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ABSTRACT

In this dissertation I examine the effects of sample selection on the probability
of stroke among older adults. If study subjects are selected into the sample based
on some non-experimental selection process, then statistical analysis may produce
inconsistent estimates.

Chapter 1 develops a model of non-ignorable selection for a discrete outcome
variable, such as whether stroke occurred or not. I start by noticing that in the
literature there are relatively few applications of the Heckman model to the case
of a discrete outcome variable and they are limited to a bivariate case. After that I
extend the Bayesian multivariate probit model of Chib and Greenberg (1998) broadly
following the logic of Heckman’s original (1979) work. The model in the first chapter
of my dissertation is set in a way general enough to handle multiple selection and
discrete-continuous outcome equations.

The first extension of the multivariate probit model in Chib and Greenberg
(1998) allows some of the outcomes to be missing. In particular, stroke occurrence is
missing whenever the person is not selected into the sample. In terms of latent variable
representation this implies that multivariate normal distribution is not truncated in
the direction of missing outcome. I also use Cholesky factorization of the variance
matrix to avoid the Metropolis-Hastings algorithm in the Gibbs sampler.

Chapter 2 evaluates how severe the problem of sample selection is in Assets and
HEAIth Dynamics among the Oldest Old (AHEAD) data set. I start with a more

restrictive assumption of ignorable selection. In particular, I apply the propensity



score method as in a recent paper by Wolinsky et al. (2009) and find no selection
effects in the study of stroke. Then I consider the model developed in Chapter 1,
which is based on a less restrictive assumption of non-ignorable selection, and also
find no evidence of selection. Thus, the main substantive contribution of this chapter
is the absence of selection effects based on either ignorable or non-ignorable sample

selection model.
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ABSTRACT

In this dissertation I examine the effects of sample selection on the probability
of stroke among older adults. If study subjects are selected into the sample based
on some non-experimental selection process, then statistical analysis may produce
inconsistent estimates.

Chapter 1 develops a model of non-ignorable selection for a discrete outcome
variable, such as whether stroke occurred or not. I start by noticing that in the
literature there are relatively few applications of the Heckman model to the case
of a discrete outcome variable and they are limited to a bivariate case. After that I
extend the Bayesian multivariate probit model of Chib and Greenberg (1998) broadly
following the logic of Heckman’s original (1979) work. The model in the first chapter
of my dissertation is set in a way general enough to handle multiple selection and
discrete-continuous outcome equations.

The first extension of the multivariate probit model in Chib and Greenberg
(1998) allows some of the outcomes to be missing. In particular, stroke occurrence is
missing whenever the person is not selected into the sample. In terms of latent variable
representation this implies that multivariate normal distribution is not truncated in
the direction of missing outcome. I also use Cholesky factorization of the variance
matrix to avoid the Metropolis-Hastings algorithm in the Gibbs sampler.

Chapter 2 evaluates how severe the problem of sample selection is in Assets and
HEAIth Dynamics among the Oldest Old (AHEAD) data set. I start with a more

restrictive assumption of ignorable selection. In particular, I apply the propensity
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score method as in a recent paper by Wolinsky et al. (2009) and find no selection
effects in the study of stroke. Then I consider the model developed in Chapter 1,
which is based on a less restrictive assumption of non-ignorable selection, and also
find no evidence of selection. Thus, the main substantive contribution of this chapter
is the absence of selection effects based on either ignorable or non-ignorable sample

selection model.
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CHAPTER 1
MULTIVARIATE PROBIT AND SAMPLE SELECTION
1.1 Introduction

In this chapter I develop a model of sample selection with multiple outcome
and selection equations in which dependent variables are dichotomous. As an illus-
tration of the sample selection model, consider a sample of elderly Medicare-eligible
Americans. Suppose that some of the respondents have allowed the researcher to
get access to their Medicare claims data. This constitutes the selection equation
which is usually modeled as univariate probit. Suppose further, that the researcher is
concerned about estimating amount of Medicare spending per year, which is the out-
come equation of interest, but she observes only the amounts for patients that allowed
access to their Medicare claims. Economists have been aware for a long time that
estimating such a model by ordinary least squares leads to inconsistent estimates.!
Gronau (1974) seems to be among the first to recognize this problem, but Heckman
(1979) offers a truly pioneering work with a simple two-step estimator that has been
widely used for more than three decades.

In general, the model of sample selection, also referred to as a model with
incidental truncation, has a dependent variable that is missing as a result of a non-

2

experimental selection process.” Heckman (1979) recognizes the sample selection

IThere is no such problem if the disturbances in two equations have zero correlation.

2Models of sample selection in some classifications also include models with truncation
and censoring. Throughout this chapter I use the terms “sample selection” and “incidental
truncation” interchangeably to refer to a Heckman-type model.



problem as specification error and offers the following two-step estimator. On the
first step, the binary selection equation is estimated by probit. (Exogenous variables
are assumed to be known for all respondents in the sample.) On the second step, the
outcome equation is estimated only for the observed subsample with one additional
variable: inverse Mills ratio obtained on the first step. Heckman (1979) shows that
this procedure results in consistent coefficient estimates and also provides a corrected
variance matrix for hypothesis testing.

Sample selection remains an active and ongoing research area in literature and
recent textbook presentations (such as Greene 2003 and Wooldridge 2002), as well as
review articles (Vella 1998 and Lee 2003) are available. Most of the research, however,
is limited to the case where the endogenous variable of interest in the outcome equa-
tion is continuous. In addition, the majority of papers deal with a single selection
and a single outcome equation in the sample selection model. In many applications,
however, sample may be chosen based on more than one criterion, or more than one
outcome equations may be considered.

This chapter substantially extends Heckman’s (1979) classic model by adding
two additional features. First of all, it allows binary dependent variable in the out-
come equation as well.®> Continuing with health economics, it might be of interest to
model risk factors of a certain morbid event (such as hip fracture). Secondly, adding

extra selection or outcome equations with dichotomous or continuous dependent vari-

3T review some earlier work on a discrete outcome variable in Heckman’s (1979) model
and explain how my model differs further on.



ables is straightforward. This extension is crucial in the presence of multiple selection
equations, as explained below. These two extensions seem to be an important con-
tribution to the existing literature with potential applications in health, labor and
related empirical economic research.

While technical issues limited the use of sample selection models with multiple
binary dependent variables, their applicability is potentially very wide. To continue
with the Medicare-eligible sample of elderly Americans, suppose that the researcher
is interested in joint estimation of two or more binary morbid health events (for
example, hip fracture and stroke) but she observes those outcomes only for respon-
dents that gave her access to Medicare claims. Clearly, joint estimation of the two
health events (outcome variables of interest) with a third equation for being in the
analytic sample (selection equation) tends to be more efficient than estimating them
equation-by-equation.* More importantly, in order to obtain consistent estimates all
of the selection equations have to be included.

Consider another example from financial economics. Suppose that a credit
card company studies the probability of default (outcome equation) for respondents
who received a credit card offer. The first selection equation may be if they accepted
the offer and applied for a card, and the second whether their application was ap-
proved by the bank. In this model, the agent can default only if she was approved for

a credit card, which in turn is possible only if she has responded to such an offer. In

4This is a standard result in seemingly unrelated regression model, which does not apply
if the explanatory variables are the same or if the correlation/covariance terms are zero.



labor economics it might be of interest to study employment discrimination (observed
for candidates that seek a job) and wage discrimination (observed for candidates that
seek a job and are hired). These two outcome equations can be estimated together
with selection equation (if a candidate is seeking a job or not). All these and related
models can be estimated in the framework developed in this chapter.

How is the problem of sample selection accounted for in the multivariate probit
model? To continue with the health economics example, suppose that there exists
some unobserved factor that affects both the probability of being selected into a sam-
ple and of having a morbid health event. If healthier individuals are more likely
to allow access to their Medicare claims, then estimating the probability of a mor-
bid health event only for the observed subsample is not representative of the entire
population, as only its healthier part is considered. From the discussion above, it is
apparent that in order to consistently estimate a model with incidental truncation,
it is necessary to account for an omitted variable problem. In general, the sample
selection problem arises if the unobserved factors determining the inclusion in the
subsample are correlated with the unobservables that affect the endogenous variable
of primary interest (Vella 1998). In the current chapter the specification error of
omitted variable resulting from selection is dealt with by considering the unobserved
omitted variable as a part of the disturbance term and then jointly estimating the
system of equations accounting for the correlations in the variance-covariance matrix.

The multivariate probit model can be used to handle multiple correlated di-

chotomous variables along the lines of Ashford and Sowden (1970) and Amemiya



(1974). It seems, however, that the potential of this model has not been fully re-
alized despite its connection to the normal distribution, which allows for a flexible
correlation structure. As noticed in Chib and Greenberg (1998), the problem arises
from the difficulties associated with evaluating the likelihood function by classical
methods, except under simplifying assumptions like equicorrelated responses, as in
Ochi and Prentice (1984).

Chib and Greenberg (1998) describe how the model can be reformulated in a
Bayesian context using the technique of data augmentation (discussed in Albert and
Chib [1992], among others). The discrete dependent variable in the probit model
can be viewed as the outcome of an underlying linear regression with some latent
dependent variable (i.e. unobserved by the researcher). Consider a decision to make
a large purchase, as in Greene (2003, p. 669). If the benefits outweigh the costs
(benefits-costs>0) then the latent dependent variable is positive and the purchase is
made (the observed discrete outcome is 1), and vice versa. If the researcher makes a
further assumption that the disturbance term in the model with the latent dependent
variable has a standard normal distribution, then the univariate probit model results.
The extension to the multivariate case is relatively straightforward.

The latent variables are clearly not observed, but their distributions are spec-
ified to be normal. Chib and Greenberg (1998) use this fact and re-introduce the
latent variable back into the multivariate probit model. In a typical Bayesian model
the prior distribution of the parameters and the likelihood function are used to ob-

tain the joint posterior distribution, which combines the information from the prior



and the data. Chib and Greenberg (1998) find the joint posterior distribution of the
multivariate probit model as the product of the prior distribution of the parameters
and augmented likelihood function. The latter is obtained as the product of normal
distributions for latent variables taken over all respondents in the sample. It is easy to
show that, after integrating over the latent variables, the joint posterior distribution
of the parameters is exactly the same as the posterior distribution obtained with-
out introducing any latent variables (see Koop, Poirier and Tobias [2007] for related
examples). The computational advantage of this method — it does not require the
evaluation of the truncated multivariate normal density — is the greater the more
discrete dependent variables are included into the model.

Using the full conditional posterior distributions of the coefficient vector, along
with elements in the variance matrix and the latent data, it is possible to construct a
Markov Chain Monte Carlo (MCMC) algorithm and simulate the parameters jointly
with the latent data. In the Chib and Greenberg (1998) formulation, the conditional
posterior distribution for the elements in the variance matrix has a nonstandard
form and the authors use a Metropolis-Hastings algorithm to draw those elements.
The current chapter modifies the Chib and Greenberg (1998) procedure by using the
Cholesky factorization of the variance matrix. This allows a convenient multivariate
normal representation of the parameters that are used to obtain the variance matrix,
which considerably facilitates estimation.

Another complication in the sample selection model follows from the fact that

some of the dependent binary variables in the outcome equation are not observed



given the selection rule into the sample. The posterior distribution of the latent data
can be used to simulate those missing observations conditional on the covariance
structure of the disturbance term. Consider first an individual ¢ with complete data
in m x 1 vector of binary responses y; = (Y1, ..., Ymt)" for all selection and outcome
equations. The Chib and Greenberg (1998) procedure implies that at each MCMC
simulation the latent vector ¥; = (Y1¢, ..., Ymt)' is drawn from the truncated multivari-
ate normal distribution with a m x 1 mean vector and m x m covariance matrix X.°
The distribution is truncated for the ith element y;; to (—oo, 0] if the binary outcome
yi = —1 and to (0, +00) if y; = 1. Now suppose that individual ¢ has missing binary
outcome y;; for some 7. The only difference with the case of an observed binary out-
come y;; comes from the fact that the conditional multivariate normal distribution
for y;; is no longer truncated in the ith dimension. That is, if y;; is missing for some
i, then the latent variable y; is unrestricted and can take any value in the interval
(—00, 00).

Identification of the parameters is an important issue in models of discrete
choice. It is well-known that the multivairate probit model is not likelihood-identified
with unrestricted covariance matrix. Even though the formulation of the variance
matrix in this chapter uses only m(m — 1)/2 identified parameters, this turns out
not to be sufficient for identification. Meng and Schmidt (1985) offer an elegant

treatment of the problem of identification in the censored bivariate probit model

5The mean vector for individual ¢ is a product of m x k matrix of covariates and a k x 1
vector of coefficients to be defined later.



using the general principle in Rothenberg (1971) that the parameters in the model
are (locally) identified if and only if the information matrix is nonsingular. The
conclusion in Meng and Schmidt (1985), that the bivariate probit model with sample
selection is in general identified, applies also with my parameterization of the model.

This chapter is organized as follows. Section 1.2 reviews the literature on
sample selection especially on extensions to models with discrete outcome equation
and Bayesian treatment. Section 1.3 sets up the model and derives the details of the
multivariate probit estimator. Section 1.4 develops the Gibbs sampler. Section 1.5
considers the problem of identification in greater detail. Finally, section 1.6 provides

an illustrative example and the last section concludes the discussion.

1.2 Heckman Model: Relevant Literature
Before developing a Bayesian model of sample selection with binary outcome
variables, it is worth reviewing the relevant previous studies. After formulating a
textbook variant of a Heckman (1979) model, I consider its extensions to models with
discrete outcome equation prevailing in classical econometrics. The second feature of
my research, namely Bayesian modeling of sample selection, is addressed in the third

subsection of this literature review.

1.2.1 Introducing sample selection model
The model of incidental truncation, which is another name for sample selection
model, has been widely used in economic applications when the variable of interest

is observed only for people who are selected into a sample based on some threshold



rule.® Consider a simple model in health economics where it is of interest to assess
the amount of Medicare spending for elderly Americans in a given year (outcome
equation), which is observed only for people who allowed access to their Medicare
claims (selection equation). Define the Medicare spending equation for respondent ¢
as

Yor = T30 + €, (1.1)

and the selection equation of being linked to Medicare claims as

Yot = 21y + uy, (1.2)

where gy, is unobserved. What is observed is a binary variable y, which equals 1
if g > 0 (the agent allows the linking of her Medicare claims to the survey data)
and 0 otherwise. The selection rule is that Medicare spending y,; is observed only
when 75, > 0. If ¢ and u; have a bivariate normal distribution with zero means and

correlation p, then

EYot|yor observed] = Elyo|yst > 0] = 210 + poeA(—zy/0w), (1.3)

where A(—zjy/0u) = ¢(217/0u)/P(27/0u) as in Greene (2003). OLS estimator of
Medicare spending using equation (1.1) and only the data on respondents who allowed

access to Medicare claims, gives inconsistent estimates of 0 as long as p # 0. This

6There exists extensive research in classical statistics (as opposed to classical economet-
rics) on a related topic of nonignorable nonresponse. A few relevant papers are Conaway
(1993), Baker (1995), Baker and Laird (1988), Diggle and Kenward (1994) and Park (1998).
This literature typically uses some form of ML estimator or EM algorithm, and it is only
remotely related to my current research.
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model can be estimated via maximum likelihood (ML), but Heckman’s (1979) two-
step estimator is typically used instead (Greene 2003). To obtain estimates of ~, the
probit equation for y, is estimated and for each observation in the selected sample
A(—z;7) is computed. In the second stage,  and Jy = po, are estimated by the OLS
regression of y,, on = and X. A t-test of the null hypothesis that the coefficient on P\
is equal to zero represents a test of no sample selectivity bias (Vella 1998).
Heckman’s (1979) sample selection model is a standard topic in most modern
econometric textbooks (such as Greene 2003 and Wooldridge 2002). Thorough review
of the literature on sample selection is beyond the scope of this chapter, given the
considerable attention that the model has acquired. A few recent review articles
(Vella 1998, Lee 2003 and Greene 2006) seem to be a good starting point for an
interested reader. In the next subsection I consider extensions of the Heckman model
to the case of discrete outcome variable, relevant for my current research, developed

in classical econometrics.

1.2.2 Discrete outcome equation in classical econometrics
There are relatively few applications of Heckman’s (1979) model to discrete
(and count) data and Greene (2008) reviews a handful of such models, starting with
Wynand and van Praag (1981). In a recent application to teen employment, Mohanty
(2002) uses the formulation in Meng and Schmidt (1985), which is very similar to
the bivariate probit model with sample selection in Wynand and Praag (1981). In

Mohanty (2002) the applicant i for a job can be selected (SEL; = 1) or not (SEL; =
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0) only if she has applied for a job (SEEK; = 1). Both discrete variables are modeled
as the latent variables y; (SEEK; = 1 if y3; > 0 and SEEK; = 0 otherwise) and ys;
(SEL; = 1if yy; > 0 and SEL; = 0 otherwise) that have bivariate normal distribution
with correlation coefficient p.

Estimating the hiring equation (SEL;) only for the subsample of teens who
applied for a job (SEEK; = 1) produces inconsistent estimates as long as p # 0.
Indeed, univariate probit shows misleading evidence of employment discrimination
against Black teens, which disappears when participation and hiring equations are
estimated jointly (Mohanty 2002).

Another relevant example in classical econometrics is Greene (1992), who refers
to an earlier paper by Boyes, Hoffman and Low (1989). The (part of the) model in
Greene (1992) is bivariate probit where the decision to default or not on a credit card
is observed only for cardholders (and not the applicants that were rejected by a credit
card company).

Terza (1998) is another important reference in this literature. He develops a
model for count data that includes an endogenous treatment variable. For example,
the number of trips by a family (count variable of interest) may depend on the dummy
for car ownership (potentially endogenous). In this case the dependent variable for car
ownership in the first equation appears as explanatory variable in the equation for the
number of trips and the two equations are estimated jointly. Terza (1998) compares
three estimators for this model: full information ML, non-linear weighted least squares

(NWLS) and a two-stage method of moments (TSM) similar to Heckman’s (1979)
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estimator.”

The setup in Terza (1998) can be potentially used in models of discrete choice
with sample selection, as in a recent paper by Kenkel and Terza (2001). Kenkel and
Terza (2001) use a two-step estimator in the model of alcohol consumption (number
of drinks) with an endogenous dummy for advice (from a physician to reduce alcohol
consumption). The first stage is univariate probit for receiving advice and the second
stage applies non-linear least squares to the demand for alcohol (number of drinks).
Kenkel and Terza (2001) find that advice reduces alcohol consumption in the sample
of males with hypertension, and the failure to account for the endogeneity of advice
would mask this result.

Munkin and Trivedi (2003) discuss the problems with different estimators of
selection models with discrete outcome equation in classical econometrics. The first
class of models, which uses moment-based procedures, results in inefficient estimates
and does not allow the estimation of the full set of parameters in the presence of cor-
related multiple outcomes. A second possibility is a weighted nonlinear instrumental
variable approach that has not been very successful because of difficulties in consis-
tent estimation of weights (Munkin and Trivedi 2003). Finally, simulated maximum
likelihood method requires a sufficient number of simulations for consistency where

4

it is not clear what is “...the operational meaning of sufficient” (Munkin and Trivedi

2003, p. 198).

"The estimators are listed in the order of decreasing efficiency and computational dif-
ficulty. NWLS estimator may result in correlation coefficient being greater than one in
absolute value.
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It seems that none of the models discussed so far allows multiple correlated
discrete dependent variables in the presence of sample selection (except for the bi-
variate case). Continuing with health economics, it might be of interest to estimate
a model with a single selection equation (in sample or not) and two or more morbid
health events (such as hip fracture and stroke). More importantly, if selection takes
place along multiple dimensions, then each one should be accounted for to avoid the
problems discussed in Heckman (1979). For example, if the sample is limited to par-
ticipants who (i) allowed access to their Medicare claims and (ii) are self-respondents,
then two selection equations can be easily introduced in my model. To the best of
my knowledge, a model capable of estimating this kind of relationships has not been
developed in classical econometrics yet.

The approach that I adopt in this chapter is to apply the multivariate probit
model in Bayesian framework, allowing for some missing responses. Chib and Green-
berg (1998) discuss the problems with estimation of multivariate probit model by
methods of classical econometrics and offer a Markov Chain Monte Carlo algorithm
which constitutes the starting point of my investigation. I review existing Bayesian
treatments of sample selection in the next subsection and then provide further details

on Chib and Greenberg (1998).
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1.2.3 Bayesian treatment of Heckman model

Recent Bayesian treatments of sample selection model are almost exclusively
based on Markov Chain Monte Carlo (MCMC) methods with data augmentation.®
The idea of data augmentation was introduced by Tanner and Wong (1987), and used
in Bayesian discrete choice models starting (at least) from Albert and Chib (1993).
Latent variables in these models are treated as additional parameters and are sampled
from the joint posterior distribution. In these models, however, the joint posterior
distribution for parameters and latent variables typically does not have a recognizable
form. Gibbs sampler is an MCMC method used when the joint posterior distribution
can be represented as a full set of (simpler) conditional distributions. It is possible
then to obtain the sample from the joint posterior distribution by iteratively drawing
from each conditional distribution, given the values obtained from the remaining
distributions. The model developed herein shares the two aforementioned features
(data augmentation and Gibbs sampling) and simultaneous equation structure with
previous studies by Li (1998), Huang (2001) and van Hasselt (2008).

Li (1998) develops Bayesian inference in the following simultaneous equation

8Earlier developments in Bayesian statistics model selection by means of various weight
functions. For example, Bayarri and DeGroot (1987 and four other papers, as cited in Lee
and Berger 2001) mostly concentrate on indicator weight function: potential observation is
selected into a sample if it exceeds a certain threshold. Bayarri and Berger (1998) develop
nonparametric classes of weight functions that are bounded above and below by two weight
functions. Lee and Berger (2001) use the Dirichlet process as a prior on the weight function.

9Notice that the selection equation in a Heckman-type model is univariate probit.
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model with limited dependent variables (SLDV):

yi = yon + X101 +

ys = Xodo +us, (1.4)

where y; is of Tobit type (a researcher observes y; = y; if yf > 0 and y; = 0
otherwise) and y; is of probit type (the researcher observes yo = 1 if y5 > 0 and
yo = 0 otherwise).!® The vector of disturbances (uy, us)" is assumed to follow bivariate

normal distribution with the variance of us set to 1 for model identification:

ot o1

Y
012 1
where o2, is the variance of u; and o5 is the covariance between u; and uy. Decom-
posing the joint bivariate distribution of (uy,us3)" into the product of the marginal
distribution of us and the conditional distribution of u;|us allows convenient block-

ing in the Gibbs sampler. This decomposition in Li (1998), together with the more

convenient reparametrization of the variance matrix

2 2
0°+ 07y 012

Y= ,

012 1

appear repeatedly in later studies. With these changes the model is now re-defined

as

Y = Yoy + X101 + u2012 + 13

Yy = Xo0o + us, (1.5)

19To avoid the confusion with my parameters later on, I use different Greek letters from
those used in the original papers throughout the literature review.
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with ug = yj — Xo0s, 0% = 0%, —03,, and v; ~ N(0,0?). In the resulting Gibbs sampler
with data augmentation, all conditional distributions have recognizable forms that are
easy to draw from (multivariate normal, univariate truncated normal and gamma).!*

Huang (2001) develops Bayesian seemingly unrelated regression (SUR) model,
where dependent variables are of the Tobit type (researcher observes y;; = yj; if
yi; >0and y;; =0 otherwise). The Gibbs sampler with data augmentation in Huang
(2001) consists of multivariate normal, Wishart and truncated multivariate normal
distributions.

In the paper by van Hasselt (2008), two sample selection models — with
unidentified parameters and with identified parameters — are compared.'? The idea
behind the first model is borrowed from McCulloch and Rossi (1994), who used a
similar approach in multinomial probit context. The output from the Gibbs sam-
pler is used to approximate the posterior distribution of the identified parameters.

The model with identified parameters in van Hasselt (2008) uses marginal-conditional

decomposition of the disturbance terms together with more convenient parameteriza-

U Chakravarti and Li (2003) apply this model to estimate dual trade informativeness
in futures markets. Probit equation estimates a trader’s decision to trade on her own
account and tobit equation measures her (abnormal) profit from her own account trading.
Chakravarti and Li (2003) did not find significant correlation between a dual trader’s private
information and her abnormal profit.

12 Another interesting paper by van Hasselt (2005) compares the performance of sam-
ple selection and two-part models (when two equations are estimated independently) in a
Bayesian setup. In classical econometrics Leung and Yu (1996) provide conclusive evidence
against negative results in Manning, Duan and Rogers (1987) who claim that two-part
model performs better than sample selection model even when the latter is the true model.
Leung and Yu (1996) show that problems with sample selection model are caused by a
critical problem in the design of experiments in Manning, Duan and Rogers (1987).
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tion of the variance matrix, as in Li (1998).'® The major contribution of van Hasselt
(2008) is relaxing the normal distribution assumption in the sample selection model
via mixture of normal distributions. I do not follow that route and my model remains
fully parametric.

In all the papers cited above the outcome variable is continuous and not dis-
crete. There are two Bayesian papers with discrete outcome variable (and multi-
ple outcome equations) that are worth mentioning: Munkin and Trivedi (2003) and
Preget and Waelbroeck (2006).

Munkin and Trivedi (2003) develop a three-equation model with the first equa-
tion for count data (the number of doctor visits), the second equation for a continuous
variable (the associated health expenditures) and the third equation for a dummy
variable (the type of health insurance plan). The selection problem — demand for
health care that potentially depends on the type of health insurance — is modeled by
using an (endogenous) dummy variable for private health plan. There is no problem
of missing dependent variable for respondents that are not in the sample (i.e. who
did not purchase private insurance). Neither of the correlation coefficients for private
health plan with two variables of interest is statistically different from zero and the
type of insurance does not affect the level of health care use (Munkin and Trivedi

2003).14

13McCulloch, Polson and Rossi (2000) show that fully identified multinomial probit model
comes at a cost: higher autocorrelation in the Markov Chain.

In a later work, Deb, Munkin and Trivedi (2006), perhaps dissatisfied with a sample
selection model, use a two-part model with endogeneity in a similar context.
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Preget and Waelbroeck (2006) develop a three-equation model with application
to timber auctions. There are two binary dependent variables (if a lot received any
bids and, conditional on receiving at least one bid, if a lot received two or more
bids) and one continuous variable (highest bid for a lot) with an endogenous dummy
variable for the number of bids. Preget and Waelbroeck (2006) comment that in such
models the likelihood function is not always well behaved, especially in the direction of
the correlation coefficients.’® While in Preget and Waelbroeck (2006) the correlation
coefficients are never statistically different from zero, they find that their Bayesian
algorithm “...yields a remarkably stable coefficient for the binary endogenous variable
and was able to deal with irregularities in the likelihood function.”

Two conclusions seem to follow from my review of relevant studies. First of
all, there exist serious computational difficulties when the sample selection model
with multiple dichotomous dependent variables is estimated by methods of classi-
cal econometrics. For example, Munkin and Trivedi (2003) comment on difficulties
associated with estimating their model in a simulated maximum likelihood frame-
work. This provides strong motivation for a Bayesian econometric methodology and
also explains why models similar to mine are typically estimated in a Bayesian and

not classical tradition. Second, even in the Bayesian literature, there seem to be no

15Consider the following sequential probit model: the second binary outcome is missing for
all respondents whose first outcome is “No.” The third binary outcome, if present, is missing
for all respondents who answered “No” in the second equation and so on. Waelbroeck (2005)
argues that in this model the likelihood function is not globally concave and flat in some
directions, which limits practical applicability of the model. Notice that in a two-equation
case, sequential probit is the same model as censored probit except that the two models
may have different interpretation. Keane (1992) discusses similar computational issues in
multinomial probit model.
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published papers that can be used directly to estimate a model with three or more
dichotomous dependent variables. This constitutes an important contribution of the
current chapter.

While my work shares the methods with previous studies (data augmentation,
Gibbs sampling and simultaneous equation structure) it comes from a different area —
multivariate probit model developed in Chib and Greenberg (1998). The next section
introduces the multivariate probit in Chib and Greenberg (1998) and provides the

extensions that make it applicable in the sample selection model.

1.3 Multivariate Probit and Sample Selection

Suppose that a researcher observes a set of potentially correlated binary events
1 = 1,...,m over an independent sample of t = 1,...,T respondents. Consider the
multivariate probit model reformulated in terms of latent variables as in Chib and
Greenberg (1998). For each of the events i = 1,...,m define a T x 1 vector of latent
variables y; = (¥, ..., yir) and a T x k; matrix of explanatory variables Z; where
each row t represents a 1 X k; vector Z;;. Then each latent variable can be modeled
as

Yi. = Zifi + €., (1.6)

where ¢; is a vector of disturbance terms that have normal distribution. There is
potential correlation in the disturbance terms for respondent ¢ across events i =
1,...,m coming from some unobserved factor that simultaneously affects selection

and outcome variables. Let y; = (Y1, ..., Ymt)" be the vector of latent variables for
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respondent ¢ such that

Yi ~ Nu(Z:3,5), (1.7)

where Z;, = diag(Zuy, ..., Zmi) is an m x k covariate matrix, 3; ¢ R* is an unknown
parameter vector in equation ¢ = 1, ...,m with 8 = (8, ..., 3,,) e R* and k = >_" | ki,
and > is the variance matrix.

The sign of y;; for each dependent variable ¢ = 1,...,m uniquely determines

the observed binary outcome y;;:
Yo =1y > 0) — I(yiy <=0) (i=1,...,m), (1.8)

where I(A) is the indicator function of an event A. Suppose it is of interest to evaluate
the probability of observing a vector of binary responses Y. = (Y71, ..., Y,,)’ for indivial

t. Chib and Greenberg (1998) show that the probability y; = Y, can be expressed as

/ Om (Y| Z:0, 2)dy 4, (1.9)
Bt Bit

where By € (0,00) if y;; = 1 and By € (—00, 0] if y;; = —1. Define B, = By X ... X By
Alternatively, the probability vy, = Y, can be expressed without introducing

latent variables as

pr(ye = Vi3, %) — /A o[ dntulo Sy, (1.10)

where ¢,,(w|0,%) is the density of a m-variate normal distribution and A; is the

interval defined as

(—OO, Zuﬂi) if yiy =1,
Ay =

(ZufB;, 00) if yiy = —1.
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The multidimensional integral over the normal distribution in (1.10) is hard to eval-
uate by conventional methods.'¢

Instead of evaluating this integral, Chib and Greenberg (1998) use the for-
mulation in (1.9) and simulate the latent variable y; from the conditional posterior
distribution with mean 7,0 and variance matrix ¥. This distribution is truncated
for the ith element to (—oo, 0] if the observed outcome is y;; = —1 and to (0, +00) if
yir = 1. The current model also assumes that y; = 0 when the response for event 7 is
missing for ¢.

It is important to understand what missing binary response means in terms
of the latent data representation. If respondent ¢ has missing binary response y;; for
some 7 then no restriction can be imposed on the latent normal distribution in the 7th
dimension. Then the vector v, is simulated from the m-variate normal distribution
with the same mean and variance as in the complete data case but the distribution
is not truncated for the ith element. For the case of missing outcome ¢ the latent
variable 7;; can take any value in the interval (—oo, 00).!

The multivariate model of incidental truncation can not be estimated using

only the observed data because the endogenous selection variables are constant and

16Quadrature method is an example of nonsimulation procedure that can be used to
approximate the integral. Quadrature operates effectively only when the dimension of
integral is small, typically not more than four or five (Train 2003). The GHK simulator is
the most widely used simulation method after Geweke (1989), Hajivassiliou (as reported in
Hajivassiliou and McFadden 1998) and Keane (1994).

1"This methodology allows for continuous endogenous variables as well. In this case Yjt is
trivially set to the observed y;; for a continuous variable j in each iteration of the MCMC
algorithm introduced below.
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equal to 1. Now, due to simulated missing data one can estimate the variance matrix
2, which is the focus of the procedure to account for sample selection. The covariances
in X effectively adjust for sample selectivity in the outcome equations by controlling
for unobserved heterogeneity.

The issue of sample selection arises whenever the unobserved factors determin-
ing the inclusion in the sample are correlated with the unobservables that affect the
outcome variable(s) of primary interest (Vella 1998). The critical idea in the current
work is to account for selection in binary outcome equation(s) by jointly estimat-
ing selection and outcome equations while controlling for possible unobserved effect
through multivariate probit with correlated responses. If the covariance terms belong
to the highest posterior density region, this indicates the presence of unobserved effect
and, hence, sample selection bias.

The elements in the variance matrix in the Chib and Greenberg (1998) for-
mulation do not have the conditional posterior distribution of a recognizable form,
which forces them to employ a Metropolis-Hastings algorithm. This chapter makes
the technical advance that allows convenient multivariate normal representation of
the parameters used to obtain the variance matrix. Consider the Cholesky factor-
ization of the inverse of the variance matrix X! = F - F’ where F is the lower
triangular matrix. If the diagonal elements of F are arrayed in a diagonal matrix Q
then ¥~! = FQ1Q?Q '’ = FQ2F (Greene 2003). In the current work the variance

matrix is defined by F' which is a lower triangular matrix that has ones on the main
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diagonal and D~! = ? which is a diagonal matrix. Then

Y= (F)'DF,

with D = diag{di1, ..., dpmm} and F is lower triangular

1 0 0

fa 1 0
= fa1 fzz 1

fml fm2 fm3

Finally, consider the system of m equations

1. Z; 0
~ Y2 0 %
y = L=

~—~ ~
Tmx1 Tmxk
Um. 0 O

so that the model can be represented as

y=42p+e,
where k= > k; and
€1
€2
I —=
~—
Tmx1

(1.11)
0
0
0
1
0 B
0 2
) /8 - )
~~
kx1
Zm B
(1.12)
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Under the maintained assumption of the normally distributed vector ¢ it follows that

e|l(B,F,D,Z) ~ N(0,(FY"'DF* ® Ir). (1.13)

1.4 Deriving the Gibbs Sampler
Consider a sample of m x T observations y = (y.1, ..., y.r) that are independent
over t = 1,...,T respondents but are potentially correlated over ¢ = 1,..., m events.
Given a prior density p(f3, F, D) on the parameters (3, F' and D the posterior density

is equal to

p(B, F, Dly) < p(B, F, D)p(y| 3, %), (1.14)

where p(y|6,%) = [1—, p(y.|5,%) is the likelihood function. Define y; = (Yut, Yor),
where y, and y,; are selection and outcome variables with some of the y,;’s missing.
In this representation the evaluation of the likelihood function is computationally in-
tensive from a classical perspective. Albert and Chib (1993) developed an alternative
Bayesian framework that focuses on the joint posterior distribution of the parameters

and the latent data p(f3, F, D, 91, ..., yr|y). It follows then that

p(8,F,D,yly) o< p(B, F,D)p(y|B, L)p(yly, 8,%) (1.15)

= p(B, F, D)p(HlB3, L)p(yly).

It is possible now to implement a sampling approach and construct a Markov chain
from the distributions [y.|y., 5,2 (t < T), [Bly,y, %] and [F, Dy, y, 3].

With unrestricted F' or D matrix the multivariate probit model is not identi-
fied. The observed outcomes y,; for respondent ¢ depend only on signs but not mag-

nitudes of the latent data ;. In a multivariate probit model with m equations only
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m(m — 1)/2 parameters in the variance matrix are identified. Consider the following
transformation of the model F'y, ~ N(F'Z,;3, D), where D is some unrestricted diag-
onal matrix. The latent regression has the form F'y, = F'Z,3+D"/?c;, where € ; is m-
variate normal with a zero mean vector and an m x m identity variance matrix. How-
ever, pre-multiplying this equation by o > 0 results in aF'y; = F'Z,(a3) + aDY?¢,
which is the same model corresponding to the same observed data y;. Since the pa-
rameters in D'/? cannot be identified, D is set to identity matrix extending the logic
from the univariate probit model in Greene (2003).'®

The posterior density kernel is the product of the priors and the augmented
likelihood in equation (1.15).!2 The parameters in 3 and F' are specified to be inde-
pendent in the prior. Let the prior distribution for 3 be normal ¢ (3|83, B with
the location vector 3 and the precision matrix B.

It is convenient to concatenate the vectors below the main diagonal in /' matrix

as

Fvector - )

Fm,mfl

where Fji.,,; for i = 1,...,m — 1 represents elements from ¢ 4+ 1 to m in column i.

180bserve that this is not sufficient for identification and later I give an example from
Meng and Schmidt (1985) when the model is not identified with two equations.

9The term “augmented likelihood” emphasizes the fact that the likelihood includes latent
variables.
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The prior distribution of Fj..0r is assumed to be (m(”;_l))—variate normal

Fyector ~ N(F H™. (1.16)

=—wvector’) ==

In this expression F is the prior mean of the normal distribution, and the prior

vector

variance matrix H ! is block-diagonal with

ﬂQ:mQ:m 0 0
0 HS:m,S:m 0
H=
0 0 Ce ﬂl,l

This precision matrix has (m — 1) x (m — 1) matrix H,,, 5., in the upper left corner

and the matrix dimension is decreasing by one in each consequent block on the main

diagonal. The lower right matrix H, ; is a scalar. The posterior density kernel is now

|B|'/? eXp{ - %(6 — B)B(3 - @} (1.17)
1
|ﬂ’l/2 eXp { - §(Fvect0r - Evectm‘),—<FU€Ct0T - Evector)}
T
1 - ~
D HQXP{ - 5(3/.15 ~ ZB)S (W — Ztﬁ)}l(y_t € By).
t=1

A Gibbs sampler is constructed by drawing from the following conditional
posterior distributions: the vector of coefficients (3, the Fj.cor from the variance
matrix decomposition and the latent vector 7, for each respondent ¢t < 7.2

In a typical iteration the Gibbs sampler initiates by drawing the vector of the

coefficients 3 conditional on F,.., and y; obtained from the previous draw. The

20 Appendix A.1 provides complete details of the Gibbs sampler derivation.
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posterior distribution of # comes from the posterior density kernel and is normal

BI(@, %) ~ Nu(8IB, B, (1.18)

where B = B+ Y0, Zx"'Z and B = B (BB + Y, Z/X"'5,). In this last
expression it is understood that for each t | y; € B;.
To obtain the conditional posterior distribution of F', an alternative expression

for the density of ¥ is useful:

T
Pl 5. F.D) o (82 [ e { = 50— 2657 @~ 20) M@ e B
t=1

T
1 _
— |FD'F[T/? Hexp{ - §5QFD’1F’5t}[(y.t ¢ By)

= HHeXp{ =5 5“+F+1m25m+1m)2}

t=1 i=1
m 1 T
= Z'llexp{ 5; 8tz+F+1m1€tz+1m>2}7 (1.19)

where for each t , y; € B;. In this derivation the restriction D = I,,, is already imposed.

Then the posterior conditional distribution of Fje.0r is also normal

— -1

Fvector| (?/, g; ﬁ) ~ N( m(m—l)) (Fvectoﬂ H ) (120)

2

The conditional posterior normal distribution has the posterior precision matrix

T /
Zt:l €t725m€t72:m 0 toe 0

T /
0 > Et3mE3m 0

Sl
I
=
_|_

T /
O 0 T Zt:l 8t:’nlg:t,’fn
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The posterior mean of the normal distribution is equal to

T
> =1 Et2mEr

T
— 1 — 1 Zt:l 5t,3:m€t,2
Fvector =H ﬂ E -

T

Finally, the latent data y; are drawn independently for each respondent ¢t < T
from the truncated multivariate normal distribution as described in Geweke (1991).
The algorithm makes draws conditional on Z;, § and F' as well as y; obtained in
the previous draw. The multivariate normal distribution is truncated to the region
defined by the m x 2 matrix [a, b] with a typical row i equal to (0, 00), if y; = 1 and
(—00,0) if y;; = —1. If y; is not observed, then row i is (—00, 00).

Thus, this work extends Chib and Greenberg (1998) in the following two ways:
(i) it permits missing outcome variables 3y, and (ii) it re-parameterizes the variance
matrix in terms of more convenient multivariate normal F, ., that is used to obtain

Y.

1.5 The Problem of Identification
Identification is an important issue in models of discrete choice. Meng and
Schmidt (1985) in their elegant article offer an excellent treatment of identification
in a bivariate probit model under various levels of observability. Meng and Schmidt
(1985) rely on the general principle in Rothenberg (1971) that the parameters are
(locally) identified if and only if the information matrix is nonsingular. In particular,

their Case Three: Censored Probit is very similar to the following bivariate sample
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selection model: the binary variable of interest yo; is observed for respondent ¢ only
if she is selected in the sample (y;; = 1).2

Let F* = F(Z181, Zatfo; f21) specify the bivariate normal cumulative distri-
bution function and ®(Z,/3,) specify the univariate standard normal cumulative dis-
tribution function with A = 1,2 for respondent ¢. Recall that the sign of y;; perfectly

predicts y; and one can write

p(yly) = Hf@u > 0)1(y2e > 0)I(y1e = 1)1 (y2e = 1)

t=1

(Y1 > 0) 1 (yar < 0)L (y2e = 1)1 (y2r = —1) + I(g1r < 0) I (y1; = —1).

The likelihood function in the bivariate model can be obtained after I integrate over

y in the following way

[ a3 D= [ o0l 0. 2615515 = [ pulDpEIs. D)5
B B B
T o0 o0
= I(y1e > 0)I(yor > 0)(y1e = 1)1 (yor = 1)
tl_[l/_oo /_OO [ 1 9 1 9
+1 (g1 > 0)(gar < 0)I(y1e = 1)I(y2r = —1) + I(y1e < 0)I (14 = —1)
'f(Zuﬂl, Lot Bo; f21)d§1td?72t

T o o0
11 / / (20 = DI(ysr = 1) fodiiredijo
=1 0 0

T 0 -
+t1:[1/_oo (/0 Iy = 1)1 (yor = _1)f2d§1t> dyay
T 0
! 11 /—oo I(y1e = —1)p(Zu 1) dy

(1.21)

21T employ different parametrization of the variance matrix and, thus, the parameters
have to be scaled to be comparable with Meng and Schmidt (1985).
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T
=[] F(Zupr, ZuBa; for)" D070
t=1

[@(Z1uB1) — F(ZviBr, Zoufa; for)) W=D =)

1= @(Zy )] =1,

where f = f(Z1401, Zot[32; f21) is bivariate normal density function and ¢(-) is uni-

variate normal density function. Define ¢;; = y“;l for i = 1,2 and take the natural
logarithm of this expression to obtain
In L(Z151, Zafa; f) = (1.22)
T
[QItQQt InF" + gqu(l = goe) In[®(Z1,61) — F'1 4+ (1 — qu¢) In[1 — (I)(Zuﬁl)]]a
t=1

which is equivalent to equation (6) in Meng and Schmidt (1985) except for the cor-
relation coefficient p being replaced by the parameter fy, that enters F* as defined
below equation (1.11). The general conclusion reached by Meng and Schmidt (1985)
is that the parameters in this model are identified except in certain “perverse” cases.
First of all, peculiar configurations of the explanatory variables may cause noniden-
tification, but this problem can be addressed only given the data at hand. Second,
nonidentification may be caused by certain combinations of parameters in the model.

For example, the censored bivariate probit model with my parametrization is not

identified when Z;6, = —fa1 Zoy B9 for all respondents ¢t and I show this result in

VI1+f3

Appendix A.2.22 The information matrix is then singular because the row for the

22 Another example of nonidentification given in Meng and Schmidt (1985) is when there
are only intercepts included in all equations. While such a model cannot be used in a
meaninful way for economic analysis, it provides an interesting limiting case when all the
covariate coefficients go to zero.
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second intercept (i.e. for (k; + 1)th term) is the last row (i.e. for the parameter fo;),
divided by a constant. In this particular example the problem of nonidentification
does not arise as long as the set of explanatory variables is not the same in two
equations.

Meng and Schmidt (1985) comment that there might also be other combina-
tions of parameters or particular configurations of explanatory variables leading to
nonidentification. Since it is not possible to foresee all such problems a priori, it is the
responsibility of the researcher to check if the parameters in the model are identified.
However, it is very reassuring that the sample selection model is generally identified,

except in some (not very likely) cases.

1.6 Experiments with Artificial Data

The purpose of the experiment with artificial data is to study if the model
can retrieve the parameters and the correlation coefficient that are used to generate
the data when some of the outcome variables are missing. It is also of interest to
assess the convergence properties of the model. I construct the following bivariate
probit model with sample selection. Let yo; be the dichotomous dependent variable
of interest that is observed only if the selection variable yy; is equal to 1.

For this experiment I generate t = 1,...,500 independent latent variables
(U1¢, Y2r)" from the bivariate normal distribution with mean p; = [Z1,5; \/ngl, Zoyfa, ],
where a 1 x 3 vector Z;; contains intercept, one discrete and one continuous variable

as described below and ;= [5;1 fi2 B3] for i = 1,2. Each equation contains the
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intercept denoted (3; 1, continuous variable [3; 5 and discrete variable [3; 3. Continuous
variable in each equation is drawn from the normal distribution with y = —0.5 and
o = 2. Discrete variable takes values of —1 and 1 with equal probability. All contin-
uous and discrete variables are independent from each other. The coefficients used
to generate the artificial data are provided in the second column of Table 1.1. The
correlation coefficient is set to 0.5 with the corresponding value of fo; ~ —0.5774.

Finally, the 2 x 2 covariance matrix is the same for all respondents and is set to

L+ f3 —fa
—fa 1
Observe that the true parameters of the first equation are multiplied by \/rf%l
and in each simulation I normalize the draws of 3, by \/ngl obtained in the
same draw. After I obtain the 500 x 2 matrix of the latent variables y, I convert it
into the matrix of “observed” dichotomous dependent variables y which is used in the
simulator. The coefficients that were chosen place approximately one third in each of
the three bins (yes, yes), (yes,no) and (no, missing).

The implementation of the Gibbs sampler is programmed in the Matlab en-
vironment with some loops written in C language. All the codes successfully passed
the joint distribution tests in Geweke (2004). The results in this section are based
on 24,000 draws from the posterior (the first 6,000 draws were discarded as burn-in
iterations). The prior for i = 1,2 vector of coefficients [3;  is mutlivariate normal with
the mean vector set to zeros and the variance matrix equal to the identity matrix of

dimension 3. The prior for fy; is standard normal distribution.
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The results of the experiment are shown in Figures 1.1-1.3 and Table 1.1.%3

The simulator works quite well in this experiment with low autocorrelation and sta-
ble results with histograms centered almost at the values of the parameters used to
generate the data. Geweke’s convergence diagnostic test (Geweke 1992) does not in-
dicate problems with the convergence of the Markov Chain. The only slight problem
is that the mean of the correlation coefficient p in the sample obtained from the joint
posterior distribution (0.23) is somewhat lower than the value of 0.5 used to obtain

the artificial data but it still belongs to the 95% highest posterior density interval.

1.7 Concluding Remarks

This chapter develops a sample selection model for discrete or mixed continuous-
discrete outcomes with multiple outcome and selection equations. To facilitate the
estimation of a resulting multivariate probit model, a Bayesian reformulation in terms
of latent variables is extended from the Chib and Greenberg (1998) paper that of-
fers a convenient simulation procedure aimed at resolving the problems of evaluating
the integral of multivariate normal density by classical methods. The essence of the
method is to jointly simulate the parameters and the latent variables from conditional
posterior distributions using a Markov Chain Monte Carlo algorithm. If there is any
unobserved heterogeneity for each agent t, it is properly accounted for as a part of
the disturbance terms by the covariance structure of the variance matrix resulting

from a joint estimation of a system of equations.

2To obtain some of the statistics I used the MATLAB program momentg.m by James
LeSage.
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Figure 1.3: Posterior distribution — correlation coefficient.

This chapter also makes two technical advances to the Chib and Greenberg
(1998) setup by (i) adding some missing binary responses and (ii) simplifying the
estimation of the variance matrix via a multivariate normal representation of the
elements in the lower triangular matrix from the Cholesky factorization of X7t 1
also discuss how the results on identification in Meng and Schmidt (1985) apply in
the bivariate probit model with sample selection.

In addition to introducing the multivariate probit model with sample selection,
this chapter also offers some interesting topics for further research. In particular, it
might be of interest to further study the identification in the case of three and more
equations, which clearly depends on the selection rule into a sample. The likelihood
is different in each particular case and extensive study of this topic along the lines of

Meng and Schmidt (1985) may be rewarding. Alternatively, some of the potentially



Table 1.1: Statistics based on posterior distribution
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Coefficient True Value Posterior mean Posterior std NSE CD
Bia 2 2.0470 0.1902 0.0068 -0.6033
B2 1 0.9994 0.0912 0.0034 -0.5040
Bi3 1 0.9036 0.1090 0.0032 -0.5625
B2 1 1.2122 0.1707 0.0076 -0.3340
Ba.2 1 1.0834 0.1299 0.0076 -0.2923
a3 1 1.1042 0.1509 0.0075 -0.3694
p 0.5 0.2332 0.1709 0.0069 -0.3500
Note: “True Value” — stands for the true value, “Posterior std” — posterior
standard deviation, “NSE” — numerical standard error (4% autocovariance
tapered estimate), “CD” — test statistics for Geweke’s convergence diagnos-
tics.

interesting topics in empirical health and labor economics outlined in the introduction

can be done with little (or no) modification of the model in this chapter.
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CHAPTER 2
SAMPLE SELECTION AND THE PROBABILITY OF STROKE
AMONG THE OLDEST AMERICANS

2.1 Introduction

In this chapter I apply the multivariate probit model of sample selection de-
veloped in the first chapter to study the risk factors associated with stroke among
the oldest Medicare-eligible Americans. The problem of missing data often com-
plicates empirical work based on survey data in health economics and other social
sciences. From a theoretical perspective, statistical methods typically assume that
all the information is available for the observations included in the sample and, as
such, the majority of statistical textbooks have little to say about how to deal with
missing data (Allison 2001). From an empirical point of view, most survey data
sets are characterized by global non-response when respondents refuse to participate,
missing item-specific information for a particular respondent or attrition when some
respondents are lost over time.

Given the severity of the issue, it is not surprising that many different methods
have been developed to mitigate the problem of missing data. The choice of appro-
priate methods depends on assumptions of the underlying missing data mechanisms.
For the purposes of this chapter, missing data mechanisms can be defined by the
following three classes: data missing completely at random, data missing at random

and models of sample selection.!

IData are said to be missing completely at random if the probability of missing data on
any variable is independent of the value of any variable in the data set. In this case it is
sufficient to exclude any observations with missing data and estimate the model by any of



39

In this chapter I use the data from the Survey on Assets and HEAIth Dynamics
among the Oldest Old (AHEAD). AHEAD is a large and nationally representative
sample of Americans 70 years old or older at the time of their baseline interviews
in 1993-1994. In 1998 AHEAD was merged with the Health and Retirement Study
(HRS) to provide a common longitudinal data set (Leacock 2006). The HRS is
sponsored by the National Institute of Aging (grant number NIA U01AG009740) and
is conducted by the University of Michigan.

The issue of selection came up as a part of a larger study of health services

2 Professor Wolinsky and his colleagues at The

use by the oldest old Americans.
University of Iowa are among a handful of research groups that are approved to
link the HRS/AHEAD survey data to a restricted data set of respondents’ Medicare
claims. This gives me a unique possibility to work with a very rich data set not
available to many other researchers.

This data set is particularly convenient for research purposes as it allows an
investigator to identify changes in the health status of Medicare eligible respondents,
from their Medicare claims, for up to 12 years after the baseline interviews in 1993-
1994. 1 broadly follow Wolinsky et al. (2009) in the way of defining selection of
AHEAD respondents into the sample used in the empirical analysis. First of all,

the AHEAD analytic sample is limited to participants that allowed access to their

Medicare claims. Medicare claims are used to find out if a person has experienced

the available methods.

2National Institute on Aging: Health and Health Services Use in the HRS/AHEAD, NIH
grant R0O1 AG-022913 to Professor Fredric Wolinsky.
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stroke after the baseline in 1993-1994. The second restriction is that a person should
not be in managed care at the baseline (and she is censored out if she enrolls past
baseline). Selection occurs here because managed care plans do not have the same
data reporting requirements as fee-for-service Medicare plans. Thus, selection may be
a serious issue when dealing with the AHEAD data as only 5,983 respondents out of
7,367 who have complete data on independent variables meet both selection criteria.?

In the current application to health economics, it is of interest to model the
risk factors associated with the probability of stroke among the AHEAD respondents
prior to death or enrollment into managed care in up to 12 years after the baseline.
This morbid event places a substantial burden on elderly Americans and identifying
the key risk factors should reduce this burden as it informs health care professionals
about specific prevention steps that can be targeted. The occurrence of stroke can be
verified only if a person allowed linkage to her Medicare claims and she is not enrolled
into managed care. If either of these two conditions is violated for respondent ¢, then
the data on whether a health event occurred is missing. In order to obtain consistent
coefficient estimates it is necessary to account for the missing data in the AHEAD
analytic sample.

One way to proceed is to assume that data are missing at random and apply

one of propensity score, multiple imputation or maximum likelihood (ML) methods

3Wolinsky et al. (2009) also exclude proxy respondents because they do not have survey
data on their cognitive status. Proxy status does not prevent a researcher from obtaining the
information on stroke occurrence. In addition, the total number of people in the AHEAD
data set is slightly higher (7,447 respondents) in Wolinsky et al. (2009). Respondents that
have some missing independent variables (80 people) were excluded from the sample in the
current chapter.
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to account for this type of missing data.*

This chapter uses re-weighting of observations based on propensity scores as
in Wolinsky et al. (2009). The estimated probabilities of inclusion into the analytic
sample can be obtained for all 7,367 AHEAD respondents from a multivariate logistic
regression. The predicted probabilities are then divided into deciles and the average
participation rate P (i.e., the percent of respondents in the analytic sample in each
decile) is determined. The inverse of participation rate can now be used to re-weight
the observations in the probit equation for stroke that is estimated only for 5,983
respondents in the analytic sample. This procedure accounts for ignorable selection
if data are missing at random because it gives higher weight to participants that are
more similar to those who are not included.’

It turns out that accounting for ignorable selection by using this propensity
score method makes almost no difference in significance of the coefficients in the probit
equation for the probability of stroke among the oldest old Americans.® It might be
hard to say a prior: how realistic is the assumption of data missing at random. This

calls for some alternative selection mechanism, the underlying assumption of which

4Data are missing at random when the probability of missing data on variable Y is
independent of the value of Y after controlling for all other variables X in the analysis
P(Y missing|Y, X) = P(Y missing|X). If, in addition, parameters governing missing data
process are unrelated to the parameters that are estimated, the missing data mechanism is
ignorable (Allison 2001).

5This is just one of a myriad of propensity score methods with some others reviewed in
D’Agostino (1998), Rosenbaum and Rubin (1983) and Rubin (1979).

6This follows from comparing the point estimates in the univariate probit models esti-
mated by maximum likelihood with and without reweighting by propensity scores.
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may be tested.

In the first chapter of this dissertation I consider an alternative sample selec-
tion model using the multivariate probit setup in Chib and Greenberg (1998). This
model extends Heckman’s (1979) classic Fconometrica paper on sample selection to
the case when the outcome variable of interest is discrete. The Bayesian model in the
first chapter extends the multivariate probit setup in Chib and Greenberg (1998) as
it (i) permits missing outcome variables in the outcome equation and (ii) simplifies
the parameterization of the variance matrix. The joint posterior distribution is ob-
tained from combining the priors and augmented likelihood function based on latent
(unobserved) variables. The simulation from this posterior distribution is made by
means of Gibbs sampler, as described in the first chapter of the dissertation.”

[ implement the model using g-prior (Zellner 1986) and perform prior pre-
dictive analysis as described in Geweke (2005) to learn if the model and the priors
impose any unreasonable restrictions on the outcome. Prior predictive analysis in-
dicates that the parameterization in the sample selection model allows virtually any
outcome in the stroke equation. This implies that the prior is non-restrictive and the
model is adequate for current purposes. The MCMC algorithm demonstrates good
convergence properties, which makes it applicable in other empirical studies with a
binary outcome variable. The sample selection model also does not indicate serious

selection issues in the AHEAD data, which is consistent with my earlier model based

"Gibbs sampler iteratively draws from the full set of conditional distributions that have
recognizable form conditional on the draws obtained in the previous run of the sampler.
Geweke (2005) provides extensive explanation on this topic.



43

on propensity scores. Thus, relaxing the assumption from ignorable to non-ignorable
selection does not detect additional sources of selectivity from unobserved variables.

This chapter is organized as follows. Section 2.2 introduces the AHEAD data
set and the analytic sample as well as defines dependent and explanatory variables.
Section 2.3 lays out the propensity score method based on the assumption of data
missing at random and reports the results of univariate probit estimations for the
observed AHEAD subsample using different weights. Section 2.4 deals with the prior
predictive analysis and reports the results from the multivariate probit model. The

last section concludes the discussion.

2.2 The Probability of Stroke in the AHEAD Data

In the current application I study the risk factors associated with the probabil-
ity of stroke in the presence of possible sample selection in the AHEAD data set. The
Asset and HEAlth Dynamics among the Oldest Old (AHEAD) started as a distinct
data survey in 1993 and was merged in 1998 with the Health and Retirement Study
(HRS) to provide a common longitudinal data set. The original AHEAD cohort can
be identified in the current HRS data set, and it includes Americans born between
1890 and 1923 who have been interviewed in 1993, 1995, 1998 and every two years

thereafter as a part of the present HRS study. As noted in Servais (2004, p. 1),
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“The study paints an emerging portrait of an aging America’s physical and mental
health, insurance coverage, financial status, family support systems, labor market

status, and retirement planning.”

Stroke among older Americans is a frequent and severe health event that often
has devastating health consequences. Wolinsky et al. (2009) cite the following facts
about the severity of the effects that stroke has on the health and assets of older
Americans: (i) 780,000 Americans experienced stroke (first-ever or recurrent) in 2005;
(ii) 150,000 people died from their stroke, making stroke the third leading cause of
death in the US; (iii) a mean lifetime cost of a stroke is projected to reach $140,000
per stroke patient.® The first step in reducing the burden of this health event lies
in identifying the stroke risk factors so that the necessary intervention points can be
targeted.

The model of sample selection with dichotomous dependent variables devel-
oped in the first part of this thesis is applied to the sample selection equation and
outcome equation (whether a respondent has had a stroke). Respondent ¢ is selected
into the sample if (i) she has allowed access to her Medicare claims and (ii) she has
not been enrolled into managed care at the baseline interview in 1993-1994. Medicare
claims are used to identify whether stroke occurred after the baseline. Managed care
plans do not have the same data reporting requirements as fee-for-service Medicare

plans. If either condition is violated, the data on stroke occurrence is missing because

8For the sources of these and other stroke related facts please refer to Wolinsky et al.
(2009).
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there is no reliable way of identifying whether this morbid event has happened. The
AHEAD data are characterized by the following outcomes for T' = 7, 367 respondents
who have complete data on independent variables:

Sample selection equation. Is respondent selected into sample?

Yes =1  Medicare claims and not in managed care (5,983 respondents),
Yit =
No = —1 If either condition violated (1,384 respondents).

The outcome (whether stroked occurred) is observed only for the 5,983 respondents
that are selected into a sample:
Outcome equation. Has a stroke occurred to respondent t after the baseline

interview?
4

Yes =1  if a stroke occurred (606 respondents),
Yot = 9 0 missing, if the occurrence cannot be verified (1,384 respondents),

No = —1 if a stroke did not occur (5,377 respondents).

\

This work follows the Wolinsky et al. (2009) definition of high sensitivity low speci-
ficity stroke (minimal false negatives but excessive false positives) as an indicator for
the occurrence of a stroke.”

The full AHEAD sample in Wolinsky et al. (2009) includes 7,447 respondents,

80 of whom were excluded here due to some missing independent variables.!”

9Throughout this study of stroke I borrow the data definitions from the paper by Wolin-
sky et al. (2009).

19These include 77 observations with missing body mass index and 3 observations with
missing smoker status. One way to extend the current model is by endogenizing missing
independent variables.
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The independent variables can be organized in the following broad categories
as in Wolinsky et al. (2009):

- Sociodemographic factors — age, gender, race, marital status

- Socieconomic factors — education, income, number of health insurance poli-
cies, neighborhood safety

- Residence characteristics — population density, region of the US, type of
residence

- Health behavior factors — body mass index, smoking and drinking history

- Disease history — whether the respondent was diagnosed to have a health
condition prior to the baseline interview, the number of doctor visits in the past year

- Functional status — self-rated health, number of difficulties with Activities
of Daily Living (ADLs) and Instrumental Activities of Daily Living (IADLS).!!

The exact definitions of the independent variables, as well as their means and

standard deviations, are reported in Appendix B.1.

2.3 Results of Univariate Probit Estimation

2.3.1 Propensity Score Method
Before considering the results of the multivariate sample selection model it is
worthwhile to describe the results under the alternative assumption of data missing at

random. In particular, three univariate probit equations are estimated for the same

HTn some studies the cognitive status factors are also included in the analysis, which
are observed only for self-respondents. This chapter deals only with missing endogenous
variables, so these variables are not considered. An extension to the current model may
endogenize missing independent variables. Proxy status does not prevent the researcher
from observing the occurrence of stroke.
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independent variables as in the multivariate case, but the sample is restricted only
to the individuals that have data on stroke occurrence. These equations include un-
weighted observations, observations weighted by WT'RNORM , which is the centered
respondent weight from HRS, and, finally, observations weighted by WT'RNORM /P,
where P is the average participation rate as explained below. WT RNORM adjusts
for the unequal probabilities of selection due to the multi-stage cluster and over-
sampling of African Americans, Hispanics, and Floridians. The minimum weight in
my sample is 0.238 and the maximum value is 2.857.12

The dependent variable in these models is whether or not a stroke occurred,
Yo, which now can take only values of “Yes=1" and “No=-1" and is observed only if
11t = 1. The explanatory variables for the stroke equation include all those found to
be significant in the Wolinsky et al. (2009) paper (with some modifications), as well
as some additional variables.

The propensity score is the conditional probability of being assigned to a
risk group, given the observed covariates. To estimate the propensity scores, some
identifying assumptions about the distribution of the selection binary variable must
be adopted. Once the propensity score is estimated, it can be used to reduce bias
through matching, stratification, regression adjustment or some combination of the
above (D’Agostino 1998, Rosenbaum and Rubin 1983, Rubin 1979).

This chapter follows Wolinsky et al. (2009) in the way of using propensity

12The distribution of WT'RNORM is skewed to the right with a 5! percentile equal to
0.517 and the 95" percentile of 1.592.



Table 2.1: The results of univariate probit for stroke (unweighted)

Parameter Coefficient Standard Error y? p-value
Intercept -2.030 0.368 < 0.001
Age 0.004 0.004 0.354
Men -0.049 0.052 0.342
African American 0.105 0.068 0.124
Hispanic 0.112 0.104 0.284
Widowed 0.071 0.053 0.180
Divorced/Separated -0.111 0.109 0.306
Never Married 0.210 0.125 0.093
Religion not Important 0.089 0.072 0.219
Grade School -0.054 0.057 0.343
College -0.085 0.057 0.133
Mobile Home 0.014 0.095 0.883
Multiple Story Home 0.085 0.047 0.073
BMI 0.009 0.005 0.072
Diabetes 0.147 0.066 0.026
Heart 0.071 0.051 0.160
Hypertension 0.105 0.046 0.024
Previous Stroke 0.384 0.070 < 0.001
Poor Self-Rated Health 0.075 0.075 0.317
Fair Self-Rated Health 0.096 0.056 0.083
ADL Sum -0.028 0.030 0.345
[ADL Sum -0.003 0.025 0.910
Picking up a Dime 0.143 0.079 0.069

Note: “Coefficient” stands for the coefficient estimate, “Standard
Error” — for the standard error of the estimate and “y? p-value” —
for the p-value of the chi-square test that the coefficient is zero.
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scores to adjust for ignorable selection. A multivariable logistic regression model
of inclusion in the analytic sample is estimated for all 7,367 AHEAD participants
that have no missing explanatory variables. Predictors include all of the available
independent variables as well as some interaction terms. The resulting model is
used to estimate the predicted probabilities of being in the analytic sample. The
predicted probabilities are then divided into deciles and the average participation
rate P (i.e., the percent of respondents in the analytic sample in each decile) is
determined. The original AHEAD weights WT'RNORM are re-weighted by the
inverse of participation rate (1/P) and then re-scaled so that the sum of weights
equals the number of participants in the analytic sample. This procedure gives greater

influence to participants in the analytic sample most like those not included.

2.3.2 The Probability of Stroke

Table 2.1 reports the results of univariate probit with unweighted observations
for the stroke equation. The probability of stroke increases for respondents that were
never married, living in multiple story home, of those with higher body mass index,
of patients with diabetes, hypertension and previous stroke at the baseline, for people
that reported fair self-rated health and having difficulty picking up a dime. These
results somewhat differ from findings in a recent paper by Wolinksy et al. (2009)
because I used slightly different definitions of the independent variables.

The results of univariate probit with observations reweighted by propensity
score are given in the last three columns of Table 2.2. In terms of significant predictors

of stroke there are certain differences with the case of unweighted probit. Widowed
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respondents and patients with prior heart disease are more likely to have a stroke,
while body mass index is no longer a significant predictor. The reader might think
that accounting for missing data by using propensity scores changed the results. In
fact, all the differences come from using HRS weight WT' RNORM as the first three
columns in Table 2.2 indicate. Indeed, the same risk factors remain significant and
even their estimates are very close. It seems that the HRS team did a really good job
in terms of developing the WT RNORM weight and there is virtually no difference
if those weights are adjusted by propensity scores.

Judging from those comparisons it follows that accounting for ignorable selec-
tion in the AHEAD data does not substantially affect the estimates in the univariate
probit equation for the probability of a stroke. The next model I consider — the bi-
variate probit model with sample selection — is based on a less restrictive assumption

of non-ignorable selection.

2.4 Sample Selection Model

The multivariate probit model with sample selection is developed in the first
chapter of this dissertation. The Gibbs sampler is run over the full conditional set
of posterior normal distributions for the coefficient vector (3, the element of variance
matrix decomposition F' and the multivariate truncated normal distribution for each
respondent t. The explanatory variables in the stroke equation are the same as in
the univariate probit models above. It is believed that socioeconomic characteristics
and place of living affect the probability of being selected into a sample. Functional

status variables are included in both equations. The convergence properties of the
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Table 2.2: The results of univariate probit for stroke using two weights

Model Weights WTRNORM WTRNORM/P
Parameter Coef. St.er. x? p-value Coef. Ster. x? p-value
Intercept -1.973 0.375 < 0.001 -1.865 0.374 < 0.001
Age 0.003 0.004 0.566  0.001 0.004 0.823
Men -0.035 0.053 0.502 -0.030 0.053 0.570
African American 0.107 0.077 0.162 0.113 0.076 0.136
Hispanic 0.138 0.122 0.255 0.132 0.119 0.267
Widowed 0.104 0.055 0.056  0.119 0.055 0.029
Divorced /Separated -0.011  0.111 0.918 -0.004 0.110 0.968
Never Married 0.242 0.122 0.046 0.238 0.122 0.051
Religion not Important  0.115 0.072 0.108 0.097 0.071 0.176
Grade School -0.064 0.059 0.277 -0.065 0.059 0.269
College -0.069 0.056 0.220 -0.063 0.056 0.259
Mobile Home -0.004 0.100 0.970 0.013 0.098 0.896
Multiple Story Home 0.111 0.047 0.018 0.118 0.047 0.013
BMI 0.008 0.005 0.102  0.008 0.005 0.120
Diabetes 0.162 0.067 0.016 0.159 0.067 0.017
Heart 0.097 0.051 0.058 0.101 0.051 0.048
Hypertension 0.112 0.047 0.017 0.119 0.047 0.011
Previous Stroke 0.354 0.072 < 0.001 0.349 0.072 < 0.001
Poor Self-Rated Health  0.062 0.078 0.425 0.051 0.078 0.513
Fair Self-Rated Health ~ 0.131 0.056 0.019 0.129 0.056 0.020
ADL Sum -0.022  0.031 0.479 -0.017 0.030 0.571
IADL Sum -0.016  0.027 0.546 -0.015 0.026 0.558
Picking up a Dime 0.150 0.079 0.059  0.160 0.080 0.046

Note: “Coef.” stands for the coefficient estimate, “St.er.” — for the standard error

of the estimate and “x? p-value” — for the p-value of the chi-square test that the
coefficient is zero. The first three columns use WTRNORM and the last three

columns use WT'RNORM /P as weights.
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correlation coeflicient are not affected even if the same set of variables is used in both

equations.

2.4.1 Prior predictive analysis

Before the estimation can proceed, it is necessary to set the prior hyperparam-
eters for the vector of coefficients 3 as well as F' used for variance decomposition. One
way to achieve this is by means of prior predictive analysis, as described in Geweke
(2005). The purpose of prior predictive analysis is to ascertain the prior distribution
of functions of interest that are relevant to the problem.

In the current setup, prior predictive analysis can accomplished by means of
forward simulation for iterations n = 1,..., N from the prior distributions of parame-

ters

g~ N(,B™) (2.1)

F™ ~ N(F,H™)

as well as the data y(tn ) for respondents t < T'. To obtain the latter the latent data

g}{tn ) are first drawn from the untruncated multivariate normal distribution

7~ N (2,8, ([F™]) Y (F™)7L). (2.2)

(

After that, the latent data gjtn) are converted to binary data y ") , taking into account
the selection rule into the sample. That is, if yg?) is equal to “-1” (i.e. Medicare

claims are not available for respondent ¢ or she has been enrolled in managed care at

the baseline) then yé?) (if stroke occurred) is missing and set to zero.
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Figure 2.1: Proportion of stroke from prior predictive analysis

In each panel the scatterplot shows the proportion of stroke in different risk groups for 1000
independent draws from the prior — the observed value is the intersection of the vertical
and horizontal lines. For each of 1000 draws from the prior, I generate the sample of 7367
artificial observations of the dependent variables. Each point represents the sample statistic
in one of those 1000 samples.

After repeating the forward simulation N times, it is possible to look at the

prior distribution of functions of interest h(y). Forward simulation can reveal de-
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Figure 2.2: Means and correlation coefficients from prior predictive analysis

Top panel shows the sorted means for the observed probability of stroke in each of 1000
iterations sorted in ascending order. Bottom panel shows the sample correlation coefficients
with responses converted into -1,0 and 1 sorted in the ascending order. The horizontal line
represents the observed value in both cases. For each of 1000 draws from the prior, I
generate the sample of 7367 artificial observations of the dependent variables. Each point
represents the sample statistic in one of those 1000 samples.
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ficiencies in the model if the distribution of h(y) coincides poorly with the prior
beliefs about this function. In general, prior predictive analysis interprets the model
specification in terms of observables that are usually easier to understand than the
parameters themselves (Geweke 2005). If there any deficiencies in the model, then
prior hyperparameters may be adjusted or a new specification can be chosen.

A set of prior hyperparameters should not be informative in the sense that
it should not favor any particular outcome a priori. On the contrary, prior should
allow for a wide array of reasonable outcomes without ruling out any result that is
remotely plausible. Prior should not also impose any unreasonable restrictions on the
distributions of functions of interest h(y). For example, if the prior distribution of the
probability of stroke assigns a 100% chance of a stroke for females in all N simulations,
then the prior hyperparameters or the model are not adequate and must be changed.
On the other hand, if in some proportion of simulations all, some or no females
experience a stroke, then the model and the prior parameters can be adopted. In the
current setup it is a prior belief that, conditional on the set of exogenous variables,
there is a reasonable probability that the outcome could be either “-1” or “+1” for
virtually any respondent in the sample.

The model hyperparemeters are set using g-prior (Zellner 1986) for the variance
matrix B~'. In particular, B~' is block diagonal with each block i = 1,2 defined
as gp - (Z!Z;)7! of the corresponding dimension k; X k;. In this expression Z; is a
T x k; set of explanatory variables in equation 7. The prior variance for F is set

equal to H ' = gy - I(m—1)/2- One simple reason to use this prior is to reduce a



o6

rather large number of parameters to only three hyperparameters which facilitates
prior predictive analysis and estimation. A more subtle and fundamental reason is to
ensure the sensible magnitudes of variances for continuous wversus binary covariates
that constitute the majority in the data set.

I set the prior means for # and F' to 0. When the prior is specified as above,
the problem is reduced to choosing only two hyperparameters gg and gy. I found
that with gg = 5 and gy = 9, this g-prior is relatively non-informative in the sense
that it allows for virtually any plausible outcome for the functions of interest h(y).
Three functions of interest h(y) are considered: the proportion of stroke occurrences
in different risk groups, correlation coefficient for the discrete outcomes y(tn ) in two
equations and the mean predicted value of y(tn ) in the stroke equation.

All the results that follow are the prior probabilities based on 1000 simulations
from the prior distributions. Again, the prior should not rule out any plausible
outcome implying that each function h(y) should have prior range that is wide enough
to incorporate the observed outcome as well as almost any other reasonable value.
Figure 2.1 shows that the proportion of strokes in various risk groups takes values in
the range from almost 0 to almost 1. Similarly, Figure 2.2 indicates that the prior (i)
allows sufficient variability in the average probability of stroke in the sample and (ii)
is consistent with a variety of correlation patterns between the observed outcomes.
Table 2.3 shows that the empirical 95% interval from the prior distribution ranges
from almost 0 to almost 1 in various risk groups, but always includes the observed

proportion.
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Table 2.3: The prior probability of stroke in various risk groups

Parameter Observed h(y°) P 'h(y°)] 25 % 97.5%
Age 69-74 0.089 0.105 0.059  0.939
Age 85+ 0.086 0.087 0.054  0.945
Men 0.094 0.122 0.055  0.937
Women 0.107 0.159 0.060 0.939
Prior Stroke 0.185 0.282 0.054  0.956
Heart Disease 0.120 0.185 0.057 0.938
African American 0.127 0.195 0.050 0.945
Race White 0.096 0.137 0.061 0.939

Note: The second column represents the observed proportion of
stroke in the corresponding risk group. The third column is the
fraction of 1000 iterations from the prior distribution that were less
than the observed proportion A(y°). The last two columns are cor-
respondingly the values of h(y) that leave 2.5% and 97.5% of 1000
iterations below.

These figures and table show that the outcome observed in the AHEAD data
is well accommodated by the selected prior. It is also the case that the prior is not

restrictive, as it is consistent with a variety of other plausible outcomes.

2.4.2 Results of multivariate probit
The results reported herein are based on 50,000 Gibbs iterations (after drop-
).13

ping the first 20% burn-in iterations

The results do not show any problems with stability if the Gibbs sampler is

131 describe the implementation of the algorithm in the first chapter. It takes between 7.4
and 7.8 seconds to obtain 1,000 draws from the Gibbs sampler when I use MATLAB 7.6.0
(R2008a) with a 64-bit Windows Vista operational system. I use Dell Precision workstation
with a dual-quad core processor Intel(R) Xeon (R) E5430 @ 2.66 GHz and a Memory (RAM)
of 8.00 GB.
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run 500,000 times.!* Consider Table 2.4 with the ' parameter and the corresponding

p coefficient which is constructed as

: —F(y
p(j) = i) >. - (2.3)
V1+ F(j)
for each iteration j = 1,...,60,000.'> The t-ratio reported in column 4 does not

have the same interpretation as in classical econometrics but it can be used as a
quick guidance on whether the coefficient’s highest density posterior interval (HDPT)

contains zero.

Table 2.4: The results of 50,000 Gibbs draws for F' and p

Parameter pmean  pstd t-ratio  Geweke’s CD
F 0.8171 0.0433 18.8907 0.3694
P -0.6321 0.0201 -31.4981 -0.3609

Note: “pmean” and “pstd” stand for the posterior mean
and standard deviation of the sample from 50,000 Gibbs
draws (not including 20% initial burn-in draws), “t-ratio” is
their ratio and “Geweke’s CD” stands for Geweke’s (1992)
convergence diagnostic statistics.

Tables 2.5 and 2.6 report the results for the coefficients in the stroke and
selection equation correspondingly.!® The Geweke’s (1992) convergence diagnostic

test does not indicate any convergence problems in any of the coefficients in the two

1The results are not reported, in order to save space, but are available upon request.
15The formula for p can be obtained from the variance matrix given my parameterization.

16The coefficients in the first (selection) equation are normalized by /1 + F2(j) in each
draw j = 1,...,60,000 to have variances comparable with the second equation.
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Table 2.5: The results for 3 coefficients (stroke equation)

Parameter pmean pstd t-ratio Geweke’s CD
Intercept -0.841 0.239 -3.523 0.570
Age 0.001 0.003 0.464 -0.030
Men -0.028 0.033 -0.839 -0.777
African American 0.060 0.046 1.325 -0.637
Hispanic 0.085 0.067 1.261 0.347
Widowed 0.041 0.034 1.207 0.307
Divorced /Separated -0.031 0.068 -0.462 -0.424
Never Married 0.104 0.084 1.227 -0.178
Religion not Important  0.061  0.047  1.305 -0.292
Grade School -0.023  0.038 -0.609 -0.833
College -0.038 0.037 -1.022 -0.661
Mobile Home 0.018 0.061 0.299 0.851
Multiple Story Home 0.041 0.031 1.320 0.391
BMI 0.003 0.003 1.030 -1.271
Diabetes 0.076  0.045 1.709 -0.276
Heart 0.029 0.033 0.880 -0.390
Hypertension 0.046 0.030 1.513 0.873
Previous Stroke 0.196 0.049 3.988 -0.055
Poor Self-Rated Health  0.025 0.050 0.497 0.917
Fair Self-Rated Health ~ 0.043 0.036 1.192 -0.564
ADL Sum -0.014 0.021 -0.675 -0.896
[ADL Sum 0.011  0.017 0.640 0.255
Picking up a Dime 0.066 0.054 1.231 -0.173

Note: “pmean” and “pstd” stand for the posterior mean and stan-
dard deviation of the sample from 50,000 Gibbs draws (not including
10,000 initial burn-in draws), “t-ratio” is their ratio and “Geweke’s
CD” stands for Geweke’s (1992) convergence diagnostic statistics.

equations. It appears that the multivariate probit model with sample selection works
well in terms of its convergence properties.

A closer look at the posterior means in Table 2.5 shows that they are often
about half of the mean obtained in Table 2.1 for the coefficients significant at the 10%

level. This indicates the strong prior centered at zero — it places the posterior means
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Table 2.6: The results for 3 coefficients (selection equation)

Parameter pmean pstd t-ratio Geweke’s CD
Intercept 0.359 0.213 1.683 -0.282
Grade School -0.018 0.031 -0.557 1.094
College 0.035 0.032 1.107 0.931
Income Zero 0.377 0.259 1.454 -0.696
Log of Income 0.031 0.016 1.968 0.053
Home Value Zero -0.084 0.190 -0.440 0.428
Log of Home Value -0.007 0.017 -0.384 0.403
# of Health Insurance Policies 0.049 0.022 2.231 -0.649
Long Term Care Insurance -0.045 0.039 -1.132 -0.339
Neighborhood Safety Poor/Fair  0.006 0.036 0.174 -0.717
Population over 1,000,000 -0.184 0.027 -6.751 0.061
Northeast region of US 0.034 0.036 0.950 -1.596
North Central region of US 0.020 0.032 0.627 -0.025
West region of US -0.028 0.039 -0.722 -0.075
ADL Sum 0.002 0.016 0.150 -1.481
IADL Sum -0.031  0.014 -2.296 0.292
Fall 0.029 0.029 1.010 -1.225

Note: “pmean” and “pstd” stand for the posterior mean and standard de-
viation of the sample from 50,000 Gibbs draws (not including 10,000 ini-
tial burn-in draws), “t-ratio” is their ratio and “Geweke’s CD” stands for
Geweke’s (1992) convergence diagnostic statistics.

approximately half the way from the estimates obtained using only the data. This
observation is confirmed by the prior sensitivity analysis. As I start relaxing the prior
by setting gg to 10, 100 and 1,000, I find that the posterior mean of F' decreases to
0.633, 0.439 and 0.337 correspondingly. The posterior standard deviation increases
at the same time to 0.045, 0.089 and 0.157. Table 2.7 shows how the correlation
coefficient p changes with gg. The posterior means of the coefficients in the stroke
equation are getting closer to those in Table 2.1 as gg increases. Thus, prior sensitivity

analysis reveals that prior drives most of the results even though it is not restrictive,
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Table 2.7: The results of 50,000 Gibbs draws for p.

Parameter pmean  pstd t-ratio  Geweke’s CD
g =1 -0.9057 0.0082 -110.8968 -2.7330
g =10 -0.5341 0.0272 -19.6113 -1.0393
gs =100  -0.3988 0.0677 -5.8886 -0.8000
g = 1000 -0.3500 0.1299 -2.6944 -0.4746

Note: “pmean” and “pstd” stand for the posterior mean
and standard deviation of the sample from 50,000 Gibbs
draws (not including 20% initial burn-in draws), “t-ratio” is
their ratio and “Geweke’s CD” stands for Geweke’s (1992)
convergence diagnostic statistics.

as it was shown by the prior predictive analysis.

An interesting question is why the prior plays such an important role in the
stroke application. One possible reason is that most of the independent variables
are also binary: only age, body-mass index and self-reported income measures are
continuous and even those are not always important predictors in stroke or selec-
tion equation. Experiments with artificial data show that variation in continuous
covariates is indeed important for model performance.!” When I perform principal
component analysis for each of the six groups of explanatory variables, I find that the
first principal component explains about a quarter of the total variance, which shows
the lack of information in the independent variables.

The fact that the sample selection model with binary outcome did not find

strong selection effects in the data is consistent with two recent papers by Munkin

1"This seems to be consistent with the observation in Leung and Yu (1996), who find
that the sample selection model works well only when there is enough variation in the
independent variables.
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and Trivedi (2003) and also Preget and Waelbroeck (2006). This does not undermine
the validity of the model, which can be used to test for the presence of selection in
other applications in health or empirical economics. Thus, neither propensity score
nor sample selection model indicate serious selection issues in the AHEAD data set

when applied in the study of stroke predictors.

2.5 Concluding Remarks

This chapter considers two different methods of dealing with the problem of
missing binary outcome variable in the context of the stroke occurrence among the
oldest Americans. The propensity score model based on the assumption of data
missing at random does not generate substantial differences in the significance of the
important risk predictors compared to using WIT'RNORM weight from the HRS.
The multivariate probit model with sample selection also does not find any strong
correlation in the data when the outcome and selection equations are estimated jointly.
Thus, the main substantive contribution of the paper is that there is no evidence of
selection in the AHEAD data based on either propensity score or sample selection
model when applied in the study of stroke predictors. In addition, this work is the
first application of the multivariate probit model of sample selection, developed in the
first chapter of the thesis, to the real data set. The model shows reasonable variability

in the prior distribution of the stroke occurrence and fast convergence.
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APPENDIX A
DERIVATIONS OF RESULTS IN CHAPTER 1

A.1 Conditional Posterior Distributions
This Appendix derives the conditional posterior distributions in the Gibbs
sampler. The posterior density kernel is the product of the prior for (3, prior for

Fyector and augmented likelihood for ¢/;s

B2 exp { -

l\')l»—t

(6-B8/B(B-0)} (A1)
H

|ﬂ|1/2 exp { (FU@CtOT - Evector) (FUECtOT - Evector)}

L\DI»—t
}—l

|2~ T/QHGXP{ ~5 (Yr — ZuB)' %~ 1(%—&6)}](% ¢ By).

The three conditional posterior distributions can be obtained as follows.
(i) The conditional posterior kernel for 5 can be obtained from equation (A.1)

by collecting the terms that contain # and completing the square

pOIRG) o exp{ - 3(3B5-20B5+785)) (A2)

T
[Texo{ - 5G.5 5 - 202275, + 9257 2.8))

t=1

X exp { - %(5’(5 + i Z57 7)) — 26/ (BB + i Ztlzflfyv.t»}
t=1 t=1

1 - — —
x exp{ =58 -BBB-5)}.
where B = B + Zthl Z;>71Z, is the posterior precision and

B=B _ﬁ+ZZE

t=1

is the posterior mean for (3.
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(ii) The alternative expression for the density of ¥

p(Yly, B, F, D) HeXp{—

i=1

T
Z Etz + F+1 ngt i+1: m)Q}a (AB)
t=1

DN | —

is derived in the text. Remembering that Fyecior = [Fy.pp, 15 -5 Frry 1]’ OnE can collect

the terms in the posterior density kernel (A.1) as

m—1
1
p(FvectorW, @ X H exp{ - —(Fi+1:m,z‘ - Eiﬂ:m,i)/ﬂi(ﬂﬂzm,i - Ei+1:m,i)}(A'4)
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where H; = H; 4+ >, €1i41:mE} i+ 1.m 15 the posterior precision and

T
= ——1 -1
Fi+l:m,i = H,' ﬂi Ei—l—l:m,i - Hi Z€t,i+1sm€t,i
t=1
is the posterior mean. It is understood that H, is the ¢th element of the block-diagonal

prior precision matrix H with dimensions decreasing from (m — 1) x (m — 1) for the

first block to 1 x 1 for the last block. The final step is to organize + = 1 : m — 1
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multivariate normal distributions in the last line of equation (A.4) into one
m—1
1 — — _
p(FvectoT’ﬁ> @ X H exp { - 5 (FiJrl:m,i - FiJrl:m,i) Hz’(Fz'H:m,i - FiJrl:m,i)}
i=1
1 — — —
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which is used in the text. Since Fiector = (Fo.p 1y Faimgs o I, ) with F!

» F'm,m—1 jHlm,g T

(fj+14s > fm,) for 7 =1,...,m — 1 being the vectors under the main diagonal of F’

1 0 0 0
™0 0

(”)— n n

A I A R
SO A AR

one can construct the covariance matrix > as
Y= (F)F (A.6)

(iii) Finally, the latent data y; are drawn for each respondent ¢ < T from
the truncated multivariate normal distribution as in Geweke (1991) conditional on
Zy, 0 and F, as well as y; obtained in the previous draw. The multivariate normal
distribution is truncated to the region defined by the m x 2 matrix [a, b] with a typical
row i equal to (0,00) if y;; = 1 and (—o0,0) if y; = —1. If y; is not observed, then

row i is (—o0, 00)

A.2 Identification

Meng and Schmidt (1985) apply the general principle developed in Rothenberg

(1971), that the parameters are (locally) identified if and only if the information
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matrix is nonsingular, to the censored bivariate probit model. I extend their result
to the sample selection model with one binary selection and one binary outcome
equation.

Let 0 = [B1, [a; f21] be the vector of parameters that is used to construct the

information matrix

10 = 5[ (%55) ()] (A7)

The information matrix in the censored bivariate probit is
1(0) = C1Cy + C5Cy + CyC, (A.8)

as shown in Meng and Schmidt (1985). In this expression each matrix Clforj=1,2,6
is of dimension (2k + 1) x T" and

the tth column of Cf is —* 88—I;t

VFt
the tth column of CY is \/@;_Ft 6[<I>§B;Fd
the tth column of C§ i It

is Ve o
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After the simplification the information matrix /(€) takes the form

2
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information matrix is symmetric, I use I(; j) to denote the corresponding I; ) mirror
elements in 7(#). Some entries in the matrix are not shown to save space and take

the values as below

Ji _ (_oF 2_|_ 0%} 2wt_ 2 0% _oFt
(k1.k1) 0B k4 0Bk 2 OL—Ft 0Bk, ky OBry kg’

Ji _ OF* OF' ¢ 1 %] ort
(kK1) = 8By 1, 0821 °1  BL_Ft 9B, P21’
Z OFt 9Ft ¢+ 1 9% grt
k‘ k1) t=1 96; iy 8,327}€2 1 cbtl—Ft aﬁl,kl 8/82,k2 !
OFt 9Ft ¢ 1 0%t gpt
k+1 k1) t 1883 oy Ofa1 1 q>§_Ft BﬁLkl Ofa1’

_OFt_ QF

Loty = Eies By Ot
d7r _ oFt 2 t
an (k,k) = (85 2o > Wwi.

Consider the (k; 4+ 1)th row in the information matrix corresponding to the
second intercept and the last (k + 1)th row corresponding to the variance parameter
for. If gfi equals c+2— 35 Or - for all ¢ then the two rows are the same up to that constant
¢ which is independent of ¢. In this case the information matrix is singular and the
parameters in the bivariate sample selection model are not identified.

Meng and Schmidt (1985) show that

a_Ft B Z1 — pZa3a
T ¢(Z”ﬁ?)q)< N ) (4.9)

where ¢(-) and ®(:) are the standard univariate normal density and distribution
functions. If Zy,61 = pZs3 then this derivative is equal to ¢(Zy02)/2. They also
show that if Z1,01 = pZofa then 2 a_ = Zub) 1y my formulation p = e 1

r 2m(1-p?) V1+12

and the model parameters are not identified if 73,6, = W Lot [3o.
21




APPENDIX B
DESCRIPTIVE STATISTICS OF THE SAMPLE IN CHAPTER 2

Table B.1: Means and standard deviations of the independent variables

69

Variable Description Mean St.Dev.
Age Age at baseline 77.624  5.895
Men 1 if Men 0.393  0.488
African American 1 if African American 0.134  0.341
Hispanic 1 if Hispanic 0.055  0.228
Widowed 1 if widowed 0.407  0.491
Divorced /Separated 1 if divorced or separated 0.054  0.226
Never Married 1 if never married 0.031 0.173
Religion not Important 1 if religion not important 0.109 0.312
Grade School 1 if completed grade school 0.278  0.448
College 1 if completed some college 0.258  0.438
Income Zero 1 if income zero 0.003 0.058
Log of Income Log of (positive) income 9.737  1.040
# of Health Insurance Policies  # of policies 0.833  0.620
Long Term Care Insurance 1 if available 0.112  0.316
Neighborhood Safety Poor/Fair 1 if safety poor or fair 0.146  0.353
Home Value Zero 1 if homevalue zero 0.267  0.442
Log of Home Value Log of homevalue if > 0 8.131  4.969
Population over 1,000,000 1 if population > 1 million  0.487  0.500
Northeast region of US 1 if Northeast 0.197  0.398
North Central region of US 1 if Central 0.259  0.438
West region of US 1 if Mountain/Pacific 0.156  0.363
Mobile Home 1 if lives in mobile home 0.068  0.252
Multiple Story Home 1 if multiple story home 0.384  0.486
BMI Body mass index 25.365  4.502
Diabetes 1 if diabetes (1993) 0.127  0.333
Heart 1 if heart disease (1993) 0.288  0.453
Hypertension 1 if hypertension (1993) 0.457  0.498
Previous Stroke 1 if stroke (1993) 0.099  0.299
Poor Self-Rated Health 1 if poor self-rated health 0.134  0.340
Fair Self-Rated Health 1 if fair self-rated health 0.234 0424
ADL Sum # of difficulties 0.386  0.928
IADL Sum # of difficulties 0.487  1.110
Fall 1 if fell down 0.254  0.436
Picking up a Dime 1 if has difficulty 0.087  0.282
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