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ABSTRACT

In this thesis, we propose to analyze panel count data using a spline-based
sieve generalized estimating equation method with a semiparametric proportional
mean model E(N(t)|Z) = Ao (t) €% Z. The natural log of the baseline mean function,
log/\ (t), is approximated by a monotone cubic B-spline function. The estimates of
regression parameters and spline coefficients are the roots of the spline based sieve
generalized estimating equations (sieve GEE). The proposed method avoids assuming
any parametric structure of the baseline mean function and the underlying counting
process. Selection of an appropriate covariance matrix that represents the true cor-
relation between the cumulative counts improves estimating efficiency.

In addition to the parameters existing in the proportional mean function, the
estimation that accounts for the over-dispersion and autocorrelation involves an ex-
tra nuisance parameter o2, which could be estimated using a method of moment
proposed by Zeger (1988). The parameters in the mean function are then estimated
by solving the pseudo generalized estimating equation with o2 replaced by its esti-
mate, 62. We show that the estimate of (8y, Ag) based on this two-stage approach is
still consistent and could converge at the optimal convergence rate in the nonparamet-
ric/semiparametric regression setting. The asymptotic normality of the estimate of Sy
is also established. We further propose a spline-based projection variance estimating
method and show its consistency.

Simulation studies are conducted to investigate finite sample performance of



the sieve semiparametric GEE estimates, as well as different variance estimating meth-
ods with different sample sizes. The covariance matrix that accounts for the over-
dispersion generally increases estimating efficiency when overdispersion is present in
the data. Finally, the proposed method with different covariance matrices is applied

to a real data from a bladder tumor clinical trial.
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log/\ (t), is approximated by a monotone cubic B-spline function. The estimates of
regression parameters and spline coefficients are the roots of the spline based sieve
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the sieve semiparametric GEE estimates, as well as different variance estimating meth-
ods with different sample sizes. The covariance matrix that accounts for the over-
dispersion generally increases estimating efficiency when overdispersion is present in
the data. Finally, the proposed method with different covariance matrices is applied

to a real data from a bladder tumor clinical trial.
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CHAPTER 1
INTRODUCTION

1.1 Motivating Examples

Panel count data are often seen in clinical trials, reliability studies, and epi-
demiological studies. A well known example is the superficial bladder tumor clinical
trail studied by Byar et al. (1980), Wei et al. (1989), Wellner & Zhang (2000), Sun
& Wei (2000), Zhang (2002), Wellner & Zhang (2007) and Lu et al. (2009) among
others. Patients with superficial bladder tumors were enrolled and randomized into
one of three treatment groups: pyridocine pills, thiotepa instillation or placebo group.
The number and size of the bladder tumors were measured for each subject at their
enrollment. Superficial bladder tumor has a high recurrent rate. During the follow-up
visits, the newly formed bladder tumors for each subject were counted and removed
and the assigned treatment was continued. The primary research interest was to eval-
uate and compare the effectiveness of the three different treatments and their abilities
on suppressing the recurrence of the bladder tumor while controlling for other covari-
ates. The number of visits and the time between visits varied from subject to subject.

Another interesting example is the data coming from the National Cooperative
Gallstone Study (NCGS), which is a 10-year, multicenter, double-blinded, placebo-
controlled clinical trial on the use of natural bile acid chenodeoxycholic acid (chen-
odiol) for the dissolution of cholesterol gallstones (Thall & Lachin (1988)). Patients

were randomly assigned to one of three treatment groups: high dose, low dose or



placebo. Although they were scheduled to follow-up at 1, 2, 3, 6, 9, and 12 months,
the number of observations and each observation time differed from patient to patient.
The actual successive visit times and the associated counts of nausea were recorded.
The objective of this study was to estimate chenodiol’s effect on the incidence of
nausea.

Other interesting examples of panel count data include the number of seizures
in epileptics, number of damaged joints in patients with psoriatic arthritis (Gladman

et al. 1995), etc.

1.2 Literature Review

Panel count data share some special features with longitudinal data, survival
data and categorical data; as a mixture of these three, they also impose more chal-
lenges for the analysis. First of all panel count data are a special case of longitudinal
data, where subjects experience some events of interest multiple times. The result-
ing data are usually referred to as event history data. The event history data can
be further classified into two types. One monitors the process continuously, records
the exact event time and thus produces the recurrent event data (Byar et al. (1980);
Prentice et al. (1981); Pepe & Cai (1993)). Panel count data is the other type, in
which subjects are only observed at discrete observation time points. Instead of the
exact event time, only the numbers of events between observation times are known.
For the analysis of recurrent event data, a number of methods have been proposed.

Prentice et al. (1981) generalized the Cox proportional hazard function (Cox 1972)



and developed a conditional likelihood model for subjects with multiple events. An-
dersen & Gill (1982) used an intensity-based counting process modeling techniques
and derived the asymptotic properties of the estimators based on the Martingale the-
ory. Lawless (1987) analyzed the data based on a nonhomogeneous Poisson process
plus some random effects. In the framework of marginal model, Wei et al. (1989)
analyzed the multivariate failure time model. Lawless & Nadeau (1995) discussed the
special case when the failure times were discrete. Other examples include Pepe & Cai
(1993), Lin et al. (2000) and Lin & Ying (2001).

In spite of the abundant discussions of the recurrent event history data, the
analysis of panel count data has started to attract attention in the past two decades.
Several parametric approaches have been discussed. Kalbfleisch & Lawless (1985)
and Gentleman et al. (1994) discussed the analysis of panel count data based on a
finite continuous Markov model. Breslow (1984) discussed the parametric analysis
using Poison regression. However, in medical settings, the disease progression is often
unknown. Parametric assumptions relating the outcomes and observation times are
susceptible to serious violations. In addition, the observation times vary from patient
to patient in panel count data. Even in clinical trial with scheduled follow-up times
like in NCGS, patients can still be early, late or absent. Neglecting the actual different
visit times and using the scheduled time may introduce bias and such analysis is
questionable.

Nonparametric and semiparametric analysis can relax parametric assumptions

and is applied to longitudinal data. Zhang et al. (1998), Lin & Zhang (1999) and



Rice & Wu (2001) among others adopted the linear mixed effect to analyze ordinary
longitudinal data nonparametrically. Random effects are included in the model to
account for part of the correlation between repeated measurement. A stochastic pro-
cess, such as nonhomogeneous Ornstein-Uhlenbeck (NOU) process, Weiner process,
integrated Weiner process, an integrated OU (IOU) or an ante-dependence process
for equally spaced time points, is specified in the regression model to account for the
autocorrelation. However, the choice of the stochastic process is arbitrary, and it is
unknown how these assumptions will influence the inference of the mean function. In
addition, the linear mixed effect model cannot deal with random observation times
and it dose not address the monotone constraint imposed by the counting process in
panel count data.

To deal with the special features of panel count data, Thall & Lachin (1988)
studied the data from NCGS using a marginal model. They proposed a nonparametric
estimation of the rate of the counting process. Sun & Kalbfleisch (1995) first discussed
the estimation of mean function of a specific counting process directly. They applied
the isotonic regression method and estimated the nonparametric mean function of the
counting process at specific time points. Wellner & Zhang (2000) proposed a non-
parametric maximum pseudolikelihood estimator(NPMPLE) and a nonparametric
maximum likelihood estimator(NPMLE) assuming the underlying counting process
as a nonhomogeneous Poisson process. They found out that NPMPLE is exactly the
nonparametric estimator proposed by Sun & Kalbfleisch (1995). They proved the con-

sistency of NPMPLE and NPMLE and derived their convergence rate. They showed



the robustness of both estimators against the Poisson assumption. The NPMPLE
is based on the pseudolikelihood, which neglects the correlation between consecutive
counts and treats them as if they were independent. The NPMLE is based on the
likelihood, which incorporates the correlation between consecutive counts based on
Poisson assumption. In general, the NPMLE is more efficient than the NPMPLE at
the cost of more computing times.

In many clinical trials, comparison between treatment groups is of primary
interest. Based on their nonparametric estimation, Thall & Lachin (1988) proposed
a K-variate statistic to compare the intensities of two treatment groups. Sun &
Fang (2003) proposed a nonparametric test to compare the estimates from different
counting processes and proved the asymptotic normality of the test statistics. Later,
Zhang (2006) discussed a similar test comparing the mean functions of K populations
based on the asymptotic normality of a smoothing functional of the NPMPLE studied
in Wellner & Zhang (2000).

Recently, there are more interests in analyzing panel count data using a semi-
parametric model. In the literature of repeated measurement and longitudinal data,

a semiparametric model is often assumed,
E(Y|Z,T) = u (278 +(T)) (1)

where p is a known link function, /3 is the regression parameter and v is the unknown
function. In the panel count setting, when g is chosen as the exponential function,

and 7 is chosen as the logarithm of the baseline mean function, e.g., v = logAo (%),



this model reduces to a proportional mean model
E(N(t)|Z) = Ay (t) €% Z. (1.2)

This model is widely studied in the literature, for example, in Lawless & Nadeau
(1995), Sun & Wei (2000), and Lin et al. (2000). The baseline mean function Ag is
monotone nondecreasing due to the nature of the counting process. The estimation
of By and Ag often involve complicated algorithms with heavy computing effort.

Other work has been focused on the intensity, namely,
At Z) = Ao (t) €% 7 (1.3)

where Ao (£) = 4 A (t). For example, Kalbfleisch & Lawless (1985) generalized their
Markov model to handle the covariance analysis and used the proportional structure
to model the transition intensities. Lee & Kim (1998) used the same Markov model
for two or more correlated multi-state processes and modeled the correlation between
these processes based on marginal models using the proportional model. When the
outcome is a zero-one binary variable and A is the intensity of the counting process,
this model simplifies to the proportional hazard model of Cox (1972).

Although using the model in Equation (1.3) does not require nonnegativity
and monotone nondecreasing constraint, in many cases, the mean function is of more
interest and modeling it directly is desirable. Wellner & Zhang (2007) modeled the
baseline mean function in Equation (1.2) directly and estimated the parameters using
isotonic regression. Wellner & Zhang (2007) discussed the semiparametric maximum

pseudolikelihood estimator and semiparametric maximum likelihood estimator based



on a Poisson assumption in parallel to their two nonparametric estimators (Wellner &
Zhang 2000). Both the maximum pseudolikelihood estimator and the maximum like-
lihood estimator are shown to be consistent regardless of the true underlying counting
process. They studied the convergence rate of both estimators and showed that in
spite of the fact that the nonparametric estimator of the baseline mean function con-
verges at a slower rate, n'/3, the regression parameter for the parametric part still
converges at the standard rate, n'/? and is asymptotically normally distributed. The
maximum likelihood estimator based on nonhomogeneous Poisson process assump-
tion accommodates some correlation between consecutive cumulative counts, and in
general is more efficient than the maximum pseudolikelihood estimator. However,
neither method considers the overdispersion problem commonly seen in count data,
and thus will not be very efficient when overdispersion is present. In this dissertation,
we avoid assuming any underlying counting process and use a generalized estimating
equation to estimate the parameters specified in the proportional mean function in
Equation (1.2). Selection of an appropriate covariance matrix that accounts for the
overdispersion will produce more efficient estimates when overdispersion is present in

the data.

1.3 Outline of the Dissertation
The rest of the dissertation is organized as follows. Chapter 2 introduces
the spline-based sieve semiparametric generalized estimating equation. Section 2.1

presents two commonly used smoothing techniques: kernel machine and splines in



the analysis of longitudinal data. We use the regression splines to estimate the base-
line mean function. Section 2.2 reviews the spline-based sieve M-estimators. They
are sieve counterparts of the maximum pseudolikelihood estimator and the maximum
likelihood estimator based on nonhomogeneous Poisson process studied by Wellner &
Zhang (2007). Instead of maximizing some ‘likelihood’ function based on the assump-
tion of the entire process, we propose to estimate the unknown parameters by only
assuming the mean function of the counting process as shown in Equation (1.2), and
assuming a working correlation matrix between the consecutive cumulative counts.
The parameters are estimated by solving spline-based sieve semiparametric general-
ized estimating equations (sieve GEE). Section 2.3 presents the model in detail and
discusses different choices of the covariance matrices that can be used in the esti-
mating equation to accommodate different data structure. Chapter 3 discusses the
asymptotic properties of the spline-based sieve GEE estimator proposed in Chapter 2
using modern empirical process theory. Some basic terms and theorems in empirical
process theory are summarized in Section 3.1. General theorems of the consistency
and convergence rate of the estimates of both the baseline mean function and the
regression parameters as well as the asymptotic normality of the estimated regression
parameters in the presence of a nuisance parameter are then developed in Section
3.2. In Section 3.3, these general theorems are further applied to the special struc-
ture of the Gamma-Frailty Poisson model we discussed in Section 2. Three standard
error estimating methods for the spline-based sieve GEE estimator of the regression

parameter are discussed in Chapter 4. Section 4.1 presents an estimating procedure



based on the projection of the infinite-dimensional parameter onto the tangent space
of the finite parameter spaces. Spline-based sieve method is applied again to ap-
proximate a so-called ‘least favorable direction’ used in the estimation. Instead of
using the projection algorithm proposed in Section 4.1, we could heuristically treat
spline coefficients as finite dimensional parameters and use the ordinary sandwich
estimator of the standard error proposed by Zeger & Liang (1986) in parametric
GEE model. Bootstrap method is also explored in Section 4.3. Chapter 5 discusses
the algorithms used in computing the spline-based sieve GEE estimates. Solution of
the spline-based sieve semiparametric generalized estimating equation subject to the
monotone constraint can be solved using a combination of Newton-Raphson iteration
and different projection algorithms. Section 5.1.1 discusses a Generalized Rosen (GR)
algorithm utilized by Lu et al. (2007) and Lu et al. (2009). It is also implemented
in our sieve GEE method. Isotonic regression is another commonly used algorithm
in the optimization problems subjecting to the monotone constraint. We propose to
combine Newton-Raphson algorithm and the isotonic regression (NR/IR) to compute
the spline-based sieve semiparametric GEE estimates in Section 5.1.2. Section 5.2
presents different estimation methods for the overdispersion parameter in the covari-
ance matrix, but not in the mean function. An extensive simulation study is done
to compare the performance of the spline-based sieve semiparametric GEE estimator
using different covariance matrices. Chapter 6 summarizes the simulation results.
The proposed spline-based sieve semiparametric GEE method is applied to the data

from a superficial bladder tumor clinical trial. Finally, we give some final remarks of



the proposed method and discuss possible future works in Chapter 7.
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CHAPTER 2
SPLINE-BASED SIEVE SEMIPARAMETRIC GENERALIZED
ESTIMATING EQUATION

In this Chapter, a spline-based sieve semiparametric generalized estimating
equation method is proposed to analyze panel count data. As mentioned in section
1.2, the proportional mean model in Equation (1.2) is assumed in the analysis. The
baseline mean function is left unspecified. It can be estimated using step functions
with jumps at distinct observation times as shown in Wellner & Zhang (2007). How-
ever, the dimension of the estimation of Wellner & Zhang’s method increases rapidly
as sample size increases and hence their method is computationally intensive. In
most of applications, the true baseline mean function can be assumed as a smooth
function, therefore it is more desirable to have a smooth estimator of the baseline
mean function. Section 2.1 presents two common smoothing techniques used in the
estimation of infinite-dimensional parameters in statistical literature. See examples in
Huang (1996) and Wellner & Zhang (2007), etc. With the proportional mean assump-
tion, regression splines render a simple approximation of the baseline mean function
of the panel count data and facilitate an easy-to-implement estimating procedure.
Section 2.2 reviews the spline-based sieve semiparametric maximum pseudolikelihood
estimator and the spline-based sieve semiparametric maximum likelihood estimator
for panel count data studied by Lu et al. (2009). These two estimators are different
versions of the semiparametric maximum pseudolikelihood estimator and the semi-

parametric maximum likelihood estimator studied by Wellner & Zhang (2007). The
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spline-based sieve estimators have a faster convergence rate than their counterparts.
Section 2.3 presents a new method for the semiparametric inference using generalized
estimating equation approach. Different working covariance matrices are suggested in
the method for different data structure. The newly proposed method could produce
more efficient estimates for both the regression parameters and the baseline mean
function than the spline-based sieve semiparametric maximum likelihood estimators
studied by Lu et al. (2009) if the overdispersion problem is present in the panel count

data.

2.1 Smoothing and its application in the analysis of clustered data
Kernel regression and spline smoothing are the two techniques widely used
to estimate unknown functions in the nonparametric/semiparametric estimation lit-
erature. Both methods have been applied to the analysis of longitudinal data in
statistical literature. The kernel smoothing is the simplest smoothing method. It is

based on the weighted local average of available data points, e.g.

A . Z?:l Ky (23) ys
He) = S e )

r—x;

h

),

where the weights are explicitly determined by the kernel function K}, (x) = %K 3 (
and the neighborhood is determined by h, so called bandwidth. Selections of the
kernel function and the bandwidth are the two main considerations in the kernel
smoothing.

The kernel function K can be any unimodal and symmetric function. In the

weighted average approximation, the center of the kernel is placed at each data point.



13

Commonly used kernel functions include Uniform, Gaussian and Epanechnikov func-
tions. The performance of kernel smoothing is often measured by mean integrated
square error (MISE) or asymptotic mean integrated square error (AMISE). Epanech-
nikov kernel often minimizes AMISE and is therefore optimal.

The choice of the shape of the kernel function is less important than the band-
width, h. The bandwidth controls the level of smoothing. A wider bandwidth tends
to over-smooth the estimation in the sense that it is too biased and may not reveal
structural features of the data. A narrower bandwidth may result in a wiggly looking
estimate. Different methods have been proposed to select the bandwidth, such as
Rule of thumb discussed in Silverman (1986), mazimal smoothing principle proposed
by Terrell (1990), least square cross-validation by Rudemo (1982) and Breslow (1984)
and other variants of cross-validation methods.

Many articles applied the kernel smoothing method to the analysis of clustered
data; see Severini & Staniswalis (1994), Wild & Yee (1996), Zeger & Diggle (1994)
and Lin & Carroll (2000) and Lin & Carroll (2001). Lin & Carroll (2000) and Lin
& Carroll (2001) applied the traditional kernel smoothing in the clustered nonpara-
metric and semiparametric regression respectively. In the nonparametric setting, the
traditional kernel-based nonparametric estimations are efficient only when ignoring
the correlations within a cluster. In the semiparametric setting, even when a work-
ing independent covariance matrix is used, the estimate of the parametric regression
parameter is still not efficient. These results are rather different from the results of

the parametric analysis. Wang (2003) proposed a different kernel function, the seem-
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ingly unrelated kernel (SUR), in the clustered nonparametric regression. Correctly
specifying the correlation can improve the estimation efficiency.

Polynomial function, f (z) = 3.%  a;x’, is another method that has long been
used to approximate some unknown function due to its linearity of the regression
parameters and easy calculation with respect to derivatives and integrations. A main
drawback of polynomial approximation is its ‘non-localness’, namely a slight change
of one data point may cause large changes in the regression parameters and poly-
nomial approximations. Substantial improvement can be gained by using piecewise
polynomial functions, splines. The regions that define the pieces are separated by a
series of breakpoints called knots. The function within each pair of adjacent knots is
approximated by a polynomial function with the same order K. In order to enforce
the smoothness of the estimate, the derivatives of the adjacent polynomials at any
knot are the same up to the order of K —1. For a given set of knots, such constructed
piecewise polynomial approximation can be expressed as a linear span of an appro-
priate set of basis functions. For example, the region of approximation [L, U] can be
divided into m,,+1 subintervals by a series of interior knots, = = {&;,i = 1,2,--- ,m,}
such that

L=§ <& < <&mp <&mp+1=U

Given these knots, any function f (x) within this region can be approximated by
~ qn
f(x) =) B (z) (2.1)
1=1

where B (x),l =1,2,--- ,q, are spline basis functions and are themselves a series of

piecewise polynomials that are smoothly connected at the knots; ¢, is the sum of the
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number of the interior knots m,, and the order of the basis functions B;. In order to
use this approximation, we need to determine the number and location of the interior
knots as well as the basis functions and their order used in the linear span.

The smoothing spline method chooses the order of the spline by minimizing a

modified function

S (r-Fe) o [ (Fw) e

where ) is a penalty term that controls the smoothness of the approximated f (x). A
larger A corresponds to a less smooth spline estimation. Wang et al. (2005) used the
smoothing spline in analyzing clustered data. They proved the asymptotic equivalence
between the smoothing spline and the SUR proposed by Wang (2003). In both
methods, using the true covariance matrix as a working covariance matrix increases
the estimating efficiency, and these two estimators outperform the traditional kernel
estimators studied by Lin & Carroll (2000) and Lin & Carroll (2001).

Zhu et al. (2008) studied longitudinal data using regression splines. Given a set
of interior knots, they studied an estimator based on weighted least square regression

splines by minimizing

Zn: (Yi - J;(xi)>TV_1 (Yi - f(m)) :

i=1

The bias of the estimator does not depend on working correlation matrix, and the
mean square error is minimized when the true correlation structure is used. However,
this method only deals with situations where subjects are followed at same observation
times. It cannot be readily applied to the scenario of panel count data where the

number of observations and each observation time vary from subject to subject.
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In this dissertation, the regression spline method is used to estimate the base-
line mean function of the counting process nonparametrically. As shown in Equation
(2.1), regression spline approximates the function in a sieve space made by a linear
span of some basis functions By (t),l = 1,2, -, ¢g,. The dimension of the sieve space,
qn, increases as sample size increases. But it could increase, depending on the choice of
sieves, much slower than the sample size increases. Asymptotically, the closure of the
limiting approximation space contains the true infinite dimensional parameter space.
The definition of the spline function and the formulation of the regression splines in
panel count data are stated in details in Section 2.2. Lu et al. (2009) applied a similar
sieve approximation to the maximum pseudolikelihood estimator and the maximum
likelihood estimator of the panel count data by Wellner & Zhang (2007). Instead of
using the likelihood of the counting process as in Lu et al. (2009) or a weighted least
square estimate as in Zhu et al. (2008), we discuss a generalized estimating equation
in Section 2.3. Different working covariance matrices are discussed for improving the

efficiency of the estimation and they can be subject-specific.

2.2 Spline-based Sieve Maximum Likelihood Estimation
Suppose, N = {N(¢) : ¢ > 0} is a univariate counting process. There are ran-
dom number K observations of this counting process at 0 =T < Ty < -+ < Tk k.
We denote Ty = (T 1, Tk 2, , Tk k), and N= (N(Tk1) ,N(Tk2), - ,N(Tkk)),
the cumulative event count at these discrete observation times. We assume the

number of observations and the observation times, (K, T ), are independent of the
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point process N, conditioning on the covariate vector Z. Panel count data are com-

posed of a random sample of X7, X5, -+, X, where the observation X; consists of

NG — <N<i> (T&) NG <T§Q2) .-, NO (T I(()K>> :

Assume observation times are restricted in a finite interval [L, U] and the true

(K, Ty, N, Z,) with T, = (T4, Ty, T i, ) and

function logA(t) is continuous and bounded in this interval. Let a sequence of knots
t={L=ti =ty ==t <ty < <tgm, <tligmes1 = = tmqa = U}
partition the closed interval [L,U] into m, + 1 subintervals, where m, ~ n” is a
positive integer such that maxj<g<m, [titk — tise—1] = O(n™"). Denote ¢, as a
class of polynomial spline functions of order [, { > 1. ¢;, is spanned by a series of
polynomial spline basis functions {B;,1 < ¢ < ¢,} where ¢, = m,, + L.

The dimension of the sieve space, ¢, is determined by sample size and is
related to the asymptotic properties of the estimates. The discussion of these asymp-
totic properties is delegated to Chapter 3. The choice of the knots is suggested by
the data. Reducing the number of knots reduces the flexibility of the fitted spline,
and increasing the density of knots in different regions of the observation time allows
increased flexibility within those regions. Uniform partitions and partitions according
to the quantiles of the data are two commonly used convenient choices. In our sim-
ulation setup in Chapter 6, the observations scheduled at a later time have a higher
probability of missing. Knots allocated with the uniform partition scheme will end up
with fewer observations in the intervals in the later time and hence introduce a greater

bias to the estimation of the baseline mean function especially when sample size is
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small. In this case, knots allocated with the quantile-based scheme are preferred.

Different basis functions have been used in the literature, such as truncated
first order splines used in Zhang (1997) and piecewise second order splines used in
Huang (1996). And it is noteworthy that if the knots ¢;,7 = 1,2, ---m,, are chosen
to be all distinct event times and the order of spline is one, we end up using step
functions to approximate the nonparametric function. In this thesis, we consider
to use cubic B-spline functions to approximate the logarithm of the baseline mean
function, logAq (t). B-spline is easily interpretable. It is local so the coefficient can
be related to the behavior of the estimate at specific locations. And it is widely used
in the software packages. Transformations of B-splines to other bases are easy to
implement. Cubic spline is chosen since it is flexible and twice differentiable at the
knots without being overly complex. When using B-spline basis functions, a subclass
of gue, iy = D" auBi(t),on < ap < -+ < @} is a collection of monotone
nondecreasing splines as a consequence of the variation diminishing properties of B-
splines (Schumaker 1981). Therefore 1, is a proper space from which the estimates
of log Ay (t) can be found.

Using spline-based sieve approximation, the proportional mean function shown

in Equation (1.2) is rewritten as

E(N(T)|2) = exp> " auBi (1) + 617}, 2.2
=1

Based on the same approximation, Lu et al. (2009) studied the spline-based sieve
semiparametric maximum pseudolikelihood estimator and the spline-based sieve semi-

parametric maximum likelihood estimator as counterparts of Wellner & Zhang’s es-
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timators (Wellner & Zhang 2007) assuming a nonhomogeneous Poisson process.
The pseudolikelihood is given by

D) = 3055 (80 (2, 0720+ 8O (21, ) tog (7))

=1 j=1
—eap {loga (112,) + 572}

Its spline-based sieve counterpart is

dn
I (o, B1D) zz( (18,) 8724 N0 (12,) S et (11,
=1

=1 j=1

_exp {qz B, (T}; J> 6TZ}> (2.3)

=1

Both likelihood functions are derived based on the assumption that the cumulative
counts follow an independent Poisson distribution and neglect the correlations be-
tween the cumulative counts within the same subject. Thus the two maximum pseu-
dolikelihood estimators are not efficient.

Using the independence of the count increment based on the nonhomogeneous

Poisson process assumption, the likelihood is given by

n K,
W (A BID) = SO AN logAAD ; + ANG) 577, — M EAN | (2.
i=1 j=1

where

AA%J =4 (TI(;)]) —A (T;(é),j_1> ) AN%J - Ng?i,j (TI@J - Ng?iyj (TI((Zi)J_l)

Its spline-based sieve counterpart is

n K,
o, B|D) = AN jlogAAR | + ANJ 877, — 7 EARD | (25)

i=1 j=1
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where
. dn ) dn )
AA%J = exp <Z o B (T};Z)) — exp (Z o B (TI((Z)]1)>
=1 =1
AN&?Z_J is defined the same as in Equation (2.4). The (sieve) maximum likelihood

estimators incorporate the correlations between cumulative counts and they are more
efficient than the (sieve) pseudolikelihood estimators at the cost of more computing
time. Both (sieve) maximum pseudolikelihood estimator and (sieve) maximum like-
lihood estimator are consistent. The maximum pseudolikelihood estimator and the
maximum likelihood estimator converges at a rate of n'/?, the regular convergence
rate of nonparametric estimator. However the spline-based sieve estimators converge
at a faster rate than their counterparts, but still slower than n'/2. Despite a slower
convergence rate of the nonparametric estimator, the estimate of the regression pa-
rameter still converges at n'/2, and the (sieve) maximum likelihood estimator is more
efficient than the (sieve) maximum pseudolikelihood estimator.

The (sieve) maximum likelihood estimator, though more efficient than the
(sieve) maximum pseudolikelihood estimator, is still based on the model assuming
independent increments. This assumption is often violated in medical settings because
a high incidence of a disease in an interval may indicate another high incidence of the
disease in the subsequent non-overlapping intervals. When this is the case, the (sieve)
maximum likelihood estimator may not be an efficient estimator either. Instead of
constructing a likelihood function based on specific distribution assumptions of the
underlying counting process, we propose to use a generalized estimating equation

(GEE) for the analysis of panel count data.
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2.3 Spline-based Sieve Semiparametric Generalized Estimating
Equation

Generalized Estimating Equation (GEE) method, originally developed by Liang
& Zeger (1986) is widely used in parametric regression settings. It provides a ro-
bust inference with only weak assumptions of the underlying distributions. A large
amount of literature generalized the same idea to semiparametric settings with a
mean response model given by Equation (1.1). Zeger & Diggle (1994), Hoover et al.
(1998), Lin & Ying (2001) and Wu & Zhang (2002) among others, used kernel-based
estimating equation and ignored the correlation structure. Lin & Carroll (2001), Fan
& Li (2004) and Wang et al. (2005) incorporated the correlation structure in their
estimating procedures within the kernel framework.

We use a spline-based sieve semiparametric generalized estimating equation
(sieve GEE), with the conditional mean function given by Equation (2.2), and esti-

mate (p, Ag) through finding the roots of the estimating equation

n ONT ,
U(0>=Z<859) VO (N(T) — @) =0 (2.6)

i=1
where p( = ( 5;2,17 /vbg?i,za o M?{)K>T with Ngz()] = exp (BTZi + 2 By <Tf(;)])>
for j =1,2,---K; and § = (8, a) with the constraints oy < as < --- < «o,,. The
spline-based sieve GEE estimator of A is taken as exp (> /", &;B; (t)) after the spline
coefficient estimates &;,l = 1,2,--- , g, are obtained from Equation (2.6). V@ is the
working covariance matrix for the panel counts from the i** process. Different choices
of this covariance matrix could accommodate the characteristics of different counting

processes. We discuss three possible covariance matrices and they correspond to
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scores of different ‘likelihood’ functions. The equivalence is shown in Appendix A.

2.3.1 Diagonal Covariance Matrix
The easiest choice of the covariance matrix is to use a diagonal matrix, in which

the diagonal element is determined by the variance function of Poisson distribution,

e.g., Var (N(Tk, ;) = E (N (Tk, ;)) and

M(Ié)i,l 0 0
0
0 0 o

KiXKi

This is exactly the score equation of the log pseudolikelihood shown in Equa-
tion (2.3) (see Appendix A). However, the diagonal matrix implies an independence
between cumulative counts in the counting process, although these cumulative counts
are obviously positively correlated. The misspecification of the covariance matrix

causes a loss of efficiency in the estimation.

2.3.2 Covariance Matrix Based on the Poisson Process Assumption

Instead of using a diagonal matrix that ignores the correlation among the
cumulative counts, a covariance matrix that accommodates such correlation will in-
tuitively produce more efficient estimates. The covariance function based on the

Poisson counting process, i.e.,

Cov (N (t1),N(ty)) = E(N(t1)), fort; <t
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leads to the selection of the covariance matrix V; in the form of

(%) @ . (4)

HPr,1 MK, MK

o /ﬁgl()i,l N%,z T N%,z
2 p—

ﬂ%’)i,l :“g?i,z T M%,Ki

KZ'XKi

The spline-based sieve semiparametric GEE with this covariance matrix is exactly the
score equation of the log likelihood based on Poisson process model shown in Equation
(2.5) (see Appendix A). In spite of the improved efficiency of this estimation compared
to the one using Vl(i) as the covariance matrix, it still imposes possibly unrealistic
assumptions to the covariance structure of the data: first, it assumes the variance
of the counts equals to the mean, that is no over-dispersion is allowed in the count
data; Secondly, it assumes the independence between the count increments. When
either of these two assumptions is violated, the estimator based on VQ(” will not be

very efficient.

2.3.3 Sieve GEE With Over-Dispersion Term
Although the results of Lu et al. (2009) have demonstrated that the sieve GEE
estimate of 3y with VQ(i) is more efficient than that with Vl(i), it is not guaranteed that
using Vz(i) would always produce a highly efficient estimate, as it does not account
for either the over-dispersion or the correlation among the count increments. In lit-
erature, Poisson model with a frailty variable, namely E (N () |y, Z) = vAq (t) €' 2,
is a common way in parametric regression analysis for count data to account for

possible over-dispersions. Chan & Ledolter (1995) and Hay & Pettitt (2001) dis-
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cussed a log normal frailty model by assuming a log normal distribution of the frailty
term . However, there is no close form for the marginal distribution of the count
and the estimation with this frailty variable is computationally demanding. Another
common frailty model assumes a gamma-distributed subject-specific frailty term as
studied in Thall (1988) and Diggle et al. (1994) among others. Integrating out the
gamma frailty variable results in a negative binomial distribution for the correlated
counts. Zhang & Jamshidian (2004) introduced a gamma frailty term to nonpara-
metric estimation of the mean function of the counting process. They constructed a
maximum pseudolikelihood estimate with a gamma frailty term and computed the
estimate using EM algorithm. Zeger (1988) considered a latent frailty process while
assuming only the mean of the frailty term and a covariance function. A similar idea
is adopted in the semiparametric sieve GEE setting in this manuscript. The expec-
tation of v is specified as 1, e.g., E (y) = 1, which guarantees the identifiability of
the model and does not violate the proportional mean model specified in Equation
(1.2). The variance of 7 is denoted as ¢%. The marginal variance function based on
such Frailty Poisson process is Var (N (¢)) = u;, + o?u?, where yuy = E (N(¢)). The
correlation between successive counts is explained by the frailty parameter v, namely

Cov (N (tl) 7N (t2>> = Wty + 0-2:ut1:ut27 for tl < t2-
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This leads to a working covariance matrix Vg(i) of the form

My()ig + Uzﬂ%Jﬂ%J M(Iz()i,l + UZH%JM(IZ()%Q T H(IZ()Z-J + 0-211“;1()2-71”(]1()1-,1(1-
Ty AT VA T C SR 1) AT 1) (A ST AT
Ty AT VT VR 1) AT V) (. LTy A T) L

KiXKi

and it can be rewritten as,
V= o (u0) ()

The estimating equation using Vg(i) is a special case of Vz,,(i) with 02 = 0. When
over-dispersion exists, the spline-based sieve semiparametric GEE method using this
working covariance matrix with o2 replaced by its consistent estimate may lead to a
more efficient estimate than the spline-based sieve maximum likelihood estimate stud-
ied by Lu et al. (2009). The estimating equation using V;i) turns out to be the score
function of the marginal likelihood of the panel count data under the Gamma-Frailty
nonhomogeneous Poisson process model. That is, given the gamma distribution of the
frailty term, e.g., v ~ I' (1/6%,1/0?), the cumulative counts follow a nonhomogeneous
Poisson process with mean A (t) e?"#. The conditional likelihood of the counts given

the frailty term can be written as

e—vAAjeﬂTZ (”yAAjeﬁTZ)ANj
AN;!

f(N17N27 T 7NK"‘)/) = H;‘C:l

where N] = N(TK,J) ,ANJ = N] — Njfl and Aj = A(TK,]) ,AA] = Aj — Ajfl for

j=1,2,--- K. Welet Tk =0 and assume N (0) = A (0) = 0.
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Integrating out ~, we have

AN
—’yAA-eBTZ < . BTZ) J 1/02
e j vAAje (1/02) / o

B K 2~y 1/02-1
f(Np, Ny, - ,NK>/WHJ=1 AN;! I (1/0%) T
‘ ﬁTZ 2 1/02
B (AA e ) (1/0%) /6_(AKeBTZJrl/a?)w,yNKH/Ulefy
HK JANGIT I'(1/0?) ¥
(AAeﬁTZ) T (N +1/07)
HK AN T (1/0.2) (AK«EBTZ + 1/0.2)NK+1/0'2

The log likelihood based on this model is,

(8,7, 0% X;) Z {Z ANY log (AAg’jeBTZi) - (Ngg,m_ - 1/02> x
log (Ag?i’KieﬁTZ + 1/02> +1/0% x logl /o +

logD (Nﬁ?m +1 /02) — logI (1 /02)} (2.7)

The score function of this likelihood is the same as the sieve GEE using VS(i) as the
working covariance matrix (see Appendix A).

The sieve semiparametric GEE estimator with Vl(i) as the covariance matrix co-
incide with the sieve semiparametric maximum pseudolikelihood estimator (Aiff, B;’f)
and the sieve semiparametric GEE estimator using VQ(i) as the working covariance ma-
trix is the same as the sieve semiparametric maximum likelihood estimator (An, Bn> .
The consistency and convergence rate of (Aﬂs, Bﬁs> and (An, Bn> and the asymptotic
normality of Bﬁs and Bn are proved in Lu et al. (2009). The asymptotic properties of
this sieve semiparametric GEE estimator using V;i) as the covariance matrix and o

replaced by its consistent estimate 62 are discussed in Chapter 3.
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CHAPTER 3
ASYMPTOTIC PROPERTIES OF SPLINE-BASED GEE
ACCOUNTING FOR OVERDISPERSION

In this chapter, we apply modern empirical process theory to prove the con-
sistency, convergence rate and the asymptotic normality of our sieve GEE estimator
with V;i) as the working covariance matrix and o2 replaced by its consistent estimate
2. In Section 3.1 we present some technical terms and lemmas in modern empirical
process theory. In Section 3.2 we develop three general theorems for the asymptotic
properties of the pseudo GEE (or pseudo MLE) estimator. In Section 3.3 these the-
orems are further applied to the Gamma-Frailty nonhomogeneous Poisson process
model to prove the asymptotic properties of our proposed pseudo spline-based sieve

GEE estimators.

3.1 Basic elements of modern empirical process theory

In this section we present some technical terms and lemmas in modern empir-
ical process theory from the book by van der Vaart & Wellner (1996). These results
will be used to prove the asymptotic properties of our pseudo GEE (pseudo MLE)
estimator in the next two sections.

Let X1, X5, -+, X, be a random sample from a probability distribution P
on a measurable space (€2, B). For a measurable function f : X +— R, let Pf
denote the integral [ fdP, equivalently it is the expectation of f under the prob-

ability measure P, i.e., Epf (X). Let P, denote the discrete uniform measure, i.e.,
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P.f = %ZLI f(X;). It is the expectation of f under empirical measure P,. The
empirical process G, f is the centered and scaled version of the empirical measure,
Lo Guf = Vi1 (Buf — P) = 4= S0 (£ (X0) — Bpf (X))

By the law of large numbers and central limit theorem, for a fixed function f,

it follows

Pof —bas Pfand G,f —4 N (0,P(f — Pf)?).

provided Pf exists and Pf? < oo, respectively.
When dealing with the set to which parameters belong, a uniform version of
law of large numbers and central limit theorem is defined in modern empirical process

theory. A class F of measurable functions f : F +— R is called P-Glivenko-Cantelli if
|Pnf — Pfllz =sup||P,f — Pf|| — 0 almost surely.
fer

A class F of measurable functions f : F — R is called P-Donsker if the sequence
of processes {G, f : f € F} converges in distribution to a tight limit process in the
space (™ (F).

Whether a class of functions F is a Glivenko-Cantelli or Donsker class depends
on the size of the class. A relatively simply way to measure the size of a class F is in
terms of entropy. For any probability measure P, define L, (P) = {f : [ f"dP < oo}.

For any element of F, f, define a metric as

'thn:a%vmf“z([}ﬂ@rwn@)w

The covering number N (g, F,||-||) is the minimal number of balls {g : ||g — f|| < &} of

radius € needed to cover the set F. The entropy (without bracketing) is the logarithm
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of the covering number. Given two functions | and u, the bracket [l,u] is the set of
all functions f with [ < f < w. An e — bracket in L, (P) is a bracket [[,u] with
lu =1, p) < e The bracketing number Ny (e, F, L, (P)) is the minimum number
of e—brackets needed to cover F. The entropy with bracketing is the logarithm of the
bracketing number.

Remark: If f is in the 2e-bracket [l, u], then it is in the ball of radius £ around

(I +u) /2. So the covering and bracketing number are related by
N (e, F D) = Ny (22, FL 1D

The Glivenko-Cantelli Theorem as stated in Theorem 2.4.1 in van der Vaart

& Wellner (1996) relates Glivenko-Cantelli class with the bracketing number .

Lemma 3.1. (Glivenko-Cantelli Theorem) Let F be a class of measurable functions

such that Ny (e, F, L1 (P)) < oo for every € > 0. Then F is P-Glivenko-Cantelli.

Theorem 2.4.3 in van der Vaart & Wellner (1996) as stated in the next lemma

relate the Glivenko-Cantelli with a random entropy condition.

Lemma 3.2. Let F be a P-measurable class of measurable functions with envelope F'
such that PF < oo. Let Fyy be the class of functions f1{F < M} when f ranges over
F. if logN (g, Fu, L1 (Py)) = op (n) for every € and M > 0, then ||P, — Pl — 0

both almost surely and in mean. In particular, F is Glivenko-Cantelli.

The bracketing number Ny (¢, F, L, (P)) grows to infinity as € | 0. A sufficient

condition for a class to be Donsker is that they do not grow too fast. The following
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theorem from Section 2.5 in van der Vaart & Wellner (1996) relates P-Donsker with

the bracketing integral defined therein.

Lemma 3.3. (Donsker Theorem) Let F be a class of measurable functions such that

its bracketing integral defined as

5
Jiy (8, F. Ly (P)) :/ V1ogNi) (¢, F, L» (P))dz < oo
0
for every € > 0. Then F is P-Donsker.

Remark: The integrand is a decreasing function of €. So the convergence of
the integral depends on the size of the bracketing number for € | 0. Because fol e "de
converges for r < 1, the integral condition requires the entropy grows no faster than
the order of (1/£)* for a Donsker class.

In our analysis of panel count data, the baseline mean function in Equation
(1.2) is a monotone nondecreasing function. Theorem 2.7.5 in van der Vaart & Wellner
(1996), as stated below, indicates that the class of uniformly bounded, monotone
functions on the real line is Donsker, the bracketing entropy of this class is of the

order 1/e.

Lemma 3.4. The class F of monotone functions f : R — [0, 1] satisfies

logN| (=, F. L, (Q)) < K (1) |

€

for every probability measure ), every r > 1, and a constant K that depends on r

only.



31

There is a nice relationship between Donsker class and the asymptotic equicon-
tinuity. We now state Corollary 2.3.13 from van der Vaart & Wellner (1996) about

this relationship in the following lemma.

Lemma 3.5. (Semi-equicontinuity Theorem) Let F be a class of measurable func-

tions. Define a seminorm pp on F by

pp(f) = (P(f—PHH"?, for fe F

Let
Fs={f—-9:f,9€F,pp(f—g) <4}

Then the following are equivalent:
1. F s P-Donsker;

2. (F,pp) is totally bounded and

lim lim sup P < sup |G, (f —9g)| > 5) = 0.

30 n—oo pp(f-g)<é

3. (F,pp) is totally bounded and
Ev/n|P, — Pl — 0, for every 8, — 0.
Lemma 3.4.3 in van der Vaart & Wellner (1996) is used in the proof of the

convergence rate. It involves a specific norm and a different entropy integral from

that defined above. We define ‘Bernstein norm’ as

||f||P,B = (2P (€‘f| 1= |f|))1/2
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A different bracketing integral using Bernstein norm is defined as

§
WGF - nm) = [ 1+ 109Ny F. - )
0

Lemma 3.6. Let F be a class of measurable functions such that || f||p 5 < 9 for every

feF. Then

T j 57‘F7 :
EplGallr < CJy (5,71 o) <1+ 1. F. HP,B>M).

2 /n

In this manuscript, we work with a spline-based sieve space. Given the number

of knots, ¢,, a set of knots is denoted by

t={ti=to=- =t <ti1 < < tmprt = b si1 = =+ = st}

We approximate the compact original function space by ¢;; with order [ and knots ¢,

where

dn
1 = {Z a;B; :B;,1=1,2,--- ¢, are the basis functions with knots ¢
i=1

qn
and Z a? < §? for some constant d}
i=1

To apply either the Glivenko-Cantelli theorem or the Donsker theorem, we need
to calculate the entropy numbers with bracketing of this sieve space using different
norms. This can be done by applying Lemma 5 in Shen & Wong (1994) to the spline-
based sieve space ¢;; with different norms. We first stated Shen & Wong (1994)’s

lemma below.
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Lemma 3.7. (A metric entropy calculation). Let S be a §—sphere in R™, that is,
S =A{o=(21,- ,xn) €ER*: 37" a7 <6} Let |||, be the usual Ly—metric in

R™. Then logNy (¢, 5, |||l,,) < cnlog (n'/?6/€) for e <& and some constant ¢ > 0.

Following the same line of Shen & Wong (1994)’s proof, we calculate the
bracketing entropies of the — sphere defined in Lemma 3.7 using Ls— and L, —norm.

That is

logNyy (€, 5, |I1l,,) < enlog (6/e)

logNy (e, 5, |||l,..) < enlog (n’l/zé/s)

To calculate the entropy number of ¢;;, we apply Lemma 3.7 replacing the d—sphere

with the sphere defined using the spline coefficients.

Lemma 3.8. The entropy numbers of ¢, with Li—, Lo— and L.— norms are

bounded by C’qnlog(q}/2 X g),C’qnlog(g) and Cq,log (%) respectively.
qn €

For the estimation of the mean function of the panel count data specified in
Equation (1.2), we approximate the space of the log of the baseline mean function,

logA by a subspace of ¢y, ¥+, defined as
n
Yy = {Z a;B; :B;,1=1,2,--- g, are the basis functions defined at ¢
i=1

dn
ap <ag <---,<a, and Za? < 62 for some constant &}
i=1

Obviously, the e—entropy numbers of v¢;; with L;—, Ly— and L.— norms are also

bounded by C'qnlog(q}/2 X g), C’qnlog(g) and Cq,log (%) respectively.

1
qn’ €
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3.2 General theorems
3.2.1 Consistency
We generalize Theorem 5.7 in van der Vaart (1998) by including a nuisance

parameter 7).

Theorem 3.9. Let M, (6,7n) and M (0,7) be a random function and a fized function

i an index set © x H respectively. Denote H® the neighborhood of a fixed value nq

i H. If
sup M (0,n) <M (by,n) Ve>0,ne H° (3.1)
0:d(6,00)>¢
sup ’Mn (67 7]) -M (67 7]) ‘ —p 07 (32)

{(0,m):0c0©,neH"}

then any sequence of estimator 6,, with

inf (Mn (én,n> — M, (90,77)) > o, (1) (3.3)

neH®°

converges in probability to 6.

Proof. By condition (3.2), we have M, (fy,n) = M (6y,n) + 0, (1). Together with
condition (3.3), this further implies M, <én,n> > M, (6g,m) — 0, (1) = M (6y,n) —

0p (1). So we have

M (6p,7) — M (én,n> <M, (én,n) M (én, n) +o,(1)

< sup M, (6,m) =M (0,1) [ +0,(1) 2,0 (3.4)
{(0,n):6c©,neH"}

By condition (3.1), for any 6 > 0, we can find ¢ > 0 such that M (6y,n) —M (6,7n) > o

for every 6 that satisfies d (0,6y) > . So the event [d(0,60y) > €] is a subset of
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M (6p,m) — M (0,1) > ¢]. In view of the inequality (3.4), we have
d (én, 90) —, 0.
[

Remark: This theorem is a direct generalization of the Theorem 5.7 in van der
Vaart (1998) by including a nuisance parameter 7. Condition (3.1) indicates that 6,
maximizes M (0, n) for any given nuisance parameter 7).

In applications, with the extra condition specified in condition (3.1) a two-stage
estimating procedure could be implemented. Instead of estimating (6, 7) simultane-
ously by maximizing the original likelihood M, (6, 7), we could estimate the nuisance
parameter 7 first and then estimate 6 by maximizing a pseudo likelihood M, (0, 1,).
The estimator, 6,, based on such a two-stage estimating procedure still converges to
the true parameter 6y. The estimation of the sieve GEE using V})(i) as the working co-
variance matrix can be implemented in such a two-stage procedure. The consistency

of the estimate is established in Section 3.3.

3.2.2 Convergence Rate
Theorem 3.10 is a generalization of the Theorem 3.4.1 in van der Vaart &

Wellner (1996) with an extra nuisance parameter, 7.

Theorem 3.10. Let M, (6,7n) and M, (6,n) be stochastic processes indexed by ©,,x H.
Denote H® the neighborhood of a fixed value ng in H. Let 6, € ©, and 0 < 6, < ( be

arbitrary, and let 0 — d,, (0,0,,) be an arbitrary map from ©,, to [0,00). Suppose that
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for every n and 6, < § < (

sup (M, (0,m) — M, (0,,1m)) < —06? (3.5)
0/2<dn(0,0n)<6,0€0,,ncH°
b (0)
E sup | (M, = My) (0,1) — (M, = My,) (6n,m) | p < C (3.6)
8/2<dn (0,0n)<8,0€0, nEH® Vn

for functions ¢, such that § — ¢, (§) /6% is decreasing on (9,,C) for some o < 2 (not

depending on n). If there is a r, = C/d, such that

20, (1/r,) < C\/n for every n (3.7)

and the sequence én takes its values in ©,, and satisfies

inf <Mn (én,n> — M, (en,n)) > -0, (2 (3.8)

neH®°

and d,, (én, 9n> —p 0; then
Tndy, (éna 971) = Op (1)
Proof. We first partition the parameter space ©, into different ‘shells’ defined by
Sin=1{0:2"1<r.d,(0,0,) <2/} withj =1,2,---. The event {rndn (én,0n> > ZM}
for some M is a subset of the event {én € S, : for some j > M} . So forany n € H®
we have
P (?"nd (én,9n> > 2M> <P <én € S for some j > M)

< > ( sup (M, (6,1) — M (6,,m)) 2 —crf)

J>M 21 <rpe 0€Sjn
v P (20, (0.0, > <)
By the consistency condition, the last probability goes to zero as n — oo for any

e > 0.
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We choose small enough ¢ and ¢ < € such that both conditions (3.5) and (3.6)
hold for 6 € S;,. By condition (3.5), sup,cpyo (M, (8,1) — M, (6,,m)) < —C2%r;2.

Also,

sup {M, (0,n) — M, (0.,7)}

GGSj’n

:eigp {(M,, — My,) (0,m) — (M, = M) (0n,m) + My, (0,1) — My, (05,m) }

< sup {(My, — My) (0,n) = (M, — M) (0n,m)} + sup {M,, (6,7) — My, (6, 1)}

9€Sj,n 9€Sj,n

So

P{ sup [Mn (9777) - Mn (‘9n77]>] > _C'rnz}

QESj,n

<P {ezgp (M, — M) (6, 1) — (M — M) (6,7)]

+ sup [My, (6, 1) = My (0n,7)] > —CTnQ}
GESj,n

p {up (M, — M,) (6,n) — (M, — M) (B,

Z — sup [Mn (9, 77) - Mn (67”7])] - CTT:2}
9€Sj,n

=P {gigp (M, = My,) (0,1) — (M — My) (6, 1)) = C22j7";2}

<C IC ) ®:m) —( ) ) 13, (by Markov’s Inequality)

2% [r2
Gn (27 /1) fs
SCW (by Condition 36) (**)
As ¢, (0) /0% is decreasing, %Sjigz) < ¢”1(/1/§"). This further implies ¢, (2//r,) <

299, (1/r,). Thus by (**) and Condition (3.8),

2aj¢n (1/T’n) < 02(0472)]'

P ( sup (M, (0,7) = My, (0n, 7)) = —Cnf) < CW =

QESj,n
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Therefore,

> P < sup (M, (0,1) — M, (0n,7)) > —Crf) < cy gl

j>M2i<rpe  \€%n J>M

The last quantity converges to zero as M — oo, [

3.2.3 Asymptotic Normality

We generalize Theorem 6.1 in Wellner & Zhang (2007) by including an ex-
tra nuisance parameter. Given i.i.d. observations Xi, X5, ---, X, and the extra
nuisance parameter o2, we estimate (3, A) by maximizing an objective function
LS m(B,A, 0% X;) = Pm(8,A, 0% X). We follow similar notations as those in
Huang (1996) and Wellner & Zhang (2007).

Let (8,A) be the parameter of our primary interest. Suppose that A, is a
parametric path in the monotone nondecreasing function space F through A, i.e.
A, € F,and A, |,—0 = A

Let H = {h th= 88—/;’7],7:0} and for any h € H, we define

my (B,A,Oz;x) = VBm (/BvAaO-Q;:L‘)

<5m(ﬁ,/\,02;$) 0m(5,A,02;x)>T
b S OB 7

B Ay, 0% x)

877 |77:0’

mo (ﬁ,A,aQ;x) [h] = Im(

mii (ﬁ,A,Oj;.T) = V%m (B,A,O'2;I') )

_Omy (B, A, 0% x)

mig (57 A7 0-2; ZE) [h} 877 |77:07

mo1 (6,/\,0’2;1’) [h‘} = Vﬁm2 (ﬂ,A,O’Q;iL') [h]a

*m (B, Ay, 0% )

| 0.0 12:(97712(5,/\772,0'2;37) [hl]
8772 ni=uv,Jg=14 —

o

Mag (5,/\7023@ [ha, ha] =
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To establish the asymptotic distribution of the pseudo-MLE of Bn, we need the fol-

lowing assumptions:
Al: |3, — Bo| = 0, (1), and ||A, — Ag|| = O, (n™7) for some ~ > 0.

A2: Pm1 (50,A0,0’2;X) = 0 and ng (ﬁo,Ao,O’Q;X) [h] = O7 Vh € H,O’Q S R+.

where R is a compact set in the neighborhood of a fixed point ¢ in RT.

1,02

T
A3: For any 0? € R", there exists a h’, = (h* . >h§,02) such that

P (m12 <60’A0’02) [h] — M2z (607/\070—2) [ ;27]1}) =0 VheH
Let

A (ﬁoyAO,UQ) =-P (mn (50,/\0702) — M2 (50,/\0,02) [h:;?])

A4: Estimators <Bn,f\n) satisfies

sup P,m; (Bn,f\mUZ;X) =0, (n"?); (1)
g2eR+

Sup ]anQ (Bm Am 02; X> [ :’;2] - Op (n_l/Z) (2)
og2eR+

Ab5: For any 9, L 0 and C' > 0,

sup ‘\/E(Pn —P)ymy (6, A, 02) —

|B—B0|<dn,[|A=Ao||<Cn=7,02€R+
Vn (P, —P)my (Bo, Ao, 0”) | = 0p(1)

sup |V (P, = P)ms (8,A, %) [hia]—

[8—Bo|<dn,|A=Ao[|<Cn~7,02€RT

\/ﬁ(]P)n - ]P)) mo (60,]\0, 0'2) [hj;zH = Op(l)
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A6: For (5,A) at the neighborhood of (g, Ag):

{(ﬂaA) : ‘6 _60’ < 5717 ||A_AOH < Cn_’y;a > 1,@"}/ > 1/2}7

sup ‘P (ml (5,/\,02) —ma (507/\0,02) — mn (50,/\0702) (B — o)

o2eRt

=iz (Ao, Ao, o) [An = Aa] ) | = 018 = ol) + O (1A = Ao|)

sup ‘P (ma (B, A, %) [hi2] — ma (Bo, Mo, 07) [R2]

o2eR+
—mar (Bo, Mo, 02) [hi2] (B — Bo) — mas (Bo, Ao, 02) [hie, Ay — Ao])‘

=o(|8 = Bol) + O ([[A — Ao[[*)
AT: There exist mi, and ms, such that for any af, ag €RT,

|m1 (6(% A07 U%) — s (6(% A07 Ug) | < Mmis ’O-% - Og’

Ima (Bo, Ao, 07) [R,] — ma (Bo, Ao, 03) [R5, < may |0 — 03]

and

{Pmj, (X)}1/4 <oo; {Pmj, (X)}l/4 < 00

Theorem 3.11. (Asymptotic Normality of the regression parameter with extra nui-
sance parameter o). Suppose that Assumptions A1-A6 hold. The nuisance parameter

o2 is replaced by its estimate 62. Then
Vit (B = o) = = A7 (B, 80, 52) G (i (Bos Ao, 62) = mz (B, Ao, 52) (] ) + 0, (1)
Furthermore, if 62 —s, 02, the above asymptotic expansion and condition A7 lead to

Vn (Bn - 50) =- AalGn <m1 (507/\070(2)) — Mg (5071\070(2)) [h, ]) + 0p (1)

2
0

—a N (0, 45" BoAy )
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where

Ag=A (50,/\070(2)) =-P (mll (507/\0700) ma1 (50’/\0700) [h* ]>

®2
BO =B (605 A07 0(2)) =P <m1 (ﬂOa A07 0-0) mo (ﬂOa A07 UO) [h* ])
Proof. By Condition A1 and A5

Vit (B = P) (1 (B A 62) =1 (o, 80,62)) = 0, (1)
Vi (B = P) (ma (B R 62) [03] = ma (o, 0, 32)) [z = 0, (1)

Together with Condition A2 and A4, this implies

\/ﬁPml <Bna /A\n, a‘i) + \/E]P)nml (507 AOa &7%) = 0p (1)
VnPmy (ﬁn,An,an) [h ]—I— VnP,ms (B, Ao, 62) [h* |=0,(1)

So by condition A6,

B = o) +maz (Bo, Mo, 52) [An — Aol }

+ O ([[A = Ag[|*) = —=Pum (B, Ao, 62) + 0, (n717?)

)
P {m21 (Bo, Mo, 62) [h* ] (5 50) + maz (Bo, Ao, 62) [hZQ,An — Ao]}
+0 (18, = Bol) + O (1A = Aol|") = —Bams (B, Ao, 62) [35) + 0, (n~?)

By condition A1, |3, — B = 0, (1), ||A, — Al|* = O, (n™*) and ay > 1/2, so

(

VI (Pmay (B0, 80,63) + 0 (1)) (B = fi) +
\/ﬁPmIQ (50; AOa 6-721) [An - AO] = _\/H]anl (ﬁOv A07 6-721) + Op (1) (1>
Vn (Pm21 (Bo, Mo, 07) [hz%] +o (1)> <Bn - 50) +

VnPmas (Bo, Mo, 62) [hUQ,A No] = —/nP,my (Bo, Ao, 62) [h(’;%]—kop(l) (2)

\
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Using (1)-(2), we have

\/EP (mu (507/\075}21) — M2 (50,/\07&121) [h:,%] + 0(1)> (Bn - 50)
+v/nP (mm (Bo, Mo, 67) [An — Ag) — man (Bo, Mo, 67) [R5z, A, — Ao])
= — \/E]P)n (m1 (60, Ao, 6'721) — M2 (507 A07 6-721) [h;%]> + Op(l)
By condition A3,
P (mm (50,/\0752) []\n - Ao] — Ma2 (50;/\075,21) [h:g7An - Ao]) =0

So

VP (i (o 82) = (0. 2) 15] + 0 (1)) (5o — )

= — Vi, (ma (B0, A0, 62) — ma (B0, 80,82) [hz]) +0,(1)

And

\/ﬁ (Bn - 50)
=— A7 (Bo, Ao, 62) VP, <m1 (Bo, Mo, 62) — ma (B0, Ao, 62) [@g]) + 0, (1)
=— A" (ﬂo,/\o,&i) Gy, (ml (507/\0,(3721) — M2 (507/\0,(3721) [h;gD +0p (1)

(This is true by condition A2)

Furthermore, we can rewrite the above expansion as

\/ﬁ (Bn — ﬂo) :A—l (5071\0’ (3’2) {Gn (ml (ﬁo,Ao, 0'3) — Mo (BD,A(), 0'8) [h23]>
+ G, (ml (5071\0,577%) —my (5071\0,03))

= Gy (ma (8o, Mo, 52) [133] = m2 (B, Mo, 08) [h3]) }+ 0, (1)

2
0
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By the consistency, condition A7 and the dominate convergence theorem it is easily

seen that
A (B Mo, 7) —p A (o, Mo, 7)

Define two classes,

M, = {m1 (507/\0,02) —my (507/\0,03) : |U2 - 0(2)| < 77}

M, = {m2 (Bo, Mo, %) [Ri2] — ma (B0, Ao, 07) [hj;g] to? =g < 77}
With the compactness of R, similar to the proof of convergence, we can construct
an e-net, {Uf, o3, } q = O(1/¢) over RT. By the Lipschitz condition specified

in Condition A7, both M; and M, are indexed by o2, so their bracket numbers are

both O(1/¢) and hence both M; and M, are P-Donsker. And by condition A7

9 o\ 2 1/2
(P (m1 (8o, 80,62) =1 (o, Mo, 03))°)

Pm? by condition A7
<(pni,f52-a3)" )

< (Pm‘lﬂ,)l/4 (P (62 — 0(2))4> v —0 (by Hélder’s inequality)
Similarly
o 1/2
<P <m2 (B0, Ao, 67) [h52] — ma2 (8o, Mo, 0 [} ]) ) —0

By the semi-equicontinuity of Theorem 2.8.2 in van der Vaart & Wellner (1996)

(Lemma 3.5), this implies that both classes are Donsker class. Therefore,

Gn (ml (507A07a-721) —m (507A07O—(2))) = Op(]-)

Gn <m2 (/Bo,Ao,a'Z) [h ] my (B(),Ao,a'o) [h* ]) = Op(]_>
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So

vn (ﬁn - 50) =45'G, (Tm (Bo. Mo, 05) = ma (Bo, Ao, 05) [th]) +0p (1)

—a N (0, 45" BoAy )

3.3 Asymptotic properties of the estimates based on Gamma-Frailty
Poisson Model
In this section, we first provide the regularity conditions and some preliminary
results that are used in the proof of the asymptotic properties of our estimator and

then apply the theorems in Section 3.2 to the Gamma-Frailty Poisson model.

3.3.1 Preliminary Results
The following regularity conditions are sufficient to guarantee the asymptotic
properties, including their consistency, convergence rate and asymptotic normality
(

of the regression parameter, of the spline-based sieve GEE estimate with Vgi) as a

covariance matrix.

Condition 1. The true parameter (3o, Ag,02) € R? x F x R*, where R? and R*
are the interior of some compact set of R? and R* in R? and R™*, respectively.

F is the monotone nondecreasing function space.

Condition 2. The observation time T ; : j =1,2,--- K, K = 1,2, -- are bounded
in interval [0, 7] for some 7 € (0,00) and P (Tx; — Tk j—1 > So) = 1 for some

constant sg. P (K < ko) = 1 for some constant k.
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Condition 3. The true baseline mean function Ay is p* differentiable and bounded.
The derivative has a positive and finite lower and upper bounds in the obser-

vation interval [0, 7.

Condition 4. For some n € (0,1),a”Var(Z|U,V)a > na E(ZZ*|U,V)a a.s. for all

a € R? where (U,V, Z) follows distribution p/u(R*? x Z).

Condition 5. The covariate Z is bounded, i.e., P (|Z| < z5) = 1 for some constant

2p. And P (aZ # ¢) > 0 for all compatible vectors a and c.

Condition 6. E {¢“"} is uniformly bounded for ¢ € S[T] = {t: 0 <t <7} for

some 7 > 0.

Condition 7. The number of knots ¢, = O (n”) for ﬁ <v<i

Given the frailty parameter, o2, the log likelihood of Gamma-Frailty Poisson process
in Equation (2.7) can be rewritten as

n K;
o) = S5 55t (340,07%) -
1 Uj=1

i=

<N%7Ki + 1/02> log <A%7KieﬁTZi + 1/02>}

up to a constant. Let M (3, A, 0%) = Pmg a2 (X) and M, (8, A, 02) = Pymgp 02 (X),

where

K
mpae2 (X)= Z ANjlog (AAjeBTZ> — (Ng +1/0%) log (AKeBTZ + 1/02> (3.9)
j=1

We define probability measures u,y and the corresponding metrics d and dg

in a similar manner as those used to study the asymptotic property of the maximum
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likelihood estimators in Wellner & Zhang (2007), e.g.,
(1 (Bi x By)
00 k
= / Y P(K=kZ=2)) P(Thj1€B1,Th; € B|K =k, Z =z)dH (2)
= j=1
v (B) :/ Y P(K=klZ=2)P(Tur € BIK=Fk Z=z)dH (2)
RY =1
Based on the measure p and v, define the metrics

d(61,0) = {’61 Bol? + || A1 — A2H%Q(u)}1/2

1/2
. {\& =l (0 (0 = M 0) = (B () = Ao () <u,v>}

di (61,62) = {’ﬁl ﬁ2|2 + [ A — AZH%z(’Y)}I/Q
1/2
L= s+ 00 - n ) i)

Lemma 3.12. Suppose Conditions 1, 3-5 hold, then

(i) M (Bo, Ao, 0?) > M (B, A, 02) for any (B,A) € R¥x F,0* € R* and the equality

hold iff B = By and A = Ay a.e with respect to p.
(i) There exists a constant C, such that
M (507 AOa 0-2) - M (67 Aa 0-2) > Cd2 ((/607 AO) ) (ﬁa A))

for any (B, \) in a neighborhood of (8o, o) and o € RY.
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Proof. First, we prove the uniqueness of the maximum.

507‘/\07 — M (67A70-2)
ANy e’ 7 Ao ge®? +1/0

T
_ ( (AAOJGBOZZOQW> — <A07K6180Z+ 1/0’2> log AKGBTZ+ 1/0.2 )

ANy ;6P 2 T Ao e 2
Z 0,5 8Tz 0,K
<AA°ﬂ€“ logm) ~ (Auxe?) tog 45

+

o ||Mx ||

Ao xebo? A€ 7 +1/0?
BTZ 0,K . 5TZ 2 0,K
<A0,K€ 0 ) lOg—AKeﬁTZ (Ao,Ke 0“4+ 1/0 ) log AxeP"Z +1/02

=Pl + Pl

= je A prz
= — 0,5 AA]'GBTZ A BT Z

AN Ahg /A
_ 8Tz 0,7 0,7 0,K
Ao e’ Z(AOKZ AA/AK)

Z]K:l (ﬁgi{ﬂ lo Aﬁ?\’j ;ﬁgf ) is the Kullback-Leibler’s information K, (po, p) with py; =

ﬁﬁi}j and p; ,2,--+, K. So, it is nonnegative and the equality hold
when ﬁg‘;f = i/:?j =1,2,---, K. Therefore, PI; > 0 and PI; =0 iff
A =CAj ae. wr.t p. for some constant C' (3.10)
Ao e % Aoxe® 7 +1/0?

_ 87z K€ 6z 2)
I, = (AoyKe 0 > log A cchTZ (Ao,Ke 0% 4+ 1/0%) log Ae?Z + 1/02
For the simplicity, denote x = AO,KeBgZ > 0,b=Age 7 — Ao,Keﬁosz So

r+1/0?
r+1/02+b

Iy, = xlog v —(a:+1/02)log x>0,x+b>0
x

+b
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Let f (b) = xlogt — (z + 1/0?) logxﬁ/lg;’ib, then

T r+1/0* bx1/c?
z+b x+1/o2+b  (z+0b)(x+1/0%+D)

0
) =

This equals to zero only when b = 0 and

Py Y1/t - )
Ob> (z +b)* (z+1/02 + b)?

2

When —x < b < y/z (z +1/0?), g—;f (b) > 0 and when b > /z (z + 1/02), 35 f (z) <
0. Thus f (b) reaches its minimum at b = 0 and f (0) = 0. So Pl > 0 and the equality
hold when

AP 7 = Aoeﬁgz a.e. w.r.t. .
By the argument given by Wellner & Zhang (2007), this implies that
b =p0yand A = Ag a.e. wr.t. v
and furthermore by Equation (3.10), it implies that
B =0yand A = Ay ae. wr.t

Now we prove the second part of the lemma. I; can be rewritten as following,

. Aoy Aho,/A
srz 0,5 0,5 0,K
I = A ge Z(AOKZ AA/AK>

_ AO Keﬁg"z K |:AA (AAO,]’/AO,K logAAO’j/AO’K _ AAOJ‘/AQK i 1):|
1 T AN; [ ADg /A 2

S - Bz 0j/M0K

= ghoxe Z Ak ( AA Ak

1 T 1 AA AN
— A stz 0.4 J
g oKET ;AA /AK<AOK AK)

1 7 Aho;  AAN
> _A Bo 2 _DJ_ J
=1 0,K€ 2_; ( AO,K AK)
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The first inequality is due to the fact that xlogr — x +1 > }l(:zc —1)? for x in a

neighborhood of x = 1, the equality hold only when z = 1.

15 can be expanded by Taylor expansion as

L= () = 10) + S0+ L
Ly 1o le (et 1/0%) ~ €

b? where |£] < |b|

== -
O = TP et o4 €7

When b is at the neighborhood of zero, e.g. |b| < |z| at almost everywhere in ¢, the

numerator
1/0? [ (1 +1/0%) — €] > 1/0? [z (x + 1/0?) — 2%] = (1/0%)? 2
And the denominator
2(x+ &) (x4 1/0% +€)° < 2(22)%(x + 1/0° + 2)° = 82°(2x + 1/57)”.

2 2z
(1/7°) b2 And

8z2(2x+1 /02

Therefore f(b) >

1/02)? 2
Iy = f(b) > . /o) . . (AOKeﬁoT 7 _ AKeﬂTZ>
8A0’K650 z (2A07K€BO z + 1/0’2)

Combine the results from I; and I, we have,

L+ 1

K ' ‘ 242
ZiAo,K@ﬁOTZ Z (—AAO’] _BA (1/o7) X

2
AO,K AK > 8A07K€’BgZ (2A07K650TZ + 1/0'2)2

J=1

2
(AOKeBOTZ — AK@'BTZ>

K
1
——Aoxe®7 x Bl > K (051 — 052)* + (I — 1)?]
j=1
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AA AA; T T

Where we denote 0;; = i 2{3 00 = A—Kj,h = A07K€BOZ,Z2 = Age? % and k =
\/QKAOYKGB(,{Z(QAO’KGB(’I;Z-‘FI/O’>
1/02 )

When ll = lg, Il+[2 Z iAO,KGﬁg;Z X ZJKZI (6]-1 — 8j2)2. Therefore P (Il + ]2) Z
2
cpP Zle (AAQ,jeﬁoTZ — AAjeﬁTZ) . We now show that this inequality is also true

when [; # ls. We claim that for C' = )2, we have

N /\l
B2 (01— 02)° + (I — 15)* > C (ol — 1161)° VO< 0, <1,0<0, <10 > 71,00 >
for some v > 0 and v > 0. First we discuss the case when [y,ls and 6,60, are

concordant, e.g. (I —1l3) (01 —63) > 0. Without a lost of generality, we assume

ll > l2 and 01 > 82.

B (0= 02 + (b~ ) > 2 (k (61— 00) + (1 — 1))°
> %(k: (01— 05) + (I — o) 1)
% (6 — 1oy + (k — 1) (01 — 62))? (*)

Since

VIR Ao e 7 (2A0,KeﬁoT Z41 /02>

b —
1/0?

>V QKAO,KG%FZ > Ao e
> min <A0 Ke AKeBTZ> = .

By (*), k2 (601 — 05)° + (1 — 1»)* > 2 (L6, — 105)°.
For discordant pair, say, [y < ls,60; > 05, we further discuss the claim in two

cases:
(i) When (160, > [50; we have

1 1
91 — 92 = l_ (l191 — l192) > l_ (1191 — l2¢92) >0
1

1
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So () — 6,)* > ACUSS 1,0,)°.
(ii) When (160, < l305 we have
ly — Iy > 1505 — 1105 > 1505 — 1,0, > 0
So (Iy — 1) > (1161 — 156-)°.

Therefore, k2 (6; — 65)* + (I, — I5)* > C (1,6, — 1265)” where C' = % N o

(11/\l2)2 .
So,

K

1 T 1 1
By Z E Y )2
P(Il + [2) ZP {ZAO’KG 0~ X <2]{j2 A (A07K€/3(?Z A AKQBTZ>2> (12(932 l10]1) }

j=1

(k is specified as before. )

K
2
>cPY (AAOJeﬁOT Z_ AAje’BTZ>

j=1
The last inequality is due to the compactness of the parameter space of 5, A and the
boundness of the covariates (Z, K, T) specified in conditions 1,2 and 5.

Following the same proof as in Wellner & Zhang (2007), with condition 4, the

above inequality further implies

M (/BO)A()a 6-727,) -M (67 A7 5-2,) > ¢ {|6 - 50’2 + ”A - AOH%Q(ILL)}

3.3.2 Asymptotic Properties of the pseudo-MLE
Theorem 3.13. (Consistency). Suppose that conditions 1-3,5 and 7 hold and the

counting process N satisfies the proportional mean regression model. Then given 62,
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a consistent estimate of the overdispersion parameter of,

d <<BnaAn) 7(50,A0)> —p 0

Proof. The proof of the consistency is done by checking the three conditions specified
in Theorem 3.9 with § = (3,A) and n = ¢%. Condition (3.1) is automatically true
by the result of Lemma 3.12. Now we prove the uniform convergence condition
specified in condition (3.2). Let £; = {m(B8,A,0?%),8 € R logA € F,0* € R™}.
Since F is a class of monotone nondecreasing functions, by Theorem 2.7.5 of van der
Vaart & Wellner (1996) (Lemma 3.4), F is covered by {[AF,Af]:i=1,2,--- 1},
I = O(erp(1/2)) and [[AF — Al = f (AR (1) = AF (1) du () < e Let AF; =

Af (Tk ;) and Af; = A} (Tk ;). We further define

AAfj - Aﬁj — A}

ij—1>

AAfj - Afj —Af

ij—1)

AAZL - Af'j — A}

ij—1>

AAiL,JR - Aﬁj —Af

ij—1>

We can make these bracketing functions satisfy A — AL < ~; and A > ~, with
V1,72 > 0 for all t € [0,7] and 1 <4 < 1. And AA[F > 45 > 0. The proof of this

claim follows the same lines as given by Wellner & Zhang (1995). Then

]~

(AATF - aal)

1

J

M=

{Af (Try) — A (T ) + A (T jo1) — AF (T j-1) }

1

<.
I

K J

(Afj o Aﬁj) - CZZ (AAfl - AA%’LJ)

1 j=1 1=1

IA
Q
]~

.
I

I
]~

K
(K —1+1) (AAf, = AAL) < CK D (AA] — AAY) (3.11)
=1

-~
Il

1
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Since R? is compact, there exists a e-net, {81, 52, , By}, p = O (1/5d) such that
VB e R% 3s € {1,2,--- ,p} suchthat |37 Z—BLZ| < e and |exp (BT Z)—exp (B Z) | <
Ce. Similarly by the compactness of R, there exists another e-net, {0,063, ,02},
q = O (1/¢) such that Vo? € RT3t € {1,2,--- , ¢} such that |Ui2 — oit2| <e.

Let

K
miy =y AN (logAA + (81 Z —€))

J=1

— (Ng +1/0} +¢) log (AfK (eBSTZ + C’&?) +1/02 + e)

K
mi, = Z AN; (logAA + (B Z +¢€))

j=1

— (Ng +1/07 — ) log (AfK (eﬁsTZ —CE) +1/0? —5)

So, Ly is covered by {[mF ,,mF ] i=1,2,--- ,[,s=1,2,--- ,p,t =1,2,--- ,q}. And
,8,t

,8,t)

R L
fi,s,t =My sr — Ty st

K
= AN; (logAAf} — log AN + 2¢)

Z7J

j=1
+ (Ng +1/07 + ) log (Aﬁ (eBsTZ + 5) +1/02 + Cs)
(k170 ) oy (8 (57— 2) + 1702 - C2)
K
= Z AN; (logAAff — logAAZ-LJR + 25)
j=1

(Af} (eﬁsTZ + C’a) +1/0%+ 5)
(AL (€577 = Ce) + 1/o? —¢)

—l—slog{(Aﬁ (eﬁSTZ + Ce) +1/0} —|—€) (Af} (eBSTZ - Cé) +1/0f — 5)}

+ (NK + 1/0?) log
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By Taylor expansion,
1
logAAFE — JogANLE — = {AA" — AAALRY (Where v3 < AALR < &; < AASR)

K
< C’Kz (AAff — AAY)  ( by Inequality in (3.11))
=1

Similarly,

log (AfK (eﬁﬁTZ + C’e) +1/0? +€> —log (AZLK (e/BsTZ — CE) +1/0} - 5)

1 T
— {eﬁs (Al — Alg) + (C (A + Afg) +2) 5}
(Where A{jK <@5ZZ _ 5) +1/07 —e <&k < AEK <65st +€) +1/0%+e)

<Cy (AfK - Af() + Cae (by the boundness of AfK, AfK and Z)

K
=C (Z (AN, — AA&)) + Cye

j=1
Therefore,

K
| fistl < CINg K <Z (AN — ANL)) + 25)

J=1

K
+ (Ng +1/07) <02 > (AN = AN + 035)

J=1

+ C’@log{(Aﬁ (e’BSTZ + Ce) +1/02 + C’s) (Af} (eﬁsTZ — Ce) +1/02 — Ce)}

K
< OINg Y (AN — ANE) + Coe
j=1

Then P|f;s] < P <01NK Zszl (AAR — AANE) + C’Qs> < Ce. The total number of
brackets of £ is Cexp(1/e) - (1/e)™. By Theorem 2.4.1 of van der Vaart & Well-
ner (1996) (Lemma 3.1), £, is a Glivenko-Cantelli. This guarantees the uniform

convergence condition (3.2) in Theorem 3.9.
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Now we prove the nearly maximization condition in 3.3 in Theorem 3.9. Ac-
cording to page 148 in de Boor (2001), there exist a Ay, € ;4 of order m > p + 2

such that ||Ag, — Aollee < Cg,? = O(n™""). Since,

M, (Bn,f\n,a?) — M, (B, Ao, 0?)

—M, (ﬁn, A, 02) — M, (Bo, Ao, 02) + M, (Bo, Ao, 02) — M, (Bo, Ao, 0?)
M, (Bo, Aon, 0%) — M, (Bo, Ao, 0°)

= (P, — P) {m (Bo, Aon. 0) —m (Bo, Ao, 0®) } +

P{m (Bo, Non,0%) —m (Bo, Ao, 0?) } (3.12)

Let Lo = {m (By, Ao, 0?) : 0> € RT}. Similar to the proof shown before, there exists
an e-net, {0},03,--+,02}, ¢ = O(1/e) such that Vo? € R¥,3t € {1,2,--- ,¢} such

that | — | <e. Ly is bracketed by [mf, mff] witht=1,2,--- ¢, where

K
my = ZANJ- (logANo; + B3 Z) — (Nk + /o7 +€) log (Ao +1/0] +¢)
j=1
K
m{ = Z AN; (logAAg; + B3 Z) — (N + 1/07 — £) log (Ao + 1)o7 — €)

j=1
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So

R L
my —my

= (Ng +1/07 +¢) log (AOVKeBOTZ +1/0? + 5)
— (Ng +1/07 =€) log (AO,KeﬁgZ +1/0? — 8)
= (Ng +1/07 +¢) {log (A07Keﬁgz +1/0? + E) — log <A0,K660TZ +1/0? - 5)}
+e {log (AQK@&OTZ +1/07 + 8) + log (AO’KeﬁﬂTZ +1/07 — 5)}
= (Ng + 1/o} +¢) éQe +Ce
Where Ao +1/02 —c < & < Agge®Z+1/0? +c. Then P (mfF — m}) < Ce. So the
bracket number of Ly is C'(1/¢). Ly is a Glivenko-Cantelli by the Glivenko-Cantelli

Theorem (Lemma 3.1). Since Ag,, € F and £, is Glivenko-Cantelli, the derivation in

(3.12) further implies

Mn (B’ru Ana 02) - MTL (/80) A07 02) Z P (m (/807 AO,na 02) —m (607 A07 0-2)) - Op (1)
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For A at the neighborhood of Ay and any o2,

P (m (ﬁo, Ao, 02) -m (BO, A, 02))

K T
T AANy; T A 6/80 z + 1/0‘2
oy Alg;e0 2] % _ (Aore®Z +1/02) log—2E
{JZ:; 05€ og AAj < 0K € + /U) og AK€50TZ+1/U2
K 1 1
=P { E AAOjGﬁO z |:— AN (AAJ — AAoj) + 5—2 (AAZ — AA01)2:| —
j=1 0j 1j

Aok +1/0%) |-

_ 8Lz _ B8z
Ahor 17 1 1)02 (AKe 0 Agg e >

1 2
v (ane®” 7)) |
2

( where &;; is between AAg; and AAj; &, is between AAOKeﬁoTZ and AAje*BTZ)

s 1
- {Z AAOjeﬂOTZ—
j=1

o (AA; = M) - (Aoxe™? +1/0%)

1j

1 2

X? (AKeﬁgZ — AOKG gZ) }
2

<CP {Z (AA; — AAO]’)Q} = Cd* ((Bo, N, (Bo, o)) -

The inequality is due to the boundness of Ay and Z by condition 3 and 5. Therefore,

Pm (Bo, Ao, %) — Pm (Bo, Mo, 0%) = =Cd* (Ao, o) = —O(n™")

hence for any given o2,

M, (Bnuj\n;0'2) — M, (Bo, Ao, 0°) > —0, (1) for any o
By the compactness of R, this further implies

inf

o2eR+ (Mn <B"’A"’a2) - M, (ﬂO’A0’02)> > —op(1)

Therefore by applying Theorem 3.9, we have d ((Bn, A ) , (Bo, AO)) —, 0
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Theorem 3.14. (Rate of Convergence). Suppose that Conditions 1-7 hold and the
counting process N satisfies the proportional mean regression model. Then given 62,

a consistent estimate of the overdispersion parameter 08,

d ((Bm [\n> ’(5071\0)) -0, (n—min(pvv(l—l/)ﬂ)) ]

Proof. The convergence rate of the estimator is derived by checking the conditions in
Theorem 3.10. We set ©,, = © = R x F. Let 0, = 0y = (8o, Ao) and d, (6,6,) =
d (0, 60y) as previously defined. And let n = o2.

First, in Lemma 3.12 we have shown that when (3, A) is in a neighborhood of
(Bo, Mo), M (Bg, Mg, 0?) =M (B, A, 0?) > Cd? ((B,A), (Bo, Ao)) for any o2 > 0 where C

is a constant related to 0. By the compactness of R™, this further implies

inf (M (ﬁo,Ao, 0'2) — M (ﬁ,A, 02)) Z Cd2 ((ﬁa A) ) (607/\0))

o2eRt

with C being a constant independent of o2. And

2\ 9 )
5 /2<d((8,0) (A ho)) <5, (M (5o, Ao, 0%) =M (8,A,0%)) > C9
(B,A)ERIXF 02eR+

Second, we need to find ¢, () such that

n (0
E sw |BueP)[m(8.A0%) —m (B Ao, o?)] | < 0220
8/2<d((8,B0),(A,A0)) <8, Vvn

(B,AN)ERIX F,02eR+

Define a class L3 as following,

Ly ={m(B8,A,0%) —m By, Ng,0?) : B € R% logh € F,0* € R,

d((B,A), (Bo, o)) < 0}



99

Again, due to its monotonicity and by Theorem 2.7.5 in van der Vaart & Wellner
(1996) (Lemma 3.4) F is covered by {[AF,Af]:i=1,2,--- 1},1 = O (exp(5/c))
and
AR = Al = [ (AR~ AF (0" dia (1) < 2

Since R? is compact, there exists a e-net, {81, B2, -+, By}, p = [M/e?) such that V3 €
R%3s € {1,2,--- ,p} such that |87 Z—pBTZ| < e and |exp (87 Z) —exp (BT Z) | < Ce.
Similarly by the compactness of R™, there exists another e-net, {o7,03, - 02},
q = O (1/e) such that Yo? € R™,3t € {1,2,--- , ¢} such that | % — —| <e.

Let AARE AN NS, Afie,ml, o mf,, and mf, m[* defined same as those in

the proof of consistency. So, L3 is covered by

{[mﬁs,t—mf,mf&t—mf],i: 1,---,l,s=1,--- ,pt=1,--- ,q}.
Denote fi ., = (mfh, —ml) — (mk,, —ml) = (mF, —mE, )+ (mF —ml), we have

7 R L
| fistl < ’mi,s,t - mzys,t‘ + ’mt —my |

K
< OINg Y (AAF, = AAL) + Coe < CNg

=1

K 2
|.]Fi,s,t|2 S (CIN Z (AAR AAz[:g) + CQ€>
j=1
K
<C {N ST (AAE - AN +g2}
j=1
So,

fi,s,t

, K
e|f”s’*‘) <GP {6CZNK (N?K > (A%~ AN ,) + 52) }
j=1

K
<CP (Z (AAR, — AAE )+ 52) < Cée?
j=1

Hﬁw%B§P<
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This shows the number of e-brackets for Ls is Cexp (8/¢) - (1/e)*.

By definition,

[
Ty Lol ) = [ /1100 (Lo o)

1

S/ V1+C(§/e)de
0
1
< C/ V(6/e)de < C§
0

Then by Lemma 3.4.3 in van der Vaart & Wellner (1996) (Lemma 3.6),we have

Ep||Gyllzs < Coy (8) where ¢, (6) =9 + \/Lﬁ Therefore,

E|Vn (B, —P) (m (8, A, 0%) —m (Bo, Ao, 0%)) |, < Cn (9)

Third, we prove inf,cy (Mn (én,n> — M, (00,77)> > —0, (62). As shown in

the proof of the consistency,

Mn (Bn; [\na 02) - Mn (B07 AO; 02)
> (P, — P) (m (ﬁo, Aons 02) —m (50; Ao, 0'2)) + P (m (50, Aons 02) —m (50,/\07 02))

:Il,n + [2,11

Il,n = (Pn - P) (m (/607 AO,'rw 0-2) —m (607 A07 U2>)

By Taylor expansion,

m (607 AO,na 0—2) —m (/BOa A07 02) =m (/BOa (1 - 5) AO + SAO,na 02) (AO,n - AO) 70 < 5 <1
Define a class L4 as following,

Ly={m (B, (1 =& Ao+EN %) (A—Ng): AEF, 0’ e RT,0< &< 1}
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It can be similarly shown that the bracketing number of £, is bounded by Cexp (1/¢)-
(1/¢)*. By the Donsker Theorem (Lemma 3.3), £, is a Donsker. Because [|Ag, —

Aollee = O (n77) and m (B, (1 — &) Ao + €A, 02) is bounded by conditions 2-4,

2
P {m (Bo, (1 = &) Ao + EAgn, 02) /:ff;:ﬁo} — 0. By the asymptotic equicontinuity

(Lemma 3.5), this implies

~ Ao — A _
sup | (B, — P) {m (608,02 %} | =0, (n72)

o2eRt

Hence,

sup | (P, — P) (m (ﬁo, Ao, 02) —m (ﬁo, Ay, 02)) =0, (n_p”Jr‘En_l/Q) | = o, (n_Qp”)

o2eR+

And as shown in the proof of consistency, for any o > 0,
IQ,n =P (m (ﬂ07 AO,n7 02) —m (607 A07 02)) > _Cd2 (AO,n7 AO) =0 (nf2pu)
Thus by the compactness of R,

inf M, (Bn, A, 02> - M, (Bo, Ay, 02) > 0p (n_Qp”) -0, (n_2p”) = -0, (n_2p”)

o2eR+

o _Op (n72min(pu,(171/)/2))
Let r, = nmin(pl/,(l—l/)/?) < n(l—l/)/Z. Then

rg% (1/T’n) — 2 (7«;1 + n—1/2) =7, + Tin_l/Q < nl/2-v/2 + nlv=1/2 o opl/2

So rad ((8,A) ; (Bo, Ao)) = Op (1) H

The Gamma-Frailty Poisson likelihood for one observation is specified in Equa-
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tion (3.9). Correspondingly,

NK—AKe'gTZ 1

my (B, A, 0% X) = 0 662+1/02><—2><Z
K
AN, NK+1/02 T
No% X)W =) —ZLAh;— hie® ?
mao (ﬁ7 , 03 )[ ] P AA] J AKeﬁTZ_I_l/O_Q K€
2
mu (8,A, 0% X) =— Ni +1/o 5 X Age® Z x %ZZT
(AKeﬁTZ + 1/02) o
1/0? 1
mi2 (B)Aa0-2;X) [h] - - NK * /U 3 X —2ZhK€BTZ
(AKGBTZ +1/0?)" O
AN
To9g (6 A O' X)[ 0.2,th = AA;A}Z Ahf—f—

j=1

: T
(AKIZI;(T;_i/la/Ugf (h*2K€ ) (hkeﬂ Z)

In order to apply Theorem 3.11 to the Gamma-frailty Poisson model, we first find

h*, such that

P (mas (Bo, Mos 0% X) [h] — mas (Bo, Ao, 0% X) [Ba, h]) =0 Wh € H.

P (mu (BO,AO,U2;X) [h] — Mg (507/\0:(7 X) [ 027h])

2
:P{—( Ne 10" o L hye

AOKeﬁoTZ + 1/02)2 o2

AN; A, AR — Ni + Lo~ (h e Z) (hkeﬁTZ>
j=1 ANG ! (Ao’ 7 + 1/02)2 7
2
P {3 AN - MU (o7 (107
j=1 AAOJ (AO,KQBO Z 4 1/02)
K 2
7=1 AAO] (A07K660 z + 1/02) o '

Mj}

i 650 N 1 7 % 1 4 B 50TZ BgZ
- P — e e
| Aho; 7 (Aowe®Z 4 1/02) g2 otk
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An obvious choice of h* is the one that satisfies,

P ZARLY, Z x1/0> 4+ h*, el ?
foll R 1) A /T K MK, T
; Ao gePoZ +1/0?

where T = (Tr1, T, -+ » Tre.ic)- Set b = ma for j =1,2,--- , K and set

Bz Z x1/02+ h*, e ?
E|-——Ahfs, - /T K MK T =0
AAQJ ’ A07K€ﬁ0 z + 1/0'2
we have
T
Z x1/o? + MCL
E(eBO z \K,T) T,
a=FE - x M Z|K. T
NogehoZ +1/0?
E(—ZH" B2 KT
AO’KGBO Z+1/U2 ’ ﬁTZ
ma = — E (%7|K,T)
BTZ . AO,Ke 0
E(e%?|K,T) - E <—AO,K660TZ+1/02 K, T)
So

E(Lﬁ'? xefBOTZ]K,T)

T
AO’KG'BO Z+1/U2

o2y = Mo xS S= (3.13)

2 T
E(582|K,T) — E (MW,T)

T
AO,KeBO Z+1/02

m* (50,/\0702)

=my (Bo, Mo, 0% X) — ma (Bo, Ao, 0% X) [h}e]

~Ap 7 1 K AN,
N 0KCD L xZ N,

NogefiZ +1/02 " o2 = Ay,

A07K6ﬁ0TZ + 1/0’2 o*K

AR +

N —Agge®Z 1
_ DK TO,K6° ><—2(Z—S)
Nogeh? +1/c2 o
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And,

A (Bo, Mo, 0°) =P {—ma1 (Bo, Ao, 0% X) + maz (Bo, Ao, 07 X) [Ra] }

Ny + 1/0? 1
—p KXY powe®7 x Lz
<A07K€BOZ+1/O2) g

N 1/02 1
— KT+ /U 3 X —ZZh:ZKB”BgZ
(AO,K@B" 7 + 1/‘72> g ’

Bz 2
ZP{AO’KQ Yo 7z S)T}

Ao e 7?7 +1/02

2
. ©2 Ng — Ao,KGBOTZ 1 ®2
B(ﬁO’AO’UQ) =Pm (507A0’0-2;X) =r (A0K6652+1/02 x ; (Z_S)

Since S can be rewritten as following,

B —ZxU” 82|k, T E eBOTZT—XWxZu(T
g AO,KeBO Z41/0? ’ o AO’KeBO Z41/02 ’
BTz . AO,KEMOTZ 6Bgzﬂ/ﬁ2
E (%K, T) - E (—AO,KeﬂoTzﬂ/ale’T E S K, T
We have
A BZ w 1/g2
plhoxeZ X1 gy gy
AQ’Keﬁf)Z + 1/0’2
T T
_p ) Roxe " x 1ot gor | p ) Rexe T X107 e
Ao ebh? +1/0? Ao e ? +1/0?
BTz 1/02 T
_pdpg e [ X Z|K,T
’ Ao e’ Z +1/0?
8Lz 1/q2
_plagpp [ X K, T | x 5%\ =0
’ Ao eP? +1/0%2
And

Bz 2
A (/80) A07 02) =P {AQK@ . 1/0 (Z - S>®2}

Ao gePoZ +1/02
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When the variance of N is correctly specified as displayed in V3(i), e, Var (Ng) =
Ao e ? (02A07K€50TZ + 1), then A (By, Ao, %) = B (8o, Ao, 0?). They are the infor-

mation matrix. Otherwise, the sandwich form

-1 —1
A(ﬂO,AmUZ) B(ﬁo,AOJQ)A(BO,Ao,UQ)
gives the robust variance estimate of the regression parameter.

Theorem 3.15. (Asymptotic Normality). Suppose that Condition 1-7 hold and the

2

n’

counting process N satisfies the proportional mean regression model. Then given &

a consistent estimate of o2, it follows that

Vvn <5n - 50) =—A;'G, (ml (B0; Mo, 05) — ma (Bo, Mo, 05) [h:-g]) +0p (1)

—qa N (0, A5 BoAy ")
where

Ay = A(Bo, Ao, 08) = =P (mn (Bo, Mo, 05) — mar (Bo, Ao, 07) Vig])

®2
By = B (i, Ao, %) = P (m1 (B, Ao, 02) = ma (o, Ao, o3) 3]

Proof. We prove the asymptotic normality of Bn by checking the assumptions in

Theorem 3.11.
1. Al is satisfied with the consistency and convergence rate of (Bn, An)

2. Pmy (Bo, Ao, 0?) = 0 and Pmy (8o, Ao, %) [h] = 0 as long as the proportional

mean model in Equation (1.2) hold.

3. h’, is specified as shown in Equation (3.13).
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4. Since (Bn, An> is estimated by solving the estimating equations, we have
P,m, (Bn,f\n, o2 X) — 0 and P,m; (Bn,An, o2 X> =0 VheH

The first part of condition 4 is automatically true. To prove the second part, it

suffices to show that
I1="P, {m2 <Bn,An,02;X) [hra] —ma (Bn,An,a2;X) [AnS]} =0, (nil/Q)
With h’, specified as in Equation (3.13) we have

I =P, {m2 (Bn,An,az;X) [AoS] — mo (Bn,An,JQ;X> [AnS]}

=P, {mg (Bn,[\n,O'Q;X> [AoS — AnS]}

Since Pmy (B9, Ag,0?; X) [h] = 0 for any h € H. I can be decomposed as [ =

I, + I, where

I = (P, — P) {m2 (Bn, A, 0% X) A0S — f\nS]}

[2 =P {mg <Bﬂ7 A,,“ 02; X> [AOS - AnS] — My (ﬁoa A07 02; X) [AOS - AnS]} :
We show that I; and I are both o, (n_1/2). Let

¢ (X;8,A) =my (57/\,02;)() [AoS — AS]

K
7=1

Ahg; — AA;) - S —
AA]( 0,j ]) S AK@ﬂTZ—i—]./OQe

And define a class @ (n) as

® () ={¢:(8,A) € R x F,0* € R" and d((B,A), (B, Mo)) <1}
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Due to its monotonicity and by Theorem 2.7.5 in van der Vaart & Wellner

(1996) F is covered by {[AF, AF]: -1}, 1= 0 (exp(n/e)) and

IAR = Ay = / (AT (1) — AP (1) da (1) < &2

And we can construct an e-net, {5, 52, , 5y}, p= O (1/5") such that Vj €

R%3s € {1,2,-- ,p}suchthat |87 Z—BTZ| < e and |exp (87 Z)—exp (BLZ) | <

Ce. For afixed 0, ® (n) is covered by [m),,m[i],i =1,--- l,s =1,---p, where

’LS’

AN] NK+1/O'2
b =5 Z <AARL Aloj = ANJ’) B ALy (€72 — Ce) + 1/0? %

(Ng +1/6%) S -1/0?
AL (eP7% — Ce) + 1/0?
NK+1/0'2
R =9 T AN AN, | —
Z( ANLT 0 J) AfK(eﬁsTZ—i-C'E)—i-l/sz
(Ng +1/0?)S - 1/0?
AR (eP57 + Ce) + 102

AoxcS (eﬁfz + Cs) + (Ng+1/0%) S —

NocS (77 = Ce) + (Nic +1/0%) S =

ANL;, AN AN and AN are defined the same as those in the proof of
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consistency. And

_ R L
fi75 =My — My g

K
1 1
=S " AN;AA, <AAJLR — AA?L)

j=1

Bz Brz _
n (NK N 1/02) oS ( e + Ce e Ce >

Ay (€72 — Ce) + 1/0? - AR (P17 4 Ce) + 1/

| 1
1/0%) S -1/0 -
+ Nk +1/0%) S+ 1/o (AiL,K (e#Z2 —Ce) +1/0> ARy (eﬁ?z+05)+1/“2>

AARE — AAEE )
_SZ AN;AA ; AARLM?J + (Ng 4+ 1/0%) Ao xS x

7j=1
57 (A = Afye) + (M + Alg) €% 7Ce + (Afy — ALy) C2° + Celfo?
(Afy (77 = Ce) +1/0%) (Afi (e%7 + Ce) + 1/0?)
(Al — Aby) P74 (A + AL Ce
(AEy (777 = O2) + 1/a%) (Al (577 + C2) + 1/0%)

+ (NK —+ 1/02) S - 1/02
K
Z (AN — AL) + Coe

The last inequality is due to the boundness of AAZLJR, AL ;, from 0 as stated in the

proof of consistency and conditions 1,2 and 5. By Cauchy-Schwartz inequality,
K
P ‘fi,s‘2 <P <C1 Z (AAfj — Aij)Z + Cg€2> < e
j=1

Therefore with a fixed 0%, ® (1) has a finite e-bracketing number using Ly (P)—norm,

C (exp (n/e)) - (1/)". Now we allow o2 to vary freely. By Condition 2-4,
9 2
@ {m2 (ﬁ,A,O’ ) [AoS — AS]}

is uniformly bounded. If my (8, A, 02)[AgS — AS] — ma (Bo, Ao, 02) [B* — h] is
contained in a bracket [I,u], then mq (8, A, 5%) [AgS — AS] is contained in the

bracket [l — Ce,u+ Ce] for 62 with |62 — 0?| < e. With the compactness of the
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parameter space of 6%, we can select an e-net, {01, o5, } g = O(1/e) over
RT and construct brackets for each o? with enlarged bracket size. So the total

number of brackets of ® (1) is Cexp (n/e) (1/e)*", So @ (n) is a P-Donsker.
By conditions 2, 5 and 6 and Cauchy-Schwarz inequality, we have

Ng + 1/0’2
Ageb™2 4+ 1/02

K

AN;

P{Z A, L (AN — AA;) S —
J

2
G’BTZ (AQK — AK) S}

2 2
( NKT+ 1/o ) 2677 (Aox — Ax)? SQ}

K 2
{Z 2 (ANg,; — AN S+

AKBB z + 1/0’2

k
gcpz (AN, — < on?

Then

sup pp(f) < sup {Pf2}1/2 <Cn—0asn—0
fex(n) fe@n)

Due to the relationship between P-Donsker and equicontinuity, I = o, (nfl/ 2).

K A
<\ Al — AR,
=P AN;S (Ao — Ad,, z N +1
{jl ]< " ’]> AAOJAAM - o) x

(AO,K - AnK> e(Butso) 2 + (6522 _ 6,BOTZ> 1/0

(An’KGBTj:Z —+ 1/0’2> (AO,KGB(?Z + 1/0’2)

<P {Cl i <AA0,j — A/A\nyj)2 + O (AO,K - An,K> (6’8(?2 - eﬁfz) }

J=1

S (Mo = M)

(by conditions 1, 2 and 5)

K 9 K T
P {01 > (Aho;—Akny) + G Y (Bo—Ba) 227 (8- ) }

j=1 7j=1

SCdQ ((67 A) : (/307 AO)) _ Op (n—min(Zpu,l—u)) =0, (n—1/2)
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5. Define a class,
Ml = {ml (/87A702) — (60aA070-2) : ||/B - 60” < 57 ||A - AU” < 57
BeRANeF,0>cR"}

where

my (6a Aa 0-2> —my (507 AO? 0-2>

(NK+1/02)ZX1/02 8Tz 8Tz
— A 04 — A
(AxeP™Z +1/02) (Mg e 7 +1/02) ( oA K >

Let A%K,AZ{%K,Z' =1,2,---,1,l = Cexp(1/e)and B,,s = 1,2, -+ ,p,p = C(1/)?

defined same as that in the proof of the consistency. So for a fixed o2, M; is

covered by [ml, . mf,,

[Ny = Al (57 4 Cz) |
- Al (€777 4 Ce) +1/0?
- Aty (47— )]
i = A{jK (eﬁgz — C’e) +1/0?

Flie=mPf —mb = (Ng +1/0?) x 1/o? x Z
i s = s = (E T4 Ce) 1 1/0) (N (77— C) £ 1/

] where

L
ml,i,s

X 1/0’2 X Z—m1 (50,A0,0’2)

X 1/0'2 X 4 —my (,Bo,Ao,O'Q)

X (AR — Alg) 77 4 C (AR + Aly) e]
And

(AR~ AR 7 4 (AR, + Ak, Ce|
< CP|(Af = Ak)" 2 4 O (AR, + Ak)" €

K
<CP [C1) " (AAF — AAL)?

=1

+ 0262
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Therefore with fixed 62, M; has a bracket number Cexp (1/¢) - (1/¢)?. Now we
allow o2 to vary freely. By Condition 2-4, a 2> Imy (B, A, %) — my (Bo, Ao, 0?)] is
uniformly bounded. If my (3, A, 0?) — my (Bo, Ag, 02) is contained in a bracket
[1,u], then my (8, A, 62) —my (Bo, Ao, 62) is contained in the bracket [[ — &, u + €]
for 62 with |62 — 02| < e. With the compactness of the parameter space of
o2, we can select an e-net, {01, o5, } q = O(1/e) over R and construct

brackets for each o7 with enlarged bracket size. So the total number of brackets

of My is Cexp(1/e) - (1/¢)* and it is Donsker,
Also for any d; (3, A, 0?) € M,

(N +1/0%) x 1/a? x Z

d A, 0%) =
(5,4, 0%) (Aref™2 +1/02) (Mg e’ ? +1/0?)

X <A0’K€’Bgz — AK€'8TZ>

Pld (8.A,0%)| < CP (AO,KGBOTZ _ AKe,BTZ)2

K K 2
= CP (Z Ahg e ? =% AAjeBTZ>
j=1 j=1
K K 2
=CP (Z (AAo,; — AA;) 7 4 Z AN, (eﬁOTZ - eBTZ>)
j=1 j=1
K
< CPY (AN, — AN+ Co8? = C6> 0 as § — 0

1

J

By Corollary 2.3.12 of van der Vaart & Wellner (1996) (Lemma 3.3), this implies

sup ’Gndl (ﬁ,A,O’Q;X)‘ = 0,(1)
18— Bo| <o, ||A—Ao||<Cnv ,o2€R+

where v can be chosen as the convergence rate shown in Section 3.3.
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Similarly, define a class,
={mz (8,A,0%) [h3] = ma (Bo, Mo, %) [hga] 1B = Boll < 6, |A — Aol <4,
BeER\LANeF,0° R’}
For our specific likelihood we have

Mo (B,A,UQ) [hea] — ma (Bo, Ao, 07) [h2]

AN; Ng +1/02 Ng — Ag gefo?
=1 =

2

We first discuss the case when ¢° is fixed. Using a similar argument, Ms is

covered by [m%Z s mgi’s} where
L _ AN; o Nk +1/0 BTz _
M = Z AN SN TR (T ey 4 10 (7 ce) | x5
mo (607 AOv 02) [hZQ]
AN; Ng + 1/(72 T
R _ J - K BsZ _ —
M2 = Z < AN Bhos = R {7 1 00 ¥ 1o 0K (7 - ce)| x5
(/807 A07 ) [hO-?]
And

L
f2 1,8 m2 J0,8 m2,i,s

1 1 T

j=1

1 1
<A£K (eﬁgz — Cé) +1/0? a AﬁK (eﬁgz + Cé) + 1/02> *

2 1 !
(NK+ 1/o )Ao,K (A{JK (eﬁsTZ _ 05) +1/0 + AZ»L7K (eﬁsTZ—i—C'é) + 1/02) 05}

K
< CINg Y (AN — ANE) + Oy (Afe — Aly) + Cse
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So we have

K

foasl? < CINE ST (AR, — AN + Cye?
j=1
K

P|f2ﬂ',s’2 S Cl.P <Z (AASJ — AA£])2> + 0252 S 052
j=1

2 vary across RT, the bracket number with an enlarged

Again, if we allow o
bracket size is bounded by Cexp (1/¢) - (1/¢)*"" and hence M, is P-Donsker.

For any dy (3, A, 0?) € Ms, we have

5z Age?? — N e ?
(AO,KeﬁoTZ + 1/0’2) (AKGBTZ + 1/0'2)

K
<Gy Z (Ao = AA;) +C (AKeﬁTZ - Ao,KeﬁoTZ)

A XK: (AAg; — AA;) + Cy [(AK — Ao k) Bz + Aok (eﬁTz _ @ﬁf;rz)]

<.
Il
i

K
<Y (Ahoy — AN) +Co(B— o) Z

<.
Il
—
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Therefore,
K

Pld> (8,A,0%) [* < CoP (Z (AA; - AAO,»Z) +CoP (8= 60)" 227 (8= o))
j=1

<0 —0asd—0
By the Semi-equicontinuity Theorem (Lemma 3.5), this further implies,

sup ’Gndg (B,A, o’ X)‘ = 0,(1)

[B8—B0|<dn,|A—Ao||<Cn¥,02€RT

where v can be chosen as the convergence rate shown in Section 3.3.

. By Taylor expansion of m; (83, A, 0%; X) at the point (8y, Ag), we have

my (67A70-2;X) =

my (ﬁo,/\o,UQ;X) + mi (ﬁ07A070'2;X) (B = Bo) + maz (50,/\0702;)() [A — Ag]
1/0% — Ao e ?

(Ao xe®Z +1/02)
1/0% — A07K650TZ

(Ag,re® 7 + 1/(72)3

1z (Ny+1/0%) 1/0?

2 3A0,K665TZ (B — 50)T zz" (B — o)

- (Nk + 1/02) 1/‘72 e ? (B — 50)T zz" (Ax — Ao k)

(Nk + 1/0’2)

€2BgZ1/O'ZZ (AK — AO K)2
(A£7K665Z+1/O’2)3 ’

So,
P|m1 (/87Aa0-2;X) —m (607A07O—2;X) -
mu1 (Bo, Ao, 0% X) (B — Bo) — maa (Bo, Mo, 0% X)) [A — Ag]|

1 1/0% — Ao e’ ?
_p ——Z(Nk+1/02)1/02 /o _ 0,K €70

_ (Nk + 1/02) 1/0? 1/o% — AO,KeﬁOTZ
(AO,KeBOTZ + 1/0’2)

~Noxe® 2 (58— B0)" 227 (8 - Bo)

3A0,K€55TZ (8- B0)" ZZ" (Ak — Ao)
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(N +1/0?)
(Ag,KeﬁoTZ + 1/0’2)

362’83121/022 (AK — A()’K)Z
<C{|B - Bol* +||A—Aol?}  (by conditions 1, 2, and 5)

where e = By + & (8 — o) and Ag; = Ag; + & (Aj — Ag ;) for some 0 < ¢ < 1.

Similarly,

) (57/\702;){) = m2 (ﬁ07A0702;X) Vﬁ?] + may (507/\0,02;)() [ Z?] (B — Bo) +

mMa2 (607A070-2;X) [ 027A AO]

/ 2 A0K6'80TZ
(AoKeﬁ()Z + 1/0’2)

657
— 2 (Ng + 1/0?) 1/0? & e;Z n 1/02)32 (8 = Fo) (A = Ao) hoz i
g€
K
"3 i

%2 (8= Bo)" ZZT (B — Bo) hia e

_%(NKH/U)U 2

NK + 1/0'2
(AQKBBEJFZ + 1/02)

J(AN; — AAg,)? - shta 1% 2 (Mg — Ao k)’

So,

P ‘mQ (57A7 Uz;X) [h;Q] — M2 (BO’AO’O—Q;X) [ :;2]_

may (Bo, Mo, 0% X) [h2] (B = Bo) + maa (Bo, Ao, 07 X ) [h2, A — AOH

/ 2 AO,KGBOTZ

(AOKGB 4 ‘I‘ 1/0'2)
2e7 7

(AC’KGﬁgZ —+ 1/0’2)

1

=P 9 (NK—l/U)l/ ? 365?Z(5_50)T2h22 (8= Bo)

—2(Ng +1/0%) 1/0”

522" (B = Bo) (A — No) hie ¢

2
+ZAA; Ah%s (AN, — ANy ;) —

NK + 1/0’
(AC,KefBoTZ + 1/0’2)

shoe, 1€ 7 (Mg — Ag &)

<C {|ﬁ — ﬂ0|2 +||A = A0||2} (by conditions 1, 2, and 5)
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where B¢ = By + ( (8 — Bo) and A¢; = Apj + ¢ (A; — Ag ) for some 0 < ¢ < 1.

. Since
NK — Ao KeBOTZ
mi (Bo, Ao, 0% X) = — T
02No e’ Z 4+ 1
8 NK — Ao KGBUTZ T
Wml (607A070-2;X) - - ;ﬂ QAO,Keﬁo d X Z
a (02Ao, e’ % +1)
_ sl z
Let my, = | —x Aok sAoxe® 7 x Z|, then
("2/\0 Ke0 Z+1)

T
Ag et ? x 745 < oo

by the boundness of Z, Ag and E {e“N")}.

Similarly

NK — Ao’KeﬂgZ

O'2A07K€53;Z +1

Mo (50,/\0702;)() =

T T

9 An. 52 Nk — Ao e’ ? A o oBhZ Ng — Agge®? 98
o2 2 (Bo, Ao, 0% X) = — T g ore™ ™ XS+ — BIZ 41002
g (UQAO,Keﬂoz + 1) 020\ gePoZ 4+ 100

N —Ao rce?0 Z 8Tz Nk —Ao ke 2 35S

Let mgy, = |— - sNog e’ % x S+ e 7522 |, then
BA Z ’ BA Z o
(02A07Ke 0 —i—l) (02A07K8 0 +1)

4
(NK — A07K655Z>

Pm;, <CP - 3
(02No % Z +1)

A4,Ke450TZ % s+ \ 4

N
op (NK - AO,KeﬁO Z> ( oS )4
(02A07K65(:)FZ + 1)8 Oo?

T
Af 7 x 5t




7

Again, by the boundness of Z, Agy, I} < oo.

L=P <NK B AOerﬁOTZ)Ll (85 )4

(O'QA()’K@’B(?Z + 1)8 do?

hi2.g Tz
E AO Keﬁo K, T [30—
85 <<U2A0’Keﬁg’z+l)2 ' ’ + E 0'2[\0 Keﬁo +1 ‘K T %

Jo? - eﬁT ﬁT 2
e(tminr)  (p (i)

Brz
E — Noxe® Z|K,T
(02A0,K650 z + 1)

Let

02Mg, k€0 +1)

eﬁgz-Z 7
E <—02A0,Keﬁgz+l K, T>
E <%—|K T)
o2\ KeBO +1
JQ == T, 29
(= (o))
0’21\0 Keﬁo +1

e 2
Jg =F p AO K€ |K T
(02No e’ % + 1)

By the boundness of Z, A and o2, J;, Jo and J3 are all bounded. And (8—5) <

E<< Ao,KeﬁMKaT)
J1 =

and

CJ} + C(J} x J;). Together with the boundness of K and T, this further

implies I, is bounded.

]

Note: In the simulation studies in Chapter 6, Zeger’s method of moment is adopted
in the estimation of the overdispersion paraemter. The definition of o7 and the

consistency of 62 is delegated in Section 5.2.
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CHAPTER 4
VARIANCE ESTIMATION OF THE SPLINE-BASED SIEVE GEE
ESTIMATOR

In Chapter 2, we show that the spline-based sieve GEE using either Vl(i), ‘/Z(i)
or 1/3@ coincide with the scores of different ‘likelihood’ functions. The asymptotic
normality of the estimated regression parameter calculated from the sieve GEE is
correspondingly established in Chapter 3. A consistent estimator of the asymptotic
standard error of the sieve GEE estimator is needed to make inferences.

Three different methods are discussed to estimate the asymptotic standard
error. Section 4.1 presents a projection method based on the general theorem for the
maximum likelihood estimate of the finite dimensional parameter in the presence of
a nuisance infinite-dimensional parameter. Different from the sieve GEE estimates
using Vl(i) or Vz(i), the estimate from the sieve GEE using Vg(i) involves an extra
over-dispersion parameter o2. Replacing o2 by its consistent estimate still provides a
consistent estimate of the standard error.

Section 4.2 presents an ad hoc estimator of the standard error based on the
ordinary sandwich formula in parametric GEE model. The spline coefficients are
treated the same as the parametric regression parameters. Simulation results from
Chapter 6 show the estimates based on GEE sandwich formula provide similar result
as the estimates based on the projection algorithm from Section 4.1. Computationally,
the sandwich estimator provides an easier standard error estimate for the spline-based

sieve GEE estimator.
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Spline-base sieve approximation largely reduces the dimension of the estima-
tion, which makes it feasible to estimate the standard error of the estimated regression
parameter using the bootstrap method. Section 4.3 briefly describes the bootstrap

estimate of the standard error.

4.1 Projection Method
It is shown in Section 3.3 that the spline-based sieve GEE estimate of [, Bn

satisfies
vn (Bn — 5()) —a N (O,AEIBO (Aal)T>

Where

Ao = A (Bo, No,05) = —FE (mn (Bo, Ao, 06 X) — man (Bo, Ao, 0; X) [h:f?)])

®2

BO =B (ﬁ07A07O-§) =FE (ml (BOJA()?O-S;X) — M2 (ﬁ(]?AOaO-g;X) VG;S]) )

with %, = (1

08,1’

T
b, d) , h;zj € H for j =1,---,d satisfies the equation
0> 0
P (maz (Bo, R, 085 X) 1] = mas (B, Do, 0 X) Bz, h]) =0 Vh € M
It is equivalent to the projection problem of solving h*, = by
0>

hjg , = argmin P (mLS (ﬁO,AQ,US;X) — My (BO,AO,JS;X) [h])2 fors=1,2,--- ,d.
' heH

where m, ; is the st" component of m;.

To consistently estimate Ay and By, we take advantage of the spline-based

sieve method again and estimate each component of h?, by a set of linear spans of the
0



80

cubic B-spline functions, e.g., iLms = ;17;1 v;sBj for s = 1,2,---  d where v;5,j =

1,---,q, are estimated by minimizing the empirical version of Equation (4.1), namely,

~ A ~ o~ ~ 2
Py (15 (B A2 X ) = ma (B A 62 X) [hn])

2

where (,,A, and o

are consistent estimates of fy, Ag and o2, respectively. Since
ms is a bilinear operator, it is equivalent to solving a least square problem and the
solution of v, = (V1,85 V2,80 - - ,'quS)T is given by
A -1
(3 (B A2 X)) [B] x ma (B A, 62 X) [B]) - %

(mg (Bn,[\n,&i;x> [B] % mys (Bn,f\n,&i;X))

where mso (Bn, A, 62; X> [B] is the n x @, design matrix with (3, m)th entry being

SO M gy
AA(l) m,K;,j A(l) m,K;,j
Jj=1 Ki.j K, K;

where AN&?Z,’ ;and AA(I?Z_’ ; are defined as same as in Equation (2.7), By i, j = Bm (T[((Z) j>
and AB,, i, j = Bm,j — Bmk,j—1 for m =1,2,---,q,. With this estimate of h},
0

we can empirically construct A and B respectively and show they are consistent.

Theorem 4.1. Let (Bn,[\n,&g) be a consistent estimate of (Bo, Ao, 02) and h, =
~ ~ ~ T ~
<hn,1,hn72, oy ,hn,d) . Under regularity conditions 1, 2 and 5, h, is a consistent
estimate of hZQ. Denote
0

An = _]P)n <m12 (Bn; Am 6-7217 X) — Ma2 (Bm Ann 6-1217 X) [iln]>

~ A~ A A o~ ~ ®2

By =By (1 (B A2 X ) = ma (B A 62 X) [l

Then A, —p Ao and B, —p Bo.
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Proof. Denote ps (8, A, 0%, h; X) = (m1s(8,A, 0% X) —ma (8,A, 02, h; X) [h])z S =
1,2,- -+ ,d. First, we show a class of function & = {p, (8, A, 02, h; X) : B € R4, logA €
e, 02 € RY,h € ¢4}, is Glivenko-Cantelli by evaluating its bracket number with
Li(P,) norm.

For the moment, we fix 0. By Lemma 3.8, v is covered by

{[AlL,AF],Z =1, ’O (q711/2/6)cqn}

and [[AF — AZ-LHLl(“) = [(AF(t) = AF(t)) du(t) < e. Similarly we can construct a

set of brackets {[hlL,hﬂ l=1-.0 (q,ll/2/€>cqn} and

[0~ g = [ BF O~ 0) et <

such that Vh € ¢4, hF < h < hf* for some I. We can also construct an e—net,
{B1, B2, ,Bp},p = O(1/e?) such that V3 € R%3s € {1,2,---,p} such that

877 — B Z| < e and |exp (87Z) — exp (BT Z)| < Ce. We further define

AA@'LJ - Aij — A}

i,j—1

AAfj - Afj —Af!

i,j—1

ANTY = Ay - AL

ij—1

ANEF = Al = A

ij—1>

Following the same lines as those in Wellner & Zhang (1995), we can make these
bracketing functions satisfy A® — AF < ~; and AF > 4 with 75,72 > 0 for all

te[0,7] and 1 <i <. And AA{jJR > 73 > 0. Similarly, we define

L _ 1L L . R _ 1R R .
Ahyy=hyy— by Ay = hyy— i g

LR _ 1 L R . RL _ 1R L
AhlJ o hlv] - hlv]_]-’ Ahl?] o hl7] - hlm?_]-.
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Let

5 Nk — Afy (eﬁsTZ + Cs)
ML —
1,8, AR (eﬁgz +C’€) + 1/02
Ng + 1/0‘2 T
N By (47 - Ce)
Z AALR Li AfK (eﬁsTZ + Ce) +1/0? L \© c

. Ng — Ak (eﬁsTZ - Ce)
el OAL (eﬂ?Z—Cg)ﬂ/a?

N; LR Ng +1/0? R ( BTz
Z AARL Anz o Aly (e77 4 Ce) + 1/0? hix (6 + Ca)

1/0*Z—

1/0%Z—

M = dM}

isi where

And we write M

1,8,l

+dM?,, + dM}

,8,07

. Ng — Ak <eﬁsTZ—Ce€) Ng — A% (eﬂzz—i-Cg) )
dM; ., = — -1/0%Z
bl ALy (577 = Ce) +1/02 AR (e77 + Ce) +1/0? /o

< C [Nge®? (A = Aly) + Nic (Aff = ALy) Ce—

(A — AL €71 /02 + C (AR — M) 1 /0205]
K
<Oy (Af = AF) + Coe =y Z (AAF, — AAF)) + Coe
j=1
5 AN
M7 = Z m (AN AR — ANFART)
AN;
INZINNE

NERD

(AN (AR = ARE) + Ahyj (AT = AATT))

1

K K
C1Y (AN — ANFF) + G (AR — ARST)
I=1

j=1

.
Il

IN

| /\

K K
Z (AASS = AAY)) + CoK Y (ARl — Ahp;)  ( by inequality in (3.11))

=1
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hi <€5;—FZ + C’e) hiy (eﬂgz — C’a)
dM?,, = ’ — ’ (
BT A (P72 — Ce) +1/02 ARy (P17 + Ck) + 1/0?

NK + 1/0’2)

< C [(AFehfic = Alchfs) €77 + 2 (Aehfi + Abychfy) €% 2 Cet

(Ahfic — Abchbe) €702 4 (W bt 17 10% 4+ (i + ) - 1/°Ce]

< C1 (A = M) + Co (il = hilge) + Che

K K
<Y (AR = ANE) + > (AR — Abf) + Cse
=1 j=1
Therefore
K K
M = M, < CY (AN = AAL) +Co ) (AR — Ahjy) + Cse
j=1 j=1
K K
(M, - Mfs,z)2 < Ch Z (AAF; — AA@'LJ)Q +G Z (AR - Ahfj)Q + Cye”
=1 j=1

Therefore my ¢ (3, A, 0%, h; X)—ma (8, A, 0%, h; X) [h] is covered by [ME

,8,07

M} ]. When
both M}, and M, are positive, (mi, (8, A, 0% h; X) —my (6, A, 0% h; X) [h])? is

covered by [(ME )2 : (Mlil)Q].

i,8,l

]P)n ( (Mz{ls,l

) = (MR)?) = By (M, + ME,) (ML, — ME

)8, i,8,l i,8,l

) < s

Similarly, when both M}, ; and M} | are negative, the brackets are [( M

1,8,l

)L (ME))

When M'fs,l <0< Mffsyl, the brackets are [0, (_Mfs,z V Mfi,l)z] and (—Mfs’l vV Mf“SJ)2 <
(M, — ML) So
P, (-ME v ME ) <P, (MR, - M-,)* < Ce? < Ce

Therefore the bracket number of & with fixed o2 is O (1/e)*"?“". Now we allow o

to vary. As shown before 52 [my (8, A, %) —ma (8, A, 0?) [h]] is uniformly bounded.
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We can find an enlarged brackets for 6% with |62 — 02| < e. With the compactness
of the parameter space of 0?, we can select an e-net, {0f,03,---,02},q = O(1/e)
over R" and construct brackets for each o? with this enlarged bracket size. So
the total number of brackets of & is C (1/¢)""“™ ™ The entropy with bracketing
logNyy (e, Far, Ly (Pr)) = op (n). Also logN (e, Far, L1 (Pr)) = 0p (n). By Lemma 3.2
G is a Glivenko-Cantelli. Similarly we can show S = {ps (ﬂ,A,a ,hj;Q;X) : B €
R logh € F,0% € R}, is a Glivenko-Cantelli as well.

Following the similar arguments used in the proof of consistency in Theorem
3.13 in Section 3.3, there exists a h:_gﬂ%s € ¢4 of order m > p+ 2 such that ||h:,27n78 —

hZQ,SHOO = O(n7?"). By definition, ilms = argmin, e,  Ppops (Bn,An,&Z,h;X>, with

the consistency of (Bm A, &g), we have
Pnps (BmAnagmhn 57X> - nps <Bna ny 7217 22 5;X>
:Pnps (Bm]\ma}z” Bn,s;X> - nps (57‘“/\7”0-7” ansaX>
+ Pnps <An7An7&za h::27n,5§X> - nps <Bn7 ns n? 02 57 )

P (b5 (B An 62, 150,5X) = o (B A, 82152, X)) = 0,1

* *
(ﬁ?ﬁ n n’ g2n51X>_p(ﬂn7 ns n’ 0'257

This leads to

nps (ﬂm ny 0. Zaﬁn,s;X> <Pmos (ﬁnaAmo- h0257X>+0P<1)
= B = P) pu (B Ay 62 2 X)) + P (s A, 62,32 3 X ) + 0,(1)

=Pp, <ﬁn,An,an, oS S,X) +0,(1). (4.2)
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Therefore, by the Glivenko-Cantelli Theorem, consistency of <Bn, ny O n) continuous

mapping and dominant convergence theorem (DCT),

P (ps (Bos 80,08, hoss X ) = o (Bo, Do, 08, Wi X))
=P (s (0 A0, 03 s X) = s (Bs Ay 82, ha X ) ) = P (s (Bos Aoy 08, i X) =
ps (Bus Ay 62,152 3 X))+ P (s (B By 62, B X ) = s (Bus A 62, 132 X))
zop(l)—l—P(ps <Bn;[xnua-72“iln,s;X> Ds (ﬁn, s 02, Z%QX))

(by continuous mapping and DCT)
<o,(1) — (P, — P) py (5n, i n,Ans;X) (by inequality in (4.2))

=0, (1) (by Glivenko-Cantelli Theorem)

> ¢ is a subset of the event
o0

With the uniqueness of h;&S’ the event s — h:;g,s
Pp, <ﬁ0,A0,a§,ﬁn75;X> > Pp, (ﬁo,Ao,ag,hfrg’s;X> and the latter goes to zero in
probability as n — oo. Let € — 0 we conclude ||hy,., — h:’;g,SHoo — 0.

Denote p1 (8, A, 02, h; X) = (my (8, A, 02, X) — my (8, A, 0% X) [B])*? and &, =
{p1 (B, A, 0% 1; X) : B € R logA € tyy,0%> € RT,h € ¢,}. By the consistency of

Bn, A,, 62 and h,, and &, being a Glivenko-Cantelli, we can show
Bn =P,m (Bm Am&ia BmX)
= (Pn - P) P1 (Bm]\m 627 iln; X) + Ppl <Bn7[\n7 67217 }Aln; X)
— Ppl (505A07007 0'(2)7X) = BD

Let P2 (57A7027h; X) = M2 (ﬁ?Aa 027X) — Maa (ﬁ,A,O’%X) [h]a we can simi-

larly show that the class Sy = {py (8, A, h;02, X) : B € R logA € 94,0 € RT, h €
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o1+ is Glivenko-Cantelli. And

A, = —P,ps (Bn,[\n 52 hn;X>

y Yo

A

- - (Pn - P) P2 (/37”]\7176-27?7%7)() - PPz (67“[\”,5'72“%”,)()

— =Pps (i o, 03, g X) = Ay

4.2 GEE Sandwich Estimator

In Section 4.1 we prove the consistency of the spline-based sieve estimate of
B using the general theorem of the maximum likelihood estimation and the projec-
tion algorithm. However, we may not be able to use this projection method if the
generalized estimating equation does not coincide with the gradient of any objective
function. The projection algorithm treats the baseline mean function as the infinite
dimensional parameter. The estimation is complicated and another spline-based sieve
approximation is needed to estimate the ‘least favorable direction’, i.e., h}, first.

In this section, we present an alternative ad hoc method for the estimation
of the standard error of the estimated regression parameter. By treating the spline
coefficients as same as the regression parameters, we propose to estimate the standard
error of the estimated regression parameter s using the ordinary sandwich form in the
generalized estimating equation for parametric model as follows.

In a parametric regression setting, we consider the observations (y;;, x;;) for
times ¢;;,7 = 1,---,K;,i = 1,---,n. y;; is the outcome variable and x;; is the

covariate vector at t;;. Let Y; = (y;1,--- ,yiKi)T be the outcome vector and X,; =
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(T, -~ ,xiKi)T be the covariate matrix for subject 7. Define p; to be the expectation
of Y; and suppose that p; = h (X;0) with a know link function h. Denote the variance
of Y; as V;. The GEE estimator of 6, én is the solution of the score-like equation

system given by

- a,uz‘ g -1
U ) - V(Y — ) (43)
— \ 00
Liang & Zeger (1986) showed that 6, is a consistent estimator of 6 and /n (9n — 0)

is asymptotically multivariate normal with the covariance matrix give by a sandwich

form

lim V'Vt

n—0o0

where

_1 - O g -1 O
Vl_ﬁ;(ae) V. (W ’

1 - Opi ! O
V“‘@E(aa) CO”(E’)(@@)'

This asymptotic variance can be estimated consistently by replacing cov (Y;) by

(Vi — i) (¥ — )"

The proposed spline-based sieve GEE estimator, <Bn,f\n) is estimated by
solving Equation (2.6). They are similar to Equation (4.3). Heuristically, we could
treat the spline coefficients as same as the regression parameters and estimate the
standard error of Bn by the sandwich formula given above. That is, letting 6§ =
(B, a)z;l gn) X1 the standard error of Bn could be estimated by the square root of the

first d elements of the diagonal of V; 'V,V; 1.

Simulation results from Chapter 6 show that the standard error estimates
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based on the GEE sandwich form are similar to the estimates based on the projection
method. Hence one might use the simplified ad hoc sandwich standard error estima-
tion method instead of the projection method in practice. Theoretically, future work
is needed to prove the estimation based on the GEE sandwich form and that based

on the projection algorithm are asymptotically equivalent.

4.3 Bootstrap Method

The spline-based sieve approximation largely reduces the dimension of the es-
timation problem, which makes it feasible to estimate the standard error of g using
the bootstrap method. In this manuscript, a case resampling bootstrap method is
applied to estimate the standard error of the proposed spline-based sieve semipara-
metric GEE estimate of 5. For a given dataset, the observations (Ki,I K> N®), Zi)
are resampled with replacement 100 times. The bootstrap standard error is then
calculated by the standard error of these 100 spline-based sieve GEE estimates of 3

based on the bootstrap datasets.
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CHAPTER 5
NUMERICAL ALGORITHMS

5.1 Convex optimization algorithm with monotonicity constraint

Minimizing a smooth convex function ¢ over one of the cones C or C; in R",

defined by
C={z;,i=1,2,-n:x;<ay<---<m,} or Ct={xeC:x >0}

is often seen in statistical problems. Nonparametric and semiparametric maximum
likelihood estimations, such as the estimations of hazard functions and distribution
functions, can fit in this framework by taking ¢ to be the negative of the corresponding
likelihood. See examples in Huang (1996), Wellner & Zhang (2000) and Wellner &
Zhang (2007). Incorporating the monotone constraints into the computing algorithm
is required to guarantee the validity of the estimation.

At any estimating iteration k, The convex function ¢ can be approximated

locally at the current estimate 2(*) by a quadratic form,

0 (2.2M) = 2 (x = 1 (@) W (o) (x— f (=)

| —

Where
F(2®) = 2® 4 g (®) and g (®) = AW (2®) " Ve (P)

A is a line search parameter with 0 < A < 1 such that ¢ (f (x(k))) < ¢ (m(k)). 1474
could be any positive definite matrix. The minimization of ¢ can be accomplished

by iteratively minimizing ¢ subject to the monotone constraints, z € C or x € C™.
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When W (:p(k)) is the negative of the Hessian matrix, f (x(k)) is the Newton-Raphson
update of the estimate. However the updates f (x(k)) does not automatically satisfy
the monotone constraints. We present two different algorithms: the Generalized
Rosen (GR) algorithm and the Convex Minorant (CM) algorithm to project this
update onto the convex cone, C or CT.

GR-algorithm updates the gradient of the estimates, i.e., g (:v(’“)) onto the
intersection of hyperplanes defined by some active constraints, which result in the
updated estimates inside the convex cone. This method is utilized by Lu et al. (2007)
and Lu et al. (2009) in the spline-based sieve maximum pseudolikelihood estimator
and the spline-based sieve maximum likelihood estimator. Section 5.1.1 discusses GR-
algorithm in detail and states its implementation in computing the spline-based sieve
GEE estimates for panel count data. CM-algorithm projects the updated f (x(k))
directly to the convex cone determined by the monotone constraints. This algo-
rithm can be viewed as a special form of the isotonic regression on a generalized
gradient update. Section 5.1.2 explains the isotonic regression in detail and presents
the implementation of the CM-algorithm developed by Jongbloed (1998) and a more

generalized hybrid algorithm of Newton-Raphson iteration and isotonic regression.

5.1.1 Generalized Rosen (GR) Algorithm
Rosen (1960) first proposed a projection method for optimization problems
with linear constraints. Jamshidian (2004) generalized Rosen’s projection method to

a general metric with the norm ||z|| = 27 Wz. The GR-algorithm is based on the
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projections of g (:L‘(k)) onto the intersection of hyperplanes determined by an active
set A, which is a set of indices of linear constraints. For example, A = {j1, - ,jm}
for which z;, = x;,41. A is allowed to be empty when m = 0. We start from defining
the active set A and explain the projection algorithm afterwards. For the simplicity of
the presentation, we suppress the dependence of f and g on x, denote f*) = f (ilj'(k)),
g*® =g (x(k)) and WH = W (x(k)).

Given an estimate of z in the convex cone C or C*, 2 if ¢*) is nondecreasing,

then z(*+1) satisfies the constraints automatically, no projection is needed.

(k1) (k1)

If g](.k) > 93(']-?1 for some j € {1,2,--- n}, to ensure T; i+1 > we need to

choose «; such that

k k k k
2 795" < 2l + gl

This implies
(k) _ (k)

€T\ €T\
Jj+1 J
S TH w
9; " — Y+
If we choose
= min ;
K B )y

{j39j >g]‘+1}

it follows that (*t1) € C or C* and the active set A will expand to contain an extra
index J where

J = argmin ;.

(0" g}

For the projection algorithm, a matrix A, whose rows correspond to the m

active linear constraints and columns correspond to the n parameters, is defined as
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follows,

o o0 o0 o0 o0 0 -1 1 O

L - mXn

The i*" row of A corresponds to the i active linear constraint z;, = z;,4; in the active
set A= {j1, -+ ,jm} It has —1 and 1 at the jI" and j; + 1*" element, zero elsewhere.
This matrix may be updated as the algorithm proceed and hence is denoted as A®*)
corresponding to the update z(*).

We need to project ¢ to the null space of the matrix A®), defined as
N ={z: AWz =0}

Let

P _ ( 7 <W<k>>1 AT < A®) <W<k>>1 A(k)T)_l A(k))

It is casy to show that P™ is idempotent, that is P®)P*) = P*) and AP® = (

(Jamshidian 2004). Let d = x — 2®). For any d € N/

the equality holds at d = P®¢®  Therefore P* is the projection matrix, the

projected ¢ is P® g®) and x*+D = 2*) 4 pE g(F) If the projected direction is not
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nondecreasing for those that are not already in the active set, v needs to be estimated
and an additional constraint needs to be added to the active set.

GR-algorithm updates the estimates by projections onto the vertices of active
constraints. A Lagrange multiplier needs to be estimated at the end of the convergence
to ensure the final estimate is the optimal solution. If the Lagrange multiplier is
positive, the corresponding constraint is unnecessary and should be removed from
the active set. The iteration continues with the updated active set. The steps used
in GR-algorithm to solve for the spline-based sieve GEE subject to the monotone
constraints are summarized in Table 5.1. In the simulation studies in Chapter 6,

both W and W are specified as the negative of the Hessian matrix.

5.1.2  Newton-Raphson/Isotonic Regression (NR/IR)

Groeneboom & Wellner (1992) first introduced the iterative convex mino-
rant (ICM) algorithm to compute nonparametric maximum likelihood estimators
(NPMLE). Jongbloed (1998) modified the ICM algorithm by inserting a line search
parameter and showed the global convergence of the modified ICM algorithm. Other
examples of applying ICM to estimation problems of censored or truncated data can
be found in Pan (1999), Wellner & Zhang (2000) and Zhang & Jamshidian (2004)
and the references therein.

ICM is based on the isotonic regression theory. Let K denote a convex cone

of C or C*. & = argmin,, ¢ () if and only if & satisfies the Fenchel’s optimality
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Table 5.1: GR Algorithm for Spline-based Sieve GEE

Step 0:

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Start with an initial point () = (5(0), 04(0)) that satisfies the monotone

constraint of the spline parameter, a(®) = <a§0), ago), e ,aé?)) ,ago) <

ozgo) <... < ozég). Iterate the algorithm through the following steps until

convergence.

Compute the feasible direction
. . -1
d= {I — AT (AW”AT> A} WU ()

When there is no active constraint, take d = WU (0).

If the resulted direction d is not nondecreasing, compute the biggest step

. Qir1 — O

7T gdds i (_M)
This guarantees a1 + vdiy1 > a; +~d;, for i =1,2,--+ [ q,
Looking for the smallest integer £ > 0 such that HU (9 +(1/2)" d) H <
1U(0)]]
If v > (1/2)", replace 6 by 6 = 0 + (1/2)" d and go to Step 5.
If v < (1/2)k, replace 6 by 8 = 6 + ~vd, modify active set A and cor-
responding working matrix A by adding the new activated linear con-
straints.

If ||d|| > ¢ for a small ¢ > 0, go to Step 1. Otherwise, compute the

. -1
Lagrange multiplier A = (AW_lAT> AWU ().
i. If \; <0 forallie A set § =0 and stop.

ii. If at least one \; > 0 for i € A, remove the index corresponding to

the largest \; from A, and update A and go to Step 1.
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condition, that is,
(Z,Vé(2)) =0and (z,Vo(z)) > 0Vx € K
(Robertson et al. 1988). When ¢ (z) has a quadratic form, e.g.

¢(x) =5 (@ —y)" W(r—y)

1
2

and W is a diagonal matrix, the optimization reduces to estimating

rgmmg W; (z; — ;)

ek i—1

where @; is the diagonal component of W.
The solution of this optimization has a nice graphic interpretation: it is the left
derivative of the greatest convex minorant of the cumulative sum diagram, {F;,7 =

0,1,---,n} where

Py =(0,0) and P, = (Z wl,zwlyl) ;
=1

the left derivative of this diagram can be calculated by the pool adjacent violator
algorithm (PAVA) described in Robertson et al. (1988) and the minimum-lower-set
algorithm described in Brunk et al. (1957). As a matter of fact the solution can be

expressed as

!
. Zk—J wkyk
Z; = maxmin —————

Jj<i I>i Zk ]wk

In the nonparametric and semiparametric estimating problems as studied in
Wellner & Zhang (2000) and Wellner & Zhang (2007), the number of parameters

increases as the sample size increases. Storing and inverting the full high dimensional
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Hessian matrix is daunting. The ICM-algorithm is implemented in which the matrix
W in the generalized gradient update and W are both diagonal with the negative
diagonal elements of Hessian matrix, i.e., W = W = Dy.

In the spline-based sieve estimating problems, the dimension of the estimation
increases much slower than the sample size. Instead of a diagonal matrix, the full
Hessian matrix is used in the generalized gradient update which is essentially the
Newton-Raphson update step. And a diagonal matrix W = Dy is used to project
the Newton-Raphson estimate onto the convex cone using the max-min formula. Ob-
viously, the such a Newton-Raphson and Isotonic Regression hybrid algorithm would
converge faster than the ICM-algorithm. The hybrid algorithm of Newton Raphson
iteration and isotonic regression (NR/IR) algorithm tailored to the spline-based sieve
GEE estimates is summarized in Table 5.2.

GR, ICM and the more general hybrid algorithm NR/IR are all based on the
quadratic approximation. GR converts the inequality constraints of the estimates to
an active set and update the active set during each iteration. ICM and NR/IR make
a good use of the geometric interpretation of the isotonic regression and estimate the
parameters subject to the monotone constraints directly. Best & Chakravarti (1990)
shows that some isotonic regression methods, e.g. PAVA (Robertson et al. 1988)
and the minimum-lower-set algorithm (Brunk et al. 1957) can also be fitted into the

unifying framework of active set approach.
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Table 5.2: NR/IR Algorithm for Spline-based Sieve GEE

Step 0:

Step 1:

Step 2:

Step 3:

Start with an initial point () = (a(o), B(O)) that satisfies the monotone

constraint of the spline parameter,a® = <a§0),a§0), e ,aé?)) ,ago) <
ozgo) << ozég). Iterate the algorithm through the following steps until
convergence.

Look for a smallest integer k starting from 0 such that
k _
jU (0+ /2" wu @) <u®)]
Update the current estimates §*) = (&(’“), B(’“)> by

Glk+1) (d(k-&—l)’g(k-&-l)) — " 1 (12 wly (g(k))

Project the updated updated a&**1) using the isotonic regression by

&Z(k+1) _ argminl (x _ &(k+1)) W (x . d(k+1)) :
e

Construct the cumulative sum diagram {F;,i = 0,1,--- ,n} where
Py =(0,0) and P, = (Z wy, Z@Dldl(kﬂ)) ;
=1 =1

Calculate the left derivative of the greatest convex minorant of this cu-

mulative sum diagram by

I~ ~(k+D)
~(k+1 . —; Wmbtkm
"™ = max min S

7j<i I>i Zm:g Wi,

k+1) B(kJrl).

Since there is no constraints on 3, let ¢
Check the convergence criteria: Let d = [|[§*%+) — §®)|| if d > ¢ for a

small € > 0 go to Step 1. Otherwise stop the algorithm.
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5.2 Estimating the Over-Dispersion Parameter

The spline-based sieve semiparametric GEE with V?,(i) requires an estimator
of the over-dispersion parameter in addition to the parameters in the proportional
mean function. In Chapter 3, we show that as long as the estimated over-dispersion
parameter is consistent, the spline-based sieve GEE estimates of (g, Ag) still have
good asymptotic properties. In this section we discuss three different estimating
methods.

Given a consistent estimate of (8y, Ag), the over-dispersion parameter o2 could
be estimated by maximizing the Gamma-Frailty Poisson likelihood as shown in Equa-
tion (2.7). It will be the most efficient estimator when the data are indeed generated
from a Gamma-Frailty Poisson process. However, in order for the likelihood to be
valid, the parameter space of o need to be restricted to R™. With only one addi-
tional parameter in the likelihood, we can simplify the estimation by a grid search,
in which the MLE of ¢? is the one that produces the largest likelihood.

In addition to the maximum likelihood estimator, method-of-moment is often
used in parametric regression for estimating the over-dispersion in the literature of

count data. Breslow (1984) used a method of moment to estimate this parameter by

where fi;; is any consistent estimate of £ (N (7};)), and p is the number of estimated

parameters. In Breslow’s method, the over-dispersion parameter can be computed
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iteratively using a self-consistent algorithm given by

S Z]K:il Ny

flij (ﬂij+&ﬁ2)

2?21 K;—p

~2
Un

Alternatively, o2 could also be estimated explicitly by

S o { Ny — fuig)? — g}
n Ki A~
Zz’:l Zj:l M?j

~2
Un—

as proposed by Zeger (1988). Both Zeger's method and Breslow’s formula could

2

end up with negative ¢°. If that happens, - is forced to be zero. Davis et al.

.
(2000) pointed out that Zeger’s method underestimates the over-dispersion parameter
and provided an adjustment for the bias and showed that the modified estimator is
consistent. As a matter of fact, the Breslow’s method also underestimates the over-
dispersion parameter. In our spline-based sieve semiparametric GEE method, this
over-dispersion parameter is treated as a nuisance parameter and for the sake of
numerical simplicity, Zeger’s method is adopted in our calculations. We will show in

Lemma 5.1 that this estimate converges to a positive value in R™.

Define the following two functions,

9 (6,4%) = 3 (N(6) A1) %) — Alty) ™™
92 (B, 0 X) = 3 A (t) e

and the two corresponding classes as

G, = {91 (B,A;X):ﬁERd,logAe]:}

Gy = {gg(B,A;X):BGRd,logAG}_}
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Let 9)(?) = (Béo), MLO)> be the estimates using the Poisson pseudolikelihood (or like-
lihood or estimates based on the GEE with frailty variance matrix Vg(i) using any

arbitrary fixed o2 value), they are consistent estimates of 6y = (8, Ag). Zeger’s

P g1(3(0> [\<°)-X>
. . . . ~92 n n iin

estimator of the overdispersion parameter can be written as ¢;; = —— O\
IEDng2</8n An §X>

Lemma 5.1.

N Pgl (EOaAU.X)
52— o2 = .
P70 Pgs (Bo, Aoy X)

Proof. By Lemma 3.2 the bracketing number of F with L;(P) norm is bounded by

C (exp(1/¢)). So F is covered by
(AL AT ci=1,2,-- 1}, 1= O (exp(1/e))

and [|AF — AF||p, = [ (AR () — AF (1)) du(t) < e. Since R? is compact, there
exists a e-net, {1, B2, , 5}, p = O (1/€d) such that Vg € R,3s € {1,2,--- ,p}

such that |77 — BT Z| < e and |exp (67Z) — exp (BT Z) | < Ce. Let
K

o= {N2 (1) = @N (1) + D AF (1) (#7 +02) + [AF (1)) (77 - Cgﬂz}

j=1

i = i {N2 () — N (t) + D) AF (1)) (7 = =) + [AR (1)) (7 + Oz ) }
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G, is covered by {[gfi,s,gfi,s] i=1,---,l;s=1,-- -p}

Agl,i,s = gﬁi,s - glL,i,s
=3 {N @) + 1) [(AR (1) = AF () 7 4 C (AR (1) + AF (1)) ] +

(AR (1) + AF (1)) €7 4 C (AR (1) = AF (1)) €] %
(AR () = A (1) €7+ C (AR () + AF (1) ¢ }
P|Agris| < CPY T [AT(t;) = Af (t;)] + Coe < Ce
Similarly,

g =D |AF() (F7 - ce)|i ok = i AL () (77 - ce)|

J=1 Jj=1

g2 is covered by {[gél,i,mggi,s] t= 17 e 7lu s = 17 o p}
K
T
AgQ,i,s = ggi,s - gii,s = Z [(A? (tj) - AzL (tj)) 655 d + C (AF (t]) + AzL (t])> 6]

J=1

K
P|Agais| < CiPY T [Af(t)) — AF (t))] + Coe < Ce
Jj=1

Both G; and G, have a finite L; (P) bracket number. They are Glivenko-Cantelli

classes (Lemma 3.1). Then together with the consistency of (B,(LO),/A\%O)> and the
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continuous mapping theorem,

By (3049 X) = (B — Py (A0, A0: ) 1
P <g1 <A£O)7A20)5X> -0 (50,A0;X)> + Pg1 (Bo, Ao; X)

=Pg1 (Bo, No; X) + 0p(1)

A

Pog2 (B0, A0:X) = (B, P) gu (A0, AV X) +
P (92 <A7(10)7/A\7(10);X> — 92 (50,A0;X)> + Pga (507A0;X)

=Pgy (Bo, No; X) + 0p(1)

we have

]

In the simulations conducted in Chapter 6, a two-stage estimating procedure
is implemented with V3(i) as the covariance matrix. At the first stage, due to its
computational convenience, the spline-based sieve semiparametric GEE with Vl(i) is

implemented to get consistent estimates of p;. o2

is then estimated using Zeger’s
method. At the second stage, replacing o2 by its consistent estimates, 62, the estimate

of (B, A) is updated by solving a pseudo GEE, i.e.,

n (@) ,
v (062) =3 (% ) vt 0s02) (90T - ) =0

i=1
with @ = (8,a). The hybrid algorithm NR/IR is used at both stages to solve the

sieve estimating equation subject to the monotone constraints, a; < g < --- < q,.
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CHAPTER 6
NUMERICAL RESULTS

6.1 Simulation Studies
6.1.1 Simulation Setup
Simulation studies are conducted to examine the performance of the spline-
based sieve semiparametric GEE estimate in finite samples. For each subject, we
generate X; = (KZ-,IKi,N(i), Zi) in the following manner: Six follow-up times are
pre-scheduled at T° = {T} : T} = 2j,j = 1,--- ,6}. The actual observation times T},

are generated from a normal distribution, N(77,1/3). Let §; = L <rg], for ¢ =

1,---,6 and Tjy = 0. Let §;; = 1 if the j visit actually happens and zero other-
wise. P(d; = 1) = ﬁ Each subject has K; = Z?:l &ij0;; observations at
Ty, = (T 1(2371,TI(§372, e ,T[(é)’ Ki)’ where T[((Z)J are the j* order observation time of

{155 &ijdij = 1,j = 1,--- ,6}. The covariate vector Z; = (Zi1, Zip, Zi3) is simulated
by Z;; ~ Uniform (0,1), Z;s ~ N (0,1) ,and Z;3 ~ Bernoulli (0.5). The regression pa-
rameter Sy = (ﬁo,l,ﬁw,ﬁo,g)T = (—1.0,0.5, 1.5)T. Given (Zi,Ki,IKZ_), different sce-
narios are used to generate the panel counts N = (N (TI((ZL)1> , N (Tl((l32> oo, N <TI(2KZ> >

Scenario 1. The panel counts are generated from a Poisson process with the

1/2
j

‘ j N\ 1/2 ) 1/2
N <T1(<Z33> - N <TI((:),j—1> ~ Poisson {2 {(T}Qj) _ <TI(<ZBJ_1> ] e OTZi}

fory=1,2,--- | K.

conditional mean function given by A (t;;|Z;) = 2t;/%e% % that is,

Scenario 2. Data are generated from a Gamma Frailty Poisson model. The
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frailty parameters 7,79, -+ ,7v, are a random sample from a Gamma distribution,

2 is 0.08. Conditioning

' (12.5,12.5), which means the over-dispersion parameter, o
on the frailty parameter ~; as well as the covariates Z;, the panel counts for each

subject are drawn from a Poisson process, i.e.

) i . 1/2 . 1/2
N <T1(<Z)]> -N (TI((ZB’Fl) ~ Poisson {2% {(T;?J) - <TI((ZZ-),j—1) } 6,8(?21}

for j = 1,2,--- ) K;. In this scenario, the counting process given only the covariate
is not a Poisson process. However, the conditional mean given the covariate vector
still satisfies the proportional mean model specified in Equation (1.2). The marginal
distribution of the counts follows a negative binomial distribution.

Scenario 3. Data are generated similar to Scenario 2. Instead of generating the
frailty term ~ from a Gamma distribution, it is generated from a discrete distribution
{0.6, 1, 1.4} with probabilities 0.25, 0.5 and 0.25, respectively. This scenario generates
a so called mixed Poisson process as studied in Wellner & Zhang (2007) and Lu et al.
(2009). The variance of the frailty variable is also 0.08. In this scenario, the counting
process given the covariate is not a Poisson process, nor its marginal distribution
follows a negative binomial distribution. However, the proportional mean structure
still holds.

Scenario 4. Data are generated from a ‘Negative-binomialized” counting pro-
cess. Conditioning on Z, a random variable N is generated from a Negative binomial
distribution, NegBm(QOefBOTZ,O.l). Given N, a random sample, X;,i = 1,2,--- | N,

is generated from distribution function F, = ¢'/2/90. The count data is defined by
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the number of X;’s that is smaller than or equal to t, i.e.,

N
Nt) =) Ip<y
i=1

It is easy to see the proportional mean model in Equation (1.2) still hold. The baseline
mean function Ag (t) = 2t/2, is the same as those in scenarios 1, 2 and 3. Under this
setting, both over-dispersion and autocorrelation between non-overlapping increments
are present. The covariance matrix has a similar form as matrix Vg(i), but the true
over-dispersion parameter depends on the covariates.

In all these scenarios, the monotone cubic B-splines are used in computing
the sieve semiparametric GEE estimators. The number of interior knots is chosen
to be m, = [N'/3], the smallest integer above N'/3 where N is the number of
distinct observation times. These knots are placed at the corresponding quantiles of
the distinct observation times. In our simulation studies, we generate 1000 Monte

Carlo samples with sample size of 50 and 100 for each scenario.

6.1.2 Simulation Results
Simulation results are summarized in Table 6.1 - Table 6.8 corresponding to
the four scenarios with two different sample sizes. They include bias, Monte-Carlo
standard error and the mean of the standard error estimate based on the proposed
projection method in Section 4.1, the mean of the GEE sandwich estimator of the
standard error discussed in Section 4.2 and the mean of the bootstrap estimator of the
standard error described in Section 4.3 and the 95% empirical coverage probabilities

calculated using these estimated standard errors. The square of the biases and the
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Monte-Carlo variance of the spline-based sieve GEE estimates of the baseline mean
function calculated at points t = 2,2.25,2.50, - - - , 9 are plotted in Figure 6.1 - Figure
6.4 corresponding to the four different scenarios.

Table 6.1 and Table 6.2 summarize the results with regard to the regression
parameters when the data are from a nonhomogeneous Poisson process. The bias is
negligible compared to the standard error for all three different covariance matrices.
The estimates using Vl(i) have a larger standard error than those using V2(i). When
using Vz,)(i) as the covariance matrix, the estimates have similar standard errors as those
using \/Z(i), since 80.5% and 75.5% of the times in the simulations, the estimated over-
dispersion parameter, 62, is zero for sample size 50 and 100 respectively. And it result
in the estimates using V3(i) being the same as those using ‘/Q(i). The standard errors
based on the projection method tend to underestimate the true values compared to the
Monte-Carlo standard error. However, the underestimation lessens as the sample size
increases. The standard error estimates using the standard GEE sandwich formula
are similar to those based on the projection method. The bootstrap method produces
a better standard error estimate than the two aforementioned method particularly
when sample size is small. The coverage probability based on the bootstrap standard
error estimate is the best among the three regarding its closeness to the nominal level.
Figure 6.1 plots the squared bias and the variance of the estimated baseline mean
function at the corresponding time points based on the three covariance matrices.
Similar to the results of the regression parameters, the estimates based on Vl(i) has

the largest standard deviation. And the estimates based on VQ(i) and Vg(i) are similar
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to each other.

When data come from a Poisson process, the estimator based on V})(i) performs
similar to the estimator based on VQ(i). When the over-dispersion is present as ex-
emplified in Scenarios 2 and 3, then the estimator using V})(i) clearly outperforms the
estimators using Vl(i) or Vz(i). Table 6.3 and Table 6.4 show the simulation results of
the estimated regression parameters for Scenario 2. Similar to the results for Poisson
data, all three estimators are asymptotically unbiased. The estimator using covari-
ance matrix V:,,(i) has a smaller standard error compared to the estimators using Vl(i)
or V2(i). This is expected as the variance matrix V})(i) correctly specifies the underlying
true variance-covariance matrix among the cumulative panel counts. Both the projec-
tion and the parametric sandwich standard error estimators appear to underestimate
the true standard error a little bit when sample size is small, which attributes to the
coverage probability lower than the nominal level. The underestimation lessens as
sample size increases. Among the three estimators, it seems that the standard error
estimates of the spline-based sieve semiparametric GEE estimator with ‘/3(1') have the
least bias. When using Vl(i) and VQ(i) as the working covariance matrix, the boot-
strap method also underestimates the true standard error. While when using V},(i),
the bootstrap method produces a smaller bias, and the 95% coverage based on the
bootstrap method is near to its nominal level. Figure 6.2 shows the squared bias and
the variance of the estimated baseline mean function at corresponding time points.
Similar to the regression parameters, their bias are negligible relative to their vari-

ances. The estimates based on V}f” are most efficient followed by the estimates based
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on Vzi).

Simulation results for Scenario 3 displayed in Tables 6.5, 6.6 and Figure 6.3 are
similar to the results for Scenario 2. The estimator using V})(i) is again most efficient
compared to the other selections for the working covariance matrix. In this case,
the working covariance matrix Vé(i) is still the true covariance matrix between the
cumulative panel counts, even though the underlying frailty variable is not Gamma
distributed.

Table 6.7 and Table 6.8 summarize the simulation results for Scenario 4. Again,
the bias is negligible. The estimates based on VQ(i) and V},(i) are comparable to each
other. Both the projection method and the parametric GEE sandwich method under-
estimate the standard error of the spline-based sieve GEE estimates. The bootstrap
method provides a better estimate of the standard error. Figure 6.4 plots the squared

bias and the variance of the estimated baseline mean function.
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Figure 6.1: Scenario 1, with Data from the Poisson Model: Ag (t) = 2t%/2
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Figure 6.2: Scenario 2, with Data from the Gamma Frailty Poisson Model: Aq (t) = 2¢'/2
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Figure 6.3: Scenario 3, with Data from the Mixture Poisson Model: A (t) = 2¢/2
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6.4: Scenario 4, with Data from the Negative Binomial Model: Ag (t) = 2t/2
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6.2 Comparison of different algorithms
6.2.1 Comparison among ICM, NR/IR and GR algorithms
We conducted a simulation study comparing the computing time among the
three algorithms, ICM, NR/IR and GR, in solving the spline-based sieve GEE using
all three working covariance matrices. The comparison is based on 10 datasets of each
of the four scenarios described in the previous section. Simulation results are shown
in Table 6.9. In all these scenarios, the hybrid algorithm NR/IR is the most efficient
in terms of computing time, followed by GR. ICM algorithm is a lot slower than the

other two methods in solving the spline-based sieve GEE in all 4 scnarios.

6.2.2 Comparison of different over-dispersion estimation methods

To compare the effect of different over-dispersion estimation methods on the
estimates of the regression parameter, we conducted a simulation study using MLE
and the two methods of moment described in Section 5.2. Table 6.10 shows the sim-
ulation results. When data are generated from the Gamma-frailty nonhomogeneous
Poisson process as in Scenarios 2, the maximum likelihood estimator of the regression
parameter has a slightly smaller standard error. When data are generated from the
nonhomogeneous Poisson process, the Mixture Poisson process or the Negative bino-
mial process as in Scenarios 1, 3 and 4 respectively, all three methods give similar

results.
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6.3 Application To A Real Data
The proposed estimating method is applied to the bladder tumor data intro-
duced in the Section 1. A total of 116 patients were randomized into three treatment
groups, with 31 using pyridoxin pills, 38 instilled with thiotepa and 47 in placebo
group. Their follow-up times vary from one week to sixty-four weeks. Four vari-
ables, including the number (Z;) and size (Z5) of the tumor at baseline, and two
indicator variables, one for pyridoxin (Z3), one for thiotepa (Zy), are included in the

proportional mean model, i.e.,

E(N(t)|Z1, Z3, Z3, Zs) = No (1) exp (B1Z1 + B2Z + B3Z3 + BaZa)
Regression analysis results using the three covariance matrices are shown in Table
6.11. The number of the tumors at the entrance of the study is positively related
to the recurrence of the bladder tumor. With one more tumor at their diagnosis,
the number of tumors at follow-up visits increases by 15.5%, 23.1% and 39.1% on
average using covariance matrix Vl(i), Vz(i) and Vg(i) respectively. Thiotepa instillation
effectively decreases the number of recurrent tumors. The number of recurrent tumor
in patients with thiotepa instillation is 49.5%, 45.1% and 32.5% of those in control
group using Vl(i), X/Q(i) and Vg(i), respectively. The size of tumors and pyridoxin pills are
not significantly related to the number of recurrent tumors at follow-up visits. The
results using the diagonal covariance matrix (Vl(i)) and the covariance matrix based on
Poisson process (V2(i)) are consistent with those based on the sieve pseudolikelihood

and the sieve likelihood methods proposed by Lu et al. (2009). The spline-based

sieve semiparametric GEE estimates using the frailty Poisson covariance matrix (Vs(i))
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provides an estimate of the over-dispersion parameter as 1.32. It implies the over-
dispersion of the panel count and the potential positive correlation between non-
overlapping increments in the counting process. The effect of the number of the
tumors at the study entrance and the treatment of thiotepa are more significant when

accounting for the correlation between cumulative counts using the frailty variable.
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CHAPTER 7
DISCUSSIONS

In this dissertation we propose to analyze panel count data using the general-
ized estimating equation method with the semiparametric proportional mean model.
With limited choices of the available counting processes, the proposed method pro-
vides a more flexible approach to model the data. As emphasized in the previous
chapters, different covariance matrices could be adopted to allow for different data
structures. The covariance matrix that captures the true correlation between the re-
peated measures increases the efficiency of the estimation. Similar idea could also be
generalized to a multivariate panel count data setting. More complicated covariance
matrices could be used to account for the correlations between multiple levels.

In the proof of the asymptotic properties of the proposed method, we make use
of the fact that the generalized estimating equations coincide with scores of different
likelihood functions. A maximum pseudo likelihood estimating procedure is applied
to solve the estimating equations using Vg(i) as the covariance matrix. The estima-
tors are still consistent and converge at the same convergence rate as the maximum
likelihood estimators. In general, the estimator that maximizes pseudo likelihood
has a bigger variance than the true maximum likelihood estimator. However in the
proposed Gamma-Frailty Poisson model, the estimated parameters in the semipara-
metric proportional mean model and the estimated over-dispersion parameter are
asymptotically independent, which attributes to the fact that the estimated regres-

sion parameter based on the pseudo likelihood has the same asymptotic variance
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as the maximum likelihood estimator. This property serves as the underpin of the
two-stage algorithm.

The cubic B-spline estimator of the baseline mean function improves the con-
vergence rate compared to the estimation using the traditional nonparametric step
functions. At the same time, it decreases the dimension of the estimation which
contributes to the computing efficiency.

Despite the fact that different working covariance matrices could be used in
the generalized estimating equation, how to construct them so that they represent
the true covariance matrix require more efforts. We show that the estimation using
Vg(i) as the working covariance matrix generally outperforms the estimates using Vl(i)
or Vz(i). Vg(i) is constructed under the assumption that conditioning on the frailty
term, the increments are independent. It certainly covers a broader model than the
methods using Vl(i) and Vz(i). However this assumption may still be unrealistic in view
of medical applications. As future research, it would be useful to investigate how to
relax this assumption and possibly to incorporate the autoregressive structures into

the covariance matrix.
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APPENDIX A
AGREEMENT OF GEE AND SCORE FUNCTIONS

In the derivation of the equivalence between GEE using Vl(i), VZ(i) and Vg(i) and

different ‘likelihood’ functions, we adopt the following notations

B0, = (B (18,) .- B, (T[(Q»)T; B = (BY,.---. Bﬁéi,Ki)T
H%,j = exrp <5TZz‘ + aTBﬁQ,J ; N(i) = (ﬂg?i,p T ’My() K )T
Ay =1y = 1Sl A = (A, ,AM%,KJT
ANR =N (T) =N (T, ) 0 ANO = (N, ,Ngg,Ki)T

Also let 1k, = (1,1,--- ,l)jl;ixl, we have

8#&? ‘ i o\
50 J— exp (BTZi - aTBg(zyj) (ZlT, B%)j) :

. (4) i T
out) Otk OpK, K, - i ‘ :
89 — 89 yT 80 :dzag </,L§() TR ’,ug()“KZ) (1KZZ;T,B( ))

A.1 Agreement between sieve GEE using Vl(i) and the score of the sieve
pseudolikelihood
Using Vl(i) as the working covariance matrix, Equation (2.6) can be rewritten

as

n

U0:D) =" (128, BY) diag (uf2 1o+ 1§l ) X

i=1

(d@ag (NK TR aM%,KJ)l (N(T3) - M(i))

= > (128 BY) (N(Ty) — )

=1

This is the score function based on the pseudolikelihood shown in Equation (2.3).
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A.2 Agreement between sieve GEE using VQ@ and the score of the sieve
likelihood
When using VZ(Z') as the working covariance matrix, the estimating equation

from Equation (2.6) can be rewritten as

U () = Z (1KiZiT, B(i))Tdiag (M(I?i,D . 7“521(1) Vi(2)*1 (N(i) _ 'u(z‘))

=1

A careful examination of the likelihood function in Equation (2.5) shows its score

function can be rewritten in a matrix form,

o - LNVEYNTONG Z. i - . |
%ln (0; D) = Z ( a’g ) (diag (A:ug{)i,lv T 7AU§()Z-,K1->> 1 (AN(I) - AM(Z))

N @ (7 s®™\T T 0T \T
T
| [z BY
_ (_ 0) 0 ) i in]
= P -1 P T
\ zl By
. (i) @\
OAL® B OAp, A, g,
00 o0 9
Hg?i,l 0 0
ENCEENG,
_ | e e | (. 59)
0 0 _:L‘%,Ki—l MEFZ()K
1 0 0
11 --- 0 , : .
= dZGg (IU’(IZ()iJf T 7“?{)“[{1) <1kzZ7,T;B(Z))
0 0 —1 1
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The score function can be further written as

89 (9 D) Z (]'Kzzl 7B(Z)) dlag (Mgz(),-,la T 7:“’%()1-,1(1-) by (N(l) - M(Z))
i=1
Where
1 0 0\ " 1 0 - 0
-1 1 --- 0 . . -1}l-1 1 --- 0
Y= . . . : d’LCLg (Aﬂgl(1717 e 7A,LL§Z()“K1) . . .
0O 0 -1 1 0O 0 -1 1
1 1
0 0
“g? 1 /*Er? 2 /*Er? 1
0 A B ) 0 1 0 --- 0
WD D WD D 11 ... 0
- N S
() (4) . . . :
Pros Tt L\ 0 00 -1 1
0 0 0 (%) (7)
Pr, K,  PK; K;
1 1 1
— 4 - —1 e . 0
“5!(1,1 “g() 2 /J‘(Ki,l /I‘(K)Z,Q 'U‘g(),l
SR G 1 + 1 __ 1 . 0
_ R s
0 0 e e 1

()
“EI?K #é JK—1

It is easy to verify X is the inverse of V2(i), so sieve GEE using the covariance matrix Vg(i)
is the same as the score function of the likelihood function in Equation (2.5).

A.3 Agreement between sieve GEE using Vg(i) and the score of the
likelihood of Gamma-Frailty Poisson model
By the derivation of the equivalence between sieve GEE using VQ(i) and the score
function of likelihood in Equation (2.5), we have

A\ T K; (4) (@)
o (&)~ (@) @\ _ - aA'uKi’j ANKZ-J
( 00 ) v (N0 - ) = -1

2

This equality holds for any nonnegative nondecreasing process N0, Let N() = 2u(i) then

)\ T ® (i)
ou® N Ki 9Ap K OB, K, ar \T
(aa VO o =% Mg TG (ZiTaB%Z,K) nw (A.1)

j=1

Also




133

The left hand side (LHS) can be rewritten as
LHS = Zi1% diag (uﬁii,p S ) o <N(z') _ M(i)>
= Zp®OTy O (Nu) _ u("))
The right hand side (RHS) can also be rewritten as
RHS =3 (4§ ;25 = 152 ;12
j=1
2 (14 )

N
N—
RS
g
LIS
|
—_
~

Therefore
VT (NO ) = 2 (N o — i )

' i)t i i
= M(Z)TVQ() (N() —M()> :NEK)“ s NEK)K (A.2)
Again if we let N = 24() then
. i —1 i 4
OV = il (A.3)

The estimating equation with V3(i) as the covariance matrix can then be written as,

T
(%) . P | ) .
U (6; X;) <8§9> <v2<z>+ozu<z>u(z>T> (N@)—M)
PN 2
_ [ 9n (i) _ o ~1,(i) ()T -1 A0
(ae) (V2 T a0y T 2 >(N<T1) n)

. T . T
_ (out O~ (NG _ 30 o opt O~ (@)
a ( 00 ) V2 <N K ) B 1—1—0’2#(1')TV271#(1') 00 V2 g

(i
i T T I3 )T AN is
_ </~L§<)i,j (ZZ.T,BEKZJ) . (ZT Bf,(ﬂ,j,l) > (AW] _ 1) _

0'2 i T i i (Z)
RO (ZT B%lx) ik, (N(K)i,Ki —uKi,Ki)
1+ 02 Pk, K,
(by Equations (A.1)-(A.3))
. AN
— " T ) T 6T AN,
Z(um< BR) — i (25 B ) > v
27‘7

1+ aQNg() K, At NT (g
T Kol (g g )
+o M( B) ( KK) Ki,K;

This is exactly the score function of the Gamma-frailty Poisson likelihood in Equation
(2.7).
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APPENDIX B
R FUNCTIONS FOR NUMERICAL RESULTS

In this section, we list some important functions used for the simulation studies
presented in Chapter 6.

Table B.1: Important Functions Used in Simulation Studies

Name Function

genData Generate data used in the simulation studies in section 6

covariate Organize data into a matrix form

GEE' Calculate the value of estimation equation as well as the sandwich
form based on current parameter estimates

GRT Generalized Rosen algorithm

ICMf ICM algorithm

ICM-NRT ICM/NR algorithm

sandwich' Estimate the variance based on projection method using the pseu-

sigma.est1

dolikelihood approach
Zeger’s method of estimating overdispersion parameter

sigma.est2  Breslow’s method of estimating overdispersion parameter

sigma.est3 ~ MLE of overdispersion parameter assuming a gamma-distributed
frailty term

V1 GEE covariance matrix, GEE using V] is the same as scores based
on pseudolikelihood

V2 GEE covariance matrix, GEE using V5 is the same as scores based
on likelihood

V3 GEE covariance matrix, GEE using V3 is the same as scores based
on Gamma-frailty Poisson likelihood

semiResult’ Run simulations in batch

bsvar Generate boostrap samples to get bootstrap variances

Note: T There are corresponding functions using frailty covariance matrix. They are similar
to the listed functions. For the simplicity of the dissertation, they are omitted here.
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# Function name: genData
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|
|
|
|
|
|
:
H H H

# It works with different definition of myfunc and myfunc.inv

H
1

H* #

genData<-function(method, scenario, n, beta=c(0,0,0), seed=0, sigma2.inv=2,
distribution=’gamma’, r0=10, p=0.2, diff.K=0){
z1 <- rnorm(n)
z2 <- runif(n)
z3 <- rbinom(n, 1, 1/2)
z <- cbind(z1,z2,z3)

proportion<-exp(zJ*/%beta)
# Create observation times
T.schedule <- 2%(1:6)
T.real <- matrix(round(rnorm(6+*n, T.schedule, 1/3), digits=2), nrow=n, byrow=T)
solveprob <- function(x){
different <- c(x[1], diff(x))
x[different<=0] <- 0
X
}
T.real <- t(apply(T.real, 1, solveprob))
miss <- matrix(rbinom(6*n, 1, exp(T.real-10)/(1l+exp(T.real-10))) ,nrow=n, byrow=F)
T.obs.pre <- T.real*(l-miss)

count <- function(x) sum(x!=0)
K <- apply(T.obs.pre, 1, count)
T.obs <- matrix(NA, nrow=n, ncol=max(K))
# get the increment T
dT.obs<-matrix(0,nrow=n, ncol=max(K))
for (i in 1:n){
T.obs[i,1:K[i]] <- T.obs.prel[i,T.obs.prel[i,]!=0]
dT.obs[,1]<-T.obs[,1]
for (j in 2:ncol(T.obs)) dT.obs[,jl<-T.obs[,j]1-T.obs[,j-1]
}
# scenario 1: The panel counts are generated from Poisson Process
if (scenario==1){
dN <- matrix(nrow=n,ncol=max(K))
for (i in 1:n){
dN[i,1] <- rpois(1l, myfunc(T.obs[i,1])*proportion[i])
if (K[1i]1!'=1){
for (j in 2:K[i1){
dN[i,j] <- rpois(1l, (myfunc(T.obsl[i,jl)-myfunc(T.obs[i,j-1]1))*
proportion[i])

}
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}
}
}else if (scenario==2){
# scenario 2: The panel counts are generated from a mixed Poisson process
dN<-matrix(nrow=n, ncol=max (X))
for (i in 1:n){
gama<- c(-0.8,0,0,0.8) [floor(runif (1,min=1,max=5))]
dN[i,1] <- rpois(1l, (2+gama)/2*myfunc(T.obs[i,1])*proportion[i])
if (K[i]'!'=1){
for (j in 2:K[i]){
dN[i,j] <- rpois(1, (2+gama)/2*(myfunc(T.obs[i,j]l)-myfunc(T.obs[i,j-11))
xproportion[i])
}
}
}
Yelse if (scenario==3){
# scenario 3: The panel counts are generated from a Gamma Frailty Poisson process
# we can also specify the frailty term from a lognormal distribution
dN<-matrix(nrow=n, ncol=max(K))
for (i in 1:n){
if (distribution==’gamma’) gama<- rgamma(l, sigma2.inv, sigma2.inv) else
if (distribution==’lognormal’) gama <- exp(rnorm(l, -1/2%log(l/sigma2.inv+1),
sqrt (log(1/sigma2.inv+1))))
dN[i,1] <- rpois(1l, gama*myfunc(T.obs[i,1])*proportion[i])
if (K[il'=1){
for (j in 2:K[i]){
dN[i,j] <- rpois(1, gama*(myfunc(T.obs[i,jl)-myfunc(T.obs[i,j-11))
xproportion[i])
}
}
}
}else if (scenario==4){
# scenario 4: The panel count data are generated from a ’negative-binomialization’
# of the empirical counting process, from Zhang’s paper!
dN <- matrix(nrow=n, ncol=max(K))
r <- rO*proportion
for (i in 1:n){
total <- rnbinom(1l,r[il, p)
Fx <- runif(total)
x <- myfunc.inv(rO*(1-p)/p*Fx)
for (j in 1:K[i1){
if (j==1) dN[i,j] <- sum(x<=T.obs[i,j]) else
dN[i,j] <- sum(T.obs[i,j-1] <x & x<=T.obs[i,jl)
}
}
}
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list (K=K, T=T.obs, Z=z, dN=dN)
}

myfuncl <- function(x) 2*x

myfuncl.inv <- function(x) x/2 #This is the inverse function of myfuncl
myfunc2 <- function(x) 2*x~(1/2)

myfunc2.inv <- function(x) (x/2)°2 #This is the inverse function of myfunc2

#myfunc2 and myfunc2.inv are the functions used in simulation studies in Section 6.
#We can easily change them to any baseline functions
# End of Function (genData)

**

H# #=

# Function name: covariate

H*
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=+

# It produces the covariate matrix

# the first gqn column are B-spline values
# the last 3 column are covariates

#

H H OH ®

covariate<-function(K, myT, Z, N, method, cumulative=1,n.knot=1/3,
position.knot=’quantile’){
n<-length(K)
nyt<-myT [order (myT)]
myt<-myt[!is.na(myt)]
gn<-ceiling(sum(K) "n.knot)

X<-matrix(nrow=sum(K), ncol=qn+3)
if (position.knot==’quantile’) myknots <- c(rep(min(myt),3), quantile(myt,
seq(0,1,len=qn-4+2)) ,rep(max(myt),3)) else
if (position.knot==’uniform’) myknots<- c(rep(min(myt),3), seq(min(myt), max(myt),
length=qn-4+2), rep(max(myt),3))
for (i in 1:n){
b<-splineDesign(knots=myknots, x=myT[i,!is.na(myT[i,])])
db<-matrix(0,nrow=nrow(b), ncol=ncol(b));
db[1,]1<-b[1,]
if (arow(b)>1){
for (j in 2:nrow(b)) db[j,] <- b[j,1-b[j-1,]
}

z<-matrix(rep(Z[i,],K[i]) ,nrow=K[i], byrow=T)
if (cumulative==0) x<-cbind(db, z) else
x<-cbind (b, z)

row.start<-ifelse(i==1, 1, cumsum(X) [i-1]+1)
row.end<-cumsum(K) [i]
X[row.start:row.end,]<-x
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}
X2<-cbind(rep(1:n, K),t(myT) [!is.na(t(myT))], X, t(N) [!'is.na(t(N))1)
colnames(X2)<-c(’subj’, ’t’,paste(’B’, 1l:qn, sep=’’), paste(’Z’, 1:3,sep="’),’N’)
if (method==’nonparametric’) X2 <- X2[, -((1+1+gn+1):(1+1+qn+3))]
list(X=X2, alpha.dim=qn)  #X2[,3:(qn+5)]

}
#=== usage ===
#cov<-covariate(K, T, Z, N)
# End of Function (covariate) #

=+

# Function name: GEE

#
e #
# It calculates the value of estimating equation and the sandwich form #
# based on the current estimates of the parameter #
# #

# GEE calculate U and W conditioning on the current gama #
GEE<-function(gama, alpha.dim, dataset, method=’semiparametric’, varfunc){
gama.dim <- length(gama)
n <- length(unique(dataset[,’subj’]))
gee.table <- matrix(0, nrow=gama.dim,ncol=n)
W<-matrix (0, nrow=gama.dim, ncol=gama.dim)
for (i in 1:n){
subj.dataset<-dataset[dataset[,’subj’]l==1i, ,drop=F]
subj.n <- nrow(subj.dataset)
subj.N <- subj.dataset[, ’N’]
subj.T <- subj.dataset[,’t’]
subj.covariate <- subj.dataset[, -c(1,2,2+gama.dim+1),drop=F]

if (method==’nonparametric’){
subj.mu <- subj.covariatel*%gama
subj.dmu <- subj.covariate
}else
if (method==’semiparametric’){
subj.mu <- exp(subj.covariate’*gama)
subj.dmu <- diag(as.vector(subj.mu), nrow=subj.n, ncol=subj.n)%*%
subj.covariate

}

subj.result <- varfunc(subj.mu)

if (subj.result$error!=1){
subj.var <- subj.result$subj.var
subj.var.inv <- subj.result$subj.var.inv

gee.i <- t(subj.dmu)%*%subj.var.inv%*} (subj.N-subj.mu)
gee.table[,i] <- gee.i
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W <- W+t(subj.dmu)%*%subj.var.invi*jsubj.dmu
}
}
u<-apply(gee.table, 1, sum)
list (U=u, W=W)
}
#= End of Function (GEE)

+*

#_
# Function name: GR
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H H H

# It implements the Generalized Rosen algorithm to the GEE settings
#_

H =

GR<-function(dataset, alpha.dim, gama.ini, method, varfunc, likelihood.func){
converge.status <- 1
error <- 0
A1<-cbind(rep(0,alpha.dim-1), diag(l, nrow=alpha.dim-1))
A2<-cbind(diag(-1,nrow=alpha.dim-1) ,rep(0,alpha.dim-1))
A.ori<-cbind(A1+A2, matrix(rep(0, (alpha.dim-1)*beta.dim) ,ncol=beta.dim))

gama<-gama.ini
gama.dim<-length (gama)
active.set<-numeric(length=0)
active <- numeric(length=0)
lamda<-rep(1, alpha.dim-1)
A<-A.orilactive.set, ,drop=F]

count2<-0
while (max(lamda)>0){
delta<-1
count1<-0
while (max(abs(delta))>=1le-5){
active.set<-unique(append(active.set, active) [order (append(active.set,
active))])
# Step O computing feasible search direction
UW<-GEE (gama=gama, alpha.dim=alpha.dim, dataset=dataset, method=method,
varfunc=varfunc)
U<-UW$U
W<-UW$W
if (is.infinite(max(W))) {error <- 1; break; }
if (missing(W)) {error<-1; break;}
if (sum(is.na(W))>0) {error <-1 ; break;}
if (min(abs(eigen(W)$values))<le-5|max(abs(eigen(W)$values))>1e20 ) {
error <- 1; break}
W.inv<-solve (W)
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if (length(active.set)==0) d<- W.inv*%U else{
A<-A.orilactive.set, ,drop=F]
d <- (diag(1l, gama.dim, gama.dim)-
W.inv/*%t (A) Y*xYsolve (AY*%W. invix%t (A) ) %x %A
YHxYW . inv*%UY
# Step 1
ratio<- -(A.ori%*Jgama)/(A.ori%*%d)
step <- ifelse(max(ratio,na.rm=T)<=0,1, min(ratio[ratio>0],na.rm=T))
# Step 2
ksi<- min(step, 1)
gama.update <- gamatksixd
while (crossprod(GEE(gama=gama.update, alpha.dim=alpha.dim, dataset=dataset,
method=method, varfunc=varfunc)$Uu) >
crossprod (GEE (gama=gama, alpha.dim=alpha.dim, dataset=dataset,
method=method, varfunc=varfunc)$U)){
ksi <- ksi/2
gama.update <- gamatksix*d
if (ksi<le-5) break
}
# Step 3 & Step 4
if (step>ksi) delta<-ksi*d else{
delta<-step*d
active <- which(ratio==step)
}
gama<-gamat+delta
countl<-counti+1

if (count1>20) {converge.status <- 0; break}
if (missing(d)) break
3
# Step 5: checking the stopping criterion
if (length(active.set)==0) break else{
lamda <- solve (A%*%W.invyx%t (A))Yx%AYX%W . invy*%U
inactive <- which.max(lamda)
active.set <- active.set[-inactive]
3
count2 <- count2+1
if (count2>5) {
converge.status <- 0
break
3
}
GEE.result <- GEE(gama=gama.update, alpha.dim=alpha.dim, dataset=dataset,
method=method, varfunc=varfunc)
W <- GEE.result$w
U <- GEE.result$U
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sigma2 <- GEE.result$sigma?
list (gama=gama.update, W=W, error=error, converge.status=converge.status,
U=U, sigma2=sigma?2)
}
# End of Function (GR)

++

H—=
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H

# Function name: ICM
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# It implements the ICM algorithm to the GEE settings

H
w

H* H

ICM <- function(dataset, alpha.dim, gama.ini, method, varfunc, likelihood.func){
beta.update <- gama.ini[-(1:alpha.dim)]
alpha.update <- gama.ini[1l:alpha.dim]
d.beta <- 1
beta.iter <- 0
while (max(abs(d.beta))>1e-5){
d.alpha<-1
alpha.iter <- 0
while(max (abs(d.alpha))>1le-5){
gama <- c(alpha.update, beta.update)
UW <- GEE(gama=gama, alpha.dim=alpha.dim, dataset=dataset, method=method,
varfunc=varfunc)
W <- UW$W
U <- UW$U
mydiag <- diag(W) [1:alpha.dim]
x.axis <- c(0,cumsum(mydiag))
y.axis <- c(0,cumsum(mydiag*alpha.update + U[l:alpha.dim]))
ratio <- vector(length=length(x.axis)-1)
i<-1
while (i <length(x.axis)){
derivative <- (y.axis[-(1:i)]-y.axis[i])/(x.axis[-(1:i)]-x.axis[i])
position <- which.min(abs(derivative))
ratio[i: (i+position-1)] <- min(abs(derivative))
i<- i+position
}
ratio.update <- line.search(dataset, gama, ratio, beta.update, likelihood.func)
d.alpha <- ratio.update-alpha.update
alpha.update <- ratio.update
alpha.iter <- alpha.iter+l
if (alpha.iter>20) break
}
d.beta<- (solve(W)%*}%U) [-(1:alpha.dim)]
beta.update <- beta.update+ d.beta
beta.iter <- beta.iter+1
if (beta.iter>20) break
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X
gama.update <- c(alpha.update, beta.update)
list(gama=gama.update, W=W, U=U, alpha.iter=alpha.iter, beta.iter=beta.iter)
b

H
1

line.search <- function(dataset, gama, ratio, beta.update, likelihood.func){

epsilon <- 0.4
ksi <- 1
alpha.dim <- length(ratio)
while(likelihood.func(dataset, c(ratio, beta.update), alpha.dim)$1l<
likelihood.func(dataset, gama, alpha.dim)$1){
ksi <- ksi/2
ratio <- gamal[l:alpha.dim] + ksi*(ratio-gamal[l:alpha.dim])
}

ratio

}
#= End of Function (ICM) #
f==================================================================== #
# Function name: ICM-NR #
#t----—————————------------- #
# It implements the ICM/NR algorithm to the GEE settings #
#= #

# This is the modified ICM algorithm, combined with Newton-Raphson algrithm.
# we estimate alpha and beta through one loop!
ICM-NR <- function(dataset, alpha.dim, gama.ini, method, varfunc,
likelihood.func=NA){
gama <- gama.ini
d.gama<-1
iter <- 0
while(max (abs(d.gama))>1e-5){
UW <- GEE(gama=gama, alpha.dim=alpha.dim, dataset=dataset, method=method,
varfunc=varfunc)
W <- UW$W
U <- UW$U
mydiag <- diag(W) [1:alpha.dim]
x.axis <- c(0,cumsum(mydiag))
y.pre <- NR.gama(dataset, gama, alpha.dim, varfunc)
y.axis <- c(0, cumsum(mydiag*y.pre[l:alpha.dim]))
ratio <- vector(length=length(x.axis)-1)
i<-1
while (i <length(x.axis)){
derivative <- (y.axis[-(1:i)]-y.axis[i])/(x.axis[-(1:i)]-x.axis[i])
position <- which.min(abs(derivative))
ratio[i: (i+position-1)] <- min(abs(derivative))
i<- i+position
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}
d.gama <- c(ratio, y.pre[-(1l:alpha.dim)])-gama
gama <- c(ratio, y.pre[-(1:alpha.dim)])
iter <- iter+1
if (iter>5) break
}
list(gama=gama, W=W, U=U, iter=iter)
}

H
1

NR.gama <- function(dataset, gama, alpha.dim, varfunc){
d<-1
UW <-GEE(gama, alpha.dim, dataset, method=’semiparametric’, varfunc)
if (min(eigen(UW$W)$values)>1le-10){
direction <-solve (UW$W) %% (UW$U)
ksi <- 1
gama.update <- gama + ksi*direction
while(crossprod(GEE(gama=gama.update, alpha.dim=alpha.dim, dataset=dataset,
varfunc=varfunc)$U) >
crossprod (GEE (gama=gama, alpha.dim=alpha.dim, dataset=dataset,
varfunc=varfunc)$U)){
ksi <- ksi/2
gama.update<- gamatksi*direction
X
d <- gama.update-gama
gama <- gama.update

b
gama

3

# End of Function (ICM/NR) #
# Function name: sandwich #
oo #
# It estimates the variance of the regression parameter based on the #
# projection algorithm described in Wellner & Zhang (2007) #
#= #
#=== using the least sqaure to calculate alpha ===

sandwich <- function(K, T, Z, dN, gama, varfunc){
N<-matrix(nrow=nrow(dN), ncol=ncol(dN))
n<-length (K)
for (i in 1:n) N[i,]<-cumsum(dN[i,])
cov<-covariate(K, T, Z, N, method)
dataset<-cov$X
alpha.dim<-cov$alpha.dim

n <- length(unique(dataset[,’subj’]))
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ml.matrix <- matrix(arow=n, ncol=beta.dim)

m2.star.matrix <- matrix(nrow=n, ncol=alpha.dim)

mll.matrix <- matrix(0, nrow=beta.dim, ncol=beta.dim)
m21.star.matrix <- matrix(0, nrow=alpha.dim, ncol=beta.dim)

for (i in 1:n){
Xi <- dataset[dataset[,’subj’]==1i,,drop=F]

subj.n <- nrow(Xi)

subj.N<- Xi[,’N’, drop=F]

subj.B <- Xi[,c(paste(’B’, 1l:alpha.dim, sep=’’)), drop=F]

subj.Z <- Xil[,c(°Z1°,°Z22°,°Z3’), drop=F]

subj.mu <- exp(Xil[,c(paste(’B’, 1:alpha.dim, sep=’’),’Z1°,°Z2°,°Z3’)]%x*lgana)
subj.var.inv <- varfunc(subj.mu)$subj.var.inv

ml <- t(subj.Z)%*%diag(as.vector(subj.mu), nrow=subj.n)%*%subj.var.inv*%

(subj.N-subj.mu)

ml.matrix[i,] <- ml
m2.star <- t(subj.B)%*%subj.var.inv)*J(subj.N-subj.mu)*as.numeric (exp(

subj.Z[1,]%*%gama[-(1:alpha.dim)]))

m2.star.matrix[i,] <- m2.star

mil

mil.
m21.

<- t(subj.Z)%*%diag(as.vector(subj.mu) ,nrow=subj.n)%*%subj.var.invy*}
diag(as.vector(subj.mu) ,nrow=subj.n)%*%subj.Z

matrix <- mll.matrix + mll

star.matrix <- m21.star.matrix + t(subj.B)Y%*/diag(as.vector(exp(subj.Z)*%
gama[-(1:alpha.dim)])) ,nrow=subj.n)%*%subj.var.inv)*/diag(as.vector (subj.mu),

nrow=subj.n)%*}subj.Z

}

alpha <- solve(crossprod(m2.star.matrix), crossprod(m2.star.matrix, ml.matrix))

m2.matrix <- m2.star.matrix’%+j%alpha

A.hat <- (mll.matrix-t(alpha) %*% m21.star.matrix)/n

B.hat <- (t(ml.matrix-m2.matrix)%*%(ml.matrix-m2.matrix))/n

A.hat.inv <- solve(A.hat)

sandwich.ABA<- (A.hat.inv%*%B.hat’*%t(A.hat.inv))/n

sandwich.B <- solve(B.hat)/n

list(sandwich.ABA=diag(sandwich.ABA), sandwich.B=diag(sandwich.B),
A=A.hat, B=B.hat)

}
#= End of Function (sandwich) #
H===================sssssssssssssssssssssssssssssssssssssssssssss=s=== #
# Function name: sigma.est #
- #
# Different methods of estimating the overdispersion parameter #
#= #
- ——— #
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# sigma.estl: from Zeger (Biometrika 1988) & Davis et al. (Biometrika 2000)#

sigma.estl <- function(N, mu, gama.dim=NA, K=NA){
residual <- N - mu
sigma2 <- sum(residual”2-mu)/sum(mu”2)
sigma2 <- ifelse(sigma2>0, sigma2, 0)

sigma?2
}
#----—-—-———— #
# sigma.est2: from Breslow(Appl. Statist. 1984); Breslow (JASA 1990) #
#---—-—-------—-— #
sigma.est2 <- function(N, mu, gama.dim, K=NA){
sigma2 <- 1
d<-1

while(d>1e-5){
sigma2.update <- sum((N-mu)"2/(mu/sigma2+mu~2))/(length(N)- gama.dim)
d <- abs(sigma2.update-sigma?2)
sigma2 <- sigma2.update

}

sigma2 <- ifelse(sigma2>0, sigma2, 0)

sigma2

X
$#----——---—-—— #
# sigma.est3: MLE of overdispersion parameter based on --——————-—-—————————- #
# gamma poisson assumption #
- #

sigma.est3 <- function(N.vec, mu, gama.dim, K){
n <- length(X)
sigma.vec <- seq(0, 0.2, length=201) [-1]
Imatrix <- matrix(arow=n, ncol=200)
for (i in 1:n){
if (i==1) subj.start <- 1 else subj.start <- cumsum(K) [i-1]+1
subj.end <- cumsum(K) [i]
subj.mu <- mu[subj.start: subj.end]
subj.dmu <- c(subj.mul1], diff(subj.mu))
subj.muk <- subj.mul[length(subj.mu)]
subj.N <- N.vec[subj.start:subj.end]
subj.dN <- c(subj.N[1], diff(subj.N))
subj.Nk <- subj.N[length(subj.N)]
l.est <- function(sigma2){
sum(subj.dN*log(subj.dmu), na.rm=T)- (subj.Nk+1/sigma2)*log(subj.muk+
1/sigma2)+1/sigma2*log(1l/sigma2)+ lgamma(subj.Nk+1/sigma2)-1lgamma(1l/sigma2)
}

Ilmatrix[i,]<- sapply(sigma.vec, l.est)
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}
lvec <- apply(lmatrix,2,sum)
sigma2 <- sigma.vec[which.max(1lvec)]

sigma?2

}
#= End of Function (sigma.est) #
#==================================================================== #
# Function name: V1, V2, V3 #
Rttt #
# Different Variance-covariance matrices #
#= #
ettt #
# Covariance matrix V1, GEE with V1 is the score of pseudolikelihood #
e #
Vi<-function(subj.mu){

error<-0

subj.n<-length(subj.mu)

subj.var<-diag(as.vector(subj.mu), nrow=subj.n, ncol=subj.n)

if (min(eigen(subj.var)$values)<le-8 | max(eigen(subj.var)$values)>1e10){

subj.var.inv <- NA
error <- 1 }else

subj.var.inv<-diag(as.vector(l/subj.mu), nrow=subj.n, ncol=subj.n)

list(subj.var=subj.var, subj.var.inv=subj.var.inv, error=error)

}
e bttt #
# Covariance matrix V2, GEE with V2 is the score of likelihood #
B #

V2<-function(subj.mu){
error <- 0
subj.n<-length(subj.mu)
subj.var<-rep(subj.mu[1], subj.n)
if (subj.n>1){
for (i in 2:subj.n) subj.var <- cbind(subj.var, c(subj.mul[l:(i-1)],
rep(subj.muli], subj.n-(i-1))))
}
if (min(eigen(subj.var)$values)<le-8 | max(eigen(subj.var)$values)>1e8){
subj.var.inv <- ginv(subj.var)
error <- 1 }else
subj.var.inv <- solve(subj.var)
list(subj.var=subj.var, subj.var.inv=subj.var.inv, error=error)

# Covariance matrix V3, GEE with V3 is the score of Gamma-frailty Poisson #



# likelihood #

V3<-function(subj.mu, sigma2){
error <- 0
subj.n<-length(subj.mu)
subj.var<-rep(subj.mu[1], subj.n)
if (subj.n>1){
for (i in 2:subj.n) subj.var <- cbind(subj.var, c(subj.mul1l:(i-1)],
rep(subj.mul[i], subj.n-(i-1))))
}
subj.var <- sigma2+*tcrossprod(subj.mu)+ subj.var
if (min(eigen(subj.var)$values)<le-8 | max(eigen(subj.var)$values)>1e8){
subj.var.inv <- NA #ginv(subj.var)
error <- 1 }else
subj.var.inv <- solve(subj.var)
list(subj.var=subj.var, subj.var.inv=subj.var.inv, error=error)

}

End of Function (V1, V2, V3)

+H
=+

# Function name: semiResult #
- —— #
# Run simulations in batch #

semiResult<-function(K, T, Z, dN, method, varfunc, likelihood.func=NA, n.knot=1/3,
position.knot=’quantile’){
N<-matrix(nrow=nrow(dN), ncol=ncol(dN))
n<-length(K)
for (i in 1:n) N[i,]<-cumsum(dN[i,])

cov<-covariate(K, T, Z, N, method, n.knot=n.knot)
dataset<-cov$X
alpha.dim<-cov$alpha.dim

beta.dim<-3
gama.dim<-alpha.dim+beta.dim
gama.ini<-c((1:alpha.dim)/alpha.dim, -1,0.5,1.5)
result<-algorithm(dataset, alpha.dim, gama.ini=gama.ini, method=’semiparametric’,
varfunc, likelihood.func=likelihood.func)
# estimates of the gama parameters
gama <- result$gama
alpha<-gama[1: (length(gama)-3)]
beta.est <- gama[-(1:(length(gama)-3))]
# estimates of the variance of beta
W1l <- result$w
if (min(abs((eigen(W1)$values)))>le-10){
Wl.inv <- solve(W1)
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WO <- Varest(gama, alpha.dim, dataset, method=’semiparametric’, varfunc=varfunc)
W <= Wil.inv%*%W0%*% t(Wl.inv)
naive.v <- diag(Wl.inv[-(1l:(nrow(Wl.inv)-3)),-(1:(ncol(Wl.inv)-3))]1)
v <= diag(W) [-(1: (nrow(W)-3))]
} else {v <~ NA; naive.v <- NA}

estimates of the baseline hazard

myt<-T[order (T)]

myt<-myt[!is.na(myt)]

gqn<-ceiling(sum(X) "n.knot)

if (position.knot==’quantile’) myknots <- c(rep(min(myt),3),quantile(myt,
seq(0,1,len=qn-4+2)) ,rep(max(myt),3)) else

if (position.knot==’uniform’) myknots <- c(rep(min(myt),3), seq(min(myt),
max(myt), length=qn-4+2), rep(max(myt),3))

S<-splineDesign(knots=myknots, seq(2, 9, by=0.25))

est<-S¥*%alpha

list(gama=gama, beta.est=beta.est, beta.variance=v, beta.variance.naive=
naive.v, est=est, converge.status=result$converge.status, error=result$error,
U=result$U)

}

# End of Function (semiResult) #
#= #
# Function name: bsvar #
e #
# Generate boostrap samples to get bootstrap variances #
#= #
bsvar<-function(X, T, Z, dN, n, varfunc, bs.n=200){

bs.est<-matrix(nrow=bs.n, ncol=3)
for (i in 1:bs.n){
rep <- floor(runif(n, 1, n+1))
replicate.data <- list(K=K[rep], T=T[rep,], Z=Z[rep,], dN=dN[rep,])
replicate.result <- with(replicate.data, semiResult(K=K, T=T, Z=Z, dN=dN,
method=method, varfunc=varfunc))
bs.est[i,] <- replicate.result$beta.est
}
bs.var <- apply(bs.est, 2, var)
bs.var

}

++

H
1

End of Function (bsvar)
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