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Figure 21. Overview of targeting vector construction.   
(A)  Schematic of the parental targeting vector, pBY49a.  (B)  5’ upstream and 3’ 
downstream flanking arms were amplified from B6(Cg)-Tyr<c-2J>/J ES cells.  The 5’ 
flanking arm was subcloned into pBY49a without further modification.  The murine 
(CAG)6 was expanded before subcloning into the final targeting vector. 
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Figure 22. Expansion of the trinucleotide repeat using the megaprimer method. 
(A)  Schematic of the megaprimer method for expansion of the murine Atxn3(CAG)6 
repeat. (B)  Amplification of a population of  megaprimers from Q129 and Q166 human 
ataxin-3 cDNA templates using 5’ murine specific / 3’ human specific primers.  (C)  
Quick-change incorporation of increasingly large megaprimer populations (determined 
by band size) into murine Atxn3, exon10.  (D)  Representative colony PCR reactions.  
Primers flanking the trinucleotide expansion were used to detect expanded clones for 
further analysis.  (E)  A summary of sequenced clones illustrates the variety of repeat 
lengths and sequence modifications generated using this method. 
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Figure 23. Laccone method for expansion of the Q3KQ 82-encoding repeat sequence. 
A)  Schematic of the Laccone method for polyglutamine expansion, showing 
amplification from non-repetitive flanking sequences into the trinucleotide repeat 
separately in both directions, prior to splicing by overlap extension (SOE).  (B) Reactions 
“f” and “r” generate populations of amplicons greater or equal to the length of the repeat-
flanking sequences.  (C)  SOE amplification of these products generates a broad smear of 
products comprising the entire 3’ flanking arm of the proposed targeting vector, with 
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Figure 23.  Continued.   
variable numbers of trinucleotide repeats, which were gel purified, cloned, and 
sequenced.  (D) Representative DNA sequence analysis demonstrating that while this 
method generated some very large repeats, every clone sequenced contained multiple 
distinct repeat lengths, suggesting either repeat instability, recombination, and contraction 
during bacterial culture, or concatenation of the repeat-containing sequences during 
cloning.   
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Figure 24. Targeting exon 10 of the murine Atxn3 gene for homologous 
recombination to insert a trinucleotide expansion. 

Schematic representation of exons 8 through 11 of the murine Atxn3 gene, and the 
modifications they undergo during targeted gene mutation through homologous 
recombination with the Atxn3(Q3KQ82) targeting vector, and during subsequent FLPe 
recombinase-mediated excision of the positive selection cassette. 
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Figure 25. Five ES cell colonies showed evidence of targeted gene insertion. 
(A)  Schematic of screening strategies.  PCR-based strategies utilized primers within the 
positive selection cassette with primers outside of the 5’ and 3’ flanking arms to assess 
homologous recombination at each site.  Southern blot-based strategies were designed to 
confirm homologous recombination at the 3’ flanking arm (AflII) and the presence of the 
trinucleotide expansion (SpeI).  Five clones were confirmed to be positive for 
homologous recombination and inclusion of the Q3KQ82 repeat by (B) Southern blot and 
(C) PCR.  Dashed arrows indicate the wild type control bands, and solid arrows indicate 
bands corresponding to the expanded knock-in allele.   
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Figure 26. Chimeras exhibited a very low rate of germline transmission. 
(A)  Schematic representation of genotyping strategies used to detect germline 
transmission of the Atxn3(Q3KQ82) knock-in allele to F1 progeny.  (B)  PCR-
amplification of mouse genomic tail DNA from F1 pups with the primer pairs MJD10F1 
– MJD10R3 and MJD4F6 – MJD10R4.  Evidence of the repeat expansion and the 
positive selection cassette is visible in a small subset of F1 pups (*).  Knock-in specific 
bands are indicated with arrows and endogenous control bands are indicated with 
brackets.  (C)  Only 2.5% of black F1 pups (derived from gametes of cultured ES cell 
origin) were hemizygous knock-ins containing an intact positive selection cassette. 
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Figure 27. Germline transmission of the Atxn3(Q3KQ82) knock-in allele with an 
intact positive selection cassette followed Mendelian ratios in F1 animals. 

(A)  Schematic representation of genotyping strategies used to detect germline 
transmission of the Atxn3(Q3KQ82) knock-in allele to F2 progeny from F1 x C57BL/6J 
crosses.  (B)  PCR-amplification of mouse genomic tail DNA from F2 pups with the 
primer pairs MJD10F1 – MJD10R3 and MJD4F6 – MJD10R4.  Evidence of the repeat 
expansion and the positive selection cassette is visible in approximately half of these 
animals (*), suggesting that the presence of the repeat expansion in the context of an 
intact positive selection cassette does not reduce viability of knock-in embryos or pups.  
Knock-in specific bands are indicated with arrows and endogenous control bands are 
indicated with brackets.  (C)  Nearly half (43%) of F2 progeny from F1 x C57BL/6J 
crosses were hemizygous knock-ins containing an intact positive selection cassette. 
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Figure 28. Mosaic excision of the positive selection cassette in FLPe(tg/-) F2 
Atxn3(Q3KQ 82) knock-in animals. 

(A)  Schematic representation of genotyping strategies used to detect the Atxn3(Q3KQ82) 
knock-in allele and excision of the positive selection cassette in F2 progeny from F1 x 
FLPe(tg/tg) crosses.  (B)  PCR-amplification of mouse genomic tail DNA from F2 pups 
with the primer pair MJD10F1 – MJD10R3 identifies animals containing the  



 128

Figure 28.  Continued. 
trinucleotide repeat expansion (*).  PCR-amplification with the primers FLPe1 and 
FLPe2 confirm that all F2 animals from these crosses are FLPe(tg/-) (tg).  The presence 
of a 3.3 kb band in the MJD4F6 – MJD10R4 reactions indicates the presence of an intact 
positive selection cassette in knock-in animals; however, digestion of the lower molecular 
weight MJD4F6 – MJD10R4 amplicon with XbaI confirms the presence of FRT-only 
alleles, suggesting that these animals are mosaic for FLPe recombination.   
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Figure 29. Atxn3(Q3KQ 82) knock-in animals express expanded ataxin-3 protein.   
Western blot analysis of tissues from an Atxn3(Q3KQ82) hemizygous knock-in animal 
(mosaic for the positive selection cassette) and its wild type littermate control.  Selected 
tissues include brain (B), heart (H), kidney (K), liver (L), and spleen (S).  Left: 1H9 mAb 
recognizes both endogenous wild type murine ataxn-3 (brackets) and expanded ataxin-3 
(large arrow) in select tissues. Right: 1C2-positive Atxn3(Q3KQ82) protein expression 
(arrow) is detectable in all tissues analyzed except the kidney.  Note that expression of 
Atxn3 protein from the (CAG)6 wild type allele (bracket) does not appear to be greatly 
reduced by expression of the expanded protein. 
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Figure 30. Summary of gene targeting and mating efficiencies. 
Schematic summary of the strategy for and efficiencies of gene targeting, blastocyst 
colonization, germline transmission of the knock-in allele, FLPe-mediated excision of the 
positive selection cassette, and generation of F3 colony founders.  The Atxn3(Q3KQ82)-
encoding expansion is represented by a red asterisk, and (⊥⊥⊥⊥) markers indicate cells or 
animals which are unsuitable for further analysis or utilization. 

Adapted from Seong, E., et al. (2004)  Trends Genet 20(2):59-62. 
 

 

 



 135

(Figure 31), compared to cells expressing either full length 3UIM or 2UIM ataxin-3.  

These observations implicate ataxin-3 in cytoskeletal regulation and tubulin stability, and 

provide the first clues to the function of this highly conserved but poorly characterized 

domain.   

Several lines of evidence already suggest direct and indirect links between tubulin 

and ataxin-3.  First, ataxin-3 interacts directly with both α-tubulin and β-tubulin with a 

high affinity (Kd 50 – 70 nM), and partially colocalizes with α-tubulin in Cos7 cells 

(Mazzucchelli et al., 2009).  2UIM Ataxin-3 also interacts with dynein and the 

microtubule-associated deacetylase HDAC6 to facilitate sequestration of misfolded 

proteins into centrosomal aggresomes (Burnett and Pittman, 2005).  Intriguingly, both 

ataxin-3 and HDAC6 interact with the microtubule-associated E3 ubiquitin ligase, parkin.  

Within neurons, parkin localizes in a punctate pattern along microtubules, where it can 

bind both tubulin dimers and microtubules.  Parkin has been shown to ubiquitinate 

tubulin, leading to enhanced proteasomal degradation, yet it also stabilizes established 

microtubules (Ren et al., 2003, Yang et al., 2005).  Parkin is also recruited to the 

centrosome during inhibition of the 26S proteasome, in a process that requires 

parkin:HDAC6 interaction and HDAC6-dependent microtubule deacetylation (Jiang et 

al., 2008).  Ataxin-3 and parkin also directly interact, with the Josephin domain 

interacting with the same regions required for parkin binding to tubulin and HDAC6, and 

at least one of the ataxin-3 UIMs interacting with the ubiquitin-like (UBL) domain of 

parkin.  Functionally, ataxin-3 preferentially cleaves K63 linkages within chains formed 

during parkin autoubiquitination, enriching the K48-only nature of these chains, and 

enhancing degradation of parkin (Durcan et al., 2008); it may also act to edit ubiquitin 

chains on parkin substrates.  Although centrosomal γ-tubulin, microtubule associated 

proteins, and cytoskeletal regulatory GTPases can also be regulated by ubiquitination, 

ataxin-3 binding or DUB activities have not been implicated specifically in these 

processes.   A model of functional interactions between ataxin-3, HDAC6, 
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dynein/dynactin, parkin, and microtubules, however, may explain the phenotype 

observed in cells highly overexpressing the UIM3(SA/DG) mutant ataxin-3.   

Combining these observations, I propose the following model (Figure 32A).  In 

the presence of wild type ataxin-3, HDAC6 senses the presence of proteasomal stress 

through a signal, such as the accumulation of appropriately edited K48-linked chains on 

polyubiquitinated protein substrates, which is dependent on ataxin-3 catalytic activity and 

UIMs 1 and 2.  In response to this signal, HDAC6 forms a complex with dynein/dynactin, 

parkin, and likely polyubiquitinated substrates, and translocates in a microtubule 

deacetylation-dependent fashion to the pericentrosomal area to form a compartment 

enriched in 20S proteasomal components, polyubiquitinated proteins, and ataxin-3 

(Kawaguchi et al., 2003, Burnett and Pittman, 2005).  This concentration of protein 

quality control machinery may allow protein:protein interactions between ubiquitin 

ligases, such as parkin, and chain-editing DUBs, such as ataxin-3, to enhance the 

efficiency of proteasomal degradation.  This sequestration of misfolded proteins and 

protein degradation machinery can be reversed, if the proteasomal stress is mitigated; 

however, in the presence of persistent proteasomal stress, this compartment remains 

compact and is walled off by a vimentin “cage” to form a cytoprotective aggresome.   

I hypothesize that the UIM3(SA/DG) mutant acts in at least one of two ways: (1) 

by increasing the ability of ataxin-3 to activate HDAC6, and (2) by altering the activity of 

the ataxin-3:parkin protein complex, leading to inefficient autoubiquitination and 

degradation of parkin (Figure 32B).  According to this model, when the UIM3(SA/DG) 

mutant is overexpressed, HDAC6 is more efficiently activated to recruit parkin to a 

pericentrosomal domain that is still enriched in protein quality control machinery, but 

which is not as heavily enriched with misfolded, polyubiquitinated proteins.  Within this 

pericentrosomal compartment, I hypothesize that ataxin-3:parkin complexes are still 

formed (mediated by the Josephin domain of ataxin-3 and the RIR domain of parkin).  It 

is possible that the ataxin-3:parkin complex does not specifically require UIM3 for 
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efficient, selective chain editing, but that the increase of HDAC6-dependent microtubule 

destabilization and accumulation of protein quality control machinery in the absence of 

ample misfolded protein substrates leads to efficient ubiquitination and degradation of the 

most abundant parkin substrates available – tubulin dimers.  Alternately, it is possible 

that in the absence of UIM3:parkin-UBL domain interactions, the efficient, selective K63 

chain editing activity of the ataxin-3:parkin complex is impaired, leading to a reduction 

of K48-only autoubiquitinated parkin and reduced parkin degradation.  The resulting 

increase in parkin levels may then increase the degradation of parkin substrates, including 

tubulin, and increase the stabilization of intact microtubules by parkin.  Either of these 

two mechanisms could lead to the observed loss of perinuclear Flag epitope signal, 

drastic decreases in total tubulin levels, and persistence of long cellular protrusions in the 

presence of overexpressed UIM3(SA/DG).  It will be important to test this model to 

determine whether UIM3 has an in vivo function involved in either the sensing of 

misfolded proteins by HDAC6 or the substrate specificity of ataxin-3 when in 

physiological protein-protein complexes. 

To test the effect of UIM3 mutation on HDAC6-dependent formation of a 

pericentrosomal protein degradation compartment/aggresome, it would not only be 

important to observe the subcellular distribution of HDAC6, parkin, 20S proteasomal 

subunits, and vimentin during transient UIM3(SA/DG) overexpression, compared to 

3UIM ataxin-3 overexpression, but also to observe this process in cells depleted of 

endogenous ataxin-3 and reconstituted as previously described (Burnett and Pittman, 

2005) with wild type 3UIM and UIM3-mutant ataxin-3.  To test the effect of UIM3 

mutation on the activity and linkage specificity of deubiquitination of ataxin-3:parkin 

complexes, wild type or UIM3-mutant ataxin-3 could be used in modified in vitro DUB 

reactions using autoubiquitinated parkin (Durcan et al., 2008) or other defined substrates, 

such as immunopurified ubiquitinated tubulin (Ren et al., 2003), in the presence of 

parkin.  Similarly, reconstituted in vitro systems could also be used to examine the effect 
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of wild type or UIM3-mutant ataxin-3 on active parkin autoubiquitination and substrate 

ubiquitination.  To directly examine the effects of wild type versus UIM3-mutant ataxin-

3 on the tubulin cytoskeleton, immunofluorescence could be used to compare 

microtubule distribution, acetylation, and stability in the presence or absence of 

microtubule destabilizing agents, such as colchicine and nocodazole.  Note that because 

serine phosphorylation occurs within ataxin-3 UIMs (Fei et al., 2007, Mueller et al., 

2009), an important control to include in all of these experimental systems is a UIM3 

mutant, such as UIM3(S/A) or UIM3(SA/AG), that is not capable of serving as a UIM3 

serine phosphorylation mimic, in order to demonstrate that these alterations are truly due 

to disruption of UIM:ubiquitin or UIM:UBL interactions.  These studies would aid our 

understanding of both the functional importance of UIM3 and the role of ataxin-3 in 

protein quality control systems, including aggresome formation.  

Cell-specific expression of minor ataxin-3 splice variants in 

affected and adjacent brain regions 

While 3UIM ataxin-3 is clearly the predominant, physiologically relevant splice 

isoform in brain tissue, and the isoform of choice for any experimental attempts to 

understand “full length” ataxin-3 function, the aggregation propensity and proteasomal 

route of degradation of the 2UIM isoform warrant additional characterization.  Although 

we were unable to detect unmodified 2UIM ATXN3 in the brains of MJD15.4 or 

MJD84.2 animals, it should be noted that a rapidly degraded minor isoform expressed in 

a limited subpopulation of cells would be difficult, if not impossible, to detect in whole 

brain or even whole cerebellar lysates.  If the disease-associated properties of 2UIM 

ataxin-3 have any pathophysiological significance, this isoform must be present and 

enriched in affected populations of cells.  To address the hypothesis that enhanced 

expression of 2UIM ataxin-3 contributes to selective neuronal toxicity, it would be 

important to determine whether this isoform is enriched at the mRNA level or detectable 
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at the protein level in affected neuronal populations.  In situ hybridization would be a 

reliable method to determine whether selectively vulnerable neuronal populations are 

enriched for 2UIM ataxin-3 at the message level.  Because there are no existing 

antibodies to specifically detect the 2UIM isoform, and because the hydrophobicity of the 

domain unique to this isoform makes the successful generation of such a tool unlikely, 

immunohistochemistry is not a viable approach to confirm results at the protein level.  

Instead, microdissection followed by 2D-Western analyses that compare affected 

(pontine and dentate nuclear) and unaffected (cerebral cortical and hippocampal) 

neuronal populations would be a viable alternative approach.   

While it would be ideal to perform these studies in brain tissue from SCA patients 

and controls, this approach is complicated both by the difficulty of obtaining post-

mortem brain tissue with acceptable RNA quality for in situ hybridization, and by the 

technical challenge of 2D-based protein analysis due to non-synonymous ataxin-3 SNP 

variation within human populations.  These studies could also reliably be conducted in 

MJD15.4 and MJD84.2 mice (to study splicing of the human transgene), and possibly in 

the Atxn3(Q3KQ82) homozygous knock-in mice generated here.  If the knock-in mice 

exhibit selective neurodegeneration, MALDI-TOF analysis could supplement a 2D-

Western approach, as the murine putative 2UIM isoform has a shorter hydrophobic 

domain (similar to the 2UIM, short SNP variant), and would have a low enough mass to 

facilitate a time of flight within the range of detection.  Humans with SCA3 and MJD84.2 

mice exhibit neurodegeneration in cerebellar dentate and pontine nuclei.  In the MJD84.2 

mice, 30 – 40% of neurons in these nuclei have been lost by 12 months of age, so it 

would be important to look both at and before this time point.  Therefore, analysis of 

RNA and protein from selected neuronal populations in 6 month and 12 month old mice 

would be ideal for these studies.  An absence of detectable enrichment of 2UIM-encoding 

transcript variants and detectable 2UIM protein in these neuronal populations would 

refute the hypothesis that this minor splice variant contributes significantly to the 
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selective neuronal toxicity observed in SCA3.  In such a scenario, any future research 

proposals focusing on the 2UIM isoform of ataxin-3 would be considered to have a much 

lower impact and significance to the field, compared to studies utilizing the 3UIM 

isoform.  

Splice Isoforms and Protein Context in Other 

Polyglutamine Diseases 

The prevalence of alternative splicing among polyglutamine disease proteins 

provides many opportunities to explore the role of alternative splicing in the other 

polyglutamine diseases.  Some of the most straightforward projects would involve those 

variants that have already been partially characterized.  For example, the observation that 

CACNA1A transcripts containing polyglutamine-encoding splice variants are enriched in 

the Purkinje cells of SCA6 patients, but not in controls (Tsunemi et al., 2008), needs to be 

followed up with studies at the protein level.  While it is possible that this enrichment at 

the transcript level is mirrored at the protein level, this transcript enrichment could also 

be either unrelated to protein levels or compensatory for the selective degradation or 

sequestration of polyglutamine-containing CaV2.1 isoforms.  Although higher numbers of 

Purkinje cells would need to be captured by microdissection (Ball and Hunt, 2004), a 

similar comparison of Purkinje cell versus granule cell CaV2.1 protein levels could be 

performed on existing snap-frozen human tissues (Tsunemi et al., 2008), as well as on 

tissues from SCA6Q84 versus SCA6Q14 knock-in mice (Watase et al., 2008).  Because the 

isoforms of interest either contain or lack the polyglutamine domain, they exhibit a shift 

in molecular weight corresponding to the documented repeat length, which can be 

confirmed by utilization of the polyglutamine-specific monoclonal antibody 1C2 

(Ishikawa et al., 2001).  Thus, identification of these variants does not require the 

development of a novel, isoform-specific antibody.  If the enrichment of (CAG)n 

containing CACNA1A transcripts in  diseased Purkinje cells is accompanied by an increase 
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in polyglutamine containing isoforms, it would provide the strongest evidence to date that 

alternative splicing results in cell type-specific, pathologically relevant alterations in 

protein context.  

Due to the androgen-dependence of polyglutamine toxicity in SBMA, it is 

generally thought of as a disease that only affects men; some heterozygous and 

homozygous females, however, exhibit mild symptoms (Ishihara et al., 2001, Schmidt et 

al., 2002, Tomik et al., 2006, Karaer et al., 2008, Soraru et al., 2008).  Moreover, 

symptoms in female carriers are not necessarily correlated with X-inactivation (Ishihara 

et al., 2001, Paradas et al., 2008).  Similarly, while there is a strong inverse correlation 

between age of symptom onset and repeat length in SBMA, there is still a wide variation 

in the age of onset for any particular symptom between individual patients with a given 

repeat length.  Splicing of the androgen receptor is dysregulated in some breast (Zhu et 

al., 1997) and prostate cancers (Jagla et al., 2007, Dehm et al., 2008, Hu et al., 2009, 

Marcias et al., 2010).  This alternative splicing produces some isoforms that exhibit 

enhanced retention in the cytoplasm (Jagla et al., 2007) and others that exhibit 

constitutive activation with androgen-independent nuclear translocation and 

transcriptional regulatory activities (Dehm et al., 2008, Hu et al., 2009, Marcias et al., 

2010).  It would be interesting and clinically relevant to determine whether any splice 

variants belonging to this latter category are observed or enriched in females who exhibit 

some SBMA symptoms (compared to asymptomatic carriers) and SBMA patients who 

are resistant to clinical improvement during leuprorelin therapy (compared to 

responders).  If constitutively activated isoforms are overrepresented in either of these 

groups of individuals, AR alternative splicing might be a useful prognostic indicator of 

disease penetrance and therapeutic response in SBMA.   

Finally, examination of splice variation in affected neuronal populations 

compared to unaffected cell types may provide clues to the question of which elements of 

protein context are important to disease pathophysiology.  The use of tissue 
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microdissection coupled with splice variant analysis, similar to that discussed earlier for 

CACNA1A mRNA, may reveal variants that are selectively enriched in vulnerable 

neuronal populations (either constitutively or only in the context of a (CAG)n expansion).  

If this type of splice variation exists among other polyglutamine disease gene products, 

careful examination of the corresponding protein isoforms may highlight peptide 

sequences important for conformational stability, subcellular protein localization, post-

translational modifications, and specific protein:protein interactions that could modulate 

polyglutamine toxicity.   

Phenotypic Characterization of Atxn3(Q3KQ82) Knock-in 

Mice  

While we know that the F2 FLPe(tg/-), positive selection cassette mosaic, 

Atxn3(Q3KQ82)(+/-) knock-in animals are viable and express detectable polyglutamine-

expanded ataxin-3 protein, significant work remains for the establishment of this line.  

These F2 animals are currently being mated to wild type C57BL/6J animals to generate 

FLPe(-/-), FRT-only Atxn3(Q3KQ82)(+/-) F3 founders.  These animals will be crossed to 

C57BL/6J mice to establish the knock-in line, and crossed to each other to produce 

homozygous knock-in mice.  These animals and their progeny will also be used for the 

initial phenotypic characterization of this mouse model of SCA3.  The colony will be 

monitored to assess whether transmission of the knock-in allele follows the predicted 

Mendelian ratios in Atxn3(Q3KQ82)(+/-) x wild type C57BL/6 and Atxn3(Q3KQ82)(+/-) x 

Atxn3(Q3KQ82)(+/-) crosses.  Genotyping will also routinely be conducted with the 

primers MJD10F1 and MJD10R3, to monitor progeny for large intergenerational changes 

in repeat length (Figure 25 – 27).  Selected animals will also be assessed for somatic and 

intergenerational repeat instability analysis by PCR-amplification using primers flanking 

the (CAG)n repeats followed by DNA sequencing, as previously described (Boy et al., 
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2010).  Both male and female knock-in animals will be used as breeders, with in order to 

increase the likelihood of anticipation and repeat stability, respectively. 

Wild type, hemizygous knock-in, and homozygous knock-in mice will be 

longitudinally followed for rigorous phenotypic analysis.  An initial cohort of animals 

will be followed to assess monthly weights and survival.  At 3, 6, 9, 12, and 18 months of 

age, cohorts of animals will undergo anatomic, biochemical, and behavioral assessment, 

based on the SmithKline Beecham, Harwell, Imperial College School of Medicine, Royal 

London Hospital, Phenotype, Assessment (SHIRPA) protocol (Rogers et al., 1997).  

While a comprehensive evaluation will include a complete SHIRPA protocol, priority 

studies will be dedicated to assessing the protein aggregation and neurodegenerative 

phenotypes in these animals.  Protein misfolding and aggregation will be assessed by 

non-denaturing protein fractionation of brain lysates and immunolabeling of prepared 

brain tissue.  Behavioral analysis focused on the anticipated neurodegenerative phenotype 

will include open field analysis to assess activity level, as well as beam walking and gait 

analysis to detect an ataxic phenotype.  Additionally, cohorts of these animals will be 

assessed for proteasomal dysfunction (Bowman et al., 2005), transcriptional 

dysregulation (Li et al., 2002, Evert et al., 2006), and alterations of alternative splicing 

(Chapter 2).   

Conclusions 

The importance of protein context in the manifestation of specific polyglutamine 

diseases has become increasingly clear.  While therapeutic strategies for the treatment of 

polyglutamine diseases have included approaches designed to reduce toxic protein 

expression or non-specifically neutralize the toxicity of the expanded polyglutamine 

repeats, the most promising therapeutic strategy in clinical trials to date was developed 

based on a protein context-specific understanding of the behavior of the AR within cells 

(Banno et al., 2009).  Data from leuprorelin trials (Katsuno et al., 2004, Banno et al., 
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2009) and conditional mouse models (Orr and Zoghbi, 2000, Yamamoto et al., 2000) 

suggest that the progression of polyglutamine disease symptoms are reversible with 

interventions that reduce key disease-specific toxic events.  Although there is ample room 

for exploration of approaches that decrease levels of all expanded polyglutamine proteins 

or generally enhance cellular protein quality control mechanisms, protection of 

vulnerable neuronal populations may require protein context-specific approaches.  Future 

studies must seek to better understand polyglutamine-induced loss of protein function 

events, to characterize polyglutamine-induced aberrations in functional protein 

complexes and restore endogenous protein-protein interactions, and to understand the 

complexity that alternative splicing adds to disease-specific protein context.  To meet 

these goals, the polyglutamine disease field requires additional model systems that 

preserve as much of the genomic, transcript, and protein context as possible, while 

manifesting quantifiable symptoms that are robust enough to test the efficacy of 

interventions. 
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Figure 31. Mutation of UIM3 decreases tubulin levels.   
Representative Western blotting of lysates from Cos7 cells transiently expressing Flag-
tagged ataxin-3 constructs.  Overexpression of the UIM3(SA/DG) mutant, but neither 
endogenous C-terminal splice variant, dramatically decreases β-tubulin levels.  GAPDH 
is used as a loading control. 
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Figure 32. Model for the role of UIM3 in aggresome formation and microtubule 
stability. 

(A)  The normal role of ataxin-3, HDAC6, and parkin in pericentrosomal degradation of 
misfolded proteins.  (A1)  Ataxin-3 is required for HDAC6 to sense abundant misfolded 
proteins.  (A2)  HDAC6 forms a complex with dynein/dynactin to transport parkin and 
polyubiquitinated substrates towards the centrosome, in a microtubule deacetylation-
dependent manner.  (A3)  This compartment is enriched in 20S proteasomal components, 
polyubiquitinated proteins, and ataxin-3.  The concentration of protein quality control 
machinery and misfolded proteins facilitates an interaction between parkin and ataxin-3.  
(A4) The cooperative ubiquitin chain elongation and editing activities of ataxin-3:parkin 
complexes enhance the efficiency of proteasomal degradation.  (B)  The ataxin-3 
UIM3(SA/DG) mutant dysregulates this process, leading to decreases in total tubulin, 
loss of IF signal from an N-terminal Flag epitope in the pericentrosomal area, and an 
increase in 3-dimensional cellular complexity.  (B1) The ataxin-3 UIM3(SA/DG) mutant 
may be able to more efficiently activate HDAC6 to (B2) recruit parkin to the 
pericentrosomal domain in the absence of a large burden of misfolded proteins.  (B3) The 
resulting domain is still enriched in protein quality control machinery, but not as heavily 
enriched with misfolded, polyubiquitinated proteins.  In this environment, HDAC6-
dependent accumulation of protein quality control machinery in the absence of ample 
misfolded proteins may lead increased ubiquitination and (B4) degradation of abundant 
tubulin dimers provided during the deacetylation-dependent HDAC6 destabilization of 
microtubules.  (B3) Alternately, UIM3-mutant ataxin-3:parkin complexes may behave 
abnormally, reducing the autoubiquitination and degradation of parkin, and leading to 
(B4) increased degradation of parkin substrates, including tubulin.  Decreased levels of 
soluble tubulin dimers will further destabilize the tubulin cytoskeleton; increased ratios of 
parkin to microtubules, however, may increase the peripheral stability of the remaining, 
intact microtubules.  Note that in this model, formation of the ataxin-3:parkin complex 
masks the N-terminal Flag epitope.  
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