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Figure 24. Magni�ed images of the potential pro�le bumps at the anode for various
current and potential values.
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CHAPTER 3

THE MODEL AND SIMULATION OF ELECTRON HOPPING WITHIN A

PRELOADED NAFION FILM ON A MODIFIED ELECTRODE

Di¤usion is usually thought of in terms of Fick�s Second Law,

@C

@t
= D

@2C

@x2
; (53)

where the change in the concentration of a species with respect to time equals the second derivative

of concentration with respect to space multiplied by a di¤usion coe¢ cient. The di¤usion coe¢ cient

takes into account how well the species moves through a system. The di¤usion coe¢ cient is usually

thought of at a constant. In this chapter, a modi�ed electrode system is investigated over which

the di¤usion coe¢ cient is dependant on the concentration of the species within the system.

3.1 The Physical System

The system described in section 1.3 will be considered here. To summarize, system consists of

an electrode coated with a Na�on membrane of length l, saturated with Ru(bpy)2+3 and placed

in a bulk solution of electrolyte and Ru(bpy)2+3 . See �gure 25. The system will be at an

appropriate potential such that Ru(bpy)2+3 oxidizes to Ru(bpy)3+3 when in contact with the anode,

thus generating a current. The Ru(bpy)3+3 will di¤use out of the membrane and be replaced by

Ru(bpy)2+3 allowing the cycle to repeat itself. The cathode for the system will be assumed far

enough away that for su¢ ciently short periods of time, any reduction which occurs there will not

a¤ect the chemical concentrations of the system under consideration.

3.2 The Model

Experimentally, this system generates normal cyclic voltammograms. The lack of abnormal
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Figure 25. A schematic of the modi�ed electrode system.

features indicates there is little to no migration present. Thus, the only portion of equation (15)

needed for this model is the di¤usion term,

@C

@t
=

�
D
@C

@x

�
x

. (54)

For a constant di¤usion coe¢ cient, the resulting concentration pro�les of Ru(bpy)2+3 and

Ru(bpy)3+3 tend toward diagonal increasing and decreasing lines, respectively, over the membrane.

Voltammograms for concentration pro�les like this, with a constant concentration of anion, would

not look normal. Thus, the di¤usion term can not be constant, but rather a function. It is

believed that an electron hopping term is needed in the di¤usion function. Therefore the transport

equation becomes

@C

@t
=

�
D (C)

@C

@x

�
x

(55)

where D(C) is the di¤usion function that accounts for both physical di¤usion and electron hopping

and is concentration dependant. Physical di¤usion occurs when a molecule physically moves from

one location to another, with the direction of movement against the concentration gradient of the

molecule. Electron hopping occurs when two identical molecules, M and _M , both with charge
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n, are in close proximity. Molecule M does not di¤er from molecule _M , the dot serves only for

distinguishing between the two identical M molecules. Let e� represent an electron capable of

moving between the two molecules. For M to appear to have switched places with _M only requires

an electron to hop from one molecule to the other, while the rest of the molecule does not move.

Mn�1 + _Mn =Men�1 + _Mn �Mn + _Men�1 =Mn + _Mn�1 (56)

This idea is discussed multiple papers ([9], [21], [22]) where a mathematical model, taking into

account electron hopping is presented. The theory is that the di¤usion term is made up of the

physical di¤usion constant along with an electron hopping equation which is:

D _Me�(C) = Dphy; _Me� +
k11�

2�

4

 
CM � C _Me�

@CM
@x

@C _Me�
@x

!
(57)

DM (C) = Dphy; M +
k11�

2�

4

 
C _Me� � CM

@C _Me�
@x
@CM
@x

!

where Dphy is the di¤usion constant
�
cm2=s

�
, k11 is the reaction rate

�
� 108mol (cm s)

�1
�
and

� is the distance between the center of the two molecules
�
13:6 �A

�
. Subscript _Me� denotes the

concentration and di¤usion terms for the molecule to be oxidized (Ru(bpy)2+3 ), and subscript M

denotes the concentration and di¤usion terms of the molecule to be reduced (Ru(bpy)3+3 ). Rewrite

equations (55) with equations (57) gives

@CRu(bpy)2+3
@t

=

0BB@ Dphy;Ru(bpy)2+3
+

k11�
2�

4

�
CRu(bpy)3+3

@C
Ru(bpy)

2+
3

@x � CRu(bpy)2+3
@C

Ru(bpy)
3+
3

@x

�
1CCA
x

(58)

@CRu(bpy)3+3
@t

=

0BB@ Dphy;Ru(bpy)3+3
+

k11�
2�

4

�
CRu(bpy)2+3

@C
Ru(bpy)

3+
3

@x � CRu(bpy)3+3
@C

Ru(bpy)
2+
3

@x

�
1CCA
x

. (59)

In this dissertation, several di¤erent electron hopping equations will be considered, in addition to

the one shown above.



56

3.2.1 The Initial Conditions

For a membrane of length l, there is a �xed concentration of Na�on throughout the membrane

and no Na�on in the bulk electrolyte solution, so

CNafion (x; t) =
N� for 0 � x � l and t � 0

0 for x > l and t � 0
(60)

where N� is determined by the molecular weight and density of Na�on. Initially, the membrane

will be saturated with Ru(bpy)2+3 . Each Ru(bpy)
2+
3 .will be bonded to two Na�on molecules,

CRu(bpy)
2+
3 (x; 0) =

N�

2
for 0 � x � l. (61)

Outside the membrane, there is electrolyte with a bulk concentration, C�, of Ru(bpy)2+3

CRu(bpy)
2+
3 (x; 0) = C� for x > l: (62)

One may expect that C� > N=2 to ensure the Na�on �lm is fully loaded. Interestingly, the �lm

will still fully load if C� < N=2 because Na�on has a very high a¢ nity for Ru(bpy)2+3 . In a

laboratory setting, C� is typically smaller than N=2. This will cause a discontinuity in the initial

concentration of Ru(bpy)2+3 at x = l (the membrane/bulk interface) and require an equilibrium

condition within the simulation, this is discussed later.

Within the Na�on membrane and in the bulk solution, there is no Ru(bpy)3+3 present initially.

Ru(bpy)3+3 will appear as it is generated at the anode surface. Thus,

CRu(bpy)
3+
3 (x; 0) = 0 for x > 0: (63)

At the �lm solution interface, the concentration of Ru(bpy)2+3 between the �lm and solution is

always governed by equilibrium

CRu(bpy)
2+
3
�
l�; t

�
= �C

Ru(bpy)
2+
3
�
l+; t

�
, (64)
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where CRu(bpy)
2+
3 (l�; t), referred to as cl� hereafter, is the concentration of Ru(bpy)

2+
3 at the

�lm/solution interface on the �lm side, C
Ru(bpy)

2+
3 (l+; t), referred to as cl+ hereafter, is the

concentration of Ru(bpy)2+3 at the interface on the solution side and � is the extraction parameter..

Because of this equilibrium, the �ux of Ru(bpy)2+3 out of the solution must equal the �ux of

Ru(bpy)2+3 into the membrane giving

D
Ru(bpy)

2+
3

f (C)
@CRu(bpy)

2+
3 (l; t)

@x
= D

Ru(bpy)
2+
3

s (C)
@CRu(bpy)

2+
3 (l; t)

@x
. (65)

This will later dictate how the membrane/solution interface is treated within the simulation. Only

Ru(bpy)2+3 will require special treatment at this interface as equation (64) does not make sense for

any other chemical in the system because there is no Ru(bpy)3+3 present initially and Na�on is

immobile.

This will later dictate how the membrane/solution interface is treated within the simulation.

Only Ru(bpy)2+3 will require special treatment at this interface. As Ru(bpy)3+3 is not initially

present and the physical di¤usion rate in �lm is smaller than in solution, Ru(bpy)3+3 will not require

a �lm/solution equilibrium equation like equation 64. An equation like (64) does not make sense

for Na�on either, as it is immobile.

Semi-in�nite boundary conditions are assumed. This means that when Ru(bpy)2+3 is depleted

from the bulk electrolyte solution outside of the membrane, the system can extend in the x

direction to a location where the concentration of Ru(bpy)2+3 reaches the initial bulk Ru(bpy)2+3

concentration, or

CRu(bpy)
2+
3 (x; t) = C� as x!1: (66)

Similarly, as Ru(bpy)3+3 is generated and released into the bulk electrolyte solution, the solution

can be extended to a length where there is no Ru(bpy)3+3 present, or

CRu(bpy)
3+
3 (x; t) = 0 as x!1. (67)

Within the bulk electrolyte solution, there is no appreciable electron hopping between Ru(bpy)2+3
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and Ru(bpy)3+3 as there are fast moving counterions present from the electrolyte in concentrations

much larger than that of either analyte molecule. Therefore, only physical di¤usion is present in

the bulk electrolyte solution which gives

DRu(bpy)2+3 (C) = DRu(bpy)3+3 (C) = Ds for x > l: (68)

The physical di¤usion coe¢ cient, Ds, for Ru(bpy)
2+
3 and Ru(bpy)3+3 within the bulk electrolyte

solution is assumed equal and to have the same value as that in pure water. This is reasonable as

the Ru(bpy)2+3 and Ru(bpy)3+3 are essentially the same size and the bulk electrolyte solution is

mostly water with high electrolyte.

As the potential pro�le, � (x; t), will be the primary means of determining if a solution is realistic

or not, conditions for the potential must be determined. It will be assumed the membrane/solution

interface potential is �xed at 0 V with no potential gradient. These assumptions are reasonable

because at the interface, any Ru(bpy)3+3 will be replaced with Ru(bpy)2+3 due to the negative

concentration gradient of Ru(bpy)3+3 and Na�on has an equal a¢ nity for both molecules. In the

bulk solution, there is a high concentration of an electrolyte, like HNO3, thus there is a potential of

0 V in the bulk solution (for reasons stated in section 2.2). This means there will be no charge

build up and no charge gradient for x � l, or

�(l; t) = 0 for x � l and t � 0 (69)

@�(x; t)

@x

����
x=l

= 0 for x � l and t � 0. (70)

3.2.2 The Potential Pro�le

Equation (18) expresses the potential over a membrane as dependent on the charges and
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concentrations of the chemicals within the membrane. For the system of interest, this becomes

�xx(x; t) =
�F
"

�
3CRu(bpy)3+3

(x; t) + 2CRu(bpy)2+3
�N�

�
; (71)

giving

�x (x; t) =

Z x

0

�ss (s; t) ds+A (72)

and

� (x; t) =

Z x

0

� (s; t) ds+B: (73)

The condition of @�(x;t)
@x

���
x=l

= 0 gives A = �
R l
0
�ss (s; t) ds, while the condition of �(l; t) = 0 gives

B = �
R l
0
�s (s; t) ds.

3.2.3 The Calculations

Steady state was not assumed for this model and is not reasonable with semi-in�nite boundary

conditions. Consequently, the system will start with initial conditions and be allowed to evolve

over time under a one-dimensional �nite di¤erence simulation programmed in Matlab. A copy of

the program can be found in Appendix C. The run time of the simulation varies, depending on

the length of time the simulation was considered over. The largest simulation time considered was

t = 500 seconds that had a run time of under 15 minutes.

3.2.3.1 Mathematical Treatment of the Membrane/Solution Interface

As stated previously, the concentration of Ru(bpy)2+3 is the only species present which requires

special treatment at the membrane/solution interface as equilibrium was established initially by

preloading the Na�on membrane with Ru(bpy)2+3 . The treatment of the equilibrium is similar to

that done in reference [10].

Upon discretization of the system, there are xmax boxes in the �lm, each of length �x = l
xmax

.

For ease of notation, let B = xmax. The di¤usion coe¢ cient for Ru(bpy)
2+
3 is denoted by D2+. See



60

an
od

e

   1      2                      B1   B  B+1 B+2

interface

. . .. . .

Figure 26. A schematic of the discretized modi�ed electrode system.

�gure 26. The box closest to the electrode is box 1, the box at the electrode side of the membrane

solution interface is box B and the box at the solution side of the membrane solution interface is

B+1. Concentrations are measured at the middle of each box and the distance from the middle of

the box of B or B+1 to the membrane solution interface is �x2 . Discretizing equation (65) gives

D2+(B; t)

�
cl� � C2+(B; t)

�
�x
2

= D2+(B + 1; t)

�
C2+(B + 1; t)� cl+

�
�x
2

(74)

Simplify equation (74) with equations equation (64) and equation (68) gives

D2+(B; t)
�
�cl+ � C2+(B; t)

�
= Ds

�
C2+(B + 1; t)� cl+

�
. (75)

Solve equation (75) for cl+ gives

cl+ =
DsC

2+ (B + 1; t) +D2+ (B; t)C2+ (B; t)

�D2+(B; t) +Ds
(76)
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with

cl� = �cl+ = �
DsC

2+ (B + 1; t) +D2+ (B; t)C2+ (B; t)

�D2+(B; t) +Ds
. (77)

Normalize by D2+ (B; t) and use 2 = Ds

D2+(B;t) gives

cl+ =
2C2+ (B + 1; t) + C2+ (B; t)

�+ 2
(78)

and

cl� = �
2C2+ (B + 1; t) + (B; t)C2+ (B; t)

�+ 2
: (79)

Discretizing equation (55) in time and space about spacial step B and time step n gives

C2+(B;n+ 1)� C2+(B;n)
�t

=

D2+(B;n)(cl��C
2+(B;n))

�x
2

� D2+(B�1;n)(C2+(B;n)�C2+(B�1;n))
�x

�x
(80)

or

C2+ (B;n+ 1) = C2+ (B;n) +
�t

�x2

26666664
2D2+ (B;n)

�
cl� � C2+ (B;n)

�
�D2+(B � 1; n)C2+ (B;n)

+D2+(B � 1; n)C2+ (B � 1; n)

37777775 (81)

= C2+ (B;n) +

266666666664

2�D2+ (B;n) 
2C2+(B+1;n)+(B;n)C2+(B;n)

�+20BB@ D2+ (B;n)

+D2+ (B � 1; n)

1CCAC2+ (B;n)
+D2+ (B � 1; n)C2+ (B � 1; n)

377777777775
(82)

= C2+ (B;n) +

2666666666666664

2�D2+(B;n)
�+2

0BB@ 2C2+ (B + 1; n)

+C2+ (B;n)

1CCA
�

0BB@ D2+ (B;n)

+D2+ (B � 1; n)

1CCAC2+ (B;n)
+D2+ (B � 1; n)C2+ (B � 1; n)

3777777777777775
(83)
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where D2+ (j; n) = D2+(j;n)�t
�x2 . Similarly, about spacial step B + 1

C2+(B + 1; n+ 1)� C2+(B + 1; n)
�t

=

Ds(C2+(B+2;t)�C2+(B+1;n))
�x � Ds(C2+(B+1;n)�cl+)

�x
2

�x
(84)

or

C2+ (B + 1; n+ 1) = C2+ (B + 1; n) +
�tDs
�x2

2664 C2+ (B + 2; n)

�3C2+ (B + 1; n) + 2cl+

3775 (85)

= C2+ (B + 1; n) + Ds

26666664
C2+ (B + 2; n)

�3C2+ (B + 1; n)

+2
2C2+(B+1;n)+C2+(B;n)

�+2

37777775 (86)

where Ds = Ds�t
�x2 . Equations (83) and (86) are the equations used in the modeling simulation (see

Appendix C) to treat the movement of Ru(bpy)2+3 at the membrane solution interface equilibrium.

3.3 Possible Equations for D (x; t)

Equations other than equation (57) where taken into account as possible electron hopping

functions and generally take the form Di(x; t) = Dphy;i +
k11�

2�
4 Hi(x; t) where Hi (x; t) is a

function used to de�ne the electron hopping phenomenon. Many of the formulas for Hi(x; t) are

dependant on concentrations of surrounding chemicals from a speci�c location xo� (0; l). Upon

discretizing the system, Ci(j; n) denotes the concentration of i at location xo, Ci(j + 1; n) denotes

the concentration of chemical i one spacial step toward the solution and Ci (j � 1; n) denotes the

concentration of chemical i one spacial step toward the electrode. The following are the discretized

versions of Hi(x; t) considered:

HRu(bpy)2+3 (j; n) = k

0BB@
q
CRu(bpy)

2+
3 (j + 1; n)CRu(bpy)

3+
3 (j; n)

�
q
CRu(bpy)

3+
3 (j + 1; n)CRu(bpy)

2+
3 (j; n)

1CCA (87)

HRu(bpy)3+3 (j; n) = �HRu(bpy)2+3 (j; n);
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where k is the mass action constant,

HRu(bpy)2+3 (j; n) =

q
CRu(bpy)

2+
3 (j + 1; n)CRu(bpy)

3+
3 (j; n)

�
q
CRu(bpy)

3+
3 (j + 1; n)CRu(bpy)

2+
3 (j; n)

�
q
CRu(bpy)

2+
3 (j; n)CRu(bpy)

3+
3 (j � 1; n) (88)

+

q
CRu(bpy)

3+
3 (j; n)CRu(bpy)

2+
3 (j � 1; n)

HRu(bpy)3+3 (j; n) = �HRu(bpy)2+3 (j; n)

and

HRu(bpy)2+3 (j; n) =

q
CRu(bpy)

2+
3 (j + 1; n)CRu(bpy)

3+
3 (j; n) (89)

HRu(bpy)3+3 (j; n) =

q
CRu(bpy)

2+
3 (j; t)CRu(bpy)

3+
3 (j + 1; n):

The idea for these formulas came from the ideal conditions for electron hopping. When

Ru(bpy)2+3 and Ru(bpy)3+3 are in close proximity to each other, an electron may hop from

Ru(bpy)2+3 to Ru(bpy)3+3 , making it look as though the molecules switched places, when in fact,

only an electron has moved. The likelihood of an electron to hop should then be dependant on

the concentration of Ru(bpy)2+3 in box j and the concentration of Ru(bpy)3+3 in an adjacent box

j + 1 or j � 1 and the concentration of Ru(bpy)3+3 in box j and the concentration of Ru(bpy)2+3

in box j + 1 or j � 1. This is illustrated in �gure 27. In this �gure, electrons hop both out of

and into box j. In this schematic, more electrons should hop into than out of box j because

the concentration of Ru(bpy)2+3 giving up electron is higher in box j + 1: In addition, there is

ample Ru(bpy)3+3 available to receive the electron on box j. As both a molecule to go from and a

molecule to go to, are needed for electron hopping, the electron hopping should contain a term like

CRu(bpy)
2+
3 (j + 1; n)CRu(bpy)

3+
3 (j; n) : Likewise, the electrons leaving box j should be dependant on

a variation of CRu(bpy)
2+
3 (j; n)CRu(bpy)

3+
3 (j + 1; n). These terms have units of mol2=cm6, therefore,

square roots considered to get correct units of concentration.
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Figure 27. A schematic of a favorable proton hopping situation.
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3.4 Results

All the equations considered for Di (C) yield results with unrealistic potential pro�les. The

following are results from using equations (57) for the electron hopping simulation run over

500 seconds. The membrane was divided into 200 boxes with the electrode at x = 0 and the

membrane ending at x = 200. From �gure 32, the potential pro�le is nonzero over a large portion

of the membrane. A potential varying by more than a few millivolts will yield an abnormal

looking voltammogram, thus the modeling equations considered for this system are not good

representations of what is truly happens within the Na�on membrane of the modi�ed electrode

system. Concentration pro�les seen in �gures 28 - 31 look remarkably similar to the case where

D (C) = Dphy except ran over a longer period of time or with a larger Dphy value. The results for

the electron hopping simulation are shown with the output from D (C) = Dphy.

Figure 28. The concentration pro�le of Ru(bpy)2+3 over the membrane and high con-
centration bulk electrolyte solution for the electron hopping and constant di¤usion
simulations. The membrane solution interface is at x = 200.
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Figure 29. The concentration pro�le of Ru(bpy)2+3 over the membrane and low con-
centration bulk electrolyte solution for the electron hopping and constant di¤usion
simulations. The membrane solution interface is at x = 200.
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Figure 30. The concentration pro�le of Ru(bpy)2+3 over the Na�on membrane for the
electron hopping and constant di¤usion simulations.
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Figure 31. The concentration pro�le for Ru(bpy)3+3 over the Na�on membrane for the
electron hopping and constant di¤usion simulations.
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Figure 32. The potential pro�le over the Na�on membrane for the electron hopping
and constant di¤usion simulations.
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CHAPTER 4

DETERMINATION THE PHYSICAL DIFFUSION RATE OF A PROBE

THROUGH A MEMBRANE WITHOUT ELECTRON HOPPING

In this chapter, the simulation is presented to load a uniform �lm with a probe, P; under

continuous cyclic voltammetry. While cyclic voltammetry sweeps run, potential versus current

values are recorded on a plot, called a voltammogram. Each sweep will have a maximum

current attained, shown by a peak on the voltammogram. Peak height is directly related to the

concentration of the probe at the electrode surface by equation 16 for reversible electron transfer.

As electron hopping requires molecules to be in close proximity to each other, low concentrations

of the probe require that movement of species be dominated by physical di¤usion. As the �lm

will not be loaded initially, the time required for the peak height to grow in will correspond to the

physical di¤usion rate. Determining how loaded the �lm is will be done by comparing the peak

heights from the continuous sweeps to the peak height of a fully loaded �lm. Thus, the physical

di¤usion rate can be found by monitoring the peak current as a function of the fully loaded peak

height.

The model and program for this chapter are based o¤ of the one in reference [10].

4.1 The Physical System

The system considered in this chapter will be similar to that in section 1.3. The system

consists of an electrode coated with a uniform �lm of thickness l. Unlike section 1.3, the Na�on

membrane will not be preloaded with a probe P . The modi�ed electrode will be placed in a bulk

solution of electrolyte containing a bulk concentration, C�, of P . Over time, P will di¤use though

the membrane to the electrode. At the electrode �lm interface, P is oxidized to P+ at su¢ cient
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potentials as

P+|{z}
oxidized form

+ e� 
 P|{z}
reduced form

E0
0
= Eo (90)

Notice that P and P+ are the same species but di¤er only by one electron. While P di¤uses into

the membrane, cyclic voltammetry will continually monitor the concentration of P . As P reaches

the electrode, current will �ow if the potential is su¢ ciently large (close to Eo or higher). The

cathode for the system will be assumed far enough away that any reduction which occurs there will

not a¤ect the chemical concentrations at the anode. As the potential goes down, any P+ at the

electrode surface will reduced back to P for potentials su¢ ciently small (close to Eo or lower). The

physical di¤usion rates for P and P+ are taken as the same in each phase within the �lm and bulk

solution. This assumption is reasonable as, for example, Ru(bpy)2+3 does not change substantially

upon oxidation to Ru(bpy)3+3 . The electrode area A
�
cm2

�
is su¢ ciently large that transport is

linear and the system is characterized by di¤usion in one dimension, x, normal to the electrode.

4.2 The Model

In the �lm, 0 � x � l, the one dimensional di¤usion equation (Fick�s second law) is

@Ci (x; t)

@t
= Df

@2Ci (x; t)

@x2
for 0 � x � l (91)

where Ci (x; t) is the concentration of chemical i and is dependant on the distance from the

electrode, x, and time, t and di¤usion coe¢ cient Df . For this simulation, Df is constant.

Fick�s second law applies in the solution as well, as

@Ci (x; t)

@t
= Ds

@2Ci (x; t)

@x2
for x > l. (92)

where Ds is the di¤usion coe¢ cient of chemical i in solution. As bulk solution allows for the free

movement of chemical i, it contains no hopping term. As each partial di¤erential equation is

�rst order in time and second order in space, each phase requires one initial and two boundary
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conditions for each P and P+.

4.2.1 Initial Conditions

The initial conditions are

CP (x; 0) = 0 for 0 � x � l;

CP (x; 0) =
C�

�
for x > l, (93)

and CP+(x; 0) = 0 for 0 � x;

where � is the extraction parameter for the concentration of the probe in the �lm relative to the

solution and C� is a value which makes C�=� equal to the initial concentration of P in the bulk

electrolyte.

4.2.2 Boundary Conditions

The solution is of su¢ cient extent that on the time scale of the experiment, the concentration is

not depleted from the bulk at distances far from the electrode giving

lim
x!1

CP (x; t) =
C�

�
; (94)

lim
x!1

CP+ (x; t) = 0: (95)

At the �lm solution interface, the concentration established between the �lm and solution is always

governed by the equilibrium

CP
�
l�; t

�
= �CP

�
l+; t

�
; (96)

where CP (l�; t) is the concentration of P adjacent to the �lm solution interface on the �lm side

and CP (l+; t) is the concentration of P adjacent to the interface on the solution side. The

parameter � is determined by the relationship between C� and the concentration of P in a fully

saturated membrane. For this model, there is no equilibrium condition for P+ as di¤usion across
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the membrane can only occur in one direction because there is no P+ present initially in solution

and Df < Ds for both P and P+.

4.2.3 The Equations

The current i (t) is related to the �ux of P to the electrode surface as

i (t)

nFA
= Df

@CP (0; t)

@x
. (97)

The forward (kf ) and backwards (kb) electron transfer rates are dependant on the potential (E)

and are given by

kf (E) = k0 exp

�
��nF
RT

�
E (t)� Eo

0
��

and (98)

kb (E) = k0 exp

�
(1� �)nF

RT

�
E (t)� Eo

0
��
;

where k0 is the standard heterogeneous rate constant for electron transfer at the electrode surface

and � is the transfer coe¢ cient. The parameter � characterizes the symmetry of the energy barrier

for the electron transfer. For this simulation, the energy barrier is assumed symmetric, so � = :5.

Equations (98) are related to the current by

i (t)

nFA
= kf (E)CP+ (0; t)� kbCP (0; t) : (99)

Dimensionless current is de�ned by

Z (k) =
i (k)

p
tk

nFAC�
p
Df
: (100)

Discretization of equation (99) makes all variables dimensionless (as shown in reference [10]).
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Solving for the dimensionless current Z (k) gives

Z (k) =
2
p
Dfkmax (Xf (k) fP+ (1; k � 1)�Xb (k) fP (1; k � 1))

2
p
Dfkmax +Xf (k) +Xb (k)

; (101)

where kmax is the number of time steps needed to complete one cyclic voltammetry sweep, fi is the

dimensionless concentration (Ci(x; t)=C�) and

Xf (k) = kf (E)

s
tk
Df
; (102)

Xb (k) = kb (E)

s
tk
Df :

: (103)

The simulation code was taken from reference [10] and modi�ed to account for the initial

conditions of interest and to mimic several cyclic voltammetry experiments performed one after

another. As seen in reference [10], equation (91) is dimensionless and discretized to the

following:

fi (j; n+ 1) = fi (j; n) + Df (fi (j � 1; n)� 2fi (j; n) + fi (j + 1; n)) ; (104)

where Df = Df�t=�x2 is the dimensionless di¤usion coe¢ cient in �lm. The function fi is the

dimensionless concentration of species i.

At �lm boundary, there is no �ux of the probe into the electrode. Thus, the above becomes

fi (1; n+ 1) = fi (1; n) + Df (fi (2; n)� fi (1; n)) : (105)

The equilibrium at the �lm solution interface is treated identical to that in Chapter 3 and is

given by equations (83) and (86). The code for the simulation can be found in Appendix D. All

parameters of the simulation rely on two variables, b and !.

4.2.3.1 Parameter b

A parameter b is used in the simulation code and is the di¤usion length relative to the �lm
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thickness. The parameter b is de�ned by

b =

s
l2

Df tk
(106)

where l is the length of the �lm, Df is the di¤usion rate in the �lm and tk is the time to complete

one cyclic voltametric sweep. For values of b greater than 1, the di¤usion length is largely con�ned

to the �lm. For values of b less than 1, the di¤usion length extends into solution. As b is a¤ected

by tk, and tk depends on the scan rate, �; of the experiment, the choice of the value of b will a¤ect

the number of space and time steps of the experiment. More can be read about the a¤ects of the

choice of b in reference [10]. The values of b used for this simulation were 0.25, 0.5, 1.2, 2.5 and 4.

4.2.3.2 Parameter !

A parameter ! is used in the simulation code. Let  =
p
Ds=Df and � be the extraction

parameter as used in equation (93). The term �= is related to the ratio of the �ux in the �lm

to that in the solution. The values of �= can range from 0 to in�nity. To make this term more

easily handled, a �ux parameter ! is de�ned as

! =
1� �



1 + �


. (107)

! is bounded between -1 and 1. The values of ! used for this simulation range from -0.5 to 0.5

with step size 0.1.

4.3 Results

The simulation output is voltammograms run continuously as a �lm loads with a probe. For

every combination of ! and b; at least 20 consecutive voltammograms were simulated. Figure 33

is an example of the type of plots created. The arrows indicate the directions in which the peaks

grew in over time. All other combinations of b and ! are similar to this one, the main di¤erence is
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Figure 33. The output of 20 consecutive cyclic voltammetric sweeps for b = 4 and
! = �0:1.
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the rate at which the peak current values converged. For small b values and large ! values, peak

currents tend to decrease as they converge, for large b values and small ! values, peaks tend to

increase as they converge. It was expected that peak values grew in as they converge on a peak

current, the decreasing peak values seen for small b values and large ! values was not of concern

because the overall decrease was very small (less than a 10% di¤erence between the �rst and last

peaks in the simulation) and is due to the parameters specifying rapid loading of the �lm.

Figure 34 and �gure 35 are of ! and b versus the dimensionless peak height at the twentieth

scan. As the peak height will be known, one can get possible b and ! values for the system.

Matching the b and ! for the peak height will allow an experimentalist to determine the physical

di¤usion of the system if the scan rate, the extraction parameter and di¤usion rate in solution are

known. Below are the plots of ! and b versus their dimensionless peak height.

Figure 34. How ! varies with �xed b values.

One feature that stands out in the above plot is the dimensionless current values do not vary
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by much when ! equals zero, in fact, they vary by less than 0.2. This is because when ! = 0, the

simulation parameters are such that there are is no �lm on the electrode. This is because ! = 0

gives

�
p
Df =

p
Ds:

As the �ux of molecules out of the solution must equal the �ux of molecules into the �lm, we have

that

Df
@f(x; t)

dx

����
x=l

= Ds
@f(x; t)

dx

����
x=l

:

Substitution then gives � = 1 and Df = Ds. Thus, the simulation is that of an unmodi�ed

electrode in solution which as the system continues to steady state, the dimensionless current values

when ! = 0 will converge to a single value.

Figure 35. How b varies over �xed ! values.

One will notice that for large b values, the dimensionless current tends toward the same value.

This is because b a¤ects the di¤usion layer thickness. The larger the b value, the shorter the
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di¤usion layer, thus for large b values, di¤usion is con�ned to the boxes closest to the electrode,

causing the concentration of probe to not change substantially except close to the electrode. Thus,

the dimensionless current for any ! with a large b value, will eventually all approach the same

value.
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CHAPTER 5

APPLICATION OF SIMULATION MODELS AND FUTURE WORK

The work described in this thesis is on three aspects of Na�on �lm, namely the proton

concentration through a Na�on �lm in a fuel cell, a test of a theory of electron hopping through

a Na�on �lm on a modi�ed electrode and calculation of the physical di¤usion rate of a molecule

without electron hopping through any type of �lm. This was done to better understand the

delivery of probes through �lms that will lead to improved implementations of transport through

�lms.

Most models of polymer modi�cations on electrodes assume electroneutrality. This assumption

may not be appropiate in cases where the anion is �xed, as the interactions of protons with

the polymer lead to unrealistic concentration pro�les through the polymer when the system is

polarized. It is unlikely that cations disburse uniformly through the �lm under such conditions.

The model can guide the engineering of novel �lms with tailored transport properties better suited

to the demands of the application.

In Chapter 3 on electron hopping, a reasonable solution was not found. It is known that a

mechanism other than physical di¤usion must be responsible for the transport of Ru(bpy)2+2 in this

system. Future work in this area includes modi�cation of the program used in Chapter 2 to take

into account migration in the system. Originally migration was assumed to have no e¤ect on the

transport within the system,. It is seems possible that migration might be part of the system in a

way that is concealed by the di¤usion within the �lm.

Physical di¤usion in the absence of electron hopping is important. Understanding where

molecules are in a �lm and how they move leads to the improvement of many devices that rely on

transport of probes.
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APPENDIX A

C++ COMPUTER CODE FOR THE MEASUREMENT OF Dphy

#include <io.h>
#include <iostream> //originally iostream.h
#include <fcntl.h>
#include <fstream>
#include <math.h>
#include <stdio.h>
#include <time.h>
#include <vector>
using namespace std; //originally not included
int main () {
ofstream outFile1;
outFile1.open("AACurrent.txt");
if (outFile1.fail())
{
cerr << "unable to open .le Current-CA.out for output" << endl;
exit(1);
}
ofstream outFile2;
outFile2.open("ACurrent.txt");
if (outFile2.fail())
{
cerr << "unable to open .le Concentration.out for output" << endl;
exit(1);
}
ofstream outFile3;
outFile3.open("Amaxmin.txt");
if (outFile3.fail())
{
cerr << "unable to open .le maxmin.out for output" << endl;
exit(1);
}
int kmax= 1000000;
int tmax=50;
double half = kmax/2;
double kkmax;
double kk;
kkmax= kmax;
int B =20;
double dubB=B;
double F = 96485.3;
double R = 8.31447;
double T = 298;
double l = F/(R*T);
double omega=.4;//-0.7;
double b=.5;
double Df = 1.2E-9;
double Ds = 5.2E-6;
double dbx =dubB*dubB/(b*b)*2*l/(0.49*kkmax);// Df/Ds; //
double gam=1/sqrt(dbx);
double rho = 1.74; //g/cm^3
double MW = 1100; //g/mol
double N = rho/MW;
double clmin = N/2;
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double clplus = .001;
double kappa=gam*(1-omega)/(1+omega); // clmin/clplus; //
double DDa = 4.9E-1; // Di¤usion Coe¤cients.
double DDb = 4.9E-1;
int k;
int j;
double x0= 500000.0;
double E1 = 0.5;
double E2 = -0.5;
double E0 = 0.0; // Potentials.
double E=0.0;
double enorm=0.0;
double potrang=l*(E2-E1);
double potinit=l*(E1-E0);
double z=0; // Dimensionless Current.
double d;
double alp = 0.5; // Alpha.
double fan[20001];
double fbn[20001];
double fao[20001];
double fbo[20001];
double da[20001];
double db[20001];
double zmax=0;
double zmin= 0;
double Emax= 0;
double Emin= 0;
double jmax;
int intjmax;
int t;
for( j=0;j<20001;j++) // Initializes arrays.
{
if(j<B)
{
fan[j]=0.0;
fao[j]=0.0;
fbn[j]=0.0;
fbo[j]=0.0;
}
else
{
fan[j]=1.0/kappa;
fao[j]=1.0/kappa;
fbn[j]=0.0;
fbo[j]=0.0;
}}
int r;
for ( r=0;r<B;r++) //(<= changed to < )
{
da[r]=DDa*dbx;
db[r]=DDb*dbx;
}
for ( r>=B;r<20001;r++)
{
da[r]=DDa;
db[r]=DDb;
}
//line 101
for (t=1;t<=tmax;t++) //Multiple Scans Start
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{
cout <<t<<"nn";
double zmax=0;
double zmin= 0;
double Emax= 0;
double Emin= 0;

for ( k=1;k<=kmax;k++) //TIME COUNTER STARTS.
{
kk=(t-1)*kmax+k;
jmax=B+6.0*sqrt((0.49)*kk)+10.0;
intjmax=ceil(jmax);
d=(k-0.5)/kkmax;
if (k<(kmax/2))
{
E=E1+2.0*(E2-E1)*d;
enorm= potinit+2.0*potrang*d;
}
else
{
E=E1+2.0*(E2-E1)*(1.0-d);
enorm= potinit+2.0*potrang*(1.0-d);
}
for(j=1;j<B-1;j++)
{
fan[j]=fao[j]+DDa*dbx*(fao[j+1]-2.0*fao[j]+fao[j-1]);
fbn[j]=fbo[j]+DDb*dbx*(fbo[j+1]-2.0*fbo[j]+fbo[j-1]);
}
fan[B-1]=fao[B-1]+da[B-1]*(2.0*kappa*gam*gam*fao[B]-(kappa+
3.0*gam*gam)*fao[B-1]+(kappa+gam*gam)*fao[B-2])/(kappa+gam*gam);
fbn[B-1]=fbo[B-1]+db[B-1]*(2.0*kappa*gam*gam*fbo[B]-(kappa+
3.0*gam*gam)*fbo[B-1]+(kappa+gam*gam)*fbo[B-2])/(kappa+gam*gam);
fan[B]=fao[B]+da[B]*(2.0*fao[B-1]-(3.0*kappa+gam*gam)*fao[B]
+(kappa+gam*gam)*fao[B+1])/(kappa+gam*gam);
fbn[B]=fbo[B]+db[B]*(2.0*fbo[B-1]-(3.0*kappa+gam*gam)*fbo[B]
+(kappa+gam*gam)*fbo[B+1])/(kappa+gam*gam);
for(j=B+1;j<intjmax;j++)
{
fan[j]=fao[j]+DDa*(fao[j+1]-2.0*fao[j]+fao[j-1]);
fbn[j]=fbo[j]+DDb*(fbo[j+1]-2.0*fbo[j]+fbo[j-1]);
}
fan[0]=fao[0]+da[1]*(fao[1]-fao[0]);
fbn[0]=fbo[0]+db[1]*(fbo[1]-fbo[0]);
double kf=x0*exp(-alp*enorm); // Rate constants .
double kb=x0*exp((1.0-alp)*enorm);
// CURRENT.
z=2.0*sqrt(kkmax*da[0])*(kf*fao[0]-kb*fbo[0])/(2.0*sqrt(kkmax*da[0])+kf+kb);
//{
//if (k>=3)
//{
//outFile1<<k<<", "<<kf<<", "<<kb<<", "<<E<<", "<<z<<"nn";
//outFile1<<E<<"nn";
//}
//else
//{
//outFile2<<k<<", "<<kf<<", "<<kb<<", "<<E<<", "<<z<<"nn";
//outFile2<<z<<"nn";
//}
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//}
// Accounting for electrolyzed material
fan[0]= fan[0]-z*sqrt(da[0]/kkmax);
fbn[0]= fbn[0]+z*sqrt(da[0]/kkmax);
for (j=0;j<=intjmax;j++) // Ageing.
{
// line 150
fao[j]=fan[j];
fbo[j]=fbn[j];
}
if (z>zmax)
{
zmax=z;
Emax=E ;
}
if (z<zmin)
{
zmin=z;
Emin=E;
}
} // end of k loop
outFile3<<"t = "<<t<<", zmax = "<<zmax<<", zmin = "<<zmin<<", Emax =

"<<Emax<<
", Emin = "<<Emin<<", DE = "<<(Emin-Emax)*1000<<"nn" ;
}//end of t loop
//} in �le originally, I took out
outFile1.close();
outFile2.close();
outFile3.close();
return 0;
}
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APPENDIX B

MATLAB COMPUTER CODE FOR THE FUEL CELL SYSTEM WITHOUT

ELECTRONEUTRALITY

function FC�nal
clear all
global a
global b
global c
global E0
format long
%it is okay to change these �rst three constants to �nd the
%system you are �nding the pro�le over
length = 175; %number of microns interested in
i = 1*10^4; %current, A/m^2, (from 1 amp/cm^2)
Vo = .59; %V lost over membrane
lo = 175; % length in microns data taken from
Eo = 1.23;
area = 5*10^(-4); %m^2, 5 cm^2, from Wayne�s thesis
ir = i*area; %A, current used for resistance
Vr = Eo-Vo; %V lost to resistance
Ro = Vr/ir; %resistance, J s/C^2
Res = Ro*length/lo;
I = Vr/Res; %A, adjusts current for the length of interest
ne = 4; %electrons in the reactions
F = 9.64853*10^7; %C/kmol
R = 8314.47; %J/K*kmol
l = lo*10^(-6)*length/lo; %m, data taken from 50 micron length
J = I/(area*ne*F); %kmol/m^2 s
D = 1.2*10^(-9); %m^2/sec
rho = 1.74*10^6; %g/m^3, 1.74 g/cm^3 average taken from Oberbroeckling/Leddy paper
MW = 1.100*10^6; %g/kmol, taken from 1100 g/mol
N = rho/MW; %kmol/m^3
T = 298; %K
er = 20;
eo = 8.85419*10^(-12); %C^2/(J m)
e = er*eo;
alpha = -10^(-3)*l*J/(D*N);
beta = F*l/(R*T);
gamma = 10^(-3)*F*N*l/e;
delta = 10^(-3);
a=alpha/delta;
b=beta/delta;
c=gamma;
lam1 = (-a+sqrt(a*a+4*b*c))/2;
lam2 = (-a-sqrt(a*a+4*b*c))/2;
M1 = [-a-lam1 b; c -lam1];
M1(2,2) = M1(1,2)*-M1(2,1)/M1(1,1) + M1(2,2);
M1(2,1) = 0; %changes to rref
ratio1 = abs(M1(1,2)/M1(2,2));
ratio2 = abs(M1(1,1)/M1(2,2));
%if M(2,2) is small enough, have one free variable to determine the eigenvectors
if ratio1 > 10^6
if ratio2 > 10^6
PosEigVec = [-b/(-a-lam1) 1]/10000;
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end
end
M2 = [-a-lam2 b; c -lam2];
M2(2,2) = M2(1,2)*-M2(2,1)/M2(1,1) + M2(2,2);
M2(2,1) = 0; %changes matrix to rref
ratio1 = abs(M2(1,2)/M2(2,2));
ratio2 = abs(M2(1,1)/M2(2,2));
%if M(2,2) is small enough, have one free variable to determine the eigenvectors
if ratio1 > 10^6
if ratio2 > 10^6
NegEigVec = [-b/(-a-lam2) 1]/10000;
end
end
E0 = -alpha/beta;
n=1000;
Ee = -alpha/beta;
IC = Vo/(10^3*l);
del1= l/2;
del2= l/2;
X1=linspace(0,del1,n);
X2=linspace(0,del2,n);
try
XI1=[NegEigVec(1,1) -.1 0]�;
[X1,Y]=ode15s(@F2,X1,XI1);
catch
del1=.999*del1;
X1=linspace(0,del1,n);
end
C1=Y*[1 0 0]�;
E1=Y*[0 1 0]�+E0;
V1=-Y*[0 0 1]�;
C1 = N*(1+C1);
E1 = 10^(3)*E1;
V1 = V1*10^(3);
C1min = min(C1);
C1max = max(C1);
E1min = min(E1);
E1max = max(E1);
deltax1 = del1/n;
try
XI2=[PosEigVec(1,1) -.1 0]�;
[X2,Y]=ode15s(@F1,X2,XI2);
catch
del2=.999*del2;
X2=linspace(0,del2,n);
end
C2=Y*[1 0 0]�;
E2=Y*[0 1 0]�+E0;
V2=-Y*[0 0 1]�;
C2 = N*(1+C2);
E2 = 10^(3)*E2;
V2 = V2*10^(3);
C2min = min(C2);
C2max = max(C2);
E2min = min(E2);
E2max = max(E2);
deltax2 = del2/n;
A = [E1min, E2min];
Amin = max(A);
h1 = size(X1);
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h2 = size(X2);
n1 = h1(1,1);
n2 = h2(1,1);
VaAll = V1(n1)-V2(n2);
x1 = 0;
while E1(n1-x1)<Amin
x1 = x1+1;
end
x2 = 0;
while E2(n2 - x2)<Amin
x2 = x2+1;
end
for x2 = 1:n2-1
x1 = 0;
Amin = E2(n2-x2);
while E1(n1-x1)<Amin
x1 = x1+1;
end
Va(n2-x2,1) = V1(n1-x1)-V2(n2-x2);
end
xv=1;
while Va(n2-xv,1) > Vo
xv = xv+1;
end
x1 = 0;
x2 = xv-1;
Amin = E2(n2-x2);
while E1(n1-x1)<Amin
x1 = x1+1;
end
Creal = zeros(2*n, 1);
Ereal = zeros(2*n, 1);
Vreal = zeros(2*n, 1);
x�nal = zeros(2*n, 1);
C�nal = zeros(2*n, 1);
E�nal = zeros(2*n, 1);
V�nal = zeros(2*n, 1);
xreal = zeros(2*n,1);
for xx = 1:n2-x2
xreal(xx) = deltax2*(xx-1);
Creal(xx) = C2(n2-x2-xx+1);
Ereal(xx) = E2(n2-x2-xx+1);
Vreal(xx) = V2(n2-x2-xx+1);
end
zro = 2*n-(n2-x2+n1-x1);
deltaxmid = (l-(n2-x2)*deltax2-(n1-x1)*deltax1)/zro;
for xx = 1:zro
xreal(n2-x2+xx) = xreal(n2-x2+xx-1)+deltaxmid;
Creal(n2-x2+xx) = N;
Ereal(n2-x2+xx) = Ee*10^3;
Vreal(n2-x2+xx) = 0;
end
for xx = 1:n1-x1
xreal(n2-x2+zro+xx) = l-deltax1*(n1-x1-xx);
Creal(n2-x2+zro+xx) = C1(xx);
Ereal(n2-x2+zro+xx) = E1(xx);
Vreal(n2-x2+zro+xx) = V1(xx);
end
line = 5; %number of points used to make the linearization
FE = zeros(2,line);
LE = zeros(2,line);
FV = zeros(2,line);
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LV = zeros(2,line);
FC = zeros(2,line);
LC = zeros(2,line);
for xx = 1:line
FE(1,xx) = (xx-1)*deltax2;
FE(2,xx) = Ereal(xx);
LE(1,xx) = l-(line-xx)*deltax1;
LE(2,xx) = Ereal(2*n-line+xx);
FV(1,xx) = (xx-1)*deltax2;
FV(2,xx) = Vreal(xx);
LV(1,xx) = l-(line-xx)*deltax1;
LV(2,xx) = Vreal(2*n-line+xx);
FC(1,xx) = (xx-1)*deltax2;
FC(2,xx) = Creal(xx);
LC(1,xx) = l-(line-xx)*deltax1;
LC(2,xx) = Creal(2*n-line+xx);
end
RFE = corrcoef(FE�); %gives correlation coe¢ cient for line
RLE = corrcoef(LE�); %made at the boundaries
RFV = corrcoef(FV�);
RLV = corrcoef(LV�);
RFC = corrcoef(FC�);
RLC = corrcoef(LC�);
pFE = poly�t(FE(1,:),FE(2,:),1);
pLE = poly�t(LE(1,:),LE(2,:),1);
pFV = poly�t(FV(1,:),FV(2,:),1);
pLV = poly�t(LV(1,:),LV(2,:),1);
pFC = poly�t(FC(1,:),FC(2,:),1);
pLC = poly�t(LC(1,:),LC(2,:),1);
clear M;
M(1,1) = pFE(1,1);
M(1,2) = -pLE(1,1);
M(1,3) = pLE(1,2) - pFE(1,2);
M(2,1) = -pFV(1,1);
M(2,2) = pLV(1,1);
M(2,3) = Vo - pLV(1,2) + pFV(1,2);
Xs = rref(M);
xi = Xs(1,3);
xf = Xs(2,3);
clear total
x�nal(1) = 0;
C�nal(1) = pFC(1,1)*xi + pFC(1,2);
E�nal(1) = pFE(1,1)*xi + pFE(1,2);
V�nal(1) = pFV(1,1)*xi + pFV(1,2);
x�nal(2) = deltax2 - xi;
C�nal(2) = Creal(2);
E�nal(2) = Ereal(2);
V�nal(2) = Vreal(2);
for x = 3:2*n-1
C�nal(x) = Creal(x);
E�nal(x) = Ereal(x);
V�nal(x) = Vreal(x);
end
for x = 3:n2-x2
x�nal(x) = x�nal(x-1) + deltax2;
end
deltaxmid = (l-(n2-x2)*deltax2-(n1-x1)*deltax1)/zro
for xx = 1:zro
x�nal(n2-x2+xx) = x�nal(n2-x2+xx-1)+deltaxmid;
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end
for xx = 1:n1-x1-2
x�nal(n2-x2+zro+xx) = l-deltax1*(n1-x1-xx);
end
x�nal(2*n-1) = 2*l-deltax1-xf;
C�nal(2*n-1) = Creal(2*n-1);
E�nal(2*n-1) = Ereal(2*n-1);
V�nal(2*n-1) = Vreal(2*n-1);
x�nal(2*n) = l;
C�nal(2*n) = pLC(1,1)*xf + pLC(1,2);
E�nal(2*n) = pLE(1,1)*xf + pLE(1,2);
V�nal(2*n) = pLV(1,1)*xf + pLV(1,2);
V�nal(2*n)-V�nal(1) %check potential drop
E�nal(2*n)-E�nal(1) %checks charge over membrane
sum1 = 0;
for x = 1:n2-x2
sum1 = sum1 + C�nal(x);
end
sum1 = sum1*deltax2;
sum2 = 0;
for x = 1:n1-x1
sum2 = sum2 + C�nal(2*n-x+1);
end
sum2 = sum2*deltax1;
sum3 = 0;
if n2-x2 < n
for x = n2-x2+1:2*n-n1+x1;
sum3 = sum3 + C�nal(x);
end
sum3 = sum3*deltaxmid;
end
sum = sum1 + sum2 + sum3 - N*l; %gives excess protons, not good bc trap rule
%checks that ignoring b*Ctilde*Ehat is ok
Ctilde = C�nal/N - 1;
Ehat = 10^(-3)*E�nal + alpha/beta;
for x = 1:2*n
Other(x,1) = Ctilde(x,1)*Ehat(x,1);
end
clear A
clear B
clear C
for x = 1:2*n
A(x,1) = abs(Ehat(x,1)/Other(x,1));
B(x,1) = abs(b*Ehat(x,1)/(-a*Ctilde(x,1)));
C(x,1) = abs(b*Other(x,1)/(-a*Ctilde(x,1)));
end
maxA = max(A);
minA = min(A);
maxB = max(B);
minB = min(B);
maxC = max(C);
minC = min(C);
for x = 1:2*n
All(x,1) = -a*Ctilde(x,1)+b*Ehat(x,1)*(1+Ctilde(x));
Assume(x,1) = -a*Ctilde(x,1)+b*Ehat(x,1);
Di¤(x,1) = 100*(All(x,1)-Assume(x,1))/All(x,1);
end
maxDi¤ = max(Di¤); %tells what % o¤ by leaving out b*Ctilde*Ehat
minDi¤ = min(Di¤);
x�nal; %delete semicolons to get output
C�nal-N; %excess proton concentration
V�nal; %potential
E�nal; %electric �eld
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end
function F1=F1(T,Y)
global a
global b
global c
global E0
F1=-[-a*Y(1)+b*Y(2)*(1+Y(1));c*Y(1);Y(2)+E0];
end
function F2=F2(T,Y)
global a
global b
global c
global E0
F2=[-a*Y(1)+b*Y(2)*(1+Y(1));c*Y(1);Y(2)+E0];
end
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APPENDIX C

MATLAB COMPUTER CODE FOR THE MODIFIED ELECTRODE WITH

PROTON HOPPING

function HoppingDi¤usion9
tic
%both directions (possible) with hopping, deltat check
totaltime = 500;
l = .01016; %cm, 4 mils
xmax = 200;
deltax = l/(xmax);
DW = 5.2*10^(-6); %cm^2/sec
Dap2 = 1.2*10^(-9); %cm^2/sec
Dap3 = Dap2;%.6*10^(-8); %cm^2/sec
%check
k11 = 10^8; %/M s
dist =13.6*10^(-8) ; %cm, 13.6 A
Dhop = k11*dist^2*pi/4; %cm^2/M*sec, will multiply by concentration in problem
length = 2.54; %cm
width = 2.54; %cm
F = 96485.3; %C/mol
eo = 8.85419^(-12); %C
er = 20;
e = eo*er;
R = 8.31447; %J/K*mol
T = 298; %K
Vo = 5;
k = 1; %mass action constant
rho = 1.74; %density, g/cm^3, density
MW = 1100; %molecular weight, g/mol
Cstar = rho/MW; %mol/cm^3
N = Cstar; %M, mol/L concentration of SO3-
bulkRu2 = 10^(-3); %concentration of Ru2 in the bulk, 1 mM
di¤ = bulkRu2-N/2;
kappa = N/(2*bulkRu2);
%don�t have to worry about kappa for Ru3 because C(Ru3) will never get that large
Dm=.45;
time = 0;
%sec
total = xmax+500; %guess to make large enough bc D is so slow in membrane
%there is a check in loop to make sure this is okay
%r = ceil(6*sqrt(Dm*(tmax))+2);
%if r < xmax
% total = xmax + 5;
%else
% total = r;
%end
%for right now when D in membrane is larger than in �lm
Cold2 = zeros(total,1);
Cold3 = zeros(total,1);
Cnew2 = zeros(total,1);
Cnew3 = zeros(total,1);
CDold2 = zeros(total,1);
CDold3 = zeros(total,1);
CDnew2 = zeros(total,1);
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CDnew3 = zeros(total,1);
Na�on = zeros(total,1);
charge = zeros(xmax,1);
grad2 = zeros(total,1);
grad3 = zeros(total,1);
J2 = zeros(total,1);
J3 = zeros(total,1);
D2 = zeros(xmax,1);
D3 = zeros(xmax,1);
phix = zeros(xmax,1);
phi = zeros(xmax,1);
chargeD = zeros(xmax,1);
phixD = zeros(xmax,1);
phiD = zeros(xmax,1);
%initialize
for x = 1:xmax
Cold2(x) = N/2;
Cnew2(x) = N/2;
CDold2(x) = N/2;
CDnew2(x) = N/2;
Na�on(x) = N;%all other chemcials already set to zero
end
for x = xmax+1:total
Cold2(x) = bulkRu2;
CDold2(x) = bulkRu2;
Cnew2(x) = bulkRu2;
CDnew2(x) = bulkRu2;
end
%for this while loop, Ru3 can only di¤use away and Ru2 can only di¤use in
steps = 0;
thing = 0;
while time < totaltime
%time
steps = steps+1;
%calculate gradients up to xmax
for x = 1:xmax-1
grad2(x) = (Cold2(x+1)-Cold2(x))/deltax;
grad3(x) = (Cold3(x+1)-Cold3(x))/deltax;
end
%might want to do more here if Ru2 & Ru3 at boundary
if Cold2(xmax+1)>Cstar/2
grad2(xmax) = (Cstar/2-Cold2(xmax))/deltax;
else
grad2(xmax) = (Cold2(xmax+1)-Cold2(xmax))/deltax;
end
if Cold3(xmax+1)>Cstar/3
grad3(xmax) = (Cstar/3-Cold3(xmax))/deltax;
else
grad3(xmax) = (Cold3(xmax+1)-Cold3(xmax))/deltax;
end
for x = xmax+1:total-1
grad2(x) = (Cold2(x+1)-Cold2(x))/deltax;
grad3(x) = (Cold3(x+1)-Cold3(x))/deltax;
end
%calculate D(x)�s
for x = 1:xmax
if grad2(x)~=0 %not equal to
D2(x) = Dap2+Dhop*(Cold3(x)-Cold2(x)*grad3(x)/grad2(x));
else
D2(x) = Dap2; %doesn�t matter, �ux is zero later
end
if grad3(x)~=0
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D3(x) = Dap3+Dhop*(Cold2(x)-Cold3(x)*grad2(x)/grad3(x));
else
D3(x) = Dap3; %doesn�t matter, �ux is zero later
end
end
%don�t have to worry about gamma 3 because C(Ru3) never gets that large
for x = xmax+1:total
D2(x) = DW;
D3(x) = DW;
end
%calculate deltat
M2 = max(D2);
M3 = max(D3);
A = [M2, M3];
M = max(A);
for x = 1:xmax
if D2(x)>thing
thing = D2(x);
end
end
deltat = Dm*deltax^2/M;
time = time+deltat;
%run through program
%do not need -J stu¤, -�s cancel out
for x = 1:total
J2(x) = D2(x)*grad2(x);
J3(x) = D3(x)*grad3(x);
end
Cnew2(1) = Cold2(1)+deltat*J2(1)/deltax;
Cnew3(1) = Cold3(1)+deltat*J3(1)/deltax;
for x = 2:xmax-1
Cnew2(x) = Cold2(x)+deltat*(J2(x)-J2(x-1))/deltax;
Cnew3(x) = Cold3(x)+deltat*(J3(x)-J3(x-1))/deltax;
end
Cnew3(xmax) = Cold3(xmax)+deltat*(J3(xmax)-J3(xmax-1))/deltax;
Cnew3(xmax+1) = Cold3(xmax+1)+deltat*(J3(xmax+1)-J3(xmax))/deltax;
gamma2 = DW/D2(xmax);
DDfx = D2(xmax)*deltat/deltax^2;
DDfx1 = D2(xmax-1)*deltat/deltax^2;
DDs = DW*deltat/deltax^2;
AA = 2*kappa*DDfx/(kappa+gamma2)*(gamma2*Cold2(xmax+1)+Cold2(xmax));
BB = (2*DDfx+DDfx1)*Cold2(xmax);
CC = DDfx1*Cold2(xmax-1);
Cnew2(xmax) = Cold2(xmax)+(AA-BB+CC);
DD = 2*(gamma2*Cold2(xmax+1)+Cold2(xmax))/(kappa+gamma2);
Cnew2(xmax+1) = Cold2(xmax+1)+DDs*(Cold2(xmax+2)-3*Cold2(xmax+1)+DD);
for x = xmax+2:total
Cnew2(x) = Cold2(x)+deltat*(J2(x)-J2(x-1))/deltax;
Cnew3(x) = Cold3(x)+deltat*(J3(x)-J3(x-1))/deltax;
end
Cold2=Cnew2;
Cold3=Cnew3;
Cold3(1) = Cold3(1)+Cold2(1);
Cold2(1)=0;
end
thing
%steps
%time
time = 0;
Dm = .49;
deltat = Dm*deltax^2/DW;
while time < totaltime
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%time
DM2D = deltat*Dap2/deltax^2;
DM3D = deltat*Dap3/deltax^2;
DMWD = deltat*DW/deltax^2;
gamma2 = DMWD/DM2D;
%calculate gradients up to xmax
CDnew2(1) = CDold2(1) + DM2D*(CDold2(2)-CDold2(1));
CDnew3(1) = CDold3(1) + DM3D*(CDold3(2)-CDold3(1));
for x = 2:total-1
CDnew3(x) = CDold3(x) + DM3D*(CDold3(x+1)-2*CDold3(x)+CDold3(x-1));
end
for x = 2:xmax-1
CDnew2(x) = CDold2(x) + DM2D*(CDold2(x+1)-2*CDold2(x)+CDold2(x-1));
end
AA = 2*kappa*gamma2*CDold2(xmax+1);
BB = (kappa+3*gamma2)*CDold2(xmax);
CC = (kappa+gamma2)*CDold2(xmax-1);
CDnew2(xmax) = CDold2(xmax) + DM2D/(kappa+gamma2)*(AA-BB+CC);
AA = (kappa+gamma2)*CDold2(xmax+2);
BB = (3*kappa+gamma2)*CDold2(xmax+1);
CC = 2*CDold2(xmax);
CDnew2(xmax+1) = CDold2(xmax+1)+DMWD/(kappa+gamma2)*(AA-BB+CC);
for x = xmax+2:total-1
CDnew2(x) = CDold2(x) + DMWD*(CDold2(x+1)-2*CDold2(x)+CDold2(x-1));
end
CDold2=CDnew2;
CDold3=CDnew3;
CDold3(1) = CDold3(1)+CDold2(1);
CDold2(1)=0;
time = time+deltat;
end
for x = 1:xmax
chargeD(x) = 3*CDnew3(x)+2*CDnew2(x)-Na�on(x);
charge(x) = 3*Cnew3(x)+2*Cnew2(x)-Na�on(x);
end
phixxD = -F/e*chargeD;
phixx = -F/e*charge;
for x = 1:xmax-1
phixD(x) = (phixxD(x+1)+phixxD(x))/2*deltax;
phix(x) = (phixx(x+1)+phixx(x))/2*deltax;
end
phixD = phixD-phixD(xmax-1);
phix = phix-phix(xmax-1);
for x = 2:xmax-1
phiD(x) = (phixD(x)+phixD(x-1))/2*deltax;
phi(x) = (phix(x)+phix(x-1))/2*deltax;
end
BD = phiD(xmax-1);
B = phi(xmax-1);
for x = 2:xmax-1
phiD(x) = phiD(x)-BD;
phi(x) = phi(x)-B;
end
di¤erence2 = Cnew2-CDnew2
di¤erence3 = Cnew3-CDnew3
Cnew2
Cnew3
�gure
hold on
plot(Cnew2, �:.r�)
plot(CDnew2, �:ob�, �MarkerSize�,4)
title({�Concentration of Ru2 with Hopping�;�mol/cm^3�})
hold o¤
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%�gure
%plot(CDnew2, �:.r�)
%title({�Concentration of Ru2 without Hopping�;�mol/cm^3�})
�gure
hold on
plot(Cnew3, �:.r�)
plot(CDnew3, �:ob�, �MarkerSize�,4)
title({�Concentration of Ru3 with Hopping�;�mol/cm^3�})
hold o¤
%�gure
%plot(CDnew3, �:.r�)
%title({�Concentration of Ru3 without Hopping�;�mol/cm^3�})
%�gure
%plot(charge, �:.r�)
%title({�Charge�})
for x = 2:xmax-1
pphi(x-1)=phi(x);
pphiD(x-1)=phiD(x);
end
�gure
hold on
plot(pphi, �:.r�)
plot(pphiD, �:ob�, �MarkerSize�,4)
title({�Potential with Hopping�})
hold o¤
%�gure
%hold on
%for x = 2:xmax-1
% plot(x,phiD(x), �:.r�)
%end
%title({�Potential without Hopping�})
%hold o¤
for x = 1:xmax
CCnew2(x) = Cnew2(x);
CCDnew2(x) = CDnew2(x);
end
�gure
hold on
plot(CCnew2, �:.r�)
plot(CCDnew2, �:ob�, �MarkerSize�,4)
title({�Rubpy2 with Hopping�})
hold o¤
%�gure
%hold on
%for x = 1:xmax
% plot(x,CDnew2(x), �:.r�)
%end
%title({�Rubpy2 without Hopping�})
%hold o¤
toc
thing
end
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APPENDIX D

DERIVATION OF POISSON�S EQUATION FROM GAUSS�LAW FOR

ELECTRICITY

Gauss�law for electricity states

� =

I
S

E � da = 1

"o

Z
V

�dV =
Qa
"o

(D.1)

where � is the electric �ux, E is the electric �eld, da is the di¤erential area on a closed surface S

with an outward facing surface normal to its direction, Qa is the charge enclosed by surface S, � is

the charge density at a point in V , "o is the electric constant and
H
S

is the integral over the surface

S enclosing volume V . In di¤erential form, equation (D.1) becomes

r �D = � (D.2)

where r is the del operator representing divergence, D is the electric displacement �eld and � is

the charge density. If it is assumed that the medium is linear, isotropic and homogeneous, then

D = "E = "r"oE (D.3)

where " is the electric permittivity of the medium, "o is the vacuum permittivity and "r is the

relative permittivity. This gives

r �D = r � "E = � (D.4)

or

r � E = �

"r"o
: (D.5)

Any su¢ ciently smooth, rapidly decaying vector �eld can be resolved into irrotational (curl-free)

and solenoidal (divergance-free) component vector �elds. This implies that any vector �eld F can
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be considered to be generated by a pair of potentials, a scalar potential 	 and a vector potential

A. The resulting Helmholtz decomposition of a vector �eld splits the vector �eld into a sum of

gradient and curl as follows:

F = �rG (r � F ) +r�G (r� F ) (D.6)

where G is the Newtonian potential operator. If r � F = 0, the F is solenoidal (divergence-free).

So the above becomes

F = r�G (r� F ) = r�A (D.7)

where A is the vector potential for F . If r � F = 0, then F is curl-free (irrotational) and the

above becomes

F = �rG (r � F ) = �r� (D.8)

where � is the scalar potential function for F . In general, the negative gradient of the scalar

potential is equated with the irrotational component and the curl of the vector potential is equated

with the solenoidal component, giving

F = �r�+r�A: (D.9)

Thus, for an electric �eld, the curl is zero (so r�A = 0), giving

F = �r� (D.10)

and equation (D.5) becomes

r � E = r � r� = r2�� �

"r"o
: (D.11)

The total change Qa of a region over a volume can be calculated by

Qa =

Z
V

�q (r) dV =
X

�q (r)�V =
X
i

ni�i�V (D.12)

=
X
i

enizi�V = NAe
X
i

Cizi�V = F
X
i

Cizi (D.13)

where �r (r) is the amount of electric charge over a volume, ni is the number of species i, �i is the
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charge of species i, e is the elementary charge and zi is the charge of species i.

As

� =
X
V

Qa = F
X
i

Cizi (D.14)

this gives

r2� = �F
"

X
i

Cizi: (D.15)
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