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Figure IV-24. Comparison of SEC values from HLA and NAS calibrations. 

 

SECs from HLA (mM)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

SE
C

 fr
om

 N
AS

 (m
M

)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Glucose difference <= 0.5 mM
Glucose difference between 0.5 and 1.0 mM
Glucose difference between 1.0 and 2.0 mM
Glucose difference over 2.0 mM



 146

 

Figure IV-25. Correlation between PCA residual RMS noise and SEC values of NAS and 
HLA calibration models. 
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to thick skin, random movements, reclamping after slipping and so on. Future studies 

must focused on S/N enhancement by increasing light power density and detector area, as 

well as more advanced interface to effectively stabilize the skin tissue. With higher 

optical throughput, the instrument will be able to accommodate a larger range of skin 

tissue thicknesses while maintaining low RMS noise levels. A more sophisticated skin 

tissue interface is also needed not only to restrain the skin tissue without movement, but 

also to monitor and regulate skin temperature, humidity, and pressure. The current 

version of the sapphire rod interface can only read the skin thickness which may not 

correlate well with the aqueous path length. In addition, the clamp must maintain a tight 

on the skin tissue position in a comfortable manner. In the future design of the optical 

interface, the clamp must be coupled to the surface of skin tissue in a more efficient and 

comfortable way to enhance the optical throughput and make patients more comfortable. 

Moreover, sensors, transducers, and control modules which are capable of monitoring 

and regulating skin temperature, humidity, and pressure will also be considered for better 

spectral quality. A preliminary temperature control unit was designed and coupled to the 

current optical interfaces and is discussed in more detail in Chapter VI. 

Conclusions 

The ability to measure glucose noninvasively in human subjects is a long term 

goal of our research group. A unique spectral signature has been identified from near-

infrared (NIR) spectra collected across living animal tissue. Before the application of this 

noninvasive NIR technology on people with diabetes, the impact of skin difference was 

investigated. Significant skin color changes before and after the spectral collections were 

discovered. For a majority of the participants, the skin tissue being studied turned darker 

and redder after the 90 minutes clamp study. However, no significant correlation was 

found between the NIR skin spectra and skin color parameters (L*, a*, and b*). This 

result is experimental evidence that the skin color variance in the visible range of the 



 148

spectrum has no impact on the NIR spectra of skin tissue. Therefore, the noninvasive NIR 

spectroscopy can be applied to people with different skin colors for the purpose of 

glucose sensing. 

Spectra from males, females, and people with and without diabetes were also 

compared by PCA analysis. Adjacent PCs were plotted up to 15 PCs which represent up 

to 99.999% of the recorded spectral variances. The overlapped PC scores distributions 

demonstrate that there was not a significant spectroscopic difference among these groups. 

This result further supports that NIR spectroscopy can benefit different populations of 

people for noninvasive glucose sensing, regardless of gender, age or diabetes. 

Glucose prediction was performed by both NAS and HLA calibration methods. 

The prediction results demonstrate that it is feasible to build NAS and HLA glucose 

models for noninvasive NIR glucose prediction. Similar predictions and calibration 

vectors were obtained from these two different algorithms. Models based on both the 

NAS and HLA methods are selective for glucose since calibration vectors from both 

methods have major peak positions that coinside with pure glucose absorptivity spectrum 

features. There are still certain data sets with poor glucose prediction performance, which 

correspond to high RMS noise and low S/N. Other possibilities could be the limitations of 

the instrumentation and the skin clamp interface. Thus, more effort is needed to enhance 

the instrumental performance and develop a more robust interface for noninvasive 

glucose sensing. 
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    D-glucose                                                  Pyruvate                                       Lactate 

2⎯⎯⎯ →←Glycolysis 2⎯⎯ →←LDH

CHAPTER V  

IN VIVO NEAR-INFRARED SPECTROSCOPY OF RAT SKIN TISSUE WITH 

VARYING BLOOD LACTATE AND UREA LEVELS 

Introduction 

Near-infrared (NIR) spectroscopy, especially Fourier transform infrared (FT-IR) 

spectroscopy, has been extensively studied for optical sensing due to the advantages of 

high spectral resolution, excellent reproducibility and good signal-to-noise ratios.101, 102 

Clinical applications center on glucose sensing for diabetes.76, 77 Besides glucose, other 

biomolecules such as lactate and urea are of clinical significance. Efforts to measure 

lactate and urea noninvasively are described in this chapter 

Lactate is a reduction product of pyruvate formed by the action of lactate 

dehydrogenase (LDH) at the end of glycolysis (see Equation V-1). During intensive 

physical activity, lactate accumulates as a “waste” product and degrades athletic 

performance.103 Lactate is also a key clinical marker in the intensive care.104, 105 

Unfortuantely, existing lactate monitoring devices are intermittent and invasive which 

reduces their impact for clinical care.105 Therefore, it is desirable to develop an in vivo, 

noninvasive, and continuous lactate sensor to monitor clinical concentrations of lactate in 

human subjects. 

 

 

Equation V-1 

 

 

A lactate clamp procedure was designed with an animal model, and NIR spectra 

were collected on the neck skin of the rat as lactate concentrations were varied in the 

blood. Similar to our glucose study, a lactate PLS calibration model was established to 
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correlate changes in the concentration of lactate with noninvasive NIR skin spectra. To 

evaluate the selectivity of this PLS model, the net analyte signal (NAS) calibration was 

then processed based on arterial blood lactate readings to investigate whether lactate 

absorption features can be extracted from the in vivo rat’s skin spectra. An alternative 

hybrid linear analysis (HLA) algorithm was also applied to extract the lactate calibration 

vector that is orthogonal to the calculated background. The calibration vectors from these 

three models were compared later.  

Urea is a clinically important molecule. It is a waste product that is normally 

excreted in the urine for healthy people. For people with renal dysfunction, however, this 

accumulation can cause uremia and dialysis is necessary to remove excess toxins. Blood 

urea concentrations are commonly used as an indicator of blood toxicity before and 

during the hemodialysis process. A need exists to monitor the dialysis treatment by 

following the removal of urea in order to maximize the efficiency of the dialysis process. 

Several approaches have been proposed for urea monitoring based on the enzymatic 

reaction with immobilized urease, which catalytically converts urea to ammonium and 

bicarbonate ions. These approaches require active enzyme as the consumable reagent, 

which increases the total cost of the treatment and adds maintenance procedures. NIR 

spectroscopy provides an alternative approach for urea sensing.80, 106, 107 As described 

above, a similar experimental procedure has been carried out to evaluate the potential of 

monitoring urea noninvasively for hemodialysis optimization. 

To explore if the absorption features of glucose, lactate, and urea are distinctive in 

the combination region of the NIR spectrum (5000-4000 cm-1), absorptivities of these 

three molecules are compared in Figure V-1. Glucose demonstrates absorption features of 

C-H stretching and C-H bending combination at 4300 and 4400 cm-1, and O-H stretching 

and C-H bending combinations at 4750 cm-1.106 The C-H stretching and C-H bending 

combinations for lactate shifts to 4350 and 4425 cm-1, and the corresponding peak of O-H 

stretching and C-H bending combination is much smaller in magnitude compared to 
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Figure V-1. Comparison of glucose, lactate, and urea absorptivities in the combination 

region. 
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glucose due to a fewer number of O-H bonds per molecule (1 versus 6 ). Urea shows 

totally different features in this NIR combination region. Peaks at 4650 and 4550 cm-1 

correspond to the combination of the symmetric (~3350 cm-1) and asymmetric (3450 cm-

1) N-H stretching modes coupled with the N-H bending vibration (~1640-1600 cm-1).106 

From this comparison, we can see that the degree of spectral overlap is higher between 

glucose and lactate, while urea has more distinctive features due to the lack of C-H and 

O-H bonds. 

Experimental Section 

Instrumentation 

The same Nicolet 670 spectrometer (Nicolet Analytical Instruments, Wisconsin, 

MI) described in Chapter II and III was used in these experiments. Light source, detector, 

and pre-amplifier are the same. Two dynamax peristaltic pumps (Rainin Instrument Co., 

Wpburn, MA) were used to infuse solutions of lactate or urea and a saline solution. The 

experimental setup in a typical lactate or urea study is shown is Figure V-2 (a) and (b). 

The only difference from the instrumentation in Chapter II and III is the skin interface. 

An optical fiber with an internal diameter (id) of 1.8 mm (FiberGuide Industries Inc. 

Stirling, NJ) was used instead of sapphire rods. Each version of the optical interface has 

its own advantages and disadvantages. For the sapphire rods used in the glucose work, 

the rod material itself has no absorbance features throughout the NIR spectrum, thus it is 

an ideal material for NIR sensing. However, the interface made of sapphire rods lacks 

flexibility. For the ultimate goal of noninvasive sensing on human subjects, a small and 

flexible probe is desired. The silica based optical fiber is better suited for this purpose, 

nevertheless, this type of fiber contains a O-H absorption band which interferes with the 

target analytes, such as glucose, lactate and urea. This would further lower the magnitude 

of single beam spectra and decrease the S/N. A detailed picture of this type of interface is 

shown in Figures V-2 (c) and (d). Spectra were collected at 16 cm-1 (8 nm) spectral 
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resolution with 128 co-added interferograms which were Fourier transformed to single-

beam spectra with triangular apodization, 1-level zero filling, and standard Mertz phase 

correction. It took about 60 seconds to collect each spectrum. 

Animal preparation and surgical procedures are the same as those used in the 

previously described glucose experiments. Rats were fasted overnight to obtain constant 

lactate or urea baseline concentrations. Animal temperature was maintained at 37.8 °C 

using a closed-loop temperature controller R/S 68900-11 (Barnant Company, Port Huron, 

MI) interfaced with a heating pad. A pulse-oximetry probe from SurgiVet Pawprint, Inc. 

(Waukesha, WI) was applied to monitor the pulse rate and blood oxygen saturation 

during the procedure. 

Lactate Profile 

A lactate clamp was performed on an adult male Sprague-Dawley rat (retired 

breeders, weighting ~ 400 g). The lactate clamp procedure was carried out by pumping 4 

mol/L sodium lactate solution into the vein of the rat at 2ml/hr. Saline was also infused to 

compensate for body dehydration during the course of the experiment. Blood samples 

were collected from an arterial cannula with 15- 30 minute intervals. The YSI 2300 

STAT Plus glucose and lactate analyzer (YSI Incorporated Life Sciences, Yellow 

Springs, Ohio) was used to measure the lactate levels in the blood samples. The 

corresponding lactate profile is shown in Figure V-3 (a). Because a larger volume of 

blood is required for each lactate measurement compared to previous glucose 

measurement, the time interval between each lactate reference measurement is longer 

compared to that of the glucose experiments. 

Urea Profile 

A urea clamp was performed in the same manner as described above for lactate in 

terms of animal preparation, instrumentation, and experimental procedure. After the 

canulation surgery, noninvasive NIR spectra were collected continuously during the urea  
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(a)                                                                          (b) 

(c)                                                                          (d) 

Figure V-2. Experimental setup of animal lactate and urea experimentshowing (a) an 
overview of the instrumentation and lactate and urea clamp control pump 
system; (b) the customized external InGaAs detector with the preamplifier; (c) 
the close-up view of the optical fiber interface for holding the skin tissue; and 
(d) an anesthetized rat being clamped during a typical animal study. 
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Figure V-3. Animal model conentration profiles for (a) lactate and (b) urea where points 
indicate reference values. 
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baseline and transient periods. During the spectral collection, 0.9% saline was infused at 

2 ml/h to compensate for dehydration. A 4 M urea solution prepared in PBS saline (urea 

purchased from Sigma-Aldrich) was infused into the venous catheter as needed. Arterial 

blood samples were collected every 15 to 30 minutes to provide reference urea 

concentrations. Again longer time intervals are needed to minimize blood depletion. 

Arterial urea concentrations were obtained by using a Stat Fax 3300 chemistry analyzer 

(Global Medical Instrumentation, Inc. Rarnsey, MN). The corresponding urea profile is 

shown in Figure V-3 (b).  

Results and Discussion 

For both lactate and urea, the collected in vivo single beam spectra were 

referenced to 1 mm air spectra collected before and after the clamp procedure to calculate 

the skin absorbance spectra. The six-component estimation procedure described in 

Chapter II was used to analyze the skin absorbance spectra. The estimated regression 

coefficients for water were used as the aqueous path length in building all calibration 

models. No lag time was adjusted on the lactate or urea reference concentrations, because 

no significant delay in the predicted concentrations is observed. 

Since water absorbance is high, any lactate or urea associated with water 

fluctuations can result in correlations between spectra and water fluctuation in the 

calibration model. To minimize the chance of this correlation, the product of lactate or 

urea concentration times the corresponding estimated aqueous path length mentioned 

above was calculated. The PLS, HLA, and NAS models were built between the 

absorbance spectra and this product term. The predicted values of this term from different 

calibration models were divided by the same estimated aqueous path length to obtain the 

predicted lactate or urea concentrations. The standard error of calibration (SEC) and 

standard error of prediction (SEP) values were calculated to evaluate the performances of 

the different models. Details of the procedure are presented in Chapter II. 
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For lactate, the blood lactate concentration was maintained at 0.47 and 0.55 mM 

for the first and second baselines, respectively. Blood lactate concentrations reached 8 

mM during the clamp period. 553 skin spectra were collected during the entire 

experiment. For PLS and HLA models, 470 randomly selected spectra were used as the 

calibration data set, and the remaining 83 spectra were used for prediction. In the NAS 

procedure, 268 spectra from two baseline periods (before and after the lactate clamp) 

were used as background to calculate the lactate NAS calibration vector, and the 285 

spectra during the lactate transient were used for prediction. The mean of the baseline 

spectra was subtracted from the whole spectral matrix. The collected pure lactate 

spectrum was projected onto this mean subtracted baseline. The orthogonal portion was 

taken as the NAS for lactate and the normalized lactate NAS was used as the lactate 

calibration vector. The calculation process is the same as that used for the glucose NAS 

model described in Chapter II. 

The calibration and prediction results of PLS, HLA, and NAS are shown in 

Figures V-4 (a), (b), and (c), respectively. In all three models, the predicted lactate values 

follow the lactate reference transient. The corresponding results are summarized in Table 

V-1. Spectral range was optimized to be 4810-4200 cm-1. With 10 to12 latent variables, 

these three lactate models result in SEC values around 1.0 to 1.5 mM and the SEP values 

are around 1.0 to 2.2 mM. Although the SEC and SEP values are relatively small, and the 

prediction trends follow the lactate transient, the fluctuation of predicted lactate 

concentrations are too high, which results in poor precision in these models. This 

fluctuation could be caused by instability of the instrumentation, which tracked too much 

environmental variances. 

Figure V-5 provides the comparison of the calibration vectors for the three 

calibration methods. Pure lactate absorptivity spectrum is superimposed on these 

calibration vectors for comparison. Each calibration vector displays peaks around 4300, 

4400, and 4650 cm-1 all of which represent lactate absorptions. The magnitude of overlap  
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Figure V-4. Lactate (a) PLS, (b) HLA, and (c) NAS calibration and prediction results of 
animal models with lactate transients. 
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Table V-1. Summary of calibration and prediction results from lactate PLS, HLA, and 
NAS models. 

 PLS HLA NAS 

Spectral range (cm-1) 4810-4200 

Total number of spectra 553 

Spectra in calibration/baseline 470 470 268 

Spectra in prediction 83 83 285 

Latent variables 10 10 12 

SEC (mM) 1.0 1.5 1.1 

SEP (mM) 1.1 1.5 2.2 
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Table V-2 PLS and HLA calibration and prediction results of urea animal model. 

 PLS HLA 

Spectral range (cm-1) 4900-4200 

Total number of spectra 523 

Spectra in calibration 445 

Spectra in prediction 78 

Latent variables 7 10 

SEC (mM) 1.9 1.9 

SEP (mM) 1.7 1.5 
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Figure V-8. Calibration vectors from (a) PLS and (b) HLA methods. 
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The 523 collected spectra were randomly split into 445 spectra in the calibration data set 

and 78 spectra used for prediction. The same calibration and prediction data sets were 

used for both the PLS and HLA models. Spectral range is from 4900 to 4200 cm-1 and the 

procedures to calculate the PLS and HLA calibration vectors are exactly the same as 

those used for lactate and glucose models discussed above. 

The calibration and prediction results of the PLS and HLA calibration models are 

shown in Figures V-6 and 7, respectively. The straight line in Figures V-6 (b) and 7 (b) 

indicate the ideal correlation between predicted and reference values. For both calibration 

methods, the predicted values from both calibration and prediction data sets follow the 

blood references with excellent correlations between the predicted and blood reference 

values. The corresponding SEC and SEP values are summarized in Table V-2. With 7 

latent variables, the PLS model can predict urea concentrations with an SEC of 1.9 mM 

and SEP of 1.7 mM. For the HLA model, 10 factors were used and the results 

demonstrate an SEC of 1.9 mM and an SEP of 1.5 mM. The calibration vectors for these 

two methods are shown in Figure V-8. The shapes of these two vectors look quite 

different. However, both of these two vectors have strong peaks at 4650 and 4550 cm-1 

which are the combination of the symmetric (~3350 cm-1) and asymmetric (3450 cm-1) 

N-H stretching modes coupled with the N-H bending vibration (~1640-1600 cm-1) in urea 

molecules. From this comparison, we can conclude that both PLS and HLA models show 

certain selectivity for urea, although differences in the overall shapes of these calibration 

vector is concerning.  

Conclusions 

Two biomolecules, lactate and urea, have been studied in this chapter because of 

their importance and significance in clinical chemistry. Two animal models with 

noninvasive skin NIR spectra were established. Different calibration methods including 

PLS, HLA, and NAS were applied. For lactate, too much fluctuation in the predicted 
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lactate concentrations was observed, which indicates a lack of precision. Both HLA and 

NAS calibration models demonstrate selectivity for lactate, while the PLS model may be 

affected by other interferences since this calibration vector failed to show features that 

overlap with lactate absorbance, as well as HLA and NAS calibration vectors. For urea, 

the NAS algorithm was not applicable because only one baseline period could be 

collected. The PLS and HLA models present good urea predictions. Although the 

calibration vectors of these two methods are quite different, both of them have strong 

peaks which overlap with known urea absorption bands. The results suggest that these 

two calibration models are selective for urea, but their differences are concerning. 

Since only one animal model was established for each study, the information 

presented here must be considered preliminary. It is too early to make any significant 

conclusions based only two experiments. Clearly, more experiments are needed in the 

following respects: first, repeated procedures or more lactate and urea transients with 

proper concentration ranges; and second, incorporate more advanced instrumentation to 

reduce the instrumental sources of variations. 
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CHAPTER VI  

FUTURE WORK 

Research results presented in the previous chapters focus on applying Near 

infrared (NIR) spectroscopy on living tissue for noninvasive monitoring of biomolecules. 

Efforts were made from the following aspects: instrumentation, animal and human model 

establishment, and chemometric models. First, an instrument with suitably high S/N over 

the combination NIR spectrum is coupled with a user-friendly-friendly interface. The 

high power density external light source, interferometer, and low noise detector were 

used to achieve the high optical throughput and sufficient S/N levels for in vivo sensing of 

the targeted biomolecules. Second, animal models with varying concentrations of target 

analytes: glucose, lactate, and urea were achieved by cannulation surgery and peristaltic 

pump control system. Preliminary human baseline models with a population of 47 people 

are also described. Third, chemometric methods, including partial least squares (PLS), 

net analyte signal (NAS), and hybrid liNear analysis (HLA), were applied with the 

resulting measurement selectivity evaluated. To further validate these calibration models, 

attempts to use external validation data sets were made both physically and 

mathematically. All of these achievements advance the state-of the-art for noninvasive 

clinical monitoring. Advances are needed, however, before a viable clinical monitor will 

be available based on NIR technology. Several key areas for further development are 

discussed below. 

Near-Infrared (NIR) Spectral Comparison of Animal 

Models with and without Anesthesia 

Noninvasive NIR spectroscopy has been applied on anesthetized animal models in 

our previous work. Multivariate calibration models including PLS, NAS, and HLA 

demonstrate good glucose prediction ability. However, for the ultimate goal of 

noninvasive glucose sensing, the NIR spectra must be collected with human subjects who 
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are fully awake or asleep. Therefore, one concern is related to the effect of the anesthetic 

agent on the collected NIR spectra. Theoretically, 50 mg/kg pentobarbital would not have 

a significant spectroscopical impact. However, the secondary effects such as changes in 

blood pressure or tissue perfusion must be considered. Thus, one multiple day animal 

experiment was conducted to compare the skin spectra with and without the anesthetic 

agent. 

In this study, NIR spectra were collected noninvasively on one animal over 

multiple days under conscious and anesthetized conditions. In the conscious study, the 

NIR spectra were collected on a fully awake animal without any medicine treatment. 

Normal level of anesthesia was maintained during the spectral collection with the 

anesthetized animal. Finally 7 days of conscious spectral data and 5 days of anesthetized 

spectral data were obtained. Spectral comparison between these two groups was made by 

principal component analysis (PCA). The comparison of principal component (PC) 

scores demonstrates major overlap between the noninvasive NIR spectra from these two 

study groups. PCA results demonstrate no significant difference between skin spectra 

collected from conscious and anesthetized animals, which means that the anesthesia has 

insignificant impact on the noninvasive NIR spectra and results from anesthetized 

animals can be extrapolated to non-anesthetized animals 

Experimental Section 

An adult male Sprague-Dawley rat (retired breeders, weighting ~ 400 g) was used 

as the animal in this experiment. Skin fold on the back of neck was selected as the 

measurement site as noted before.76, 77, 94 In vivo NIR skin spectra were collected on the 

same instrument used in animal experiments described in Chapter IIs and III. 

For the conscious measurements, the rat was restrained in a plastic cone 

(Braintree Scientific ING., Braintree, MA) during the spectral collection. The rat had 

been trained to stay calm while constrained in this manner. The same conscious 
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measurements were repeated for 7 days. Because the rat was awake in the restraint, it 

escaped the interface occasionally. The skin fold was reclamped afterwards and the data 

collection can . The total data collection time for each day varied from 30 minutes to 2 

hours depending on the status of the rat. After the first stage of the 7-day conscious data 

collection completed, anesthetized measurements were conducted on the same animal 

and instrument. The spectral collection started right after the rat was anesthetized by 

pentobarbital (Ovation Pharmaceuticals, Deerfield, IL) at the dosage of 50 mg/kg. This 

dosage could maintain anesthesia for approximately 2 hours which was the spectral 

collection time used. The same anesthetized study was repeated for 5 days. At least 2 

days interval was kept between two adjacent anesthetized experiments to provide the rat 

enough recovery time between treatments. One month after the last day of anesthetized 

experiment, two more days of conscious measurements were collected to finalize the 

experiment. During this process, the body weight was measured and recorded on each 

day. 

Results and Discussion 

In all 4865 spectra were collected during the entire study (2882 from the 

conscious condition and 1983 from the anesthetized condition). Each of skin absorbance 

spectrum was referenced to the average of 1 mm air spectra collected before and after the 

skin study to calculate the skin absorbance spectra. Spectra were further truncated to the 

region from 4900 to 4200 cm-1, which is favorable for glucose sensing. Principal 

component analysis (PCA) was done under MATLAB® R2007a with a maximum of 12 

latent variables.  

Spectral loadings are shown in Figure VI-1. The first several loadings represent 

the most dominant strong absorbers in the skin tissue, such as water, fat, and proteins. 

Loadings with more latent variables are difficult to correlate with specific physiological 

components. As more latent variables are used, the loading spectral shapes show more 
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features. However, with up to 12 factors, no significant noise features are evident in the 

loading spectra. This indicates that it is safe to use up to 12 latent variables for modeling. 

PC scores were plotted with 2 adjacent PCs in Figures VI-2, 3, 4, 5, and 6. Each color 

indicates one day in the experiment. The first two plots in Figures VI-2 (a) and (b) show 

the most significant separation, which means spectra in each day is unique. Even spectra 

from the same day study fall into several clusters when the interface was repositioned on 

that day. These variances are mainly associated with changes of skin components from 

day to day at sensing spot, and difference in reclamping conditions, such as pressure and 

thickness. With these types of variances, it is meaningless to compare spectra from only 

two or three days. With fourteen days spectra for comparison, some distributions can be 

tracked. First, even though spectral from different days form different clusters, the 

clusters of the five days of anesthetized condition fall into the region of all the other 

conscious condition. This finding suggests the spectra from anesthetized studies are not 

significantly different from those in conscious studies. This result indicates that the 

anesthesia agent has neither direct nor secondary impacts on the in vivo skin spectra. As 

more latent variables are inspected, the magnitude of overlapping is higher, which 

indicates the differences in the skin components and interface conditions make more 

contribution in the first several factors while higher factors are less dependent on these 

parameters.  

Figure VI-7 shows the residual RMS noise values measured after removing each 

latent variable in this PCA analysis. At 10 latent variables, the residual RMS noise is over 

100 µAU, which is significantly higher than that of each single day study. This find 

indicates that the variances from different days and different interface applications 

contribute significantly to the day-to-day spectral variances. 

Conclusions 

From this multiple-day animal study, spectra from anesthetized and conscious  
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Figure VI-1. PCA loadings of all the NIR skin spectra from 14 day studies with 1 to 12 
latent variables 
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Figure VI-2. Principal component plots showing (a) PC 1 vs. PC 2 and (b) PC 2 vs. PC 3. 

PC 1
(a)

38 40 42 44 46 48

P
C

 2

-1.5

-1.0

-0.5

0.0

0.5

1.0

Awake Day1
Awake Day2
Awake Day3
Awake Day4
Awake Day5
Awake Day6
Awake Day7
Anesthetized Day1
Anesthetized Day2
Anesthetized Day3
Anesthetized Day4
Anesthetized Day5
Awake2 Day1
Awake2 Day2

PC 2
(b)

-1.5 -1.0 -0.5 0.0 0.5

P
C

 3

-0.4

-0.2

0.0

0.2

0.4



174 

PC 3
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Figure VI-4. Principal component plots showing (a) PC 5 vs. PC 6 and (b) PC 6 vs. PC 7.  
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Figure VI-5. Principal component plots showing (a) PC 7 vs. PC 8 and (b) PC 8 vs. PC 9. 
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Figure VI-6 Principal component plots showing (a) PC 9 vs. PC 10 and (b) PC 10 vs. PC 
11. 
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Figure VI-7. PCA residual RMS noise at each latent variable. 
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skin conditions were compared by PCA analysis. No significant noise features were 

found up to 12 latent variables, which indicates that a chemometric model with up to 12 

latent variables has minimal chance of overfitting. PC score clusters overlap across 

providing significant evidence that the anesthesia agent causes no significant influence in 

the noninvasive skin spectra. Therefore, further animal studies from anesthetized and 

conscious studies can be combined for multivariate models.  

New Surgical Procedure for Multiple Days Study 

Animal models from multiple-day data collection periods are desired for more 

robust calibration models and the ability to access external validation. More glucose 

transients from multiple-day experiments would provide more variances due to the skin 

components and interface repositioning, thereby enhancing calibration models. In 

addition, the established models can be evaluated by external validations across different 

days. Here, a new surgical procedure is proposed for this purpose, and the preliminary 

surgery was tried on several animals.  

In this survivable surgery, the animal was anesthetized with 50 mg/kg 

pentobarbital. Similar to the surgical procedure outlined in Chapter II, two catheters 

(Strategic Applications, Incorporated, Libertyville, IL) were inserted into femoral artery 

and vein, respectively. The rest of the tubing was placed underneath skin. The other end 

of each catheter came out the skin on the rat's back. Each exiting catheter tip was 

connected with one vascular access port (VAP) (Strategic Applications, Incorporated, 

Libertyville, IL). Then the two ports were sutured on the muscle subcutaneously and 

wounds on the back and leg areas were sutured. Within two weeks, the rat was recovered. 

Frequent arterial blood sampling and venous infusion can be done through these two 

ports. 

With this new survivable surgery, new animal models with ports and catheters 

implanted will be beneficial for the collection of larger data sets with more flexibility 
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provided for the collection of calibration and validation spectral data. Hopefully, 

calibration models from multiple-day spectral data will capture more analyte-specific 

variances to make improve robustness and reliability. 

Development of Instrumentation 

Although both human and animal skin tissue show similar features in the NIR 

combination spectrum (5000-4000 cm-1), the magnitude of absorbance and scattering are 

different for human and rat skin. The current instrumentation has sufficient S/N for 

animal experiment. For human subject experiment, a broader distribution of skin 

thickness and components suggest that the current S/N is not adequate. Therefore, 

improvements are needed to develop a stable spectrometer and a noninvaisve skin 

interface to enhance the optical throughput and increase S/N. Such improvements can be 

accomplished by: 1). increasing the radiant power of the light source to enhance the 

powers in the combination spectral region; 2). enhance the interface coupling to reduce 

light loss due to refractive index mismatch; 3).use a more sensitive extended InGaAs 

detector with a larger surface area to increase S/N of the detection optics. 

Understanding the Skin Matrix  

It is a great challenge to explore each individual component in the skin matrix. So 

far, only a few of the major components have been considered. However, many 

additional components can be spectroscopical contributions. A deeper understanding of 

the NIR spectral features and how these components behave will help to establish a more 

robust and selective calibration model for glucose, lactate, and urea. 

Robust and Selective Calibration Models 

With the development of chemometrics, new algorithms can be applied with 

better understanding between noninvasive spectra and target analyte information. 

Meanwhile, new approaches can be introduced to evaluate the robustness and selectivity 
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of the established models. In addition, more sophisticated algorithms will help isolate the 

target analyte information more efficiently to improve the prediction ability. 

Noninvasive spectroscopical sensing has been developed for decades. With the 

achievements in this dissertation and contributions from other scientists, more and more 

people will benefit from the efforts we have made. 
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