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Figure 15: Negative elongation factors, Myc, and ATP analogs do not cause release of 
P-TEFb 

A) The same methods as in Figure 13 were used for these reactions.  10 ng, 30 ng, 

100 ng, 300 ng, 900 ng, or 1800 ng of DSIF was titrated in to the reactions.  B)  30 ng, 

100 ng, 300 ng, or 900 ng of Gdown1 was added in to the release reactions.  C) 10 ng, 30 

ng, 100 ng, or 300 ng of Myc was titrated in to the release reactions.  D) The release 

reactions were titrated with 12.5 µM, 25 µM, 50 µM, or 100 µM of DRB or 125 nM, 250 

nM, 500 nM or 1 mM of flavopiridol. 
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Figure 16: Schematic of mutants and expression in E. coli 

A) A schematic of the mutants used. TatR52/53A has a mutation in its RNA 

binding domain that prevents it from binding to RNA.  TatC22G22G has a mutation in its 

zinc binding domain that prevents it from binding P-TEFb.  ZBD - zinc binding domain 

(P-TEFb binding domain), RBD – RNA binding domain.  B) TatR52/53A52/53A 

expression in E. coli showing FPLC fractions. C) Same as B for Tat.  FPLC and 

silverstain by Jeff Cooper, cloning, expression, and purification by Brian Krueger. 
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Figure 17: HIV Tat and an RNA binding deficient Tat release P-TEFb directly from the 
7SK snRNP 

A) Reactions were performed using the same methods as in Figure 13.  10 ng, 30 

ng, 300 ng of Tat was titrated in to the reaction or 100 ng of Tat and the reaction was 

incubated for 3, 10, or 30 minutes at room temperature.  B) Same as in A except 

TatR52/53A, the RNA binding deficient mutant of Tat was used.  C) Same as in A except 

the P-TEFb binding deficient mutant of Tat was used. 
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Figure 18: Summary and quantification of Tat release data 

Tat release was quantified from three independent experiments for wild type Tat 

(Tat) and the RNA binding mutant (Tat R52/53A).  Two independent experiments were 

done to calculate the mean for the P-TEFb binding mutant of Tat (Tat C22G).  All error 

bars represent standard error.  The y-axis is a measure of percent of Cdk9 left in the 

complex. Wild-type Tat – Blue, TatR52/53A RNA binding mutant Tat – Red, TatC22G 

P-TEFb binding mutant - Green 
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Figure 19: The RNA binding domain of Tat is not required for P-TEFb release 

A) For these experiments, a TAR or 7SK RNA competition was set up.  As a 

control to set the basal level of Tat release, Tat was added to one reaction without an 

RNA competitor.  100 ng of Tat was pre-incubated for 15 minutes with 2 ng, 6 ng, or 18 

ng of TAR or 10 ng, 30 ng, or 100 ng of 7SK.  The 7SK snRNP was then added back and 

CDK9 release was determined.  B) Same as in A except TatR52/53A, the RNA binding 

mutant of Tat, was used. 
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Figure 20: Brd4 can extract P-TEFb directly from the 7SK snRNP 

A) A schematic of the mutants used.  Brd4 1209-1362 contains only the helical 

regions required for P-TEFb binding, Brd4 1209-1362 ∆1329-1345 is missing helical 

region 3 which is required for P-TEFb binding. BD1 – Bromodomain 1, BD2 – 

Bromodomain 2, ET – Extraterminal domain, H1 – Helical domain 1, H2 - Helical 

domain 2, H3- Helical domain 3.  B) E. coli expression of recombinant protein showing 

the purity of the flowthrough fractions used. A contaminating band can be seen in the 

Brd4 mutant and this is most likely an E. coli protein and not full length Brd4.  M – 

Marker, 1 - Brd4 1209-1362, 2 - Brd4 1209-1362 ∆1329-1345.  FPLC purification and 

Silver stain by Jeff Cooper. C) Brd4 was titrated in to the release reaction at 30, 100, 300 

or 900ng for 15 minutes or the reactions contained 200ng of Brd4 for 3, 10, or 30 

minutes.  D) Same as in C except the Brd4 mutant missing helical domain 3 was used for 

the reactions. 
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Figure 21: Summary and quantification of the Brd4 release data 

Brd4 release was quantified from three independent experiments.  Two 

independent experiments were done to calculate the mean for the Brd4 helical domain 3 

mutant (Brd4M).  All error bars represent standard error.  The y-axis is a measure of 

percent of Cdk9 left in the complex.  Brd4 – Purple, Brd4M - Blue 
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Figure 22: Schematic of TAR and 7SK RNA secondary structure 

HIV-1 TAR RNA stem loop, 35-61 of TAR RNA covering the Tat binding bulge 

(AUCUG) and the CyclinT1 binding loop (CUGGG).  mFold predicted, Predicted 

structure of the 1-100 region of 7SK. Wassarman, Structure of the 1-100 region of 7SK 

RNA described by Wassarman and Steitz (Wassarman and Steitz, 1991).  The Uracil 

residues in 7SK RNA are marked, orange dashed circles highlight AUCUG regions and 

blue dashed circles highlight CUGGG or CUGCG regions of RNA. 
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Figure 23: CMCT modification and primer extension 

A) CMCT covalently modifies N-3 of uracil.  B) Radioactively labeled primers 

are hybridized with CMCT modified RNA for primer extension by reverse transcriptase.  

CMCT modification (denoted by asterisks) prevents further extension of the primer by 

reverse transcriptase.  The extension ladder is then visualized on 12% acrylanide gels. 
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Figure 24: Release of P-TEFb by flavopiridol causes a conformational change in 7SK 

Primer extension over the 1-70 region (70-90 primer) and the 1-100 region (100-

120 primer) are shown along with a sequencing ladder showing the position of uracil in 

the RNA.  The mFold and Wassarman (Wassarman and Steitz, 1991) structures are 

included for a comparison of sensitivities. Green asterisk marks U28 and U30 on both 

structures and the extension scans, the red asterisk marks U66 and U68. 
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Figure 25: Tat release of P-TEFb from the 7SK snRNP causes a conformational change 
in 7SK and results in HEXIM release from the complex 

A) Western analysis of Tat release from the 7SK snRNP after co-incubation of 

Tat and immunoprecipitation media.  LARP7 and CDK9 were analyzed by western. I – 

Input, C – Control, T – Tat treated, Bound – Bound to the beads, FT – Flow through from 

the beads.  B) Primer extension analysis of the 1-70 (70-90 primer) and the 1-100 (100-

120 primer) regions of 7SK RNA structure.  Asterisks are the same as in Figure 21 to 

refer back to the structures.  C)  Graphical summary of the 7SK structural change data.  

Bases with single stranded character are boxed in black.  Bases bound in double stranded 

character are unboxed.  Uracils of interest are highlighted with structural change 

information. Asterisk – change in character, minus – No change in character.  D) Re-

analysis of the Tat release analysis performed in Figure 13A to determine HEXIM1 

release. 
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Figure 26: Model of P-TEFb release from the 7SK snRNP 

A model of factors and modifications that may be important for P-TEFb release 

from the 7SK snRNP.  These include decay of 7SK snRNA or changes to its structure, 

competition or extraction of P-TEFb by specific factors such as HIV Tat and Brd4, Post-

translational modifications to P-TEFb or HEXIM.  P-TEFb can be acetylated on lysine 

404 by P300, but this does not lead to release directly in the in vitro assay (Cho et al., 

2009).  P-TEFb can undergo dephosphorylation of its T-Loop at Threonine 186 by PP1α 

(Chen et al., 2008).  Phosphorylation of HEXIM has been shown to occur by Akt in the 

P-TEFb binding domain of HEXIM at Threonine 270 and at Serine 278.  The RNA 

binding region of HEXIM can also be phosphorylated in vitro by PKC preventing the 

binding to 7SK RNA and preventing the inhibition of P-TEFb (unpublished data). 
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Figure 27: Model of P-TEFb release by Brd4 and Tat 

A)  Histones are aceylated and transcription factors are recruited to the promoter 

to initiate the polymerase.  Phosphorylation of the CTD by TFIIH results in the opening 

of the transcription bubble and the first 30-50 bases of the transcript are transcribed until 

the polymerase comes under the negative regulation of DSIF and NELF.  Brd4 is 

recruited to acetylated lysines and waits until the 7SK snRNP comes close to the initiated 

promoter.  B) The C-terminus of Brd4 binds to and extracts P-TEFb from the 7SK snRNP 

and tethers it to the promoter region to phosphorylate the CTD of RNAPII on Ser2 and 

also phosphorylate DSIF and NELF.  C)  In the case of HIV Tat, Tat binds to P-TEFb and 

extracts it from HEXIM.  D)  Tat recruits P-TEFb to the HIV LTR by binding to the TAR 

element.  This results in CTD, DSIF, and NELF phosphorylation.  E) These 

phosphorylation events lead to productive transcription elongation.  Since P-TEFb has 

left the 7SK snRNP, a structural change in the RNA forces HEXIM out of the complex 

and the snRNP is then bound and protected by the hnRNP proteins. 
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CHAPTER 5 

SUMMARY AND FUTURE DIRECTIONS 

Proper expression of the genetic information is critical for normal cell function 

and survival.  This is highlighted exquisitely in cancer where the checks and balances that 

are normally in place to ensure proper gene expression are lost and lead to unregulated 

growth and proliferation.  Tight control of gene expression is also required during 

development where specific genetic programs are activated to produce specialized cells 

and tissues.  The role of transcription regulation of gene expression has been studied for 

nearly half of a century; however, the majority of these studies have focused on 

transcription initiation because it was believed that the regulation of polymerase loading 

was the limiting step in gene expression.  The discovery that polymerase complexes poise 

or pause after initiation has been studied for 20 years, but many in the transcription field 

believed that this pausing was a special case at specific genes or an artifact of in vitro 

transcription assays.  Recently, it was shown that 80% of actively transcribe genes have 

paused polymerases just downstream of their promoters (Guenther et al., 2007; Muse et 

al., 2007; Zeitlinger et al., 2007).  Regulation of transcription elongation has since been 

accepted as an important control point for gene expression.  The protein responsible for 

releasing the polymerase from this paused state is P-TEFb. 

Poised polymerases are thought to exist to provide the cell with the ability to 

rapidly respond to stress or environmental changes that require differential gene 

expression.  P-TEFb is a potent activator of transcription and its activity in the cell is 

regulated by its sequestration in the 7SK snRNP.  How P-TEFb release from this 

complex is regulated has been the topic of intense research, but few questions have been 

answered.  The focus of the research presented in this thesis was to determine how P-

TEFb releases from the 7SK snRNP.  In Chapter 2, the discovery and function of the 7SK 

stability protein, LARP7, was discussed.  In Chapter 3, the conservation of the 7SK 
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snRNP and its function in Drosophila melanogaster was characterized.  Finally, Chapter 

4 explored how both viral and cellular factors exploit P-TEFb to promote gene 

expression. 

LARP7 Stabilizes 7SK snRNA in Human Cells 

In human cells P-TEFb is inhibited by the 7SK snRNP.  LARP7 was found to be 

an important stability factor that binds to and protects the RNA component of the RNP 

from degradation.  This is highlighted by the fact that loss of LARP7 through RNAi 

knock down resulted in a significant reduction in the total amount of 7SK RNA in the 

cell.  Loss of LARP7 also caused a small but significant increase in the amount of free P-

TEFb ultimately resulting in the activation of a compensatory mechanism to reduce the 

total amount of P-TEFb in the cell.  Glycerol gradient sedimentation analysis and co-

immunoprecipitations showed that LARP7 is bound to 7SK in the snRNP regardless of 

the presence of P-TEFb or HEXIM.   

In the future, it would be interesting to determine how modifications to LARP7 or 

7SK affect the association of LARP7 with the complex.  Although LARP7 associates 

with a mature RNP, its association with the RNP may be regulated.  The association of 

La protein with RNAPIII transcripts is regulated by post-translational modifications or 

post-transcriptional modifications to its target RNAs.  It would not be surprising if the 

association of LARP7 with 7SK was similarly regulated.  This could be done by 

determining the 5′ and 3′ characteristics of 7SK RNA that are required for LARP7 

association.  The post-translational modification state of LARP7 before and after P-TEFb 

release could also be examined to determine if specific residues are modified to promote 

P-TEFb binding or release from the complex.  This could easily be done by isolating the 

7SK snRNP and submitting preparations for mass spectrometry analysis of LARP7. 
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Conservation and Regulation of P-TEFb by the 7SK snRNP 

in Drosophila 

The existence and function of P-TEFb through Drosophila was known, but it was 

not known whether P-TEFb was regulated similarly in Drosophila or relied on a more 

primitive control mechanism.  A bioinformatic screen showed that Drosophila appeared 

to possess homologues of HEXIM and LARP7.  The function of these proteins was then 

determined by glycerol gradient analysis and co-immunprecipitations which showed that 

dHEXIM, dLARP7, and the CyclinT component of P-TEFb co-sediment with one 

another in an Rnase sensitive complex and that all co-immunoprecipitate with one 

another.  The discovery of the RNA component of the complex was confirmed and it was 

shown that all three proteins are capable of associating with the RNA in vivo.  

Additionally, work by a previous graduate student on this project showed that dHEXIM, 

dLARP7, and CyclinT mimic their human counterparts with respect to their response 

after transcription inhibition: dLAPR7 stays associated with the d7SK snRNP while 

dHEXIM and CyclinT leave the complex.  Characterization of this complex was an 

important first step before Drosophila could be used as a model to study P-TEFb 

regulation during development. 

The necessity of P-TEFb and the 7SK snRNP during development is currently 

being studied by our collaborators in the Matera Lab at UNC.  It is assumed that P-TEFb 

is an important factor in regulating embryonic development because it relieves stalled 

polymerases and promotes the majority of RNAPII transcription elongation,.  Its 

requirement in terminal differentiation of muscle tissue and heart development has been 

studied in mice, but its role in embryonic development has not been characterized.  The 

preliminary data from flies indicate that P-TEFb and the 7SK snRNP are present, 

although differentially expressed during embryonic, larval, and adult development.  

Studies characterizing the effect of complete loss of this complex will shed light on the 

importance of P-TEFb during proper embryonic development. 
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Regulated Release of P-TEFb from the 7SK snRNP for 

Viral and Cellular Gain 

P-TEFb regulation of stalled polymerases has been studied in detail; however, the 

mechanisms regulating its release from the 7SK snRNP have remained elusive.  It has 

been known since 1997 that P-TEFb is the cellular kinase required for HIV Tat 

transactivation.  It was later discovered that Tat accomplishes this by binding directly to 

P-TEFb and recruiting it to the HIV LTR.  How Tat extracts P-TEFb from the 7SK 

snRNP was not known.  The data presented here show that Tat is able to extract P-TEFb 

directly from the 7SK snRNP.  The role of the zinc binding and RNA binding domains of 

Tat were further characterized and it was shown that Tat extraction of P-TEFb is 

dependent on the zinc binding region and not the RNA binding region.  Like many viral 

proteins, the cell has at least one protein that can mimic the actions of Tat.  The 

bromodomain protein Brd4 contains a P-TEFb binding domain that can also bind to P-

TEFb and extract it directly from the 7SK snRNP.  Although post-translational 

modifications of P-TEFb and HEXIM were thought to be important for the release of P-

TEFb from the 7SK snRNP, none of these modifications were able to do so directly.  

Finally, the release of P-TEFb is followed by the concomitant release of HEXIM1 due to 

a conformational change of 7SK snRNA that prevents HEXIM1 binding to ensure that 

released P-TEFb arrives at its target to activate transcription. 

The future directions for this research are numerous.  The role of the RNA 

binding domain of Tat is still not clear.  It is known to bind to TAR RNA, but has greater 

affinity for 7SK snRNA.  The physiological relevance of this in the pathogenesis of HIV 

infection needs to be explored further.  Does the affinity of Tat for 7SK change after Tat 

binds to P-TEFb?  Do the Tat binding sites in 7SK serve any function, or is Tat binding 

to 7SK a non-functional evolutionary artifact?  The presence of 3 Tat binding sequences 

in the first 100 bases of 7SK is not likely to be a coincidence and the conservation of 
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these AUCUG repeats through Drosophila only further underscores their likely 

importance in 7SK snRNP regulation of P-TEFb. 

Although an endogenous protein capable of releasing P-TEFb from the 7SK 

snRNP was discovered, its role in this process was not conclusively confirmed in vivo.  

Knockdown of Brd4 followed by P-TEFb release signal such as flavopiridol treatment 

must be conducted to determine if the loss of Brd4 prevents the rapid global release of P-

TEFb from the 7SK snRNP.  Though a mechanism for release has been discovered, more 

questions are raised about how P-TEFb is recruited back to the 7SK snRNP after the need 

for upregulation of transcription subsides.  The mechanisms regulating P-TEFb release 

from Brd4 and chromatin should be explored. 

The conformational change in 7SK RNA that results in the release of HEXIM1 

from the 7SK snRNP is very interesting.  The role that the hnRNPs or the RNA helicase 

play in facilitating the maintenance or reversal of this change needs to be followed up on.  

Additionally, how post-translational modifications of P-TEFb and HEXIM actually 

regulate transcription should be determined.  Are these modifications required for the 

recruitment of P-TEFb to transcriptionally active sites, or are they only a result of P-

TEFb being in close proximity to non-specific enzymes.   
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