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ABSTRACT

In this dissertation, I develop a framework to investigate the implications of

Affirmative Action in college admissions on both study effort choice and college

placement outcomes for high school students. I model the college admissions

process as a Bayesian game where heterogeneous students compete for seats at

colleges and universities of varying prestige. There is an allocation mechanism

which maps each student’s achieved test score into a seat at some college. A color-

blind mechanism ignores race, while Affirmative Action mechanisms may give

preferential treatment to minorities in a variety of ways. The particular form of

the mechanism determines how students’ study effort is linked with their payoff,

playing a key roll in shaping behavior.

I use the model to evaluate the ability of a given college admission policy to

promote academic achievement and to minimize racial academic gaps—namely,

the achievement gap and the college enrollment gap. On the basis of these criteria,

I derive a qualitative comparison of three canonical classes of college admissions

policies: color-blind admissions, quotas, and admission preferences.

I also perform an empirical policy analysis of Affirmative Action (AA) in

US college admissions, using data from 1996 on American colleges, freshman ad-

missions, and entrance test scores to measure actual AA practices in the American

college market. Minority college applicants in the United States effectively benefit

from a 9% inflation of their SAT scores, as well as a small fixed bonus of approx-

imately 34 SAT points. I also estimate distributions over student heterogeneity
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and perform a series of counterfactual policy experiments.

This procedure shows that AA practices in the US significantly improve

college placement outcomes for minorities, at the cost of discouraging achieve-

ment by the most and least talented students. The analysis also indicates ways

in which AA could be re-designed in order to better achieve its objectives. As it

turns out, a quota system produces a substantial improvement relative to either

the current system or a color-blind system. However, quotas are illegal in the US

and cannot be implemented as such. Nevertheless, I propose a variation on the

AA policy already in place that is outcome-equivalent to a quota.
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and perform a series of counterfactual policy experiments.

This procedure shows that AA practices in the US significantly improve

college placement outcomes for minorities, at the cost of discouraging achieve-

ment by the most and least talented students. The analysis also indicates ways

in which AA could be re-designed in order to better achieve its objectives. As it

turns out, a quota system produces a substantial improvement relative to either

the current system or a color-blind system. However, quotas are illegal in the US

and cannot be implemented as such. Nevertheless, I propose a variation on the

AA policy already in place that is outcome-equivalent to a quota.
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CHAPTER 1
INTRODUCTION

Beginning with the administration of John F. Kennedy, the United States

government has mandated Affirmative Action (AA) policies in various areas of

the economy, including education, employment, and procurement. The objective

of AA, as articulated by policymakers, is to counteract competitive disadvantages

for racial minorities due to past institutionalized racism. As President Lindon

Johnson stated in his commencement address at Howard University in June, 1965,

You do not take a person who, for years, has been hobbled by chains
and liberate him, bring him up to the starting line of a race and then
say, ‘you are free to compete with all the others,’ and still justly believe
that you have been completely fair... We seek not just freedom but
opportunity.

Two persistent academic disparities among race groups are often cited as

a rationale for AA in college admissions. The first is a widely documented phe-

nomenon known as the achievement gap, which is typically measured in terms of

standardized test scores. In 1996, the median SAT score among minority college

candidates was at the 22nd percentile for non-minorities.1

The second academic disparity, which I shall refer to as the enrollment gap,

involves placement outcomes in post-secondary education: among students who

attend college, minorities are under-represented at selective institutions and over-

1Here, the working definition of the term “minority” is the union of the following three
race classifications: Black, Hispanic and American-Indian/Alaskan Native. See Chapter
3 for a more detailed discussion. An extensive study of the black-white test score gap is
given in Jencks and Phillips (1998).
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represented at low-tier schools.2 Using institutional quality measures for Amer-

ican colleges, I show in Chapter 3 that minorities made up almost 18% of all

new college freshmen in 1996, but they accounted for only 11% of enrollment at

schools in the top quality quartile. In the bottom quartile, minorities accounted

for nearly 30% of enrollment.3 These circumstances are viewed by many as resid-

ual effects of past social ills, and race-conscious college admission policies have

been targeted toward addressing the problem.

Despite its intentions, much debate has arisen over the possible effects of

AA on the incentives for academic achievement. Supporters claim that it levels the

playing field, so to speak. The argument is that AA motivates minority students to

achieve at the highest of levels by placing within reach seats at top universities—

an outcome previously seen by many as unattainable.4 In this way, it makes costly

effort investment more worthwhile for the beneficiaries of the policy. Critics of

AA argue just the opposite: by lowering the standards for minority college appli-

cants, AA creates adverse incentives for them to exert less effort in competition

2Ultimately, policy-makers care about AA presumably because of persistent racial
wage gaps, which translate into economic well-being in a variety of ways. These wage
gaps are related to the college admissions market in two ways: first, relatively few mi-
norities enroll in college, and second, among minority college matriculants, relatively
few end up at elite institutions. Although both are interesting aspects of the college ad-
missions problem, in this paper the enrollment gap on which I focus concerns college
placement outcomes conditional on participation in the college market. The implications of
AA for college enrollment decisions is left for future research.

3Institutional quality measures are based on data and methodology developed by US
News & World Report for its annual America’s Best Colleges publication. For a more de-
tailed discussion, see Chapter 3.

4Fryer and Loury (2005) have used this argument as a possible rebuttal to their “Myth
3: Affirmative Action Undercuts Investment Incentives.”
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for admission to college. By making academic performance less important for

one’s outcome, they argue, AA creates a tradeoff between equality and achieve-

ment. Some critics of AA go even further, bringing into question whether such

policies are capable of improving outcomes for disadvantaged market players, or

whether the benefits go disproportionately to economically privileged members

of the targeted demographic group.5

While the arguments on both sides of the debate seem intuitively plausible,

satisfying answers to the AA controversy require an economic framework that al-

lows for rigorous quantification of the social costs and benefits involved. With

that in mind, I propose such a model of college admissions in order to inform

better the policy debate. I frame the model as a Bayesian game, where heteroge-

neous students compete in grades for seats at post-secondary institutions. Each

student is characterized by a privately-known type that determines the marginal

utility cost of working to achieve a grade. Students observably belong to different

demographic groups, and I allow for costs to be asymmetrically distributed across

groups.6 For any student who wishes to go to college, there is a seat open at some

institution, but no two seats are equally desirable. Allocations of college seats are

determined by a mechanism that maps each student’s grade into a college seat.

The mechanism may include race as a consideration. Under the payoffs induced

5Sowell (2004) has expounded this argument in considerable detail; an extensive dis-
cussion of the opposite viewpoint was offered by Bowen and Bok (1998).

6My intention is not to suggest that the asymmetry reflects differences of inherent abil-
ity across differing demographic groups. The appropriate interpretation involves asym-
metry arising from socioeconomic factors which affect a student’s academic competitive
edge. See Section 2 for a full discussion.
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by a given allocation rule, students optimally choose effort, based on their own

type and competition they face from other students.

This model of competition for college admissions is strategically equiva-

lent to a multi-object all-pay auction with incomplete information. Using analytic

tools from auction theory, I solve for equilibrium behavior in order to assess the

implications of different admission policies. Grade distributions are the equilib-

rium objects of principal interest from a policy standpoint because, in the model,

they allow for a complete characterization of the enrollment gap, the achievement

gap, and overall academic performance.

A meaningful investigation must encompass settings where the number of

competitors is large, but analysis of the game becomes unwieldy even for mod-

erately sized sets of players.7 I show that there is a well-defined and simple

notion of a limiting strategic environment as the number of players grows with-

out bound. The model equilibrium can be approximated to arbitrary precision

for a large enough set of competitors by treating agents and prizes as continua,

rather than finite sets.

A novel feature of the model is that it allows for comparisons of alternative

implementations of AA, whereas the previous literature has focused primarily

on color-blind versus race-conscious college admissions. I study and compare

three canonical classes of AA. The first is a quota rule, where seats are reserved

7Typically, college markets involve enough competitors to make this a problem. For
example, the US National Center for Education Statistics reported that in 2005 over 1.8
million recent high-school graduates enrolled in college.
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for allocation to minorities, effectively splitting the competition into two separate

competitions. The second variety is an American-style AA, commonly referred to

as an “admission preference,” where minority achievement is assessed a markup

before deciding who gets to attend which school. Finally, I also consider a color-

blind admission rule where no preferential treatment is given.

My objective is to address four research questions. First, what effect does

AA have on effort incentives: does it encourage students to study more or less,

and does it affect all students’ effort decisions in the same way? Second, what

effect does it have on the achievement gap: does it widen or narrow the differ-

ence in achievement across demographic groups? Third, how effective is AA at

achieving proportional enrollment in college? In other words, does the intended

allocative effect of a policy remain after factoring in the behavioral response pro-

duced by altering the rules of the competition? And fourth, are there differences

among alternative AA policies in terms of the first three criteria?

Although a complete policy analysis is difficult for a researcher who cannot

observe the social choice function, by making some light assumptions on the pref-

erences of the policy-maker, one can still guide the debate in meaningful ways.

Henceforth, I assume that the policy-maker has the following three objectives in

selecting an admission policy: (1) narrowing the enrollment gap (i.e., achieving

parity in the profiles of colleges attended by different groups) (2) narrowing the

achievement gap (i.e., achieving parity in the profiles of academic achievement

produced by different groups); and (3) preserving incentives which encourage

high academic performance. My theoretical framework is useful for this purpose
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because the equilibrium grade distributions for each group are sufficient to gauge

success along each objective. I make no assumptions concerning how the policy-

maker weights the three objectives, so establishing a preference ranking between

two policies will only be possible if one performs better along all three criteria.

The main contribution of this thesis is to highlighting the importance of

comparisons across different AA formats. Certain implementations indeed per-

form poorly—for example, a simple fixed grade markup that was used formerly

at the University of Michigan. Relative to color-blind admissions, a Michigan rule

erodes effort incentives for minorities by uniformly subsidizing grades regardless

of individual achievement. Rational students take at least some of the grade boost

as a direct utility transfer, rather than using it to bolster their competitive edge.

A Michigan rule also creates discouragement effects for non-minorities which di-

minish their performance as well. Moreover, in equilibrium, the policy simply

re-shuffles admissions at the lowest-ranked colleges, leaving allocations of the

best seats unchanged from a color-blind outcome. Thus, a uniform grade boost

accomplishes little, but comes at a potentially high cost. More general admis-

sion preference rules can be designed to overcome some of the drawbacks of the

Michigan rule.

Intuitively, minorities in a color-blind competition compete at the margin

with non-minority counterparts of the same type. When a markup is assessed,

they may end up competing with counterparts of higher ability levels, so students

adjust behavior to the point at which they compete on the margin with students

on the same competitive standing. The main shortcoming of a Michigan rule is
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that the marginal bonus for a little extra effort is zero, leading to the unambigu-

ously negative behavioral response. A more sophisticated admission preference

can do much better when a higher level of achievement results in a higher grade

bonus. This can provide incentives for minority students to increase achievement

and compete with non-minority counterparts of higher ability.

This thesis also produces new contributions to the policy debate by show-

ing that there are meaningful ways in which both the advocates and critics of

AA are correct. On the one hand, a tradeoff between equality and effort does

exist, in the sense that there is always some segment of the population for which

achievement diminishes under AA. Another shortcoming common to all forms

of AA is that the achievement gap widens among top students, relative to color-

blind allocations. Moreover, certain AA policies can be ineffective at producing

intended changes to market outcomes. On the other hand, some varieties of AA

can indeed overcome discouragement effects for disadvantaged minorities, poten-

tially producing an increase in average achievement within the minority group,

and even among the population as a whole. Moreover, it is possible to achieve

academic performance gains while producing a more representative college ad-

missions profile.

There is a substantial amount that can be said qualitatively with the model,

as outlined in the above discussion, but a final answer to the questions I pose is

empirical in nature. Accordingly, I structurally estimate the model in two parts.

First, I estimate the American admission preference system from data on college

enrollment and test scores via the generalized method of moments. The result is
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an affine markup rule where minority test scores are inflated by 9 percent, plus

a small fixed bonus. In the second stage I estimate the distributions of student

ability using tools from the structural auction econometrics literature developed

by Guerre, Perrigne and Vuong (2000, henceforth GPV). These estimates facili-

tate a set of counterfactual experiments which quantify the differences between

alternative policies.

The results of the empirical analysis indicate that actual AA practices in

the United States significantly improve market outcomes for minority students.

If AA were eliminated from college admissions decisions in the US, minority

enrollment in the top two quartiles of colleges would decrease by a third and

a quarter, respectively. Even more striking is the fact that the majority of the

displaced minority enrollment would be absorbed by the bottom quartile, in a

color-blind world. AA also narrows the gap between median SAT scores among

minorities and non-minorities by 14 percent. It discourages achievement among

minority students at the upper and lower extremes of the score distribution, while

encouraging students in the middle to score higher. The two effects balance each

other out, so that virtually no change occurs for average minority SAT scores.

As for policy comparisons, no clear ranking can be established between a

color-blind scheme and the estimated US admission preference without knowing

how the policy-maker’s preferences weight the three objectives. The latter nar-

rows the achievement gap, the former results in higher overall academic achieve-

ment, and neither is clearly better in terms of the achievement gap. On the other

hand, it can be reasonably argued that a quota system is superior to both of the
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other two policies on all three objectives: it produces the highest academic perfor-

mance, a substantial narrowing of the achievement gap, and, by design, it closes

the enrollment gap completely.

Explicit quotas are illegal in the United States and cannot be implemented

as such.8 Nevertheless, using insights from the workings of a quota mechanism,

I propose a simple variation on the AA scheme currently in place, which delivers

the same performance along the three policy objectives, and can be implemented

using only information on race and grades. Another interesting property of this

alternative policy is that it is a self-adjusting AA rule that naturally phases itself

out as the racial asymmetry diminishes.

The remainder of this thesis has the following structure. In Section 1.1, I

briefly discuss the relation between this work and the previous literature on AA.

In Chapter 2, I develop the theoretical framework of competition for college ad-

missions. Section 2.1 contains an outline of the model, while in Section 2.2.1 I

introduce the solution concept of an approximate equilibrium which adds tractabil-

ity when the number of players is large. In Section 2.3, I show that the maximizers

of a student’s limiting objective function constitutes an approximate equilibrium

of the finite college admissions game when the number of competitors is large.

I derive approximate equilibria under color-blind admissions, quotas and admis-

sion preferences. Section 2.4, contains qualitative comparisons of achievement

and race gaps under the different admissions policies for the special case where

8The US Supreme Court Ruling in Regents of the University of California v. Bakke, 438
U.S. 265 (1978) established the unconstitutionality of explicit quotas in the US.
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costs are linear in achievement. I also illustrate the model by solving it for a spe-

cial case where private types are Pareto distributed. In Section 2.5 I conclude the

theoretical discussion and describe avenues for further research.

Chapter 3 contains the empirical component of the project. In Section 3.1 I

provide description of the data that will be mapped into the model. In Section 3.2,

I propose structural estimators for AA practices and for the college market model.

The later estimator follows the method of Guerre et al. (2000), while incorporating

techniques developed by Karunamuni and Zhang (2008) on boundary-corrected

kernel density estimation, to overcome certain technical problems in the estima-

tion. In Section 3.3, I discuss the results of estimation and the counterfactual

exercise, while in Section 3.4 I outline the alternative policy proposal and con-

clude. In the Appendix, I collect the proofs of various theorems and technical

details concerning the data.

1.1 Previous Literature

This is the first paper of which I am aware that attempts simultaneously

to address all four questions posed in Section 1, but there are various papers in

the literature which attempt to address some subset of the first three. Coate and

Loury (1993) studied a bilateral matching model of skills acquisition in order to

address the first question (effort/human capital investment decisions) and the

second one (achievement gaps) too. Minority job applicants strategically interact

with potential employers who have tastes for racial discrimination à la Becker, and

workers decide whether to forego a fixed exogenous skill-acquisition cost. There
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are exactly two levels of achievement, namely, being “qualified” or “unqualified.”

The government mandates a minimal minority employment level—similar to a

quota in my model—and skill investment decisions are given by a threshold rule:

all workers with costs below a fixed cutoff choose to acquire skills. The threshold

rule is such that the government mandate can be gradually increased over time so

that all workers previously acquiring skills still choose to do so, and an additional

set of minority workers also choose to acquire skills.

An important difference between the paper by Coate and Loury (1993) and

this thesis is the agents’ choice set. In the former model, agents face a binary

choice of whether to acquire a fixed skill level at a fixed, exogenous cost. In con-

trast, I allow for agents to choose any skill level, which means that the exact cost

incurred is at the agent’s discretion. Heterogeneity among individuals exists in

the form of differences among marginal costs of skill acquisition. When this is

true, any AA policy changes every player’s behavior. This creates a tradeoff be-

tween equality and effort, and outcome changes may no longer be unambiguously

desirable.

However, there is a more fundamental distinction between bilateral match-

ing models, in general, and the all-pay auction framework. The value added

in the theoretical approach I employ for studying college admissions is that it in-

cludes the competitive interaction between two different groups that are unevenly

affected by AA. As it turns out, this is a central concern when assessing how be-

havior responds to incentive changes under a given policy. For example, in a

color-blind world, with heterogeneous students, each one intuitively competes on
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the margin with others of similar ability levels. However, when the test scores of

one group are assessed a markup—as in an admission preference—it may be pos-

sible that minority students end up competing on the margin with non-minorities

of differing ability levels. As I show later, a common theme arising from such

policies is that students adjust their behavior so that, on the margin, they com-

pete against other students who are on roughly the same competitive standing.

This concept informs the researcher concerning the properties of markup func-

tions that produce desired changes (e.g., the marginal markup for an additional

unit of achievement).

Various models in the contests literature also attempt to address the first

two questions as well. This includes papers by Fain (2009) and Fu (2006) (see also

Fu (2004)), which are two-player all-pay contests under complete information, so

heterogeneity among competitors is commonly observable. In both models, an in-

teraction between one advantaged player and one disadvantaged player compet-

ing for a single prize is studied: both authors find that an admission-preference-

like AA rule benefitting the disadvantaged player increases effort exerted by both

players. Each then uses these results to argue that colleges will admit a higher-

quality body of students if the school gives preference to the minority students by

weighting their grades more heavily. Schotter and Weigelt (1992) have performed

an experimental analysis of a two-player model similar to that of Fain (2009), with

similar results.

However, when extrapolating their results to a competition involving many

students, these authors have implicitly assumed that every beneficiary of the AA
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policy is at a competitive disadvantage to every other student not benefitting from

it. However, this assumption is inappropriate in the context of college admissions,

where AA is based only on one’s observable race, rather than one’s unobservable

characteristics which determine academic competitiveness. The current model

produces very different results, due to the fact that there are both high-cost types

and low-cost types in the minority group, all of whom benefit from AA. There

are also high-cost types in the non-minority group who do not benefit from AA.

In January of 2008, presidential candidate Barack Obama famously stated

in a television interview that his daughters should not be treated as disadvan-

taged in college admissions decisions, and that perhaps white children raised in

poverty should benefit from AA. The results of this paper are consistent with the

intuition behind Mr. Obama’s assertion: a common feature in both classes of AA

considered here is a reduction in effort among both low-cost minorities and high-

cost non-minorities. For the former group, AA provides a competitive boost that

was not needed; for the latter, AA exacerbates discouragement effects. In short,

when there are both gifted and challenged students in each demographic group,

the unambiguous benefits arising from AA are no longer a foregone conclusion.

A final related paper is Franke (2008), who analyzed the effect of an admission-

preference-like AA policy in a contest with many players. Franke showed that

when the policy-maker is fully informed on student heterogeneity, he can design

a grade-weighting scheme that raises all players’ effort, relative to a color-blind

rule. While this is certainly an improvement over a simplistic two-player model,

Franke still relied on the strong assumption of complete information to construct



14

the beneficial policy. In that sense, his research can be thought of as a charac-

terization of the “first-best” outcome, where no information is hidden from the

policy-maker. By contrast, I evaluate the tradeoffs faced by a policy-maker who

cannot observe individual characteristics other than race. A college admissions

college board can see each student’s grade, but it cannot observe the cost incurred

to achieve that grade. In keeping with the Wilson doctrine, I constrain the current

theoretical exercise to evaluating policies that are implementable without knowl-

edge of model primitives like private cost types and the associated distributions.

As for the third question—characterizing the equilibrium enrollment gap—

many models have been designed to characterize admissions outcomes at a single

post-secondary institution under AA. The papers concerning contests mentioned

above fit this description, as they all involve competition for a single indivisible

good. Another paper, by Chan and Eyster (2003), involved investigating AA in a

setting where a single college chooses what profile of students to admit, subject

to a capacity constraint. However, if colleges and universities differ in meaning-

ful ways in terms of quality, then these models cannot address the question of

how admission policies affect racial composition among different segments of the

quality spectrum. This issue requires a model where many heterogeneous college

applicants are being matched with many heterogeneous colleges. In the current

setup, this aspect of college admissions is captured by a set of distinct prizes for

which students compete.



15

CHAPTER 2
GAME-THEORETIC ANALYSIS OF COLLEGE ADMISSIONS

2.1 Model

I model the competition among high-school students for college admis-

sions as a Bayesian game. Students belong to two demographic groups—minorities

and non-minorities—and each student is characterized by a privately-known study

cost type. Students compete in grades for a set of heterogeneous prizes—seats at

colleges/universities of differing quality—and private types determine the cost-

liness of academic achievement. Students have single-object demands and prizes

are allocated by a pre-specified mechanism, according to grades. AA enters the

model if the mechanism bases allocations partially on race as well. Students

can observe the set of prizes before making decisions, but they must incur a non-

recoverable cost associated with academic achievement before learning which prize

they will receive. A student’s payoff at the end of the game is the utility derived

from consuming a prize, minus the utility cost of his achieved grade. An equilib-

rium of the game is characterized by a set of achievement functions that prescribe

each student’s optimal effort level. A formal description of the components of the

game is given below.

2.1.1 Costs and Benefits

The agents are a set K = {1, . . . , K} of students who observably belong to

a minority group M = {1, 2, . . . , M} or a non-minority group N = {1, 2, . . . , N},

where M + N = K. Students are heterogeneous, and each is characterized by a
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privately-known study cost type θ ∈ [θ, θ]. Agents view the types of their oppo-

nents as independent random variables, and there is a common prior on types

within each group, Θ ∼ Fi(θ), i = M,N . Students have access to a common

strategy set S = R+, comprising grades/test scores. In order to achieve grade

level s, an agent must incur a cost C(s; θ), which depends on his type.

This specification of costs lends itself to several interpretations: θ could

arise from either cognitive or non-cognitive factors. Costs could reflect of an

underlying labor-leisure tradeoff where students differ either by preferences for

leisure, or by the amount of labor input required to produce a unit of s. Al-

ternatively, it could reflect some psychic cost of exerting mental effort to learn

new concepts, where the amount of effort required to produce a given grade

differs among students. The cost type θ could also reflect many other external

factors affecting students’ academic performance such as home conditions, afflu-

ence, school quality, and access to things like health-care and tutors.

The rewards for academic achievement are a set of prizes

PK = {pk}K
k=1,

where pk denotes the utility of consuming the kth prize. The prizes are seats

at distinct colleges and universities, and students have single-object demands: a

student can at most attend one school. There are enough prizes for every student

who competes (i.e., there are enough seats open to serve anyone who wishes to

go to college), but no two prizes render the same utility: pk 6= pj, k 6= j. At the
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end of the game, an agent’s payoff is the utility from consuming a prize minus

the cost of achievement, or

Π(s; θ) = p − C(s; θ).

An alert reader will notice that I have implicitly assumed agents have iden-

tical preferences over differing colleges and universities. However, it is not essen-

tial to the model for all students to place the same value on a seat at a given col-

lege; the important assumption here is that students rank prize values the same.1

Without this assumption, a policy discussion concerning admission outcomes is

impossible, and the researcher is left with the unsatisfying conclusion that fewer

minorities attend elite institutions simply because they prefer it that way. An

alternative view of the homogeneous-ranking assumption is that students have

similar preferences over school attributes such as per-pupil spending, graduation

rates, student-faculty ratios, and so forth.

2.1.2 College Admission Policies

Grades are mapped into payoffs as the outcome of a matching market with

three stages: students send reports of their achievement levels to various col-

leges/universities, admissions boards make acceptance/rejection decisions, and

1For certain specifications of the cost function (e.g., C(s; θ) = θh(s)) each student’s
objective function can be normalized by his type to get a game where achievement is
uniformly costly across all competitors, but where each derives different utility from oc-
cupying a given seat. In this equivalent model, all prizes still follow a uniform ranking,
but the marginal utilities of upgrading to the next best prize are unique to each competi-
tor.
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students choose among the options given to them by the market. I assume

that there are no frictions in the matching market, so that its outcome can be

implemented by a centralized mechanism which uses the set of grades s =

{sM,1, . . . , sM,M, sN ,1, . . . , sN ,N} achieved by all students to allocate prizes. In

other words, the assumption here is that the market is efficient in the sense that it

is effective at matching higher performing students (holding race constant) with

higher quality schools.

A simple “color-blind” admission rule is one which assortatively matches

prizes with grades. The student submitting the highest grade is awarded the

most valuable prize, and so on. In what follows, it will be convenient to treat a

competition with color-blind admissions as the baseline model.

As for AA, consider first a quota system similar to what’s known as Reser-

vation Law in India. This law mandates that a certain percentage of seats be set

apart for allocation only to certain demographic groups. There are many pos-

sible quota rules indexed by a number q ∈ {1, 2, . . . , M} of prizes reserved for

minorities. However, for simplicity I shall consider only the case of a full quota

rule, where exactly M prizes are reserved for minorities. Under a full quota rule,

students compete only with members of their own group. It is also necessary

to specify how prizes are selected for reservation. There are many possibilities

once again, but for simplicity I shall focus on the case where a representative set of

M prizes is set aside. This can be accomplished by either randomly selecting M

prizes from the set PK, or by first ordering prizes by quality and then selecting out

every mth prize, where m = M+N
M . In what follows, it will be easiest to consider
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the random selection method, but this is without loss of generality: when the set

of prizes is large, the overall effect will, on average, be virtually the same.

The form of AA as implemented in the United States is different, because

of a 1978 Supreme Court ruling that explicit quotas—i.e., earmarking seats for

allocation only to students of a particular race—are unconstitutional.2 Since then,

American higher education institutions have been forced to seek other means by

which to implement AA. The resulting system is commonly referred to as an

admission preference, where test scores achieved by minority students are given

more weight in admissions decisions. I model an admission preference rule as

a grade transformation function S̃ : R+ → R+. This mechanism matches prizes

assortatively with non-minority grades and transformed minority grades

{sN ,1, . . . , sN ,N, S̃(sM,1), . . . , S̃(sM,M)}.

In other words, under an admission preference admissions boards view each mi-

nority student with a grade of s as if he had submitted a grade of S̃(s) instead.3

Regardless of whether admissions are color-blind, or follow some form of

AA, ties between competitors are assumed to be broken randomly. That is, in the

event of a tie between two or more scores (some of which may be transformed),

each student involved in the tie is assigned a random index for the purpose of

2See University of California v. Bakke (438 U.S. 265 1978).

3It should be noted here that this grade transformation rule defines a very general
class of mechanisms. In fact, the color-blind and quota rules are both special cases.
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ranking him with his competitors.

Before making decisions, agents observe the set of prizes PK, the admis-

sion rule, R ∈ {cb (color-blind), q (quota), ap (admission preference)}, and the

number of competitors from each group M and N. As mentioned above, stu-

dents share a common prior on the type distributions FM and FN . Under the

payoff correspondence Π(s; θ) induced by a particular admission rule, students

optimally choose grades based on their own type, taking into account their op-

ponents’ optimal behavior. A (group-wise) symmetric equilibrium of the Bayesian

game Γ(M, N, PK ,R) is a set of achievement functions γi : [θ, θ] → R+, i = M,N

which generate optimal grades, given that ones’ opponents behave similarly. For

the remainder of this thesis, I shall restrict attention to the class of symmetric

equilibria.

2.1.3 Policy Objectives

Equilibrium achievement functions and private cost distributions induce a

set of group-specific grade distributions, GM and GN and a population grade dis-

tribution G. These are ultimately the objects of interest from a policy standpoint,

as they fully characterize achievement, achievement gaps, and enrollment gaps in

equilibrium. In what follows, the achievement gap will be formally represented

by a function A : [0, 1] → R defined by

A(q) ≡ G−1
N (q) − G−1

M (q).
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In words, A characterizes the difference between minority and non-minority

achievement at each quantile of the grade distributions. Thus, to eliminate the

achievement gap is to accomplish an outcome where A(q) = 0, ∀q ∈ [0, 1].

As for the enrollment gap, let FPi
(p), i = M,N denote the distribution of

prizes awarded to either group in equilibrium. The enrollment gap is a function

E : [0, 1] → R defined by

E(q) ≡ F−1
PN

(q) − F−1
PM

(q).

Once again, to eliminate the gap is to accomplish an outcome where E(q) =

0, ∀q ∈ [0, 1].4 Finally, the overall profile of academic achievement is represented

by the population grade distribution,

G(s) =
M

M + N
GM(s) +

N

M + N
GN (s).

Measures of benefits and costs cited in the policy debate over AA are often

related to or derived from A, E , or G. For example, a statement about the test

score gap that “the median minority SAT score lags behind the non-minority

median by 150 points,” is equivalent to the statement A(.5) = 150. The reason for

defining race gaps and achievement in such general terms is to avoid imposing

4At the moment, this is an abuse of notation, given that FPi
is a step function having

no proper inverse, since the set of prizes is finite. However, in the limit as the number of
prizes (and players) grows without bound, the problem disappears. The analysis hereafter
will concentrate on the limiting case, as it meaningfully reflects the character of a large
finite game while adding tractability to the model.
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strong assumptions on what concerns policy-makers most. To wit, if preferences

place the same weight on the enrollment gap at every point of the college quality

spectrum, then E could be reduced to E =
∫ 1

0

[
F−1

PN
(q) − F−1

PM
(q)
]

dq. If the policy-

maker cares more about the enrollment gap at elite schools, then this would be

inappropriate.

Having formalized my notion of race gaps and achievement, I shall pro-

ceed under the following light assumptions regarding the policy-maker’s prefer-

ences:

Assumption 2.1.1. For two achievement gap functions, A∗ and A,

A∗(q) ≤ A(q) ∀q ∈ [0, 1] ⇒ A∗ < A,

and A∗ ≻ A if in addition

∃q∗ ∈ [0, 1] s.t. A∗(q∗) < A(q∗).

Assumption 2.1.2. For two enrollment gap functions, E∗ and E ,

E∗(q) ≤ E(q) ∀q ∈ [0, 1] ⇒ E∗ < E ,

and E∗ ≻ E if in addition

∃q∗ ∈ [0, 1] s.t. E∗(q∗) < E(q∗).
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Assumption 2.1.3. For two population grade distributions, G∗ and G,

G∗(s) ≤ G(s) ∀s ∈ R+ ⇒ G∗ < G,

and G∗ ≻ G if in addition

∃s∗ ∈ R+ s.t. G∗(s∗) < G(s∗).

2.1.4 Model Assumptions

In order to guarantee existence of a pure-strategy equilibrium, it will be

necessary to make the following assumptions concerning the form of the study

cost function:

Assumption 2.1.4. ∂C
∂s > 0; ∂C

∂θ > 0; ∂2C
∂s2 ≥ 0; and ∂2C

∂s∂θ ≥ 0.

In words, costs are assumed to be convex and increasing in achievement

level s and type θ. Marginal costs are also assumed to be increasing in student

types, so that a smaller θ not only means a lower cost of achieving grade level s,

but also a lower marginal cost of increasing output from s to s + ε.

It is also necessary to make the following assumptions concerning beliefs:

Assumption 2.1.5. The private cost distributions FM(θ) and FN (θ) have continu-

ous and strictly positive densities fM(θ) and fN (θ), respectively.

One aspect of the model is worth highlighting here. By assuming that

private cost distributions are static and exogenous, I am implicitly taking a short-

run view of policy implications. One could conceive of a broader model in which
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the policy-maker designs a mechanism today to affect the evolution of private

costs for future generations—i.e., the children of today’s college freshmen. Such

an undertaking is beyond the scope of the current exercise, and is left for future

research. Instead, I shall concentrate on the implications of the policy-maker’s

choices for actions and outcomes of older school children and today’s college

candidates, whose private costs can reasonably be viewed as fixed.

Finally, when considering an admission preference rule, I shall restrict at-

tention to policy functions S̃ satisfying certain sensibility criteria.

Assumption 2.1.6. S̃(s) is a strictly increasing function lying above the 45◦-degree

line.

Assumption 2.1.7. S̃(s) is continuously differentiable.

Assumption 2.1.6 corresponds to the notion that the policy is geared to-

ward assisting minorities, effectively moving each minority student with a grade

of s ahead of each non-minority student with a grade of S̃(s) ≥ s. Moreover, it

states that a policy-maker will not choose to reverse the ordering of any segment

of the minority population, so that some students are awarded prizes of lesser

value than other students within their own group whose grades were lower. As-

sumption 2.1.7 implies that the policy-maker does not make abrupt jumps in

either the assessed grade boost, or the marginal grade boost. Aside from charac-

terizing the behavior of a sensible policy-maker, Assumptions 2.1.6 and 2.1.7 also

guarantee that introducing S̃ into the model does not interfere with existence of

the equilibrium.
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2.1.5 Auction-Theoretic View of the Game

The model defined above is strategically equivalent to a special type of

game known in the contests literature as an all-pay auction. An all-pay auction

involves a strategic interaction in which agents compete for a limited resource

by incurring some type of unrecoverable cost before learning the outcome of the

game. In the present model of college competition, high school students cannot

recover lost leisure time or disutility incurred by study effort if they discover that

they did not make it into the college they had hoped for.

The centralized college admissions board is analogous to an auctioneer

selling off a set of heterogeneous prizes according to a pre-determined mecha-

nism. Students are similar to bidders, and the grades they work for are analogous

to bids. The value here in recognizing the connection to auction theory is that I

can import a well-developed set of analytic tools for characterizing the equilib-

rium. For example, as the following proposition shows, I can conclude a priori

that a monotonic equilibrium exists. As I shall shortly demonstrate, existence

and monotonicity provide an invaluable step toward analytic and computational

tractability of the model when K is large, as it is in college admissions.

Proposition 2.1.8. In the college admissions game Γ(M, N, PK ,R) with R ∈ {cb, q, ap},

there exists a unique symmetric pure-strategy equilibrium (γM(θ), γN (θ)) where achieve-

ment is strictly decreasing in private costs. Therefore, Gi(s) = 1 − Fi

[
γ−1

i (s)
]

.

A formal proof of Proposition 2.1.8 is left to an appendix, as it is fairly in-

volved. Briefly though, proving existence and monotonicity is a straightforward
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application of results reported by Athey (2001). From there, continuity and dif-

ferentiability follow directly (although the argument is somewhat complex) from

the definition of an equilibrium. Once differentiability has been established, some

well-known results from differential equations theory establish a unique solution

to the first-order conditions of a student’s decision problem. Any symmetric equi-

librium prescribes optimal behavior (by definition), and therefore it must satisfy

the unique solution to the first-order conditions.

2.2 Equilibrium Analysis

2.2.1 Approximate Equilibrium

In this section I introduce an alternative solution concept that I adopt for

tractability. For large K = M + N, the model equilibrium is analytically and

computationally intractable, because a decision-maker’s objective function is a

complicated sum of functions based on the order statistics of opponents’ costs.

Agents know that their ex-post payoff depends on their rank within the grade

distribution, and under monotonicity this is the same as their rank within the

realized cohort of opponents. Thus, expected equilibrium payoffs are a weighted

average of the prizes, where the weight on the kth best prize is one’s probability

of being the kth lowest order statistic among K competing types.

For simplicity and tractability, I assume that the number of competitors is

large enough so that a student has a very good idea of his rank within the real-

ized sample of private costs. I approximate this large, finite model by considering

the limiting case as K → ∞, but in order to do so I must first introduce some
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additional notation. Let µ denote the asymptotic mass of the minority group:

as each new agent is created, nature assigns him to group M with probability µ,

and then he draws a private cost from the appropriate group-specific distribution.

Given this assumption, with probability one the limiting sample of competitors

is a dense set on the interval [θ, θ], and each knows with certainty that his sam-

ple rank is the same as his rank in the unconditional private cost distribution

µFM(θ) + (1 − µ)FN (θ).5

For analytic convenience, I also assume that prizes are generated as inde-

pendent draws from a compact interval P = [p, p] ⊂ R+ according to a known

prize distribution FP(p) satisfying

Assumption 2.2.1. FP has a continuous density fP(p), which is strictly positive on

P ; and

Assumption 2.2.2. (zero surplus condition) p = C(0; θ).

Even though prize values are observable ex ante, framing them in this way

provides an intuitive view of the limiting set of prizes: as K → ∞, PK becomes a

dense set on P , and the rank of a prize with value p converges to FP(p).

Assumption 2.2.2 is necessary because it provides a boundary condition

that is used to solve the equilibrium equations. Although the current theoretical

5The fact that the limiting sample is a dense set can be seen by applying the following
logic: given any two numbers θ, θ′ ∈ [θ, θ], where θ < θ′, the probability mass assigned
to the interval (θ, θ′) is strictly positive under my assumptions on FΘ. Therefore, as the
number of independent draws from FΘ gets large, the probability of hitting the interval
(θ, θ′) at least once approaches one. Thus, a countably infinite random sample of agents
will be everywhere dense on [θ, θ].



28

exercise focuses solely on the competition among high-school students for college

admissions, the zero surplus condition can be thought of as reflecting broader

market forces not explicitly included in model. In the broader model, prize values

are the additional utility one gains from going to college versus opting out, and

[θ, θ] is the set of individuals who demand a college seat, being a subset of a larger

group of individuals, some of whom choose the outside option. If schools and

firms can freely choose to enter the market and supply either college seats or jobs

for unskilled laborers, the marginal college candidate—the highest private cost

type opting for college, θ—will be just indifferent between attending college and

entering the work force as an unskilled laborer. This point highlights a limitation

of the current model: it attempts to characterize student behavior conditional on

participation in the post-secondary education market, and it is not intended to provide

insights into the decision of whether to acquire additional education. This aspect

of the college admissions problem is left for future research.

With that out of the way, I can treat both agents and prizes as if they belong

to a continuum, rather than a finite set. This allows me to avoid framing decisions

in terms of the distributions of complicated order statistics, and it reduces each

agent’s decision problem to a simple objective function expressed in terms of θ, µ,

FM, FN and FP. Given the well-behaved nature of the model primitives, the max-

imizers of the finite objective functions converge to the maximizer of the limiting

objective function, which allows me to derive what I refer to as an approximate

equilibrium.
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Definition 2.2.3. Consider a generic game Γ(K, S, Π), where K = {1, 2, . . . , K} is

the set of players, Si ⊆ R is the strategy space for the ith player, and Π(s1, . . . , sK)

characterizes payoffs on S = S1 ×· · ·×SK. Given δ > 0, a δ-approximate equilibrium

is a K-tuple sδ = (sδ
1, . . . , sδ

K), such that there exists an equilibrium s∗ = (s∗1 , . . . , s∗K)

of Γ, where ‖sδ − s∗‖sup < δ.

The approximate equilibrium concept is more relevant for my purposes

than the ε-equilibrium introduced by Radner (1980), which is a profile of strate-

gies generating payoffs that are ε close to payoffs in some equilibrium of Γ. The

drawback of an ε-equilibrium is that it need not resemble the equilibrium strate-

gies which generate the payoffs being approximated.6 In my case, the strategies

are a principal concern: I want to concentrate on the effects of admission policies

on both payoffs and behavioral choices. However, there is a connection between

the two concepts, as the following remark demonstrates.

Remark 2.2.4. For a Nash equilibrium s∗ of Γ, if s∗ ⊂ U ⊂ S, where U is a

neighborhood of s∗, and if the payoff function Π is continuous on U, then the set

of payoffs generated by ε-equilibria and δ-approximate equilibria form bases of

neighborhoods of equilibrium payoffs. That is, given an ε-equilibrium associated

6Radner (1980) used an ε-equilibrium to resolve a dilemma in dynamic Cournot
oligopoly games. For a fixed set of firms, as long as the number of periods is finite, the
unique subgame perfect equilibrium involves static equilibrium strategies being played
every period, whereas collusion suddenly becomes possible in the limit. Radner showed
that there is a collusive ε-equilibrium of the finite-horizon Cournot game in which car-
tels are sustainable. Equilibrium payoffs can be replicated to arbitrary precision (i.e., it
is nearly optimal to collude if the time horizon is far enough away), even though the
ε-equilibrium strategies are excluded from a neighborhood of equilibrium strategies.
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with s∗, there exists δ > 0 such that for a δ-approximate equilibrium we have

‖Π(sδ)− Π(s∗)‖sup < ε.

Conversely, given a δ-approximate equilibrium associated with s∗, there exists

ε > 0 such that for an ε-equilibrium we have

‖Π(sε)− Π(s∗)‖sup < ‖Π(sδ)− Π(s∗)‖sup. �

In the context of the college admissions model, I seek to characterize a

set of approximate achievement functions, denoted γ∞
M(θ) and γ∞

N (θ), such that

given a fixed tolerance level δ > 0, the functions approximate actual equilibrium

achievement to δ-precision for large enough K.

My approximate equilibrium concept is similar to the oblivious equilibrium

developed by (Weintraub et al., 2008, WBR) to approximate Markov Perfect Equi-

libria in dynamic oligopoly games. In such models, firms (and researchers) must

compute a complex and intractable state transition process in order to exactly de-

termine equilibrium strategies. Instead, WBR assume that firms make nearly opti-

mal decisions based on a long-run average industry statistic which is inexpensive

to compute. This issue of computational tractability leads to an alternative inter-

pretation of approximate equilibria. Aside from being a useful approximation of

equilibrium behavior, one could also view them as an exact characterization of

the behavior of agents with bounded information processing ability. Rather than



31

precisely tracking expected payoffs based on all of the order statistics of a large

set of competitors, a cognitively constrained agent with private cost θ might find

it more attractive to base decisions on his limiting rank Fi(θ) instead.

2.3 Approximate Equilibria Under AA

I shall proceed by deriving the maximizers of an agent’s limiting objective

function as the natural processes described in Section 2.2.1 generate increasingly

large sets of competitors and prizes. I then prove that the resulting derivations sat-

isfy Definition 2.2.3 above. From this point on, all discussion and derivations will

be in terms of the approximate equilibrium,
(
γ∞
M(θ), γ∞

N (θ)
)
, so I shall drop the

∞ superscript for notational ease. Moreover, to avoid tedious verbosity, in what

follows I shall henceforth refer to the approximate equilibrium and the approx-

imate achievement functions simply as “the equilibrium” and “the achievement

functions,” unless the context requires me to be specific. If it becomes necessary

to distinguish between the actual equilibrium of a game with K agents and the

approximate equilibrium, I shall refer to the former as the “finite equilibrium”

and I shall abuse the notation slightly and denote the former by γ(·; K), listing K

as a parameter. Keeping in mind the processes generating agents and prizes, this

notational abuse is not unreasonable: by the law of large numbers, any two ran-

domly generated games with a large number of players K will be probabilistically

very similar.

Superscripts shall be used below to keep track of the admission policy

which defines payoffs in the game. Under policy R ∈ {cb, q, ap}, the achievement
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functions and grade distributions are denoted by γR
M(θ), γR

N (θ), GR, GR
M, and GR

N .

Finally, in what follows, it will sometimes be convenient to work with the inverse

achievement function, which I denote by ψR
i (s) ≡

(
γR

i

)−1
(s).

2.3.1 Color-Blind Game

Recall that a color-blind allocation rule means simple positive assortative

matching of prizes with grades. I claim (proof to follow later) that in the limit, in

equilibrium, this process is equivalent to using the following reward function for

a student submitting a grade of s:

πcb(s) =F−1
P

[
Gcb(s)

]

=F−1
P

[
µGcb

M(s) + (1 − µ)Gcb
N (s)

]

=F−1
P

[
1 −

(
µFM

[
ψcb(s)

]
+ (1 − µ)FN

[
ψcb(s)

])]
.

Intuitively, the quantiles of the population grade distribution Gcb(s) are mapped

into the corresponding prize quantiles. Since individuals’ limiting payoffs do not

depend on race, it follows that γcb
M(θ) = γcb

N (θ) = γcb(θ); hence, the lack of

subscripts on the inverse achievement functions in the third line.7

In equilibrium, the limiting net payoff for an agent with cost type θ sub-

7The theorist with experience in asymmetric auctions may find this statement puz-
zling, but one must keep in mind that it merely applies to limiting payoffs. In a two-player
game, differing behavior arises from the fact that a minority and a non-minority with the
same private cost type will view their likely standing in the distribution of realized com-
petition differently, due to the asymmetry in the cost distributions. However, the likely
difference between their expected ranks vanishes as the number of players gets large.
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mitting grade s is

Πcb(s; θ) = F−1
P

[
1 −

(
µFM

[
ψcb(s)

]
+ (1 − µ)FN

[
ψcb(s)

])]
− C(s; θ).

Differentiating, I get the following first-order condition (FOC):

− µ fM[ψcb(b)] + (1 − µ) fN [ψcb(b)]

fP

(
F−1

P

[
1 −

(
µFM

[
ψcb(s)

]
+ (1 − µ)FN

[
ψcb(s)

])])
dψcb(s)

ds
= C ′(s; θ). (2.1)

Using the fact that
dψcb(s)

ds = 1
(γcb)′(ψcb(s))

, and the fact that in equilibrium we have

ψcb(s) = θ, I can substitute to get

(γcb)′(θ) = − µ fM(θ) + (1 − µ) fN (θ)

fP

(
F−1

P [1 − µFM(θ) − (1 − µ)FN (θ)]
)
C ′[γcb(θ); θ]

. (2.2)

This differential equation partially solves for equilibrium achievement, but a bound-

ary condition is also required.

By monotonicity, a student with cost type θ is sure to be awarded the lowest

quality prize, so the Assumption 2.2.2 implies the following boundary condition:

γcb(θ) = C−1(p; θ). (2.3)

With that, I am ready to prove that the derivations above provide mean-

ingful insights into the equilibrium of a finite college admissions games where

the number of competitors is large. The proof is fairly involved, but it is based on

simple ideas. I first prove that the finite objective functions converge pointwise in
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probability to the limiting objective function listed above. By viewing a K-player

game as being randomly generated by the natural processes outlined in Section

2.2.1, one can think of a player’s objective function as a random variable; hence

the concept of convergence in probability. Using pointwise convergence, I can in-

voke Egorov’s Theorem to deliver uniform convergence of the sequence of finite

objective functions. Finally, using uniform convergence, I can invoke the theorem

of the maximum to show that the finite maximizers are close to the solution of

equation (2.2) and boundary condition (2.3) for large K.

Theorem 2.3.1. Given ρ, ε, δ > 0, there exists K∗ ∈ N, and a set E ⊂ [θ, θ] having

(Lebesgue) measure m(E) < ρ, such that for any K ≥ K∗, on any closed subset of

[θ, θ] \ E we have the following:

(i) γcb(θ) as defined by equation (2.2) and boundary condition (2.3) generates an ε-

equilibrium of the K-player color-blind game, and

(ii) γcb(θ) is a δ-approximate equilibrium for the K-player color-blind game, or

‖γcb(θ) − γcb
i (θ; K)‖sup < δ, i = M,N .

As the proof of Theorem 2.3.1 is fairly involved, I have left it to an ap-

pendix.

Before moving on, I should note that Theorem 2.3.1 can be strengthened

slightly, to show that an ǫ-equilibrium and a δ-approximate equilibrium obtains

on the entire set [θ, θ], rather than on a subset with close to full measure. However,
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the proof of the stronger version of the theorem invokes results from the econo-

metric theory literature less familiar to economic theorists, concerning uniform

convergence in probability of stochastic functions. See the appendix for details

on the alternative form of the proof.

2.3.2 AA: Quota Game

I now depart from the baseline color-blind model, and derive the approxi-

mate equilibrium in the presence of race-conscious admission policies, beginning

with quotas. Recall that a quota system in the finite game can be thought of as

randomly selecting M prizes and setting them aside for allocation to group-M

agents. This effectively splits the single asymmetric competition apart into two

separate, symmetric competitions. As K gets large, the sample distributions of

prizes reserved for each group both converge in probability to FP. Thus, the lim-

iting quota rule is equivalent to a set of group-specific reward functions of the

form

π
q
i (b) = F−1

P

[
G

q
i (b)

]
, i = M,N . (2.4)

Intuitively, the quantiles of the group-specific grade distributions are mapped into

the corresponding quantiles of the prize distribution.

In equilibrium, the utility for a group-i student with cost θ achieving a

grade of s is

Π
q
i (s, θ) = F−1

P

[
G

q
i (s)

]
− C(s; θ) = F−1

P

(
1 − Fi

[
ψ

q
i (s)

])
− C(s; θ).
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This is identical to payoffs in the color-blind game, except that the unconditional

cost distribution has been replaced with Fi for group i = M, N . By symmetry

then, equilibrium achievement will be determined by

(γ
q
i )

′(θ) = − fi(θ)

fP

(
F−1

P [1 − Fi(θ)]
)
C ′ [γq

i (θ); θ
] (2.5)

and boundary condition (2.3).

Theorem 2.3.2. Given ρ, ε, δ > 0, there exists K∗ ∈ N, and a set E ⊂ [θ, θ] having

(Lebesgue) measure m(E) < ρ, such that for any K ≥ K∗, on any closed subset of

[θ, θ] \ E we have the following:

(i) γ
q
i (θ), i = M,N as defined by equation (2.5) and boundary condition (2.3) gen-

erates an ε-equilibrium of the K-player quota game, and

(ii) γ
q
i (θ) is a δ-approximate equilibrium for the K-player quota game, or

‖γ
q
i (θ) − γ

q
i (θ; K)‖sup < δ, i = M,N .

Once again, the proof of Theorem 2.3.2is relegated to an appendix. As

before, by using a slightly more complicated proof technique, this result can

be strengthened to demonstrate that γ
ap
i generates an ε-equilibrium and a δ-

approximate equilibrium on the entire set [θ, θ], rather than on a subset with

nearly full measure. See the Appendix for details.
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2.3.3 AA: Admission Preference Game

In 1978, the Supreme Court of the United States ruled in the case of Re-

gents of the University of California v. Bakke that explicit quotas are unconsti-

tutional. Subsequently, American college admissions boards have been forced to

seek other means by which to implement AA. These alternative implementations

were referred to above as admissions preferences. An admission preference rule

is modeled as a grade transformation function S̃ : R+ → R+, where S̃(s) is in-

creasing and S̃(s) ≥ s. Here, prizes are matched assortatively with non-minority

grades and transformed minority grades

{sw1, . . . , swW, S̃(sm1), . . . , S̃(smM)}.

In what follows, it will be convenient to derive the equilibrium in terms of

inverse equilibrium strategies. Under an admission preference, minority students

are repositioned ahead of their non-minority counterparts with grades of S̃(s) or

less. Thus, the limiting gross payoff function for group M is

π
ap
M(s) = F−1

P

[
(1 − µ)GN

(
S̃(s)

)
+ µGM(s)

]

= F−1
P

[
1 − ((1 − µ)FN

[
ψ

ap
N (S̃(s))

]
+ µFM

[
ψ

ap
M(s)

])]
(2.6)

and the gross payoff function for group N is

π
ap
N (s) = F−1

P

[
(1 − µ)GN (s) + µGM

(
S̃−1(s)

)]

= F−1
P

[
1 −

(
(1 − µ)FN

[
ψ

ap
N (s)

]
+ µFM

[
ψ

ap
M(S̃−1(s))

])]
.

(2.7)
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The intuition for the above expressions is similar to the intuition for the color-

blind and quota reward functions: the limiting mechanism maps the quantiles of

a (mixed) distribution into the corresponding prize quantiles. For non-minorities,

it is a mixture of the distributions of non-minority grades and transformed minor-

ity grades. For minorities, it is a mixture of the distributions of minority grades

and inverse-transformed non-minority grades. Thus, a student’s standing with re-

spect to members of his own group doesn’t change, but standing with respect to

members of the other group does. For minorities it changes in a positive direction

according to S̃, and for non-minorities it changes in a negative direction, since

S̃−1 lies below the 45◦-line.

However, the introduction of a preference function S̃ introduces some com-

plications into the analysis. Note that equation (2.7) only holds for s such that

S̃−1(s) ≥ 0, because one can only invert grades in the range of the function ψ
ap
M.

If S̃ passes through the origin, then this condition is satisfied for every grade in

the choice set. On the other hand, there is an interesting class of admission pref-

erence rules which do not pass through the origin.8 An example is an affine rule

of the form

S̃(s) = ∆1 + ∆2s,

8An additive admission preference S̃(s) = s + ∆ was explicitly used in undergradu-
ate admissions at the University of Michigan. Admissions decisions were based on an
index ranging from 0-120, with a bonus of 20 points being assessed to all students from
underrepresented racial minority groups. This policy was in place until 2003 when the
Supreme Court ruled in a joint opinion on Gratz v. Bollinger and Grutter v. Bollinger, that
the bonus was unconstitutional. The opinion of the Court stated, somewhat vaguely, that
while the Michigan rule was too “narrowly defined” and “mechanical,” universities still
have the right to consider race as a “plus factor” in admissions decisions. This abrogated
a 1996 ruling to the contrary by the US Fifth-Circuit Court in the case of Hopwood v. Texas.
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where minority students receive a fixed subsidy of ∆1, regardless of their grade.

In that case, non-minorities whose grades are less than S̃(0) are placed behind

all minority students, meaning that they compete only with other non-minority

students whose grades are less than S̃(0). This leads to the following proposition:

Proposition 2.3.3. In the college admissions game, with an admission preference mech-

anism S̃, where S̃(0) = ∆ > 0, it follows that group-N players with equilibrium grades

below S̃(0) behave as they would under a quota rule.

Proof: Let θ∆ denote the non-minority private cost type who’s equilibrium grade

is ∆ and let

p∆ = F−1
P (1 − [(1 − µ)FN (θ∆) + µFM(θ∆)])

denote the highest prize awarded to agents whose transformed bids are ∆ or less.

Also, let P∆ = [0, p∆]. On the interval [θ∆, θ], group N agents know that they are

competing only among themselves for the lowest mass

ν = (1 − µ)FP(p∆) = (1 − µ)
[
1 −

(
(1 − µ)FN

[
ψ

ap
N (∆)

]
+ µFM

[
ψ

ap
N (∆)

])]

of prizes since the grade markup necessarily places them behind every minority

student (note that ν is also the mass of high-cost, group-N agents receiving prizes

in P∆). It is as if they are playing a game where the prize distribution is

FP∆
(p) =

FP(p)

ν
, p ∈ [0, F−1

P (ν)]
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and where the distribution over competition is

FN∆
(θ) =

FN (θ) − (1 − ν)

ν
, θ ∈ [θ∆, θ].

Following a similar argument as in the proof of Theorem 2.3.2, the limiting objec-

tive function for high-cost agents from group N is

F−1
P∆

(
1 − FN∆

[
ψ

ap
N (s)

])− C(s; θ).

Since F−1
P∆

(r) = F−1
P (νr), r ∈ [0, 1], the objective can be rewritten and rearranged

as follows:

F−1
P

[
ν

(
1 − FN

[
ψ

ap
N (s)

]
− (1 − ν)

ν

)]
− C(s; θ)

= F−1
P

(
1 − FN

[
ψ

ap
N (s)

])− C(s; θ),

which is exactly the same limiting objective function as under a quota. Since

the boundary condition is also the same it follows that on the interval [θ∆, θ], we

have γ
ap
N (θ) = γ

q
N (θ) and θ∆ = ψ

q
N (∆) from which the result follows. This also

provides a boundary condition γ
ap
N
[
ψ

q
N (∆)

]
= ∆ for the solution of γ

ap
N on the

lower interval [θ, θ∆]. �

Knowing how γ
ap
N behaves on the upper type interval (if there is one), I

have a boundary condition for non-minorities on the lower interval [θ, θ∆] for

general S̃. Before proceeding, it will be useful to observe that the gross payoff

functions satisfy π
ap
M(s) = π

ap
N (S̃(s)).
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On the lower interval, the limiting objective functions for groups M and

N are, respectively,

F−1
P

[
1 −

(
(1 − µ)FN

[
ψ

ap
N (S̃(s))

]
+ µFM

[
ψ

ap
M(s)

])]
− C(s; θ), s ≥ 0

and

F−1
P

[
1 −

(
(1 − µ)FN

[
ψ

ap
N (s)

]
+ µFM

[
ψ

ap
M(S̃−1(s))

])]
− C(s; θ), s ≥ S̃(0)

and the FOCs for M and N , respectively, are

− (1 − µ) fN
[
ψ

ap
N (S̃(s))

]
(ψ

ap
N )′(S̃(s))S̃′(s) + µ fM

[
ψ

ap
M(s)

]
(ψ

ap
M)′(s)

fP

[
Π

ap
M(s)

] = C ′(s; θ)

and

−
(1 − µ) fN

[
ψ

ap
N (s)

]
(ψ

ap
N )′(s) + µ fM

[
ψ

ap
M(S̃−1(s))

] (ψ
ap
M)′(S̃−1(s))

S̃′(S̃−1(s))

fP

[
Π

ap
N (s)

] = C ′(s; θ).

In equilibrium, it will be true that ψ
ap
i (s) = θ for group i, so by substituting and

rearranging I get

(ψ
ap
M)′(s) = − C ′ [s; ψ

ap
M(s)

]
fP

[
Π

ap
M(s)

]

µ fM
[
ψ

ap
M(s)

]

− (1 − µ) fN
[
ψ

ap
N (S̃(s))

]

µ fM
[
ψ

ap
M(s)

] (ψ
ap
N )′(S̃(s))S̃′(s)

(2.8)

and

(ψ
ap
N )′(s)S̃′(S̃−1(s)) =− C ′ [s; ψ

ap
N (s)

]
fP

[
Π

ap
N (s)

]
S̃′(S̃−1(s))

(1 − µ) fN
[
ψ

ap
N (s)

]

− µ fM
[
ψ

ap
M(S̃−1(s))

]

(1 − µ) fN
[
ψ

ap
N (s)

] (ψ
ap
M)′(S̃−1(s)).

(2.9)
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Equations (2.8) and (2.9), with boundary conditions complete the solution for

(γ
ap
M, γ

ap
N ). By evaluating equation (2.9) at S̃(s) and substituting it into the FOC

for minorities, equation (2.8) reduces to

C ′ [s; ψ
ap
M(s)

]
= C ′ [S̃(s); ψ

ap
N (S̃(s))

]
S̃′(s), (2.10)

which provides a relation between grade selection in the two groups. As it turns

out, equation (2.10) is important for characterizing the effects of S̃ on minority

bidding. The solution for equilibrium grades under a general admission prefer-

ence S̃ is given by Proposition (2.3.3); equations (2.9) and (2.10) and boundary

condition ψ
ap
N (∆) = ψ

q
N (∆) = θ∆, where ∆ = S̃(0). Of course, the following

theorem is needed to validate this claim.

Theorem 2.3.4. In the college admission game with an admission preference S̃ satisfying

assumptions 2.1.6 and 2.1.7, given ρ, ε, δ > 0, there exists K∗ ∈ N, and a set E ⊂ [θ, θ]

having (Lebesgue) measure m(E) < ρ, such that for any K ≥ K∗, on any closed subset of

[θ, θ] \ E we have the following:

(i) an ε-equilibrium of the K-player admission preference game is generated by γ
ap
i (θ), i =

M,N as defined by Proposition (2.3.3), equation (2.9), equation (2.10), boundary

condition (2.3) for non-minorities and boundary condition

C ′ [0; θ∗] = C ′ [∆; θ∆] S̃′(0)

for minorities, where θ∗ = inf
{

θ : γ
ap
M(θ) = 0

}
, θ∆ = ψ

ap
N (∆), and ∆ = S̃(0);
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and

(ii) γ
ap
i (θ) is a δ-approximate equilibrium for the K-player quota game, or

‖γ
ap
i (θ) − γ

ap
i (θ; K)‖sup < δ, i = M,N .

Proof: The proof is similar to that for Theorem 2.3.1. �

As before, by using a more complicated proof technique, this result can

be strengthened to demonstrate that γ
ap
i generates an ε-equilibrium and a δ-

approximate equilibrium on the entire set [θ, θ], rather than on a subset with

nearly full measure. See the Appendix for details.

2.4 Uniform Prizes and Linear Costs

As the above discussion demonstrates, the present model of market compe-

tition is flexible enough to handle a wide range of specifications. In this section I

shall impose two simplifications in order to facilitate qualitative characterizations

of model equilibria. First, since the objective of this research is to characterize the

effects of policy changes, I shall abstract away from the intricacies of the “supply

side” of the market, and assume that prizes (e.g., college seats) are distributed uni-

formly on the unit interval. Second, in order to simplify the analysis I henceforth

adopt a cost function that is linear in achievement:

C(s; θ) = θs.
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In order to derive qualitative comparisons of behavioral responses for dif-

ferent groups that are unevenly affected by AA, it will be helpful to assume that

the type distributions are ordered by likelihood ratio dominance, or

Assumption 2.4.1. h(θ) =
fM(θ)
fN (θ)

is a strictly increasing function on [θ, θ].

Likelihood ratio dominance is essentially a strong form of first-order stochastic

dominance.9 In other words, the game is assumed to be asymmetric in the sense

that minority study costs are higher on average.

The asymmetry assumption is not intended to imply that there are fun-

damental differences in inherent ability across the two groups, as types reflect

a myriad of environmental factors as well. Rather, it is in keeping with argu-

ments made by proponents of AA regarding systemic competitive disadvantages

for minorities, due to various historical factors. For example, White children in

the United States, on average, are more affluent and attend primary and sec-

ondary schools that are better funded than African-Americans. The idea behind

cost asymmetry is that an average minority student must expend more personal

effort to overcome the environmental obstacles—poverty, poor health-care, lower

quality K-12 education, and so forth—eroding his competitive edge.10

9An excellent exposition of this topic can be found in Krishna Krishna (2002).

10There is some empirical evidence consistent with this view. Neal and Johnson Neal
and Johnson (1996) found that for the Armed Forces Qualification Test, “family back-
ground variables that affect the cost or difficulty parents face in investing in their chil-
dren’s skill explain roughly one third of the racial test score differential” (pg. 871). Fryer
and Levitt Fryer and Levitt (2004) analyzed data on racial test-score gaps among elemen-
tary school children in an attempt to uncover the causes. They found that by controlling
for socioeconomic status and other environmental factors which vary substantially by
race, test-score gaps significantly decrease, but not entirely. They test various hypotheses
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2.4.1 Full Quota

Some interesting observations can be made about how behavior changes

when moving from a color-blind policy to a quota. It turns out that with quota

admissions, the highest performing minority students decrease their academic

achievement and the lowest performing students increase it. For non-minorities

the change is exactly the opposite: high performers increase their effort and low

performers decrease it. This result is formalized in the following theorem.

Theorem 2.4.2. If prizes are uniform, C(s; θ) = θs, and FM(θ) dominates FN (θ) ac-

cording to the likelihood ratio order, then there exists θ∗ ∈ (θ, θ) such that

(i) for minority competitors, γ
q
M(θ) < (>)γcb(θ) for each θ < (>)θ∗; and

(ii) for non-minority competitors, γ
q
N (θ) > (<)γcb(θ) for each θ < (>)θ∗.

Proof: First note that with uniform prizes and linear costs, equations (2.2) and

(2.5) simplify to

γcb(θ) =
∫ θ

θ

µ fM(u) + (1 − µ) fN (u)

u
du and

γ
q
i (θ) =

∫ θ

θ

fi(u)

u
du, i ∈ {M,N},

(2.11)

from which it can easily be seen that γcb(θ) = µγ
q
M(θ) + (1 − µ)γ

q
N (θ).

By likelihood ratio dominance, it follows that fM and fN have a single

crossing at some θ̃ ∈ (θ, θ), and fM(θ) > fN (θ) for each θ > θ̃. From this and

to explain the remainder of the gap, and find that disparities in school quality is the only
one not rejected by the data.
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equations (2.11) it follows that γ
q
M(θ) > γ

q
N (θ) for each θ ∈ [θ̃, θ). Moreover, if

the functions cross at some θ∗ then it must be on the interval [θ, θ̃). Note that

γ
q
M(θ) =

∫ θ

θ
fM(u)

1

u
du <

∫ θ

θ
fN (u)

1

u
du = γ

q
N (θ),

where the inequality follows from the fact that each side is an expectation and fN

places more weight on larger values of the function 1
u (i.e., smaller values of u) on

the interval [θ, θ]. Then by likelihood ratio dominance and continuity it follows

that θ∗ exists on the open interval (θ, θ̃) and is unique. Finally, the result of the

theorem follows from the fact that γcb is a convex combination of γ
q
M and γ

q
N . �

Theorem 2.4.2 highlights some interesting facts concerning a student’s de-

cision problem. The intuition derives from the fact that a quota mechanism splits

the competition apart into two separate competitions. In doing so, it alters the

distribution of competition that each minority student faces from (1 − µ)FN (θ) +

µFM(θ) to FM(θ). For a low-performing (i.e., high-cost) student, the mass of com-

petitors at an advantage to him is relatively large before the change. Since costs

are sunk, it is not worthwhile for such a student to exert much effort when com-

peting with the population at large. This phenomenon is commonly known in

the all-pay auctions literature as the discouragement effect. However, if the student

faces only minority competitors (with higher costs on average), the discourage-

ment effect is mitigated and effort increases.

For high-performing (i.e., low-cost) minorities, the effect is reversed: when

the relative mass of similar low-cost opponents decreases there is less need to
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aggressively outperform the competition in order to win a highly valued seat.

Thus, effort decreases among top minority students. The effects for non-minority

students in each category are exactly the opposite, for the same intuition. The

discouragement effect for high-cost non-minorities is exacerbated by moving to

a quota system, and low-cost non-minorities must compete more aggressively

against a set of competitors whose costs are on average lower.

An evaluation of a quota in terms of the policy objectives outlined in Sec-

tion ??, as compared to the baseline color-blind mechanism, is provided in the

following corollary:

Corollary 2.4.3. Maintain the assumptions of Theorem 2.4.2 and let θ∗ ∈ (θ, θ) be the

cutoff type defined there. Then the following statements immediately follow:

(i) (minority achievement) G
q
M(s) > (<)Gcb

M(s) for each s > (<)γcb(θ∗),

(ii) (non-minority achievement) G
q
N (s) < (>)Gcb

N (s) for each s > (<)γcb(θ∗)

(iii) (achievement gap) Aq(q) > (<)Acb(q) for each q > (<)µFM(θ∗)+ (1−µ)FN (θ∗),

and

(iv) (enrollment gap) E q(q) < E cb(q) for all q ∈ (0, 1).

In words, the effect on the achievement gap is mixed because of how the

different groups respond to the policy. A quota widens it among the best and

brightest students, since low-cost minorities decrease achievement and low-cost

non-minorities increase achievement, relative to the color-blind case. At the bot-

tom end of the score distribution we see a narrowing of the achievement gap, as
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high-cost minorities work harder and their non-minority counterparts decrease

output. Finally, an attractive quality of the quota system is that by design it

achieves an enrollment gap of zero (this is true in the general case as well). Thus,

when types are ordered by stochastic dominance, a quota is guaranteed to pro-

duce an improvement over a color-blind mechanism in terms of the enrollment

gap.

2.4.2 Admission Preferences

When costs are linear, equation (2.10) reduces to

ψ
ap
M(s) = ψ

ap
N (S̃(s))S̃′(s). (2.12)

As mentioned previously, this equation reveals much about minority grade selec-

tion under preference rules. For beginners, it indicates under what circumstances

the admission preference rule will lead to a mass-point of students achieving a

grade of zero, as outlined in the following proposition.

Theorem 2.4.4. In the college admissions game, assume that study costs are of the form

C(s; θ) = θs and assume an admission preference mechanism S̃ satisfying assumptions

2.1.6 and 2.1.7. Moreover, define ∆ ≡ S̃(0) and θ∆ ≡ ψ
ap
N (∆) = ψ

q
N (∆). Then the

following results follow:

(i) If S̃′(0) ≥ (>) θ
ψ

ap
N (∆)

the grade achieved by a minority student with the highest

possible cost type is non-negative (strictly positive).

(ii) If θ

ψ
ap
N (∆)

< S̃′(0) <
θ

ψ
ap
N (∆)

there is a positive mass ζ ∈ (0, 1) of minority students
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who choose equilibrium grades of zero.

(iii) If S̃′(0) <
θ

ψ
ap
N (∆)

all minority students choose equilibrium grades of zero.

Proof: From equation (2.12) it follows that

inf ψM(0) = ψN (∆)S̃′(0),

which solves for the lowest minority type who achieves a grade of zero. State-

ments (i), (ii) and (iii) then follow from substituting the left-hand side to test

whether

θ R ψN (∆)S̃′(0)

and

θ R ψN (∆)S̃′(0). �

Note that Theorem 2.4.4 holds for general prize distributions, and does not

depend on stochastic ordering of types.

At this point I shall further simplify the analysis by focusing on an additive

admission preference of the form

S̃(s) = s + ∆.

Aside from being a useful illustrative tool, this policy is of particular interest as it

was previously used in undergraduate admissions at the University of Michigan.

For that reason I shall refer to it below as the Michigan rule. Theorem 2.4.4 shows
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that for any level of ∆, a Michigan rule will lead to a mass point of minority

students with zero achievement in equilibrium. This is because it has a slope of

one, whereas θ
ψ

ap
N (∆)

> 1 for any positive ∆. However, if one were to consider a

more general affine admission preference, say

S̃(s) = ∆0 + ∆1s

then as Proposition 2.4.4 shows, the slope coefficient could be chosen so as to

eliminate the mass point of minority students achieving grades of zero.

I shall now proceed to derive the equilibrium under a Michigan rule. In

this case, equation (2.10) further reduces to

ψ
ap
M(s) = ψ

ap
N (s + ∆), (2.13)

which indicates that a minority student with type θ will achieve a grade of exactly

∆ less than his non-minority counterpart with the same type. Recall that non-

minority students whose grades are less than ∆ will behave the same as under a

quota rule, giving a boundary condition of

ψ
ap
N (∆) = ψ

q
N (∆) = θ∆, (2.14)

and minority students with costs above θ∆ choose a grade of zero.

Equation (2.13) can be substituted back into the decision problem of N
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agents to get

F−1
P

[
1 −

(
(1 − µ)FN

[
ψ

ap
N (s)

]
+ µFM

[
ψ

ap
N (s)

])]
− θs,

which gives the familiar FOC:

(γ
ap
N )′(θ) = − (1 − µ) fN (θ) + µ fM(θ)

fP

[
F−1

P (1 − [(1 − µ)FN (θ) + µFM(θ)])
]

θ
. (2.15)

Recall that this is the same as the differential equation arising from the FOC under

a color-blind rule. The important difference here is that its solution depends on a

different boundary condition, given by equation (2.14).

An evaluation of a Michigan rule in terms of the policy objectives outlined

in Section ??, as compared to the baseline color-blind mechanism, is provided in

the following theorem:

Theorem 2.4.5. Let prizes be uniform, let achievement costs be of the form C(s; θ) = θs,

let FM(θ) dominate FN (θ) according to the likelihood ratio order, and assume a Michigan

admission preference S̃ with fixed grade markup ∆ < γ
q
N (θ∗), where θ∗ is the cutoff type

in Proposition 2.4.2. Then the following statements are true:

(i) (minority achievement) G
ap
M(s) > Gcb

M(s) for all s,

(ii) (non-minority achievement) G
ap
N (s) < Gcb

N (s) for all s

(iii) (achievement gap) Aap(q) > Acb(q) for all q, and

(iv) (enrollment gap) E q(q) < (=)E cb(q) for all q < (>)µFM(θ∆) + (1 − µ)FN (θ∆),
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where θ∆ = ψ
ap
N (∆).

Proof: The fact that non-minorities decrease their achievement relative to the

color-blind case follows immediately from the above derivations. First, recall that

γ
ap
N (θ) = γ

q
N (θ) < γcb

N (θ) on the interval [θ∆, θ] (see Theorem 2.3.3). Second, note

that equations (2.15) and (2.14) imply that non-minority achievement parallels

color-blind achievement, but from a lower initial condition. Note also that by

Theorem 2.4.4 and equation (2.13) minority types below θ∆ reduce achievement by

exactly ∆ more than their non-minority counterparts, and all other non-minority

types achieve a grade of zero. From this it follows that the achievement gap is

unambiguously widened at all quantiles of the grade distribution. Finally, by

the same argument, the enrollment gap is unaffected for types above θ∆ because

in equilibrium a Michigan rule merely compensates for the minority behavioral

response and does not alter relative standing between the two groups. �

This result is significant for several reasons. First, it highlights an important

aspect of the behavioral response to admission preferences. Although the policy-

maker may intend to bolster minority students’ competitive edge with a grade

subsidy, a rational student may simply treat the markup as a direct utility transfer

and reduce achievement. When costs are linear and the markup does not depend

on output, minority students scale back achievement by exactly the amount of

the markup, relative to non-minority counterparts.11 This picture becomes more

11When costs are convex in achievement, the effect is less straightforward (see equation
(2.10)) and complete consumption of the grade boost will not obtain in general. However,
it will generally be the case that the beneficiaries of a Michigan rule will use at least some
portion of the grade markup as a direct utility subsidy, rather than using it only to bolster
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bleak when one recognizes that non-minorities also reduce their achievement,

relative to the color-blind case. In other words, when moving from color-blind

allocations to a Michigan rule, a markup of ∆ leads to a grade reduction of more

than ∆ for all minority students, and a smaller reduction for all non-minorities

as well. The implication is that a Michigan rule is unambiguously detrimental to

effort incentives.

Second, given the above facts about the relation between minority and

non-minority achievement under a Michigan rule, it immediately follows that the

policy will lead to a widening of the racial achievement gap at every point in the

type support, relative to a color-blind policy. This is because like types have the

same achievement under a color-blind rule, whereas the difference in achievement

between a minority and a non-minority with type θ under the Michigan rule is

min{∆, γ
ap
M(θ)}, which is strictly positive for any θ < θ.

Finally, these facts also imply that an admission preference rule is an in-

effective means for helping minorities into better colleges. With linear costs, stu-

dents choose grades so that once the fixed markup is assessed relative standings

between minorities and non-minorities is the same as under a color-blind alloca-

tion mechanism. The only change that occurs is among minorities scoring zero

and non-minorities scoring below ∆. Thus, a Michigan rule has no allocational

effect except to re-shuffle allocations in the lower tail of the prize distribution.

Enrollment at the most selective schools will be identical to enrollment under a

their competitive edge.
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color-blind admission policy.

The intuition behind the behavioral response to an admission preference

stems from equation (2.12), reproduced below for convenience:

ψ
ap
M(s) = ψ

ap
N
[
S̃(s)

]
S̃′(s).12

In a color-blind world, minority students compete on the margin with non-minority

counterparts of roughly the same cost type, but a grade markup alters this rela-

tionship. In general, students respond to the policy by adjusting behavior until

once again they are competing on the margin with non-minority counterparts on

the same competitive standing. As the above example illustrates, behavioral re-

sponses to the policy may be undesirable, and they can even nullify the ability of

the policy to alter allocations by changing the relative standing between minori-

ties and non-minorities. Expression (2.12) leads to a necessary condition for the

minority behavioral response to be in a desirable direction.

Theorem 2.4.6. Let achievement costs be of the form C(s; θ) = θs, let the admission

preference policy S̃ satisfy assumptions 2.1.6 and 2.1.7, and define M̃(s) ≡ S̃(s) − s to

be the score markup implied by the admission preference. Then for θ ∈ [θ, θ], we have

Aap [FM(θ)] ≤ Acb [FM(θ)]

12Recall that this expression results in part from the linear functional form of costs
assumed in this section. I concentrate on the restricted version here for expositional
purposes: it vastly simplifies the intuition. For the original expression which incorporates
general forms of utility curvature, see equation (2.10).
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only if the marginal markup for minority type θ is positive, or

M̃′ (γap
M(θ)

)
> 0.

Proof: The result of the theorem follows straightforwardly from two facts. The

first, M̃′(s) > 0 ⇔ S̃′(s) > 1; the second, Aap [FM(θ)] ≤ Acb [FM(θ)] only if

γ
ap
M(θ) ≥ γ

ap
N (θ). This is because γcb

M(θ) = γcb
N (θ) and all of the achievement gap

in the color-blind game comes from asymmetry in the type distributions. Thus,

in order to close the gap, it is necessary for minority students to achieve higher

scores than their non-minority counterparts of the same type.

Fix θ ∈ [θ, θ] and let s = γ
ap
M(θ). If S̃′(s) = 1, then (2.12) reduces to

ψ
ap
M(s) = ψ

ap
N (S̃(s)),

from which it follows that γ
ap
N (θ) − γ

ap
M(θ) = M̃ (s) > 0. By monotonicity, a

similar inequality holds when S̃′(s) < 1. �

Note that Theorem 2.4.6 holds for general prize distributions and does

not require assumptions about stochastic ordering of types. The proof of the

theorem highlights a tension between the level of the admission preference and

it’s slope. As equation (2.12) illustrates, an increase in the level of the markup

(holding slope fixed) causes minorities to reduce output, relative to their non-

minority counterparts. On the other hand, an increase in the marginal markup

(holding the level of the markup fixed at a given point) has the opposite effect.
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The critical flaw in a Michigan rule is that its slope is identical to a color-blind

markup S̃cb(s) = s, and it simply offers a higher level of assistance, ∆.

Another way to think about this is that a Michigan rule fails to reward

achievement: with a zero marginal markup, students achieving higher scores get

the same boost as everyone else. In essence, Theorem 2.4.6 shows that in order for

AA to be effective, the assistance it renders to minority students must be merit

based. A multiplicative rule of the form S̃(s) = (1 + r)s, r > 0 is an example of

an admission preference with a positive marginal markup, M̃′(s) = r. As general

results other than those above are difficult to prove, I shall defer discussion of

a multiplicative preference to the following section, where I illustrate the model

using numerical methods.

2.4.3 Example: Pareto Types

In this section I illustrate the model by computing approximate equilibria

for a simple special case. Prizes are distributed uniformly on the interval [0, 100],

so that FP(p) =
p

100 . The fraction of minority college candidates is µ = 0.25 and

private costs follow a Pareto distribution, with the upper tail truncated to the

interval [1, 5]. For group i the private cost distribution is

Fi(θ) =
1 − θ−κi

1 − θ
−κi

, κi > 0, i = M,N ,

where κM = 0.1 and κN = 1.5, so that stochastic dominance holds. The fur-

ther κM is from κN , the more pronounced is the asymmetry across groups. All
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parameters in this section were chosen for purely illustrative purposes, with the

exception of ∆, which is discussed below. With the above parameters specified,

solving for the equilibrium is a simple mater of integrating differential equations.

A value of ∆ was chosen based on the above parameters to facilitate com-

parisons between a quota and a Michigan rule. A key characteristic of a quota is

that it ensures that the average prize value allocated to members of each group is

the same. Thus, I compute the fixed grade subsidy ∆∗ that equates the average

prize value awarded to each group. This provides some basis for comparison of

the two different policies, as they are both designed to achieve a common objec-

tive.13

Computing ∆∗ under uniformly-distributed prizes is fairly simple. Recall

from Section 2.4.2 that when costs are linear, an additive grade subsidy only alters

equilibrium allocations among agents who grade less than ∆. Once again, let θ∆

denote the player type that submits a grade of ∆ for group N and let p∆ =

F−1
P [1 − {(1 − µ)FN (θ∆) + µFM(θ∆)}] denote the top prize allocated to players

whose transformed grades are ∆ or less.

Within the interval [0, p∆], the top mass µ of prizes are awarded to group

M and the rest are given to group N . Thus, the average prize given to candidates

with costs c ≤ θ∆ in group M and N are, respectively, (p∆ + µp∆)/2 and µp∆/2.

The average prize awarded to players of either group with private costs above

13The defining characteristic of a quota is that it equates all moments of the group
allocation distributions, but this is impossible to do with a Michigan rule in an asymmetric
game. Here, I focus on the first central moment for illustrative purposes.
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Figure 2.1: Numerical Example: Pareto Distributed Types
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θ∆ are the same–recall that transformed equilibrium grades are the same for a

given θ in this interval–and are given by (p + p∆)/2. Therefore, the average prize

allocated to group M candidates is

[1 − FM(θ∆)]
p∆ + µp∆

2
+ FM(θ∆)

p + p∆

2
(2.16)

and the average prize for group N is

[1 − FN (θ∆)]
µp∆

2
+ FN (θ∆)

p + p∆

2
. (2.17)

Thus, ∆∗ is determined by the following equality

[1 − FM(θ∆∗)]
p∆∗ + µp∆∗

2
+ FM(θ∆∗)

p + p∆∗

2

= [1 − FN (θ∆∗)]
µp∆∗

2
+ FN (θ∆∗)

p + p∆∗

2
.

(2.18)

For the above parameters, ∆∗ is about 24% of the maximal grade achieved

by group M. Of course, the size of ∆∗ depends on the degree of asymmetry

between the two groups, and is therefore an empirical question. For example, a

(κM, κN ) pair of (0.6, 1) cuts ∆∗ roughly by half. This example merely demon-

strates that in order for a Michigan rule to deliver the same average allocative

effect as a quota, the fixed markup potentially must be quite large.

Figure 2.1 plots several objects of interest. The top two panes are the dis-

tributions and densities of private costs. The middle pane displays group-specific

grade distributions under each of the three admission policies. A color-blind rule
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is denoted by a dotted line, a Michigan rule is denoted by a dashed line, and a

solid line denotes a quota. For pairs of lines with the same style, the one lying to

the left is the grade distribution for minorities. The bottom pane displays popu-

lation grade distributions, following a similar convention. When comparing two

grade distributions, keep in mind that if distribution i lies to the right of distri-

bution j in some region, it indicates an interval of students who are enticed to

achieve a higher academic output under policy i.

The middle plot gives an idea of how within-group behavior changes, and

also how the achievement gap changes under different policies. As Propositions

2.4.4 and 2.4.5 suggest, the picture for an additive markup is dismal. With any

Michigan rule, the policy-maker must settle for a mass-point of zero achievement

in order to equalize average outcomes for each group. As this example shows, the

mass point can be potentially large. The general insight here is that as asymmetry

increases, a Michigan rule becomes increasingly inadequate as a policy instru-

ment. Notice also the substantial leftward shift in non-minority grades associated

with the quota-comparable Michigan rule. Recall, too, that allocations in the up-

per tail of the prize distribution are unaffected, even with this extreme version

of the policy. A more definitive analysis is ultimately an empirical exercise, but

this example demonstrates how an ill-designed admission preference can lead to

a substantial social loss, while producing little in the way of desired change.

As outlined in Proposition 2.4.2, a quota rule produces some interesting

benefits, relative to a color-blind system. The middle pane shows that all minori-

ties below the 80th grade percentile and all non-minorities above the 70th grade
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percentile increase their performance, relative to a color-blind system. Of course,

there are also costs involved, as all other students decrease academic output. Al-

though it is difficult to tell from the lower pane, it turns out that a quota produces

a slight first-order dominance shift in the overall population grade distribution.

In contrast, the difference from Michigan-rule grades for both color-blind

and quota admissions is quite stark. The results here highlight some inaccuracies

in statements made by American policy-makers that, “at their core, the Michigan

policies amount to a quota system” (see Bush Rosen et al.). In fact, the contrast

between the two versions of AA could not be more stark: a Michigan rule in no

way resembles a quota system in terms of either its behavioral or its allocative

effects.

2.5 Discussion and Conclusion

In this chapter, I have explored the qualitative implications of different AA

policies in college admissions. Design of the AA implementation can have sig-

nificant effects on both effort choice and college placement. On the one hand, it

appears that the critics of AA are correct in assuming that a tradeoff exists be-

tween equality and academic performance incentives, although the exact nature

of the tradeoff—whether it results in a socially desirable change—cannot be re-

solved theoretically. On the other hand, proponents of AA are also correct in

assuming that race-conscious admissions can potentially increase academic per-

formance for some minorities by diminishing discouragement effects. However,

in the process of leveling the playing field for some minority students, the situa-
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tion is made worse for disadvantaged (i.e., high-cost) non-minorities. Moreover,

advantaged minorities find diminished incentives for academic performance in

an environment where the competition they face is less fierce.

Although the model produces many useful qualitative insights into the col-

lege admissions problem, recovering the exact nature of the equity–achievement

tradeoff for the purpose of enlightening policy decisions is an empirical exercise.

Two reasons exist: first, a complete comparison between admission preferences,

quotas, and color-blind admissions requires knowledge of type distributions. It

may also require knowledge of the policy-maker’s preferences. Second, a mean-

ingful policy analysis requires empirical measurement of actual AA practices in

order to compare them to alternatives. In the following chapter I present struc-

tural estimates of the model in order to produce quantitative comparisons be-

tween different college admissions practices.

If one takes the issues of achievement and enrollment gaps separately, then

somewhat more can be said qualitatively. For example, the results proven here

provide a possible theoretical explanation for some well-known empirical results

on the predictive power of college entrance test scores. Vars and Bowen (1998)

used data on SAT scores and subsequent academic performance at “highly se-

lective” post-secondary institutions to investigate whether the entrance test score

predicts college success equally well for different races. Their results indicate that

“while SAT scores are related to college GPA for both blacks and

whites, the relationship is weaker for blacks. More important, and
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more disturbing, at every level of SAT score, blacks earn lower grades

than their white counterparts... Most sobering of all, the performance

gap is greatest for the black students with the highest SATs. The rea-

sons for this gap are not well understood; nevertheless, we believe

that many gifted African-American students at academically selective

institutions are not realizing their full academic potential.”14

Propositions 2.4.2 and 2.4.5 may provide an explanation for this puzzle:

they indicate that any type of AA based only on race (i.e., both quotas and ad-

mission preferences) widens the achievement gap among the highest-performing

students. This is illustrated in Figure 1, where the upper tails of the grade dis-

tributions for each group are further apart under AA than under color-blind ad-

missions. Since these high-performing students are typically the ones who gain

admission to selective institutions, it is plausible that the predictive disparity is

the result of a behavioral response to AA. As illustrated in Figure 1, under a

quota, achievement by top minority students is compressed to a tighter interval,

relative to color-blind admissions, whereas the opposite is true for non-minority

scores. For high-ability individuals, AA creates effort disincentives for minorities,

relative to non-minorities, and it may also diminish separation among minorities

while increasing separation among non-minorities.

Thus, to the extent that SAT scores are a meaningful measure of the human

capital high-school students bring with them to college, and to the extent that the

14(Bowen and Bok, 1998, Ch. 3, pp. 72–78) have reported similar findings concerning
the relationship between SAT scores and subsequent college GPA.
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subsequent labor market resembles the competitive setting outlined in Section

2.1, an explanation for Vars and Bowen (1998) may be that AA practices in the

skilled labor market do not provide adequate incentives for top minority students

to perform at their “full academic potential.”

As for AA and enrollment, by construction quotas achieve 100 percent

equal allocations in the sense that the racial makeup of student bodies at schools

of all quality levels will be reflective of population proportions. On the other

hand, the effectiveness of admission preferences in rearranging allocations is ham-

pered by the rational behavioral response to this type of policy. Clearly, a policy-

maker should not treat behavior as fixed when predicting equilibrium allotments

of college seats to different groups under different policies. Indeed, in the case of

a Michigan-type additive admission preference, such an assumption may result

in a near total nullification of any intended change.

Two other interesting directions for further research exist: first, an im-

portant related question would be how AA might affect educational attainment

decisions among minorities. The current model focuses on student behavior, con-

ditional on participation in the college market, but there is another interesting

group of individuals to consider as well: those whose college/work-force deci-

sions may be affected by a given policy. This question could be addressed by for-

malizing the “supply-side,” being comprised of potential colleges and firms who

may enter the market and supply post-secondary education services or unskilled

jobs. Such a model might illustrate how the marginal agent (i.e., the individual

indifferent between attending college and entering the workforce) is affected by a
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given college admission policy. This would help to characterize the effect of AA

on the total mass of minorities enrolling in college.

Finally, the eventual goal for this line of research should be to answer the

question of how AA helps or hinders the objective of erasing the residual effects

of past institutionalized racism. This will require a dynamic model in which the

policy-maker is not only concerned with short-term outcomes for students whose

private costs are fixed, but also with the long-run evolution of the private cost

distributions. Empirical evidence suggests that academic competitiveness is de-

termined by such factors as affluence as well as parents’ education. If AA affects

performance and outcomes for current minority students in a certain way, then

the next question is what effect it might that have on their children’s competitive-

ness when the next generation enters high school? If a given policy produces the

effect of better minority enrollment and higher achievement in the short-run, then

one might conjecture that a positive long-run effect will be produced. However,

given the mixed picture on the various policies considered in this paper, it seems

evident that a long-run model is needed in order to give meaningful direction to

forward-looking policy-makers. I hope the theory developed here will serve as a

basis for answering these important questions in the future.
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CHAPTER 3
SEMIPARAMETRIC STRUCTURAL POLICY ANALYSIS OF AMERICAN

COLLEGE ADMISSIONS

3.1 Data

I now proceed with an empirical exercise, first describing the data that will

be used to recover each component of the model.1 Ultimately, the objects of princi-

pal empirical interest are the group-specific private cost distributions, FM(θ) and

FN (θ); the demographic parameter µ; the prize distribution FP(p); and the cost

function C(s; θ). These objects will enable the counterfactual experiments, which

are the ultimate goal of the policy analysis. However, it will first be necessary

to obtain estimates of some intermediate objects: the group-specific grade distri-

butions, GM(θ) and GN (θ); the distributions of prizes allocated to each group

under the actual AA policy, FPM(p) and FPN (p); and the actual AA policy S̃(s),

corresponding to the data-generating process. To identify the various model com-

ponents, I use data on quality measures for colleges and universities in the US,

freshman enrollment, and student-level college entrance test scores.

I use data for the academic year 1995-1996 primarily because one can rea-

sonably assume that, prior to that year, AA policies determining payoffs were

stable and known to decision-makers. In the summer of 1996 the outcome of a

federal lawsuit Hopwood v. Texas (78 F.3d 932, 5th Cir. 1996) was finalized, mark-

1SAT test scores were derived from data provided by the College Board. Copyright
c©1996 The College Board. www.collegeboard.com. ACT test scores and ACT-SAT con-

cordances were provided by ACT. Copyright c©1996 ACT. www.act.org. The views ex-
pressed in this research are not the views of either The College Board, ACT or the US
Department of Education.
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ing the first successful legal challenge to AA in US college admissions since 1978,

nearly two decades before.2 Subsequently, other potentially important changes

occurred, including state laws banning AA being passed in Texas, California, and

Michigan.

3.1.1 Prize Data

Institutional quality measures are derived from data and methodology de-

veloped by US News & World Report (USNWR) for the purpose of computing

their annual America’s Best Colleges rankings; see Morse (1996). USNWR collects

data on fourteen quality indicators for American colleges and universities each

year; the sample size in 1996 was 1,314 schools. USNWR classified the fourteen

indicators into six categories: selectivity, comprised of application acceptance rate,

yield (% of accepted students who choose to enroll), average entrance test scores,

and % of first-time freshmen in the top quartile of their high school class; faculty

resources, comprised of % of full-time instructional faculty with a PhD or terminal

degree, % of instructional faculty who are full-time, average faculty compensa-

tion, and student/faculty ratio; financial resources, comprised of education spend-

ing per student and non-education spending per student; retention, comprised

of graduation rate and freshman retention rate; alumni satisfaction, comprised of

% of living alumni contributing to annual fund drives; and academic reputation,

2On March 18, 1996 the US Fifth Circuit Court disallowed race-conscious admissions
decisions at the University of Texas law school, but appeals continued for several months
afterward. The outcome of the case was finalized in July when the Supreme Court de-
clined to review the Fifth Circuit’s ruling. The last successful legal challenge before Hop-
wood was in 1978, when the Supreme Court declared quotas unconstitutional in University
of California v. Bakke (438 U.S. 265 1978).
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comprised of a ranking measure taken from a survey of college administrators.

A single index of quality is determined by computing empirical distributions for

each indicator, and taking a weighted average of the fourteen empirical cumula-

tive distribution function (CDF) values for a given school. In the Data Appendix,

I summarize weights and descriptive statistics for each the quality indicators.

One drawback with using the USNWR method for my purposes is that

it separates schools by Carnegie classification (i.e., national/regional universities

and national/regional liberal arts colleges) and geographic region (i.e., northern,

southern, midwestern and western; see Morse (1996) for more details). Therefore,

I alter the method slightly by combining all schools into the same set. This does

not pose a problem for most of the quality indicators, except one: the academic

reputation score. This score is determined by asking college administrators to

rank the schools in their Carnegie class and region. Since the reputation score

loses its meaning when taken outside of these smaller subsets of schools, I drop it

from the list and generate the quality index with the remaining thirteen indicators,

uniformly spreading the reputation weight among the remaining five categories.

This is of little consequence for the overall rankings, due to the high degree of

correlation among the quality indicators.

With the modified USNWR quality measure in hand, I establish the uni-

form prize ranking by interpreting a school’s quality index as a measure of prize

value. More precisely, I assume that there is a linear relationship between the

USNWR quality index for each school and the utility derived from occupying a

seat there. I argue that interpreting the quality index as a meaningful measure of
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value is sensible for two reasons. First, acquiring information to rank schools and

judge one’s chances for admission is a costly exercise for an inexperienced high-

school student, but USNWR solves this problem by providing large quantities of

data on many schools, along with advice on how to interpret the data. Second,

the validity of the USNWR rankings is presumably reinforced in the student’s

mind by the enthusiasm with which so many schools advertise their status in the

America’s Best Colleges rankings. One need not search long through undergraduate

admissions web pages to find multiple references to USNWR.

The other relevant data on school characteristics is freshman enrollment,

provided by the US Department of Education through the National Center for

Education Statistics’ Integrated Postsecondary Education Data System tool. For

each school in the sample, I obtained a tally of all first-time freshman enrollment

(including full-time and part-time), for the following seven racial classifications:

White, Black, Hispanic, Asian or Pacific Islander, American Indian or Alaskan

Native, non-resident alien, and race unknown. The data representing schools are

{Qu, Mu, Nu}U
u=1, where for the uth school Qu is the modified USNWR quality

index, Mu is the number of seats awarded to minorities, and Nu is the number

awarded to non-minorities. There are 1, 056, 580 total seats open at all schools; for

individual schools the median is 451 seats, the mean is 804.09, and the standard

deviation is 934.78.

The above data characterize the sample of prizes and the samples of prizes
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allocated to each group, given by

PK,K = {pk}K
k=1 =

{
{pui}Mu+Nu

i=1

}U

u=1
, pui = Qu,

PM,M = {pm}M
m=1 =

{
{puj}Mu

j=1

}U

u=1
, puj = Qu,

PN ,N = {pn}N
n=1 =

{
{pul}Nu

l=1

}U

u=1
, pul = Qu.

The fact that there are multiple prizes in the data with the same value represents

a departure from the theory, but it is a small one given that the largest school in

the sample (in terms of enrollment) has a mass of only 6.6× 10−3, while the mean

and median schools have masses of 7.61 × 10−4 and 4.268 × 10−4, respectively.

Another possible criticism of this approach is that the rankings are dependent

upon an arbitrary weighting scheme. Critics sometimes accuse USNWR of ma-

nipulating the weights assigned to the different quality indicators, in order to

alter the relative standings of elite schools. However, this objection is inconse-

quential if one takes the larger picture into account. Because of the high degree

of correlation among the thirteen quality indicators, the overall prize distribution

is remarkably robust to substantial changes in the weighting scheme. While it is

possible that the relative rankings of the top ten schools are affected somewhat

by such changes, the bigger picture is very stable.

Finally, I have yet to specify the distinction between groups M and N .

I shall define the minority group as the union of the race classes Black, His-

panic, and American Indian or Alaskan Native; non-minorities are all others.

This corresponds to the notion that AA policies are targeted toward groups that
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Table 3.1: Racial Percent Representation Within Different Academic Tiers

% of Total American Indian/ Asian/

Enrollment Black Hispanic Alaskan Native White Pacific Islander M N
Tier in Tier 11.2 5.7 0.8 72 5.7 17.7 82.4

I 35.9 5.6 5 0.5 74.8 9.3 11.1 88.9

II 26.8 10.1 5.3 0.8 75.1 4.2 16.1 83.9

III 20.4 14.2 6.2 0.9 70 4.3 21.3 78.7

IV 16.8 21.3 7.3 1.2 63.4 2.2 29.7 70.3

are under-represented at elite universities and over-represented at lower-quality

schools. Table 3.1 provides a clearer picture of this criterion. As is done in Amer-

ica’s Best Colleges, I have sorted the schools in descending order of quality index

and separated them into four tiers, each containing one quarter of the schools in

the sample. Tier I comprises the schools with the highest quality indices, and so

on. I compute the mass of each race group within each tier to show representa-

tion; I also list the population mass of each race group under its name. The final

two columns contain figures for the aggregated race groups.3 I also list the per-

centage of students in each tier, as quality quartiles are different from quartiles in

terms of enrollment.

Each of the minority race classes is under-represented in the top two tiers

and over-represented in the bottom two. For whites it is the opposite. For Asians/

Pacific Islanders the difference is even more pronounced: they are heavily under-

represented in every tier except the top. Similar observations hold when the

3The table does not list the race unknown and resident alien groups, which is why the
first five population masses do not quite sum to one. However, these groups are included
in the calculations for group N , so the final two masses do sum to one.
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Figure 3.1: Empirical Enrollment Gap
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groups are aggregated. The difference in allocations is captured graphically in

Figure 3.1. The dotted line is the empirical distribution of PK,K, the lower dashed

line is the empirical distribution of PN ,N, and the upper solid line is the empirical

distribution of PM,M. As Figure 3.1 shows, the non-minority allocation dominates

the minority allocation in the first-order sense. For example, roughly one half of

minority students attend schools with a quality index of 0.5 or less, while the

fraction of non-minorities in that same lowest segment is only one third.

3.1.2 Academic Achievement Data

The remaining data used to estimate the model are college entrance test

scores. For the 1996 graduating seniors cohort, I have individual-level data on

composite SAT scores, race, and other characteristics for a random sample of

92,514 students, with 73,361 non-minority observations and 19,153 minority ob-

servations. SAT scores range between 0 and 1,600 in increments of 10, but I drop
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the final digit and treat them as ranging from 0 to 160 in increments of 1. Before

moving on, it will be necessary to address a preliminary technical concern: the

interpretation of an achievement level of “zero.”

Theoretically, it is possible for a student to score zero by answering all test

questions incorrectly. However, such a feat is extremely difficult unless one knows

enough to achieve a nearly perfect score: with a probability of virtually one, an

uninformed student will get a positive score, due to the multiple-choice format of

the test. A reasonable interpretation of a student with an academic achievement

of zero is one who engages in random responding to all test questions. As it turns

out, a randomized test-score simulation exercise indicates that the SAT score one

can expect from such an uninformed student is 58 (See appendix for details).

For the remainder of this thesis, SAT scores will be normalized by sub-

tracting 58 (observed scores below 58 are normalized to zero), and the samples of

normalized test scores are denoted by

SM,TM = {sM,t}TM
t=1, and SN ,TN = {sN ,t}TN

t=1,

where Ti is the number of grade observations on group i = M, N . The academic

achievement gap is illustrated in Figure 3.2 where the empirical distributions of

normalized SAT scores are displayed. The median for non-minorities is 44, and

the median for minorities is 29, which corresponds to the 22nd percentile for non-

minorities. Figure 3.2 also suggests a small mass-point of minorities with scores

of zero. This will serve as a partial specification test later on. The theory indicates
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Figure 3.2: Test Score Distributions
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that a necessary condition for mass-points in minority achievement is S̃(0) > 0.

3.2 Empirical Model

Recall that the theoretical model outlined in Chapter 2 is strategically

equivalent to an all-pay auction. An all-pay auction involves a strategic interaction

in which agents compete for a limited resource by incurring some non-recoverable

cost before learning the outcome of the game. In the college admissions model,

the Board is analogous to an auctioneer, who auctions off a set of heterogeneous

prizes according to a pre-determined mechanism. Students are similar to bidders,

and the grades they achieve are analogous to sunk payments tendered to the auc-

tioneer, since they cannot recover lost leisure time or disutility incurred by study

effort.

Empirically, this is an attractive framework since the econometrics litera-

ture concerning auctions has emerged as one of the foremost successes in em-
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pirical industrial organization over the past two decades. Since the founding

work of Paarsch (1992), auction econometricians have exploited the parsimonious,

one-to-one link between observable behavior and private information to recover

empirically the distributions over bidder heterogeneity. The key assumption un-

derlying the structural approach to estimating these models is that the theoretical

equilibrium is consistent with the data-generating process. Said differently, the

assumption is that observed behavior was purposefully generated by rational de-

cision makers. This assumption shall form the basis of my estimation strategy as

well.

Another landmark paper in empirical auctions is by Guerre et al. (2000)

(GPV), who devised an estimation strategy for auctions which is computationally

inexpensive and does not rely on distributional assumptions. The main idea of the

paper comes from an observation about equilibrium equations in auction mod-

els which express bids as functions of private information and the (unobserved)

distribution of private information. GPV recognized that these equations could

be rearranged so as to express a bidder’s private information as a function of his

observable behavior and the (observable) distribution over all bidders’ behavior.

For the reader’s convenience, I have reproduced the relevant equilibrium

equations below. Under policy function S̃(s), minority achievement is character-
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ized by

C ′ (s; ψ
ap
M(s)

)

= −
(1 − µ) fN

[
ψ

ap
N (S̃(s))

]
(ψ

ap
N )′(S̃(s))S̃′(s) + µ fM

[
ψ

ap
M(s)

]
(ψ

ap
M)′(s)

fP

(
F−1

P

[
1 −

(
(1 − µ)FN

[
ψ

ap
N (S̃(s))

]
+ µFM

[
ψ

ap
M(s)

])]) .

(3.1)

For non-minorities, achievement is given by

C ′ (s; ψ
ap
N (s)

)

= −
(1 − µ) fN

[
ψ

ap
N (s)

]
(ψ

ap
N )′(s) + µ fM

[
ψ

ap
M(S̃−1(s))

]
(ψ

ap
M)′(S̃−1(s)) dS̃−1(s)

ds

fP

(
F−1

P

[
1 −

(
(1 − µ)FN

[
ψ

ap
N (s)

]
+ µFM

[
ψ

ap
M(S̃−1(s))

])]) ,

(3.2)

for s ≥ S̃(s), and

(γN )′(θ) = − fN (θ)

fP

(
F−1

P [1 − FN (θ)]
)
C ′ [γN (θ); θ]

(3.3)

otherwise.

As I shall shortly demonstrate, these equations can be manipulated ac-

cording to the GPV method to allow the econometrician to recover a sample

of pseudo types implied by observed test scores and the distributions over test

scores. However, the form of the policy function S̃ plays a crucial role in defin-

ing those equations and determining how estimation should proceed (recall that

equation (3.3) applies only if there is a positive grade boost for a minority score

of zero). Therefore, I shall begin by proposing an estimator for S̃.
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3.2.1 Estimating S̃

The rules of college admissions as set forth by the Board are exogenous to

the model which I have defined. I shall assume that some function S̃, as described

in Sections 2.1.2 and 2.1.4, is consistent with the data-generating process. This is

an empirically attractive construct because it nests a broad range of policies as

special cases, including a quota and a color-blind rule. From the policy-maker’s

perspective, grades and race are mapped into outcomes via the following reward

functions for each group:

πM(s) = F−1
P

[
(1 − µ)GN (S̃(s)) + µGM(s)

]
, s ≥ 0, and

πN (s) = F−1
P

[
(1 − µ)GN (s) + µGM(S̃−1(s))

]
, s ≥ S̃(0).

(3.4)

One key observation here allows for identification of the policy function:

πM(s) = πN (S̃(s)). (3.5)

Using this fact, one can recover S̃ by determining what rule could have produced

allocations PM,M and PN ,N from the observed grade distributions. More specifi-

cally, for r ∈ (0, 1) let sN (r) ≡ G−1
N (r) denote the rth quantile in the non-minority

grade distribution. For minorities, let rM(r) ≡ GM
(

S̃−1(sN (r))
)

denote the

quantile rank of the de-subsidized version of sN (r) within the minority grade dis-

tribution. By Assumption 2.1.6 and by observation (3.5), it immediately follows
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that

F−1
PM

[rM(r)] = F−1
PN

(r)

⇒ GM

(
S̃−1 [sN (r)]

)
= FPM

[
F−1

PN
(r)
]

⇒ G−1
N (r) = S̃

[
G−1

M

(
FPM

[
F−1

PN
(r)
])]

,

(3.6)

where the second and third lines follow from substituting and from monotonicity.

Equation (3.6) above provides a moment condition that forms the basis of a simple

policy function estimator. For a given specification of S̃ one can choose a set of

quantile ranks and pick the parameters of the policy function so as to minimize

the distance between the left-hand side and right-hand side.

More formally, assume that

S̃(s) =
I

∑
i=0

∆is
i,

(i.e., the true policy function is linear in parameters) and estimate the parame-

ter vector ∆ = (∆0, ∆1, . . . , ∆I) semiparametrically by the generalized method of

moments as follows.4

Step 1: Choose the largest set of quantile ranks that can be gleaned from the data, or

r = {ru}U
u=1, where ru = F̂−1

P (pu), u = 1, . . . , U, and F̂P is the Kaplan-Meier

4The assumption that S̃ is a polynomial of order I need not be a strong restriction
on the empirical model. By Assumption 2.1.7, the Weierstrauss Approximation Theorem
implies that the true policy function can be expressed as an infinite polynomial series
S̃(s) = ∑

∞
i=0 ∆is

i. Alternatively, one could choose a truncation point I to grow at a rate no
faster than the data; this would eventually allow for recovery of the true, unrestricted S̃
as the number of available sample moments grows.
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empirical distribution function for the set of prizes PK,K.

Step 2: For I ≤ U, let S̃(s) = ∑
∞
i=0 ∆is

i, and define

∆̂ = arg min

{
U

∑
u=1

[
Ĝ−1
N (ru)− ̂̃S

(
Ĝ−1

M

[
F̂PM

(
F̂−1

PN
[ru]
)]

; ∆

)]2
}

,

where ĜM, ĜN , F̂PM , and F̂PN are the Kaplan-Meier empirical distributions

of SM,TM , SN ,TN , PM,M, and PN ,N , respectively.

Step 3: Using the standard errors from Step 2, test H0 : ∆0 = 0. If H0 is rejected,

remove from r any ru such that H∗
0 : ∆0 ≥ Ĝ−1

N (ru) is rejected and repeat

Step 2. �

Step 3 in the above process comes from the fact that Step 2 is defined by

equation (3.5), which is only valid for s ≥ S̃(0).

There are two senses in which this estimator is semiparametric. First, there

are no assumptions imposed on the form of the distributions of grades and prizes.

Empirical CDF inverses can be recovered via “nearest neighbor” interpolation of

the Kaplan-Meier empirical distributions. Second, the polynomial specification

allows for the order of the policy function to be chosen as high as desired, given

enough data. In that sense, the above proposal could be classified under the broad

umbrella of estimation by the method of sieves.5 Said differently, this flexible form

for S̃ allows for a simple estimation procedure within a finite parameter space,

5A sieve is a sequence of nested, finite-dimensional parameter spaces whose limit con-
tains the true parameter space. For an in-depth discussion on estimation by the method
of sieves, see Chen (2005).
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while virtually avoiding imposition of a priori restrictions on the behavior of the

grade markup rule. If I is chosen to be large enough so that numerical stability is

an issue, S̃ could alternatively be specified as a weighted sum of orthogonal basis

polynomials, rather than the standard polynomial basis.

Another advantage is that minimization in Step 2 is greatly simplified by

the polynomial specification of S̃, since ∆̂ can be found by simply regressing

Y =
(

Ĝ−1
N (r1), . . . , Ĝ−1

N (rU)
)⊤

on on the matrix of explanatory variables,

X =




1 Ĝ−1
M
[

F̂PM

(
F̂−1

PN
(r1)

)]
Ĝ−1
M
[

F̂PM

(
F̂−1

PN
(r1)

)]2
. . . Ĝ−1

M
[

F̂PM

(
F̂−1

PN
(r1)

)]I

1 Ĝ−1
M
[

F̂PM

(
F̂−1

PN
(r2)

)]
Ĝ−1
M
[

F̂PM

(
F̂−1

PN
(r2)

)]2
. . . Ĝ−1

M
[

F̂PM

(
F̂−1

PN
(r2)

)]I

...
...

. . .
...

1 Ĝ−1
M
[

F̂PM

(
F̂−1

PN
(rU)

)]
Ĝ−1
M
[

F̂PM

(
F̂−1

PN
(rU)

)]2
Ĝ−1
M
[

F̂PM

(
F̂−1

PN
(rU)

)]I




.

This implies the familiar estimator ∆̂ = (X⊤X)−1X⊤Y, along with the familiar

variance-covariance matrix for linear regression models.6 Using well-known re-

sults, it follows that the above GMM estimator is consistent, asymptotically nor-

mal, and converges at rate
√

U.

3.2.2 Estimating Private Types

I now turn to the primary task of estimating the distributions over het-

erogeneity among competing students. Throughout this section, I shall consider

6For improved efficiency, one could incorporate an optimal weighting matrix W into
Step 2 and minimize

(Y − X∆)W(Y − X∆)⊤

instead. Using the current data set it will become clear later that there is little to be gained
in this case.
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the case where S̃(0) = ∆0 > 0 since estimation in the opposite (simpler) case

is similar, but with fewer caveats. Recall from Section 2.3.3 that in this case non-

minority achievement is given by a piecewise differential equation. For minorities

with equilibrium grades s ∈ [0, ∆0], equilibrium achievement is characterized by

differential equation (3.3). By monotonicity of the equilibrium, I have the follow-

ing two identities,

GN (s) = 1 − FN [ψN (s)] , and

gN (s) = − fN [ψN (s)] ψ′
N (s) = − fN (θ)/γ′

N (θ).

Using this, I can re-write equation (3.3) to get the following

C ′(s; θ) =
gN (s)

fP

(
F−1

P [GN (s)]
) = ξN (s). (3.7)

For non-minorities submitting grades above ∆0, something similar can be

done using differential equation (3.2). Recall that for a random variable S dis-

tributed according to F(s), the distribution of Z = ζ(S) is simply F(ζ−1(Z)).

Minority grades are distributed

SM ∼ GM(s) = 1 − FM [ψM(s)] ,

from which it follows that subsidized minority grades are distributed according

to

S̃(SM) ∼ G̃M(s) = GM
[

S̃−1(s)
]

= 1 − FM
(

ψM
[

S̃(s)
])

.
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Note that G̃M and its derivative show up in equation (3.2), along with GN and

its derivative. Therefore, the differential equation for non-minority achievement

above grade level ∆0 can be re-written as

C ′(s; θ) =
(1 − µ)gN (s) + µg̃M(s)

fP

(
F−1

P

[
(1 − µ)GN (s) + µG̃M(s)

]) = ξN (s), s ≥ ∆1. (3.8)

Similarly, for minority achievement (conditional on positive output), equation

(3.1) can be re-written as

C ′(s; θ) =
(1 − µ)g̃N (s) + µgM(s)

fP

(
F−1

P

[
(1 − µ)G̃N (s) + µGM(s)

]) = ξM(s), s ≥ 0, (3.9)

where G̃N (s) = GN
(

S̃(s)
)

is the distribution of de-subsidized non-minority test

scores and g̃N is its derivative. Equations (3.7), (3.8), and (3.9) provide a simple

basis for an estimator of the private cost distributions, as they express a student’s

unobservable private cost type in terms of objects which are all observable to the

econometrician. This will allow for recovery of sample of pseudo-private costs for

each group, which in turn facilitate estimation of the underlying distributions.

The advantages of this method are two-fold. First, the resulting estimation

procedure is computationally inexpensive, since equilibrium equations need not

be repeatedly solved as in, say a maximum likelihood routine. Second, estimation

requires no a priori assumptions on the form of the distributions FM and FN .

However, there is one drawback: without parametric assumptions, it is impossible

to identify private cost types for the potential mass point of minorities whose
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equilibrium achievement is zero. Under circumstances one might consider to be

reasonable, this concern will only apply to a small portion of the sample, but it

must be addressed. The policy function estimate and equations (2.10) and (3.7)

can be used to recover the minority boundary condition

θ∗ = inf {θ : γM(θ) = 0}

by computing the solution to

C ′(0; θ∗) = C ′(∆0; θ∆0
)S̃′(0), (3.10)

where θ∆0
solves

C ′(∆0; θ∆0
) = ξN (∆0).

By comparing the resulting estimate of θ∗ with the estimate of θ recovered from

equation (3.7) (where s = 0), if the interval [θ∗, θ] has a non-empty interior, then

the empirical model implies a mass point, and minority private costs correspond-

ing to a grade of zero are non-identified.

One way of dealing with the non-identification problem is to parameter-

ize the upper tail of the distribution. If the upper tail is sparsely populated, a

reasonable option would simply be to spread the mass of minorities uniformly

over [θ∗, θ].7 With this modification, the equations above allow for recovery of a

7The specification error introduced by this parameterization can be assessed by com-
paring the results with alternative estimates obtained by mapping all zero-score observa-
tions for minorities onto either θ∗ or θ.
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sample of pseudo-private costs

Θ̂N ,TN = {θ̂N ,t}TN
t=1 and Θ̂M,TM = {θ̂M,t}TM

t=1

corresponding to each SAT score observation for minorities and non-minorities,

respectively. From these, the underlying private cost distributions can be recov-

ered, given some specification of the cost function C. This leads to the next section.

3.2.3 Cost Function Estimation

Another advantage to the GPV method is that it provides for a partial spec-

ification test of the theoretical model. In any pure-strategy equilibrium, the theory

requires that mappings (3.7), (3.8), and (3.9) must reflect a monotonic decreasing

relation between private costs and academic achievement in order for the FOC to

constitute an equilibrium. Given some specification of costs C, if the data do not

produce monotone decreasing mappings, the model is rejected on the grounds

that the data are not consistent with a monotone equilibrium in the specified

model. To begin, one might be inclined to consider a simple linear specification,

say C(s; θ) = θs, as this would avoid introducing additional parameters into the

model. However, this specification of costs leads to a non-monotone empirical

mapping being recovered from equations (3.7), (3.8), and (3.9). As it turns out,

there must be curvature in students’ utility in order for the model to be consistent

with the data.
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I assume that achievement costs take the form

C(s; θ) = θ exp(αs), α > 0.

This choice is motivated by several factors, the most important being that it satis-

fies the regularity conditions required for existence of a monotonic, pure-strategy

equilibrium (see assumption 2.1.4 in Section 2.1.4). Aside from that, it has other

attractive properties as well. Note that the cost of submitting a grade of zero is

strictly positive. This corresponds to the notion that students must forego some

minimum cost to graduate high school as a prerequisite for participation in the

college admissions market. As it turns out, the above cost function allows for a

tight fit between the empirical model and the data (at the optimal value of α).

With this specification of private costs, equations (3.7), (3.8), and(3.9) be-

come

θ =
gN (s)

fP

(
F−1

P [GN (s)]
)

α exp(αs)
=

ξN (s)

α exp(αs)
, s ≤ ∆1, (3.11)

θ =
(1 − µ)gN (s) + µg̃M(s)

fP

(
F−1

P

[
(1 − µ)GN (s) + µG̃M(s)

])
α exp(αs)

=
ξN (s)

α exp(αs)
, s > ∆1, and

(3.12)

θ =
(1 − µ)g̃N (s) + µgM(s)

fP

(
F−1

P

[
(1 − µ)G̃N (s) + µGM(s)

])
α exp(αs)

=
ξM(s)

α exp(αs)
, s ≥ 0, (3.13)

respectively. The zero surplus condition and equation (3.11) imply a relation
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between the curvature parameter α, and the value of the lowest prize, p:

C(0; θ) = θ =
ξN (0)

α
= p

⇒ α =
ξN (0)

p
.

(3.14)

As discussed in Section 2.2.1, the zero surplus condition is analogous to broader

market forces (not included in the model) that determine participation in the

higher-education market. If students have a choice between going to college or

some outside option, then the marginal college candidate will be indifferent be-

tween going to college and opting out. If prize values represent the additional

utility from going to college over the outside option, then the result is equation

(3.14). This condition places structure on the relative link between the utility of

consumption and the disutility of work.

In related work, Guerre et al. (2009) and Campo et al. (2009) extended the

GPV method to first-price auctions where agents’ utility functions display some

form of curvature. They show that such models are unidentified without im-

posing additional structure, due to the weak restrictions that the game-theoretic

model places on observed bids. In fact, simply parameterizing either utility or the

distribution of private information alone does not necessarily provide identifica-

tion. Fortunately, the prize distribution in the college admissions model provides

some additional structure, so here it is sufficient to parameterize just the cost

function. Campo et al. (2009) used information on heterogeneity across auctioned

objects to identify the utility function. This is conceptually similar to the role that
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the sample of prizes PK,K plays, only instead of dealing with many (single-unit)

auctions for heterogeneous items, I have a single “auction” with many heteroge-

neous objects.

Proposition 3.2.1. If the cost function is restricted to the parametric class C(s; θ) =

θ exp(αs), α > 0, then there exists a unique curvature parameter α and a unique set of

cost distributions FM and FN which rationalize a given set of grade distributions, GM

and GN , a policy function S̃, and a prize distribution FP .

Heuristic Proof: Intuitively, the role of α and θ is to reconcile the prize utilities

with the levels of observed achievement. At each grade quantile s, α must be such

that the prize value allocated to a student with a score of s justifies the resulting

cost C [s; θ(s; α)], where θ(s; α) is defined by the inverse equilibrium equations

(3.11), (3.12), and (3.13).

The model’s ability to reconcile the prize utilities with observed behavior

hinges on the cost curvature parameter through the term

α exp(αs) (3.15)

in the denominators of the three GPV equations. Specifically, suppose one were

to fix a value of α, recover the associated GPV estimates of FM and FN , and

then compute the implied model-generated bid distributions. If α is too high,

then the exponent of (3.15) becomes very important and the model cannot pro-

duce the high grades observed in the data because prize values are not enough

to compensate for the cost of achievement. In other words, the marginal rate of
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Figure 3.3: Rationalizing a Grade Distribution
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substitution of prize value for work is too low to rationalize a fixed grade dis-

tribution from a fixed prize distribution. If α is very small, then the exponent is

unimportant for low grades (because exp(αs) is close to 1), and the effect of the

coefficient in equation (3.15) dominates. Costs become nearly linear for low α,

and when this happens the behavioral separation in the model diminishes among

low-performing students—in fact, equations (3.11), (3.12), and (3.13) eventually

become non-monotonic just as under linear costs—and the observed low-score

frequencies cannot be rationalized. However, in the middle there is a balance be-

tween the two extremes and the whole empirical grade distribution can be ratio-

nalized. Figure 3.3 provides an illustration. This concept motivates the proposed

estimator below. �
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The estimator I propose for the utility function parameter is motivated by

the fact that the model’s ability to rationalize the empirical grade distributions

Ĝi, i = M,N vanishes as α approaches the two limiting extremes of 0 and ∞.

For fixed α, the restricted GPV estimates of the cost distributions can be recovered

from equations (3.11), (3.12), and (3.13). These and the equilibrium equations from

Section 2.3.3 imply a set of model-generated grade distributions, G̈i, i = M,N .

The goal in choosing α, as with any parametric estimation routine, is to minimize

the distance between the data and the model. I chose the Euclidean distance

metric, which leads to the following nonlinear least squares (NLLS) estimator for

the utility parameter:

α̂ = arg min

{
J

∑
j=1

[
G̈M(sj; α)− ĜM(sj)

]2
+
[

G̈N (sj; α)− ĜN (sj)
]2
}

, (3.16)

where S = {s1, s2, . . . , sJ} is the set of all grades observed in the data, G̈i(·; α) is

the model-generated grade distribution for group i given α, and Ĝi is the Kaplan-

Meier empirical CDF.8

While this is an intuitive criterion function, optimization is complicated

by the fact that the derivatives dnG̈i/dαn, i = M,N , n = 1, 2, . . . of the model-

implied grade distributions are not readily available due to a lack of closed-form

solutions for the equilibrium equations in Section 2.3.3. The lack of closed-form

solutions also necessitates repeated solution of the model equations during opti-

8An alternative criterion one could adopt is to choose α̂ so as to minimize the sup-norm
distance between G̈i and Ĝi, for i = M,N .
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mization for each guess of the cost curvature parameter. To address these prob-

lems, I use the golden search method, a derivative-free optimization algorithm.

Golden search begins with an initial guess on the search region, [α, α] and

evaluation of the objective function at two interior points α < α′. After comparing

the functional values, the sub-optimal interior point is used to replace the nearest

endpoint of the search region, and the process is repeated until the length of the

search region collapses to a pre-specified tolerance, τ. The algorithm has some

unique and attractive characteristics because the interior points are chosen as

α = ϕα + (1 − ϕ)α, and α′ = (1 − ϕ)α + ϕα,

where ϕ = (
√

5 − 1)/2 is the inverse of the golden ratio, a number famously

venerated by ancient Greek philosophers (hence, the name “golden search”). By

choosing the interior points in this way, with each successive iteration one of the

interior points is carried over from the previous iteration, necessitating only one

new objective function evaluation. Moreover, at each step the length of the search

region contracts by a factor of exactly ϕ (≈ .62), meaning that convergence obtains

in a known number of steps equal to [log(τ) − log(α − α)] / log(ϕ).

Although the proposed semiparametric utility function estimator requires

repeated computation of the model equilibrium, this last property of golden

search gives the researcher an a priori idea of the magnitude of the problem. As

for estimation of α with the current data set, it is easy to identify an appropriate

search region of length less than 10, so convergence obtains in roughly 33-43 iter-
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ations for τ ∈ [10−8, 10−6]. Of course, there are the usual problems of locating the

global minimum as opposed to local minima, but this is not unique to derivative-

free optimization methods. The final point left to discuss is the nonparametric

density estimates that will be used in equations (3.11), (3.12), and (3.13). This is

covered in the next section.

3.2.4 Boundary-Corrected Kernel Smoothing

Established asymptotic theory on GPV-type estimators is based on obtain-

ing kernel-smoothed density estimates, which are known to exhibit excessive vari-

ance and bias near the extremes of the sample. GPV-type econometric routines

typically address this issue by trimming elements from the sample of pseudo-

private information based on kernel density estimates close to the extremes of the

sample. However, addressing the problem in this way would cause problems here

for several reasons. First, boundary conditions are needed for computation of the

model equilibrium; second, the relation between α and p is pinned down pre-

cisely at the boundary—see equation (3.14)—and third, the boundary of the mi-

nority grade distribution plays a role in estimating interior values of non-minority

private costs (see equation (3.12)). Fortunately, there is a well-established set of

tools from the statistics literature for improving the performance of kernel density

estimators when the underlying random variables live on a bounded support.

Let f denote a density function with support [a, b] and consider nonpara-

metric estimation based on a random sample {Z1, Z2, . . . ZT} using the standard

kernel density estimator f̂ (x) = 1
Th ∑

T
t=1 κ

(
x−Zt

h

)
, where κ is a unimodal density
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function and h is a bandwidth parameter strategically chosen to approach zero

at a rate no faster than 1
T . It is well-known that on the set [a + h, b − h] this es-

timator has bias of order O(h2), but on the complement of this set, the bias is

O(h). In particular, the standard method tends to underestimate density values

on the set [a, b] \ [a + h, b − h] for an intuitive reason: since it cannot detect data

outside the boundaries of the support, it penalizes the density estimate near those

boundaries. This is commonly referred to as the boundary effect.

Various methods have been developed to address the problem.9 Two com-

mon coping techniques are known as the reflection method and the transformation

method. The former is a simple technique in which the data are “reflected” out-

side the support near the boundaries, resulting in the following estimator: f̂ (x) =

1
Th ∑

T
t=1

{
κ
(

x−Zt
h

)
+ κ

(
x+Zt

h

)}
. Transformation methods map the data onto an

unbounded support via λ : [a, b] → R, resulting in f̂ (x) = 1
Th ∑

T
t=1 κ

(
x−λ(Zt)

h

)
.

While these methods reduce the bias due to boundary effects, they come

at a cost of increased variance in the density estimate. However, Karunamuni

and Zhang (2008) (KZ), overcome this problem by constructing a kernel estimator

that is a hybrid of the reflection and transformation techniques. Formally, the

9See Karunamuni and Alberts (2005) for a more in-depth discussion of the various
correction methods, as well as for a comparison of their performance.
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boundary-corrected KZ density estimator is given by

f̂T(x) =
1

Th

T

∑
t=1

{
κ

(
x − Zt

h

)
+ κ

(
x + λ̂(Zt)

h

)}
,

λ̂(y) = y + d̂y2 + Ad̂2y3,

d̂ = log ( fT(h1)) − log ( fT(0)) ,

fT(h1) = f ∗T(h1) +
1

T2
,

fT(0) = max

{
f ∗T(0),

1

T2

}
,

f ∗T(h1) =
1

Th1

T

∑
t=1

κ

(
h1 − Zt

h1

)
,

f ∗T(0) =
1

Th0

T

∑
t=1

κ0

(−Zt

h0

)
,

(3.17)

where κ is a symmetric kernel with support [−1, 1]; A >
1
3 ; h1 = o(h); κ0 :

[−1, 0] → R is an optimal boundary kernel, given by κ0(y) = 6 + 18y + 12y2; and

h0 = βh1, with

β =





[∫ 1
−1 x2κ(x)dx

]2 [∫ 0
−1 κ2

0(x)dx
]

[∫ 0
−1 x2κ0(x)dx

]2 [∫ 1
−1 κ2(x)dx

]





1/5

.

Interestingly, this estimator reduces to the standard kernel density estimator on

the interior of the set [a, b] \ [a + h, b − h]. Most importantly, KZ show that if f

is strictly positive and has a continuous second derivative within a neighborhood

of the boundary, then f̂T as defined above has O(h2) bias and O( 1
Th ) variance

everywhere on the support.10

10The assumption that the true density is strictly positive at the boundary is not neces-
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The above boundary correction technique applies to the current empiri-

cal model of college admissions. A key assumption of the theory is that prizes

and private cost types live on compact intervals, which in turn leads to bounded

achievement. However, one can reasonably argue that these assumptions corre-

spond to natural characteristics of the data. In the case of achievement, a student

cannot put forth negative effort, so a grade of zero naturally forms a lower bound

on the support of grades. By design, there is also a maximum attainable SAT

score.11 As for the prize distribution, an argument similar to the logic behind As-

sumption 2.2.2 establishes bounds on the support. Once again, the set of realized

prizes is assumed to be the result of a broader market equilibrium including entry

and exit of firms supplying post-secondary education and unskilled jobs to high

school graduates. Therefore, [p, p] = [min{PK,K}, max{PK,K}], and the upper

and lower bounds arise naturally from the exogenous private cost distributions

(including high-cost types who opt out of higher education) and the interaction

between employment suppliers and universities.

I can now summarize the structural estimator of the college admissions

sary for boundary correction in general, just for the hybrid KZ estimator. If it is known a
priori that the density attains a value of zero at the boundary, a suitable replacement with
similar performance is the locally adaptive—meaning that the bandwidth is adjusted as
domain points get closer to the boundary—kernel density estimator of Karunamuni and
Alberts (2005). The cost associated with this alternative is that it is more difficult to
implement.

11SAT scores are actually a proxy for overall academic achievement, so assuming that
the maximal score forms a natural upper bound is an approximation to the truth. How-
ever, the data suggest it is a reasonable approximation: the number of students who
manage a perfect SAT score make up less than three thousandths of a percent of the
overall population.
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model in the following three-step process:

Step 1: Obtain the following preliminary estimates

(i) the population demographic parameter µ̂ = ∑
U
u=1 Mu

∑
U
u=1(Mu+Nu)

;

(ii) S̃ as outlined in Section 3.2.1;

(iii) the boundary-corrected KZ prize density f̂P(p), and its integral, F̂P(p)

from the sample of prizes;

(iv) the boundary-corrected KZ grade densities ĝM(s|S > 0) and ĝN (s),

and the corresponding integrals, ĜM and ĜN from the samples of SAT

scores.

Step 2: (i) For a given guess of α, estimate samples of pseudo-private costs Θ̂N ,TN

and Θ̂M,TM from equations (3.11), (3.12), (3.13), and (3.10), where the

grade and prize distributions are substituted for the estimates from

Step 1. In the event of a mass point at a score of zero for minorities,

map minority scores of zero uniformly onto an evenly-spaced grid on

[θ∗, θ], where the spacing between grid points is smaller than h, the

bandwidth parameter for minority private costs, conditional on positive

achievement.

(ii) Given part (i) of Step 2, estimate the study-cost parameter α̂ via NLLS

as outlined in Section 3.2.3. �
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Step 3: Obtain boundary-corrected KZ density and distribution estimates for pri-

vate costs, f̂M and f̂N , using the samples of pseudo types from Step 2.

3.2.5 Asymptotic Properties

In a related setting, Campo, Guerre, Perrigne, and Vuong (Campo et al.,

2009, henceforth, CGPV) develop a similar semiparametric estimator of a first-

price auction model where competitors’ utility exhibits curvature. They param-

eterize bidder utility and use variation in observable auction characteristics to

estimate it via a NLLS routine. After that, they recover type distribution esti-

mates similarly as in GPV. CGPV prove asymptotic normality and show that the

utility curvature estimator converges at rate K(R+1)/(2R+3), where R is the num-

ber of continuous derivatives of the (true) type distributions. Type distribution

estimates converge at the optimal rate for kernel-based estimators.

The estimators I have proposed for α, FM and FN are conceptually the

same as CGPV. Like them, I exploit variation in objects being auctioned to identify

utility curvature, which I estimate via NLLS. Moreover, my type distribution esti-

mates are conditioned on the utility curvature parameter, just as in CGPV. F̂M and

F̂N are otherwise nonparametric and estimated via a two-step kernel smoothing

procedure which involves analytically inverting the equilibrium equations from

the theoretical model.

Henceforth, discussion pertaining to estimates and inference shall assume

the asymptotic theory proven by CGPV. The standard error I report for α̂ shall re-

flect the conservative assumption that type distributions have a single continuous
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derivative, or R = 1. This implies that the rate of convergence is K2/5.

As a precaution, I also perform a bootstrap exercise to evaluate the role

of sampling variability for the estimates (see the appendix for details and dia-

grams). The histogram of bootstrapped estimates for α appears fairly normal,

with variance slightly smaller than the estimate I get by assuming R = 1. More-

over, ninety-five percent confidence bands for the type distributions are fairly

tight (see appendix), suggesting that the large sample size eliminates concerns

about sampling variability. Effectively, estimation amounts to an exercise in curve

fitting. This will simplify the discussion on the counterfactuals considerably, as

one can reasonably focus on policy changes under the estimated distributions

while ignoring inferential concerns.

3.2.6 Practical Issues

Choice of A is generally inconsequential, as long as A >
1
3 , so I have

selected A = .55 as suggested by KZ. By definition of the boundary-corrected

estimator, the Gaussian kernel is not an option, so I have chosen the biweight

kernel (also known as the quartic kernel) κ(x) = 15
16

(
1 − x2

)2
I[−1 ≤ x ≤ 1],

where I is an indicator function. As proposed by KZ, I have selected bandwidth

h via Silverman’s optimal global bandwidth rule

h =





∫ 1
−1 κ2(x)dx

(∫ 1
−1 x2κ(x)dx

)2 ∫
[0,a]

(
d2 f
dx2

)2
dx





1/5

T− 1
5 ,
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where the second term in the denominator is substituted by

∫

[0,a]

(
d2 f

dx2

)2

dx ≈ 3

8
π− 1

2 σ−5,

and where σ is the sample standard deviation.12 Finally, there are many ways to

choose h1 = o(h), but I use h1 = hT− 1
20 as proposed by KZ.

In order to obtain estimates of the distributions, I numerically integrate the

boundary-corrected, KZ densities via Simpson’s rule. This method has the ad-

vantages of being both accurate and easy to implement. Moreover, I strategically

choose the grid of points on which the densities are estimated so that the spacing

is δ = min{h, .01}; this ensures that the resulting numerical error is of higher or-

der than the statistical bias. The approximation error of Simpson’s rule depends

on the product of δ5 and the fourth derivative of the actual integrand. Since the

biweight kernel has a constant fourth derivative, the numerical error is actually

cδ5, where c is fixed across domain points.

There are two final practical issues concerning numerical performance dur-

ing estimation of α̂. I reconcile p and α via an additive shift using equation (3.14),

but before doing so, I treat p̂ = mint{Qt} as the numeraire good and divide

all prize values by it. This has the effect of scaling up the length of the inter-

val on which the optimal α̂ lives (roughly by a factor of 10), to allow for finer

adjustments. In order to compute G̈ at each golden search iteration, I solve the

model equilibrium equations using a fourth-order Runge-Kutta algorithm. I also

12This comes from Silverman (1996), equation (3.27).
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Table 3.2: Summary Statistics for Normalized SAT Scores and Prizes

Sample # of Obs Median Mean StDev Min Max

Minority Grades 18,407 29 29.86 17.76 0 101

Non-Minority Grades 73,361 44 44.3 19.1 0 102

Minority Prizes
(Raw USNWR Quality Index) 186,507 0.4875 0.4958 0.189 0.087 0.973

Non-Minority Prizes
(Raw USNWR Quality Index) 870,073 0.5877 0.5792 0.1826 0.087 0.973

take measures to ensure a finer grid of domain points in regions of the function

marked by a high degree of curvature. The maximal grid-point spacing for the

Runge-Kutta integration is approximately 0.019, resulting in a numerical error on

the order of 10−6. Each iteration required 51 seconds, on average, and conver-

gence with a tolerance of 10−6 obtained in 28 iterations.

3.3 Results and Counterfactuals

3.3.1 Estimation Results

For the 1996 freshmen enrollment data, there were a total of 1,056,580 seats,

with 186,507 going to minority students. This results in a demographic parameter

estimate of µ̂ = .17652, with a standard error of .000141. Table 3.2 displays sum-

mary statistics on normalized grades for each group. It also displays summary

statistics for prizes awarded to each group. These figures are for USNWR quality

indices prior to performing the affine transformations discussed in the previous

section. See Figures 3.2 and 3.1 for graphical representations of the grade and

prize distributions.
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I selected an affine specification of the grade transformation function, or

S̃(s) = ∆0 + ∆1s. As it turns out, higher-order terms are unimportant, and this

simple specification is enough to achieve a remarkably tight fit for the data.13 In

Table 3.3, I summarize the results of the policy function estimation. The regression

R2 value is 0.99789 and both the slope and the intercept are statistically significant.

The high R2 value is not necessarily surprising, given the nature of the sample: I

have observations on virtually the entire universe of colleges, and the sample size

for SAT scores constitutes a non-trivial fraction of the actual freshman population.

More remarkable is the fact that such a tight fit is achieved with only a very simple

SAT markup.

The estimated policy function assesses a grade inflation factor of 9.17 per-

cent, along with an additive boost of 34 points (in the original SAT score units).

For example, a minority student with an SAT score of 1000 would see his grade

increased to

̂̃S(1000) = 1.0917(1000) + 34 ≈ 1126.

Combining these figures with the sample of normalized minority scores results

in an estimated average grade boost of about 62 points in the original SAT score

units.

In Figure 3.4, I graphically compare the estimated policy function with the

data. The solid line is the regression line, and the dots are a scatter plot of the

13Higher order polynomial specifications produce coefficients that are statistically sig-
nificant, but they do not improve the fit of the model in any practical sense. Moreover, the
affine estimate and the polynomial estimates differ the most toward the upper extreme of
the sample where the data are very sparse.
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Table 3.3: Estimated US AA Policy Function

Implied Avg.
∆0 ∆1 R2 Grade Boost

3.4218 1.0917 0.99789 6.1611

(0.00277) (0.00000199)

95% CI: [3.3187, 3.5251] [1.089, 1.0945]

Figure 3.4: Grade Markup Estimation
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Xus versus the Yus from Section 3.2.1. The dashed line is the 45◦-line, where the

policy would lie under color-blind admissions. The dispersion of the data-points

around the regression line represents the mis-specification error introduced by the

assumption that individual college admissions boards can be treated as a single

entity. The data suggest that there was a remarkable degree of coordination on

AA practices among different colleges and universities in 1996.
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This view of admission preferences is consistent with previous empirical

work on AA. Chung et al. (2004), estimated the average SAT-equivalent grade

boost received by minority students at elite universities. They use individual-

level data on applications and acceptance decisions at three undisclosed institu-

tions from “the top tier of American higher education” to estimate the admission

preference assessed to minority students. Chung, et al. fitted a logistic regres-

sion model to the data in order to determine how different factors affect a stu-

dent’s probability of being accepted. They found that minority students receive a

substantial SAT-equivalent boost in admission decisions—230 points for African

Americans and 185 points for Hispanics. While these figures are not directly

comparable to my measure of the admission preference—Chung, et al. measured

the added probability of being accepted at a particular college, whereas S̃ mea-

sures the increase in school rank for the final placement outcome associated with

race—I also find that race plays a significant role in how college seats are allo-

cated. Moreover, Chung, et al. found that the admission preference is highest

for minority applicants with high scores. This is also consistent with my posi-

tive grade inflation estimate ∆̂1 = 1.0917 which implies a larger bonus for higher

scores. Among minority SAT scores in the top 5% (i.e., a score ≥ 1200), the average

grade boost is 98 points.

Finally, in related work Chung and Espenshade (2005) found that the op-

portunity cost of admission preferences at selective institutions tends to be borne

primarily by Asian students. According to their study, AA practices at elite uni-

versities are such that Asians receive a significant SAT-equivalent penalty, whereas
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whites do not. The current study offers some explanation as to why. First, recall

that Asian students are under-represented in every tier except the top. Moreover,

the SAT data suggest that the distribution of Asian SAT scores has a higher mean

and a fatter upper tail than that for Whites. Both score distributions are roughly

normal, with the former having mean and variance of 1039 and 213, respectively,

and the latter having mean and variance 1030 and 183, respectively. Since the

estimated policy function rewards high minority scores more, by extension it also

penalizes high non-minority scores more (see equation 2.7). This is the reason

why Asian applicants are negatively impacted the most: their score distribution

has the fattest upper tail.

On the other hand, if one measures the opportunity cost of AA in terms

of allocations of college seats, then it may actually not be the case that Asian stu-

dents are most adversely affected. Inasmuch as the college admissions market

is consistent with two key assumptions—namely, that (i) the market is effective

at matching higher-performing students (of the same demographic class) with

higher-quality schools, and (ii) the policy-maker does not attempt to rearrange

the relative orderings of students within the same demographic group when de-

vising an AA policy—then it will be the marginal non-minority students that are

eliminated from elite institutions due to AA. For example, if a given admission

preference produces a 10 percent reduction in non-minority enrollment within

the top quartile of colleges, then only the lowest-scoring 10 percent within the

top segment will be bumped down to schools in the next quartile. Since the best

of the best non-minority students are disproportionately Asian—in fact, condi-
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Figure 3.5: Estimated Private Types
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Table 3.4: Summary Statistics for Pseudo Types

Sample Min Max Median Mean StDev

Minorities .0005255 4.8754 0.5149 0.7452 0.6586

Non-Minorities .0005255 4.8754 0.2241 0.3698 0.6251496

tional on scores above the median, Asian SAT results stochastically dominate all

other groups—the negative allocational effect of AA would tend to be born pre-

dominantly by other non-minorities. This is true despite the fact that Asians are

typically assessed the highest effective penalty by admission preferences.

The utility function parameter estimate is α̂ = 0.054099, with a standard

error of 0.001339.The empirical mappings implied by α̂ between private costs and

achievement are displayed in Figure 3.5, where log private costs are on the ab-
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Figure 3.6: Type Distributions
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Figure 3.7: Goodness of Fit: SAT Score Distributions
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Figure 3.8: Goodness of Fit: Prize Distributions
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scissa and SAT scores are on the ordinate. The fact that these mappings are

monotonic—as required by theory—indicates that the data do not reject the em-

pirical model. Summary statistics for pseudo-private costs are displayed in Ta-

ble 3.4, and the private-cost distributions and densities are displayed in Figure

3.6. The model suggests that minority private costs stochastically dominate non-

minority costs in the first-order sense.

Figure 3.7 illustrates the fit between the model and the data. The dashed

step functions represent empirical grade distributions, and the solid lines repre-

sent model-generated analogs under the above parameter estimates. The right

two panes display the percent error of the model from the data, as well as the

absolute error. As another way of gauging goodness of fit, Figure 3.8 displays a
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similar plot for prize distributions, which were not directly targeted in the NLLS

criterion function. These graphs provide suggestive evidence that the param-

eterizations introduced into the estimation scheme did not impose substantial

mis-specification errors.

3.3.2 Counterfactual Policy Experiments

It is worth emphasizing that the standing assumption in the model is that

the cost distributions FM and FN are invariant to policy changes. In that sense,

the appropriate interpretation of this work is a short-run model of policy implica-

tions. It is reasonable to assume that individual characteristics which determine

academic competitiveness are fixed for children born prior to a policy change.

One could certainly conceive of a broader model in which the Board designs a

policy today so as to affect the private costs of future generations (i.e., the chil-

dren of today’s college freshmen), but such an undertaking is beyond the scope of

the current exercise, and is left for future research. Instead, I shall concentrate on

the effects of the policy-maker’s choices on actions and outcomes for individuals

such as today’s college candidates, whose private costs are reasonably viewed as

fixed.

With the structural estimates in hand, I am now ready to address the main

objective of assessing policy implications. In particular, I wish to compare the ef-

fects of three separate policies: the status-quo admission preference, a quota rule,

and a color-blind admission scheme. The maintained assumption on the policy-

maker is that he cares primarily about three objectives: (i) facilitating academic
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Table 3.5: Pct. Change in Group Achievement, Rel. to Status-Quo Policy

Quantile: 10th 25th Median 75th 90th

M Grades Color-Blind: +23.2 -2.4 -5.9 -1.9 +4.1

Quota: +65.8 +28.4 +13.2 +3.7 -1.8

N Grades Color-Blind: +7.4 +2.9 +1.2 +0.4 +0.7

Quota: -0.1 +1.4 +1.8 +2.3 +2.3

achievement, (ii) narrowing the racial achievement gap, and (iii) narrowing the

enrollment gap. In terms of the objects associated with model equilibria, this

means that he prefers a population grade distribution over another if it first-order

dominates; a situation in which the separation between group-specific grade dis-

tributions is minimized; and similarly, a minimal separation between distributions

of prizes allocated to each group in equilibrium. With these objectives in mind, I

compute model equilibria and allocations under the three distinct policies, and I

display the results below.

In Figures 3.9 and 3.10, I graphically present the results of the counterfac-

tual experiments. Dashed lines denote distributions associated with the status-

quo policy, solid lines denote distributions arising from a quota, and dash-dot

lines denote a color-blind outcome. Between two lines with the same style, the

one lying to the left pertains to minorities. When comparing two grade distribu-

tions, keep in mind that if distribution i lies to the right of distribution j in some

region, that indicates an interval of students who achieve higher SAT scores un-

der policy i. Table 3.5 displays percentage-changes in achievement under the two
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unobserved policies, relative to the status quo. The changes are measured at var-

ious quantiles, including the upper and lower deciles, the intermediate quartiles,

and the median.

This information produces some intriguing insights into AA. Figure 3.9

and the first line of Table 3.5 characterize the effect of an admission preference

on academic output. Relative to color-blind admissions, both the highest- and

lowest-performing minority students decrease their effort, whereas students in

the middle increase it. Although the policy-maker might hope that students will

use a grade bonus solely to bolster their competitive edge, in some situations a

rational student will react by treating the bonus as a direct utility transfer. In the

case of high-performing students, the bonus is not needed and they achieve lower

grades.

For low performers, the fixed grade boost ∆0 improves their standing (the

inflation factor is insignificant for scores close to zero), but in so doing, it ad-

versely alters the marginal costs and benefits of achievement. In order to improve

their payoff beyond what the grade subsidy achieves, they would have to com-

pete with students whose costs are significantly lower than theirs. Thus, the

marginal cost of competing is too high relative to the potential benefits. It is only

for students whose costs are low enough—but not too low—that the admission

preference entices additional investment in effort. As for non-minorities, an ad-

mission preference creates discouragement effects which discourage achievement

among all types of students, relative to the color-blind case.

Figure 3.9 also illustrates some interesting insights on the effects of a quota.
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It increases output among low-performing minorities, relative to a color-blind

rule, and decreases effort among high-performers. The intuition is simple. A

high-cost minority competing against the population at large is subject to a sub-

stantial discouragement effect since there is a large amount of competitors with

lower costs. On the other hand, if he competes only against his own group (as

with a quota) where costs are on average higher, then it is more worthwhile to

invest in costly effort, since his relative standing with regards to the competition

is improved. For low-cost minorities, the opposite effect occurs: when they only

compete against other minorities, there is less need to outperform the competition

as aggressively as before. For non-minorities with high- and low-cost types, the

reverse effect applies (low-performers back off effort, high-performers increase it)

by similar reasoning.

In January of 2008, presidential candidate Barack Obama famously stated

in a television interview that his daughters should not be treated as disadvan-

taged in college admissions decisions, and that poor white children should be

given extra consideration. The current empirical model seems to support the in-

tuition behind Mr. Obama’s assertion. It is interesting to note that both types

of AA are detrimental to effort incentives for low-cost minorities and high-cost

non-minorities.

With conflicting changes in academic output for different segments of the

population, one might ask how the overall population grade distribution is ef-

fected. Table 3.5 answers this question: population grade distributions under each

policy can be ordered by stochastic dominance. Color-blind admissions dominate
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Table 3.6: Pct. Change in Enrollment, Rel. to Status-Quo Policy

Tier: I II III IV

Minorities Color-Blind: -33.3 -24.8 +4.5 +43.4

Quota: +52.8 +14.3 -14.9 -42

Non-Minorities Color-Blind: +4.3 +4.6 -1.2 -19

Quota: -6.9 +2.6 +3.9 +18.5

the status quo, and a quota dominates the color-blind policy.

The model also shows that race-conscious admissions have a significant

impact on college placement outcomes for minority students. Figure 3.10 displays

the distributions of prizes allocated to each group under each policy. Note the

substantial first-order dominance shift that occurs under either AA policy, relative

to color-blind admissions. Table 3.6 numerically displays the percentage changes

in enrollment for each college tier. By shutting down American AA (as in color-

blind admissions) minority enrollment within the top quartile would decrease by

a third, and within the upper middle quartile it would decrease by a quarter.

Another striking feature of the table is that the majority of the displaced minority

enrollment resulting from elimination of AA would end up in the lowest tier.

The cost imposed on non-minorities amounts to roughly 4 percent and 5 percent

of enrollment in each of the top two quartiles, respectively. Of course, on an

individual level the benefits and costs to each group exactly balance out: any

quality units reallocated to one student are necessarily transferred from another.

Whether such transfers are justified is beyond the scope of economic reasoning.
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Table 3.7: Pct. Change in Policy Objectives, Rel. to Status-Quo Policy

Quantile: 10th 25th Median 75th 90th

Population Grades Color-Blind: +4.5* +1.5* +1* +0.8* +0.9*

(Objective I) Quota: +9.2** +4.2** +2.2** +1.9** +2**

Achievement Gaps Color-Blind: -2.5* +9.1 +14.1 +6.3 -11**

(Objective I I) Quota: -41.7** -29.8** -18.8** -1.2** +16.3

Enrollment Gaps Color-Blind: +56 +66.6 +80 +99.9 +106.2

(Objective I I I) Quota: -100** -100** -100** -100** -100**

However, it does appear that the AA policies implemented in real-world

settings are effective at improving market outcomes for minorities, as intended

by policy-makers. On the other hand, they do not eliminate the enrollment gap

completely. For example, under a quota minority enrollment in the top tier would

increase by an additional fifty percent. Loosely speaking, the US admission pref-

erence eliminates roughly 2
3 of the enrollment gap in the top tier.

For a comparison of admissions rules along each of the policy objectives, I

turn to Table 3.6, which tracks changes along objectives I − I I I. Once again, all

figures are stated in terms of percentage changes, relative to the status-quo policy.

For example, switching to a color-blind policy would increase the gap between

prizes awarded to the median student from each group by 80%. In the table, as-

terisks are used to denote the preference ranking among the three policies. Two

asterisks denote the most preferred outcome, one asterisk denotes the second-

most preferred, and no asterisks indicates the least preferred. Interestingly, the

status-quo admission preference never achieves the best outcome in any cate-
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Figure 3.9: Achievement Counterfactual Results

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

GRADES

C
D

F

Counterfactual Experiment:
 Group−Specific Grade Distributions

MINORITY (STATUS QUO)
NON−MINORITY (STATUS QUO)
MINORITY (QUOTA)
NON−MINORITY (QUOTA)
MINORITY (COLOR−BLIND)
NON−MINORITY (COLOR−BLIND)

gory. These figures also demonstrate that no ranking between a color-blind rule

and the status quo can be established without knowing how the policy-maker’s

preferences weight objectives I − I I I. The former does strictly better in terms

of academic performance, as mentioned above. The latter does strictly better in

terms of enrollment gaps (see also Figure 3.10), and in terms of the achievement

gap, the result is a toss-up.

On the other hand, a striking feature of the table is that a quota rule does

strictly better than both other policies in nearly every category. Not only does it

induce the highest academic output from the overall population of competitors,

but it also shuts down the enrollment gap completely, by design. A quota also

produces a substantial increase in minority achievement, as well as a narrowing

of the achievement gap among the majority of the population. The lone drawback

to a quota rule is that it produces the widest achievement gap in the upper tail

of the grade distribution. However, one can argue that a quota rule appears
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Figure 3.10: Allocations Counterfactual Results
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to be the clear winner among college admission policies for reasonable social

choice functions that do not place an extreme amount of weight on minimizing

the achievement gap specifically in the upper tail of the grade distribution.

3.3.3 Alternative Policy Proposal

The counterfactual exercise has produced some valuable insights into the

costs and benefits of AA. However, the value in knowing that a quota is a substan-

tially superior policy choice would seem to be diminished by the fact that quotas

are illegal in the US, because of a 1978 Supreme Court ruling. One might then

ask whether an admission preference system can be modified so as to improve its

performance, but without requiring an unreasonable level of information on the

part of the policy-maker. As it turns out, the insights gained from the properties

of a quota mechanism can be used to design a simple admission preference that

performs similarly along the three policy objectives.
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Formally, this alternative policy is defined by

S̃∗(s) ≡ G−1
N [GM(s)] .

In words, the college admissions board simply announces that it will map quan-

tiles of the minority grade distribution into the corresponding quantiles of the

non-minority grade distribution. For example, the median minority score is re-

assigned a value equal to the median non-minority score, and so on. The fact

that this mechanism is outcome-equivalent to a quota immediately follows from

plugging S̃∗ or (S̃∗)−1 into equations (2.7) and (2.6), which then become equation

(2.4).

Aside from its superior performance, this alternative admission preference

has two other advantages worth mentioning. The first is its relative simplicity.

In keeping with the Wilson doctrine, it does not require the policy-maker to have

knowledge of students’ individual abilities, or their beliefs about the competition

they face. Rather, S̃∗ allows the policy-maker to implement an improved out-

come using only information on grades and race. The second advantage is that

this mechanism is a self-adjusting grade markup rule: the bonus it assesses to

minority test scores is proportional to the amount of asymmetry between demo-

graphic groups. In fact, if the competition is symmetric, S̃∗ is also equivalent to a

color-blind mechanism. This concept is formalized in the following Theorem.

Theorem 3.3.1. For a sequence of cost distributions {FM,k, FN ,k}∞
k=1 → (FΘ, FΘ), let S̃∗

k
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be defined by

S̃∗
k ≡ G−1

N ,k [GM,k(s)] ,

where Gi,k, i = M,N are the equilibrium grade distributions. Then it follows that the

induced sequence {S̃∗
k} converges to a color-blind rule, or S̃∗ = s .

Proof: As shown in Hickman (2010b), for each k, achievement under the mecha-

nism defined by S̃∗ is given by the following differential equation:

(γ∗
i,k)

′(θ) = − fi,k(θ)

fP

(
F−1

P (1 − Fi,k(θ))
)
C ′(γ∗

i,k(θ); θ)
, i = M,N , (3.18)

with a boundary condition given by the zero surplus condition. Moreover, achieve-

ment under a color-blind mechanism is characterized by

(γcb
M,k)

′(θ) = (γcb
N ,k)

′(θ)

= (γcb
k )′(θ)

= − µ fM,k(θ) + (1 − µ) fN ,k(θ)

fP

(
F−1

P [1 − µFM,k(θ) − (1 − µ)FN ,k(θ)]
)
C ′[γcb

k (θ); θ]
,

(3.19)

with the same boundary condition. Note that as {FM,k, FN ,k}∞
k=1 → (FΘ, FΘ), the

right-hand sides of equations (3.18) and (3.19) above both converge to

(γ∗
M)′(θ) = (γ∗

N )′(θ)

= (γ∗)′(θ)

= − fΘ(θ)

fP

(
F−1

P [1 − FΘ(θ)]
)
C ′(γ∗(θ); θ)

, i = M,N .

(3.20)
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Figure 3.11: Policy Comparisons
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Given this fact, we have {GM,k, GN ,k}∞
k=1 → (G, G), from which the result follows.

�

Figure 3.11 depicts a comparison of the status quo AA policy function

with S̃∗ (as generated by equilibrium grade distributions) and a color-blind pol-

icy under the 1996 cost distribution estimates. Several interesting observations

arise from the plot. First, S̃∗ overcomes the incentive problem at the lower end

of the achievement distribution by closely resembling a color-blind rule for stu-

dents whose academic output is low. Second, S̃∗ encourages higher test scores for

low and mid-range students (recall Figure 3.9) by awarding them an increasing

marginal grade markup for low and mid-range scores. Third, the marginal grade

markup eventually decreases as achievement increases (roughly around a grade

of 60), corresponding to the notion that lower cost types need less help. Finally,

the lone drawback of a quota rule—recall that it results in the lowest minority

achievement and the widest achievement gap above the 90th percentile (see Table
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3.6 and Figure 3.9)—arises from the fact that it gives too much assistance to high-

performing students; in fact, it awards a larger grade boost than the status quo.

This comes as a result of the information constraints that the policy-maker faces.

Once he announces the policy S̃∗, agents’ behavior partially determines the shape

of the grade transformation, making it impossible to improve incentives for all

students, without observing their private information.

3.4 Conclusion

In this thesis I have provided some useful empirical insights into the costs

and benefits of Affirmative Action in college admissions. I have documented that

significant gaps exist among different races in terms of academic performance

and academic outcomes. I have also demonstrated that a policy-maker’s choice of

what admission rule to implement can have a large impact on both performance

and outcomes. Some policies are difficult to compare, while others emerge as

being superior in terms of a set of general policy objectives. In particular, a quota

rule promotes higher academic performance, and gives rise to a narrower achieve-

ment gap than an admission preference or a color-blind policy. By construction,

it also shuts down the enrollment gap completely.

Future progress along this line of research can be achieved by studying a

dynamic version of the model to explore the implications of college admissions

policies in a setting where the policy-maker attempts to affect the long-run evo-

lution of private-cost distributions. This will help to uncover how/whether AA

helps or hinders the ultimate objective of erasing the residual effects of past insti-
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tutionalized racism. The insights developed here will hopefully serve as a basis

for answering these important questions in the future.
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APPENDIX A
PROOFS APPENDIX

A.1 Proof of Proposition 2.1.8

Proof: Demonstrating existence and monotonicity is a straightforward application

of Athey (2001) who proves existence and monotonicity of a pure-strategy equi-

librium in a general class of auction-related games. The relationship between the

grade distributions and the achievement functions follows immediately from the

fact that achievement is a strictly decreasing function of private cost types. A for-

mal proof of uniqueness is a bit more involved and is under construction. Briefly

though, it follows the same logic as Hickman (2010a), Proposition 3.3 and The-

orem 3.4. Given the well-behaved nature of the private cost distributions, it can

be shown that any symmetric, monotonic equilibrium must also be differentiable.

From differentiability, it follows that the equilibrium achievement functions must

satisfy the first-order conditions of an agent’s objective function. The first-order

conditions define a standard initial value problem, and the fundamental theorem

of differential equations can be invoked to show that a unique solution exists.

Since any symmetric equilibrium of the college admissions game must be con-

sistent with the unique solution of the first-order conditions, it follows that the

symmetric equilibrium is unique. �
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A.2 Proof of Theorem 2.3.1

Proof: For notational ease, I shall drop the “cb” superscripts for the duration

of the proof. Also, recall that finite functions are denoted by the presence of

a parameter K, whereas limiting functions lack the extra argument. I begin by

ordering the sample of K prizes from lowest quality to highest, denoting the kth

order statistic by p(k:K). Since γi(θ; K) is monotonic for i = M,N , the equilibrium

expected payoff function in the K-player game can be written as

Πi(s, θ; K)

=
K

∑
k=1

p(k:K) ∑
ki≤min{k,Ki},

kj=k−ki

[(
Ki − 1

ki − 1

)
Fi

(
γ−1

i [s; K]
)Ki−ki

[
1 − Fi

(
γ−1

i [s; K]
)]ki−1

×
(

Kj

kj

)
Fj

(
γ−1

j [s; K]
)Kj−kj

[
1 − Fj

(
γ−1

j [s; K]
)]kj

]

− C(s; θ).

In order for a player from group i to win the kth prize, it must be the case that ex-

actly k − 1 of his opponents have private costs above his own. For each opponent

in his own group, this occurs with probability 1 − Fi

(
γ−1

i [s; K]
)

, and for each

opponent in the other group, this occurs with probability 1 − Fj

(
γ−1

j [s; K]
)

. The

binomial coefficients and the second summation operator in the expression above

are designed to cover all the possible ways in which exactly k − 1 opponents have

higher costs. Thus, the term within the inner summation is the probability of

winning the kth prize, and the overall objective function is a weighted sum of all

K prizes, giving the expected prize won in equilibrium.
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Recall my claim that the limiting equilibrium payoff function is given by

Π(s, θ) = F−1
P

[
1 −

(
µFM

[
γ−1
M(s)

]
+ (1 − µ)FN

[
γ−1
N (s)

])]
− C(s; θ).

I wish to show that for large K, it is nearly optimal to act as if one were max-

imizing Π(s, θ), rather than Π(s, θ; K). Since costs never change with K, I shall

drop the cost terms and focus solely on convergence of the gross payoff functions

π(s, θ; K) to their limit π(s, θ).

For l ∈ [0, 1], define

p(l; K) ≡
{

p(t:K) : t = argmin
k∈{1,...,K}

∣∣∣∣l −
k

K

∣∣∣∣

}
, 1

Intuitively, {p(l; K)}∞
K=1 can be thought of as a random sequence of the tth order

statistic in the sample of prizes, where for each K, t is chosen so that p(t:K) ap-

proximates the lth sample quantile as closely as possible. Since
∣∣∣l − i

K

∣∣∣ ≤ 1
2K for

all l ∈ (0, 1), in the limit the tth order statistic will be precisely at the lth quan-

tile within the sample of K prizes. Furthermore, since the sample distribution

converges to FP by the law of large numbers, it follows that plim
K→∞

p(l; K) = F−1
P (l).

For some i = M,N , fix θ ∈ [θ, θ] and let

l = 1 − µFM
[

γ−1
M(s)

]
− (1 − µ)FN

[
γ−1
N (s)

]
,

1If there are multiple maximizers (there can be at most two) then choose t to be the
lesser.
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where s = γi(θ). Notice that

plim

N → ∞
p(l; K) = F−1

P

(
1 − µFM

[
γ−1
M(s)

]
− (1 − µ)FN

[
γ−1
N (s)

])
= π(s, θ).

Moreover, For each K I can rewrite the finite expected gross payoff function as

πi(s, θ; K) = p(l; K) ∑
ki≤min{t,Ki},

kj=t−ki

[(
Ki − 1

ki − 1

)
Fi (θ)Ki−ki [1 − Fi (θ)]ki−1

×
(

Kj

kj

)
Fj

(
γ−1

j [s; K]
)Kj−kj

[
1 − Fj

(
γ−1

j [s; K]
)]kj

]

∑
k=1,...,N,

k 6=t

p(k:K) ∑
ki≤min{k,Ki},

kj=k−ki

[(
Ki − 1

ki − 1

)
Fi (θ)Ki−ki [1 − Fi (θ)]ki−1

×
(

Kj

kj

)
Fj

(
γ−1

j [s; K]
)Kj−kj

[
1 − Fj

(
γ−1

j [s; K]
)]kj

]
.

(A.1)

Let

k∗i ≡ argmin
1≤k≤min{t,Ki}

∣∣∣∣(1 − Fi(θ)) − k

Ki

∣∣∣∣ 2

and note that the following can be extracted from the first term in (A.1):

p(l; K)

[(
Ki − 1

k∗i − 1

)
Fi(θ)Ki−k∗i (1 − Fi(θ))k∗i −1

]

×
[(

Kj

t − k∗i

)
Fj

(
γ−1

j [s; K]
)Kj−t−k∗i

[
1 − Fj

(
γ−1

j [s; K]
)]t−k∗i

]
.

The second and third components of the above product represent the probability

2If there are multiple maximizers (there can be at most two) then choose k∗i to be the
lesser.
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that exactly Ki − k∗i group-i players have costs below θ and exactly Kj − t − k∗i

group-j players achieve grades below γi(θ; K). Letting

µi =






(1 − µ) i = N and

µ i = M,

this can be restated as the probability that fraction

Ki − k∗i
Ki

= 1 − k∗i
Ki

K−→ Fi(θ)

of group-i players have costs below θ and fraction

Kj − t + k∗i
K

K−→ µj − l + µi(1 − Fi(θ))

= µj − 1 + (1 − µ)iFi(θ) + µjFj(γ−1
j [s; K]) + µi(1 − Fi(θ))

= µjFj(γ−1
j [s; K])

of all agents come from group j and achieve equilibrium grades below γi(θ; K). In

each of the previous two expressions, the convergence over K term follows from

the law of large numbers. Since the probability associated with this event is one

in the limit, it follows that the pointwise probability limit of (A.1) is π(s, θ), for

i = M,N .

Given that {Π(s, θ; K)}∞
K=1 is a sequence of measurable functions converg-

ing pointwise to Π(s, θ) on a measurable set of finite measure, by Egorov’s The-

orem it follows that for any ρ > 0 there exists a set E ⊂ [θ, θ] having measure
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m(E) < ρ, such that {Π(s, θ; K)}∞
K=1 → Π(s, θ) uniformly on the set [θ, θ] \ E.

This is the same as saying that on the set [θ, θ] \ E, it is nearly optimal to

choose one’s bid as if one’s opponents were adopting a strategy of γ(θ), rather

than γ(θ; K). Thus, given ε > 0, there exists Kε such that for any K ≥ Kε, γ(θ)

generates an ε-equilibrium of the K-player finite game. Furthermore, since all of

the model primitives are well-behaved–θ is strictly bounded away from zero; P

is compact; FM, FN , and FP are absolutely continuous; and for each θ the set of

undominated bids is compact-valued–I can invoke the Theorem of the Maximum

on any compact subset of [θ, θ] \ E to show that the maximizers of Π(s, θ; K) and

Π(s, θ) are close for large K. That is, given δ > 0, there exists Kδ such that for any

K ≥ Kδ, γ(θ) is a δ-approximate equilibrium of the K-player finite game, or

‖γ(θ) − γ(θ; K)‖sup < δ.

Finally, given ε > 0 and δ > 0, then for any K ≥ K∗ ≡ max{Kε, Kδ}, γ(θ) is a δ-

approximate equilibrium which generates an ε-equilibrium of the K-player finite

game on any closed subset of [θ, θ] \ E. �

A.3 Proof of Theorem 2.3.2

Proof: The logic of the proof is very similar to that of Theorem 2.3.1, but it is

simpler because there is only one distribution to work with. Once again, I drop

the “q” superscripts for the remainder of the proof and I begin by ordering the

random sample of K prizes from lowest quality to highest, denoting the kth order
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statistic by p(k:K). Since γ(θ; K) is monotonic, the equilibrium expected payoff

function in the K-player game can be written as

Π(s, θ; K) =
K

∑
k=1

p(k:K)

[(
K − 1

k − 1

)
Fi(θ)K−k(1 − Fi(θ))k−1

]
− C(s; θ).

The first term is a weighted average of the order statistics, where the weights

are the probabilities of winning each prize.3 Recall my claim that the limiting

equilibrium payoff function is given by

Π(s, θ) = F−1
P

(
1 − Fi(γ−1

i (s))
)
− C(s; θ).

I wish to show that for large K, it is nearly optimal to bid as if one were max-

imizing Π(s, θ), rather than Π(s, θ; K). Since the cost of submitting a given bid

never changes, I drop the second term from each payoff function and focus on

convergence of the reward function sequence {π(θ; K)}∞
K=1 to its limit π(θ).

For l ∈ [0, 1], define

p(l; K) ≡
{

p(t:K) : t = argmin
k∈{1,...,K}

∣∣∣∣l −
i

K

∣∣∣∣

}
, 4

3In order for a player to win the kth prize, there must be exactly K − k competitors
with lower costs and k − 1 with higher costs. The probabilities of these two events are
Fi(θ)K−k and (1 − Fi(θ))k−1, respectively. Finally, there are (K−1

k−1) ways in which the in-

tersection of the two events can occur. Thus, the probability of winning the kth prize is
(K−1

k−1)Fi(θ)K−k(1 − Fi(θ))k−1.

4If there are multiple maximizers (there can be at most two) then choose t to be the
lesser.
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and once again, {p(l; K)}∞
K=1 can be thought of as a random sequence of the tth

order statistic in the sample of prizes, where for each K, t is chosen so that p(t:K)

approximates the lth sample quantile as closely as possible. Note that by the same

logic as in the proof of Theorem 2.3.1, we have plim
N→∞

p(l; K) = F−1
P (l). Fix θ ∈ [θ, θ]

and let l = 1 − Fi(θ). Notice that

plim

K → ∞
p(l; K) = F−1

P (1 − Fi(θ)) = π(s, θ).

Moreover, For each K I can rewrite the finite expected gross payoff function as

π(s, θ; K) =p(l; K)

[(
K − 1

t − 1

)
Fi(θ)K−t(1 − Fi(θ))t−1

]

+
t−1

∑
k=1

p(k:K)

[(
K − 1

k − 1

)
Fi(θ)K−k(1 − Fi(θ))k−1

]

+
K

∑
k=t+1

p(k:K)

[(
K − 1

k − 1

)
Fi(θ)K−k(1 − Fi(θ))k−1

]
.

(A.2)

Note that

[(
K − 1

t − 1

)
Fi(θ)K−t(1 − Fi(θ))t−1

]
= Pr[K − t competitors have costs less than θ]

= Pr[fraction
K − t

K
have lower costs]

= Pr[fraction

(
1 − t

K

)
have lower costs]

K−→ Pr[fraction (1 − l) have lower costs]

= Pr[fraction Fi(θ) have lower costs]

=1,
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where the convergence over K follows from the law of large numbers. Since

probabilities must sum to one, equation (A.2) reveals that π(θ; K) increasingly

resembles p(l; K) as K gets large. Furthermore, since plim
N→∞

p(l; K) = F−1
P (l), it

follows that the pointwise probability limit of π(θ; K) is π(θ).

With pointwise convergence out of the way, the remainder of the proof is

identical to the second half of the proof of Theorem 2.3.1. �

A.4 Alt. Proof of Equilibrium Approximation

As mentioned in the body of the paper, the various results on equilibrium

approximation can be strengthened to demonstrate that the derivations accurately

reflect equilibrium actions and outcomes on the entire support of private costs.

The cost of the stronger result is application of a more complicated proof which

invokes results that may be less familiar to economic theorists. The logic is very

similar under all three cases of color-blind admissions, quotas and admission

preferences, so here I merely state and prove the alternative claim in the case of a

quota rule, where the notation is simplest.

Theorem A.4.1. Given ε, δ > 0, there exists K∗ ∈ N, such that in the college admission

game with a quota rule, we have the following:

(i) γ
q
i (θ), i = M,N as defined by equation (2.5) and boundary condition (2.3) gen-

erates an ε-equilibrium of the K-player quota game, and

(ii) γ
q
i (θ) is a δ-approximate equilibrium for the K-player quota game, or

‖γ
q
i (θ) − γ

q
i (θ; K)‖sup < δ, i = M,N .
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Proof: The first part of the proof involves showing that the finite objective func-

tions converge pointwise in probability to the proposed limiting objective. The

argument is identical to the one in the first half of the proof of Theorem 2.3.2

Using pointwise convergence, I can then invoke (Newey, 1991, Theorem

2.1) uniform convergence theorem to show that Π̃(θ; K) converges uniformly in

probability to Π(θ) on the entire interval [θ, θ]. In order to do so, I must first

verify a regularity condition and stochastic equicontinuity of the sequence Π̃(θ; K).

For this part of the argument, it will be easier to think in terms of l, rather than θ.

The regularity condition is that l(θ) = 1 − Fi(θ) must live on a compact interval.

Since θ lives on a compact interval and since Fi is continuous and monotonic, l(θ)

attains values of 0 and 1 for finite values of θ.

At this point, all that remains is to verify equicontinuity of the sequence

of functions Π̃(θ; K). For deterministic functions, it is known that pointwise con-

vergence on a compact interval to a continuous limit implies uniform conver-

gence if the sequence is equicontinuous. There is also an analogous condition

for sequences of random functions, known as stochastic equicontinuity. In the

context of my model, it basically means that for any point θ, Π̃(θ; K) must be

continuous at θ at least with probability close to one for large K.5 More precisely,

{Π̃(θ; K)}∞
K=1 is stochastically equicontinuous if for any ǫ, ǫ′ > 0 there exists τ > 0

5For a more detailed discussion on stochastic equicontinuity, see (Andrews, 1994, Sec-
tion 2.1).
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such that

lim sup
K→∞

Pr

[
sup

l∈[0,1], l ′∈Bτ(l)

∣∣Π̃(l; K) − Π̃(l′; K)
∣∣ > ǫ′

]

= lim sup
K→∞

Pr

[
sup

l∈[0,1], l ′∈Bτ(l)

∣∣∣∣∣
K

∑
i=1

p(k:K)

[(
K − 1

i − 1

)
(1 − l)K−i(l)i−1

]

−
K

∑
i=1

p(k:K)

[(
K − 1

i − 1

)
(1 − l′)K−i(l′)i−1

] ∣∣∣∣∣ > ǫ′
]

< ǫ,

where Bτ(l) is an open ball centered at l with radius τ.

By similar arguments as above, it is apparent that

K

∑
i=1

p(k:K)

[(
K − 1

i − 1

)
(1 − l)K−i(l)i−1

]
→ F−1

P (l) and

K

∑
i=1

p(k:K)

[(
K − 1

i − 1

)
(1 − l′)K−i(l′)i−1

]
→ F−1

P (l′).

Therefore, I can satisfy stochastic equicontinuity by choosing τ∗ so that for all

l ∈ [0, 1] and l′ ∈ Bτ∗(l), the following is true:

∣∣∣F−1
P (l) − F−1

P (l′)
∣∣∣ < ǫ′.

Since FP is continuous and P is compact, such a τ∗ indeed exists. Thus, by

Newey’s uniform convergence theorem, it follows that for all ǫ > 0, I have

lim
K→∞

Pr
[
‖Π̃(θ; K) − Π(θ)‖sup > ǫ

]
= 0.

In other words, When K is large, the equilibrium grade distribution under a
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monotonic equilibrium is such that it is nearly optimal to maximize as if one’s

(equilibrium) objective function were Π(θ, s) = F−1
P (1 − Fi(θ)) − C(s; θ).

This is the same as saying that it is nearly optimal to choose one’s grade

as if one’s opponents were adopting a strategy of γ(θ), rather than γ(θ; K). Thus,

given ε > 0, there exists Kε such that for any K ≥ Kε, γ(θ) generates an ε-

equilibrium of the K-player finite game. Furthermore, since all of the model

primitives are well-behaved–θ is strictly bounded away from zero and lives in

a compact set, P is compact, Fi and FP are absolutely continuous and for each θ

the set of undominated grades is compact-valued–the Theorem of the Maximum

implies that the maximizers of Π̃(s, θ; K) and Π(s, θ) are close for large K. That

is, given δ > 0, there exists Kδ such that for any K ≥ Kδ, γ(θ) is a δ-approximate

equilibrium of the K-player finite game, or

‖γ(θ) − γ(θ; K)‖sup < δ.

Finally, given ε > 0 and δ > 0, then for any K ≥ K∗ ≡ max{Kε, Kδ}, γ(θ) is a δ-

approximate equilibrium which generates an ε-equilibrium of the K-player finite

game. �
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APPENDIX B
DATA APPENDIX

B.1 USNWR Data and Methodology

Table B.1 contains descriptions and descriptive statistics of the quality mea-

sures used to compute the USNWR quality index. Column 1 contains variable

descriptions and column 2 displays the weights placed on each category (within-

category weights are uniform). Columns 3-5 display descriptive statistics. Col-

umn 5 displays total sample size for each variable. In cases where USNWR lacks

a certain datum for some school, it replaces the datum with the lowest value ob-

served for schools within the same region and Carnegie classification. Columns

3 and 4 display means and sample standard deviations for the schools where

the variable value is observed. One final note is also worth mentioning: in com-

puting the quality index, USNWR maps average SAT and ACT scores into the

corresponding cumulative distribution values within the SAT and ACT score dis-

tributions. This allows for comparisons of scores on different tests. The mean and

standard deviation for average test scores in the table reflect this transformation.

B.2 Zero Achievement Cutoff

Recall that the working interpretation of a student with zero academic

achievement is one who simply engages in random responding to test questions.

In order to uncover the distributions over random outcomes, I simulated 100,000

random responses to a published practice test for the ACT—another standardized
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Table B.1: USNWR Quality Indicators:

Variable Description Weight Mean StDev. Obs.

Total Sample 1,314

SELECTIVITY 15%

Acceptance Rate .7597 .1553 1,226

Yield (% accepted .4428 .1518 1,226
students who enroll)

Avg. SAT/ACT Scores .5515 .2101 1,152
of Enrolled Students

% First-Time Freshmen .5227 .2038 1,008
in Top HS Quartile

FACULTY RESOURCES 20%

% Full-Time Instructional .7622 .1665 1,221
Faculty w/Terminal Degree

% Full-Time .6505 .1891 1,231
Instructional Faculty

Avg. Faculty Compensation $52,409.23 $12,982.11 1,291

Student/Faculty Ratio 14.99 4.2 1,245

FINANCIAL RESOURCES 10%

Education Spending/Student $9,494.56 $5,283.01 1,193

Non-Education Spending/Student $5,951.12 $8,321 1,292

RETENTION 25%

Avg. Graduation Rate .5353 .6581 1,154

Freshman Retention Rate .7396 .1146 1,224

ALUMNI SATISFACTION 5%

Alumni Giving Rate .2105 .1237 1,165

ACADEMIC REPUTATION 25%

College Administrator N/A N/A N/A
Ranking Poll
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Figure B.1: Defining Zero Effort
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MEAN SCORE: 12.224

test widely used in US college admissions. The results are plotted in Figure B.1.

The upper pane is the unconditional distribution of simulated random responses.

The mean of the distribution is 12.1224, with a standard deviation of .9224.

The question of whether 12 or 13 is the appropriate zero-achievement cutoff

is addressed in the lower two panes. On the left is a comparison of the simulated

distribution and the distribution from the data, conditional on a score of 12 or less;

the right pane is the same for a cutoff of 13. On the right side the two distributions

are close, with a single crossing at a score of 11; the data distribution stochastically

dominates on the left, and the distributions are not as close. Using these insights,

I interpret an ACT score of 12 as corresponding to zero academic achievement, or

in other words, S = 0 ⇔ ACT score = 12.

I use score concordance tables to determine the equivalent zero achieve-

ment cutoff on the SAT test. Score concordances are jointly computed by the

designers of the ACT and SAT using data on students who took both tests. The
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result is an interval of SAT scores being mapped into each outcome-comparable

ACT score (since SAT scores occur on a finer grid). These indicate typical out-

comes one can expect on the SAT for a student with a given score on the ACT,

and vice versa. The SAT-equivalent range for an ACT score of 12 is 520-580

The alert reader may wonder why the random responding exercise was

not performed using an SAT practice test instead. As it turns out, the mean

score from random responding on the SAT is 450, significantly lower than the

520-580 range predicted by the concordance study. Moreover, conditional score

distributions for the SAT do not render a similar fit as in the lower left pane of

Figure B.1: random responding and actual data distributions conditional on low

scores differ significantly in shape. However, this is not surprising considering

that the SAT is designed to test one’s academic aptitude (i.e., ability for abstract

reasoning), whereas the ACT is designed to test one’s achievement (i.e., acqui-

sition of knowledge). Although study effort undoubtedly plays a major role in

determining scores on both tests, the distinction between achievement versus ap-

titude becomes more pronounced near the lower extreme. As the concordance

study suggests, individuals who choose to acquire low levels of knowledge—i.e.,

individuals with scores statistically indistinguishable from random responding

on the ACT—typically have aptitudes that allow them to beat random respond-

ing on the SAT. For more information on the distinction between the ACT and

SAT tests, see http://www.act.org/aap/concordance/understand.html.
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Figure B.2: Boostrapped Confidence Bands
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B.3 Bootstrapped Standard Errors

For this exercise, I resampled the data 520 times and computed α̂, F̂M, and

F̂N each time. Figure B.2 displays 95% confidence bands for the distribution and

density estimates. Figure B.3 displays a histogram of cost curvature estimates.

The bootstrapped mean and standard deviation of α̂ are µα̂ = 0.054675 and σα̂ =

0.001112, respectively. A N(µα̂, σα̂) density (scaled by histogram bin width) has

been superimposed on the histogram for comparison.



137

Figure B.3: Histogram of Bootstrapped α̂ Estimates

0.051 0.052 0.053 0.054 0.055 0.056 0.057 0.058
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Histogram of Standardized α Estimates
Scaled Normal Density



138

REFERENCES

Donald W. K. Andrews. Asymptotics for semiparametric econometric models via
stochastic equicontinuity. Econometrica, 62(1):43–72, 1994.

Susan Athey. Single crossing properties and the existence of pure strategy equi-
libria in games of incomplete information. Econometrica, 69(4):861–869, 2001.

William G. Bowen and Derek Bok. The Shape of the River: Long-Term Consequences
of Considering Race in College and University Admissions. Princeton, NJ: Princeton
University Press, 1998.

Sandra Campo, Immanuel Guerre, Isabelle Perrigne, and Quang Vuong. Semi-
parametric estimation of first-price auctions with risk averse bidders. Typescript,
The Pennsylvania State University Department of Economics, 2009.

Jimmy Chan and Erik Eyster. Does banning affirmative action lower college stu-
dent quality? The American Economic Review, 93(3):858–872, 2003.

Xiaohong Chen. Large sample sieve estimation of semi-nonparametric models.
Typescript, New York University Department of Economics, 2005.

Chang Y. Chung and Thomas J. Espenshade. The opportunity cost of admission
preferences at elite universities. Social Science Quarterly, 86(2):293–305, 2005.

Chang Y. Chung, Thomas J. Espenshade, and Joan L. Walling. Admission pref-
erences for minority students, athletes, and legacies at elite universities. Social
Science Quarterly, 85(5):1422–1446, 2004.

Stephen Coate and Glenn C. Loury. Anti-discrimination enforcement and the
problem of patronization. The American Economic Review, 83(2):92–98, 1993.

James R. Fain. Affirmative action can increase effort. Journal of Labor Research,
30(2):168–175, 2009.

Jorg Franke. Does affirmative action reduce effort incentives? a contest game
analysis. Typescript, Technische Universitat Dortmund, Department of Economics
and Social Science, 2008.

Roland G. Fryer, Jr. and Steven D. Levitt. Understanding the black-white test score
gap in the first two years of school. The Review of Economics and Statistics, 86(2):
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