, i = 1, · · · , n. yij is the outcome variable and xij is the

covariate vector at tij. Let Yi = (yi1, · · · , yiKi
)T be the outcome vector and Xi =
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(xi1, · · · , xiKi
)T be the covariate matrix for subject i. Define µi to be the expectation

of Yi and suppose that µi = h (Xiθ) with a know link function h. Denote the variance

of Yi as Vi. The GEE estimator of θ, θ̂n is the solution of the score-like equation

system given by

U (θ) =
n∑

i=1

(
∂µi

∂θ

)T

V −1
i (Yi − µi) (4.3)

Liang & Zeger (1986) showed that θ̂n is a consistent estimator of θ and
√
n
(
θ̂n − θ

)
is asymptotically multivariate normal with the covariance matrix give by a sandwich

form

lim
n→∞

V −1
1 V0V

−1
1 ,

where

V1 =
1

n

n∑
i=1

(
∂µi

∂θ

)T

V −1
i

(
∂µi

∂θ

)
,

V0 =
1

n

n∑
i=1

(
∂µi

∂θ

)T

cov (Yi)

(
∂µi

∂θ

)
.

This asymptotic variance can be estimated consistently by replacing cov (Yi) by

(Yi − µi) (Yi − µi)
T .

The proposed spline-based sieve GEE estimator,
(
β̂n, Λ̂n

)
is estimated by

solving Equation (2.6). They are similar to Equation (4.3). Heuristically, we could

treat the spline coefficients as same as the regression parameters and estimate the

standard error of β̂n by the sandwich formula given above. That is, letting θ =

(β, α)T(d+qn)×1, the standard error of β̂n could be estimated by the square root of the

first d elements of the diagonal of V −1
1 V0V

−1
1 .

Simulation results from Chapter 6 show that the standard error estimates
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based on the GEE sandwich form are similar to the estimates based on the projection

method. Hence one might use the simplified ad hoc sandwich standard error estima-

tion method instead of the projection method in practice. Theoretically, future work

is needed to prove the estimation based on the GEE sandwich form and that based

on the projection algorithm are asymptotically equivalent.

4.3 Bootstrap Method

The spline-based sieve approximation largely reduces the dimension of the es-

timation problem, which makes it feasible to estimate the standard error of β using

the bootstrap method. In this manuscript, a case resampling bootstrap method is

applied to estimate the standard error of the proposed spline-based sieve semipara-

metric GEE estimate of β. For a given dataset, the observations
(
Ki, TKi

,N(i), Zi

)
are resampled with replacement 100 times. The bootstrap standard error is then

calculated by the standard error of these 100 spline-based sieve GEE estimates of β

based on the bootstrap datasets.
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CHAPTER 5
NUMERICAL ALGORITHMS

5.1 Convex optimization algorithm with monotonicity constraint

Minimizing a smooth convex function ϕ over one of the cones C or C+ in Rn,

defined by

C = {xi, i = 1, 2, · · ·n : x1 ≤ x2 ≤ · · · ≤ xn} or C+ = {x ∈ C : x1 > 0}

is often seen in statistical problems. Nonparametric and semiparametric maximum

likelihood estimations, such as the estimations of hazard functions and distribution

functions, can fit in this framework by taking ϕ to be the negative of the corresponding

likelihood. See examples in Huang (1996), Wellner & Zhang (2000) and Wellner &

Zhang (2007). Incorporating the monotone constraints into the computing algorithm

is required to guarantee the validity of the estimation.

At any estimating iteration k, The convex function ϕ can be approximated

locally at the current estimate x(k) by a quadratic form,

ϕ̃
(
x, x(k)

)
=

1

2

(
x− f

(
x(k)
))T

W̃
(
x(k)
) (
x− f

(
x(k)
))

Where

f
(
x(k)
)
= x(k) + g

(
x(k)
)
and g

(
x(k)
)
= λW

(
x(k)
)−1 ∇ϕ

(
x(k)
)

λ is a line search parameter with 0 < λ ≤ 1 such that ϕ
(
f
(
x(k)
))

≤ ϕ
(
x(k)
)
. W̃

could be any positive definite matrix. The minimization of ϕ can be accomplished

by iteratively minimizing ϕ̃ subject to the monotone constraints, x ∈ C or x ∈ C+.
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WhenW
(
x(k)
)
is the negative of the Hessian matrix, f

(
x(k)
)
is the Newton-Raphson

update of the estimate. However the updates f
(
x(k)
)
does not automatically satisfy

the monotone constraints. We present two different algorithms: the Generalized

Rosen (GR) algorithm and the Convex Minorant (CM) algorithm to project this

update onto the convex cone, C or C+.

GR-algorithm updates the gradient of the estimates, i.e., g
(
x(k)
)
onto the

intersection of hyperplanes defined by some active constraints, which result in the

updated estimates inside the convex cone. This method is utilized by Lu et al. (2007)

and Lu et al. (2009) in the spline-based sieve maximum pseudolikelihood estimator

and the spline-based sieve maximum likelihood estimator. Section 5.1.1 discusses GR-

algorithm in detail and states its implementation in computing the spline-based sieve

GEE estimates for panel count data. CM-algorithm projects the updated f
(
x(k)
)

directly to the convex cone determined by the monotone constraints. This algo-

rithm can be viewed as a special form of the isotonic regression on a generalized

gradient update. Section 5.1.2 explains the isotonic regression in detail and presents

the implementation of the CM-algorithm developed by Jongbloed (1998) and a more

generalized hybrid algorithm of Newton-Raphson iteration and isotonic regression.

5.1.1 Generalized Rosen (GR) Algorithm

Rosen (1960) first proposed a projection method for optimization problems

with linear constraints. Jamshidian (2004) generalized Rosen’s projection method to

a general metric with the norm ∥x∥ = xTWx. The GR-algorithm is based on the



91

projections of g
(
x(k)
)
onto the intersection of hyperplanes determined by an active

set A, which is a set of indices of linear constraints. For example, A = {j1, · · · , jm}

for which xji = xji+1. A is allowed to be empty when m = 0. We start from defining

the active set A and explain the projection algorithm afterwards. For the simplicity of

the presentation, we suppress the dependence of f and g on x, denote f (k) = f
(
x(k)
)
,

g(k) = g
(
x(k)
)
and W̃ (k) = W̃

(
x(k)
)
.

Given an estimate of x in the convex cone C or C+, x(k), if g(k) is nondecreasing,

then x(k+1) satisfies the constraints automatically, no projection is needed.

If g
(k)
j > g

(k)
j+1 for some j ∈ {1, 2, · · · , n}, to ensure x

(k+1)
j ≤ x

(k+1)
j+1 , we need to

choose γj such that

x
(k)
j + γjg

(k)
j ≤ x

(k)
j+1 + γjg

(k)
j+1.

This implies

γj ≤
x
(k)
j+1 − x

(k)
j

g
(k)
j − g

(k)
j+1

If we choose

γ = min
{j:g(k)j >g

(k)
j+1}

γj,

it follows that x(k+1) ∈ C or C+ and the active set A will expand to contain an extra

index J where

J = argmin
{j:g(k)j >g

(k)
j+1}

γj.

For the projection algorithm, a matrix A, whose rows correspond to the m

active linear constraints and columns correspond to the n parameters, is defined as
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follows,

A =



0 · · · −1 1 0 · · · · · · · · · 0

0 0 · · · · · · −1 1 · · · · · · 0

...
...

...
...

...
...

...
...

...

0 0 0 0 0 0 −1 1 0


m×n

The ith row of A corresponds to the ith active linear constraint xji = xji+1 in the active

set A = {j1, · · · , jm}. It has −1 and 1 at the jthi and ji+1th element, zero elsewhere.

This matrix may be updated as the algorithm proceed and hence is denoted as A(k)

corresponding to the update x(k).

We need to project g(k) to the null space of the matrix A(k), defined as

N = {x : A(k)x = 0}

Let

P̃ (k) =

(
I −

(
W̃ (k)

)−1

A(k)T

(
A(k)

(
W̃ (k)

)−1

A(k)T

)−1

A(k)

)
It is easy to show that P̃ (k) is idempotent, that is P̃ (k)P̃ (k) = P̃ (k) and AP̃ (k) = 0

(Jamshidian 2004). Let d = x− x(k). For any d ∈ N

ϕ̃
(
x, x(k)

)
= ϕ̃

(
d, g(k)

)
=
(
d− g(k)

)T
W̃ (k)

(
d− g(k)

)
=
(
d− P̃ (k)g(k)

)T
W̃ (k)

(
d− P̃ (k)g(k)

)
+
(
P̃ (k)g(k) − g(k)

)T
W̃ (k)

(
P̃ (k)g(k) − g(k)

)
≥
(
P̃ (k)g(k) − g(k)

)T (
W̃ (k)

)(
P̃ (k)g(k) − g(k)

)
,

the equality holds at d = P̃ (k)g(k). Therefore P̃ (k) is the projection matrix, the

projected g(k) is P̃ (k)g(k) and x(k+1) = x(k) + P̃ (k)g(k). If the projected direction is not
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nondecreasing for those that are not already in the active set, γ needs to be estimated

and an additional constraint needs to be added to the active set.

GR-algorithm updates the estimates by projections onto the vertices of active

constraints. A Lagrange multiplier needs to be estimated at the end of the convergence

to ensure the final estimate is the optimal solution. If the Lagrange multiplier is

positive, the corresponding constraint is unnecessary and should be removed from

the active set. The iteration continues with the updated active set. The steps used

in GR-algorithm to solve for the spline-based sieve GEE subject to the monotone

constraints are summarized in Table 5.1. In the simulation studies in Chapter 6,

both W̃ and W are specified as the negative of the Hessian matrix.

5.1.2 Newton-Raphson/Isotonic Regression (NR/IR)

Groeneboom & Wellner (1992) first introduced the iterative convex mino-

rant (ICM) algorithm to compute nonparametric maximum likelihood estimators

(NPMLE). Jongbloed (1998) modified the ICM algorithm by inserting a line search

parameter and showed the global convergence of the modified ICM algorithm. Other

examples of applying ICM to estimation problems of censored or truncated data can

be found in Pan (1999), Wellner & Zhang (2000) and Zhang & Jamshidian (2004)

and the references therein.

ICM is based on the isotonic regression theory. Let K denote a convex cone

of C or C+. x̂ = argminx∈K ϕ (x) if and only if x̂ satisfies the Fenchel’s optimality
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Table 5.1: GR Algorithm for Spline-based Sieve GEE

Step 0: Start with an initial point θ(0) =
(
β(0), α(0)

)
that satisfies the monotone

constraint of the spline parameter, α(0) =
(
α
(0)
1 , α

(0)
2 , · · · , α(0)

qn

)
, α

(0)
1 ≤

α
(0)
2 ≤ · · · ≤ α

(0)
qn . Iterate the algorithm through the following steps until

convergence.

Step 1: Compute the feasible direction

d =

{
I − W̃−1AT

(
AW̃−1AT

)−1

A

}
W−1U (θ)

When there is no active constraint, take d =W−1U (θ).

Step 2: If the resulted direction d is not nondecreasing, compute the biggest step

γ = min
i/∈A,di>di+1

(
−αi+1 − αi

di+1 − di

)

This guarantees αi+1 + γdi+1 ≥ αi + γdi, for i = 1, 2, · · · , qn

Step 3: Looking for the smallest integer k ≥ 0 such that
∥∥∥U (θ + (1/2)k d

)∥∥∥ <
∥U (θ)∥

Step 4: If γ > (1/2)k, replace θ by θ̃ = θ + (1/2)k d and go to Step 5.

If γ ≤ (1/2)k, replace θ by θ̃ = θ + γd, modify active set A and cor-

responding working matrix A by adding the new activated linear con-

straints.

Step 5: If ∥d∥ ≥ ε for a small ε > 0, go to Step 1. Otherwise, compute the

Lagrange multiplier λ =
(
AW̃−1AT

)−1

AW−1U (θ).

i. If λi ≤ 0 for all i ∈ A, set θ̂ = θ and stop.

ii. If at least one λi > 0 for i ∈ A, remove the index corresponding to

the largest λi from A, and update A and go to Step 1.
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condition, that is,

(x̂,∇ϕ (x̂)) = 0 and (x,∇ϕ (x̂)) ≥ 0∀x ∈ K

(Robertson et al. 1988). When ϕ (x) has a quadratic form, e.g.

ϕ (x) =
1

2
(x− y)T W̃ (x− y)

and W is a diagonal matrix, the optimization reduces to estimating

x̂ = argmin
x∈K

n∑
i=1

w̃i (xi − yi)
2

where w̃i is the diagonal component of W̃ .

The solution of this optimization has a nice graphic interpretation: it is the left

derivative of the greatest convex minorant of the cumulative sum diagram, {Pi, i =

0, 1, · · · , n} where

P0 = (0, 0) and Pi =

(
i∑

l=1

w̃l,
i∑

l=1

w̃lyl

)
;

the left derivative of this diagram can be calculated by the pool adjacent violator

algorithm (PAVA) described in Robertson et al. (1988) and the minimum-lower-set

algorithm described in Brunk et al. (1957). As a matter of fact the solution can be

expressed as

x̂i = max
j<i

min
l>i

∑l
k=j w̃kyk∑l
k=j w̃k

.

In the nonparametric and semiparametric estimating problems as studied in

Wellner & Zhang (2000) and Wellner & Zhang (2007), the number of parameters

increases as the sample size increases. Storing and inverting the full high dimensional
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Hessian matrix is daunting. The ICM-algorithm is implemented in which the matrix

W in the generalized gradient update and W̃ are both diagonal with the negative

diagonal elements of Hessian matrix, i.e., W = W̃ = DH .

In the spline-based sieve estimating problems, the dimension of the estimation

increases much slower than the sample size. Instead of a diagonal matrix, the full

Hessian matrix is used in the generalized gradient update which is essentially the

Newton-Raphson update step. And a diagonal matrix W̃ = DH is used to project

the Newton-Raphson estimate onto the convex cone using the max-min formula. Ob-

viously, the such a Newton-Raphson and Isotonic Regression hybrid algorithm would

converge faster than the ICM-algorithm. The hybrid algorithm of Newton Raphson

iteration and isotonic regression (NR/IR) algorithm tailored to the spline-based sieve

GEE estimates is summarized in Table 5.2.

GR, ICM and the more general hybrid algorithm NR/IR are all based on the

quadratic approximation. GR converts the inequality constraints of the estimates to

an active set and update the active set during each iteration. ICM and NR/IR make

a good use of the geometric interpretation of the isotonic regression and estimate the

parameters subject to the monotone constraints directly. Best & Chakravarti (1990)

shows that some isotonic regression methods, e.g. PAVA (Robertson et al. 1988)

and the minimum-lower-set algorithm (Brunk et al. 1957) can also be fitted into the

unifying framework of active set approach.
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Table 5.2: NR/IR Algorithm for Spline-based Sieve GEE

Step 0: Start with an initial point θ(0) =
(
α(0), β(0)

)
that satisfies the monotone

constraint of the spline parameter,α(0) =
(
α
(0)
1 , α

(0)
2 , · · · , α(0)

qn

)
, α

(0)
1 ≤

α
(0)
2 ≤ · · · ≤ α

(0)
qn . Iterate the algorithm through the following steps until

convergence.

Step 1: Look for a smallest integer k starting from 0 such that

∥U
(
θ + (1/2)kW−1U (θ)

)
∥ < ∥U (θ) ∥

Update the current estimates θ̂(k) =
(
α̂(k), β̂(k)

)
by

θ̃(k+1) =
(
α̃(k+1), β̃(k+1)

)
= θ̂(k) + (1/2)kW−1U

(
θ(k)
)

Step 2: Project the updated updated α̃(k+1) using the isotonic regression by

α̂
(k+1)
i = argmin

x∈K

1

2

(
x− α̃(k+1)

)
W̃
(
x− α̃(k+1)

)
:

Construct the cumulative sum diagram {Pi, i = 0, 1, · · · , n} where

P0 = (0, 0) and Pi =

(
i∑

l=1

w̃l,
i∑

l=1

w̃lα̃
(k+1)
l

)
;

Calculate the left derivative of the greatest convex minorant of this cu-

mulative sum diagram by

α̂
(k+1)
i = max

j<i
min
l>i

∑l
m=j w̃mα̃

(k+1)
m∑l

m=j w̃m

Since there is no constraints on β, let β̂(k+1) = β̃(k+1).

Step 3: Check the convergence criteria: Let d = ∥θ̂(k+1) − θ̂(k)∥, if d ≥ ε for a

small ε > 0 go to Step 1. Otherwise stop the algorithm.
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5.2 Estimating the Over-Dispersion Parameter

The spline-based sieve semiparametric GEE with V
(i)
3 requires an estimator

of the over-dispersion parameter in addition to the parameters in the proportional

mean function. In Chapter 3, we show that as long as the estimated over-dispersion

parameter is consistent, the spline-based sieve GEE estimates of (β0,Λ0) still have

good asymptotic properties. In this section we discuss three different estimating

methods.

Given a consistent estimate of (β0,Λ0), the over-dispersion parameter σ2 could

be estimated by maximizing the Gamma-Frailty Poisson likelihood as shown in Equa-

tion (2.7). It will be the most efficient estimator when the data are indeed generated

from a Gamma-Frailty Poisson process. However, in order for the likelihood to be

valid, the parameter space of σ2 need to be restricted to R+. With only one addi-

tional parameter in the likelihood, we can simplify the estimation by a grid search,

in which the MLE of σ2 is the one that produces the largest likelihood.

In addition to the maximum likelihood estimator, method-of-moment is often

used in parametric regression for estimating the over-dispersion in the literature of

count data. Breslow (1984) used a method of moment to estimate this parameter by

n∑
i=1

Ki∑
j=1

(Nij − µ̂ij)
2

µ̂ij + σ2µ̂2
ij

=
n∑

i=1

Ki − p

where µ̂ij is any consistent estimate of E (N (Tij)), and p is the number of estimated

parameters. In Breslow’s method, the over-dispersion parameter can be computed
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iteratively using a self-consistent algorithm given by

σ̂2
n =

∑n
i=1

∑Ki

j=1
(Nij−µ̂ij)

2

µ̂ij(µ̂ij+σ̂−2
n )∑n

i=1Ki − p

Alternatively, σ2 could also be estimated explicitly by

σ̂2
n =

∑n
i=1

∑Ki

j=1

{
(Nij − µ̂ij)

2 − µ̂ij

}∑n
i=1

∑Ki

j=1 µ̂
2
ij

as proposed by Zeger (1988). Both Zeger’s method and Breslow’s formula could

end up with negative σ̂2. If that happens, σ̂2
n is forced to be zero. Davis et al.

(2000) pointed out that Zeger’s method underestimates the over-dispersion parameter

and provided an adjustment for the bias and showed that the modified estimator is

consistent. As a matter of fact, the Breslow’s method also underestimates the over-

dispersion parameter. In our spline-based sieve semiparametric GEE method, this

over-dispersion parameter is treated as a nuisance parameter and for the sake of

numerical simplicity, Zeger’s method is adopted in our calculations. We will show in

Lemma 5.1 that this estimate converges to a positive value in R+.

Define the following two functions,

g1 (β,Λ;X) =
K∑
j=1

(
N (tj)− Λ (tj) e

βTZ
)2

− Λ (tj) e
βTZ

g2 (β,Λ;X) =
K∑
j=1

Λ (tj) e
βTZ

and the two corresponding classes as

G1 =
{
g1 (β,Λ;X) : β ∈ Rd, logΛ ∈ F

}
G2 =

{
g2 (β,Λ;X) : β ∈ Rd, logΛ ∈ F

}
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Let θ̂
(0)
n =

(
β̂
(0)
n , Λ̂

(0)
n

)
be the estimates using the Poisson pseudolikelihood (or like-

lihood or estimates based on the GEE with frailty variance matrix V
(i)
3 using any

arbitrary fixed σ2 value), they are consistent estimates of θ0 = (β0,Λ0). Zeger’s

estimator of the overdispersion parameter can be written as σ̂2
n =

Png1
(
β̂
(0)
n ,Λ̂

(0)
n ;X

)
Png2

(
β̂
(0)
n ,Λ̂

(0)
n ;X

) .

Lemma 5.1.

σ̂2 →p σ
2
0 =

Pg1 (β0,Λ0;X)

Pg2 (β0,Λ0;X)
.

Proof. By Lemma 3.2 the bracketing number of F with L1(P ) norm is bounded by

C (exp (1/ε)). So F is covered by

{
[ΛL

i ,Λ
R
i ] : i = 1, 2, · · · , l

}
, l = O (exp (1/ε))

and ∥ΛR
i − ΛL

i ∥L1(µ) =
∫ (

ΛR
i (t)− ΛL

i (t)
)
dµ (t) < ε. Since Rd is compact, there

exists a ε-net, {β1, β2, · · · , βp}, p = O
(
1/εd

)
such that ∀β ∈ R,∃s ∈ {1, 2, · · · , p}

such that |βTZ − βT
s Z| ≤ ε and |exp

(
βTZ

)
− exp

(
βT
s Z
)
| ≤ Cε. Let

gL1,i,s =
K∑
j=1

{
N2 (tj)− (2N (tj) + 1)ΛR

i (tj)
(
eβ

T
s Z + Cε

)
+
[
ΛL

i (tj)
(
eβ

T
s Z − Cε

)]2}

gR1,i,s =
K∑
j=1

{
N2 (tj)− (2N (tj) + 1)ΛL

i (tj)
(
eβ

T
s Z − Cε

)
+
[
ΛR

i (tj)
(
eβ

T
s Z + Cε

)]2}
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G1 is covered by
{
[gL1,i,s, g

R
1,i,s] : i = 1, · · · , l; s = 1, · · · p

}
∆g1,i,s = gR1,i,s − gL1,i,s

=
K∑
j=1

{
(2N (tj) + 1)

[(
ΛR

i (tj)− ΛL
i (tj)

)
eβ

T
s Z + C

(
ΛR

i (tj) + ΛL
i (tj)

)
ε
]
+

[(
ΛR

i (tj) + ΛL
i (tj)

)
eβ

T
s Z + C

(
ΛR

i (tj)− ΛL
i (tj)

)
ε
]
×[(

ΛR
i (tj)− ΛL

i (tj)
)
eβ

T
s Z + C

(
ΛR

i (tj) + ΛL
i (tj)

)
ε
]}

P |∆g1,i,s| ≤ C1P
K∑
j=1

[
ΛR

i (tj)− ΛL
i (tj)

]
+ C2ε ≤ Cε

Similarly,

gL2,i,s =
K∑
j=1

[
ΛL

i (tj)
(
eβ

T
s Z − Cε

)]
; gR2,i,s =

K∑
j=1

[
ΛL

i (tj)
(
eβ

T
s Z − Cε

)]

G2 is covered by
{
[gL2,i,s, g

R
2,i,s] : i = 1, · · · , l; s = 1, · · · p

}
.

∆g2,i,s = gR2,i,s − gL2,i,s =
K∑
j=1

[(
ΛR

i (tj)− ΛL
i (tj)

)
eβ

T
s Z + C

(
ΛR

i (tj) + ΛL
i (tj)

)
ε
]

P |∆g2,i,s| ≤ C1P
K∑
j=1

[
ΛR

i (tj)− ΛL
i (tj)

]
+ C2ε ≤ Cε

Both G1 and G2 have a finite L1 (P ) bracket number. They are Glivenko-Cantelli

classes (Lemma 3.1). Then together with the consistency of
(
β̂
(0)
n , Λ̂

(0)
n

)
and the
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continuous mapping theorem,

Png1

(
β̂(0)
n , Λ̂(0)

n ;X
)
=(Pn − P ) g1

(
β̂(0)
n , Λ̂(0)

n ;X
)
+

P
(
g1

(
β̂(0)
n , Λ̂(0)

n ;X
)
− g1 (β0,Λ0;X)

)
+ Pg1 (β0,Λ0;X)

=Pg1 (β0,Λ0;X) + op(1)

Png2

(
β̂(0)
n , Λ̂(0)

n ;X
)
=(Pn − P ) g2

(
β̂(0)
n , Λ̂(0)

n ;X
)
+

P
(
g2

(
β̂(0)
n , Λ̂(0)

n ;X
)
− g2 (β0,Λ0;X)

)
+ Pg2 (β0,Λ0;X)

=Pg2 (β0,Λ0;X) + op(1)

we have

σ̂2
n −→p σ

2
0

In the simulations conducted in Chapter 6, a two-stage estimating procedure

is implemented with V
(i)
3 as the covariance matrix. At the first stage, due to its

computational convenience, the spline-based sieve semiparametric GEE with V
(i)
1 is

implemented to get consistent estimates of µij. σ2 is then estimated using Zeger’s

method. At the second stage, replacing σ2 by its consistent estimates, σ̂2
n, the estimate

of (β,Λ) is updated by solving a pseudo GEE, i.e.,

U
(
θ; σ̂2

n

)
=

n∑
i=1

(
∂µ(i)

∂θ

)
V −1
i

(
θ; σ̂2

n

) (
N (Ti)− µ(i)

)
= 0

with θ = (β, α). The hybrid algorithm NR/IR is used at both stages to solve the

sieve estimating equation subject to the monotone constraints, α1 ≤ α2 ≤ · · · ≤ αqn .
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CHAPTER 6
NUMERICAL RESULTS

6.1 Simulation Studies

6.1.1 Simulation Setup

Simulation studies are conducted to examine the performance of the spline-

based sieve semiparametric GEE estimate in finite samples. For each subject, we

generate Xi =
(
Ki, TKi

,N(i), Zi

)
in the following manner: Six follow-up times are

pre-scheduled at T ◦ = {T ◦
j : T ◦

j = 2j, j = 1, · · · , 6}. The actual observation times T ◦
ij

are generated from a normal distribution, N(T ◦
j , 1/3). Let ξij = 1[T ◦

ij−1<T ◦
ij ]
, for i =

1, · · · , 6 and T ◦
i0 = 0. Let δij = 1 if the jth visit actually happens and zero other-

wise. P (δij = 1) = 1

1+e
T◦
ij

−10 . Each subject has Ki =
∑6

j=1 ξijδij observations at

TKi
=
(
T

(i)
Ki,1

, T
(i)
Ki,2

, · · · , T (i)
Ki,Ki

)
, where T

(i)
Ki,j

are the jth order observation time of

{T ◦
ij : ξijδij = 1, j = 1, · · · , 6}. The covariate vector Zi = (Zi1, Zi2, Zi3) is simulated

by Zi1 ∼ Uniform (0, 1) , Zi2 ∼ N (0, 1) , and Zi3 ∼ Bernoulli (0.5). The regression pa-

rameter β0 = (β0,1, β0,2, β0,3)
T = (−1.0, 0.5, 1.5)T . Given

(
Zi, Ki, TKi

)
, different sce-

narios are used to generate the panel countsN(i) =
(
N
(
T

(i)
Ki,1

)
,N
(
T

(i)
Ki,2

)
, · · · ,N

(
T

(i)
Ki,Ki

))
.

Scenario 1. The panel counts are generated from a Poisson process with the

conditional mean function given by Λ (tij|Zi) = 2t
1/2
ij e

βT
0 Zi , that is,

N
(
T

(i)
Ki,j

)
− N

(
T

(i)
Ki,j−1

)
∼ Poisson

{
2

[(
T

(i)
Ki,j

)1/2
−
(
T

(i)
Ki,j−1

)1/2]
eβ

T
0 Zi

}

for j = 1, 2, · · · , Ki.

Scenario 2. Data are generated from a Gamma Frailty Poisson model. The
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frailty parameters γ1, γ2, · · · , γn are a random sample from a Gamma distribution,

Γ (12.5, 12.5), which means the over-dispersion parameter, σ2, is 0.08. Conditioning

on the frailty parameter γi as well as the covariates Zi, the panel counts for each

subject are drawn from a Poisson process, i.e.

N
(
T

(i)
Ki,j

)
− N

(
T

(i)
Ki,j−1

)
∼ Poisson

{
2γi

[(
T

(i)
Ki,j

)1/2
−
(
T

(i)
Ki,j−1

)1/2]
eβ

T
0 Zi

}

for j = 1, 2, · · · , Ki. In this scenario, the counting process given only the covariate

is not a Poisson process. However, the conditional mean given the covariate vector

still satisfies the proportional mean model specified in Equation (1.2). The marginal

distribution of the counts follows a negative binomial distribution.

Scenario 3. Data are generated similar to Scenario 2. Instead of generating the

frailty term γ from a Gamma distribution, it is generated from a discrete distribution

{0.6, 1, 1.4} with probabilities 0.25, 0.5 and 0.25, respectively. This scenario generates

a so called mixed Poisson process as studied in Wellner & Zhang (2007) and Lu et al.

(2009). The variance of the frailty variable is also 0.08. In this scenario, the counting

process given the covariate is not a Poisson process, nor its marginal distribution

follows a negative binomial distribution. However, the proportional mean structure

still holds.

Scenario 4. Data are generated from a ‘Negative-binomialized’ counting pro-

cess. Conditioning on Z, a random variable N is generated from a Negative binomial

distribution, NegBin(20eβ
T
0 Z , 0.1). Given N, a random sample, Xi, i = 1, 2, · · · , N ,

is generated from distribution function Fx = t1/2/90. The count data is defined by
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the number of Xi’s that is smaller than or equal to t, i.e.,

N (t) =
N∑
i=1

I[xi≤t]

It is easy to see the proportional mean model in Equation (1.2) still hold. The baseline

mean function Λ0 (t) = 2t1/2, is the same as those in scenarios 1, 2 and 3. Under this

setting, both over-dispersion and autocorrelation between non-overlapping increments

are present. The covariance matrix has a similar form as matrix V
(i)
3 , but the true

over-dispersion parameter depends on the covariates.

In all these scenarios, the monotone cubic B-splines are used in computing

the sieve semiparametric GEE estimators. The number of interior knots is chosen

to be mn = ⌈N1/3⌉, the smallest integer above N1/3, where N is the number of

distinct observation times. These knots are placed at the corresponding quantiles of

the distinct observation times. In our simulation studies, we generate 1000 Monte

Carlo samples with sample size of 50 and 100 for each scenario.

6.1.2 Simulation Results

Simulation results are summarized in Table 6.1 - Table 6.8 corresponding to

the four scenarios with two different sample sizes. They include bias, Monte-Carlo

standard error and the mean of the standard error estimate based on the proposed

projection method in Section 4.1, the mean of the GEE sandwich estimator of the

standard error discussed in Section 4.2 and the mean of the bootstrap estimator of the

standard error described in Section 4.3 and the 95% empirical coverage probabilities

calculated using these estimated standard errors. The square of the biases and the
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Monte-Carlo variance of the spline-based sieve GEE estimates of the baseline mean

function calculated at points t = 2, 2.25, 2.50, · · · , 9 are plotted in Figure 6.1 - Figure

6.4 corresponding to the four different scenarios.

Table 6.1 and Table 6.2 summarize the results with regard to the regression

parameters when the data are from a nonhomogeneous Poisson process. The bias is

negligible compared to the standard error for all three different covariance matrices.

The estimates using V
(i)
1 have a larger standard error than those using V

(i)
2 . When

using V
(i)
3 as the covariance matrix, the estimates have similar standard errors as those

using V
(i)
2 , since 80.5% and 75.5% of the times in the simulations, the estimated over-

dispersion parameter, σ̂2
n, is zero for sample size 50 and 100 respectively. And it result

in the estimates using V
(i)
3 being the same as those using V

(i)
2 . The standard errors

based on the projection method tend to underestimate the true values compared to the

Monte-Carlo standard error. However, the underestimation lessens as the sample size

increases. The standard error estimates using the standard GEE sandwich formula

are similar to those based on the projection method. The bootstrap method produces

a better standard error estimate than the two aforementioned method particularly

when sample size is small. The coverage probability based on the bootstrap standard

error estimate is the best among the three regarding its closeness to the nominal level.

Figure 6.1 plots the squared bias and the variance of the estimated baseline mean

function at the corresponding time points based on the three covariance matrices.

Similar to the results of the regression parameters, the estimates based on V
(i)
1 has

the largest standard deviation. And the estimates based on V
(i)
2 and V

(i)
3 are similar
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to each other.

When data come from a Poisson process, the estimator based on V
(i)
3 performs

similar to the estimator based on V
(i)
2 . When the over-dispersion is present as ex-

emplified in Scenarios 2 and 3, then the estimator using V
(i)
3 clearly outperforms the

estimators using V
(i)
1 or V

(i)
2 . Table 6.3 and Table 6.4 show the simulation results of

the estimated regression parameters for Scenario 2. Similar to the results for Poisson

data, all three estimators are asymptotically unbiased. The estimator using covari-

ance matrix V
(i)
3 has a smaller standard error compared to the estimators using V

(i)
1

or V
(i)
2 . This is expected as the variance matrix V

(i)
3 correctly specifies the underlying

true variance-covariance matrix among the cumulative panel counts. Both the projec-

tion and the parametric sandwich standard error estimators appear to underestimate

the true standard error a little bit when sample size is small, which attributes to the

coverage probability lower than the nominal level. The underestimation lessens as

sample size increases. Among the three estimators, it seems that the standard error

estimates of the spline-based sieve semiparametric GEE estimator with V
(i)
3 have the

least bias. When using V
(i)
1 and V

(i)
2 as the working covariance matrix, the boot-

strap method also underestimates the true standard error. While when using V
(i)
3 ,

the bootstrap method produces a smaller bias, and the 95% coverage based on the

bootstrap method is near to its nominal level. Figure 6.2 shows the squared bias and

the variance of the estimated baseline mean function at corresponding time points.

Similar to the regression parameters, their bias are negligible relative to their vari-

ances. The estimates based on V
(i)
3 are most efficient followed by the estimates based
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on V
(i)
2 .

Simulation results for Scenario 3 displayed in Tables 6.5, 6.6 and Figure 6.3 are

similar to the results for Scenario 2. The estimator using V
(i)
3 is again most efficient

compared to the other selections for the working covariance matrix. In this case,

the working covariance matrix V
(i)
3 is still the true covariance matrix between the

cumulative panel counts, even though the underlying frailty variable is not Gamma

distributed.

Table 6.7 and Table 6.8 summarize the simulation results for Scenario 4. Again,

the bias is negligible. The estimates based on V
(i)
2 and V

(i)
3 are comparable to each

other. Both the projection method and the parametric GEE sandwich method under-

estimate the standard error of the spline-based sieve GEE estimates. The bootstrap

method provides a better estimate of the standard error. Figure 6.4 plots the squared

bias and the variance of the estimated baseline mean function.
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Figure 6.1: Scenario 1, with Data from the Poisson Model: Λ0 (t) = 2t1/2
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Figure 6.2: Scenario 2, with Data from the Gamma Frailty Poisson Model: Λ0 (t) = 2t1/2
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Figure 6.3: Scenario 3, with Data from the Mixture Poisson Model: Λ0 (t) = 2t1/2
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Figure 6.4: Scenario 4, with Data from the Negative Binomial Model: Λ0 (t) = 2t1/2
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6.2 Comparison of different algorithms

6.2.1 Comparison among ICM, NR/IR and GR algorithms

We conducted a simulation study comparing the computing time among the

three algorithms, ICM, NR/IR and GR, in solving the spline-based sieve GEE using

all three working covariance matrices. The comparison is based on 10 datasets of each

of the four scenarios described in the previous section. Simulation results are shown

in Table 6.9. In all these scenarios, the hybrid algorithm NR/IR is the most efficient

in terms of computing time, followed by GR. ICM algorithm is a lot slower than the

other two methods in solving the spline-based sieve GEE in all 4 scnarios.

6.2.2 Comparison of different over-dispersion estimation methods

To compare the effect of different over-dispersion estimation methods on the

estimates of the regression parameter, we conducted a simulation study using MLE

and the two methods of moment described in Section 5.2. Table 6.10 shows the sim-

ulation results. When data are generated from the Gamma-frailty nonhomogeneous

Poisson process as in Scenarios 2, the maximum likelihood estimator of the regression

parameter has a slightly smaller standard error. When data are generated from the

nonhomogeneous Poisson process, the Mixture Poisson process or the Negative bino-

mial process as in Scenarios 1, 3 and 4 respectively, all three methods give similar

results.
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6.3 Application To A Real Data

The proposed estimating method is applied to the bladder tumor data intro-

duced in the Section 1. A total of 116 patients were randomized into three treatment

groups, with 31 using pyridoxin pills, 38 instilled with thiotepa and 47 in placebo

group. Their follow-up times vary from one week to sixty-four weeks. Four vari-

ables, including the number (Z1) and size (Z2) of the tumor at baseline, and two

indicator variables, one for pyridoxin (Z3), one for thiotepa (Z4), are included in the

proportional mean model, i.e.,

E(N(t)|Z1, Z2, Z3, Z4) = Λ0 (t) exp (β1Z1 + β2Z2 + β3Z3 + β4Z4)

Regression analysis results using the three covariance matrices are shown in Table

6.11. The number of the tumors at the entrance of the study is positively related

to the recurrence of the bladder tumor. With one more tumor at their diagnosis,

the number of tumors at follow-up visits increases by 15.5%, 23.1% and 39.1% on

average using covariance matrix V
(i)
1 , V

(i)
2 and V

(i)
3 respectively. Thiotepa instillation

effectively decreases the number of recurrent tumors. The number of recurrent tumor

in patients with thiotepa instillation is 49.5%, 45.1% and 32.5% of those in control

group using V
(i)
1 , V

(i)
2 and V

(i)
3 , respectively. The size of tumors and pyridoxin pills are

not significantly related to the number of recurrent tumors at follow-up visits. The

results using the diagonal covariance matrix (V
(i)
1 ) and the covariance matrix based on

Poisson process (V
(i)
2 ) are consistent with those based on the sieve pseudolikelihood

and the sieve likelihood methods proposed by Lu et al. (2009). The spline-based

sieve semiparametric GEE estimates using the frailty Poisson covariance matrix (V
(i)
3 )
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provides an estimate of the over-dispersion parameter as 1.32. It implies the over-

dispersion of the panel count and the potential positive correlation between non-

overlapping increments in the counting process. The effect of the number of the

tumors at the study entrance and the treatment of thiotepa are more significant when

accounting for the correlation between cumulative counts using the frailty variable.
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Figure 6.5: Bladder tumor: Estimates of baseline mean function based on different
working covariance matrices



128

CHAPTER 7
DISCUSSIONS

In this dissertation we propose to analyze panel count data using the general-

ized estimating equation method with the semiparametric proportional mean model.

With limited choices of the available counting processes, the proposed method pro-

vides a more flexible approach to model the data. As emphasized in the previous

chapters, different covariance matrices could be adopted to allow for different data

structures. The covariance matrix that captures the true correlation between the re-

peated measures increases the efficiency of the estimation. Similar idea could also be

generalized to a multivariate panel count data setting. More complicated covariance

matrices could be used to account for the correlations between multiple levels.

In the proof of the asymptotic properties of the proposed method, we make use

of the fact that the generalized estimating equations coincide with scores of different

likelihood functions. A maximum pseudo likelihood estimating procedure is applied

to solve the estimating equations using V
(i)
3 as the covariance matrix. The estima-

tors are still consistent and converge at the same convergence rate as the maximum

likelihood estimators. In general, the estimator that maximizes pseudo likelihood

has a bigger variance than the true maximum likelihood estimator. However in the

proposed Gamma-Frailty Poisson model, the estimated parameters in the semipara-

metric proportional mean model and the estimated over-dispersion parameter are

asymptotically independent, which attributes to the fact that the estimated regres-

sion parameter based on the pseudo likelihood has the same asymptotic variance
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as the maximum likelihood estimator. This property serves as the underpin of the

two-stage algorithm.

The cubic B-spline estimator of the baseline mean function improves the con-

vergence rate compared to the estimation using the traditional nonparametric step

functions. At the same time, it decreases the dimension of the estimation which

contributes to the computing efficiency.

Despite the fact that different working covariance matrices could be used in

the generalized estimating equation, how to construct them so that they represent

the true covariance matrix require more efforts. We show that the estimation using

V
(i)
3 as the working covariance matrix generally outperforms the estimates using V

(i)
1

or V
(i)
2 . V

(i)
3 is constructed under the assumption that conditioning on the frailty

term, the increments are independent. It certainly covers a broader model than the

methods using V
(i)
1 and V

(i)
2 . However this assumption may still be unrealistic in view

of medical applications. As future research, it would be useful to investigate how to

relax this assumption and possibly to incorporate the autoregressive structures into

the covariance matrix.
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APPENDIX A
AGREEMENT OF GEE AND SCORE FUNCTIONS

In the derivation of the equivalence between GEE using V
(i)
1 , V

(i)
2 and V

(i)
3 and

different ‘likelihood’ functions, we adopt the following notations

B
(i)
Ki,j

=
(
B1

(
T

(i)
Ki,j

)
, · · · , Bqn

(
T

(i)
Ki,j

))T
; B(i) =

(
B

(i)
Ki,1

, · · · , B(i)
Ki,Ki

)T
µ
(i)
Ki,j

= exp
(
βTZi + αTB

(i)
Ki,j

)
; µ(i) =

(
µ
(i)
Ki,1

, · · · , µ(i)
Ki,Ki

)T
∆µ

(i)
Ki,j

= µ
(i)
Ki,j

− µ
(i)
Ki,j−1; ∆µ(i) =

(
∆µ

(i)
Ki,1

, · · · ,∆µ(i)
Ki,Ki

)T
∆N(i)

Ki,j
= N

(
T

(i)
Ki,j

)
− N

(
T

(i)
Ki,j−1

)
; ∆N(i) =

(
N(i)

Ki,1
, · · · ,N(i)

Ki,Ki

)T
Also let 1Ki

= (1, 1, · · · , 1)TKi×1, we have

∂µ
(i)
Ki,j

∂θ
= exp

(
βTZi + αTB

(i)
Ki,j

)(
ZT

i , B
(i)T

Ki,j

)T
;

∂µ(i)

∂θ
=

(
∂µ

(i)
Ki,1

∂θ
, · · · ,

∂µ
(i)
Ki,Ki

∂θ

)T

= diag
(
µ
(i)
Ki,1

, · · · , µ(i)
Ki,Ki

) (
1Ki

ZT
i , B

(i)
)

A.1 Agreement between sieve GEE using V
(i)
1 and the score of the sieve

pseudolikelihood

Using V
(i)
1 as the working covariance matrix, Equation (2.6) can be rewritten

as

U (θ;D) =
n∑

i=1

(
1Ki

ZT
i , B

(i)
)T
diag

(
µ
(i)
Ki,1

, · · · , µ(i)
Ki,Ki

)
×

(
diag

(
µ
(i)
Ki,1

, · · · , µ(i)
Ki,Ki

))−1 (
N (Ti)− µ(i)

)
=

n∑
i=1

(
1Ki

ZT
i , B

(i)
)T (N (Ti)− µ(i)

)
This is the score function based on the pseudolikelihood shown in Equation (2.3).
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A.2 Agreement between sieve GEE using V
(i)
2 and the score of the sieve

likelihood

When using V
(i)
2 as the working covariance matrix, the estimating equation

from Equation (2.6) can be rewritten as

U (θ) =
n∑

i=1

(
1Ki

ZT
i , B

(i)
)T
diag

(
µ
(i)
Ki,1

, · · · , µ(i)
Ki,Ki

)
V

(2)−1

i

(
N(i) − µ(i)

)
A careful examination of the likelihood function in Equation (2.5) shows its score

function can be rewritten in a matrix form,

∂

∂θ
l̃n (θ;D) =

n∑
i=1

(
∂∆µ(i)

∂θ

)T (
diag

(
∆µ

(i)
Ki,1

, · · · ,∆µ(i)
Ki,Ki

))−1 (
∆N(i) −∆µ(i)

)
Since

∂∆µ
(i)
Ki,j

∂θ
= µ

(i)
Ki,j

(
ZT
i , B

(i)T

Ki,j

)T
− µ

(i)
Ki,j−1

(
ZT
i , B

(i)T

Ki,j−1

)T

=


(
−µ

(i)
Ki,j−1, µ

(i)
Ki,j

)ZT
i B

(i)T

Ki,j−1

ZT
i B

(i)T

Ki,j




T

∂∆µ(i)

∂θ
=

∂∆µ
(i)
Ki,1

∂θ
, · · · ,

∂∆µ
(i)
Ki,Ki

∂θ

T

=



µ
(i)
Ki,1

0 · · · 0

−µ
(i)
Ki,1

µ
(i)
Ki,2

· · · 0

...
...

...
...

0 0 −µ
(i)
Ki,Ki−1 µ

(i)
Ki,Ki


(
1kiZ

T
i , B

(i)
)

=



1 0 · · · 0

−1 1 · · · 0

...
...

...
...

0 0 −1 1


diag

(
µ
(i)
Ki,1

, · · · , µ(i)
Ki,Ki

)(
1kiZ

T
i , B

(i)
)
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The score function can be further written as

∂

∂θ
l̃n (θ;D) =

n∑
i=1

(
1Ki

ZT
i , B

(i)
)T
diag

(
µ
(i)
Ki,1

, · · · , µ(i)
Ki,Ki

)
Σ
(
N(i) − µ(i)

)
Where

Σ =


1 0 · · · 0
−1 1 · · · 0
...

...
...

...
0 0 −1 1


T

diag
(
∆µ

(i)
Ki,1

, · · · ,∆µ
(i)
Ki,Ki

)−1


1 0 · · · 0
−1 1 · · · 0
...

...
...

...
0 0 −1 1



=



1

µ
(i)
Ki,1

− 1

µ
(i)
Ki,2

−µ
(i)
Ki,1

0 · · · 0

0 1

µ
(i)
Ki,2

−µ
(i)
Ki,1

− 1

µ
(i)
Ki,3

−µ
(i)
Ki,2

· · · 0

...
...

...
... − 1

µ
(i)
Ki,Ki

−µ
(i)
Ki,Ki

0 0 0 · · · 1

µ
(i)
Ki,Ki

−µ
(i)
Ki,Ki




1 0 · · · 0
−1 1 · · · 0
...

...
...

...
0 0 −1 1



=



1

µ
(i)
Ki,1

+ 1

µ
(i)
Ki,2

−µ
(i)
Ki,1

− 1

µ
(i)
Ki,2

−µ
(i)
Ki,1

· · · · · · 0

− 1

µ
(i)
Ki,2

−µ
(i)
Ki,1

1

µ
(i)
Ki,2

−µ
(i)
Ki,1

+ 1

µ
(i)
Ki,3

−µ
(i)
Ki,2

− 1

µ
(i)
Ki,3

−µ
(i)
Ki,2

· · · 0

...
...

...
...

...
0 0 · · · · · · 1

µ
(i)
Ki,Ki

−µ
(i)
Ki,Ki−1


It is easy to verify Σ is the inverse of V

(i)
2 , so sieve GEE using the covariance matrix V

(i)
2

is the same as the score function of the likelihood function in Equation (2.5).

A.3 Agreement between sieve GEE using V
(i)
3 and the score of the

likelihood of Gamma-Frailty Poisson model

By the derivation of the equivalence between sieve GEE using V
(i)
2 and the score

function of likelihood in Equation (2.5), we have(
∂µ(i)

∂θ

)T

V
(i)−1

2

(
N(i) − µ(i)

)
=

Ki∑
j=1

∂∆µ
(i)
Ki,j

∂θ

∆N(i)
Ki,j

∆µ
(i)
Ki,j

− 1


This equality holds for any nonnegative nondecreasing process N(i). Let N(i) = 2µ(i) then(

∂µ(i)

∂θ

)T

V
(i)−1

2 µ(i) =

Ki∑
j=1

∂∆µ
(i)
Ki,j

∂θ
=

∂µ
(i)
Ki,Ki

∂θ
=
(
ZT
i , B

(i)T

Ki,Ki

)T
µ
(i)
Ki,Ki

(A.1)

Also (
∂µ(i)

∂β

)T

V
(i)−1

2

(
N(i) − µ(i)

)
=

Ki∑
j=1

∂∆µ
(i)
Ki,j

∂β

∆N(i)
Ki,j

∆µ
(i)
Ki,j

− 1
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The left hand side (LHS) can be rewritten as

LHS = Zi1
T
Ki
diag

(
µ
(i)
Ki,1

, · · · , µ(i)
Ki,Ki

)
V

(i)−1

2

(
N(i) − µ(i)

)
= Ziµ

(i)T V
(i)−1

2

(
N(i) − µ(i)

)
The right hand side (RHS) can also be rewritten as

RHS =

Ki∑
j=1

(
µ
(i)
Ki,j

Zi − µ
(i)
Ki,j−1Zi

)∆N(i)
Ki,j

∆µ
(i)
Ki,j

− 1


= Zi

(
N(i)
Ki,Ki

− µ
(i)
Ki,Ki

)
Therefore

Ziµ
(i)T V

(i)−1

2

(
N(i) − µ(i)

)
= Zi

(
N(i)
Ki,Ki

− µ
(i)
Ki,Ki

)
⇒ µ(i)T V

(i)−1

2

(
N(i) − µ(i)

)
= N(i)

Ki,Ki
− µ

(i)
Ki,Ki

(A.2)

Again if we let N(i) = 2µ(i) then

µ(i)V
(i)−1

2 µ(i) = µ
(i)
Ki,Ki

(A.3)

The estimating equation with V
(i)
3 as the covariance matrix can then be written as,

U (θ;Xi) =

(
∂µ(i)

∂θ

)T (
V

(i)
2 + σ2µ(i)µ(i)T

)−1 (
N(i) − µ(i)

)

=

(
∂µ(i)

∂θ

)T (
V

(i)
2 − σ2

1 + σ2µ(i)T V −1
2 µ(i)

V −1
2 µ(i)µ(i)T V −1

2

)(
N (Ti)− µ(i)

)

=

(
∂µ(i)

∂θ

)T

V
(i)−1

2

(
N(i) − µ(i)

)
− σ2

1 + σ2µ(i)T V −1
2 µ(i)

(
∂µ(i)

∂θ

)T

V
(i)−1

2 µ(i)×

µ(i)T V
(i)−1

2

(
N(i) − µ(i)

)
=

Ki∑
j=1

(
µ
(i)
Ki,j

(
ZT
i , B

(i)T

Ki,j

)T
− µ

(i)
Ki,j−1

(
ZT
i , B

(i)T

Ki,j−1

)T)∆N(i)
Ki,j

∆µ
(i)
Ki,j

− 1

−

σ2

1 + σ2µ
(i)
Ki,Ki

(
ZT
i , B

(i)T

Ki,Ki

)T
µ
(i)
Ki,Ki

(
N(i)
Ki,Ki

− µ
(i)
Ki,Ki

)
(by Equations (A.1)-(A.3))

=

Ki∑
j=1

(
µ
(i)
Ki,j

(
ZT
i , B

(i)T

Ki,j

)T
− µ

(i)
Ki,j−1

(
ZT
i , B

(i)T

Ki,j−1

)T) ∆N(i)
Ki,j

∆µ
(i)
Ki,j

−

1 + σ2N(i)
Ki,Ki

1 + σ2µ
(i)
Ki,Ki

(
ZT
i , B

(i)T

Ki,Ki

)T
µ
(i)
Ki,Ki

This is exactly the score function of the Gamma-frailty Poisson likelihood in Equation
(2.7).
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APPENDIX B
R FUNCTIONS FOR NUMERICAL RESULTS

In this section, we list some important functions used for the simulation studies
presented in Chapter 6.

Table B.1: Important Functions Used in Simulation Studies

Name Function
genData Generate data used in the simulation studies in section 6
covariate Organize data into a matrix form
GEE† Calculate the value of estimation equation as well as the sandwich

form based on current parameter estimates
GR† Generalized Rosen algorithm
ICM† ICM algorithm
ICM-NR† ICM/NR algorithm
sandwich† Estimate the variance based on projection method using the pseu-

dolikelihood approach
sigma.est1 Zeger’s method of estimating overdispersion parameter
sigma.est2 Breslow’s method of estimating overdispersion parameter
sigma.est3 MLE of overdispersion parameter assuming a gamma-distributed

frailty term
V1 GEE covariance matrix, GEE using V1 is the same as scores based

on pseudolikelihood
V2 GEE covariance matrix, GEE using V2 is the same as scores based

on likelihood
V3 GEE covariance matrix, GEE using V3 is the same as scores based

on Gamma-frailty Poisson likelihood
semiResult† Run simulations in batch
bsvar Generate boostrap samples to get bootstrap variances

Note: † There are corresponding functions using frailty covariance matrix. They are similar
to the listed functions. For the simplicity of the dissertation, they are omitted here.



135

#==========================================================================#

# Function name: genData #

#--------------------------------------------------------------------------#

# It works with different definition of myfunc and myfunc.inv #

#==========================================================================#

genData<-function(method, scenario, n, beta=c(0,0,0), seed=0, sigma2.inv=2,

distribution=’gamma’, r0=10, p=0.2, diff.K=0){

z1 <- rnorm(n)

z2 <- runif(n)

z3 <- rbinom(n, 1, 1/2)

z <- cbind(z1,z2,z3)

proportion<-exp(z%*%beta)

# Create observation times

T.schedule <- 2*(1:6)

T.real <- matrix(round(rnorm(6*n, T.schedule, 1/3), digits=2), nrow=n, byrow=T)

solveprob <- function(x){

different <- c(x[1], diff(x))

x[different<=0] <- 0

x

}

T.real <- t(apply(T.real, 1, solveprob))

miss <- matrix(rbinom(6*n, 1, exp(T.real-10)/(1+exp(T.real-10))),nrow=n, byrow=F)

T.obs.pre <- T.real*(1-miss)

count <- function(x) sum(x!=0)

K <- apply(T.obs.pre, 1, count)

T.obs <- matrix(NA, nrow=n, ncol=max(K))

# get the increment T

dT.obs<-matrix(0,nrow=n, ncol=max(K))

for (i in 1:n){

T.obs[i,1:K[i]] <- T.obs.pre[i,T.obs.pre[i,]!=0]

dT.obs[,1]<-T.obs[,1]

for (j in 2:ncol(T.obs)) dT.obs[,j]<-T.obs[,j]-T.obs[,j-1]

}

# scenario 1: The panel counts are generated from Poisson Process

if (scenario==1){

dN <- matrix(nrow=n,ncol=max(K))

for (i in 1:n){

dN[i,1] <- rpois(1, myfunc(T.obs[i,1])*proportion[i])

if (K[i]!=1){

for (j in 2:K[i]){

dN[i,j] <- rpois(1, (myfunc(T.obs[i,j])-myfunc(T.obs[i,j-1]))*

proportion[i])

}
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}

}

}else if (scenario==2){

# scenario 2: The panel counts are generated from a mixed Poisson process

dN<-matrix(nrow=n, ncol=max(K))

for (i in 1:n){

gama<- c(-0.8,0,0,0.8)[floor(runif(1,min=1,max=5))]

dN[i,1] <- rpois(1, (2+gama)/2*myfunc(T.obs[i,1])*proportion[i])

if (K[i]!=1){

for (j in 2:K[i]){

dN[i,j] <- rpois(1, (2+gama)/2*(myfunc(T.obs[i,j])-myfunc(T.obs[i,j-1]))

*proportion[i])

}

}

}

}else if (scenario==3){

# scenario 3: The panel counts are generated from a Gamma Frailty Poisson process

# we can also specify the frailty term from a lognormal distribution

dN<-matrix(nrow=n, ncol=max(K))

for (i in 1:n){

if (distribution==’gamma’) gama<- rgamma(1, sigma2.inv, sigma2.inv) else

if (distribution==’lognormal’) gama <- exp(rnorm(1, -1/2*log(1/sigma2.inv+1),

sqrt(log(1/sigma2.inv+1))))

dN[i,1] <- rpois(1, gama*myfunc(T.obs[i,1])*proportion[i])

if (K[i]!=1){

for (j in 2:K[i]){

dN[i,j] <- rpois(1, gama*(myfunc(T.obs[i,j])-myfunc(T.obs[i,j-1]))

*proportion[i])

}

}

}

}else if (scenario==4){

# scenario 4: The panel count data are generated from a ’negative-binomialization’

# of the empirical counting process, from Zhang’s paper!

dN <- matrix(nrow=n, ncol=max(K))

r <- r0*proportion

for (i in 1:n){

total <- rnbinom(1,r[i], p)

Fx <- runif(total)

x <- myfunc.inv(r0*(1-p)/p*Fx)

for (j in 1:K[i]){

if (j==1) dN[i,j] <- sum(x<=T.obs[i,j]) else

dN[i,j] <- sum(T.obs[i,j-1] <x & x<=T.obs[i,j])

}

}

}
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list(K=K, T=T.obs, Z=z, dN=dN)

}

myfunc1 <- function(x) 2*x

myfunc1.inv <- function(x) x/2 #This is the inverse function of myfunc1

myfunc2 <- function(x) 2*x^(1/2)

myfunc2.inv <- function(x) (x/2)^2 #This is the inverse function of myfunc2

#myfunc2 and myfunc2.inv are the functions used in simulation studies in Section 6.

#We can easily change them to any baseline functions

#======================== End of Function (genData) =======================#

#==========================================================================#

# Function name: covariate #

#--------------------------------------------------------------------------#

# It produces the covariate matrix #

# the first qn column are B-spline values #

# the last 3 column are covariates #

#==========================================================================#

covariate<-function(K, myT, Z, N, method, cumulative=1,n.knot=1/3,

position.knot=’quantile’){

n<-length(K)

myt<-myT[order(myT)]

myt<-myt[!is.na(myt)]

qn<-ceiling(sum(K)^n.knot)

X<-matrix(nrow=sum(K), ncol=qn+3)

if (position.knot==’quantile’) myknots <- c(rep(min(myt),3), quantile(myt,

seq(0,1,len=qn-4+2)),rep(max(myt),3)) else

if (position.knot==’uniform’) myknots<- c(rep(min(myt),3), seq(min(myt), max(myt),

length=qn-4+2), rep(max(myt),3))

for (i in 1:n){

b<-splineDesign(knots=myknots, x=myT[i,!is.na(myT[i,])])

db<-matrix(0,nrow=nrow(b), ncol=ncol(b));

db[1,]<-b[1,]

if (nrow(b)>1){

for (j in 2:nrow(b)) db[j,] <- b[j,]-b[j-1,]

}

z<-matrix(rep(Z[i,],K[i]),nrow=K[i], byrow=T)

if (cumulative==0) x<-cbind(db, z) else

x<-cbind(b, z)

row.start<-ifelse(i==1, 1, cumsum(K)[i-1]+1)

row.end<-cumsum(K)[i]

X[row.start:row.end,]<-x
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}

X2<-cbind(rep(1:n, K),t(myT)[!is.na(t(myT))], X, t(N)[!is.na(t(N))])

colnames(X2)<-c(’subj’, ’t’,paste(’B’, 1:qn, sep=’’), paste(’Z’, 1:3,sep=’’),’N’)

if (method==’nonparametric’) X2 <- X2[, -((1+1+qn+1):(1+1+qn+3))]

list(X=X2, alpha.dim=qn) #X2[,3:(qn+5)]

}

#=== usage ===#

#cov<-covariate(K, T, Z, N)

#======================== End of Function (covariate) =====================#

#==========================================================================#

# Function name: GEE #

#--------------------------------------------------------------------------#

# It calculates the value of estimating equation and the sandwich form #

# based on the current estimates of the parameter #

#==========================================================================#

# GEE calculate U and W conditioning on the current gama #

GEE<-function(gama, alpha.dim, dataset, method=’semiparametric’, varfunc){

gama.dim <- length(gama)

n <- length(unique(dataset[,’subj’]))

gee.table <- matrix(0, nrow=gama.dim,ncol=n)

W<-matrix(0, nrow=gama.dim, ncol=gama.dim)

for (i in 1:n){

subj.dataset<-dataset[dataset[,’subj’]==i,,drop=F]

subj.n <- nrow(subj.dataset)

subj.N <- subj.dataset[, ’N’]

subj.T <- subj.dataset[,’t’]

subj.covariate <- subj.dataset[, -c(1,2,2+gama.dim+1),drop=F]

if (method==’nonparametric’){

subj.mu <- subj.covariate%*%gama

subj.dmu <- subj.covariate

}else

if (method==’semiparametric’){

subj.mu <- exp(subj.covariate%*%gama)

subj.dmu <- diag(as.vector(subj.mu), nrow=subj.n, ncol=subj.n)%*%

subj.covariate

}

subj.result <- varfunc(subj.mu)

if (subj.result$error!=1){

subj.var <- subj.result$subj.var

subj.var.inv <- subj.result$subj.var.inv

gee.i <- t(subj.dmu)%*%subj.var.inv%*%(subj.N-subj.mu)

gee.table[,i] <- gee.i
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W <- W+t(subj.dmu)%*%subj.var.inv%*%subj.dmu

}

}

u<-apply(gee.table, 1, sum)

list(U=u, W=W)

}

#======================== End of Function (GEE) ===========================#

#==========================================================================#

# Function name: GR #

#--------------------------------------------------------------------------#

# It implements the Generalized Rosen algorithm to the GEE settings #

#==========================================================================#

GR<-function(dataset, alpha.dim, gama.ini, method, varfunc, likelihood.func){

converge.status <- 1

error <- 0

A1<-cbind(rep(0,alpha.dim-1), diag(1, nrow=alpha.dim-1))

A2<-cbind(diag(-1,nrow=alpha.dim-1),rep(0,alpha.dim-1))

A.ori<-cbind(A1+A2, matrix(rep(0,(alpha.dim-1)*beta.dim),ncol=beta.dim))

gama<-gama.ini

gama.dim<-length(gama)

active.set<-numeric(length=0)

active <- numeric(length=0)

lamda<-rep(1, alpha.dim-1)

A<-A.ori[active.set, ,drop=F]

count2<-0

while (max(lamda)>0){

delta<-1

count1<-0

while (max(abs(delta))>=1e-5){

active.set<-unique(append(active.set, active)[order(append(active.set,

active))])

# Step 0 computing feasible search direction

UW<-GEE(gama=gama, alpha.dim=alpha.dim, dataset=dataset, method=method,

varfunc=varfunc)

U<-UW$U

W<-UW$W

if (is.infinite(max(W))) {error <- 1; break; }

if (missing(W)) {error<-1; break;}

if (sum(is.na(W))>0) {error <-1 ; break;}

if (min(abs(eigen(W)$values))<1e-5|max(abs(eigen(W)$values))>1e20 ) {

error <- 1; break}

W.inv<-solve(W)
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if (length(active.set)==0) d<- W.inv%*%U else{

A<-A.ori[active.set, ,drop=F]

d <- (diag(1, gama.dim, gama.dim)-

W.inv%*%t(A)%*%solve(A%*%W.inv%*%t(A))%*%A

)%*%W.inv%*%U}

# Step 1

ratio<- -(A.ori%*%gama)/(A.ori%*%d)

step <- ifelse(max(ratio,na.rm=T)<=0,1, min(ratio[ratio>0],na.rm=T))

# Step 2

ksi<- min(step, 1)

gama.update <- gama+ksi*d

while (crossprod(GEE(gama=gama.update, alpha.dim=alpha.dim, dataset=dataset,

method=method, varfunc=varfunc)$U) >

crossprod(GEE(gama=gama, alpha.dim=alpha.dim, dataset=dataset,

method=method, varfunc=varfunc)$U)){

ksi <- ksi/2

gama.update <- gama+ksi*d

if (ksi<1e-5) break

}

# Step 3 & Step 4

if (step>ksi) delta<-ksi*d else{

delta<-step*d

active <- which(ratio==step)

}

gama<-gama+delta

count1<-count1+1

if (count1>20) {converge.status <- 0; break}

if (missing(d)) break

}

# Step 5: checking the stopping criterion

if (length(active.set)==0) break else{

lamda <- solve(A%*%W.inv%*%t(A))%*%A%*%W.inv%*%U

inactive <- which.max(lamda)

active.set <- active.set[-inactive]

}

count2 <- count2+1

if (count2>5) {

converge.status <- 0

break

}

}

GEE.result <- GEE(gama=gama.update, alpha.dim=alpha.dim, dataset=dataset,

method=method, varfunc=varfunc)

W <- GEE.result$W

U <- GEE.result$U
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sigma2 <- GEE.result$sigma2

list(gama=gama.update, W=W, error=error, converge.status=converge.status,

U=U, sigma2=sigma2)

}

#======================== End of Function (GR) ============================#

#==========================================================================#

# Function name: ICM #

#--------------------------------------------------------------------------#

# It implements the ICM algorithm to the GEE settings #

#==========================================================================#

ICM <- function(dataset, alpha.dim, gama.ini, method, varfunc, likelihood.func){

beta.update <- gama.ini[-(1:alpha.dim)]

alpha.update <- gama.ini[1:alpha.dim]

d.beta <- 1

beta.iter <- 0

while(max(abs(d.beta))>1e-5){

d.alpha<-1

alpha.iter <- 0

while(max(abs(d.alpha))>1e-5){

gama <- c(alpha.update, beta.update)

UW <- GEE(gama=gama, alpha.dim=alpha.dim, dataset=dataset, method=method,

varfunc=varfunc)

W <- UW$W

U <- UW$U

mydiag <- diag(W)[1:alpha.dim]

x.axis <- c(0,cumsum(mydiag))

y.axis <- c(0,cumsum(mydiag*alpha.update + U[1:alpha.dim]))

ratio <- vector(length=length(x.axis)-1)

i<-1

while (i <length(x.axis)){

derivative <- (y.axis[-(1:i)]-y.axis[i])/(x.axis[-(1:i)]-x.axis[i])

position <- which.min(abs(derivative))

ratio[i:(i+position-1)] <- min(abs(derivative))

i<- i+position

}

ratio.update <- line.search(dataset, gama, ratio, beta.update, likelihood.func)

d.alpha <- ratio.update-alpha.update

alpha.update <- ratio.update

alpha.iter <- alpha.iter+1

if (alpha.iter>20) break

}

d.beta<- (solve(W)%*%U)[-(1:alpha.dim)]

beta.update <- beta.update+ d.beta

beta.iter <- beta.iter+1

if (beta.iter>20) break
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}

gama.update <- c(alpha.update, beta.update)

list(gama=gama.update, W=W, U=U, alpha.iter=alpha.iter, beta.iter=beta.iter)

}

#==================================

line.search <- function(dataset, gama, ratio, beta.update, likelihood.func){

epsilon <- 0.4

ksi <- 1

alpha.dim <- length(ratio)

while(likelihood.func(dataset, c(ratio, beta.update), alpha.dim)$l<

likelihood.func(dataset, gama, alpha.dim)$l){

ksi <- ksi/2

ratio <- gama[1:alpha.dim] + ksi*(ratio-gama[1:alpha.dim])

}

ratio

}

#======================== End of Function (ICM) ===========================#

#==========================================================================#

# Function name: ICM-NR #

#--------------------------------------------------------------------------#

# It implements the ICM/NR algorithm to the GEE settings #

#==========================================================================#

# This is the modified ICM algorithm, combined with Newton-Raphson algrithm.

# we estimate alpha and beta through one loop!

ICM-NR <- function(dataset, alpha.dim, gama.ini, method, varfunc,

likelihood.func=NA){

gama <- gama.ini

d.gama<-1

iter <- 0

while(max(abs(d.gama))>1e-5){

UW <- GEE(gama=gama, alpha.dim=alpha.dim, dataset=dataset, method=method,

varfunc=varfunc)

W <- UW$W

U <- UW$U

mydiag <- diag(W)[1:alpha.dim]

x.axis <- c(0,cumsum(mydiag))

y.pre <- NR.gama(dataset, gama, alpha.dim, varfunc)

y.axis <- c(0, cumsum(mydiag*y.pre[1:alpha.dim]))

ratio <- vector(length=length(x.axis)-1)

i<-1

while (i <length(x.axis)){

derivative <- (y.axis[-(1:i)]-y.axis[i])/(x.axis[-(1:i)]-x.axis[i])

position <- which.min(abs(derivative))

ratio[i:(i+position-1)] <- min(abs(derivative))

i<- i+position
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}

d.gama <- c(ratio, y.pre[-(1:alpha.dim)])-gama

gama <- c(ratio, y.pre[-(1:alpha.dim)])

iter <- iter+1

if (iter>5) break

}

list(gama=gama, W=W, U=U, iter=iter)

}

#==================================

NR.gama <- function(dataset, gama, alpha.dim, varfunc){

d<-1

UW <-GEE(gama, alpha.dim, dataset, method=’semiparametric’, varfunc)

if (min(eigen(UW$W)$values)>1e-10){

direction <-solve(UW$W)%*%(UW$U)

ksi <- 1

gama.update <- gama + ksi*direction

while(crossprod(GEE(gama=gama.update, alpha.dim=alpha.dim, dataset=dataset,

varfunc=varfunc)$U) >

crossprod(GEE(gama=gama, alpha.dim=alpha.dim, dataset=dataset,

varfunc=varfunc)$U)){

ksi <- ksi/2

gama.update<- gama+ksi*direction

}

d <- gama.update-gama

gama <- gama.update

}

gama

}

#======================== End of Function (ICM/NR) ========================#

#==========================================================================#

# Function name: sandwich #

#--------------------------------------------------------------------------#

# It estimates the variance of the regression parameter based on the #

# projection algorithm described in Wellner & Zhang (2007) #

#==========================================================================#

#=== using the least sqaure to calculate alpha ===#

sandwich <- function(K, T, Z, dN, gama, varfunc){

N<-matrix(nrow=nrow(dN), ncol=ncol(dN))

n<-length(K)

for (i in 1:n) N[i,]<-cumsum(dN[i,])

cov<-covariate(K, T, Z, N, method)

dataset<-cov$X

alpha.dim<-cov$alpha.dim

n <- length(unique(dataset[,’subj’]))
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m1.matrix <- matrix(nrow=n, ncol=beta.dim)

m2.star.matrix <- matrix(nrow=n, ncol=alpha.dim)

m11.matrix <- matrix(0, nrow=beta.dim, ncol=beta.dim)

m21.star.matrix <- matrix(0, nrow=alpha.dim, ncol=beta.dim)

for (i in 1:n){

Xi <- dataset[dataset[,’subj’]==i,,drop=F]

subj.n <- nrow(Xi)

subj.N<- Xi[,’N’, drop=F]

subj.B <- Xi[,c(paste(’B’, 1:alpha.dim, sep=’’)), drop=F]

subj.Z <- Xi[,c(’Z1’,’Z2’,’Z3’), drop=F]

subj.mu <- exp(Xi[,c(paste(’B’, 1:alpha.dim, sep=’’),’Z1’,’Z2’,’Z3’)]%*%gama)

subj.var.inv <- varfunc(subj.mu)$subj.var.inv

m1 <- t(subj.Z)%*%diag(as.vector(subj.mu), nrow=subj.n)%*%subj.var.inv%*%

(subj.N-subj.mu)

m1.matrix[i,] <- m1

m2.star <- t(subj.B)%*%subj.var.inv%*%(subj.N-subj.mu)*as.numeric(exp(

subj.Z[1,]%*%gama[-(1:alpha.dim)]))

m2.star.matrix[i,] <- m2.star

m11 <- t(subj.Z)%*%diag(as.vector(subj.mu),nrow=subj.n)%*%subj.var.inv%*%

diag(as.vector(subj.mu),nrow=subj.n)%*%subj.Z

m11.matrix <- m11.matrix + m11

m21.star.matrix <- m21.star.matrix + t(subj.B)%*%diag(as.vector(exp(subj.Z%*%

gama[-(1:alpha.dim)])),nrow=subj.n)%*%subj.var.inv%*%diag(as.vector(subj.mu),

nrow=subj.n)%*%subj.Z

}

alpha <- solve(crossprod(m2.star.matrix), crossprod(m2.star.matrix, m1.matrix))

m2.matrix <- m2.star.matrix%*%alpha

A.hat <- (m11.matrix-t(alpha) %*% m21.star.matrix)/n

B.hat <- (t(m1.matrix-m2.matrix)%*%(m1.matrix-m2.matrix))/n

A.hat.inv <- solve(A.hat)

sandwich.ABA<- (A.hat.inv%*%B.hat%*%t(A.hat.inv))/n

sandwich.B <- solve(B.hat)/n

list(sandwich.ABA=diag(sandwich.ABA), sandwich.B=diag(sandwich.B),

A=A.hat, B=B.hat)

}

#======================== End of Function (sandwich) ======================#

#==========================================================================#

# Function name: sigma.est #

#--------------------------------------------------------------------------#

# Different methods of estimating the overdispersion parameter #

#==========================================================================#

#--------------------------------------------------------------------------#
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# sigma.est1: from Zeger (Biometrika 1988) & Davis et al. (Biometrika 2000)#

#--------------------------------------------------------------------------#

sigma.est1 <- function(N, mu, gama.dim=NA, K=NA){

residual <- N - mu

sigma2 <- sum(residual^2-mu)/sum(mu^2)

sigma2 <- ifelse(sigma2>0, sigma2, 0)

sigma2

}

#--------------------------------------------------------------------------#

# sigma.est2: from Breslow(Appl. Statist. 1984); Breslow (JASA 1990) #

#--------------------------------------------------------------------------#

sigma.est2 <- function(N, mu, gama.dim, K=NA){

sigma2 <- 1

d<-1

while(d>1e-5){

sigma2.update <- sum((N-mu)^2/(mu/sigma2+mu^2))/(length(N)- gama.dim)

d <- abs(sigma2.update-sigma2)

sigma2 <- sigma2.update

}

sigma2 <- ifelse(sigma2>0, sigma2, 0)

sigma2

}

#--------------------------------------------------------------------------#

# sigma.est3: MLE of overdispersion parameter based on --------------------#

# gamma poisson assumption #

#--------------------------------------------------------------------------#

sigma.est3 <- function(N.vec, mu, gama.dim, K){

n <- length(K)

sigma.vec <- seq(0, 0.2, length=201)[-1]

lmatrix <- matrix(nrow=n, ncol=200)

for (i in 1:n){

if (i==1) subj.start <- 1 else subj.start <- cumsum(K)[i-1]+1

subj.end <- cumsum(K)[i]

subj.mu <- mu[subj.start: subj.end]

subj.dmu <- c(subj.mu[1], diff(subj.mu))

subj.muk <- subj.mu[length(subj.mu)]

subj.N <- N.vec[subj.start:subj.end]

subj.dN <- c(subj.N[1], diff(subj.N))

subj.Nk <- subj.N[length(subj.N)]

l.est <- function(sigma2){

sum(subj.dN*log(subj.dmu), na.rm=T)- (subj.Nk+1/sigma2)*log(subj.muk+

1/sigma2)+1/sigma2*log(1/sigma2)+ lgamma(subj.Nk+1/sigma2)-lgamma(1/sigma2)

}

lmatrix[i,]<- sapply(sigma.vec, l.est)
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}

lvec <- apply(lmatrix,2,sum)

sigma2 <- sigma.vec[which.max(lvec)]

sigma2

}

#======================== End of Function (sigma.est) =====================#

#==========================================================================#

# Function name: V1, V2, V3 #

#--------------------------------------------------------------------------#

# Different Variance-covariance matrices #

#==========================================================================#

#--------------------------------------------------------------------------#

# Covariance matrix V1, GEE with V1 is the score of pseudolikelihood #

#--------------------------------------------------------------------------#

V1<-function(subj.mu){

error<-0

subj.n<-length(subj.mu)

subj.var<-diag(as.vector(subj.mu), nrow=subj.n, ncol=subj.n)

if (min(eigen(subj.var)$values)<1e-8 | max(eigen(subj.var)$values)>1e10){

subj.var.inv <- NA

error <- 1 }else

subj.var.inv<-diag(as.vector(1/subj.mu), nrow=subj.n, ncol=subj.n)

list(subj.var=subj.var, subj.var.inv=subj.var.inv, error=error)

}

#--------------------------------------------------------------------------#

# Covariance matrix V2, GEE with V2 is the score of likelihood #

#--------------------------------------------------------------------------#

V2<-function(subj.mu){

error <- 0

subj.n<-length(subj.mu)

subj.var<-rep(subj.mu[1], subj.n)

if (subj.n>1){

for (i in 2:subj.n) subj.var <- cbind(subj.var, c(subj.mu[1:(i-1)],

rep(subj.mu[i], subj.n-(i-1))))

}

if (min(eigen(subj.var)$values)<1e-8 | max(eigen(subj.var)$values)>1e8){

subj.var.inv <- ginv(subj.var)

error <- 1 }else

subj.var.inv <- solve(subj.var)

list(subj.var=subj.var, subj.var.inv=subj.var.inv, error=error)

}

#--------------------------------------------------------------------------#

# Covariance matrix V3, GEE with V3 is the score of Gamma-frailty Poisson #
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# likelihood #

#--------------------------------------------------------------------------#

V3<-function(subj.mu, sigma2){

error <- 0

subj.n<-length(subj.mu)

subj.var<-rep(subj.mu[1], subj.n)

if (subj.n>1){

for (i in 2:subj.n) subj.var <- cbind(subj.var, c(subj.mu[1:(i-1)],

rep(subj.mu[i], subj.n-(i-1))))

}

subj.var <- sigma2*tcrossprod(subj.mu)+ subj.var

if (min(eigen(subj.var)$values)<1e-8 | max(eigen(subj.var)$values)>1e8){

subj.var.inv <- NA #ginv(subj.var)

error <- 1 }else

subj.var.inv <- solve(subj.var)

list(subj.var=subj.var, subj.var.inv=subj.var.inv, error=error)

}

#======================== End of Function (V1, V2, V3) ====================#

#==========================================================================#

# Function name: semiResult #

#--------------------------------------------------------------------------#

# Run simulations in batch #

#==========================================================================#

semiResult<-function(K, T, Z, dN, method, varfunc, likelihood.func=NA, n.knot=1/3,

position.knot=’quantile’){

N<-matrix(nrow=nrow(dN), ncol=ncol(dN))

n<-length(K)

for (i in 1:n) N[i,]<-cumsum(dN[i,])

cov<-covariate(K, T, Z, N, method, n.knot=n.knot)

dataset<-cov$X

alpha.dim<-cov$alpha.dim

beta.dim<-3

gama.dim<-alpha.dim+beta.dim

gama.ini<-c((1:alpha.dim)/alpha.dim, -1,0.5,1.5)

result<-algorithm(dataset, alpha.dim, gama.ini=gama.ini, method=’semiparametric’,

varfunc, likelihood.func=likelihood.func)

# estimates of the gama parameters

gama <- result$gama

alpha<-gama[1:(length(gama)-3)]

beta.est <- gama[-(1:(length(gama)-3))]

# estimates of the variance of beta

W1 <- result$W

if (min(abs((eigen(W1)$values)))>1e-10){

W1.inv <- solve(W1)
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W0 <- Varest(gama, alpha.dim, dataset, method=’semiparametric’, varfunc=varfunc)

W <- W1.inv%*%W0%*% t(W1.inv)

naive.v <- diag(W1.inv[-(1:(nrow(W1.inv)-3)),-(1:(ncol(W1.inv)-3))])

v <- diag(W)[-(1:(nrow(W)-3))]

} else {v <- NA; naive.v <- NA}

# estimates of the baseline hazard

myt<-T[order(T)]

myt<-myt[!is.na(myt)]

qn<-ceiling(sum(K)^n.knot)

if (position.knot==’quantile’) myknots <- c(rep(min(myt),3),quantile(myt,

seq(0,1,len=qn-4+2)),rep(max(myt),3)) else

if (position.knot==’uniform’) myknots <- c(rep(min(myt),3), seq(min(myt),

max(myt), length=qn-4+2), rep(max(myt),3))

S<-splineDesign(knots=myknots, seq(2, 9, by=0.25))

est<-S%*%alpha

list(gama=gama, beta.est=beta.est, beta.variance=v, beta.variance.naive=

naive.v, est=est, converge.status=result$converge.status, error=result$error,

U=result$U)

}

#======================== End of Function (semiResult) =====================#

#==========================================================================#

# Function name: bsvar #

#--------------------------------------------------------------------------#

# Generate boostrap samples to get bootstrap variances #

#==========================================================================#

bsvar<-function(K, T, Z, dN, n, varfunc, bs.n=200){

bs.est<-matrix(nrow=bs.n, ncol=3)

for (i in 1:bs.n){

rep <- floor(runif(n, 1, n+1))

replicate.data <- list(K=K[rep], T=T[rep,], Z=Z[rep,], dN=dN[rep,])

replicate.result <- with(replicate.data, semiResult(K=K, T=T, Z=Z, dN=dN,

method=method, varfunc=varfunc))

bs.est[i,] <- replicate.result$beta.est

}

bs.var <- apply(bs.est, 2, var)

bs.var

}

#======================== End of Function (bsvar) =========================#
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