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ABSTRACT

A recent result of Salvetti and Settepanella gives, for a complexified real ar-

rangement, an explicit description of a minimal CW decomposition as well as an

explicit algebraic complex which computes local system homology. We apply their

techniques to discriminantal arrangements in two dimensional complex space and

calculate the boundary maps which will give local system homology groups given

any choice of local system. This calculation generalizes several known results; ex-

amples are given related to Milnor fibrations, solutions of KZ equations, and the

LKB representation of the braid group.

Another algebraic object associated to a hyperplane arrangement is the mod-

ule of derivations. We analyze the behavior of the derivation module for an affine

arrangement over an infinite field and relate its derivation module to that of its

cone. In the case of an arrangement fibration, we analyze the relationship between

the derivation module of the total space arrangement and those of the base and fiber

arrangements. In particular, subject to certain restrictions, we establish freeness of

the total space arrangement given freeness of the base and fiber arrangements.
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ABSTRACT

A recent result of Salvetti and Settepanella gives, for a complexified real ar-

rangement, an explicit description of a minimal CW decomposition as well as an

explicit algebraic complex which computes local system homology. We apply their

techniques to discriminantal arrangements in two dimensional complex space and

calculate the boundary maps which will give local system homology groups given

any choice of local system. This calculation generalizes several known results; ex-

amples are given related to Milnor fibrations, solutions of KZ equations, and the

LKB representation of the braid group.

Another algebraic object associated to a hyperplane arrangement is the mod-

ule of derivations. We analyze the behavior of the derivation module for an affine

arrangement over an infinite field and relate its derivation module to that of its

cone. In the case of an arrangement fibration, we analyze the relationship between

the derivation module of the total space arrangement and those of the base and fiber

arrangements. In particular, subject to certain restrictions, we establish freeness of

the total space arrangement given freeness of the base and fiber arrangements.
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CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

This thesis focuses on the topology of complex hyperplane arrangement com-

plements. A hyperplane arrangement is a finite collection of hyperplanes ((` − 1)-

dimensional subspaces) in any `-dimensional vector space. An arrangement can be

viewed as the zero locus of a defining polynomial Q(z1, . . . , z`) which is a prod-

uct of n linear forms. When the vector space is C`, the complement of the union

of an arrangement is topologically interesting. For instance, the complement of a

non-empty arrangement has non-trivial fundamental group; the pure braid groups

are an example of groups which are realizable as the fundamental group of an ar-

rangement [8]. Arrangement groups are not yet fully understood, even though there

are several interesting presentations of the fundamental group of an arrangement

available [5, 9, 17]. For example, it is not known whether an arrangement group

must be torsion free.

It is also unknown if the integral homology groups of certain covers of the

arrangement complement must be torsion free. The Milnor fiber [15] is one such

cover; it is an n-fold cyclic cover of the complement of the corresponding projective

arrangement, where n is the number of hyperplanes in the arrangement. There is

a canonical subgroup of index n of the fundamental group corresponding to this

Milnor fiber. The fibration that produces the Milnor fiber F is actually the defining

polynomial Q, which at this point is assumed to be homogeneous. This fiber turns

out to be a cyclic n-fold cover of the projectivized complement of the arrangement,

which is the base space of a restriction of the Hopf fibration h : C`+1 → P`. These

maps are shown in Figure 1.1.

Torsion in the homology of the Milnor fiber would provide an invariant of the
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Figure 1.1: Diagram of the Hopf and Milnor fibrations for A central

Figure 1.2: A diagram of a 2-arrangement with Q(A) = (x2 − 1)(y2 − 1)(x− y)

fundamental group of the original arrangement, and homology groups of covers cor-

respond to homology groups of the original space with coefficients in a local system.

To this end, we may use a combinatorial method of computing homology groups

with local coefficients developed by Salvetti and Settepanella [22]; this method uses

a finite CW complex which has the homotopy type of the complement [21] and

collapses it to a minimal CW decomposition using Morse theory.

In this thesis we look at a special family of arrangements, discriminantal

arrangements, which are of use in computing hypergeometric integrals [6]. The

simplest example of a discriminantal arrangement in dimension two is depicted in

Figure 1.2. In two dimensional space, we are able to compute all local systems for

which the free ranks of the homology groups are interesting; usually, the boundary
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maps have full rank which forces the first local homology group to be trivial, but

for certain local systems we have nontrivial first homology.

In dimensions higher than two, the problem becomes more difficult. The

special CW complex is straightforward to write down, but the process of collapsing

the complex to a minimal one and writing down the local homology boundary maps

is much more difficult.

Another opportunity for geometric analysis lies in the module of derivations

associated to the arrangement. This module may be viewed as the set of linear maps

on `-variable polynomials which satisfy the Leibniz rule and which preserve the ideal

in C[z1, . . . , z`] generated by the defining polynomial Q. Alternatively, we could view

derivations as vector fields on C` which are tangent to each of the hyperplanes in

the arrangement [16]. These derivations form a module over S = C[z1, . . . , z`].

Saito [20] discovered that this module was dual to the S-module of logarith-

mic 1-forms with poles along the variety defined by Q which was already known to

generate the cohomology algebra of the complement [1, 3]. Terao [23] found that

the modules of derivations for most of the examples of classical interest, such as

the braid arrangements and reflection arrangements, are free S-modules. However,

no one knows precisely how the topology of the arrangement complement or the

combinatorics of the arrangement and this module are related. Specifically, the

well-known Terao conjecture [25] states that the combinatorics of the arrangement,

or the way the hyperplanes intersect each other, determine the module of deriva-

tions; this remains unsolved. We do not even know if the topology determines

the structure of the module. However, several results are available which establish

ties between the module and the topology: freeness of the module of derivations

implies factorization of the Poincaré polynomial of the complement [24] (which is

computable from the intersection lattice), and freeness of the module behaves well

under certain operations on hyperplane arrangements which are used to dissect and
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understand them [23].

In many of the most interesting examples of arrangements, the complement

admits a fibration in which the base space and the generic fiber are both arrangement

complements [10]. Terao [25] showed that the existence of these fibrations comes

from the existence of modular elements in the intersection lattice of the arrangement.

1.2 Overview

In Chapter 2, we provide definitions and background information about hy-

perplane arrangement combinatorics, the Salvetti Complex, discrete Morse theory,

rank-one local systems, and the module of derivations.

In Chapter 3, we compute the Morse complex for a particular family of ar-

rangements and use this complex to compute local homology groups for any choice

of twisted coefficients. We also present several interesting examples of choices of

local systems; the resulting computations reproduce known results.

In Chapter 4, we extend the definition of freeness to affine arrangements in

vector spaces over infinite fields, and prove that an affine arrangement is free in this

sense if and only if its cone is free. Also, subject to some restrictions, we show that

in the case of an arrangement fibration, the total space arrangement is free only if

the base and fiber arrangements are free. This is a partial answer to a conjecture

first made by Falk and Proudfoot [11].
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CHAPTER 2

BACKGROUND AND DEFINITIONS

For a more complete introduction to background material, the reader is re-

ferred to Orlik and Terao’s book [16].

2.1 The Intersection Lattice

Let K be a field and let V be an `-dimensional vector space over K.

Definition 2.1.1. A hyperplane is an affine (`− 1)-dimensional subspace of V . A

hyperplane arrangement A in V (or arrangement or `-arrangement for short) is a

finite collection of hyperplanes.

A hyperplane may be thought of as the zero locus of a linear polynomial

α ∈ K[x1, x2, . . . , x`]. Unless otherwise specified, we will assume that all of the

hyperplanes contain the origin, which makes the arrangement central. Otherwise,

the arrangement is affine.

Definition 2.1.2. Given a hyperplane H in V , a defining form α ∈ K[x1, x2, . . . , x`]

for H is a linear polynomial whose zero locus is H. If A = {H1, H2, . . . , Hn} is an

arrangement, and if for 1 ≤ i ≤ n a defining form for Hi is αi, then we call

Q(A) =
∏
αi the defining polynomial of A.

We may use coning to compare affine and central arrangements.

Definition 2.1.3. Let A be an affine `-arrangement which is defined by Q =

Q(A) ∈ K[x1, . . . , x`]. LetQ′ be the polynomialQ homogenized using a new variable

x`+1. The cone of A, denoted cA, is the central (` + 1)-arrangement defined by

the polynomial x`+1Q
′. Note that cA has one extra hyperplane, which we call the

hyperplane at infinity or equivalently the additional hyperplane. Similarly, given any

central `+1-arrangement A defined by a homogeneous polynomial Q, we may define

the decone dA of A by choosing a distinguished hyperplane H0, linearly changing

coordinates in K`+1 so that the form defining H0 is x`+1, and substituting 1 for x`+1
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in the changed polynomial Q.

Example 2.1.4. LetA be an affine arrangement in C1 given byQ(A) = x(x−1)(x+

1). Then Q(cA) = x(x − y)(x + y)y. A handy way to visualize the cone/decone

is by embedding the affine `-arrangement in the hyperplane x`+1 = 1 in ` + 1-

space, drawing all of the hyperplanes spanned by the origin and each of the ` − 1

dimensional spaces, and adding the x`+1 = 0 hyperplane. This is illustrated for the

above example in Figure 2.1.

Figure 2.1: An affine C1 arrangement and its cone in C2

Example 2.1.5. We note that the polynomial obtained by deconing depends on

the choice of distinguished hyperplane. Let Q(A) = x(x + 2y)(x − 2y)y. If we

choose the hyperplane defined by y = 0 to be the distinguished hyperplane, then

Q(dA) = x(x + 2)(x − 2). However, if we decide that x = 0 is the distinguished

hyperplane, then Q(dA) = (1 + 2y)(1− 2y)y, and these polynomials are not equal

up to scalar.

Let M(A) = V − ∪Hi denote the complement of the arrangement A. In the

case that K = C and V = C`, then M(A) is an open subset of C` and is therefore

a smooth `-dimensional complex manifold.
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Definition 2.1.6. A projective arrangement is a finite collection of codimension-1

subspaces in P`.

Note 2.1.7. Another way of viewing coning and deconing is through projectiviza-

tion. If Q is a homogeneous polynomial in ` + 1 variables, then it is a well-defined

function on projective `-space P`. We use M∗ to denote the complement of the

zero set of Q in P`. Since the complement of a projective hyperplane in P` is affine

`-space K`, the complement of n + 1 hyperplanes in P` is the complement of n

hyperplanes in K`.

In the case K = C, we have that the restriction of the Hopf bundle map

p : C`+1 → P` to the complement of a central arrangement A is a trivial fiber

bundle [16], so we have

M(A) ∼= M∗ × C∗ ∼= M(dA)× C∗

This means that we can study the topology of affine, central, or projective arrange-

ment complements and frequently obtain information about the other two.

We are particularly interested in arrangements in C` whose defining forms have

all real coefficients. If this is the case, we say that the arrangement is a complexified

real arrangement. Frequently, we will draw the corresponding real arrangement

as a diagram to illustrate the combinatorics of the complexified real arrangement;

the two intersection lattices are isomorphic. See Figure 2.2 for an example of a

complexified real arrangement in C2 which is drawn in R2. Note that for complex

arrangements, codimension means complex codimension; the hyperplanes in A are

all isomorphic to C1.

Example 2.1.8. Let A`,n be the `-arrangement defined by the polynomial:

Q`,n =
∏̀
i=1

n∏
j=1

(zi − j)
∏

1≤p<q≤`

(zp − zq)

We call these arrangements discriminantal arrangements ; an example may be

found in Figure 2.1.

We wish to understand the topology of the complement M(A), and to this
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Figure 2.2: Discriminantal arrangement with ` = 2, n = 3

end, we frequently employ a geometric semi-lattice associated to the arrangement

which is a fairly powerful combinatorial invariant.

Definition 2.1.9. Let L(A) be the set of all nonempty intersections of hyperplanes

in A. Define a partial order on L(A) by reverse inclusion: X ≤ Y ⇔ Y ⊂ X.

L(A) is called the intersection lattice of A. Define a rank function on L(A) by

r(X) = codimV (X). Let r(A) := max{r(X) |X ∈ L(A)}. There are two operations

on L(A): the meet of X and Y is defined to be X ∧Y := ∩{Z ∈ L(A) |Z ≤ X,Z ≤

Y }, and the join of X and Y is defined to be X ∨ Y := X ∩ Y .

Note that r(V ) = 0 and that V is the unique element of rank 0. If A is central,

then the join of two elements always exists as a lattice element, the intersection of

all Hi is the unique element of maximal rank, and L(A) is a geometric lattice. If

r(A) = `, we say the arrangement is essential.

Definition 2.1.10. Let A be central, so the intersection lattice is a geometric

lattice. An intersection lattice element X ∈ L(A) is called modular if for all Y, Z ∈

L(A) with Z ≤ Y , we have Z ∨ (X ∧ Y ) = (Z ∨X) ∧ Y .

Modularity can be defined for an element in any geometric lattice, but in the

case of an intersection lattice for an arrangement, there is a topological interpre-

tation as well. A proof of the following lemma may be found in Orlik and Terao’s
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book [16]:

Lemma 2.1.11. Let X ∈ L(A). The following are equivalent:

1. X is modular.

2. For all Y ∈ L(A), r(X) + r(Y ) = r(X ∨ Y ) + r(X ∧ Y )

3. For all Y ∈ L(A), X ∧ Y = X + Y .

4. For all Y ∈ L(A), X + Y ∈ L.

Example 2.1.12. Let A be an arrangement in C3 defined by Q(A) = (x− y)(x−

z)(y − z)xy. Figure 2.3 shows the intersection lattice for A, where each number

i denotes the hyperplane defined by the ith form in the above expression of Q,

and concatenated numbers indicated intersections of hyperplanes. For example, 24

means H2 ∩H4.

12345

ooooooooooooooooooooooooooooooooo

yyyyyyyyyyyyyyyyyyyyyyy

����������������

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

EEEEEEEEEEEEEEEEEEEEEE

////////////////

123

,,,,,,,,,,,,,,,,

DDDDDDDDDDDDDDDDDDDDDDD

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO 145
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PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP

TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT 24

���������������

GGGGGGGGGGGGGGGGGGGGGGGGG 25

wwwwwwwwwwwwwwwwwwwwwwwww

AAAAAAAAAAAAAAAAAAAAA 34

yyyyyyyyyyyyyyyyyyyyyyy

���������������
35

pppppppppppppppppppppppppppppppppp

���������������

1

KKKKKKKKKKKKKKKKKKKKKKKKKKKKKK 2

::::::::::::::::::: 3 4

�������������������
5

ttttttttttttttttttttttttttttt

∅

Figure 2.3: L(A) when Q(A) = (x− y)(x− z)(y − z)xy
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Note that the element marked “24” is H2∩H4 which is the y-axis. This element

is not modular since 24 + 35 = H2 ∩H4 +H3 ∩H5 is the xy-plane which is the zero

set of the form z, and this form is not a factor of Q. However, it can be checked

that the bottom and top elements are always modular, as are the hyperplanes on

the next to bottom level. Also, note that the elements 123 and 145 are modular,

although this is slightly tedious to check.

Sometimes there is a maximal chain of modular elements in the lattice:

Definition 2.1.13. Let A be an arrangement with r(A) = ` (so A is essential).

Then A is called supersolvable if there exists a maximal chain of modular elements

V = X0 < X1 < · · · < X` = {0}

If X is modular, then Terao [25] found that the orthogonal projection map

which collapses X down to the origin turns out to be a fiber bundle projection map,

where the base space is the complement of a central r(X)-arrangement and the

generic fiber is the complement of an affine (`− r(X))-arrangement. In particular,

if X has rank `−1 or is a one-dimensional subspace, then each fiber of the projection

mapping is the complex line C with a fixed number of points removed.

Supersolvability also has an interesting topological interpretation. The follow-

ing definition is due to Falk and Randell [10]:

Definition 2.1.14. 1. The arrangement {0} in C1 is a fiber-type arrangement.

2. Suppose that, after suitable linear coordinate change, projection to the first

(` − 1) coordinates is a fiber bundle projection M → M ′, where M ′ is the

complement of a fiber-type arrangement in C`−1. Then A is a fiber-type ar-

rangement.

Theorem 2.1.15. [25] A hyperplane arrangement is fiber-type if and only if it is

supersolvable.

This theorem establishes a strong tie between combinatorics and topology of

arrangements. Note that the arrangement in Example 2.1.12 is supersolvable since
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∅ ≤ 1 ≤ 123 ≤ 12345 and these elements are all modular.

2.2 Discrete Morse Theory on the Salvetti Complex

If A is a complex arrangement, then the complement of A admits a minimal

CW decomposition; this was found independently by Dimca and Papadima [7] and

Randell [19]. Salvetti [21] discovered a CW decomposition for the complement of

a complexified real arrangement which is easy to define and use, but it is far from

minimal. Yoshinaga [26] used the Lefschetz hyperplane section theorem to describe

attaching maps for a minimal decomposition of the complement which did not rely

on the Salvetti complex or the combinatorics of the arrangement. Then, in their

2007 paper, Salvetti and Settepanella [22] described a way to collapse Salvetti’s

complex to a minimal one in order to more easily compute local homology. Their

method makes use of combinatorial Morse theory; for a user-friendly introduction

to the topic, see papers by Forman [12, 13].

We remark that if A is a complexified real arrangement, then the correspond-

ing real arrangement can help us determine certain topological invariants. In partic-

ular, we may be able to compute invariants which are combinatorially determined,

such as betti numbers, since the real and complex arrangements have identical

combinatorics. Salvetti and Settepanella’s technique (and even the definition of the

Salvetti complex itself) relies heavily on the corresponding real arrangement.

The technique described below may be summarized in the following steps:

1. Define the face poset S and the Salvetti complex S.

2. Give a total ordering on S using polar coordinates.

3. Use the ordering to define a combinatorial Morse function on S.

4. Use the combinatorial gradiant field from the Morse function to collapse S to

a minimal decomposition.
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Assume, then, that A is a complexified real arrangement with corresponding

real arrangement AR.

Definition 2.2.1. Let X ∈ L(AR) be any intersection lattice element. A face of

AR is a connected component of M(AXR ), where

AXR = {X ∩H |H ∈ AR, X * H, and X ∩H 6= ∅}

is the restriction of AR to X. Let

S := {F k}

be the stratification of R` into codimension-k facets F k (connected components of

intersection lattice elements). Then S has a partial ordering

F i ≺ F j ⇔ F i ⊃ F j

We call S the face poset of AR.

Theorem 2.2.2. [21] There is a CW complex (called the Salvetti complex) with the

homotopy type of M(A) and whose k-cells correspond bijectively with pairs [C ≺ F k]

where C is a chamber (or 0-face) in S and F k ∈ S.

A cell [C ≺ F k] is in the boundary of [D ≺ Gj] if and only if F k ≺ Gj and

the chambers C and D are contained in the same chamber of the subarrangement

{H ∈ AR |F ⊂ H}.

Notation 2.2.3. Given a chamber C and a facet F , denote by C.F the unique

chamber containing F in its closure and lying in the same chamber as C in the

subarrangement {H ∈ AR |F ⊂ H}. Given two facets F and G, the notation

C.F.G shall be read as (C.F ).G.

In using the real arrangement AR to do Morse theory, we will need to describe

points in R` using polar coordinates. The coordinate changes are as follows:
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ρ =
√
x2

1 + · · ·+ x2
`

cos2(θ1) =
x2
1

x2
1+···+x2

`

...
...

...

cos2(θi) =
x2
i

x2
i+···+x2

`

...
...

...

cos2(θ`−1) =
x2
`−1

x2
`−1+x2

`

By convention, for any point x = (x1, x2, . . . , x`) and any i with xi = · · · =

x` = 0, we set θi = 0.

Notation 2.2.4. Let

Vi(θ̄i, . . . , θ̄`−1) := {P = (ρ, θ1, . . . , θ`−1) | θi = θ̄i, . . . , θ`−1 = θ̄`−1}

By convention, we let ρ = θ0 if necessary. This space is an i-dimensional open

half-subspace of R`. We will denote by |Vi(θ̄)| the linear span of Vi(θ̄).

Definition 2.2.5. A system of polar coordinates in R`, defined by an origin O and

a basis e1, . . . , e` is generic with respect to the arrangement AR if it satisfies the

following conditions:

1. the origin O is contained in a chamber C0 of AR;

2. there exists δ ∈ (0, π/2) such that the union of the bounded facets is contained

in the open cone

B̃(δ) := {P = (ρ, θ1, . . . , θ`−1) ∈ R` | θi ∈ (0, δ)∀ 1 ≤ i ≤ n− 1, ρ > 0}

3. subspaces Vi(θ̄) = Vi(θ̄i, . . . , θ̄`−1) which intersect the closure of B̃ are generic

with respect to AR, in the sense that, for each k-codimensional subspace

L ∈ L(AR),

i ≥ k ⇒ Vi(θ̄) ∩ L ∩ clos(B̃) 6= ∅ and dim(|Vi(θ̄)| ∩ L) = i− k

Example 2.2.6. Let A be a real 2-arrangement given by Q = (3x − y − 5)(x −

3)(x − y − 1). Suppose we choose standard polar coordinates, so the origin is at
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(0, 0) and our orthonormal basis is v1 = (1, 0),v2 = (1, 0). Then the origin is in an

unbounded chamber of A, and the union of the bounded facets of A is contained

in an open cone B̃(π/3). However, V1(π/4) does not intersect the hyperplane H

defined by the form x − y − 1, so these coordinates fail to be generic. See Figure

2.4.

δ=π
3

v1

V1(π
4

)

H

Figure 2.4: Non-generic polar coordinates in R2

These generic polar coordinates always exist; in fact, genericity is an open

condition in R`, in the sense that the set of points of R` with respect to which there

exists a choice of polar coordinates which is generic is open in R`.

Now, a total order on S will be calculated which is induced by these polar

coordinates. Given a codimensional-k facet F ∈ S, and given θ = (θi, . . . , θ`−1)

with θj ∈ [0, δ] for all j = i, . . . , `− 1, denote by

F (θi, . . . , θ`−1) := F ∩ Vi(θ)

We allow (θi, . . . , θ`−1) to be empty; in this case F (∅) = F ∩ V`. Note that by

genericity conditions, if i ≥ k then F (θ) is either empty or it is a facet of codimension

`− (i− k) (with respect to R`) contained in Vi(θ).

Also, for any facet F (θ), let

iF (θ) = min{j ≥ 0 |Vj ∩ F (θ) 6= ∅}

where Vj is the linear subspace generated by e1, . . . , ej.
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Definition 2.2.7. Given any facet F (θ) (assume that F (θ) 6= ∅), let the minimum

vertex PF (θ) be the unique 0-dimensional facet in its boundary which satisfies the

following:

1. If iF (θ) ≥ i (meaning F (θ) ∩ Vi−1 = ∅), then PF (θ) is the unique vertex such

that

θi−1(P ) = min{θi−1(Q) |Q ∈ F (θ)}

2. If iF (θ) < i, then the point PF (θ) is either the origin O or it is the unique one

such that

θiF (θ)−1(P ) = min{θiF (θ)−1(Q) |Q ∈ F (θ) ∩ ViF (θ)
}

The uniqueness of this vertex is implied by the genericity conditions. We will

associate to the facet F (θ) the n-vector of polar coordinates of PF (θ)

Θ(F (θ)) := (θ0(F (θ)), . . . , θiF (θ)−1(F (θ)), 0, . . . , 0)

Definition 2.2.8. Given F,G ∈ S, and given θ̄ = (θ̄i, . . . , θ̄n−1), 0 ≤ i ≤ n,

θ̄j ∈ [0, δ] for j ∈ i, . . . , n− 1, (θ̄ = ∅ for i = n) such that F (θ̄), G(θ̄) 6= ∅, we set

F (θ̄) CG(θ̄)

if and only if one of the following cases occurs:

1. PF (θ̄) 6= PG(θ̄). Then Θ(F (θ̄)) < Θ(G(θ̄)) according to the anti-lexicographic

ordering of the coordinates (i.e., the lexicographic ordering starting from the

last coordinate).

2. PF (θ̄) = PG(θ̄). Then either

(a) F (θ̄) is a vertex, but G(θ̄) is not.

(b) neither F nor G is a vertex. Let i0 := iF (θ̄) = iG(θ̄).

i. If i0 ≥ i, then one can write

Θ(F (θ̄)) = Θ(G(θ̄)) = (θ̃0, . . . , θ̃i−1, θ̄i, . . . , θ̄i0−1, 0, . . . , 0)
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Then, for all ε, 0 < ε� δ, it must happen that

F (θ̃i−1 + ε, θ̄i, . . . , θ̄i0−1, 0, . . . , 0) CG(θ̃i−1 + ε, θ̄i, . . . , θ̄i0−1, 0, . . . , 0)

ii. If i0 < i, then one can write

Θ(F (θ̄)) = Θ(G(θ̄)) = (θ̃0, . . . , θ̃i0−1, 0, . . . , 0)

Then, for all ε, 0 < ε� δ, it must happen that

F (θ̃i0−1 + ε, 0, . . . , 0) CG(θ̃i0−1 + ε, 0, . . . , 0)

This relation is irreflexive and transitive, so we have

Theorem 2.2.9. The relation C is a total ordering on the facets of Vi(θ̄), for any

given θ̄. In particular, it gives a total ordering on S.

Example 2.2.10. Let A be the arrangement of Example 2.2.6, so A is defined by

Q = (3x− y − 5)(x− 3)(x− y − 1). If we choose polar coordinates for R2 with the

origin at (−13/9, 1/2) and v1 = (1, 0), then we get generic polar coordinates with

δ = arctan .9 < π/4; see Figure 2.5(a). The unbounded chamber containing the

origin intersects V0 nontrivially, and so that chamber will be marked with a 1 (note

that the minimum vertex of that chamber is the origin). There are three 1-facets and

three chambers which intersect V1 nontrivially, and so those are ordered next. Note

that chamber 3 comes before edge 4 according to condition 1 of Definition 2.2.8,

and also that edge 2 comes before chamber 3 according to condition 2a. Finally,

the vertex P1 is the minimum vertex for four different facets; those are ordered

according to condition 2b. Figure 2.5(b) shows the ordering of all facets in S.

We will use this polar ordering of facets to define a combinatorial gradient

vector field Φ over S which is the gradient of a combinatorial Morse function.

Definition 2.2.11. For j = 0, . . . , n− 1, let Φj+1 be the collection of pairs of cells

Φj+1 = {([C ≺ F j], [C ≺ F j+1]) ∈ Sj × Sj+1}

(where Sj is the j-skeleton of S) so that

1. F j ≺ F j+1
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δ

v1

P1

P2

P3

(a) Generic Polar Coordinates for A
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2

3
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15

16

17

18
19

(b) Polar Ordering for A

Figure 2.5: Polar ordering for affine 2-arrangements

2. F j+1 C F j

3. ([C ≺ F j−1], [C ≺ F j]) /∈ Φj ∀ F j−1 ≺ F j

Let Φ =
n−1⊔
j=0

Φj+1.

Theorem 2.2.12. One has:

1. Φ is a combinatorial vector field on S which is the gradient field of a combi-

natorial Morse function.

2. The pair ([C ≺ F j], [C ≺ F j+1]) belongs to Φ if and only if the following

conditions hold:

(a) F j ≺ F j+1

(b) F j+1 C F j

(c) ∀F j−1 such that C ≺ F j−1 ≺ F j, one has F j−1 C F j.

3. Given F j ∈ S, there exists a chamber C such that the cell [C ≺ F j] is the

“head” of arrow if and only if there exists F j−1 ≺ F j with F j C F j−1. More

precisely, the pair which is in Φ is ([C ≺ F̄ j−1], [C ≺ F j]), where F̄ j−1 is the

maximum (j − 1)-facet (with respect to polar ordering) satisfying

C ≺ F̄ j−1 ≺ F j, F j C F̄ j−1
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4. The set of k-dimensional critical cells is given by

Singk(S) = {[C ≺ F k] |F k ∩ Vk = ∅, F j C F k∀C ≺ F j � F k}

Equivalently, F k ∩ Vk is the maximum (in polar ordering) among all facets of

C ∩ Vk.

Corollary 2.2.13. Once a polar ordering is assigned, the set of singular cells is

described only in terms of it by:

Singk(S) := {[C ≺ F k] :

1. F k C F k+1 ∀ F k+1 s.t. F k ≺ F k+1

2. F k−1 C F k ∀ F k−1 s.t. C ≺ F k−1 ≺ F k }

We note that the integral boundary of the Morse complex generated by these

singular cells is zero, so we have minimality of this CW decomposition of the comple-

ment. We can use this minimal CW complex to combinatorially compute homology

groups with local coefficients.

2.3 Rank-One Local Systems

If X is a path-connected space having a universal cover X̃ and fundamental

group π, then given any left Z[π]-module M , we may define homology groups with

local coefficients in M . The module structure of M can come from any representa-

tion of π on M . The chain groups are Cn(X;M) := Cn(X̃)⊗π M , where Cn(X̃) is

viewed as a right Z[π]-module. The boundary maps are ∂ ⊗ Id.

In the case that we are taking a representation on Cn, we say that we have a

rank-n local system. In particular, we can choose a representation ρ : π1(M(A))→

GL1(C) = C∗, in which case we have a rank-one local system. It is known that

the fundamental group of an arrangement complement is generated by n transverse

loops around each hyperplane in the arrangement, but the fundamental group is in

general not abelian. For examples of presentations of the fundamental group see

papers by Arvola [2], Cohen-Suciu [5], Falk [9], and Randell [17] [18]. However,
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GL1(C) is abelian, so any representation chosen factors through the first integral

homology group of the complement. In effect, then, a choice of representation is

equivalent to the assignment of a non-zero complex number (which represents an

automorphism of C) to each hyperplane in A. Once a choice of complex weights is

made, we may use a minimal CW decomposition to combinatorially compute the

local homology groups.

We are interested in computing homology with local coefficients because it

tells us about ordinary homology of the Milnor fiber F = Q−1(1) of the fibration

given by Q : M(A)→ C∗. A more thorough discussion is given in a paper by Cohen

and Suciu [4]. F is a cyclic n-fold cover of the projectivized complement M∗ of the

arrangement A, where n is the number of hyperplanes in the arrangement, or the

degree of Q. Using a Leray-Serre argument on the fibration p : F → M∗, we find

that Hp(F ;C) = Hp(M
∗;H0(p−1(x0);C)), or that H∗(F ;C) = H∗(M

∗;L), where L

is a rank n local system given by a representation ρ : π1(M∗) → GLn(C). This

particular representation decomposes into a direct sum of rank-one representations

ρ =
⊕n−1

k=0 ρk, where ρk maps each generator to ξk or the kth power of a primitive

nth root of unity. We use Lk to denote the kth rank-one local system. In short, we

are interested in rank-one local systems because

H∗(F ;C) =
n−1⊕
k=0

H∗(M
∗;Lk)

2.4 The Module of Derivations

The final background notion we will need (in Chapter 4) is the module of

derivations, which we now define.

If V is an `-dimensional vector space over a field K (usually we will be working

with C` over C), then let x1, x2, . . . , x` be a basis for V ∗, and let S = S(V ∗) ∼=

K[x1, x2, . . . , x`] be the symmetric algebra of V ∗ over K. If we wish to emphasize

the dimension of V we will write S(V ∗` ).

Definition 2.4.1. We say that θ : S → S is a derivation of S if θ is multilinear
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and satisfies the Leibniz rule: θ(fg) = θ(f)g − fθ(g) for all f, g ∈ S. Let DerK(S)

be the free S-module of derivations of S.

A basis of DerK(S) may be given by the maps ∂
∂xi

for 1 ≤ i ≤ `, where ∂
∂xi

(xj) =

δij. Therefore any derivation may be written in the form f1
∂
∂x1

+ f2
∂
∂x2

+ · · ·+ f`
∂
∂x`

,

where f1, f2, . . . , f` ∈ K[x1, x2, . . . , x`].

Definition 2.4.2. Let A be a hyperplane arrangement in V with defining polyno-

mial Q. Then the module of A-derivations is defined to be

D(A) := {θ ∈ DerK(S) | θ(Q) ∈ QS}

Although D(A) is a submodule of a free S-module, it is not necessarily a free

S-module itself. We are interested in situations in which D(A) is a free S-module.

Definition 2.4.3. We say that A is free if D(A) is a free S-module.

Example 2.4.4. The module of derivations for the empty arrangement Φ` in V ` is

actually all of DerK(S), which is of course free.

The following lemma is often handy in determining whether a given derivation

is contained in D(A):

Lemma 2.4.5. [16] Let A = {H1, H2, . . . , Hn} be a central arrangement and let αi

denote the linear form which determines Hi for 1 ≤ i ≤ n. If θ ∈ DerK(S), then

θ ∈ D(A) if and only if θ ∈ D(αi) for all i. That is, θ is an A-derivation if and

only if θ(αi) is divisible by αi for all i.

Given a collection of A-derivations θ1, θ2, . . . , θ`, we will want to know if these

derivations comprise an S-module basis for D(A).

Definition 2.4.6. Let θi = fi1
∂
∂x1

+ fi2
∂
∂x2

+ · · · + fi`
∂
∂x`
∈ D(A) for 1 ≤ i ≤ `.

We may arrange the coefficient polynomials into a matrix, which we will call the

coefficient matrix :
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M = M(θ1, . . . , θ`) :=



f11 f12 · · · f1`

f21 f22 · · · f2`

...
...

. . .
...

f`1 f`2 · · · f``


The following result is due to Saito [20] and is often referred to as Saito’s

criterion:

Theorem 2.4.7. Given a central `-arrangement A, let θ1, θ2, . . . , θn ∈ D(A) with

θi = fi1
∂
∂x1

+ fi2
∂
∂x2

+ · · · + fi`
∂
∂x`

. Let M denote the ` by ` matrix of coefficient

polynomials. Then {θ1, θ2, . . . , θ`} is a basis for D(A) if and only if det(M)
.
= Q(A).

Example 2.4.8. Let A be a 2-arrangement defined by Q(A) = xy(x− y). Then

f1
∂

∂x
+ f2

∂

∂y
∈ D(A)⇔ f1 ∈ xS, f2 ∈ yS, and f1 − f2 ∈ (x− y)S

Two derivations which satisfy these conditions are x ∂
∂x

+ y ∂
∂y

(this is known as

the Euler derivation and is always in the module of derivations for any central

arrangement) and y(x−y) ∂
∂y

. Using Saito’s criterion, it is clear that these derivations

form a basis, since

det

 x 0

y y(x− y)

 = xy(x− y) = Q(A)

We note that this theorem also works for affine arrangements.
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CHAPTER 3

LOCAL SYSTEM HOMOLOGY GROUPS FOR DISCRIMINANTAL
ARRANGEMENTS

3.1 A Minimal CW -Decomposition

Let A`,n be the arrangement defined by

Q`,n =
∏̀
i=1

n∏
j=1

(zi − j)
∏

1≤p<q≤`

(zp − zq)

as in section 2.1.

In this section a system, of polar coordinates will be determined which is

suitable for application of Salvetti’s and Settepanella’s technique.

Choose

O = (n2 − 2n+ 3, 1− 1/n)

v1 = (−n2 + 3n− 3 + 1/n, n− 1 + 1/n), e1 =
v1

‖v1‖
δ = arccos

v1 ·w
‖v1‖‖w‖

, where w = (−n2 + 2n− 2, 1/2n)

as a generic polar coordinate system for A. The second basis vector e2 is

simply e1 rotated π/2 radians in the positive direction.

Example 3.1.1. When n = 2, A contains 31 facets, which are ordered as in Figure

3.1.

Example 3.1.2. When n = 2, and given the above polar ordering, the Salvetti

complex S for A has 12 critical cells (see Figure 3.1):

• 0-cells: [1 ≺ 1]

• 1-cells: [1 ≺ 2], [3 ≺ 4], [5 ≺ 6], [7 ≺ 8], [9 ≺ 10]

• 2-cells: [3 ≺ 22], [5 ≺ 12], [7 ≺ 12], [8 ≺ 18], [14 ≺ 26], [16 ≺ 26]

3.2 The Morse Complex for Local Homology

Using the critical cells obtained above, it is possible to compute the Morse

complex and compute homology with local coefficients.
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Figure 3.1: Polar Ordering for A when n = 2

Let L be the local system over M(A) where L = C, with base ring Z[π/π′].

Let O ∈ C0 be the basepoint for the fundamental group. Take as generators for the

fundamental group 2n + 1 small loops, one for each hyperplane and transverse to

it, which are composed with minimal paths from the loop to O in order to produce

representatives for 2n + 1 fundamental group elements. These generators act on

L as automorphisms, so choosing a homomorphism from π1 to Aut(C) amounts

to assigning a non-zero complex number to each hyperplane (and thus each π1

generator) in A. Denote these complex numbers as z1, z2, . . . , z2n+1, where for 1 ≤

i ≤ n, zi corresponds to the hyperplane y = i, z2n+2−i corresponds to the hyperplane

x = i, and zn+1 corresponds to the hyperplane y = x.

To simplify much of the notation and calculations that follow, define a function

f as follows:

f : {1, 2, . . . , n} × {1, 2, . . . , n} → {1, 2, . . . , 4n2 + 6n+ 3}

f(i, j) = 4n2 + 6n+ 2− 4(n(y − 1) + x)− 2

([
n(y − 1) + x

n+ 1

])
where [x] is the greatest integer that is less than or equal to x. f is a function

which assigns to (i, j) the polar ordering of the 2-facet located at x = i, y = j.
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Locally, then, the facets around a double- and triple-point in the arrangement can

be described as shown in Figure 3.2. Note that f(n, n) < f(n − 1, n) < · · · <

f(1, n) < f(n, n− 1) < · · · < f(1, n− 1) < · · · < f(1, 1).

f(i,i)

f(i,i)+1

f(i,i)+2

f(i,i)+3

f(i,i)+4

f(i,i)+5

f(i,i+1)+2

f(i,i+1)+1

f(i+1,i+1)+4

f(i+1,i+1)+3

f(i+1,i+1)+2

f(i,i)−1

f(i,i)−2

(a) Triple point

f(i,j) f(i,j)−1

f(i,j)−2f(i,j)+1f(i,j)+2

f(i,j)+3

f(i,j+1)+2 f(i,j+1)+1 f(i+1,j+1)+2

(b) Double point

Figure 3.2: Polar ordering with respect to nearby 2-facet

Definition 3.2.1. A cell [C ≺ F ] ∈ S is called locally critical if F is the maximum,

with respect to C, of all facets in the interval {F ′ : C ≺ F ′ ≺ F}.

In particular, a 0-cell in S is always locally critical, and a 1-cell [C ≺ F ] ∈ S

is locally critical if and only if C C F , since {F ′ : C ≺ F ′ ≺ F} = {C,F}.

Notation 3.2.2. Recall that galleries of adjacent chambers in A uniquely corre-

spond to positive paths in the 1-skeleton of S. Also, for each C ∈ S there exists

a unique positive path Γ(C) which connects the origin O to the vertex of S corre-

sponding to C [22].

Given an ordered sequence of (possibly not adjacent) chambers C1, . . . , Ct

let u(Ci, Ci+1) be a minimal positive path induced by a minimal gallery start-

ing in Ci and ending in Ci+1, and let u(C1, . . . , Ct) be the rel-homotopy class of

u(C1, C2)u(C2, C3) · · ·u(Ct−1, Ct).
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Let

u(C1, . . . , Ct) ∈ π1(M(A), O)

be the homotopy class of the path

u(C1, . . . , Ct) := (Γ(C1))−1u(C1, . . . , Ct)Γ(Ct)

Finally, let

u(C1, . . . , Ct)∗ ∈ Aut(L)

be the automorphism induced by u(C1, . . . , Ct).

In order to state Salvetti’s and Settepanella’s theorem on the homology of the

Morse complex, two more definitions will be needed.

Definition 3.2.3. Given a codimensional-k facet F k such that F k ∩ Vk 6= ∅, an

ordered admissible k-sequence is a sequence of pairwise different codimensional-

(k − 1) facets

F(F k) := (F
(k−1)
i1

, · · · , F (k−1)
im

), m ≥ 1

such that

1. F
(k−1)
ij

≺ F k,∀j

2. F k C F
(k−1)
ij

for j < m while for the last element F
(k−1)
im

C F k

3. F
(k−1)
i1

C · · ·C F
(k−1)
im−1

In order to compose two admissible k-sequences

F(F k) := (F k−1
i1

, · · · , F k−1
im

)

F(F ′
k
) := (F ′

k−1
j1

, · · · , F ′k−1
jl

)

it must hold that

F k−1
im
≺ F ′k

If it happens that F k−1
im

= F ′k−1
j1

, write the facet only once, so there are no repetitions

in the composition.

Definition 3.2.4. Given a critical k-cell [C ≺ F k] ∈ S and a critical (k − 1)-cell
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[D ≺ Gk−1] ∈ S, an admissible sequence

F = F([C≺Fk],[D≺Gk−1])

for the given pair of critical cells is a sequence of pairwise different codimensional-

(k − 1) facets

F := (F
(k−1)
i1

, · · · , F (k−1)
ih

)

obtained as a composition of ordered admissible k-sequences

F(F k
j1

) · · · F(F k
js)

such that

1. F k
j1

= F k

2. F
(k−1)
ih

= G(k−1)

3. C.F
(k−1)
i1

. · · · .F (k−1)
ih

= D

4. for all j = 1, . . . , h the (k − 1)-cell [C.F
(k−1)
i1

. · · · .F (k−1)
ij

≺ F
(k−1)
ij

] is locally

critical.

Notation 3.2.5. Let Seq := Seq([C ≺ F k], [D ≺ G(k−1)]) denote the set of all ad-

missible sequences for the given pair of critical cells. Let s = (F
(k−1)
i1

, · · · , F (k−1)
ih

) ∈

Seq denote an element of Seq. Let

u(s) = u(C,C.F
(k−1)
i1

, · · · , C.F (k−1)
i1

. · · · .F (k−1)
ih

)

u(s) = u(C,C.F
(k−1)
i1

, · · · , C.F (k−1)
i1

. · · · .F (k−1)
ih

)

Finally, let l(s) := h be the length of s, and let b(s) be the number of k-sequences

comprising s.

We are now ready to state Salvetti and Settepanella’s main theorem [22].

Theorem 3.2.6. The homology groups with local coefficients

Hk(M(A);L)

are computed by the algebraic complex (C∗, ∂∗) such that, in dimension k,

Ck := ⊕L.e[C≺Fk]
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where there is one generator for each critical cell [C ≺ F k] in S of dimension k.

The boundary operator is given by

∂k(l.e[C≺Fk]) =
∑

A
[C≺Fk]

[D≺Gk−1]
(l).e[D≺Gk−1]

where the incidence coefficient is given by

A
[C≺Fk]

[D≺Gk−1]
:=
∑
s∈Seq

(−1)l(s)−b(s)u(s)∗

For the arrangement A given in Section 2, then:

1. C0 is generated by one 0-cell, {[1 ≺ 1]}.

2. C1 is generated by 2n+ 1 1-cells: {[2m+ 1 ≺ 2m+ 2] : 0 ≤ m ≤ 2n}.

3. C2 is generated by n2 + n 2-cells:

{[f(i+ 1, j + 1) + 2 ≺ f(i, j)] : 1 ≤ i, j ≤ n− 1}

∪{[f(i+ 1, i+ 1) + 4 ≺ f(i, i)] : 1 ≤ i ≤ n− 1}

∪{[2j + 1 ≺ f(n, j)] : 1 ≤ j ≤ n}

∪{[4n+ 3− 2i ≺ f(i, n)] : 1 ≤ i ≤ n}

Lemma 3.2.7. For n ≥ 2, ∂1(l.e[2m+1≺2m+2]) = z1z2 · · · zm(1 − zm+1)l.e[1≺1], for

1 ≤ m ≤ 2n.

Proof. An admissible sequence for the pair ([2m+ 1 ≺ 2m+ 2], [1 ≺ 1]) is obtained

as a composition of admissible 1-sequences

F(F 1
j1

) · · · F(F 1
js) = (F 0

i1
, · · · , F 0

ih
)

such that

1. F 1
j1

= 2m

2. F 0
ih

= 1 and 2m+ 1.F 0
i1
. · · · .F 0

ih
= 1

3. ∀1 ≤ l ≤ h the 0-cell [2m+ 1.F 0
i1
. · · · .F 0

il
≺ F 0

il
] is locally critical

Note that admissible 1-sequences only exist for F 1 such that F 1 ∩ V1 6= ∅, so

admissible 1-sequences only exist for facets 2, 4, 6, . . . , 2n. Also, recall that 0-cells

are always locally critical and that C1.C2 = C2 for any two chambers C1, C2.
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For the 1-facet 2m+ 2, there are two choices for F(F 1
j1

): (2m+ 1) and (2m+

3, 2m+ 1). If m = 0, then no further compositions need to be made. Otherwise, in

order to compose F(F 1
j1

) with some F(F 1
j2

), the facet F 1
j2

must satisfy:

1. 2k − 1 ≺ F 1
j2

2. F 1
j2
∈ {2, 4, 6, . . . , 2n} (so that F(F 1

j2
) will exist)

No repeats are allowed in the F 1
jl

. This implies that F 1
j2

= 2m, and F(F 1
j2

) =

(2m+ 1, 2m− 1) or (2m− 1). Therefore, F(F 1
j1

)F(F 1
j2

) = (2m+ 3, 2m+ 1, 2m− 1)

or (2m+ 1, 2m− 1).

Repeat this process m times. There are ultimately two admissible sequences:

s1 = (2m+ 3, 2m+ 1, . . . , 1) u(s1) = u(2m+ 1, 2m+ 3, 2m+ 1, . . . , 1)

s2 = (2m+ 1, 2m− 1, . . . , 1) u(s2) = u(2m+ 1, 2m+ 1, 2m− 1, . . . , 1)

l(s1) = m+ 2 b(s1) = m+ 1

l(s2) = m+ 1 b(s2) = m+ 1

u(s1) is the homotopy class of the path which is the composition of minimal

positive paths from 1 to 2m + 3 to 2m + 1 to . . . to 1, and this is the same as the

homotopy class of the composition of the first m+ 1 generators of π1. This implies

that u(s1)∗ = z1 · · · zm+1. Similarly, u(s2)∗ = z1 · · · zm.

Therefore, A
[2m+1≺2m+2]
[1≺1] = z1 · · · zm(1− zm+1).

Note that if z1 = z2 = · · · = z2n+1 = 1, then H0(M(A),C) is isomorphic to C.

Otherwise, if zi 6= 1 for any i, then

∂1

(
1

z1 · · · zi−1(1− zi)
.e[2i−1≺2i]

)
= 1.e[1≺1]

and H0(M(A),C) is trivial.

Now ∂2 must be calculated. Let [C ≺ f(i, j)] denote a critical 2-cell in S,

where 1 ≤ i, j ≤ n. Depending on the values of i and j, C can take one of three
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forms: f(i + 1, j + 1) + 2, f(i + 1, j + 1) + 4, or 2m + 1. Unless i = j, the polar

ordering of C is uniquely determined, and its numeric value will not be important.

Claim 3.2.8. Given [C ≺ f(i, j)], there are up to two types of admissible sequences

pertaining to the pair ([C ≺ f(i, j)], [2k + 1 ≺ 2k + 2]), where 1 ≤ k ≤ 2n:

1. There are admissible sequences of the form

F(f(i, j))F(f(i, j + 1)) · · · F(f(i, i))

F(f(i+ 1, i+ 1)) · · · F(f(N,N))F(f(N + 1, N)) · · · F(f(n,N))

where N = min{k + 1, n}, if and only if j ≤ i ≤ n− 1 and i ≤ k ≤ n

2. There are admissible sequences of the form

F(f(i, j))F(f(i, j + 1)) · · · F(f(i, N))F(f(i+ 1, N)) · · · F(f(n,N))

if and only if one of the following holds:

(a) j − 1 ≤ k ≤ n− 1

(b) k = 2n+ 1− i

(c) k = i = n

Proof. Let i, j, k be given. Since F 2
j1

= f(i, j), the last 1-facet F 1
im in F(f(i, j))

must have lower polar order than f(i, j), and F 1
im ≺ F 2

j2
, it must hold that F 2

j2
=

f(i + 1, j), f(i, j + 1), or f(i + 1, i + 1) in the case i = j. The same holds true for

each F 2
jl

, provided those 2-facets exist.

Suppose a portion of a sequence of 1-facets is equal to

. . .F(f(i, j))F(f(i+ 1, j))F(f(i+ 1, j + 1)) . . .

Then the last 1-facet of F(f(i, j)) must be f(i, j)− 1, so C.F 1
i1
. · · · .(f(i, j)− 1) =

f(i, j)− 2 or f(i+ 1, j+ 1) + 2. Barring repeats in the list of 1-facets, there are two

admissible 1-sequences to choose from (4 in the case i = j) and all of them result

in non-locally critical 1-cells, making the sequence inadmissible. For example, in

Figure 3.1, if F(f(i, j))F(f(i + 1, j))F(f(i + 1, j + 1)) = F(26)F(22)F(12), the
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last 1-facet of F(26) is 25, so C.F 1
i1
. · · · .25 = 14 or 24, but [24.23 ≺ 23], [24.13 ≺

13], [14.23 ≺ 23], [14.13 ≺ 13] are all non-locally critical. The same argument holds

for sequences containing strings of the form F(f(j−1, j))F(f(j, j))F(f(j+1, j+1))

or F(f(i, i))F(f(i+ 1, i+ 1))F(f(i+ 1, i+ 2)).

Now, assume that there exists an admissible sequence of the form

F(f(i, j))F(f(i, j + 1)) · · · F(f(i, i))

F(f(i+ 1, i+ 1)) · · · F(f(N,N))F(f(N + 1, N)) · · · F(f(n,N))

Assume i < N (otherwise the sequence is identical to the admissible sequence of

the second type). Then j ≤ i ≤ n − 1 and i ≤ k ≤ n + 1. Suppose k = n + 1,

however. Then N = n, so the last two admissible 2-sequences in the composition

are F(f(n − 1, n − 1))F(f(n, n)), and the last 1-facet in F(f(n − 1, n − 1)) must

be f(n, n) + 3. There are then four possibilities for F(f(n, n)) (again, eliminating

repeats):

[(f(n, n) + 2).(f(n, n) + 1) ≺ f(n, n) + 1]

[(f(n, n) + 2).(f(n, n) + 5).(2n+ 4) ≺ 2n+ 4]

[(f(n, n) + 4).(f(n, n) + 1) ≺ f(n, n) + 1]

[(f(n, n) + 4).(2n+ 4) ≺ 2n+ 4]

But these are all non-locally critical, contradicting the admissibility of the sequence.

Therefore, k ≤ n.

Assume that there exists an admissible sequence of the form

F(f(i, j))F(f(i, j + 1)) · · · F(f(i, N))F(f(i+ 1, N)) · · · F(f(n,N))

Then i ≤ N = min{k + 1, n}. If N = n, then k + 1 ≥ n and one of three cases

happens: either k = n− 1, k = n, or k = 2n + 1− i for some i. If k = n− 1, then

it must hold that j − 1 ≤ k. If k = n, then i = n, otherwise an argument similar

to those above shows that the sequence violates the fourth condition of Definition

3.2.4 whenever i < n = k. Finally, if N = k+1, then k ≤ n−1, and since j−1 ≤ k,

the conditions are all satisfied.
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Now let i, j, k be given such that j ≤ i ≤ n− 1 and i ≤ k ≤ n. Then

(f(i, j + 1) + 1, f(i, j + 2) + 1, . . . , f(i, i) + 1,

f(i+ 1, i+ 1) + 3, f(i+ 2, i+ 2) + 3, . . . , f(N,N) + 3,

f(N,N)− 1, f(N + 1, N)− 1, . . . , f(n− 1, N)− 1, 2k + 2)

is an admissible sequence for the given pair.

Let i, j, k be given such that j − 1 ≤ k ≤ n− 1. Then

(f(i, j + 1) + 1, f(i, j + 2) + 1, . . . , f(i, N) + 1,

f(i, N)− 1, f(i+ 1, N)− 1, . . . , f(n− 1, N)− 1, 2k + 2)

is an admissible sequence for the pair.

If i, j, k are such that k = 2n+ 1− i or k = i = n, then

(f(i, j + 1) + 1, f(i, j + 2) + 1, . . . , f(i, n) + 1, 2k + 2)

is an admissible sequence for the pair.

It remains to calculate Seq([C ≺ F k], [D ≺ G(k−1)]) along with the induced

coefficient A
[C≺Fk]

[D≺Gk−1]
for each pair of critical cells which satisfies at least one of the

above conditions.

First, assume that ([C ≺ F k], [D ≺ G(k−1)]) satisfies the first condition of

Claim 3.2.8 but not the second, so j ≤ i ≤ n − 1 and k = n. If j < i, then there

are four admissible sequences:

1. (f(i, j + 1) + 1, f(i, j + 2) + 1, . . . , f(i, i) + 1,

f(i+ 1, i+ 1) + 3, f(i+ 2, i+ 2) + 3, . . . , f(n, n) + 3, 2n+ 2)

2. (f(i, j + 1) + 1, f(i, j + 2) + 1, . . . , f(i, i) + 1,

f(i, i) + 3, f(i+ 1, i+ 1) + 3, . . . , f(n, n) + 3, 2n+ 2)

3. (f(i, j) + 1, f(i, j + 1) + 1, . . . , f(i, i) + 1,

f(i+ 1, i+ 1) + 3, f(i+ 2, i+ 2) + 3, . . . , f(n, n) + 3, 2n+ 2)

4. (f(i, j) + 1, f(i, j + 1) + 1, . . . , f(i, i) + 1,
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f(i, i) + 3, f(i+ 1, i+ 1) + 3, . . . , f(n, n) + 3, 2n+ 2)

These admissible sequences induce the following four galleries:

1. (C, f(i, j + 1)− 2, f(i, j + 2)− 2, . . . , f(i, i)− 2,

f(i+ 1, i+ 1) + 2, f(i+ 2, i+ 2) + 2, . . . , f(n, n) + 2, 2n+ 1)

2. (C, f(i, j + 1)− 2, f(i, j + 2)− 2, . . . , f(i, i)− 2,

f(i, i) + 2, f(i+ 1, i+ 1) + 2, . . . , f(n, n) + 2, 2n+ 1)

3. (C, f(i, j)− 2, f(i, j + 1)− 2, . . . , f(i, i)− 2,

f(i+ 1, i+ 1) + 2, f(i+ 2, i+ 2) + 2, . . . , f(n, n) + 2, 2n+ 1)

4. (C, f(i, j)− 2, f(i, j + 1)− 2, . . . , f(i, i)− 2,

f(i, i) + 2, f(i+ 1, i+ 1) + 2, . . . , f(n, n) + 2, 2n+ 1)

These galleries induce the following four fundamental group elements whose

representatives are minimal paths from the basepoint in chamber 1 to each chamber

in the gallery and finally back to the basepoint:

1. z1 · · · znzn+2 · · · z2n+1−i

2. zjz1 · · · znzn+2 · · · z2n+1−i

3. z2n+2−iz1 · · · znzn+2 · · · z2n+1−i

4. zjz2n+2−iz1 · · · znzn+2 · · · z2n+1−i

Note that (−1)l(s)−b(s) equals 1 for the first and fourth sequences and −1 for

the second and third. Therefore,

A
[C≺Fk]

[D≺Gk−1]
= (zj − 1)(z2n+2−i − 1)z1 · · · znzn+2 · · · z2n+1−i

If j = i, then either C = f(i + 1, i + 1) + 2 or C = f(i + 1, i + 1) + 4. If

C = f(i+ 1, i+ 1) + 2, then there are four admissible sequences:

1. (f(i+ 1, i+ 1) + 3, f(i+ 2, i+ 2) + 3, . . . , f(n, n) + 3, 2n+ 2)
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2. (f(i, i) + 1, f(i+ 1, i+ 1) + 3, f(i+ 2, i+ 2) + 3, . . . , f(n, n) + 3, 2n+ 2)

3. (f(i, i) + 3, f(i+ 1, i+ 1) + 3, f(i+ 2, i+ 2) + 3, . . . , f(n, n) + 3, 2n+ 2)

4. (f(i, i)+1, f(i, i)+3, f(i+1, i+1)+3, f(i+2, i+2)+3, . . . , f(n, n)+3, 2n+2)

The third and fourth sequences cancel because they induce identical π1-elements,

but their lengths l(s) differ by 1, so their signs are opposite. In other words the

fourth sequence is the m-extension of the third sequence by the 1-facet f(i, i) + 1

[22, Theorem 8]. Therefore,

A
[C≺Fk]

[D≺Gk−1]
= (1− zi)z1 · · · znzn+2 · · · z2n+1−i

If C = f(i+ 1, i+ 1) + 4, then there are two admissible sequences:

1. (f(i, i) + 1, f(i+ 1, i+ 1) + 3, f(i+ 2, i+ 2) + 3, . . . , f(n, n) + 3, 2n+ 2)

2. (f(i, i)+1, f(i, i)+3, f(i+1, i+1)+3, f(i+2, i+2)+3, . . . , f(n, n)+3, 2n+2)

Therefore

A
[C≺Fk]

[D≺Gk−1]
= (z2n+2−i − 1)z1 · · · zi−1zi

2zi+1 · · · z2n+1−i

Now, assume ([C ≺ F k], [D ≺ G(k−1)]) satisfies both of the conditions in Claim

3.2.8, so j ≤ i ≤ n− 1, i ≤ k ≤ n and j − 1 ≤ k ≤ n− 1. Then:

A
[C≺Fk]

[D≺Gk−1]
=



(zj − 1)(z2n+2−i − 1)z1 · · · zkzn+2 · · · z2n+1−i if j < i

(zi − 1)(zn+1z2n+2−i − 1)z1 · · · zkzn+2 · · · z2n+1−i if i = j and C =

f(i + 1, i + 1) + 2

(zi − 1)(z2n+2−i − 1)z1 · · · zkzn+1 · · · z2n+1−i if i = j and C =

f(i + 1, i + 1) + 4

Finally, assume that ([C ≺ F k], [D ≺ G(k−1)]) satisfies the second condition in

Claim 3.2.8 but not the first, so either i < j, i = n, i > k, or k > n. If k = i = n,

then:

A
[C≺Fk]

[D≺Gk−1]
=


(zj − 1)(zn+2 − 1)z1 · · · zn if j ≤ n− 1

(1− zn)z1 · · · zn if j = n and C = 2n+ 1

(zn+2 − 1)z1 · · · zn−1zn
2zn+1 if j = n and C = 2n+ 3
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

a(d− 1) a(a− 1)(d− 1) ab(a− 1)(d− 1) abc(1− a) 0

0 ab(cd− 1) ab(1− b) abc(1− b) 0

0 abc(d− 1) ab2c(d− 1) abc(1− bc) 0

0 abcd(e− 1) 0 0 abcd(1− b)

ad(ce− 1) ad(a− 1)(ce− 1) abd(1− a) 0 abcd(1− a)

acd(e− 1) acd(a− 1)(e− 1) a2bcd(e− 1) 0 abcd(1− ac)


Figure 3.3: Transpose of matrix for ∂2 when n = 2, with variable substitutions

If k = 2n+ 1− i, then:

A
[C≺Fk]

[D≺Gk−1]
=

{
(1− zj)z1 · · · z2n+1−i if C = f(i+ 1, j + 1) + 2

(1− zjzn+1)z1 · · · z2n+1−i if i = j and C = f(i+ 1, i+ 1) + 4

If j − 1 < k ≤ n− 1, then either i < j or i > k, and:

A
[C≺Fk]

[D≺Gk−1]
=

{
(zj − 1)(z2n+2−i − 1)z1 · · · zkzn+2 · · · z2n+1−i if i > k

(zj − 1)(z2n+2−i − 1)z1 · · · zkzn+1 · · · z2n+1−i if i < j

Finally, if j − 1 = k ≤ n− 1, then either i < j or i > k, and:

A
[C≺Fk]

[D≺Gk−1]
=



(z2n+2−i − 1)z1 · · · zkzn+1 · · · z2n+1−i if i < j

(zn+1z2n+2−i − 1)z1 · · · zizn+2 · · · z2n+1−i if i > k, i = j, and

C = f(i+ 1, i+ 1) + 2

(z2n+2−i − 1)z1 · · · zizn+1 · · · z2n+1−i if i > k, i = j, and

C = f(i+ 1, i+ 1) + 4

(zn+2 − 1)z1 · · · zj if i > k and i = n

(z2n+2−i − 1)z1 · · · zjzn+2 · · · z2n+1−i if i > k and j < i < n

Example 3.2.9. When n = 2, there are five critical 1-cells and six critical 2-cells.

The matrix representing the second boundary operator is showing in Figure 3.3,

where the 1-cells and 2-cells are ordered as in Example 3.1.2. For display purposes,
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the following substitutions have been made: z1 = a, z2 = b, z3 = c, z4 = d, and

z5 = e.

3.3 Computations and Examples

Theorem 3.3.1. Let n be given, along with automorphisms {z1, z2, . . . , z2n+1} as

in Section 3.2. Then the rank of the matrix representing the second boundary map

is as follows:

1. If z1 = z2 = · · · = z2n+1 = 1, then rk[∂2] = 0, and the Betti numbers for the

complement are b0(M(A)) = 1, b1(M(A)) = 2n+ 1, and b2(M(A)) = n2 + n.

2. If z1 = z2 = · · · = zn+1 = 1, and if there exists some i, n + 2 ≤ i ≤ 2n + 1,

such that zi 6= 1, then rk[∂2] = n + 1. Similarly, if zn+1 = · · · = z2n+1 = 1,

and if there exists some i, 1 ≤ i ≤ n, such that zi 6= 1, then rk[∂2] = n + 1.

In this case, the Betti numbers are b0(M(A)) = 0, b1(M(A)) = n − 1, and

b2(M(A)) = n2 − 1.

3. If z1, z2, . . . , z2n+1 do not satisfy the above two cases, and if:

(a) there are two indices i, j in {1, 2, . . . , n} satisfying: if k 6= i, j, then

zk = z2n+2−k = 1, and at least one of zi, zj, z2n+2−i, or z2n+2−i is not

equal to 1.

(b) at each double point in the arrangement, either zi = zj or zi = 1 or

zj = 1,

(c) at each triple point in the arrangement, either zizn+1z2n+2−i = 1 or zi =

z2n+2−i = 1,

(d) either
2n+1∏
i=1

zi = 1 or
n+1∏
i=1

zi =
2n+1∏
i=n+1

zi = 1,

then rk[∂2] = 2n − 1. In this case, the Betti numbers are b0(M(A)) = 0,

b1(M(A)) = 1, and b2(M(A)) = n2 − n+ 1.



36

4. If z1, z2, . . . , z2n+1 do not satisfy the above three cases, then rk[∂2] = 2n, and

the Betti numbers are b0(M(A)) = 0, b1(M(A)) = 0, and b2(M(A)) = n2−n.

Proof. Fix the matrix representing the second boundary map by ordering the critical

1 cells and 2 cells in ascending order with respect to the polar ordering of C in

[C ≺ F ]. See Example 3.1.2 and Figure 3.3.

If z1 = · · · = z2n+1 = 1, then [∂2] is the zero matrix.

If z1 = · · · = zn+1 = 1, and if there exists some i, n+2 ≤ i ≤ 2n+1, such that

zi 6= 1, then the bottom n rows of the matrix are identically zero. If zn+2 6= 0, then

the minor formed by the first n + 1 rows and the first n + 1 columns is an upper

triangular matrix with determinant (zn+2 − 1)n+1 6= 0. Otherwise, let i ≥ 2 be the

least integer such that zn+i 6= 0. Then the minor formed by rows {1, 2, . . . , n + 1}

and columns {n + (i − 1), 2n + (i − 1), . . . , (i − 1)n + (i − 1)} ∪ {(i − 1)(n + 1) −

1, (i− 1)(n+ 1)− 1 +n, . . . , (i− 1)(n+ 1)− 1 + (n− i+ 1)n} has determinant equal

to ±(zn+i − 1)n+1 6= 0. Therefore the rank of [∂2] must be equal to n+ 1.

If zn+1 = · · · = z2n+1 = 1, and if there exists some i, 1 ≤ i ≤ n, such that

zi 6= 1, then the top n rows of the matrix are identically zero. A similar argument

finding (n+ 1)× (n+ 1) minors with nonzero determinants shows that the rank of

[∂2] must be n+ 1.

Now assume that z1, . . . , z2n+1 satisfy condition (3). Let i, j be the special

indices.

If z2n+2−i = z2n+2−j = 1, then zn+1 6= 1 (otherwise the automorphisms satisfy

case (2)) and without loss of generality zi 6= 1. By condition (3c), then, zn+1 = 1
zi

,

and by condition (3d), zj = 1. With these automorphisms, rows i, n+1, and 2n+2−i

in [∂2] are linearly dependent, so rk[∂2] ≤ 2n− 1. Further, the (2n− 1)× (2n− 1)

minor given by taking columns {n+k(n+ 1) : 0 ≤ k ≤ n−1}∪{(n+ 1)(n+ 1−k) :

1 ≤ k ≤ n, k 6= i} and striking out rows n+ 1 and 2n+ 2− i has determinant equal

to ±(zi−1)2n−1

zin−2+i 6= 0. A similar argument holds if zi = zj = 1.
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

(z − 1)z 0 0 0 (1− z)z z(y−1)
y

(z − 1)2z z(1− y) z − 1 z(y − 1) −(z − 1)2z (y−1)(z−1)z
y

yz(z − 1)2 (1− y)yz y(z − 1) 0 (1− z)yz2 (y − 1)z2

1− z 1− y z−1
z

0 0 0

0 0 0 (1− y)z (1− z)z (y−1)z
y


Figure 3.4: ∂2 for n = 2, automorphisms (z, y, 1

yz
, z, y)

If zi 6= 1 and zj 6= 1, then z2n+2−i = 1
zizn+1

and z2n+2−j = 1
zjzn+1

by condition

(3c). Then, by conditions (3d), either zizjzn+1 = 1 or zn+1 = 1. If zn+1 = 1, then by

condition (3b), zizj = 1, which implies that zizjzn+1 = 1. In either case, substitute

zn+1 = 1
zizj

, z2n+2−i = zj, and z2n+2−j = zi. With this choice of automorphisms,

many of the columns of [∂2] are linearly dependent, but there are 22n−1 choices of

2n− 1 columns which have non-zero determinant (after the appropriate rows have

been stricken out). For example, see Figure 3.4, which shows [∂2] for automorphisms

(z, y, 1/(zy), z, y). Note the linear dependence of columns 5,6 and columns 2,3.

There will always be two sets of two linearly dependent columns (their indices will

vary with i and j), and for n > 2, there will be 2n − 4 sets of 3 pairwise-linearly

dependent columns and n2 − 5n+ 6 zero columns. Now, since n2 + n− (n2 + 5n−

6)−2(2n−4)−2 = 2n, there are 2n columns that are possibly linearly independent.

At this point, one could check all 2n + 1 minors of the submatrix to see that they

are all zero. Therefore, rk[∂2] = 2n− 1.

Finally, if zi 6= 1 and zj = 1, then z2n+2−i = 1
zizn+1

, which implies that either

z2n+2−j = 1 or 1
zn+1

. An argument similar to the previous one will work in the latter

case, since z2n+2−j = 1
zn+1

implies that zn+1 = 1
zi

and therefore z2n+2−i = 1. On
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the other hand, if z2n+2−j = 1, there will be 2n − 1 sets of two linearly dependent

columns, and all other columns will be identically zero. This implies that the rank

of the matrix is at most 2n− 1, and if one of each of these sets of columns is chosen

(and the i-th and n+ 1-th rows struck out), there is a minor of size 2n− 1× 2n− 1

with determinant equal to a polynomial whose only roots are zi = 1 and zizn+1 = 1.

Now, assume that the automorphisms fall into the fourth category. Then there

exists i ≤ n+ 1 and j ≥ n+ 1 such that zi 6= 1 and zj 6= 1, and the automorphisms

must fail one of the condition in part (3) of the theorem. In each case, a 2n × 2n

minor will be found in the matrix representing the boundary which has non-zero

determinant. Note that the rank cannot be 2n + 1 since the matrix represents a

homology boundary map.

Assume the automorphisms fail condition (3b), so there exist 1 ≤ i < j ≤ n

such that zi 6= 1, z2n+2−j 6= 1 and zi 6= z2n+2−j. If j = n, then the minor formed by

columns {1, 2, . . . , n− 1, n+ 1, n+ 2, . . . , 2n, n2 + n− 1− (i− 1)(n+ 1)} with the

2n+ 2− j-th row stricken out has a determinant which is non-zero. If j < n, then

the minor formed by columns {i, n2+n−i, n2+n−i−n, . . . , n2+n−i−n(i−1), 2n+

1− i, 3n+ 1− i, . . . , (n− i+ 1)n+ 1− i, n2 +n− (n+ 1)(j−1), n2 +n− j−n(i−1)}

with the 2n+ 2− j-th row stricken out has a non-zero determinant.

Example 3.3.2. Let each zi be equal to the same mth root of unity, η = e2πi/m.

Then the rank of [∂2] is 2n unless n = 2 and m = 3. This is the example shown in

Figure 3.1. This partially recovered a known result of Cohen and Suciu [4], in which

they compute ranks of homology groups with local coefficients using the same rep-

resentations (which correspond to cyclic covers) but for an arbitrary arrangement.

Example 3.3.3. Let z1 = · · · = zn = zn+2 = · · · = z2n+1 = z 6= 1, and let zn+1 = y.

Then the rank of [∂2] is 2n unless n = 2 and y = 1
z2

, in which case the rank is 2n−1.

This was a result obtained in [6], and it is used to compute a faithful representation
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of the braid group called the LKB representation.

Example 3.3.4. In this example, let z2n+2−i = zi, for 1 ≤ i ≤ n, and let zn+1 = y.

Then, if one or two indices are chosen such that zi = z 6= 1, if all other zk = 1 and if

y = 1
z2

, then the rank of [∂2] is equal to 2n−1, and the first local homology group is

nontrivial. Otherwise, the rank is 2n. These computations are useful in computing

solutions to KZ-equations.
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CHAPTER 4

FREENESS OF ARRANGEMENT BUNDLES

4.1 Freeness of Affine Hyperplane Arrangements

Throughout this section, let K be an infinite field. We wish to extend known

results about central arrangements over K to affine arrangements over K.

Recall that V` is an `-dimensional vector space over K, and that S(V ∗` ) is the

symmetric algebra over V ∗` , so that S(V ∗` ) ∼= K[x1, . . . , x`]. When we do not need

to emphasize the dimension of the vector space, we will simply write S. Recall

also that DerK(S) is the free S-module of K-linear maps which satisfy the Leibniz

rule. Any of these maps, or derivations, may be written in the form θ =
∑`

i=1 fi
∂
∂xi

,

where fi ∈ S. Corresponding to an arrangement, there is a submodule of DerK(S)

called the module of A-derivations, defined as follows:

D(A) := {θ ∈ DerK(S) | θ(Q) ∈ QS}

In the case of a central arrangement, if this module is free as an S-module,

then we say that A is a free arrangement.

The following definition may be found in Orlik and Terao’s book [16]:

Definition 4.1.1. A nonzero element θ ∈ DerK(S) is homogeneous of polynomial

degree p if θ =
∑`

i=1 fi
∂
∂xi

and fi is homogeneous of degree p for 1 ≤ i ≤ `. In this

case we write pdegθ = p.

We will extend the definition of polynomial degree to all derivations as follows:

Definition 4.1.2. A nonzero element θ ∈ DerK(S) is of polynomial degree p if

θ =
∑`

i=1 fi
∂
∂xi

and max{deg fi | 1 ≤ i ≤ `} = p.

Note 4.1.3. Definition 4.1.1 can be used to define a grading on DerK(S) by defining

DerK(S)p to be the set of all derivations which are homogeneous of degree p when
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p ≥ 0 and defining DerK(S)p = 0 if p < 0, so

DerK(S) =
⊕
p∈Z

DerK(S)p

The extended definition does not give us any such structure, and we will not

need it. Therefore, in what follows, we will use pdeg to mean polynomial degree,

with the understanding that any derivation which is of polynomial degree p and

whose coefficients are all homogeneous of degree p is “homogeneous of polynomial

degree p” in the sense of Orlik and Terao.

We note also that Saito’s criterion (see Theorem 2.4.7) remains valid for affine

arrangements; we will use it to prove the following theorem.

Theorem 4.1.4. Let A be an affine `-arrangement over an infinite field K defined

by a polynomial Q. Then the cone cA is free as a central (` + 1)-arrangement if

and only if D(A) is a free S(V ∗` )-module and if there is a basis {θ1, θ2, . . . , θ`} for

D(A) such that
∑`

i=1 pdeg θi = degQ.

Proof. (⇐) Assume A is a free central (`+ 1)-arrangement. We will show that any

decone of A, dA, is a free affine `-arrangement.

Without loss of generality, assume that Q(A) = x`+1

∏
αH , where the form

x`+1 corresponds to the distinguished hyperplane H0. For any H ∈ A, we may write

αH = c1x1 + · · ·+ c`x` + c`+1x`+1, and for H 6= H0 we have ci 6= 0 for at least one i

between 1 and `.

Since A is free, there exists a homogeneous basis {θ1, . . . , θ`, θE} for D(A),

where θE =
∑`

i=1 xi
∂
∂xi

is the Euler derivation and θi =
∑`+1

j=1 Fj,i
∂
∂xj

. Since θi(αH) ∈

αHS(V ∗`+1) for all H ∈ A, we have θi(αH0) = θi(x`+1) = F`+1,i ∈ x`+1S(V ∗`+1) for all

1 ≤ i ≤ `+ 1. We write F`+1,i = x`+1f`+1,i for each i. The matrix of coefficients for

this basis, denoted M = M(θ1, . . . , θ`, θE), is given by
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M =



F1,1 F1,2 . . . F1,` x1

F2,1 F2,2 . . . F2,` x2

...
...

. . .
...

...

F`,1 F`,2 . . . F`,` x`

x`+1f`+1,1 x`+1f`+1,2 . . . x`+1f`+1,` x`+1


Another basis for D(A) is therefore given by

M′ =



F1,1 − x1f`+1,1 F1,2 − x1f`+1,2 . . . F1,` − x1f`+1,` x1

F2,1 − x2f`+1,1 F2,2 − x2f`+1,2 . . . F2,` − x2f`+1,` x2

...
...

. . .
...

...

F`,1 − x`f`+1,1 F`,2 − x`f`+1,2 . . . F`,` − x`f`+1,` x`

0 0 . . . 0 x`+1


Fixing i and suppressing some subscripts, let Ψ := (F1 − x1f`+1) ∂

∂x1
+ · · · +

(F` − x`f`+1) ∂
∂x`

. Ψ is a derivation in DerK(S(V ∗`+1)) which we will use to create

a derivation ψ ∈ DerK(S(V ∗` )). To do this, we will simply substitute x`+1 = 1 in

all of the coefficient polynomials. Note that the mapping ν : K[x1, . . . , x`+1] →

K[x1, . . . , x`] that does this is a ring homomorphism, and Q(dA) =
∏
ν(αH) =

ν(Q(A)). If g ∈ K[x1, . . . , x`+1] satisfies Ψ(αH) =
∑
cj(Fj − xjf`+1) = αHg for any

H 6= H0 in A, then

ψ(ν(αH)) =
∑`

j=1 cjν(Fj − xjf`+1)

= ν
(∑`

j=1 cj(Fj − xjf`+1)
)

= ν(αHg)

= ν(αH)ν(g) ∈ ν(αH)S(V ∗` )

and this implies that ψ ∈ D(dA). If we take the determinant of the matrix of

coefficients for {ψ1, . . . , ψ`}, we get ν(det M′)
.
= ν(Q(A)) = Q(dA). By Saito’s

criterion for affine arrangements, then, {ψ1, . . . , ψ`} form a basis for D(dA).
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We also need to check that
∑`

i=1 pdegψi = degQ(dA). We have that pdegψi ≤

pdegΨi for 1 ≤ i ≤ `. Ψi is homogeneous of some fixed polynomial degree, so we

have pdegψi < pdegΨi if and only if every coefficient polynomial is divisible by x`+1.

Therefore, if there is some i such that pdegψi < pdegΨi, then det M′ is divisible

by x2
`+1, which is impossible. Thus we have pdegψi = pdegΨi for 1 ≤ i ≤ `, so∑`

i=1 pdegψi = degQ(A)− 1 = degQ(dA).

(⇒) Let A be an affine `-arrangement. Let θ ∈ D(A), θ =
∑`

i=1 fi
∂
∂xi

, where

fi ∈ S(V ∗` ) ∼= K[x1, . . . , x`]. Let d = max{deg fi : 1 ≤ i ≤ `}.

Let F1, . . . , F` ∈ K[x1, . . . , x`+1] be homogeneous polynomials, all of the same

degree, so that ν(Fi) = fi for all 1 ≤ i ≤ `. Further, let F1, . . . , F` be the polynomi-

als of least degree with this property. For example, the polynomial f1(x, y) = x3y+

2xy2−5 is of degree 4, f2(x, y) = x2 is of degree 2, and F1(x, y, z) = x3y+2xy2z−5z4,

F2(x, y, z) = x2z2. This defines a set map Γ : DerK(S(V ∗` ))→ DerK(S(V ∗`+1)), where

Γ
(∑`

i=1 fi
∂
∂xi

)
=
∑`

i=1 Fi
∂
∂xi

. We will show that Γ(θ) ∈ D(cA).

Recall that S(V ∗) is a graded ring, with S(V ∗)i the additive subgroup con-

sisting of the zero polynomial and all homogeneous polynomials of degree i. We

will write S(V ∗)≤i to denote the additive subgroup consisting of the zero polyno-

mial and all polynomials of degree i or less. Consider µd : S(V ∗` )≤d → S(V ∗`+1)d,

where µd (
∑

α cαx
α) =

∑
α cαx

αxd−deg xα

`+1 . Then µd is a group homomorphism and

µd(fi) = Fi for all 1 ≤ i ≤ ` since we chose d = max{deg fi : 1 ≤ i ≤ `}.

Let H ∈ cA with defining form αH . Then θ(ν(αH)) ∈ ν(αH)S(V ∗` ). This

implies that there exists some g ∈ S(V ∗` ) so that

(∑̀
i=1

fi
∂

∂xi

)(∑̀
j=1

cjxj + c`+1

)
=
∑̀
i=1

cifi = ν(αH)g

We need Γ(θ)(αH) =
(∑`

i=1 Fi
∂
∂xi

)(∑`+1
j=1 cjxj

)
=
∑`

i=1 ciFi ∈ αHS(V ∗`+1).
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But if we note that deg g ≤ i− 1 which implies that µd−1(g) exists and is homoge-

neous, we have

∑`
i=1 ciFi = µd

(∑`
i=1 cifi

)
= µd(ν(αH)g)

= µd

((∑`
i=1 cixi

)
g + c`+1g

)
=

∑`
i=1 ciµd(xig) + c`+1µd(g)

=
∑`

i=1 cixiµd−1(g) + c`+1x`+1µd−1(g)

= αHµd−1(g)

Since this is true for all H ∈ cA, we have that Γ(θ) ∈ D(cA).

Now assume that we have ` derivations θ1, . . . , θ` ∈ D(A) which form a basis

for D(A) and such that
∑`

i=1 pdegθi = degQ(A). Then Γ(θ1), . . . ,Γ(θ`) ∈ D(cA)

along with the Euler derivation θE, and therefore det M(Γ(θ1), . . . ,Γ(θ`), θE) ∈

Q(cA)S(V ∗`+1).

Note that the last `+ 1st coefficient is zero in each of Γ(θ1), . . . ,Γ(θ`), so the

matrix of coefficients is block upper diagonal:

M(Γ(θ1), . . . ,Γ(θ`), θE) =



F1,1 F1,2 . . . F1,` x1

F2,1 F2,2 . . . F2,` x2

...
...

. . .
...

...

F`,1 F`,2 . . . F`,` x`

0 0 . . . 0 x`+1



We have det M = Q(cA) · g for some g ∈ S(V ∗`+1). Let M′ denote the upper

left block in the matrix, so we have
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det M′ · x`+1 = det M

= Q(cA) · g

= Q(cA)
x`+1

x`+1 · g

This implies that det M′ = Q(cA)
x`+1
·g. Apply ν to both sides to get det M(θ1, . . . , θ`) =

Q(A) · ν(g). By Saito’s criterion, this implies that ν(g) is a nonzero constant, and

therefore g is a nonzero polynomial in S(V ∗`+1). Thus {Γ(θ1), . . . ,Γ(θ`), θE} are

linearly independent, and since
∑`

i=1 pdegΓ(θi) + pdegθE =
∑`

i=1 pdegθi + 1 =

degQ(A) + 1 = degQ(cA), we have a basis for D(cA).

We are led to define freeness for affine arrangements in the following way, a

similar version of which may also be found in a paper by Jambu [14].

Definition 4.1.5. Let A be an arbitrary `-arrangement over some field K with

defining polynomial Q. Then A is free if D(A) is a free module over S(V ∗` ) and if

there is a basis {θ1, θ2, . . . , θ`} for D(A) such that
∑`

i=1 pdeg θi = degQ.

Note that this definition coincides with the original definition of freeness for

a central arrangement. The following example shows that the condition on the

polynomial degrees of the derivations cannot be omitted in the theorem.

Example 4.1.6. Let A be an arrangement in C2 with variables x and y defined by

Q(A) = xy(x + y − 1). Then θ1 = xy ∂
∂x

+ y(y − 1) ∂
∂y

and θ2 = x(x − 1) ∂
∂x

+ xy ∂
∂x

are both in D(A), and

det

 xy x(x− 1)

y(y − 1) xy

 = Q(A)

By Saito’s criterion, these derivations form a basis for D(A). Note that

pdegθ1 + pdegθ2 = 4 > 3 = degQ(A).
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However, when we try to create a basis for the cone by “homogenizing” the

derivations by applying Γ to θ1 and θ2 and appending the Euler derivation, we get

det


xy x(x− z) x

y(y − z) xy y

0 0 z

 = xyz2(x+ y − z) = Q(cA)z

In fact, the arrangement cA is not free at all. Because it is a 3-arrangement,

it is free if and only if it is supersolvable, and L(cA) does not have any rank 2

elements which are modular.

Example 4.1.7. Even when an affine arrangement is free, we do not know as

much about an arbitrary basis for D(A) as we do in the central case. Let A be an

arrangement in C2 with variables x and y defined by Q(A) = x. Then it is clear

that D(A) = {θ = f1
∂
∂x

+ f2
∂
∂y
∈ DerC(S(V ∗2 )) | f1 ∈ x ·S(V ∗2 )}. Then the following

two derivations are in D(A):

θ1 = (x2 + x) ∂
∂x

+ x ∂
∂y

θ2 = x ∂
∂x

+ ∂
∂y

Saito’s criterion shows that these derivations form a basis for D(A), since

det

 x2 + x x

x 1

 = (x2 + x)(1)− (x)(x) = x

The defining polynomial of cA in C3 is Q(cA) = xz, and

Γ(θ1) = (x2 + xz) ∂
∂x

+ xz ∂
∂y

Γ(θ2) = x ∂
∂x

+ z ∂
∂y

When we take the determinant of the coefficient matrix for {Γ(θ1),Γ(θ2), θE},

we have
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det


x2 + xz x x

xz z y

0 0 z

 = xz3

which implies that the derivations are linearly independent, but they do not

span D(cA). Note that these derivations are not even a basis for the multiar-

rangement defined by xz3 since the Euler derivation fails to satisfy the condition

θE(z) ∈ (z3) · S(V ∗3 ) and is not even in the module of derivations for the multiar-

rangement.

4.2 Arrangement Bundles

Let A be a complexified real arrangement in C` with modular element X ∈

L(A) of rank k. Orthogonal projection π : C` → C`/X restricts to a fiber bundle

projection map with total space M(A). The base space of this projection mapping

in an arrangement complement in Ck; this arrangement consists of all hyperplanes

in A containing X. The generic fiber is the complement of an affine arrangement

in C`−k. We will use B to denote the base space arrangement and F to denote the

arrangement corresponding to a generic fiber.

Let D(A), D(B), and D(F) be the modules of derivations for each of the ar-

rangements. Note that since F is an affine arrangement, the coefficients of deriva-

tions in D(F) will not generally be homogeneous multivariable polynomials. How-

ever, we may assume that after linear change of coordinates the modular element

X = {(0, . . . , 0, zk+1, . . . , z`) | zk+1, . . . , z` ∈ C} and the projection mapping is the

standard projection map forgetting `−k coordinates, so π(z1, . . . , z`) = (z1, . . . , zk).

We wish to establish exactly which hyperplanes in A correspond to hyper-

planes in B and which correspond to hyperplanes in F .

Definition 4.2.1. Let A be a hyperplane arrangement in a vector space V , and let

X and Y be elements in the intersection lattice L(A). Then Y is horizontal with
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respect to X if X + Y = V .

If α = c1z1 + c2z2 + · · ·+ c`z` is a linear form for a hyperplane H in A, then H

corresponds to a hyperplane in B if and only if H is not horizontal with respect to

X. This is equivalent to H containing X and, because of our assumption about X,

is also equivalent to the condition ck+1 = · · · = c` = 0. The horizontal hyperplanes

are exactly those for which there exists a j > k such that cj 6= 0; these are the

hyperplanes which correspond to hyperplanes in the fiber arrangement.

We will therefore partition the linear forms comprising the defining polynomial

Q into two sets. We will denote by αi those forms for which the corresponding

hyperplane is horizontal with respect to X and βj will denote those for which the

corresponding hyperplane is non-horizontal with respect to X. Therefore Q =∏
i αi
∏

j βj.

Note that the αi naturally correspond to linear forms on Ck. As a set, then,

the complement of B is defined by M(B) := {(z1, . . . , zk) |αi(z1, . . . , zk) 6= 0∀ i}. If

we fix one of these points (z̄1, . . . , z̄k) ∈M(B), then the complement of F is defined

by M(F) := {z = (z̄1, . . . , z̄k, zk+1, . . . , z`) | βj(z) 6= 0∀ j}.

Example 4.2.2. Let A be an arrangement in C4 with

Q(A) = xy(x2 − y2)(x2 − z2)(x2 − w2)(y2 − z2)(y2 − w2)(z2 − w2)

This arrangement is not supersolvable since there are no modular rank 3 elements in

its intersection lattice. There is a single modular rank 2 element: the intersection

of the first four hyperplanes, or the subspace of C4 such that x = 0 and y = 0.

The projection mapping π(x, y, z, w) = (x, y) is therefore a fiber bundle projection

mapping, and we have

Q(B) = xy(x2 − y2)

and

Q(F) = (x2
0 − z2)(x2

0 − w2)(y2
0 − z2)(y2

0 − w2)(z2 − w2)

for a generic fiber π−1(x0, y0). See Figure 4.2.2.
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(a) Base Arrangement (b) Fiber Arrangement

Figure 4.1: Diagrams of B and F in two-dimensional space

For any fiber π−1(x0, y0), F is free as an affine arrangement, with basis given

by

θ1 = z(x2
0 − z2)(y2

0 − z2)
∂

∂z
+ w(x2

0 − w2)(y2
0 − w2)

∂

∂w

and

θ2 = w(x2
0 − z2)(y2

0 − z2)
∂

∂z
+ z(x2

0 − w2)(y2
0 − w2)

∂

∂w

The matrix of coefficients for this basis is

 z(x2
0 − z2)(y2

0 − z2) w(x2
0 − z2)(y2

0 − z2)

w(x2
0 − w2)(y2

0 − w2) z(x2
0 − w2)(y2

0 − w2)


The base space is free (it is even supersolvable) with matrix of coefficients for

a basis given by

 x 0

y y(x2 − y2)


Interestingly, these bases may be “extended” to a single basis for D(A) whose

coefficient matrix is block lower-diagonal:
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

x 0 0 0

y y(x2 − y2) 0 0

z z(x2 − z2) z(x2 − z2)(y2 − z2) w(x2 − z2)(y2 − z2)

w w(x2 − w2) w(x2 − w2)(y2 − w2) z(x2 − w2)(y2 − w2)


This suggests that it may be possible to use Saito’s criterion and the freeness

of the base and fiber arrangements to construct a basis for the total arrangement

A.

Lemma 4.2.3. Let A be an arrangement in C` with modular element X ∈ L(A)

of rank or codimension k. Let π : C` → C`/X ∼= C`−k be a fiber bundle projection

corresponding to X. Suppose that there is a k-parameter family of derivations in

DerCS((C`−k)∗) such that

θ =
∑̀
j=k+1

fj(a1, . . . , ak, xk+1, . . . , x`)
∂

∂xj

with fj a polynomial in k variables a1, . . . , ak, xk+1, . . . , x` and such that for any

fixed point (a1, . . . , ak) in the complement of B we have θ ∈ D(F). Then θ̄ ∈ D(A)

where

θ̄ =
∑̀
j=k+1

fj(x1, . . . , xk, xk+1, . . . , x`)
∂

∂xj

Proof. Recall that we may write Q(A) =
∏

i αi
∏

j βj, where the αi are forms corre-

sponding to “base hyperplanes” and the βj correspond to “fiber hyperplanes.” Also,

recall that for every i, αi = c1x1 + · · ·+ ckxk. Therefore, θ̄(αi) = 0, which is in the

ideal generated by αi in DerCS(C`∗).

Now consider βj = c1x1+· · ·+ckxk+ck+1xk+1+· · ·+c`x`. For any (a1, . . . , ak) ∈

M(B), we have β′j = c1a1 + · · ·+ ckak + ck+1xk+1 + · · ·+ c`x` as a form which defines

a hyperplane in the fiber arrangement F . Then because θ(β′j) ∈ β′jS(V ∗(`−k)), there

exists some g ∈ C[xk+1, . . . , x`] such that

θ(β′j) = ck+1fk+1(a1, . . . , ak, xk+1, . . . , x`) + · · ·+ c`f`(a1, . . . , ak, xk+1, . . . , x`)

= (c1a1 + · · ·+ ckak + ck+1xk+1 + · · ·+ c`x`)g(xk+1, . . . , x`)
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Simply substituting xs for as for all s, we get

θ̄(βj) = ck+1fk+1(x1, . . . , xk, xk+1, . . . , x`) + · · ·+ c`f`(x1, . . . , xk, xk+1, . . . , x`)

= (c1x1 + · · ·+ ckxk + ck+1xk+1 + · · ·+ c`x`)g(xk+1, . . . , x`)

Therefore, θ̄(βj) is in the ideal generated by βj, so θ̄ ∈ D(A).

Suppose that there is a k-parameter family of sets of ` − k derivations in

DerCS(C`−k∗), say θ1, θ2, . . . , θ`−k, such that the derivations satisfy the conditions

of Lemma 4.2.3 and F is a free affine arrangement with basis θ1, . . . , θ`−k. Then by

Saito’s criterion the determinant of the matrix of the coefficients for θ1, θ2, . . . , θ`−k

is up to scalar equal to Q(F), and the set of derivations θ̄1, . . . , θ̄`−k is linearly

independent. Unfortunately, in an arbitrary module, we cannot necessarily extend

an linearly independent set of elements to a basis.

Theorem 4.2.4. Let A be a hyperplane arrangement in C` with modular ele-

ment X ∈ L(A) of rank k. Assume that the base arrangement B and fiber ar-

rangement F corresponding to X are free arrangements. Suppose that the con-

ditions of Lemma 4.2.3 hold and that there exists a basis {ψ1, . . . , ψk} for D(B)

and polynomial functions Fij(x1, . . . , x`) for k + 1 ≤ i ≤ ` and 1 ≤ j ≤ k

such that for each j ψj +
∑`

i=k+1 Fij
∂
∂xi
∈ D(A). Then A is free with basis

{ψ1 +
∑`

i=k+1 Fi1
∂
∂xi
, . . . , ψk +

∑`
i=k+1 Fik

∂
∂xi
, θ̄1, . . . , θ̄`−k}.

Proof. Saito’s criterion.

Example 4.2.5. Let Q(A) = (x−y)(x−z)(x−w)(y−z)(y−w)(z−w) be the braid

arrangement in C4. This arrangement is fiber-type, and we can choose forgetful

mappings for all of the fibrations. That is, the first projection map is p4 : C4 → C3

defined by p4(x, y, z, w) = (x, y, z), p3(x, y, z) = (x, y), and p2(x, y) = x. In all three

cases, the fibrations satisfy the conditions of Theorem 4.2.4.

The base space for p2 : C2 → C1 is the empty arrangment, and p−1
2 (x0) =

{(x0, y) | y 6= x0}. A basis for D(B) is given by ∂
∂x

which is extendable to ∂
∂x

+ ∂
∂y

and

a one-parameter family of bases for the modules of the fibers is given by (x− y) ∂
∂y

.
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These make up the following basis for the arrangement defined by x− y in C2:

 1 0

1 x− y


These two derivations may be extended to derivations in the module for the

arrangement defined by (x− y)(x− z)(y − z), and (x0 − z)(y0 − z) ∂
∂z
∈ D(F(x0,y0))

for any (x0, y0) ∈ M(B). We then get the following matrix for a basis for the

arrangement in C3:


1 0 0

1 x− y 0

1 x− z (x− z)(y − z)


Repeating the process one more time, we find the following basis for the 4-

dimensional braid arrangement:



1 0 0 0

1 x− y 0 0

1 x− z (x− z)(y − z) 0

1 x− w (x− w)(y − w) (x− w)(y − w)(z − w)


We note that, in general, we will only see a block lower diagonal matrix like

this if the fiber bundle projections are all forgetful mappings, which only happens

if the modular elements are all of the form (0, . . . , 0, xk+1, . . . , x`). As this cannot

be guaranteed via a linear coordinate change, we do not necessarily get a lower

diagonal coefficient matrix for fiber-type arrangements.
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