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testing and incorporate the genome scan results.  Results:  
Significant (multipoint HLOD  6 3.2) or genome-wide-signif-
icant (HLOD  6 4.02) linkage results were found for regions 
1q32, 2p13, 3q27-28, 9q21, 12p11, 14q21-24 and 16q24. SNPs 
in  IRF6  (1q32) and in or near  FOXE1  (9q21) reached formal ge-
nome-wide wFDR-adjusted significance. Further, results 
were phenotype dependent in that the  IRF6  region results 
were most significant for families in which affected individu-
als have CL alone, and the  FOXE1  region results were most 
significant in families in which some or all of the affected in-
dividuals have CL with CP.  Conclusions:  These results high-
light the importance of careful phenotypic delineation in 
large samples of families for genetic analyses of complex, 
heterogeneous traits such as CL/P. 

 Copyright © 2009 S. Karger AG, Basel 
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 Abstract 

  Objectives:  Non-syndromic orofacial clefts, i.e. cleft lip (CL) 
and cleft palate (CP), are among the most common birth de-
fects. The goal of this study was to identify genomic regions 
and genes for CL with or without CP (CL/P).  Methods:  We 
performed linkage analyses of a 10 cM genome scan in 820 
multiplex CL/P families (6,565 individuals). Significant link-
age results were followed by association analyses of 1,476 
SNPs in candidate genes and regions, utilizing a weighted 
false discovery rate (wFDR) approach to control for multiple 
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 Introduction 

 Orofacial clefts (OFC) are a major public health prob-
lem, affecting one in every 500–1000 births worldwide. It 
has become increasingly apparent that the genetic contri-
bution to OFC is complex, probably heterogeneous, and 
likely due to interacting effects of multiple loci coupled to 
environmental covariates. Over 400 syndromes have 
been described in which a cleft of the lip and/or palate is 
a feature  [1] . Among these syndromes are numerous ge-
netic examples such as cytogenetic abnormalities (e.g., 
trisomies 13 and 18, 4p–), and single gene Mendelian dis-
orders (e.g. van der Woude syndrome, Stickler syndrome). 
Non-syndromic (sometimes termed ‘isolated’) cleft lip 
with or without cleft palate (NS CL/P) is the most preva-
lent type of OFC, and is the focus of the current study.

  Familial aggregation of NS CL/P has been reported in 
the scientific literature for 250 years  [2–7] . Since then, 
segregation analyses of CL/P have supported models that 
include genes of major effect  [8–10] , and analyses of re-
currence risk patterns have been consistent with esti-
mates ranging from 3 to 14 genes (possibly interacting) 
for CL/P  [11–15] .

  Mutation screens of more than 20 NS CL/P candidate 
genes find that 2–6% of the total number of individuals 
with NS CL/P have mutations in genes such as  MSX1, 
FOXE1, GLI2, JAG2, LHX8, SATB2, RYK1  and others  [16–
18] . That is, the large majority of individuals with NS CL/
P (94–98%) do not have mutations in any of a wide range 
of plausible candidate genes. In parallel, many candidate 
gene association studies have also been carried out seek-
ing specific polymorphic variants that increase the risk 
of NS CL/P  [1, 19–22] .

  Most notably, the gene identified in van der Woude 
syndrome ( IRF6   [23] ) has been shown by our group  [24]  
and confirmed in multiple other populations (Italy  [25] ; 
Belgium  [26] ; US  [27] ; Thailand  [28] ; US/Taiwan/Singa-
pore/Korea  [29] ; South America  [30] ; Norway  [31] ) to 
show highly significant association with NS CL/P and 
may explain about 12–18% of NS CL/P  [24] . Recently we 
have identified a specific SNP (rs642961) in  IRF6  that dis-
rupts the binding site for the transcription factor AP-2 � , 
and that represents the etiologic locus within  IRF6 , at 
least in some populations  [32] .

  In addition to analyses of candidate genes/loci, several 
genome-wide linkage screens of NS CL/P have been pub-
lished  [33–38] . About 8–10 regions have positive, although 
not highly significant, results in the individual studies. 
We performed a genome scan meta-analysis of these 5 
published genome scans plus data from our additional 

studies in six countries and found several regions with 
genome-wide significant results  [38] , notably a novel re-
gion on 9q21. The purpose of this study is to describe a 
larger genome-wide scan for NS CL/P with twice as many 
families and individuals as were reported previously  [38] , 
to summarize the results of our follow-up fine mapping 
and candidate gene efforts, and to perform phenotypic-
specific analyses. Thus the aim was to identify those ge-
netic regions that appear to contribute to OFC overall, 
and also those regions that appear to have an effect on 
specific OFC phenotypes.

  Subjects and Methods 

 Study Populations 
 This study was conducted in two phases: (1) linkage genome-

scan, and (2) fine mapping and candidate gene studies. For the 
genome-scan, there were 820 families ascertained in six countries 
(Philippines, Colombia, China, India, Turkey, USA), with 6,565 
total individuals (summarized in  table 1 ). Of the total family 
members, 4,373 were genotyped (1,514 affected and 2,859 unaf-
fected). For fine-mapping and candidate gene studies, there were 
861 families, with 7,047 total individuals (summarized in  table 2 ), 
representing a subset of the 820 genome-scan families plus addi-
tional families that were ascertained after the genome-scan was 
completed. Most of the families were extended multiplex kin-
dreds, i.e. multigenerational families with  6 2 affected individu-
als. The largest family had 51 individuals; there were 5 pedigrees 
with 40–50 individuals, 10 with 30–40; 46 with 20–30, many with 
10–20 individuals. Each study had approval by the appropriate 
institutional review boards, and all study subjects provided in-
formed consent to participate. Note that the original 388 genome-
scan families  [38]  were also included in the current study (denot-
ed ‘CIDR-7 families’ in the previous report  [38] ).

  The phenotype was NS CL/P, i.e. for families to be included, it 
was necessary that the proband have NS CL/P (i.e. no other anom-
alies), and that no other family member have an indication of an 
OFC syndrome (e.g. lip pits). Each study included evaluations of 
family members by clinical geneticists to rule out syndromic 
forms of CL/P.

  For some analyses, the total families were divided into the fol-
lowing non-overlapping subsets based on family members report-
ed to be affected (whether or not all affected family members par-
ticipated in these studies): CL, those families in which all affected 
family members had CL only; CLP (all affected family members 
had CL plus CP); CL+CLP (at least one affected family member had 
CL only and at least one had CL plus CP). The numbers of families 
and individuals in each of these subsets are summarized in  table 1  
(genome-scan dataset) and  table 2  (fine-mapping dataset). There 
was one additional subset that had very few families and was there-
fore not included in the subset studies reported here, i.e. families in 
which at least one affected family member had CP only.

  Genome Scan Genotyping 
 The genome scans were conducted in multiple batches (the 

previous report  [38]  summarized results from the first two batch-
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es of genotyping). Microsatellite genotyping for all batches was 
performed at the Center for Inherited Disease Research (CIDR) 
using STRP markers with average spacing of about 9 cM (1–19 
cM). Marker set details and methods are available at www.cidr.
jhmi.edu.

  Trace data was reviewed and genotypes were called using the 
software package Genotyper from Applied Biosystems. The raw 
genotype sizes for each genotype were exported from Genotyper 
and binned using SAS. Study samples were plated with 2 CEPH 
Utah control samples 1331-1 and 1331-2 repeated on each plate. 
For each microsatellite marker the CEPH control sample sizes for 
each plate were compared to the project average and used to adjust 
the raw sizes for all data for that plate. Data with similar raw sizes 

were grouped into proposed ‘binned’ alleles. Plots were made for 
each marker showing the overall as well as by plate allele sizes and 
proposed bins for both the raw and adjusted size data. Each plot 
was manually reviewed by at least two data analysts. Trace data 
for unexpected sizes for CEPH controls and outliers that didn’t 
fall within bins were reviewed in Genotyper. Trace data was also 
reviewed for markers with high numbers of mendelian errors ac-
cording to Pedcheck  [39] . Binning parameters and plate adjust-
ments were done manually if needed.

  After the entire dataset was genotyped, all alleles were re-
binned across batches before performing the analyses reported 
here. The final combined dataset consisted of 375 STRP markers 
which were genotyped in all three sample submissions. Quality 

Table 1. Summary of families and individuals ascertained for genome-scan linkage analyses

Country Fam-
ilies

Individuals Subsetsa

affected unaffected total CL CLP CL+CLP

genotyped genotyped genotyped n
fams

n n
fams

n n
fams

n

yes no total yes no total yes no total

China 72 98 17 105 246 134 380 344 151 495 19 105 31 189 18 173
Colombia 163 266 15 281 386 369 755 652 384 1,036 18 92 112 588 31 342
India 11 18 4 22 63 77 140 81 81 162 5 71 0 0 6 91
Philippines 462 928 44 972 1,848 1,292 3,140 2,776 1,336 4,112 79 362 230 1,504 132 1,900
Turkey 6 8 0 8 9 32 41 17 32 49 0 0 0 0 2 12
USA 106 196 24 220 307 184 491 503 208 711 15 70 47 245 33 298
Total 820 1,514 104 1,618 2,859 2,088 4,947 4,373 2,192 6,565 136 700 420 2,526 222 2,816

a Subsets: CL = those families in which all affected members had CL alone; CLP = those families in which all affected members had 
CL and CP; CL+CLP = those families in which at least one affected member had CL alone and at least one had CL+CP; n fams = number 
of families.

Table 2. Summary of families and individuals ascertained for fine-mapping studies

Country Fam-
ilies

Individuals Subsetsa

affected unaffected total CL CLP CL+CLP

genotyped genotyped genotyped n
fams

n n
fams

n n
fams

n

yes no total yes no total yes no total

China 104 168 33 201 258 461 719 426 494 920 24 174 42 337 33 372
Colombia 232 349 12 361 577 362 939 926 374 1,300 23 108 174 826 35 366
India 53 94 42 136 210 380 590 304 422 726 22 253 5 86 24 356
Philippines 221 600 47 647 1,090 1,108 2,198 1,690 1,155 2,845 20 178 82 932 112 1,589
Spain 36 41 2 43 86 7 93 127 9 136 5 22 25 93 4 14
Turkey 28 32 5 37 53 189 242 85 194 279 6 59 15 158 7 62
USA 187 231 24 255 413 173 586 644 197 841 42 142 99 335 36 307
Total 861 1,515 165 1,680 2,687 2,680 5,367 4,202 2,845 7,047 142 936 442 2,767 251 3,066

a Subsets: CL = those families in which all affected members had CL alone; CLP = those families in which all affected members had 
CL and CP; CL+CLP = those families in which at least one affected member had CL alone and at least one had CL+CP; n fams = number 
of families.
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control was monitored by investigator-provided blind duplicate 
samples. 220 blind duplicate pairs across all three sample submis-
sions resulted in a reproducibility rate of 99.95%.

  Candidate Gene SNP Genotyping 
 After the results of the linkage genome scan, the families were 

genotyped by CIDR for a custom panel of 1,536 single nucleotide 
polymorphisms (SNPs), of which 1,476 were analyzed (list avail-
able on request, see below for reasons some SNPs were not ana-
lyzed).

  SNPs were chosen to saturate the 1-LOD regions for each ge-
nome-wide significant region found in the linkage scan, targeting 
all known genes in each region, with 2–6 SNPs per gene and fill-
ing intergenic gaps  1 100 kb with 1 SNP per 20 kb. In addition, 
SNPs in cleft candidate genes were included in the custom panel, 
and were chosen from a variety of resources, including published 
linkage and association studies on clefts, genome-wide scans, 
gene knockout experiments in mice, studies of chromosomal re-
arrangements in humans, and gene-expression analyses in hu-
man and mouse embryonic tissues  [20, 40–43] , including the Cra-
niofacial and Oral Gene Expression Network  [44]  (COGENE). We 
also searched the Serial Analysis of Gene Expression (SAGE) li-
braries to see whether a particular gene of interest is expressed in 
the relevant embryonic tissues at the pertinent developmental 
stage (weeks 5–6 for fusion of the embryonic lip and weeks 7–10 
for fusion of the palatal shelves  [45] ). Data from two gene expres-
sion approaches were also considered, the ENU project  [46] , and 
the Developmental Genome Anatomy Project (DGAP  [47] ). Fi-
nally genes involved in Mendelian forms of clefting, particularly 
those that may manifest as phenocopies of NS CL/P (identified 
through OMIM) were considered.

  To guide the selection of SNPs within the candidate genes and 
regions, the genome browser of the International HapMap Con-
sortium was used. SNPs were prioritized according to prior evi-
dence of an association with clefting, a preference for coding 
SNPs and those located in putative regulatory regions, haplotype-
tagging properties (htSNPs), and minor allele frequency (MAF) 
of at least 10%, ideally across the multiple ethnicities represented 
in this study.

  A combination of software, including HAPLOVIEW version 
2.05, BEST (Best Enumeration of SNP Tags  [48] ), and SNP Brows-
er) (Applied Biosystems; Foster City, Calif., USA), was used to 
evaluate MAF, deviations from Hardy-Weinberg equilibrium 

(HWE), inter-marker distance, as well as LD patterns and haplo-
type block structures (for the selection of htSNPs). SNP assays 
were designed by Illumina (San Diego, Calif., USA) and a ‘design 
score’ was computed for each SNP using an algorithm that rigor-
ously tests the performance of that SNP on an Illumina Golden-
Gate platform.

  SNP genotyping was performed at CIDR on a BeadLab system 
using the Illumina GoldenGate technology  [49]  (Illumina; San Di-
ego, Calif., USA). Genotypic data for 1,489 of 1,536 attempted 
SNPs were released by CIDR. The overall rate of missing geno-
typic data was 0.35%. As part of quality control, CIDR genotyped 
a parent-child trio plus one duplicate child, which yielded a dupli-
cate error rate of 0.009% and an overall parent-child discordance 
rate of zero. Of the 1,489 SNPs released after CIDR quality control 
checks, 13 more were not included in our analysis due to poor per-
formance in one or more of the individual study populations (e.g. 
low MAF or high rates of mendelian inconsistencies). Therefore, 
results are reported here for the remaining 1,476 SNPs.

  Statistical Genetic Analyses 
 Preliminary Analyses 
 The inheritance of each marker (genome-wide STRPs and 

custom SNPs) was assessed with PedCheck  [39]  to test for incon-
sistencies due to non-paternity or other errors. Marker allele fre-
quencies are required by linkage analysis approaches and were 
estimated in the founders of the families, separately by country 
due to the diverse ethnicities. Other genetic model parameters are 
summarized in  table 3 , and were taken from the results of segre-
gation analysis (Philippines – unpublished results; China  [10] ; In-
dia  [50] ; Colombia  [51] ; Caucasians  [9, 52, 53] ).

  Parametric Linkage Analyses 
 Standard multipoint parametric linkage statistics were calcu-

lated at each of the 375 genome-scan STRPs, in particular the 
heterogeneity LOD score or HLOD. HLODs are based on the ad-
mixture heterogeneity test  [54]  where the recombination fraction 
( � ) and the proportion of linked families ( � ) are simultaneously 
estimated. Simulation studies have shown that although the esti-
mate of the proportion of linked families may be not be precise, 
HLODs are a powerful method for detecting linkage in the pres-
ence of heterogeneity  [55–57] . The descent graph method  [58]  im-
plemented in computer program SIMWALK2 was used for the 
multipoint HLOD calculations.

Table 3. Summary of genetic model parameters used for parametric linkage analysis in each country, plus weights for meta-analysis

Recessive Dominant Weights for
meta-analysisFreqA penAA penAB penBB FreqA penAA penAB penBB

China 0.05 0.002 0.002 0.9 0.001 0.002 0.6 0.6 0.93268
Colombia 0.05 0.002 0.002 0.9 0.001 0.002 0.6 0.6 1.28306
India 0.05 0.002 0.002 0.9 0.001 0.002 0.6 0.6 0.45258
Philippines 0.04 0.002 0.002 0.9 0.002 0.002 0.6 0.6 2.61734
Turkey 0.05 0.002 0.002 0.9 0.001 0.002 0.6 0.6 0.12318
USA; Pittsburgh 0.05 0.002 0.002 0.9 0.001 0.002 0.6 0.6 0.71294
USA; other than Pittsburgh 0.05 0.002 0.002 0.9 0.001 0.002 0.6 0.6 0.87822
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  HLOD calculations were done under the best-fitting domi-
nant and recessive models for each study population (estimated 
from segregation analysis, see preliminary analyses section above 
and  table 3 ). Maximizing LOD scores over a range of genetic mod-
els is valid for simultaneously evaluating linkage and determining 
the most likely genetic model (without adjustment to significance 
levels and without need to correct for ascertainment) provided 
that there is indeed linkage  [59] . Furthermore, if an oligogenic 
model is suspected (as seems likely for CL/P), or if significant het-
erogeneity exists, some of the causal genes may act in a dominant 
fashion and others recessive.

  To combine the multipoint results across the study popula-
tions we summed the multipoint HLODs. Because each study 
population had different allele frequency estimates and different 
genetic model parameters it was not optimal to perform a com-
bined linkage analysis pooling all families across all populations. 
Simulation studies  [55]  have shown that HLOD analyses that 
pooled multiple datasets resulted in a loss of power for detect-
ing linkage compared to summing the HLODs from individual 
studies.

  For determining genome-wide significance for the multipoint 
linkage calculations of the families, standard guidelines  [60]  were 
followed. A Bonferroni correction was applied to account for the 
multiple markers, data subsets, and genetic models tested. To do 
so, the desired  �  level of 0.05 was divided by [375 (number of 
markers)  !  4 (number of data subsets)  !  2 (number of genetic 
models tested)] to yield a Bonferroni-adjusted alpha of 0.000017. 
The �2 corresponding to the p value (i.e. 18.5) was divided by 
2(log e 10) = 4.605 to yield 4.02 as the LOD score threshold for ge-
nome-wide significance for this study. Values between 3.2 and 
4.02 were considered as significant but not genome-wide signifi-
cant.

  Genome Scan Meta-Analysis 
 As an additional method used primarily to estimate the 

weighting factors for the weighted FDR approach summarized 
below, we used the genome scan meta-analysis method (GSMA 
 [38, 61, 62] ). The GSMA is a nonparametric rank ordering meth-
od that can combine genome scan methods across studies with 
different markers and different statistical tests. In simulation 
studies the GSMA detected linkage with power comparable to or 
greater than that obtained by performing a combined linkage 
analysis of all data  [62, 63] .

  For the GSMA procedure, the genome was divided into bins 
with bin-width selected such that there were at least two bins on 
the smallest chromosome and at least one marker was genotyped 
within each bin. Therefore, for combining the current 10 cM ge-
nome scans a bin width of 30 cM was selected (i.e. 130 bins across 
the genome). For each of the individual populations, bins were 
assigned a rank (R, with values from 1 to 130) according to the 
maximum linkage statistic of markers in each bin (multipoint 
HLOD scores). Any tied bins were assigned equal R’s based on the 
mean of the sequential ranks for those bins.

  Because the study populations covered a wide range of sample 
sizes (see  table 1 ), we weighted the R statistics based on sample 
size. Various weighting strategies have been proposed for the 
GSMA  [61, 62] , and simulation studies showed that weighting in-
creased the power of the GSMA to detect linked loci  [62] . We used 
a weighting factor based on the total number of genotyped indi-
viduals (  N-genotyped) – the ranks within each population were 

multiplied by the square root of   N-genotyped divided by the mean 
of  N- genotyped over all studies. The weighting factors calculated 
for each population are listed in  table 3 .

  The GSMA identified 30 cM bins that are best supported 
across the studies. In order to narrow the regions of positive find-
ings, we used an extension of the GSMA that involves repeating 
the GSMA with different bin starting points and then determin-
ing the Minimum Region of Maximum Significance (MRMS 
 [64] ). In brief, we repeated the GSMA twice more shifting the 
starting point for the binning procedure to first 10 cM and then 
to 20 cM. This determined the 10 cM MRMS for each positive 
finding. Given that the genome scan STRP panel averaged 10 cM 
between markers, 10 cM was the limit of resolution for the meta-
analyses.

  Association Analysis Methods (Fine-Mapping and 
Candidate Genes) 
 The transmission disequilibrium test (TDT) was used to as-

sess association in the presence of linkage disequilibrium be-
tween the 1,476 fine-mapping markers and CL/P. The Family 
Based Association Test extension of the TDT (FBAT  [65–67] ) was 
used to assess association between each SNP and CL/P. To control 
for multiple testing and to include information from the prior 
linkage genome scan we performed a weighted approach to false 
discovery rate (wFDR  [68] ). In this approach, per marker FBAT p 
values were adjusted using weights derived from the GSMA/
MRMS results, and allowing for a maximum 10% FDR.

  Results 

 Multipoint Linkage Results (HLOD and GSMA) 
  Figure 1  shows a summary of the multipoint HLOD 

results for the total dataset, and for the CL, CLP and 
CL+CLP subsets. Depicted are the largest multipoint 
HLODs on each chromosome, under dominant and re-
cessive models. The HLOD genome scan revealed ge-
nome-wide significant linkage results (i.e. multipoint 
HLOD  6 4.02) in the regions 3q27–28 (under a dominant 
model for CL/P), 9q21 (dominant model), and 14q21–24 
(recessive model). Three additional regions reached nom-
inal significance (i.e. multipoint HLOD  6 3.2): 1q32 (un-
der a dominant model for CL/P), 2p13 (dominant model), 
and 16q24 (recessive model). Of those regions, 1q32, 9q21, 
12p11, 14q,21–24 and 16q24 were also statistically signif-
icant in the GSMA analysis.  Figure 2 A–G shows the de-
tailed HLOD and GSMA results for each of the chromo-
somal regions with significant results.

  As can be seen in  figure 1 , the phenotypic subsets have 
differing results. In the CL subset, the region on chromo-
some 1q32 was significant under a dominant model (see 
 fig. 2 A). In the CL+CLP subset, regions on chromosome 
9q21 (dominant) and 16q24 (recessive) were significant 
(see  fig. 2 D and G for details). In the CLP subset a region 
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on chromosome 12p11 was significant under a dominant 
model (see  fig. 2 E).  Table 4  summarizes the chromosom-
al regions with significant linkage results in the TOTAL 
dataset and the phenotypic subsets, plus potential CL/P 
candidate genes in those significant regions.

  Fine-Mapping and Candidate Gene Analyses 
  Figure 3  shows the weighted p values and weighted FDR 

alpha levels for the total dataset, and the CLP and CL+CLP 
datasets. One SNP in  IRF6  and 3 SNPs in or near  FOXE1  
were the only ones reaching formal weighted-FDR-adjust-
ed significance (p  !  10 –7 , and p  !  10 –6 , respectively) in the 
total dataset. Although not reaching formal genome-wide 
significance, additional SNPs on 1q, 6q and 9q were near 
significant (p  !  0.001, results not shown in detail).

  Of the phenotypic subsets, only CLP had SNPs reach-
ing genome-wide significance: i.e., 5 SNPs in or near 
 FOXE1  on 9q. Although not reaching genome-wide sig-
nificance, the most significant SNP in both the CL and 

CL+CLP phenotypic subsets was in  IRF6  (p  !  0.001 and 
p  !  0.002, respectively), and was the same SNP signifi-
cant in the TOTAL dataset.  Table 5  summarizes the ge-
nome-wide significant SNPs in the total dataset and in 
the CLP subset.

  Discussion 

 The genome scan revealed multiple significant linkage 
results (i.e. multipoint HLOD  6 3.2) in the regions 1q32, 
2p13, 3q27–28, 9q21, 14q21–24 and 16q24 for the TOTAL 
dataset, with the 3q, 9q and 14q regions also genome-wide 
significant (HLOD  6 4.02). The 1q32 region result was 
also significant in the CL subset but not the others, imply-
ing that the significant linkage was due to the CL families. 
Similarly, the 9q21 and 16q24 results were also genome-
wide significant in the CL+CLP subset. In the CLP subset, 
an additional region of significance was found for the 
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  Fig. 1.  Summary of the 10 cM genome scan of CL/P. Each graph 
depicts the maximum summed multipoint HLOD on each chro-
mosome, under both dominant (black) and recessive (grey) ge-
netic models assumed.  A  Summary for TOTAL, the entire dataset. 
 B  Summary for the CL subset, i.e. those families in which all af-

fecteds have CL alone.  C  Summary for the CL+CLP subset, i.e. 
those families in which at least one affected has CL alone and at 
least one has CL+CP.  D  Summary for the CLP subset, i.e. those 
families in which all affected members have CL+CP. 
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12p11 region. The remaining two regions (2p11, 3q27–28) 
were not significant in any individual subset, implying 
that these regions may be involved in OFC overall, rather 
than any specific phenotype. Also, note that in each case 
where there were significant findings in one of the pheno-
typic subgroups, the estimated proportion of linked fam-
ilies ( � ) was larger in the subgroup than in the total data-

set (see  table 4 ), further supporting the notion that phe-
notypic sub-grouping may be a useful approach to reduce 
heterogeneity across cleft families.

  Follow-up fine-mapping association studies found 
SNPs in  IRF6  (chromosome 1q) and in or near  FOXE1  
(chromosome 9q) that reached formal FDR-adjusted sig-
nificance (see  table 5 ), and SNPs in 6q were near signifi-

Table 4. Significant linkage and meta-analysis results

Chromosomal
region

Phenotypic
subset

Maximum
summed
multipoint
HLODa

Linkage
peak: cM
location

Model Average
�

GSMA/MRMS
peak (p value)b

Candidate genes in
region

1q32 TOTAL 3.35 170.3 dom 0.29 150–160 (0.02) IRF6
CL 3.24 171.0 dom 0.47 –

2p13 TOTAL 3.25 69.0 dom 0.31 – TGFA
3q27–28 TOTAL 4.13 204.2 dom 0.34 – TP63
9q21 TOTAL 5.37 118.2 dom 0.41 100–110 (0.0007) FOXE1, PTCH, ROR2, 

TGFBR1, ZNF189
CL+CLP 5.44 116.4 dom 0.46 –

12p11 CLP 3.22 83.0 dom 0.25 40–50 (0.02)
14q21–24 TOTAL 4.18 75.1 rec 0.31 60–70 (0.01) PAX9, TGFB3, BMP4
16q24 TOTAL 3.56 84.5 rec 0.16 100–110 (0.01) CRSPLD2, FOXC2

CL+CLP 3.42 81.0 rec 0.24 –

a Maximum summed HLOD = maximum multipoint HLOD summed over the individual studies (see table 1 for list; see fig. 1 and 
2 for full HLOD plots), presented are significant regions,. i.e. with HLOD ≥3.2). Genome-wide significant results (i.e. HLOD ≥4.02) 
are  in bold. Pe ak = cM location of the maximum summed multipoint HLOD; model = genetic model for the maximum summed HLOD; 
dom = dominant; rec = recessive); Average � = estimated proportion of linked families at the linkage peak, averaged over the stud-
ies.

b GSMA/MRSA peak (p value) = significant results from Genome Scan Meta-Analysis over the individual studies; presented is the 
10 cM interval best supported by the GSMA/MRMS with the corresponding p value (see fig. 2 for MRMS graphs).

Table 5. Genome-wide significant SNP results (from weighted FDR analyses of FBAT results) in the TOTAL dataset and CLP pheno-
typic subset

Dataset Chromosome SNP name SNP Associated
allele (freq)

Gene Chromosome
location

Weighted
p value

TOTAL 1q32.3-q41 rs2013162 A/C C (62%) IRF6 208035307 1.0!10–7

9q22 rs1443434 G/T T (75%) FOXE1 99657300 7.0!10–7

9q22 rs993501 C/T T (81%) 99663198 2.1!10–6

9q22.33 rs6586 C/T T (63%) C9orf156 99706752 5.8!10–5

CLP 9q22 rs1443434 G/T T (72%) FOXE1 99657300 4.0!10–7

9q22.33 rs6586 C/T T (59%) C9orf156 99706752 7.5!10–6

9q22 rs993501 C/T T (77%) 99663198 1.4!10–5

9q22 rs1877431 A/G G (66%) 99573968 3.3!10–4

9q22.3 rs4743106 C/T T (78%) TMOD 99353614 3.3!10–4
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cant. Consistent with the linkage results, the fine-map-
ping results were also phenotype dependent. The  IRF6  
SNP rs2013162 (significant in the TOTAL dataset) was 
only positive in the CL and CL+CLP subsets (although 
not reaching formal genome-wide significance in those 
subsets). Similarly,  FOXE1  SNPs (significant in the TO-
TAL dataset) were genome-wide significant only in the 
CLP subset.

  Following is a brief discussion of the most notable re-
sults by chromosome. Although not summarized in de-
tail, several of these regions also have chromosomal rear-
rangements reported in CL/P  [47, 69, 70] .

  Chromosome 1q 
 The 1q32 region with significant linkage and associa-

tion results is the location for the  IRF6  gene that was iden-
tified as the etiologic locus for van der Woude syndrome 
( VDWS,  MIM# 119300  [23] ) and also significantly associ-
ated with non-syndromic CL/P (SNP rs2235371  [22, 24–
26, 28–30, 71] ).

  Recently we have identified a specific  IRF6  SNP 
(rs642961) where the ancestral allele is highly evolution-
arily conserved and where functional assays show dis-
ruption of an AP-2 �  binding site that likely represents the 
major NS CL/P etiologic locus within  IRF6   [32] . Notably 
the results with SNP rs642961 were significant only in 
families with one or more CL-alone affected members 
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  Fig. 2.  Summed multipoint HLOD plots 
for each chromosome that had a maxi-
mum summed HLOD  6 3.2 (under the 
best genetic model for each chromosome), 
in the entire dataset (TOTAL), and the 
subsets – see definitions in figure 1. For 
each of those chromosomes, also shown 
are the graphs of the Minimum Regions of 
Maximal Significance (MRMS). These 
graphs summarize the process of repeat-
ing the Genome Scan Meta Analyses 
(GSMA), shifting the bins in order to nar-
row the region of potential involvement 
with CL/P. For those chromosomes with 
statistically significant GSMA/MRMS re-
sults (i.e. p values  ̂  0.05), dashed vertical 
lines indicate the 10 cM MRMS.  a  Chro-
mosome 1 under a dominant model for 
TOTAL and for the CL subset. 
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 [32] , consistent with the linkage and association results 
reported here. In the current study,  IRF6  SNP rs2013162 
reached genome-wide significant association with CL/P 
in the TOTAL dataset; further the association results 
were positive in only the CL and CL+CLP subsets (al-
though not reaching formal genome-wide significance in 
those subsets). Based on Haploview version 4.1  [72] , the 
current study SNP (rs2013162) lies between the other two 
SNPs, but is not in LD with them.

  The current results demonstrating significant linkage 
to the  IRF6  region provide powerful support for the  IRF6  
association findings. Interestingly, until the current study 
we only found weak linkage signals to the 1q32 region 
 [38]  and/or the  IRF6  locus itself  [24]  (LODs  ! 1.0); the 

current study thus demonstrates the utility of large sam-
ple sizes with careful sub-phenotyping in detecting sub-
tle effects that otherwise are only detectable with asso-
ciation methods.

  Chromosome 2p and 2q 
 Note that in our previous linkage report  [38] , a 2q32–

35 region had highly significant GSMA results. In the 
current study with double the sample size there are no 
longer genome-wide significant results with this region. 
The 2q32–35 region contains the gene for DNA-binding 
protein  SATB2  (a.k.a.  KIAA1034 ) that has been identified 
through translocation breakpoint analysis as a gene in-
volved in cleft palate  [73] , and that also shows site- and 
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 Fig. 2.  Summed multipoint HLOD plots 
for each chromosome that had a maxi-
mum summed HLOD  6 3.2 (under the 
best genetic model for each chromosome), 
in the entire dataset (TOTAL), and the 
subsets – see definitions in figure 1. For 
each of those chromosomes, also shown 
are the graphs of the Minimum Regions of 
Maximal Significance (MRMS). These 
graphs summarize the process of repeat-
ing the Genome Scan Meta Analyses 
(GSMA), shifting the bins in order to nar-
row the region of potential involvement 
with CL/P. For those chromosomes with 
statistically significant GSMA/MRMS re-
sults (i.e. p values  ̂  0.05), dashed vertical 
lines indicate the 10 cM MRMS. b Chro-
mosome 2 (dominant). 
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stage-specific expression in murine palate development. 
It may be that some population or phenotypic subsets led 
to the previous positive results and additional analyses 
are on-going to continue to investigate  SATB2 .

  The 2p13 region with significant linkage results con-
tains  TGFA , the gene with the first reported association 
with CL/P  [74]  and numerous confirmatory reports  [19, 
75] . There were no genome-wide significant association 
results with  TGFA  fine-mapping SNPs (rs3732253, 
rs1807968, rs374640, rs377122), but the positive linkage 
results warrant continued study of this region.

  Chromosome 3q 
 The 3q27–28 region had genome-wide significant 

linkage results, consistent with our previously reported 
result near this region in Chinese families  [76] , but there 
have been no other published reports of either positive 
linkage or positive association of non-syndromic CL/P to 
this region. A potential candidate gene in this region is 
 TP63 .

   TP63  encodes a member of the p53 family of transcrip-
tion factors. An animal model, p63 –/–  mice, has been use-
ful in defining the role this protein plays in the develop-
ment and maintenance of stratified epithelial tissues. 
p63 –/–  mice have several developmental defects which in-
clude the lack of limbs and other tissues, such as teeth and 
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 Fig. 2.  Summed multipoint HLOD plots 
for each chromosome that had a maxi-
mum summed HLOD  6 3.2 (under the 
best genetic model for each chromosome), 
in the entire dataset (TOTAL), and the 
subsets – see definitions in figure 1. For 
each of those chromosomes, also shown 
are the graphs of the Minimum Regions of 
Maximal Significance (MRMS). These 
graphs summarize the process of repeat-
ing the Genome Scan Meta Analyses 
(GSMA), shifting the bins in order to nar-
row the region of potential involvement 
with CL/P. For those chromosomes with 
statistically significant GSMA/MRMS re-
sults (i.e. p values  ̂  0.05), dashed vertical 
lines indicate the 10 cM MRMS.  c  Chro-
mosome 3 (dominant). 
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mammary glands, which develop as a result of interac-
tions between mesenchyme and epithelium. Further-
more, recently completed detailed expression studies  [77]  
during murine craniofacial development to dissect the 
molecular pathogenesis of the bilateral cleft lip and cleft 
palate seen in  Tp63- deficient mice. Analysis of key sig-
naling molecules revealed that the craniofacial defects re-
sulted from increased Bmp4 signaling acting antagonisti-
cally on Fgf8 and Shh  [77] .

  In humans, mutations in the  TP63  gene are associated 
with ectodermal dysplasia and cleft lip/palate syndrome 
3 (EEC3  [78, 79] ); split-hand/foot malformation 4 
(SHFM4); Hay Wells syndrome  [80]  (ankyloblepharon-
ectodermal defects-cleft lip/palate); ADULT syndrome 

(acro-dermato-ungual-lacrimal-tooth); limb-mammary 
syndrome; Rap-Hodgkin syndrome (RHS  [81, 82] ) and 
NS OFC  [83] . Both alternative splicing and the use of al-
ternative promoters results in multiple transcript vari-
ants encoding different proteins, which may underlie the 
wide phenotypic spectrum associated with mutations in 
 TP63   [84, 85] .

  Therefore, the custom SNP panel included 10 SNPs 
within  TP63 : rs4396880, rs1920266, rs4575879, rs7616178, 
rs4607088, rs7619526, rs4686529, rs7619549, rs9810322, 
and rs1515490. None of these SNPs reached genome-wide 
significance in the wFDR analyses, but given the strong 
linkage signal and the biological plausibility of this gene, 
our group is continuing analyses in this region. Further-
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 Fig. 2.  Summed multipoint HLOD plots 
for each chromosome that had a maxi-
mum summed HLOD  6 3.2 (under the 
best genetic model for each chromosome), 
in the entire dataset (TOTAL), and the 
subsets – see definitions in figure 1. For 
each of those chromosomes, also shown 
are the graphs of the Minimum Regions of 
Maximal Significance (MRMS). These 
graphs summarize the process of repeat-
ing the Genome Scan Meta Analyses 
(GSMA), shifting the bins in order to nar-
row the region of potential involvement 
with CL/P. For those chromosomes with 
statistically significant GSMA/MRMS re-
sults (i.e. p values  ̂  0.05), dashed vertical 
lines indicate the 10 cM MRMS. d Chro-
mosome 9 (dominant, TOTAL and CL+
CLP). 
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more, given the interacting nature of the involvement of 
 Tp63  in the murine model  [77]  we are simultaneously ex-
ploring  TP63, BMP4, FGF8  and  SHH  in our multiplex 
families. Notably, as described below, we also saw ge-
nome-wide significant linkage to region 14q which is 
near the location for  BMP4. 

  Chromosome 9q 
 Region 9q21 had the most significant linkage result in 

our previous report  [35] . This region also reached genome-
wide significance in the current study, and showed the 
most positive HLOD and GSMA results in the TOTAL and 
CL+CLP datasets. There are a number of possible candi-
date genes in this region including the human homolog of 

 patched  ( PTCH , 9q22.3), receptor tyrosine kinase-like or-
phan receptor 2 ( ROR2 , 9q22), transforming growth factor 
beta receptor type 1 ( TGFBR1 , 9q33-q34), zinc finger pro-
tein 189 ( ZNF189 , 9q22-q31) and  FOXE1  (a.k.a.  TTF2 , 
 TITF2 ; 9q22). Therefore multiple SNPs from the 1-LOD 
and 2-LOD intervals around the 9q linkage peak were gen-
otyped, as well as SNPs in each of these candidate genes.

  The only SNPs genotyped in the 9q region to reach 
genome-wide significant association were in or near 
 FOXE1  (see  table 5 ), and were significantly associated 
with CL/P in the TOTAL and CLP datasets.  FOXE1  is a 
forkhead domain-containing transcription factor (a.k.a. 
 TTF2 ,  TITF2 ; 9q22); mutations in  FOXE1  are associated 
with congenital hypothyroidism, thyroid agenesis and 
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 Fig. 2.  Summed multipoint HLOD plots 
for each chromosome that had a maxi-
mum summed HLOD  6 3.2 (under the 
best genetic model for each chromosome), 
in the entire dataset (TOTAL), and the 
subsets – see definitions in figure 1. For 
each of those chromosomes, also shown 
are the graphs of the Minimum Regions of 
Maximal Significance (MRMS). These 
graphs summarize the process of repeat-
ing the Genome Scan Meta Analyses 
(GSMA), shifting the bins in order to nar-
row the region of potential involvement 
with CL/P. For those chromosomes with 
statistically significant GSMA/MRMS re-
sults (i.e. p values  ̂  0.05), dashed vertical 
lines indicate the 10 cM MRMS.      e  Chro-
mosome 12 (dominant, TOTAL and CLP 
subgroup).
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cleft palate in humans (Bamford-Lazarus syndrome, 
MIM 241850) and mice  [86–88] . The forkhead gene fam-
ily ( Fox ), originally identified in Drosophila, encodes 
transcription factors with a conserved 100-amino acid 
DNA-binding motif called the ‘forkhead domain’  [89]  
and regulates diverse developmental processes in eukary-
otes. Rare missense mutations in  FOXE1  have been asso-
ciated with isolated clefting  [17, 90] .

   FOXE1  is a major current focus of our research group, 
including studies of multi-species conservation, struc-
ture, function, and etiology. Genotyping the  FOXE1  lo-
cus at a greater SNP density has excluded adjacent genes 
and narrowed the mutation to a 43 kb region including 
and upstream of  FOXE1  (Moreno et al., unpublished re-

sults).  Figure 4  shows the relative positions of the 9q21 
SNPs that were genome-wide significant in the current 
study (see  table 5  for list), as well as three additional fine-
mapping SNPs recently found to be significantly associ-
ated with CL/P (rs894673; rs3758249; rs1867278; Moreno 
et al. unpublished results), along with the LD patterns es-
timated in the HapMap CEU population (Data Release 
23a/phaseII Mar08, on NCBI B36 assembly, dbSNP b126) 
utilizing Haploview version 4.1  [72] . Of the recently stud-
ied SNPs, rs3758249 is the one most strongly associated 
with CL/P in multiple populations (Moreno et al., unpub-
lished results) and the associated SNPs from the current 
study are in a haplotype block with rs3758249 (see  fig. 4 ). 
Notably, in both the current study and our recent  FOXE1  
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 Fig. 2.  Summed multipoint HLOD plots 
for each chromosome that had a maxi-
mum summed HLOD  6 3.2 (under the 
best genetic model for each chromosome), 
in the entire dataset (TOTAL), and the 
subsets – see definitions in figure 1. For 
each of those chromosomes, also shown 
are the graphs of the Minimum Regions of 
Maximal Significance (MRMS). These 
graphs summarize the process of repeat-
ing the Genome Scan Meta Analyses 
(GSMA), shifting the bins in order to nar-
row the region of potential involvement 
with CL/P. For those chromosomes with 
statistically significant GSMA/MRMS re-
sults (i.e. p values  ̂  0.05), dashed vertical 
lines indicate the 10 cM MRMS.  f  Chro-
mosome 14 (recessive). 
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studies, the strongest associations are seen with families 
in which one or more affected family members have CL 
plus CP, and little or no evidence of association in fami-
lies with CL alone or CP alone. Further, the involvement 
of  FOXE1  during primary palatogenesis is supported by 
the previously uncharacterized epithelial expression in 
the medial nasal and maxillary processes that will un-
dergo fusion (Moreno et al., unpublished results).

  Chromosome 12p11 
 This region did not achieve significant linkage results 

in the TOTAL dataset, however, it did reach significance 
in the CLP subset. Chromosomal rearrangements involv-
ing the 12p region result in phenotypes including CL/P 

or CP  [69, 70] , including Pallister-Killian syndrome (mo-
saic isochromosome 12p)  [91]  and others (del 12p  [92] ; 
Fryns syndrome  [93] ). However this region has not been 
previously investigated in non-syndromic CL/P and war-
rants further investigation.

  Chromosome 14q 
 The 14q21–24 region had genome-wide significant re-

sults in our previous report, and also reached genome-
wide significant linkage results in the current study. This 
region contains  PAX9 ,  BMP4  and transforming growth 
factor beta 3  ( TGFB3 ) . Both Pax9 and Tgfb3 when inac-
tivated in mice results in clefts of the secondary palate 
 [94] . Positive results have been seen in association studies 
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  Fig. 2.  Summed multipoint HLOD plots 
for each chromosome that had a maxi-
mum summed HLOD  6 3.2 (under the 
best genetic model for each chromosome), 
in the entire dataset (TOTAL), and the 
subsets – see definitions in figure 1. For 
each of those chromosomes, also shown 
are the graphs of the Minimum Regions of 
Maximal Significance (MRMS). These 
graphs summarize the process of repeat-
ing the Genome Scan Meta Analyses 
(GSMA), shifting the bins in order to nar-
row the region of potential involvement 
with CL/P. For those chromosomes with 
statistically significant GSMA/MRMS re-
sults (i.e. p values  ̂  0.05), dashed vertical 
lines indicate the 10 cM MRMS.    g  Chro-
mosome 16 (recessive in TOTAL and CL+
CLP). 
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of CL/P and  TGFB3,  and one missense mutation has been 
reported  [19, 95] . However, none of the one  PAX9  or five 
 TGFB3  SNPs tested in the current study reached genome-
wide significant association in any of the datasets.

   BMP4  (14q22–23) is another plausible candidate gene 
in this region. Multiple murine model studies have dem-
onstrated a role for the  Bmp4  pathway in lip and palate 
fusion  [77] . In a  Bmp4  conditional knockout mouse mod-
el  [96] , all embryos had bilateral cleft lip at 12 days post-
conception but by 14.5 days only 22% still exhibited cleft 
lip, suggesting  in utero  healing. Our group has found 
 BMP4  nonsense and missense mutations in CL/P, micro-
form, and subclinical cleft cases that are absent in controls 
 [97]  and a recent report showed association of a common 
variant missense change with isolated cleft lip and palate 
in a Chinese population  [98] . Only one  BMP4  SNP was 

included in the custom SNP panel (rs2147105), and was 
not significantly associated with CL/P in this study.

  Given the strong linkage finding, and the biological 
plausibility of the possible candidates in this region, we 
are continuing to investigate  BMP4  and other candidates 
in this region, and will incorporate GxG analyses as well 
(given the interacting patterns in the murine model re-
cently reported  [77] ).

  Chromosome 16q 
 Chromosome 16q24.1 was first identified in a genome 

scan of Caucasian NSCLP sib pairs  [33] . Two candidate 
genes in this region were subsequently investigated:  IRF8 
 and  CRISPLD2   [99] . No association was seen with  IRF8 , 
but  CRISPLD2  showed association in Caucasian and His-
panic families. Although the function of  CRISPLD2  is 
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  Fig. 3.  Summaries of the weighted False 
Discovery Rate (wFDR) results for 1,476 
SNPs selected within candidate genes or to 
fine-map the linkage peaks. Shown are 
graphs for the TOTAL dataset, and the 
CLP and CL+CLP subsets, i.e. those sub-
sets in which there were genome-signifi-
cant wFDR results. Shown are the –log 10  
(wFDR p values), with the SNPs arrayed 
across the genome from chromosome 1 
(left side of X axis) to chromosome 22.                   
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unknown, its structure featuring the presence of a LCCL 
(Limulus factor C, Coch-5b2 and Lgl1) domain has been 
suggested to play a structural or immunologic role, or 
even be involved in cell motility which is required for ef-
fective cell migration. In situ hybridization studies  [99]  
showed that  CRISPLD2  is expressed in the mandible, pal-
ate, and nasopharynx regions during craniofacial devel-
opment  [99] .

   FOXC2  is another plausible candidate in this region 
since  FOXC2  mutations cause lymphodema-distichiasis 
which has incomplete penetrance of cleft palate  [100–
102] , the knockout has cleft palate, and decreased Foxc2 
expression in the lateral nasal processes occurs in mice 
with SHH signaling inactivated in the cranial neural 
crest cells  [103] . We are currently testing FOXC2 and 
 CRISPLD2  SNPs in our study populations, as these were 
not included in the fine-mapping SNPs genotyped in the 
current study.

  Summary and Future Plans 
 The current study utilized linkage approaches in a 

large sample of multiplex CL/P families to identify six 
genomic regions with genome-wide significant find-
ings, plus one additional region significant in one phe-
notypic subset. A follow-up fine-mapping SNP panel 
identified two genome-wide significant associations 
with SNPs in or near candidate genes  ( IRF6  and  FOXE1 ) , 
which have led to identification of the likely etiologic 
variants ( IRF6   [71] ;  FOXE1  – Moreno et al., unpublished 
results). Note that the fine-mapping approach utilized 
here would only detect relatively common variants as-
sociated with CL/P. Therefore, sequencing of candidate 
genes is now required to find those variants that may 
have resulted in linkage signals but with family-specific 
etiologic variants that could not be detected by LD ap-
proaches such as the wFDR utilized here. We are also 
examining the genotyped SNPs for evidence of micorde-
letions that are causal and that may be flagged from ap-
parent non-mendelian inheritance. As described above, 
we are also continuing to pursue those regions with sig-
nificant linkage results with further fine-mapping ef-
forts.

  A striking result from these studies is that some of the 
significant findings could be attributed to specific phe-
notypic subsets. Indeed, some findings were significant 
only in specific phenotypic subgroups. Non-syndromic 
CL/P is a complex trait, with etiologic heterogeneity, so 
these results highlight the importance of careful pheno-
typic delineation in large samples of families as one meth-
od to begin to understand the observed etiologic hetero-
geneity in CL/P families, and as a method to implement 
in other human disorders with similar levels of etiologic 
heterogeneity.

  There are a number of additional sub-clinical pheno-
types now under analysis in our group that suggest in-
creased risk for CL/P: dental anomalies  [104, 105] , defi-
ciencies of the upper lip  orbicularis oris  muscle  [106, 107] , 
asymmetry  [108, 109] , and specific craniofacial measure-
ments  [110]  in the non-overtly-affected relatives of indi-
viduals affected with CL/P. Such sub-clinical phenotyp-
ing holds great promise for addressing etiologic hetero-
geneity in CL/P families by allowing a subdivision of 
families into potentially more homogeneous subsets 
based on both the overt and sub-clinical phenotypes 
present, thus markedly increasing the power and speci-
ficity of our genetic studies.

  Finally, identification of specific genes such as  IRF6  
and  FOXE1  as well as the association with specific cleft 
phenotypes leads to a realistic expectation that improved 
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recurrence risk and OFC prognoses may soon be possible 
using a combination of molecular testing and improved 
phenotyping in families.
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