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ABSTRACT

We study several unbounded operators with view to extending von Neumann’s

theory of deficiency indices for single Hermitian operators with dense domain in

Hilbert space. If the operators are non-commuting, the problems are difficult, but

special cases may be understood with the use of representation theory. We will fur-

ther study the partial derivative operators in the coordinate directions on the L2

space on various covering surfaces of the punctured plane. The operators are de-

fined on the common dense domain of C∞ functions with compact support, and

they separately are essentially selfadjoint, but the unique selfadjoint extensions will

be non-commuting. This problem is of a geometric flavor, and we study an index

formulation for its solution.

The applications include the study of vector fields, the theory of Dirichlet prob-

lems for second order partial differential operators (PDOs), Sturm-Liouville problems,

H. Weyl’s limit-point/limit-circle theory, Schrödinger equations, and more.
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CHAPTER 1
INTRODUCTION

At the foundation of quantum mechanics, we have such notions as states, ob-

servables, expectation values. Quantum mechanical states become vectors in Hilbert

space, and observables are represented by selfadjoint operators. These fundamental

concepts in quantum theory came from early attempts by physicists at making sense

of spectral lines in early atomic experiments. With the introduction of the Spectral

Theorem for selfadjoint operators and the work of J. von Neumann, these notions

from physics now acquire mathematical precision. For example the spectral resolu-

tion for a particular selfadjoint operator offers the measures referred to in the notion

of “expected value” of an observable measured in a state. Operators from quantum

physics such as position and momentum do not commute, and this is at the root

of Heisenberg’s uncertainty principle. But there are still many commuting families,

and one then seeks a simultaneous diagonalization. In mathematical terms, we speak

of a common spectral resolution for the commuting selfadjoint operators. Since the

important operators are unbounded, one is faced with two notions “formally selfad-

joint,” and selfadjoint for a single operator, say A. Initially this distinction was poorly

understood, but von Neumann resolved it with his introduction of deficiency-spaces

and deficiency-indices. If the closure of A is selfadjoint, we say that A is essentially

selfadjoint; and this corresponds to von Neumann indices (0, 0). Now von Neumann’s

theory applies to a single operator A, formally selfadjoint (also called symmetric or

Hermitian) with a dense domain D in a fixed Hilbert space H . But von Neumann’s
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theory does not apply to more than one operator. If for example, we have just two

Hermitian operators defined and commuting on a common dense domain D in H ,

then there is nothing available (like deficiency indices) to account for whether the

two operators might, or might not, have commuting extensions; where “commuting”

now refers to existence of a common spectral resolution. Even if the two operators,

commuting on a common domain D , are known to both be essentially selfadjoint this

does not mean that they have a common resolution (informally, that they are simul-

taneously diagonalizable.) With a common spectral resolution, if one exists, we say

that the two operators are strongly commuting. The question is important because

it is the strongly commuting operators that offer well-defined expectation values in

the sense of quantum mechanical measurements. Our thesis is concerned with “what

can go wrong.” We show that the answer entails invariants for particular Riemann

surfaces, and new notions of index. We show a link between this new index and a

counting number, more precisely, the counting of sheets in a multiple-cover Riemann

surface.

In this thesis, we study several unbounded operators with view to extending

von Neumann’s theory of deficiency-indices. In the case of a single Hermitian operator

A with dense domain in a Hilbert space, von Neumann proved that the possibility of

selfadjoint extensions is decided by a pair of index numbers (m,n). In the abstract

theory, von Neumann further proved that all values of the two numbers m and n

(deficiency indices) are possible; but a given Hermitian operator A admits selfadjoint

extensions if and only if m = n. Still there are remaining unsolved problems: For
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example if m = n = 2, there is no classification; similarly the case of indices (1, 2) is

not well understood in the sense of classification; and for higher indices the situation

is even harder.

The applications here include bounded domains Ω in Rn, and the partial

derivative operators in the coordinate directions. For Hilbert space we may take

L2(Ω), and for common dense domain the C∞ functions with compact support in Ω.

In this case, all the partial derivative operators in the coordinate directions separately

have indices (∞,∞), but commuting selfadjoint extensions may or may not exist. If

it exits, one obtains n commuting one-parameter unitary groups, and so a unitary

representation of the abelian group (Rn,+) on L2(Ω). The representation acts locally

as translation in Ω. A choice of mutually commuting selfadjoint extensions amounts

to certain boundary condtions imposed on Ω. For example if n = 2, and Ω is a disk

or a planar triangle, then the two Hermitian partial derivative operators do not have

commuting selfadjoint extensions. This problem is of a spectral theoretic flavor. The

pioneering work in this direction is due to Fuglede [21]. For the extensive results on

this problem, we refer to the papers [24], [35], [46], and the survey [15].

Special cases of the problem can be understood with the use of representation

theory. Our motivation is the famous example of Nelson [32]. We will further consider

the L2 space on various covering surfaces M̃ of the punctured plane, and the partial

derivative operators in the coordinate directions defined on the common dense do-

main C∞c (M̃). The derivative operators separately are essentially selfadjoint, but the

unique selfadjoint extensions will be non-commuting. This problem is of a geometric
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flavor, and we will be studying an index formulation for its solution.

In Chapter 2, we review the basic theory of unbounded operators in Hilbert

space. We emphasize Stone’s paper on characteristic matrix [50], and illustrate some

of its applications in normal operators. This is a very useful tool in operator theory,

but has long been overlooked in the literature.

In Chapter 3, we review the basic theory of ∗-algebras and their representa-

tions. R.T. Powers showed that every unitary representation of a Lie group U induces

a selfadjoint representation dU of the enveloping algebra on the the G̊arding space.

Conversely, if ρ is a representation of the enveloping algebra, we study conditions so

that ρ = dU , i.e. ρ is derived from some unitary representation of the Lie group. For

general notions, we refer to [25], [35], [36] and [46].

In Chapter 4, we consider a system of n Hermitian operators, commuting on a

common invariant dense domain in a Hilbert space, separately essentially selfadjoint,

and we ask when do they have mutually commuting selfadjoint extensions? We

study an index theory for such systems, and formulate the solution in the settings of

representations of ∗-algebras. For n = 2, such systems has been extensively studied

in a series of papers [41], [40], [42], [43], [44], [45]. The methods used there is based on

resolvents of the operators. We take a different approach and the emphasis is on the

link between geometry of the manifolds and spectrum of the Nelson-Laplace operator

on L2(M̃).
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CHAPTER 2
UNBOUNDED OPERATORS IN HILBERT SPACES

In this chapter, we review the basic theory of unbounded operators in Hilbert

space. This theory has been developed in many textbooks and monographs. For

general notions, we refer to [13, 14], [6], [38]. For von Neumann algebras, we refer to

[28, 29]. The most succinct treatment on spectral theory and spectral multiplicities

can be found in E. Nelson’s famous lecture notes [33]. For applications in quantum

mechanics, we also refer to the lecture notes by W. Arveson [5].

2.1 Preliminaries

In this section, we recall some definitions in the theory of unbounded operators.

The idea of characteristic matrix was developed in the beautiful paper of M.S. Stone

[50]. This is a very useful tool in operator theory, but has long time been overlooked

in the literature. For some of its recent applications, we refer to [27][8].

2.1.1 Domain, Graph

Let H be a complex Hilbert space. An operator A is a linear mapping whose

domain D(A) and range R(A) are subspaces in H . The kernel N (A) of A consists

of all a ∈ D(A) such that Aa = 0. A is uniquely determined by its graph

G (A) = {(a,Aa) : a ∈ D(A)} (2.1)
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in H ⊕H , carrying the graph inner product and norm

〈b, a〉A = 〈b, a〉+ 〈Ab,Aa〉 (2.2)

‖a‖A =
√
〈a, a〉A (2.3)

for all a, b ∈ D(A). In general, a subspace K in H ⊕H is an operator graph if and

only if (0, a) ∈ K implies a = 0.

Let A,B be two operators. B is an extension of A, denoted by A ⊂ B, if

G (A) ⊂ G (B). A is closable if G (A) is the graph of an operator Ā, namely, the

closure of A. A is closed if A = Ā.

If A is closed, a dense subspace D in H is said to be a core of A if A
∣∣
D

= A.

Proposition 2.1. The following are equivalent.

1. A = Ā.

2. G (A) = G (A).

3. D(A) is a Hilbert space with respect to 〈·, ·〉A.

4. If (an, Aan) is a sequence in G (A) such that (an, Aan) → (a, b), then (a, b) ∈

G (A). In particular, b = Aa.

2.1.2 Adjoint Operators

Let A be an operator in a Hilbert space H . G (A)⊥ consists of (−b∗, b) such

that (−b∗, b) ⊥ G (A) in H ⊕H .

Proposition 2.2. The following are equivalent.

1. D(A) is dense in H.
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2. (b, 0) ⊥ G (A) =⇒ b = 0.

3. If (b,−b∗) ⊥ G (A), the map b 7→ b∗ is well-defined.

If any of the conditions is satisfied, A∗ : b 7→ b∗ defines an operator, called the

adjoint of A, such that

〈b, Aa〉 = 〈A∗b, a〉 (2.4)

for all a ∈ D(A). G (A)⊥ is the inverted graph of A∗. The adjoints are only defined

for operators with dense domains in H .

For unbounded operators, (AB)∗ = B∗A∗ does not hold in general. The

situation is better if one of them is bounded.

Theorem 2.3 (Theorem 13.2 [39]). If S, T, ST are densely defined operators then

(ST )∗ ⊃ T ∗S∗. If, in addition, S is bounded then (ST )∗ = T ∗S∗.

The next theorem follows directly from the definition of the adjoint operators.

Theorem 2.4. If A is densely defined then H = R(A)⊕N (A∗).

Finally, we recall some definitions:

• A is selfadjoint if A = A∗.

• A is essentially selfadjoint if Ā = A∗.

• A is normal if A∗A = AA∗.

• A is regular if D(A) is dense and it is closed.
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2.1.3 Characteristic Matrix

The method of characteristic matrix was developed by M.S. Stone’s [50]. It is

extremely useful in operator theory, but has long been overlooked in the literature.

We recall some of its applications in normal operators.

Let A be an operator in a Hilbert space H . Let P = (Pij) be the projection

from H ⊕H onto G (A). The 2 × 2 operator matrix (Pij) of bounded operators in

H is called the characteristic matrix of A.

Since P 2 = P ∗ = P , the following identities hold

P ∗ij = Pji (2.5)

∑
k

PikPkj = Pij (2.6)

In particular, P11, P22 are selfadjoint.

Theorem 2.5. Let P = (Pij) be the projection from H ⊕H onto a closed subspace

K . The following are equivalent.

1. K is an operator graph.

2.

[
P11 P12

P21 P22

] [
0
a

]
=

[
0
a

]
=⇒ a = 0.

3. P12a = 0 , P22a = 0 =⇒ a = 0.

If any of these conditions is satisfied, let A be the operator whose graph is equal to

K then [
P11 P12

P21 P22

] [
a
b

]
=

[
P11a+ P12b
P21a+ P22b

]
∈ G (A)

that is,

A : (P11a+ P12b) 7→ P21a+ P22b. (2.7)
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In particular,

AP11 = P21 (2.8)

AP12 = P22 (2.9)

Proof. Setting v := (a, b), then v ∈ K if and only if Pv = v. The theorem follows

from this.

The next theorem describes the adjoint operators.

Theorem 2.6. Let A be an operator with characteristic matrix P = (Pij). The

following are equivalent.

1. D(A) is dense in H .

2.

[
b
0

]
⊥ G (A) = 0 =⇒ b = 0.

3. For all (−b∗, b) ∈ G (A)⊥, the map A∗ : b 7→ b∗ is a well-defined operator.

4.

[
1− P11 −P12

−P21 1− P22

] [
b
0

]
=

[
b
0

]
=⇒ b = 0.

5. P11b = 0, P21b = 0 =⇒ b = 0.

If any of the above conditions is satisfied, then[
1− P11 −P12

−P21 1− P22

] [
a
b

]
=

[
(1− P11)a− P12b
(1− P22)b− P21a

]
∈ G (A)⊥

that is,

A∗ : P21a− (1− P22)b 7→ (1− P11)a− P12b. (2.10)

In particular,

A∗P21 = 1− P11 (2.11)

A∗(1− P22) = P12. (2.12)
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Proof. The projection from H ⊕H onto G (A)⊥ is 1−P . The theorem follows from

this and Proposition 2.2.

Theorem 2.7. Let A be a regular operator with characteristic matrix P = (Pij).

1. The matrix entries Pij are given by

P11 = (1 + A∗A)−1 P12 = A∗(1 + AA∗)−1

P21 = A(1 + A∗A)−1 P22 = AA∗(1 + AA∗)−1 (2.13)

2. 1− P22 = (1 + AA∗)−1.

3. 1 + A∗A, 1 + AA∗ are selfadjoint operators.

4. The following containments hold

A∗(1 + AA∗)−1 ⊃ (1 + A∗A)−1A∗ (2.14)

A(1 + A∗A)−1 ⊃ (1 + AA∗)−1A (2.15)

Proof. From AP11 = P21 and A∗P21 = 1− P11, it follows that

(1 + A∗A)P11 = 1.

That is, 1 +A∗A is a Hermitian extension of P−1
11 . By (2.5), P11 is selfadjoint and so

is its inverse. Therefore, 1 + A∗A is equal to P−1
11 , or

P11 = (1 + A∗A)−1.

This also yields P21 = AP11 = A(1+A∗A)−1. From AP12 = P22 and A∗(1−P22) = P12,

it follows that

(1 + AA∗)(1− P22) = 1.



11

A similar argument shows that

1− P22 = (1 + AA∗)−1.

Therefore, P12 = A∗(1− P22) = A∗(1 + AA∗)−1 and P22 = AP12 = AA∗(1 + AA∗)−1.

This proves 1, 2 and 3.

Note that

P12 = P ∗21 = (AP11)∗ ⊃ P11A
∗

this yields (2.14). Similarly,

P21 = P ∗12 = (A∗(1− P22))∗ ⊃ (1− P22)A

gives (2.15). Thus 4 holds.

2.1.4 Commutants

Let A,B be operators in a Hilbert space H , and suppose B is bounded. B is

said to commute (strongly) with A if BA ⊂ AB.

Lemma 2.8. B commutes with A if and only if B commutes with Ā (assuming A

exists).

Proof. Suppose BA ⊂ AB, we check that BA ⊂ AB. The converse is trivial. For

(a,Aa) ∈ G (A), choose a sequence (an, Aan) ∈ G (A) such that (an, Aan) → (a,Aa).

By assumption, (Ban, ABan) = (Ban, BAan) ∈ G (A). Thus, (Ban, ABan)→ (Ba,BAa) ∈

G (A). That is, Ba ∈ D(A) and ABa = BAa.
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Lemma 2.9. Let A be a closed operator with characteristic matrix P = (Pij). Let B

be a bounded operator, and

QB :=

[
B 0
0 B

]
.

1. B commutes with A ⇔ B leaves G (A) invariant ⇔ QBP = PQBP .

2. B commutes with Pij ⇔ QBP = PQB ⇔ QB∗P = PQB∗ ⇔ B∗ commutes with

Pij.

3. If B,B∗ commute with A, then B,B∗ commute with Pij.

Proof. Obvious.

A closed operator is said to be affiliated with a Von Neumann algebra M

if it commutes with every unitary operator in M′. By Theorem 4.1.7 in [28], every

operator in M′ can be written as a finite linear combination of unitary operators in

M′. Thus, A is affiliated with M if and only if A commutes with every operator in

M′.

Theorem 2.10. Let A be a closed operator with characteristic matrix P = (Pij). Let

M be a Von Neumann algebra, and

QB :=

[
B 0
0 B

]
, B ∈M′.

The following are equivalent:

1. A is affiliated with M.

2. PQB = QBP , for all B ∈M′.

3. Pij ∈M.
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4. If D(A) is dense, then A∗ is affiliated with M.

Proof. Notice that M is selfadjoint. The equivalence of 1, 2, 3 is a direct consequence

of Lemma 2.9.

P⊥ := 1−P is the projection onto the inverted graph of A∗, should the latter

exists. PQB = QBP if and only if P⊥QB = QBP
⊥. Thus, 1 is equivalent to 4.

2.1.5 Normal Operators

As a first application of Stone’s characteristic matrix, we give a new proof to

following theorem concerning operators of the form A∗A.

Theorem 2.11 (Von Neumann). If A is a regular operator in a Hilbert space H ,

then A∗A is selfadjoint and D(A∗A) is a core of A. In particular, D(A∗A) is dense

in H .

Proof. By Theorem 2.7, A∗A is selfadjoint. Let D := D(A∗A), and (a,Aa) ∈ G (A)

such that (a,Aa) ⊥ G (A
∣∣
D

). That is, for all b in D ,

〈a, b〉+ 〈Aa,Ab〉 = 〈a, (1 + A∗A)b〉 = 0.

By Theorem 2.7, 1 + A∗A = P−1
11 . Since P11 is a bounded operator, R(1 + A∗A) =

D(P11) = H . It follows that a ⊥H , and so a = 0.

Theorem 2.12 (Von Neumann). Let A be a regular operator in a Hilbert space H .

Then A is normal if and only if D(A) = D(A∗) and ‖Aa‖ = ‖A∗a‖, for all a ∈ D(A).

Proof. Suppose A is normal, and let D := D(A∗A) = D(AA∗). Then ‖Aa‖ = ‖A∗a‖

for all a ∈ D , and so D(A
∣∣
D

) = D(A∗
∣∣
D

). By Theorem 2.11, A
∣∣
D

= A and A∗
∣∣
D

= A∗.



14

It follows that D(A) = D(A∗) and ‖Aa‖ = ‖A∗a‖, for all a ∈ D(A).

Conversely, the map Aa 7→ A∗a, a ∈ D(A), extends uniquely to a partial

isometry V with initial space R(A) and final space R(A∗), such that A∗ = V A. By

Theorem 2.3, A = A∗V ∗. Then A∗A = A∗(V ∗V )A = (A∗V ∗)(V A) = AA∗. Thus, A

is normal.

The following theorem is due to M.S. Stone.

Theorem 2.13 (M.S. Stone). Let A be a regular operator in a Hilbert space H . Let

P = (Pij) be the characteristic matrix of A. The following are equivalent.

1. A is normal.

2. Pij are mutually commuting.

3. A is affiliated with an abelian Von Neumann algebra.

Remark 2.14. For the equivalence of 1 and 2, we refer to the original paper of Stone.

The most interesting part is 1⇔ 3. The idea of characteristic matrix gives rise to an

elegant proof without reference to the spectral theorem.

Proof of Theorem 2.13. Assuming 1⇔ 2, we prove that 1⇔ 3.

Suppose A is normal, i.e. Pij are mutually commuting. Then A is affiliated

with the abelian Von Neumann algebra {Pij}′′. For if B ∈ {Pij}′, then B commutes

Pij, and so B commutes with A by Lemma 2.9.

Conversely, if A is affiliated with an abelian Von Neumann algebra M, then

Pij ∈ M by Theorem 2.10. This shows that Pij are mutually commuting, and A is
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normal.

2.1.6 Functional Calculus

We recall the spectral theorem of a single selfadjoint operator.

Theorem 2.15 (multiplication operator). Let A be a selfadjoint operator on a Hilbert

space H . Then there is a measure space (M,µ) and a unitary operator U : H →

L2(M,µ), such that UAU∗ is a multiplication operator by a real measurable function

Â on M . The domain D(A) of A consists of all u ∈H , such that

∫
M

(
1 + |Â|2(x)

)
|û(x)|2dµ(x) <∞

where v̂ := Uv, for all v ∈H .

Since A is in general unbounded, its spectrum is an unbounded closed subset

of R. For all Borel function ψ on R, define the operator

ψ(A) := U∗ψ(Â)U

with domain D(ψ(A)) consisting of all u ∈H , such that

∫
M

(
1 + |ψ(Â)|2(x)

)
|û(x)|2dµ(x) <∞

In particular,

E : ω 7→ U∗χω(Â)U

is a well-defined bounded operator for all ω in the Borel σ-algebra B of R. Since

χw = χ̄w = χ2
w, E(ω) is a selfadjoint projection. E(·) is a projection-valued measure,

i.e. a homomorphism from B into the lattice of projections in H .
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Theorem 2.16 (PVM). Let A be a selfadjoint operator on H . There is a unique

projection-valued measure E(dλ) defined on the Borel σ-algebra of R such that

A =

∫
R
λE(dλ).

Moreover, for all Borel functiona ψ on R,

ψ(A) =

∫
R
ψ(λ)E(dλ).

D(ψ(A)) consists of all u ∈H , such that

∫
R
(1 + |ψ(λ)|2)‖E(dλ)u‖2 <∞

Diagonalizing a family of bounded selfadjoint operators may be formulated in

the settings of commutative C∗-algebras. By the structure theorem of Gelfand and

Naimark, every commutative C∗-algebra containing the identity element is isomorphic

to the algebra C (X) of continuous functions on a compact Hausdorff space X, and X

is unique up to homeomorphism. The classification of all the representations of C (X)

may be understood using the idea of σ-measures (square densities). It also leads to

the multiplicity theory of selfadjoint operators. The best treatment on this subject

can be found in [33]. We also refer to [4].

2.1.7 Polar Decomposition

Let A be a regular operator in a Hilbert space H . By Theorem 2.11, A∗A is

a positive selfadjoint operator and it has a unique positive square root |A| :=
√
A∗A.

Theorem 2.17.
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1.
√
A∗A is the unique positive selfadjoint operator T satisfying D(T ) = D(A),

and ‖Ta‖ = ‖Aa‖ for all a ∈ D(A).

2. N (|A|) = N (A), R(|A|) = R(A∗).

Proof. Suppose T =
√
A∗A, i.e. T ∗T = A∗A. Let D := D(T ∗T ) = D(A∗A). By

Theorem 2.11, D is a core of both T and A. Moreover, ‖Ta‖ = ‖Aa‖, for all a ∈ D .

We conclude from this norm identity that D(T ) = D(A) and ‖Ta‖ = ‖Aa‖, for all

a ∈ D(A).

Conversely, suppose T has the desired properties. For all a ∈ D(A) = D(T ),

and b ∈ D(A∗A),

〈Tb, Ta〉 = 〈Ab,Aa〉 = 〈A∗Ab, a〉

This implies that Tb ∈ D(T ∗) = D(T ), T 2b = A∗Ab, for all b ∈ D(A∗A). That is, T 2

is a selfadjoint extension of A∗A. Since A∗A is selfadjoint, T 2 = A∗A.

The second part follows from Theorem 2.4.

Consequently, the map |A|a 7→ Aa extends to a unique partial isometry V

with initial space R(A∗) and final space R(A), such that

A = V |A|. (2.16)

Equation (2.16) is called the polar decomposition of A. It is clear that such decom-

position is unique.

Taking adjoints in (2.16) yields A∗ = |A|V ∗, so that

AA∗ = V A∗AV ∗ (2.17)
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Restrict AA∗ to R(A), and restrict A∗A restricted to R(A∗). Then the two restric-

tions are unitarily equivalent. It follows that A∗A, AA∗ have the same spectrum,

aside from possibly the point 0.

By (2.17), |A∗| = V |A|V ∗ = V A∗, where |A∗| =
√
AA∗. Apply V ∗ on both

sides gives

A∗ = V ∗|A∗|. (2.18)

By uniqueness, (2.18) is the polar decomposition of A∗.

Theorem 2.18. A is affiliated with a Von Neumann algebra M if and only if |A| is

affiliated with M and V ∈M.

Proof. Let U be a unitary operator in M′. The operator UAU∗ has polar decompo-

sition

UAU∗ = (UV U∗)(U |A|U∗).

By uniqueness, A = UAU∗ if and only if V = UV U∗, |A| = U |A|U∗. Since U is

arbitrary, we conclude that V ∈M, and A is affiliated with M.

2.2 Extensions of Hermitian Operators

von Neumann’s index theory gives a complete classification of extensions of

single Hermitian unbounded operators with dense domain in a given Hilbert space.

The theory may be adapted to Hermitian representations of ∗-algebras [26].
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2.2.1 von Neumann’s Index Theory

Let A be a densely defined Hermitian operator on a Hilbert space H , i.e.

A ⊂ A∗. If B is any Hermitian extension of A, then

A ⊂ B ⊂ B∗ ⊂ A∗. (2.19)

Since the adjoint operator A∗ is closed, there is no loss of generality to assume that

A is closed and only consider its closed extensions.

The relation in (2.19) suggests a detailed analysis in D(A∗)\D(A). Since the

domain of A is dense, the usual structural analysis in H (orthogonal decomposition,

etc.) is not applicable. However, this structure is brought out naturally when D(A∗)

is identified with the operator graph G (A∗) in H ⊕H . Under this identification,

D(A) is a closed subspace in the Hilbert space D(A∗), and

D(A∗) = D(A)⊕ (D(A∗)\D(A)) . (2.20)

The question of extending A amounts to a further decomposition

D(A∗)\D(A) = S ⊕K (2.21)

in such a way that

D(Ã) := D(A)⊕ S (2.22)

Ã := A∗
∣∣
D(Ã)

. (2.23)

defines a Hermitian operator Ã. This is true if and only if S is symmetric, in the

sense that

〈A∗g, f〉 − 〈g, A∗f〉 = 0 (2.24)
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for all f, g ∈ S. By the polarization identity, (2.24) is equivalent to

〈f, A∗f〉 ∈ R (2.25)

for all f ∈ S, Thus, there is a bijection between (closed) Hermitian extensions of A

and (closed) symmetric subspaces in D(A∗)\D(A).

If A∗ϕ = zϕ, =(z) 6= 0, then ϕ does not belong to the domain of any Hermitian

extension Ã ⊃ A. Otherwise, Ãϕ = A∗ϕ = zϕ and 〈ϕ, Ãϕ〉 /∈ R. This observation is

in fact ruling out the “wrong” eigenvalues of Ã, which is supposed to be Hermitian.

Theorem 2.19 shows that A is selfadjoint if and only if all the “wrong” eigenvalues

are excluded.

A complete characterization of Hermitian extensions of a given Hermitian op-

erator is due to von Neumann.

Theorem 2.19. Let A be a densely defined closed Hermitian operator on H . A is

selfadjoint if and only if there exists z, =(z) 6= 0, such that N (A∗−z) = N (A∗−z) =

0.

Proof. We prove that N (A∗ − z) = N (A∗ − z) = 0, =(z) 6= 0, implies that A = A∗.

The hypothesis is equivalent to R(A− z) = R(A− z) = H . Let g ∈ D(A∗). For all

f ∈ D(A),

〈g, (A− z)f〉 = 〈(A∗ − z)g, f〉 = 〈(A− z)g0, f〉 = 〈g0, (A− z)f〉

where (A∗ − z)g = (A − z)g0, for some g0 ∈ D(A). Thus 〈g − g0, (A − z)f〉 = 0 for

all f ∈ D(A). Since R(A − z) = H , then g − g0 = 0, so that g = g0 ∈ D(A). This

shows that D(A∗) ⊂ D(A).
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Definition 2.20. Suppose A is a densely defined Hermitian operator in H . The

closed subspaces

D+ := {f ∈ D(A∗) : A∗f = if} (2.26)

D− := {f ∈ D(A∗) : A∗f = −if} (2.27)

are called the deficiency spaces of A, and their dimensions

d+ := dim D+ (2.28)

d− := dim D− (2.29)

are called the deficiency indices of A.

Theorem 2.21 (von Neumann). Let A be a densely defined closed Hermitian operator

on H . Then

D(A∗) = D(A)⊕D+ ⊕D−. (2.30)

Remark 2.22. D(A∗) is identified with its graph G (A∗), carrying the graph inner

product and the graph norm. Thus, D(A∗) is a Hilbert space.

Proof of Theorem 2.21. Since A is a closed operator, it follows that D(A), identified

with G (A), is a closed subspace in D(A∗). Notice that D± are closed subspaces in

H , since D± = R(A∓ i)⊥ . For all f ∈ D±,

‖f‖2
A∗ = ‖f‖2 + ‖A∗f‖ = 2‖f‖

and this implies that D±, identified with G (A∗
∣∣
D±

), are also closed subspaces in

D(A∗).
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For all f ∈ D(A) and f+ ∈ D+,

〈f, f+〉A∗ = 〈f, f+〉+ 〈A∗f, A∗f+〉

= 〈if, if+〉+ 〈Af, if+〉

= i〈(A+ i)f, f+〉

= i〈f, (A∗ − i)f+〉

= 0

thus D(A) ⊥ D+. Similar computations show that D(A) and D± are mutually

orthogonal in D(A∗).

Let g ∈ D(A∗). The decomposition H = R(A+ i)⊕D+ shows that

(A∗ + i)g = (A+ i)f + 2if+

for some f ∈ D(A), and f+ ∈ D+. Since A∗(g−f−f+) = −i(g−f−f+), it follows that

f− := g−f−f+ ∈ D−, and g = f+f++f−. Therefore, D(A∗) = D(A)⊕D+⊕D−.

Corollary 2.23. Let A be a densely defined Hermitian operator on H .

1. A is maximally Hermitian if and only if one of the deficiency indices is 0.

2. A has a selfadjoint extension if and only if d+ = d− 6= 0.

3. Ā is selfadjoint if and only if d+ = d− = 0.

It remains to describe the closed symmetric subspaces S in D+ ⊕ D−. See



23

(2.24) and (2.25). Let f = f+ + f− , where f± ∈ D±, then

〈f, A∗f〉 = 〈f+ + f−, A
∗(f+ + f−)〉

= 〈f+ + f−, i(f+ − f−)〉

= i〈f+ + f−, f+ − f−〉

= i(‖f+‖2 − ‖f−‖2)− i(〈f+, f−〉 − 〈f+, f−〉). (2.31)

Thus 〈f, A∗f〉 ∈ R if and only if ‖f+‖ = ‖f−‖. It follows that S is identified with the

graph of an isometric mapping from a closed subspace in D+ onto a closed subspace

in D−.

Theorem 2.24 (von Neumann). Let A be a densely defined closed Hermitian operator

on H .

1. The Hermitian extensions of A are indexed by partial isometries U with initial

space in D+ and final space in D−.

2. Given U as in part 1, the Hermitian extension ÃU ⊃ A is given by

D(ÃU) := {f + f+ + Uf+ : f ∈ D(A), f+ ∈ D+} (2.32)

ÃU(f + f+ + Uf+) := Af + if+ − iUf+. (2.33)

There is a simple criterion to test whether a Hermitian operator has equal

deficiency indices.

Definition 2.25. An operator J is called a conjugation if it is conjugate linear,

J2 = 1, and 〈Jg, Jf〉 = 〈f, g〉, for all f, g ∈H .
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Theorem 2.26 (von Neumann). Let A be a densely defined closed Hermitian operator

on H . Suppose AJ = JA, where J is a conjugation, then d+ = d−. In particular, A

has selfajoint extensions.

Proof. Let f ∈ D(A), g ∈ D(A∗), then

〈Jg,Af〉 = 〈JAf, g〉 = 〈AJf, g〉 = 〈Jf,A∗g〉 = 〈JA∗g, f〉. (2.34)

So, the map f 7→ 〈Jg,Af〉 is continuous and Jg ∈ D(A∗). It follows that JD(A∗) ⊂

D(A∗). In fact, JD(A∗) = D(A∗), as J2 = 1. We may also deduce that JA∗ = A∗J .

For all f+ ∈ D+,

A∗(Jf+) = J(A∗f+) = J(if+) = −i(Jf+)

so that JD+ ⊂ D−. Similarly, JD− ⊂ D+. Thus JD+ = D−. Since J preserves norm,

D+ and D− have the same dimension.

In applications to differential equations, it is convenient to characterize self-

adjoint extensions using boundary conditions. The idea of boundary spaces shows

up naturally in this setting. For recent developments, we refer to [11][22]. A slightly

modified version can be found in [10].

Definition 2.27. Let A be a densely defined, closed, Hermitian operator in H .

Suppose A has equal deficiency indices (n, n). A boundary space for A is a triple

(Hb, ρ1, ρ2) consisting of a Hilbert space Hb and two linear maps ρ1, ρ2 : D(A∗)→Hb,

such that the images of ρ1, ρ2 are dense in Hb, and

〈g, A∗f〉 − 〈A∗g, f〉 = c [〈ρ1(g), ρ1(f)〉b − 〈ρ2(g), ρ2(f)〉b] (2.35)
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for all f, g ∈ D(A∗), where c is a nonzero constant.

Remark 2.28. This definition is motivated by the boundary form

〈g, A∗f〉 − 〈A∗g, f〉 = 2i [〈g+, f+〉 − 〈g−, f−〉] (2.36)

for all f, g ∈ D(A∗), which follows immediately from (2.31). For example, let V be a

partial isometry with initial space D− and final space D+. Choose

Hb := D+

ρ1(f0 + f+ + f−) := f+

ρ2(f0 + f+ + f−) := V f−

for any f = f0 ⊕ f+ ⊕ f− in D(A∗). The triple (Hb, ρ1, ρ2) is a boundary space for

A. In this special case, ρ1, ρ2 are surjective. It is clear that the choice of a boundary

triple is not unique. In applications, Hb is usually chosen to have the same dimension

as D±.

Theorem 2.24 can now be restated as follows.

Theorem 2.29. Let A be a densely defiend, closed, Hermitian operator in H . Sup-

pose A has equal deficiency indices. Let (Hb, ρ1, ρ2) be a boundary triple for A. Then

the selfadjoint extensions of A are indexed by unitary operators U on Hb. Given U ,

the selfadjoint extension ÃU ⊃ A is given by

D(ÃU) := {f ∈ D(A∗) : Uρ1(f) = ρ2(f)} (2.37)

ÃUf := A∗f, f ∈ D(ÃU). (2.38)
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Remark 2.30. Some variants arise more naturally in the boundary value problems of

differential equations. In [11][22], (Hb,Γ1,Γ2) is defined to satisfy

〈g, A∗f〉 − 〈A∗g, f〉 = c′ [〈Γ2(g),Γ1(f)〉b − 〈Γ1(g),Γ2(f)〉b] (2.39)

for all f, g ∈ D(A∗), where c′ is some nonzero constant. The connection between

(2.35) and (2.39) can be seen by setting

ρ1 := Γ1 − iΓ2 (2.40)

ρ2 := Γ1 + iΓ2 (2.41)

so that

〈ρ1(g), ρ1(f)〉 − 〈ρ2(g), ρ2(f)〉 = 2i [〈Γ2(g),Γ1(f)〉 − 〈Γ1(g),Γ2(f)〉] .

Under this formulation, the family of selfadjoint extensions ÃU ⊃ A is again indexed

by unitary operators on Hb, such that

D(ÃU) := {f ∈ D(A∗) : (U − 1)Γ1(f) = i(U + 1)Γ2(f)} (2.42)

ÃUf := A∗f, f ∈ D(ÃU). (2.43)

2.2.2 Friedrichs Extension

We recall some basic ideas in the theory of rigged Hilbert space. These will be

used to construct certain selfadjoint extension of semibounded Hermitian operators

with dense domains on a Hilbert space.

Let H0 be a Hilbert space with inner product 〈·, ·〉0 and norm ‖·‖0. Suppose

H1 is a dense subspace in H0, and itself is a Hilbert space with inner product 〈·, ·〉1
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and norm ‖·‖1. Further, assume that

‖x‖1 ≥ ‖x‖0, x ∈H1 (2.44)

It follows that the inclusion map

i : H1 ↪→H0 (2.45)

is continuous and has a dense image.

Let H−1 be the Banach space of bounded conjugate linear functionals l on

H1, whose norm is given by

‖l‖−1 = sup{|l(x)| : x ∈H1, ‖x‖1 = 1}. (2.46)

By Riesz’s theorem, there is an isometric bijection J : H1 → H−1 which turns H−1

into a Hilbert space carrying the inner product

〈l2, l1〉−1 = 〈J−1l2, J
−1l1〉1 (2.47)

for all l1, l2 ∈H−1. Thus, J is a unitary operator.

There is a natural injection of H0 into H−1, by

f 7→ 〈·, f〉0, f ∈H0 (2.48)

For if f ∈H0 and x ∈H1, then

|〈x, f〉0| ≤ ‖x‖0‖f‖0 ≤ ‖x‖1‖f‖0 (2.49)

which implies that 〈·, f〉0 ∈H−1, and

‖f‖0 ≥ ‖〈·, f〉0‖−1, f ∈H0 (2.50)
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Therefore,

〈x, f〉0 = 〈x, J−1〈·, f〉0〉1, x ∈H1. (2.51)

Lemma 2.31. The image of H1 (so is the image of H0) under the injection (2.48)

is dense in H−1.

Proof. For l ∈H−1, x ∈H1,

〈l, 〈·, x〉0〉−1 = 〈J−1l, J−1〈·, x〉0〉1 = 〈J−1l, x〉0

and the last step follows from (2.51). Thus, l ⊥ {〈·, x〉0 : x ∈ H1} if and only if

〈J−1l, x〉0 = 0, for all x ∈ H1. Since H1 is dense in H0, it follows that J−1l = 0.

Since J is unitary, this implies that l = 0.

We identify H0 as a subspace in H−1, i.e. identity f with 〈·, f〉0, and obtain

the triple of Hilbert spaces

H1 ↪→H0 ↪→H−1. (2.52)

The following are immediate:

1. All the embeddings in (2.52) are continuous with dense images. Recall the first

is the identity map in (2.45), and the second is given by (2.48).

2. Under the identification of x and 〈·, x〉0, x ∈H1, (2.50) is equivalent to ‖x‖0 ≥

‖x‖−1. Combined with (2.46), this yields

‖x‖1 ≥ ‖x‖0 ≥ ‖x‖−1, x ∈H1 (2.53)

3. By Lemma 2.31, H−1 is the completion of H0 with respect to the ‖·‖−1-norm.

Recall that

〈g, f〉−1 = 〈J−1g, J−1f〉0, f, g ∈H0.
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4. The canonical bilinear form on H1 ×H−1 is given by

〈x, l〉 := 〈x, J−1l〉1 = 〈Jx, l〉−1 (2.54)

for all x ∈H1 and l ∈H−1. If, in addition, l ∈H0, then

〈x, J−1l〉1 = 〈x, l〉0 (2.55)

Thus, (2.54) is a continuous extension of the inner product on H0.

Theorem 2.32. Let H1 ↪→H0 ↪→H−1 be the triple in (2.52). Define B : H0 →H0

by

Bf = J−1f. (2.56)

The following statements hold.

1. B is invertible.

2. 0 ≤ B ≤ 1. In particular, B is a bounded selfadjoint operator on H0.

Remark 2.33. The precise meaning of (2.56) is

f 7→ (i ◦ J−1)(〈·, f〉0).

Proof of Theorem 2.32. 1. By (2.55), 〈x,Bf〉1 = 〈x, f〉0, for all f ∈ H0, x ∈ H1. If

Bf = 0, then 〈x, f〉0 = 0, for all x ∈H1. This implies that f = 0, since H1 is dense

in H0. Thus, B is invertible.

2. Setting x := Bf , then 〈Bf,Bf〉1 = 〈Bf, f〉0 ≥ 0, so that B ≥ 0. Moreover,

the estimate

‖Bf‖0 ≤ ‖Bf‖1 = ‖J−1f‖1 = ‖f‖−1 ≤ ‖f‖0

shows thatB ≤ 1. SinceB is positive and bounded, it follows thatB is selfadjoint.
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Theorem 2.34. Let A := B−1, so that D(A) = R(B), R(A) = H0. Then

1. A = A∗, A ≥ 1;

2. For all x ∈ D(A), y ∈H1, 〈y, x〉1 = 〈y, Ax〉0;

3. D(A) is dense in H1;

4. H1 = D(A1/2);

5. 〈y, x〉1 = 〈A1/2y, A1/2x〉0, for all x, y ∈H1;

6. 〈g, f〉−1 = 〈A−1/2g, A−1/2f〉0, for all f, g ∈H0;

7. ‖Ax‖−1 = ‖x‖1, for all x ∈ D(A).

Moreover, the first three conditions determine H1 and A uniquely.

Remark 2.35. The last part says that the map J0 : x 7→ Ax is norm-preserving from

D(A) ⊂ H1 onto R(A) = H0 ⊂ H−1. By density argument, J0 extends to a unique

unitary operator J̃0 : H1 →H−1. It follows readily that J̃0 = J .

Proof of Theorem 2.34.

Parts 1, 2 follow directly from the definition. For 3, since H0 is dense in H−1,

therefore, J−1H0 is dense in J−1H−1, i.e. D(A) is dense in H1.

From part 2, we derive that

‖x‖2
1 = 〈A1/2x,A1/2x〉0, x ∈ D(A).

Since A ≥ 1, the ‖·‖1-norm is equivalent to the graph norm ‖·‖A1/2 . Moreover,

D(A) is dense in both H1 and D(A1/2). Consequently, the completions of D(A) with

respect to ‖·‖1 and ‖·‖A1/2 coincide. This proves part 4. The other statements are

consequences of part 4.
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We proceed to show that conditions 1, 2, 3 determine H1 and A uniquely.

Suppose we start with another embedding

H 1′ ↪→H0

such that D(A) is dense in H1′ , and 〈y, x〉1′ = 〈y, Ax〉0, for all x ∈ D(A), y ∈ H1′ .

Then 〈y, x〉1′ = 〈y, x〉1, for all x, y ∈ D(A), i.e. the inner products agree on a common

dense domain. It follows that H 1′ = H 1.

On the other hand, suppose there is another selfadjoint operator Ã, such that

D(Ã) is dense in H1, and 〈y, x〉1 = 〈y, Ãx〉0, for all x ∈ D(Ã), y ∈H1. Then

〈y, Ãx〉 = 〈y, x〉1 = 〈A1/2y, A1/2x〉0

for all x ∈ D(Ã), y ∈ H1. It follows that A1/2x ∈ D(A1/2), so that x ∈ D(A) and

Ãx = Ax. That is, Ã ⊂ A. Similarly, A ⊂ Ã, and so Ã = A.

Let A be a densely defined Hermitian operator in H0, and suppose that A is

bounded below, i.e. for some constant C > 0,

〈f, Af〉0 ≥ C〈f, f〉0

for all f ∈ D(A). The lower bound mA of A is given by

mA := inf{〈f, Af〉0 : f ∈ D(A), ‖f‖0 = 1}

There is no loss of generality to assume C = 1.

Introduce the inner product and norm on D(A), by

〈y, x〉1 := 〈y, Ax〉0

‖x‖1 :=
√
〈x, x〉1
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for all x, y ∈ D(A). Let H1 be the completion of D(A) with respect to ‖·‖1. Lemma

2.36 shows that H1 is a Hilbert space, and it is continuously embedded into H0.

Thus, there exists a triple of Hilbert spaces

H1 ↪→H0 ↪→H−1

as constructed before.

Lemma 2.36. The norms ‖·‖1 and ‖·‖0 are topologically consistant. That is, H1 is

continuousely embedded, via the identity map, into H0 as a subspace. In particular,

‖x‖1 ≥ ‖x‖0, for all x ∈H1.

Proof. By assumption, A ≥ 1, and this implies that ‖x‖1 ≥ ‖x‖0, for all x ∈ D(A).

The norm estimate passes to the completion. Thus, the identity map i from H1 into

H0 is continuous. It remains to check that i is injective.

Let xn be a sequence in D(A), such that it is Cauchy in H1. The norm

estimate implies that xn is also Cauchy in H0. Suppose ‖xn‖0 → 0. By assumption,

A is closable, so that (xn, Axn)→ (0, 0) ∈ G (A). Thus,

‖xn‖2
1 = 〈xn, Axn〉0 → 0.

This proves the lemma.

Theorem 2.37 (Friedrichs). Let A be a densely defined Hermitian operator in a

Hilbert space H0. Suppose A ≥ 1. Then A has a selfadjoint extension Ã, such that

mA = mÃ.
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Proof. Given A, construct H1 as before. By Theorem 2.34, there is a unique selfad-

joint operator Ã, such that D(Ã) is dense in H1, and

〈y, x〉1 = 〈y, Ãx〉0, x ∈ D(Ã), y ∈H1. (2.57)

If, in addition, x ∈ D(A), then

〈y, Ax〉0 = 〈y, Ãx〉0, x ∈ D(A), y ∈H1 (2.58)

from which we conclude that A ⊂ Ã.

By (2.58), mA ≥ mÃ. Since ‖x‖2
1 ≥ mA‖x‖2

0, for all x ∈ D(A), it follows that

‖x‖2
1 ≥ mA‖x‖2

0, for all x ∈H1. That is,

〈Ã1/2x, Ã1/2x〉 ≥ mA〈x, x〉, x ∈ D(Ã1/2).

Thus,

〈x, Ãx〉 ≥ mA〈x, x〉, x ∈ D(Ã)

and so mÃ ≥ mA.

2.3 Sturm-Liouville Problem

von Neumann’s index theory on extension of Hermitian operators in Hilbert

space has found a very important application in the classical Sturm-Liouville problem.

We briefly review some basic facts in this theory, with an emphasis on the selfadjoint

boundary conditions. For the operator theoretic approach to the subject, we refer

to [51], [30], [2], [37], and the recent surveys [54], [18]. A specific example used

extensively in later chapters is the Bessel differential operator defined on the half-

line.
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2.3.1 Differential Operators

We consider the modern form of the Sturm-Liouville differential equation spec-

ified as following:

−(p(x)y′(x))′ + q(x)y(x) = λw(x)y(x) (2.59)

1. x ∈ (a, b), −∞ ≤ a < b ≤ ∞

2. p, q, w : (a, b)→ R, and p−1, q, w ∈ L1
loc(a, b)

3. w(x) > 0, a.e. in (a, b) with respect to the Lebesgue measure

4. λ ∈ C

Definition 2.38. Let M be the differential expression such that

1. D(M) = {f : (a, b)→ C : f,Mf ∈ ACloc(a, b)}

2. (Mf)(x) = −(p(x)f ′(x))′ + q(x)f(x), for all f ∈ D(M)

Clearly, D(M) is the largest space of functions on which M has a natural mean-

ing. Various operators associated with M will be considered on the Hilbert space

L2((a, b), w), consisting of f such that

∫ b

a

|f(x)|2w(x)dx <∞.

Definition 2.39. Let T0 be the pre-minimum operator with

1. D(T0) = C∞c (a, b);

2. T0f = w−1Mf , for all f ∈ D(T0).

T0 is a densely defined and Hermitian in L2(a, b). Let T be the closure of T0.

T is called the minimum operator, and its adjoint T ∗ is called the maximum operator.
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Theorem 2.40. Let T be the minimum operaotr, that is T = T 0. Then

1. D(T ∗) = {f ∈ D(M) : f, w−1Mf ∈ L2(a, b)};

2. T ∗f = w−1Mf , for all f ∈ D(T ∗).

Remark 2.41. D(T ∗) is the largest subspace in L2(a, b), where M has a natural mean-

ing.

Let f, g ∈ D(M). The Lagrange bracket [·, ·] is defined by

[f, g](x) := f(x)(Mg)(x)− (Mf)(x)g(x) (2.60)

Given any compact interval [α, β] ⊂ (a, b), the Green’s identity holds

[f, g](β)− [f, g](α) =

∫ β

α

g(x)(Mf)(x)dx−
∫ β

α

(Mg)(x)f(x)dx. (2.61)

If, in addition, f, g ∈ D(T ∗), then both limits

[f, g](a) := lim
x→a+

[f, g](x)

[f, g](b) := lim
x→b−

[f, g](x)

exist and are finite.

Theorem 2.42. Let T be the minimum operator, that is T = T 0. Then

1. D(T ) = {f ∈ D(T ∗) : [f, g](b)− [f, g](a) = 0,∀g ∈ D(T ∗)};

2. Tf = w−1Mf , for all f ∈ D(T ).

Proof. Recall that T = T ∗∗ ⊂ T ∗, so all the operators are restrictions of T ∗. It suffices

to verify that D(T ∗∗) is as specified in the theorem. f ∈ D(T ∗∗) if and only if

〈f, T ∗g〉 = 〈T ∗∗f, g〉 = 〈Tf, g〉, ∀g ∈ D(T ∗).
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That is,

〈f, T ∗g〉 − 〈T ∗f, g〉 = 0,∀g ∈ D(T ∗).

The theorem follows from Green’s identity.

Weyl’s 1910 paper played a fundamental role in the development of the Sturm-

Liouville theory. Weyl classified the problem into two types.

Theorem 2.43 (Weyl). Let c ∈ (a, b). Suppose for some λ0, every solution f of

Mf = λ0f belongs to L2((a, c]). Then for all λ, every solution f of Mf = λf belongs

to L2((a, c]). Similar results hold over the interval [c, b).

By Weyl’s theorem, the differential expression M may classified into two types

at the endpoint a (similar at b):

1. If every solution f to the equation Mf = λf belongs to L2((a, c]), M is said to

be of limit-circle (l.c.) type at a;

2. Otherwise, M is said to be of limit-point (l.p.) type at a.

Therefore, there are four cases for M :

1. l.p. at both a and b;

2. l.c. at a, l.p. at b;

3. l.p. at a, l.c. at b;

4. l.c. at both a and b.

Note that 2 and 3 can be treated in the same way, with a change of variable x 7→ −x.

Stone’s remarkable book [51] provided a detailed analysis of the Sturm-Liouville

problem as an illustration of von Neumann’s index theory on extension of Hermitian
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operators in Hilbert space. Even though Stone’s book treated a special case of the

problem (2.59) with w(x) ≡ 1, x ∈ (a, b), it is not hard to incorporate the general

weight function w(x) with additional modifications to some technical details.

Recall that the assumption on the coefficients in (2.59) implies that the mini-

mum operator T commutes with complex conjugation. It follows that T has deficiency

indices (m,m), 0 ≤ m ≤ 2, and it has selfadjoint extensions. Since any Hermitian

extension of T is a restriction of the adjoint T ∗, it suffices to specify the domains of

the various extensions.

Further analysis of the Hermitian extensions of T would require Weyl’s classi-

fication of the endpoints. The main results are summarized below.

Theorem 2.44.

1. The deficiency indices of T is (2, 2) if and only if M is limit-circle type at both

endpoints. If T̃ be any selfadjoint extension of T , then the resolvent (T̃ − λ)−1,

=(λ) 6= 0, is a Hilbert-Schmidt integral operator; the point spectrum of T̃ is

countablely infinite having no finite accumulation points; all eigenvalues have

multiplicity no more than two.

2. The deficiency indices of T is (1, 1) if and only if M is limit-point type at one

endpoint and limit-circle type at the other endpoint. A selfadjoint extension T̃

of T may have eigenvalues but only of multiplicity one; the continuous spectrum

need not be empty.

3. The deficiency indices of T is (0, 0) if and only if M is limit-point type at both

endpoints. A selfadjoint extension T̃ of T may have eigenvalues but only of
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multiplicity one; the continuous spectrum may not be empty.

2.3.2 Selfadjoint Boundary Conditions

We collect some facts concerning separated selfadjoint boundary conditions.

To incorporate applications in later chapters, we restrict to the l.c./l.p. type of the

classification, i.e. the endpoint a is limit-circle type, and the endpoint b is limit-point

type.

By Theorem 2.44, the assumption on the classification of the endpoints amounts

to the minimum operator T having deficiency indices (1, 1). von Neumann’s index

theory shows that T has a one-parameter family of selfadjoint extensions.

Theorem 2.45. Let M be l.c./l.p. so that T has deficiency indices (1, 1). Let D±(T )

be the deficiency spaces of T , spanned by the unit vectors φ± ∈ D(T ∗), satisfying

T ∗φ± = ±iφ. Then the family of selfadjoint extensions of T is characterized by

D(T̃θ) = {f + cφ+ + ceiθφ− : f ∈ D(T ), c ∈ C, θ ∈ [0, 2π)},

T̃θ(f + cφν + ceiθφν) = Tf + icφ+ − iceiθφ−.

In fact, all selfadjoint domains in the l.c./l.p. classification may be described

using the boundary condition at the limit-circle endpoint.

Lemma 2.46. The endpoint a (or b) is l.p. type if and only if [f, g](a) = 0, for all

f, g ∈ D(T ∗).

Proof. We refer to the elegant treatment in [2], Appendix II.

Theorem 2.47. Let M be l.c./l.p. and let φ± and T̃θ as given before. Then
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1. D(T ) = {f ∈ D(T ∗) : [f, φ+](0) = [f, φ−](a) = 0}

2. D(T̃θ) = {f ∈ D(T ∗) : [f, φθ](a) = 0}, where φθ := φ+ + eiθφ−, and θ ∈ [0, 2π).

Proof. By Lemma 2.46 and Theorem 2.42, the only boundary restriction for f ∈ D(T )

is on the limit-circle endpoint a, i.e. f ∈ D(T ) if and only if [f, g](a) = 0 for all

g ∈ D(T ∗).

If f ∈ D(T ), it is clear that [f, ϕ±](a) = 0. On the other hand, any f ∈ D(T ∗)

has the form

f = ϕ0 + c+ϕ+ + c−ϕ−

for some ϕ0 ∈ D(T ) and c1, c2 ∈ C. Thus, [f, ϕ±](a) = 0 implies that f = ϕ0, so that

f ∈ D(T ). This proves part 1. The proof of part 2 is similar.

We will need the following bracket decomposition.

Lemma 2.48. Let f, g, u, v ∈ D(T ∗). Suppose [u, v](c) = 1, for some c ∈ [a, b]. Then

[f, g](c) = [f, u](c)[g, v](c)− [f, v](c)[g, u](c).

Proof. Direct computation shows that

[f, g] = (ḡ, g′)

(
0 −1
1 0

)(
f
f ′

)
= (ḡ, g′)

(
u′ v′

−u −v

)(
−v′ v
u′ −u

)[
f
f ′

]
= ([g, u], [g, v])

(
−[f, v]
[f, u]

)
= [f, u][g, v]− [f, v][g, u].
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Theorem 2.49. Let M be l.c./l.p. Let c ∈ (a, b), λ ∈ R. Suppose u, v are non-trivial

real solutions to the equation ly = λy on (a, c), normalized to satisfy [u, v](t) = 1, for

all t ∈ (a, c). The family of selfadjoint extensions of T is given by

D(T̃c1,c2) ={f ∈ D(T ∗) : c1[f, u](a) + c2[f, v](a) = 0

c1, c2 ∈ R, c2
1 + c2

2 6= 0}

Equivalently,

D(T̃α) = {f ∈ D(T ∗) : [f, φα](a) = 0, α ∈ R}

where φα := αu+ v, and setting φ∞ := u. If, in addition, u is the principal solution,

then

D(T̃∞) = {f ∈ D(T ∗) : [f, u](0) = 0} (2.62)

gives rise to the Friedrichs extension.

Proof. Let T̃θ be a selfadjoint extension of T as in Theorem 2.47. We show D(T̃θ) may

be characterized as D(T̃c1,c2) for some c1, c2 ∈ R. Note that by Naimark’s patching

lemma, u, v extends to functions in D(T ∗). For all f, φ ∈ D(T ∗),

[f, φ] = [φ̄, φ′]

[
0 −1
1 0

] [
f
f ′

]
= [φ̄, φ′]

[
u′ v′

−u −v

] [
−v′ v
u′ −u

] [
f
f ′

]
= [f, u][φ′, v]− [f, v][φ̄, u]. (2.63)

By Theorem 2.47, f ∈ D(T̃θ) if and only if [f, φ+ + eiθφ−](a) = 0. The result follows

by setting φ = φν,+ + eiθφν,−.

To see D(T̃c1,c2) gives rise to all selfadjoint extensions, we refer to [54], Theorem

10.4.5.



41

Remark 2.50. In fact, the decomposition in (2.63) is valid for all real-valued pairs

u, v in D(T ∗), satisfying [u, v] = 1 over (a, c) ⊂ (a, b). The conditions on u, v can be

further relaxed, see [54].

2.3.3 Example: Bessel Differential Operator

As an example of the general theory, we consider the classical Bessel differential

operator defined on the half-line. Properties of this operator is well known, see for

example [52][2]. The selfadjoint extension problem can be seen as a special case of a

class of Schrödinger operators considered in [9], also see [3]. Its Friedrichs extension

is studied in the more recent paper [17].

Definition 2.51. Let l be the Bessel differential operator of order ν on (0,∞), i.e.

D(l) = {f : (a, b)→ C : f, lf ∈ ACloc(0,∞)} (2.64)

lf = −d
2f

dx2
+
ν2 − 1/4

x2
f. (2.65)

Throughout, we restrict to ν ∈ [0, 1). In this case, the endpoint ∞ is strong

limit-point and Dirichlet; and the endpoint 0 is limit-circle non-oscillatory, except for

the regular case when ν = 1/2, which can be treated as limit-circle non-oscillatory. A

detailed classification of singularities can be found in [16] and the reference therein.

We consider operators associated with l0 in the Hilbert space L2(0,∞). Let

hν := l
∣∣
C∞c (0,∞)

(2.66)
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be the minimum operator, and h∗ν the adjoint of hν . From the general theory, we have

D(h∗ν) = {f ∈ D(l) : f, lf ∈ L2(0,∞)} (2.67)

D(hν) = {f ∈ D(h∗ν) : [f, g](0) = 0,∀g ∈ D(h∗ν)} (2.68)

Notice that only boundary conditions on the limit-circle endpoint is needed, since for

ν ∈ [0, 1], the endpoint ∞ is of limit-point type.

If ν ≥ 1, the operator hν is selfadjoint. For ν ∈ [0, 1), hν has deficiency indices

(1, 1). Let

D±(hν) = span{φν,±} (2.69)

be the deficiency spaces such that

h∗νφν,± = ±iφν,±. (2.70)

The defect vectors are given by

φν,+(x) = x1/2H(1)
ν (x
√
i) (2.71)

φν,−(x) = x1/2H(2)
ν (x
√
−i) (2.72)

where H
(1)
ν , H

(2)
ν are the Hankel functions of order ν [53][2].

By von Neumann’s theory on extensions of Hermitian operators, hν has a

one-paramter family of selfadjoint extensions:

D(h̃ν,θ) = {f + cφν,+ + ceiθφν,− : f ∈ D(hν), c ∈ C, θ ∈ [0, 2π)}, (2.73)

h̃ν,θ(f + cφν,+ + ceiθφν,−) = hνf + icφν,+ − iceiθφν,−. (2.74)
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In applications, it is convenient to specify the selfadjoint domains using bound-

ary conditions at the limit-circle endpoint.

Corollary 2.52. Let ν ∈ [0, 1). Suppose u, v is a fundamental system of solutions

to the homogeneous equation ly = 0, such that [u, v] = 1 and let u be the principal

solution. The family of selfadjoint extensions of hν is characterized by

D(h̃ν,α) = {f ∈ D(h∗ν) : [f, φα](0) = 0,−∞ < α ≤ ∞} (2.75)

where φα := αu + v, setting φ∞ := u. Moreover, α = ∞ amounts to the Friedrichs

extension.

Further analysis of the selfadjoint boundary conditions at the limit-circle end-

point can be found as a special case of a class of Schrödinger operators [9]

− d2

dr2
+
λ(λ− 1)

r2
+
γ

r
+
β

rs
+W (r), r > 0 (2.76)

where W ∈ L∞(0,∞) real-valud, λ ∈ [1/2, 3/2), β, γ ∈ R, s ∈ (0, 2). It reduces to

(2.65), when λ = ν + 1/2, γ = β = W = 0. See also [3].

Theorem 2.53. Let ν ∈ [0, 1). Suppose u, v is a fundamental system of solutions

to the homogeneous equation ly = 0, such that [u, v] = 1 and let u be the principal

solution. Then the family of selfadjoint extensions of hν is characterized by

D(h̃ν,α) = {f ∈ D(h∗ν) : αf0 = f1,−∞ < α ≤ ∞} (2.77)

where

f0 := lim
x→0+

f(x)/v(x) (2.78)

f1 := lim
x→0+

(f(x)− f0v(x)) /u(x) (2.79)
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Moreover, α =∞, i.e. f0 = 0, amounts to the Friedrichs extension.

Proof. Any f ∈ D(h∗ν) can be written as

f(x) = c1u+ c2v + v

∫ x

x0

u (h∗νf)− u
∫ x

x0

v (h∗νf)

for some x0 > 0. Direct computation shows that

[f, αu+ v](x) = c1 − αc2 + α

∫ x

x0

u (h∗νf)−
∫ x

x0

v (h∗νf) .

It follows that f ∈ D(h̃ν,α) if and only if

c1 −
∫ 0

x0

v (h∗νf) = α(c2 +

∫ 0

x0

u (h∗νf)).

But

f/v ∼ f0 := c2 +

∫ 0

x0

u (h∗νf)

f/u = c1 −
∫ x

x0

v (h∗νf) + (v/u)

(
c2 +

∫ x

x0

u (h∗νf)

)
∼ c1 −

∫ 0

x0

v (h∗νf) + vf0/u

that is,

(f − vf0)/u ∼ c1 −
∫ 0

x0

v (h∗νf) .

This proves the first part. The second part is immediate.

Remark 2.54. We record a fundamental system of solutions to the homogeneous equa-

tion ly = 0.

• ν = 0, u =
√
x, v =

√
x log x

• ν = 1/2, u = x, v = −1
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• ν ∈ (0, 1/2) ∪ (1/2,∞), u = xν+1/2, v = −x−ν+1/2/2ν.

In all cases, [u, v] = 1 and u is the principal solution.

Corollary 2.55. Consider the family of selfadjoint extensions of hν characterized by

(2.77). Let f ∈ D(h∗ν). Then (2.78) and (2.79) are given by

1. ν = 0,

f0 = lim
x→0+

f(x)/
(√

x log x
)

f1 = lim
x→0+

(
f(x)− f0

√
x log x

)
/
√
x

2. ν ∈ (0, 1/2) ∪ (1/2, 1)

f0 = lim
x→0+

f(x)/x−ν+1/2

f1 = lim
x→0+

(f(x)− f0x
−ν+1/2)/xν+1/2

3. ν = 1/2 (the endpoint 0 is reguar)

D(h̃ν,α) = {f ∈ D(h∗ν) : αf(0) + f ′(0) = 0,−∞ < α ≤ ∞}.
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CHAPTER 3
*-ALGEBRAS AND REPRESENTATIONS

In this chapter, we review the basic theory of ∗-algebras and their representa-

tions. These algebras are to be represented as operators acting on a common invariant

domain in some Hilbert space, and in general, such operators are unbounded. In the

special case when the algebra has one generator, the theory reduces to the study of a

single unbounded operator.

The main application is when the ∗-algebra comes from the universal envelop-

ing algebra of a Lie algebra. Starting with a unitary representation of a Lie group,

one derives a representation of the Lie algebra, and the derived representation ex-

tends uniquely to a selfadjoint representation of the enveloping algebra in the sense

of R.T. Powers [35]. We will study the converse problem. That is, starting with a

selfadjoint representation ρ of the enveloping algebra AC(g) of a Lie algebra g, we

study the conditions under which ρ is derived from some unitary representation U of

the Lie group, i.e. ρ = dU . Elements of the form dU(x) include important quantum

mechanical operators.

For the general notions, we refer to [25], also see [35, 36] and [46].

3.1 Preliminaries

The notion of densely defined Hermitian operators has a direct generalization

in the setting of representation of ∗-algebras.
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3.1.1 Domain, Hermitian Representations

A ∗-algebra A is a complex algebra with an involution, x 7→ x∗, x ∈ A, i.e. a

period-2, conjugate linear, anti-automorphism. Throughout, we always assume that

A contains identity. A representation of A is a homomorphism

ρ : A→ End(D(ρ)) (3.1)

from A into endomorphisms over a dense subspace D(ρ) in a Hilbert space H . D(ρ)

is called the domain of ρ. It carries the projective topology induced by the family of

semi-norms

‖a‖F :=
∑
x∈F

‖ρ(x)a‖, a ∈ D(ρ) (3.2)

where F runs through all finite subsets of A. ρ is said to be closed if D(ρ) is complete

with respect to this topology.

For two representations ρ1, ρ2 of A on the same Hilbert space, ρ2 is said to be

an extension of ρ1, denoted by ρ1 ⊂ ρ2, if ρ1(x) ⊂ ρ2(x) for all x ∈ A.

A representation ρ of A is called Hermitian if ρ(x) ⊂ ρ(x∗)∗, for all x ∈ A.

That is, for all a, b ∈ D(ρ), and x ∈ A,

〈b, ρ(x)a〉 = 〈ρ(x∗)b, a〉 (3.3)

Every Hermitian representation ρ is associated with its adjoint representation

ρ∗, given by

D(ρ∗) :=
⋂
x∈A

D(ρ(x)∗) (3.4)

ρ∗(x) := ρ(x∗)∗
∣∣
D(ρ∗)

(3.5)
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Thus, ρ is Hermitian if and only if ρ ⊂ ρ∗. By definition, D(ρ∗) contains D(ρ), and

so it is dense in H . The fact that ρ∗ defines a representation is due to the following

lemma.

Lemma 3.1. D(ρ∗) is dense in H if and only if ρ∗ is a representation of A.

Proof. If ρ∗ is a representation of A, then D(ρ∗) is dense in H by definition. Con-

versely, suppose D(ρ∗) is dense in H . For all a ∈ D(ρ∗), b ∈ D(ρ) and x, y ∈ A,

〈ρ(x∗)b, ρ∗(y)a〉 = 〈ρ(x∗)b, ρ(y∗)∗a〉

= 〈ρ(y∗)ρ(x∗)b, a〉

= 〈ρ(y∗x∗)b, a〉

= 〈b, ρ(y∗x∗)∗a〉

= 〈b, ρ∗(xy)a〉.

That is,

ρ∗(y)a ∈ D(ρ(x∗)∗)

〈b, ρ∗(x)ρ∗(y)a〉 = 〈b, ρ∗(xy)a〉.

Since x, y, a, b were arbitrary, we conclude that

ρ∗(y) ∈ End(D(ρ∗))

ρ∗(xy) = ρ∗(x)ρ∗(y)

Therefore, ρ∗ is a representation of A.

Lemma 3.2. ρ∗ is a closed representation.
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Proof. Let (as) be a Cauchy net in D(ρ∗). Then lims as = a, for some a. For all x ∈ A,

ρ(x)∗ is a closed operator and as ∈ D(ρ(x)∗), it follows that lims ρ(x)∗as = ρ(x)∗a.

Thus, a ∈ D(ρ(x)∗), for all x ∈ A. This shows that a ∈ D(ρ∗).

Every Hermitian representation ρ has a unique closure ρ. We record the fol-

lowing theorem whose proof can be found in [35].

Theorem 3.3. If ρ is a Hermitian representation of a ∗-algebra A, then ρ has a

minimum closed extension ρ̄, given by

D(ρ̄) :=
⋂
x∈A

D(ρ(x)) (3.6)

ρ̄(x) := ρ(x∗)∗
∣∣
D(ρ̄)

(3.7)

Moreover,

ρ ⊂ ρ̄ ⊂ ρ∗. (3.8)

3.1.2 Selfadjoint Representations

The notion of selfadjoint representation is an extension of the notion of selfad-

joint operator in the theory of single unbounded operators. Selfadjoint representations

have important applications in the theory of unitary representation of Lie group and

quantum field theory.

Let ρ be a Hermitian representation of a ∗-algebra A. ρ is called essentially

selfadjoint if ρ̄ = ρ∗, and selfadjoint if ρ = ρ∗.

Just as a selfadjoint operator is maximally Hermitian (having no proper Her-

mitian extensions), a selfadjoint representation is maximally Hermitian. This means

no boundary conditions have been overlooked in physical problems.
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Lemma 3.4. Let ρ be a Hermitian representation of a ∗-algebra A.

1. ρ is selfadjoint if and only if D(ρ) = D(ρ∗).

2. If ρ is selfadjoint, it is maximally Hermitian.

Proof. By assumption, ρ ⊂ ρ∗. Thus ρ = ρ∗ if and only if D(ρ) = D(ρ∗). On the

other hand, let π be a Hermitian representation of A, such that ρ ⊂ π, then

ρ ⊂ π ⊂ π∗ ⊂ ρ∗.

Thus ρ = ρ∗ implies that π = ρ. That is, ρ has no proper Hermitian extensions.

The following result for checking selfadjointness is due to Powers. Its higher

dimensional analogue is not true, as first demonstrated by Nelson [32]. We also refer

to section 5 in [35].

Theorem 3.5 ([35]). Let A be the free commutative ∗-algebra on a single Hermitian

generator x. A Hermitian representation ρ of A is essentially selfadjoint if and only

if ρ(x)n, n ∈ N, is essentially selfadjoint.

Proof. ([25]) For an operator T in H , we introduce the notion

D∞(T ) :=
∞⋂
n=1

D(T n).

Let A := ρ(x). Note that

D(ρ) = D∞(A)

D(ρ∗) = D∞(A∗)

since elements in A are polynomials in the x variable with complex coefficients.
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Suppose An is selfadjoint for all n ∈ N. Then D∞(A) = D∞(A∗), and so

D(ρ̄) = D(ρ∗). This implies that ρ̄ = ρ∗, by Lemma 3.4.

Conversely, suppose ρ̄ = ρ∗. Let a ∈ D(A∗), such that A∗a = ±ia. Then

a ∈ D∞(A∗)

(A∗)na = (±i)na,∀n ∈ N.

By assumption, D∞(A) = D∞(A∗), thus a ∈ D(A) and Aa = ±ia. Since A is

a Hermitian operator, it has no imaginary eigenvalues, and so a = 0. That is, the

deficiency spaces of A are trivial. Therefore, A is selfadjoint by von Neumann’s theory

on selfadjoint extensions.

It remains to show that ρ(x)n, n > 1, is selfadjoint. Let ρ0 be the restriction of

ρ to the subalgebra A0 generated by xn, such that D(ρ0) = D(ρ). Let B := ρ(x)n =

ρ(xn). Observe that

D(ρ0) = D(ρ)

D(ρ∗0) = D(ρ∗)

therefore, ρ0 = ρ∗0. The previous argument shows that B is selfadjoint.

3.1.3 Commutants

Let ρ be a Hermitian representation of a ∗-algebra A on a Hilbert space H .

The commutant M of ρ(A) consists of all bounded operators B in H , such that B

commutes weakly with ρ(x), x ∈ A.

Lemma 3.6. The following are equivalent.
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1. B ∈M .

2. Bρ(x) ⊂ ρ∗(x)B, for all x ∈ A.

3. 〈b, Bρ(x)a〉 = 〈ρ(x∗)b, Ba〉, for all a, b ∈ D(ρ), x ∈ A.

If ρ is selfadjoint, the above conditions are equivalent to Bρ(x) ⊂ ρ(x)B, for all

x ∈ A. That is, B commutes strongly with ρ(x), x ∈ A. In that case, strong and weak

commutativity coincide.

Proof. It all follows from the definitions.

Lemma 3.7. M is weak ∗ closed and selfadjoint.

Proof. The fact that M is weak ∗ closed follows directly from the definition. Let B

in M , then

〈b, B∗ρ(x)a〉 = 〈Bb, ρ(x)a〉

= 〈Bρ(x∗)b, a〉

= 〈ρ(x∗)b, B∗a〉

for all a, b ∈ D(ρ), x ∈ A. Thus B∗ ∈ M . Conversely, B∗ ∈ M implies that

B∗∗ = B ∈M .

The commutant M of a Hermitian representation of a ∗-algebra may fail to be

closed under multiplication. If, in addition, ρ is selfadjoint, then M is multiplicative

and thus a von Neumann algebra.
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Theorem 3.8. Let ρ be a selfadjoint representation of a ∗-algebra A on a Hilbert

space H . Then the commutant M of ρ(A) is a von Neumann algebra.

Proof. It remains to check that M is closed under multiplication. Let B1, B2 ∈M ,

then

B1B2ρ(x) ⊂ B1ρ
∗(x)B2

= B1ρ(x)B2

⊂ ρ∗(x)B1B2

= ρ(x)B1B2

for all x ∈ A. Therefore, B1B2 ∈M .

Theorem 3.9 ([35]). Let ρ be a selfadjoint representation of a ∗-algebra A on a

Hilbert space H , and let M be the commutant of ρ(A). There is a bijection between

the lattice of projections in M and the lattice of reducing closed subspaces of H .

Moreover, ρ restricts to a selfadjoint representation on each of its closed reducing

subspaces.

Proof. Let P be a projection in M . If ρ is selfadjoint, then Bρ(x) ⊂ ρ(x)B, for all

x ∈ A. It follows that PH is a reducing closed subspace. Conversely, suppose K is

a reducing closed subspace. Let P be the projection onto K . Then

Pρ(x)a = ρ(x)Pa = ρ∗(x)Pa

for all a ∈ D(ρ), x ∈ A. That is, P ∈ M . Finally, ρ restricts to a representation

ρP := ρ
∣∣
PH

on PH with D(ρP ) = PD(ρ).
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3.1.4 Derived Representations

Let U be a unitary representation of a Lie group G. One may differentiate U

along various directions in the Lie algebra g, and derive a representation dU of the

universal enveloping algebra AC(g), that is, the algebra of polynomials in the elements

of g modulo the commutation relations of g. The derived representation is selfadjoint.

The converse problem is more interesting. Let ρ be a selfadjoint representation of

AC(g), does there exist a unitary representation U of G, such that ρ = dU? If this

is true, we say ρ is integrable or exact. The answer is negative in general. We will

study examples of non-integrable representations in the next chapter.

Let U be a unitary representation of a Lie group G with Lie algebra g.

Throughout, strong continuity will always be assumed. For all x ∈ g,

U(exp(tx)), t ∈ R (3.9)

is a stronlgy continuous one-parameter unitary group. By Stone’s theorem, it has an

infinitesimal generator, formally given by

dU(x) :=
d

dt

∣∣
t=0
U(exp(tx)). (3.10)

Here, exp : g→ G is the exponential mapping. D(dU(x)) consists of all a ∈H , such

that

lim
t→0

U(exp(tx))− 1

t
a (3.11)

exists. dU(x) is skew-adjoint in the sense that

〈b, dU(x)a〉 = −〈dU(x)b, a〉 (3.12)
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for all a, b ∈ D(dU(x)), x ∈ g.

Recall that D∞(U) denotes the space of C∞-vectors for U consisting of all

a ∈H , such that

g 7→ U(g)a (3.13)

is a smooth mapping from G into H . The G̊arding space DG(U) of U is the linear

span of the vectors

U(ϕ)a :=

∫
G

ϕ(g)U(g)a dg (3.14)

for all ϕ ∈ C∞c (G), a ∈H , and dg is a left-invariant Haar measure on G.

Theorem 3.10. Let G be a Lie group with Lie algebra g, and U a representation of

G on a Hilbert space H .

1. DG(U) is dense in H .

2. For all g ∈ G, ϕ ∈ C∞c (G) and a ∈H ,

U(g)U(ϕ)a = U(ϕ(g−1·))a (3.15)

3. For all ϕ ∈ C∞c (G), a ∈H and x ∈ g,

dU(x)U(ϕ)a = U(x̃ϕ)a (3.16)

where x̃ is the right-invariant vector field, given by

(x̃ϕ)(g) :=
d

dt

∣∣
t=0
ϕ(exp(−tx)g) (3.17)

4. The map

dU : g→ End(DG(U)) (3.18)

is a homomorphism.
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Setting 1∗ = 1, x∗ = −x, for all x ∈ g. The ∗ operation extends uniquely to an

involution on the enveloping algebra. Restrict the operators dU(x), x ∈ g, to DG(U).

Then (3.12) reads

〈b, dU(x)a〉 = 〈dU(x∗)b, a〉 (3.19)

for all a, b ∈ DG(U). Combined with (3.18), dU may be viewed as a Hermitian

representation of g, and it extends uniquely to a Hermitian representaiton

dU : AC(g)→ End(DG(U)) (3.20)

of the enveloping algebra by its universal property. (3.20) is called the derived repre-

sentation of U , and its domain is equal to the G̊arding space DG(U).

Proof of Theorem 3.10.

1. Choose an approximation of identity ϕε ∈ C∞c (G). That is, ϕε ≥ 0,
∫
ϕε(g)dg =

1, and the support of ϕε shrinks to the identity element in G, as ε → 0+. For

all a ∈H ,

‖U(ϕε)a− a‖ = ‖
∫
ϕε(g)(U(g)− 1)a dg‖

≤ sup
g∈support(ϕε)

‖(U(g)− 1)a‖.

Thus, DG(U) is dense in H .
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2. Direct computation shows that

U(g)U(ϕ)a =

∫
G

ϕ(h)U(g)U(h)a dh

=

∫
G

ϕ(h)U(gh)a dh

=

∫
G

ϕ(g−1h)U(h)a dh

= U(ϕ(g−1·))a

using the fact that dg is a left-invariant Haar measure on G.

3. By (3.15),

dU(x)U(ϕ)a =
d

dt

∣∣
t=0
U(exp(tx))U(ϕ)a

=
d

dt

∣∣
t=0
U(ϕ(exp(−tx)·))a

= U(x̃ϕ)a

This yields (3.16) and (3.17).

4. By (3.16), dU(x) ∈ End(DG(U)) for all x ∈ g. It is clear that dU is linear. For

all a, b ∈ DG(U) and x, y ∈ g,

〈b, dU([x, y])a〉

=
d

ds

d

dt

∣∣
s,t=0
〈b, U (exp(tx) exp(sy) exp(−tx)) a〉

=
d

ds

d

dt

∣∣
s,t=0
〈b, U (exp(tx))U (exp(sy))U (exp(−tx)) a〉

= 〈b, [dU(x), dU(y)]a〉

Thus, dU has the representation property

dU([x, y]) = [dU(x), dU(y)] (3.21)
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which holds on DG(U).

It follows from (3.17) that elements in the enveloping algebra are identified

with right (left)-invariant analytic partial differential operators on G, and g is the Lie

algebra of all right (left)-invariant vector fields on G. The ‘right’ or ‘left’ depends on

the choice of a Haar measure in the definition of the G̊arding vectors.

By Theorem 3.10, DG(U) is invariant under the group actions, and DG(U) ⊂

D∞(U). If D∞(U) is equipped with the projective topology induced by the operators

dU(x), x ∈ AC(g), the following theorem shows that DG(U) is dense in D∞(U).

Theorem 3.11 (Theorem 10.1.14 [46]). Let U be a unitary representation of a Lie

group G on a Hilbert space H . Suppose D is a dense subspace in H , contained in

D∞(U), and invariant under U(g), g ∈ G0, where G0 is the connected component in

G containing the identity element. Then D is dense in D∞(U).

Proof. Let a ∈ D∞(U). For all x ∈ g,

dU(Adg(x))a =
d

dt

∣∣
t=0
U(et·Adg(x))a

=
d

dt

∣∣
t=0
U(getxg−1)a

=
d

dt

∣∣
t=0
U(g)U(etx)U(g−1)a

= U(g)dU(x)U(g−1)a.

Thus,

‖dU(x)U(g)a‖ = ‖U(g)dU(Adg−1(x))a‖

= ‖dU(Adg−1(x))a‖
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and this extends to all x ∈ AC(g). It follows that the map a 7→ U(g)a is continuous,

from D∞(U) into D∞(U). Therefore, we may assume D is closed in D∞(U).

Let b ∈ D , ϕ ∈ C∞c (G0). Then U(g)b ∈ D , for all g ∈ G0. Note that dU(x),

x ∈ AC(g), is continuous in D∞(U), closable in H , and

dU(x)U(ϕ)b =

∫
G0

ϕ(g)dU(x)U(g)b dg.

That is, the Riemann sum of U(ϕ)b converges in D∞(U). Since D is closed in D∞(U),

we conclude that U(ϕ)b ∈ D . Since D is dense in D∞(U), it follows that U(ϕ)a ∈ D ,

for all a ∈ D∞(U). A standard approximation shows that every a ∈ D∞(U) is the

limit in of a sequence U(ϕn)a ∈ D . This shows that D is dense in D∞(U).

In fact, the two spaces coincide due to Dixmier and Malliavin. In particular,

every C∞-vector can be written as a finite linear combination of G̊arding vectors.

Theorem 3.12 ([12]). Let π be a continuous representation of a Lie group G on a

Fréchet space E, then the G̊arding space coincides with the space of C∞-vectors.

Corollary 3.13. Let dU be the derived representation in (3.20). If D is a dense

subspace in H , such that D ⊂ DG(U) and D is invariant under U(g), g ∈ G, then

dU(x)
∣∣
D

= dU(x), x ∈ AC(g)

i.e. D is a core of dU(x), for all x ∈ AC(g).

The fact that the derived representation is selfadjoint is due to Powers. Its

proof is based on characterizing C∞-vectors using elliptic elements in the enveloping

algebra, combined with Theorem 3.12. We need the following technical lemma.
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Lemma 3.14. Let U be a unitary representation of a Lie group G on a Hilbert space

H . Let a ∈H . The following are equivalent.

1. The map g 7→ U(g)a is smooth.

2. The map g 7→ 〈b, U(g)a〉 is smooth, for all b ∈H .

3. The map g → 〈U(g−1)b, a〉 is smooth, for all b ∈H .

Theorem 3.15. Let G be a Lie group with Lie algebra g and enveloping algebra

AC(g). Suppose U is a unitary representation of G on a Hilbert space H . Let x be

an elliptic element in AC(g), then

D∞(U) =
∞⋂
n=1

D((dU(x)∗)n) (3.22)

Proof. Recall that D(dU) = DG(U) = D∞(U) by Theorem 3.12. Since dU is Hermi-

tian, D(dU) ⊂ D(dU∗), and

D(dU∗) ⊂
∞⋂
n=1

D((dU(x)∗)n).

Thus, D∞(U) is contained in the right side of (3.22).

Conversely, let b ∈ D((dU(x)n)∗), n = 1, 2, 3, . . .. We show that b ∈ D∞(U).

Let a ∈H , and define

f(g) := 〈b, U(g)a〉

fn(g) := 〈(dU(x)∗)nb, U(g)a〉.
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Then for all ϕ ∈ C∞c (G),∫
G

ϕ(g)fn(g) = 〈(dU(x)∗)nb, U(ϕ)a〉

= 〈b, dU(x)nU(ϕ)a〉

= 〈b, U(x̃nϕ)a〉

=

∫
G

(x̃nϕ)(g)f(g)dg.

That is, f is the weak solution to the system of elliptic partial differential equations

x̃nf = fn

Since fn is continuous for all n = 1, 2, 3, . . ., by elliptic regularity, it follows that f is

C∞. Since a was arbitrary, we conclude that b ∈ D∞(U), by Lemma 3.14.

Theorem 3.16 ([36]). Let G be a Lie group, g the Lie algebra and AC(g) the en-

veloping algebra. Let U be a unitary representation of G. Then dU is a selfadjoint

representation of AC(g) with domain equal to the G̊arding space DG(U).

Proof. Let x be any elliptic element in AC(g). By Theorem 3.15,

D(dU∗) ⊂
∞⋂
n=1

D((dU(x)∗)n) = D∞(U)

But D∞(U) = DG(U), by Theorem 3.12. Thus, D(dU∗) ⊂ D(dU). The converse

is also true, as dU is a Hermitian representation. Therefore, D(dU) = D(dU∗). It

follows that dU is a selfadjoint representation by Lemma 3.4.

3.2 Operators in the Enveloping Algebras

Let U be a unitary representation of a Lie group G with Lie algebra g and

enveloping algebra AC(g). The derived representation dU is selfadjoint on the G̊arding
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space for U . In applications, certain elements in the enveloping algebra have physical

interpretations. For Hermitian elements x ∈ AC(g), it is desirable that dU(x) is

essentially selfadjoint. If not, an appropriate selfadjoint extension has to be made,

since the latter have spectral resolutions and correspond to physical observables. In

this section, we review some fundamental results in these developments.

3.2.1 Central Elements

The earliest results in this direction goes back to I.E. Segal. He showed that

dU(x) is essentially selfadjoint for all x in the center of the enveloping algebra [47].

First, we recall the following well-known result in the theory of unitary repre-

sentations of Lie groups.

Lemma 3.17. Let G be a Lie group, g the Lie algebra, and AC(g) the enveloping

algebra. Let G0 be the connected component of the identity element in G. Let U be a

unitary representation of G on a Hilbert space H . Then U(G0)′ = dU(AC(g))′.

Proof. Let B ∈ U(G0)′. For all a, b ∈ DG(U), x ∈ g,

〈b, BdU(x)a〉 =
d

dt

∣∣
t=0
〈b, BU(exp(tx))a〉

=
d

dt

∣∣
t=0
〈b, U(exp(tx))Ba〉

=
d

dt

∣∣
t=0
〈U(exp(−tx))b, Ba〉

= 〈dU(x∗)b, Ba〉.

This obviously extends to all x in the enveloping algebra. Therefore, B ∈ dU(AC(g))′.
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Conversely, suppose B ∈ dU(AC(g))′. Let b ∈ DG(U), x ∈ g. Define

f(t) := U(exp(tx))BU(exp(1− t)x)b.

f is continuously differentiable and

f ′(t) = U(exp(tx))[dU(x), B]U(exp(1− t)x)b.

Note that U(exp(g)) leave DG(U) invariant, so that U(exp(1 − t)x)b ∈ DG(U). By

assumption, [dU(x), B]U(exp(1 − t)x)b = 0, it follows that f ′(t) = 0, and so f(0) =

f(1), i.e.

BU(exp(x))b = U(exp(x))Bb.

Since DG(U) is dense in H , and B,U(exp(x)) are bounded operators, we conclude

that B commutes with U(exp(x)), for all x ∈ g. Since G0 is generated by exp(g), it

follows that B commutes with U(g), for all g ∈ G0. That is, B ∈ U(G0)′.

Theorem 3.18 (I.E. Segal). Let G be a Lie group, g the Lie algebra and AC(g) the

enveloping algebra. Let Z be the center of AC(g). For all w ∈ Z, dU(w) is essentially

normal on the G̊arding space DG(U).

Proof. For w ∈ Z , let N := dU(w). We show that N is affiliated with the abelian

von Neumann algebra

M := U(G0)′ ∩ U(G0)′′.

Recall that dU is a selfadjoint representation, so that strong and weak commutants

coincide, see Lemma 3.6. Since dU(w) commutes strongly with dU(AC(g))′, and this
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passes to the closure N of dU(w), by Lemma 2.8. In view of Lemma 3.17, N commutes

strongly with U(G0)′.

It remains to show that N commutes strongly with U(G0)′′. Since U(G0)′′

is the weak-closure of U(G0), it suffices to check that N commutes strongly with

U(G0). This can be done using a similar argument as in the proof of the second part

of Lemma 3.17.

By Theorem 2.13, N is a normal operator.

Remark 3.19. As a special case, if w = w∗, then dU(w) is essentially selfadjoint. The

theorem and its special case was originally proved by Segal [47, 48]. The proof using

Stone’s characteristic matrix is due to Jorgensen, see Chapter 6 of [25]. An interesting

history of this problem can be found in [23].

3.2.2 Second Order Elements

The importance of elliptic elements in the enveloping algebras was pointed out

by Nelson and Stinespring. These elements had played a key role at various places of

the theory.

To proceed, we shall need the following results on strongly commuting selfad-

joint operators. Recall that two selfadjoint operators are said to be strongly commut-

ing if their spectral projections commute.

Lemma 3.20. Let D be a dense domain in H . Suppose A,B ∈ End(D) and B ⊂ A∗.

If AB or BA is essentially selfadjoint then B = A∗.
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Proof. Let (a,A∗a) ∈ G (A∗), such that (a,A∗a) ⊥ G (B). That is, for all b ∈ D ,

〈a, b〉+ 〈A∗a,Bb〉 = 0. (3.23)

Suppose AB is essentially selfadjoint. By (3.23), 〈a, (1 + AB)b〉 = 0. Since

AB is positive on D , R(1 + AB) is dense in H . This implies a = 0.

On the other hand, if BA is essentially selfadjoint, we may substitute Ab for

b in (3.23), and get 〈A∗a, (1 + BA)b〉 = 0. A similar argument as before shows that

R(1 + BA) is dense in H , and so A∗a = 0. By (3.23), 〈a, b〉 = 0 for all b ∈ D . This

implies a = 0.

Theorem 3.21. Let D be a dense domain in a Hilbert space H . Suppose A1, A2 ∈

End(D), A1, A2 Hermitian, and A1A2a = A2A1a, for all a ∈ D . Let N := A1 + iA2,

N+ := A1 − iA2. Then

1. N is normal if and only if N+ = N∗. (Equivalently, (N+)∗ = N , by taking

adjoints.)

2. If N is normal, then A1, A2 are strongly commuting selfadjoint operators.

3. If N+N is essentially selfadjoint, then N is normal and N+N = N N
∗

= N
∗
N .

Proof. Note that all the operators are defined on the common invariant domain D .

A1, A2 commute on D if and only if D(N) ⊂ D(N∗) and ‖Na‖ = ‖N∗a‖, for all

a ∈ D .

1. By definition, N+ = N∗
∣∣
D

. For all a ∈ D , ‖Na‖ = ‖N+a‖, and so D(N+) =

D(N). The statement follows from Theorem 2.12.
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2. Suppose N is normal, then N = N1+iN2, where N1, N2 are strongly commuting

selfadjoint operators, given by

N1 =
N +N∗

2
, N2 =

N −N∗
2i

By definition, Ak = Nk

∣∣
D

, Nk = Nk

∣∣
D(N)

, for k = 1, 2. Claim: Ak = Nk, i.e.

D is a core of Nk. It suffices to check D(N) ⊂ D(Ak), which follows from the

norm estimate

‖Aka‖ ≤ ‖Na‖, a ∈ D .

Therefore, A1, A2 are strongly commuting selfadjoint operators.

3. Suppose N+N is essentially selfadjoint. Since N+, N ∈ End(D), N+ ⊂ N∗,

and N+Na = NN+a for all a ∈ D , it follows that N+ = N∗, by Lemma 3.20.

By part 1, N is normal. Write N = N1 + iN2 as above. Then

N N
∗

= N
∗
N = N2

1 +N2
2 ⊃ A2

1 + A2
2 = N+N

Since N+N is selfadjoint, it has no proper selfadjoint extensions. Thus, all

terms are equal.

Theorem 3.22 ([34]). Let U be a unitary representation of a Lie group G with Lie

algebra g. Let x, y be elements in the enveloping algebra AC(g).

1. If x is elliptic, then dU(x∗) = dU(x)∗.

2. Suppose x is elliptic and y∗y commutes with x, then dU(y∗y) is essentially

selfadjoint and dU(y∗) = dU(y)∗. If, in addition, y∗y = yy∗, then dU(y) is

essentially normal.
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Remark 3.23. For the proof, we refer to the original paper by Nelson.

1. If dU(y∗y) is essentially selfadjoint, then dU(y∗) = dU(y)∗ by Lemma 3.20. In

particular, for y = y∗, dU(y) is essentially selfadjoint.

2. Write y = y1 + iy2, where y1, y2 are Hermitian elements. y∗y = yy∗ if and only

if y1y2 = y2y1. If any of these conditions is satisfied, dU(y) is essentially normal

by Theorem 3.21. That is,

dU(y1 − iy2) = dU(y1 + iy2)∗

Also, dU(y1), dU(y2) are strongly commuting selfadjoint operators.

We record some important implications.

Corollary 3.24 (Segal’s result on central elements). Let y be an element in the center

of AC(g). Then dU(y) is essentially normal.

Corollary 3.25. If G is abelian, then dU(y∗) = dU(y)∗ for all y in AC(g).

Remark 3.26. In both cases, x may be chosen as any elliptic element in AC(g). For

example, choose the Nelson-Laplace operator

x := x2
1 + · · ·+ x2

d

where {x1, . . . , xd} is a basis of g.

Corollary 3.27. Let x ∈ g, p a complex polynomial in one free variable, then

dU(p(x)∗) = dU(p(x))∗.
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Proof. Let U1(t) := U(exp(tx)), t ∈ R. By Stone’s theorem, U1(t) = exp(tX), where

X is a skew-adjoint operator defined on its natural domain. Let s be a basis for the

Lie algebra of R, then

dU1(p(s)∗) = dU1(p(s))∗ (3.24)

by Corollary 3.25.

Clearly, dU ⊂ dU1 (defined on the respective G̊arding spaces), and U1(g) leaves

DG(U) invariant, for all g ∈ G. By Theorem 3.11, DG(U) is a core of dU1(p(s)∗).

That is,

dU(p(x)∗) = dU1(p(s)∗)
∣∣
DG(U)

= dU1(p(s)∗). (3.25)

Combine (3.24) and (3.25), it follows that

dU(p(x)∗) = dU1(p(s))∗ ⊃ dU(p(s))∗.

Since dU is a Hermitian representation, the converse containment also holds. This

proves the corollary.

Finally, we give another characterization of C∞-vectors.

Corollary 3.28. Let x1, . . . , xd be a basis of g, and k ∈ {1, . . . , d}.

1. Xn
k = dU(xnk), n ∈ N.

2. Let C∞(Xk) :=
⋂∞
n=1 D(Xn

k ) .Then

D∞(U) =
d⋂

k=1

C∞(Xk) =
d⋂

k=1

C∞(dU(xk)).
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Proof. Part 1 is immediate. Thus,

d⋂
k=1

C∞(Xk) =
d⋂

k=1

C∞(dU(xk)).

Let 4 = x2
1 + · · ·+ x2

d be the Nelson-Laplace operator. By Theorem 3.15

d⋂
k=1

C∞(Xk) ⊂
d⋂

k=1

C∞(dU(4)∗) = D∞(U).

The converse containment is trivial. This proves the corollary.

3.3 Integrable Representations

R.T. Powers proved that every unitary representation of a Lie group U induces

a selfadjoint representation dU of the enveloping algebra on the the G̊arding space.

By a theorem of Dixmier and Malliavin, the G̊arding space is precisely the space of

C∞-vectors. In this section, we study the converse problem. If ρ is a representation

of the enveloping algebra, is it possible to reconstruct a unitary representation U of

the Lie group, so that ρ = dU? If this can be done, ρ is said to be integrable or exact.

A necessary condition is that the domain of ρ has to be maximal in certain sense, as

it would be the G̊arding space of U , if the latter can be recovered. The answer to

the converse problem is no in general. In the next chapter, we will study examples of

non-integrable representations under the commutative settings.

Known techniques to reconstruct U from a selfadjoint representation of the

enveloping algebra include the analytic vector method of Nelson, complete positivity

condition of Arveson-Powers, and the perpurbation method. The latter two methods

were developed in the monograph [27]. Moreover, the heat kernel method developed



70

more recently in [8] applies to the most general integrability problem in the setting

of Banach spaces.

3.3.1 Analytic Vectors

We review the idea of analytic vectors, and study the integrability problem in

the setting of unitary representations.

Let A be an operator in a Hilbert H . An element a in D(A) is called an

analytic vector of A, if there exists t > 0, such that

∞∑
n=0

‖Ana‖
n!

tn <∞ (3.26)

Implicitly, a ∈ D(An), for n = 1, 2, 3 . . .. Obviously, (3.26) is equivalent to

‖Anϕ‖ < n!Mn, n ∈ N (3.27)

for some M > 0.

Lemma 3.29. Let A be a selfadjoint operator. Let a be an analytic vector for A, and

t as in (3.26). Then

ezAa =
∞∑
n=0

zn

n!
Ana. (3.28)

for all z ∈ C, such that |z| ≤ t. Moreover, the unitary group eisA, s ∈ R, may be

analytically continued to eizA for z ∈ C and |=(z)| < t.

Proof. Let A =
∫
λE(dλ) be the spectral decomposition of A. (3.28) is equivalent to

∫ ∞∑
n=0

zn

n!
xnE(dx)a =

∞∑
n=0

zn

n!

∫
xnE(dx)a (3.29)
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Implicitly, a ∈ D(ezA). We check that switching the order of summation and integra-

tion is valid, using Fubini’s theorem. This follows from the estimate

∞∑
n=0

|z|n

n!

∫
|x|n‖E(dx)a‖ ≤

∞∑
n=0

|z|n

n!

(∫
|x|2n‖E(dx)a‖

)1/2

‖a‖

= ‖a‖
∞∑
n=0

|z|n

n!
‖Ana‖

≤ ‖a‖
∞∑
n=0

tn

n!
‖Ana‖ <∞.

The second part is obvious.

Theorem 3.30. Let A be a densely defined Hermitian operator. If A has a dense set

of analytic vectors, then A is essentially selfadjoint.

Proof. Suppose A∗b = ib, for some b ∈ D(A∗). Let a be an analytic vector of A, and

t as in (3.26).

First, we assume that A has equal deficiency indices, thus A has non-trivial

selfadjoint extensions. Let Ã ⊃ A be a selfadjoint extension of A. Then a is also an

analytic vector for Ã. By Lemma 3.29, for |=(z)| ≤ t,

〈b, eizÃa〉 =
∞∑
n=0

(iz)n

n!
〈b, Ãna〉

=
∞∑
n=0

(iz)n

n!
〈(A∗)nb, a〉

=
∞∑
n=0

zn

n!
〈b, a〉

That is, 〈b, eizÃa〉 = 〈b, a〉ez, for all |=(z)| ≤ t. Restrict to z ∈ R, since eizÃ is a

unitary operator, 〈b, eizÃa〉 is bounded. But 〈b, a〉ez is not, unless 〈b, a〉 = 0. Since
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the set of analytic vectors of A is dense in H , it follows that b = 0. Simiarly,

A∗b = −ib implies b = 0. Thus, the deficiency spaces of A are trivial, and A is

essentially selfadjoint.

If the deficiency indices of A are not equal, we may apply the trick by setting

A1 := A⊕ (−A) acting on the Hilbert space H ⊕H . Then A1 has equal deficiency

indices, and A1 is essentially selfadjoint. It follows that A is essentially selfadjoint.

For more details of this method, we refer to [2].

For an algebra A of operators on a Hilbert space H , a ∈ H is an analytic

vector of A if it is an analytic vector of every element in A. Usually A has a finite

generating set S0, then a is an analytic vector of A if and only if there exits some

t > 0, such that

∞∑
n=0

tn

n!
sup{‖X1 · · ·Xna‖ : X1, · · · , Xn ∈ S0} <∞ (3.30)

Implicitly, a is assumed to be in the domains of all the operators involved. Condition

(3.30) is equivalent to

‖X1 · · ·Xna‖ ≤ n!Mn, n ∈ N (3.31)

for arbitrary X1, · · · , Xn ∈ S0, and M is some positive constant.

Let L ∈ A. Under certain conditions, the set of analytic vectors of L is

contained in that of the algebra A. In that case, we say L analytically dominates

A. As an illustration, let X ∈ A, such that ‖Xa‖ ≤ ‖La‖. If the algebra is abelian

then ‖Xna‖ ≤ ‖Lna‖, it follows that L analytically dominates X. For non-abelian



73

algebras, we have

‖X2a‖ ≤ ‖LXa‖

≤ ‖XLa‖+ ‖ad(X)(L)a‖

≤ ‖L2a‖+ ‖ad(X)(L)a‖.

More generally,

XnL =
n∑
k=0

(
n
k

)
(ad(X))k (L)Xn−k

where ad(X)(L) := XL − LX. Thus, an estimate on the numbers ‖adn(X)(L)a‖,

n = 1, 2, 3 . . ., is required.

In fact, for all our applications in later sections, the abelian case is sufficient.

We record here some general results on the non-abelian algebras.

Theorem 3.31. Let A, S0, L as before. Suppose

1. ‖Xa‖ ≤ ‖La‖, for all X ∈ S0;

2. ‖ad(X1) · · · ad(Xn)(L)a‖ < n!‖La‖, for arbitrary X1, . . . , Xn ∈ S0, n ∈ N.

Then L analytically dominates A.

Let g be a Lie algebra with a basis {x1, . . . , xd}. Recall the enveloping algebra

AC(g) is the polynomial algebra generated by {1, x1, . . . , xd}modulo the commutation

relations of g. Let ρ be a ∗-representation of the AC(g) on a Hilbert space H , and

4 := x2
1 + · · ·+ x2

d.

Theorem 3.32. Let L := ρ(1−4), and a ∈ D(ρ). Then
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1. There is α > 0, such that

‖Xa‖ ≤ α‖La‖

‖adX1 · · · adXn(L)a‖ ≤ αn‖Lna‖

for arbitrary X,X1, . . . , Xn ∈ {ρ(x1), . . . , ρ(xd)}, n ∈ N.

2. L analytically dominates the algebra ρ(AC(g)).

For abelian algebras, the theorem is trivial. For the proof of the general

case, we refer to the original paper of Nelson [32]. It suffices to say that Theorem

3.31 combined with part one of Theorem 3.32 implies that L dominates ρ(AC(g))

analytically.

Let Dw(ρ) be the space of all analytic vectors of the algebra ρ(AC(g)). We

proceed to show that for derived representations, i.e. ρ = dU , Dw(ρ) is dense in H .

Theorem 3.33. Let G be a Lie group, g the Lie algebra and AC(g) the enveloping

algebra. Let U be a unitary representation of G on a Hilbert space H . Then Dw(dU)

is dense in H .

Proof. Let L := dU(1−4). By Theorem 3.22, L is selfadjoint with spectral decom-

position

L =

∫
λE(dλ).

Then E0 := ∪E(0, t)H is a dense set of analytic vectors of L. By Theorem 3.32,

E0 ⊂ Dw(dU). Moreover, E0 ⊂ C∞(L) and the latter is equal to D(dU) by Theorem

3.15. Thus E0 ⊂ D(dU). This proves the theorem.
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3.3.2 Integrability

Let G be a Lie group, g the Lie algebra and AC(g) the enveloping algebra.

Throughout, g is assumed to be finite dimensional with a basis {x1, . . . , xd}. We also

assume that G is simply connected. That is, G is generated by exp(g), where exp is

the exponential map from g into G.

Let ρ : AC(g)→ End(D(ρ)) be a Hermitian representation on a Hilbert space

H . If ρ is derived from a unitary representation U of G on H , then D(ρ) contains a

dense set of analytic vectors for the algebra ρ(AC(g)), see Theorem 3.33. The converse

also holds. The following variants of Nelson’s results are taken from [46].

Theorem 3.34. Suppose Dw(ρ) is dense in H , then there exists a unique unitary

representation U of G, such that

ρ(xk) = dU(xk) (3.32)

for all k = 1, . . . , d.

Remark 3.35.

1. By definition, D(dU) = DG(U). Corollary 3.27 shows that dU(xk), k = 1, . . . d,

are skew-adjoint operators, and

U(exp(txk)) = exp(tdU(xk)).

Since G is generated by exp(g), it follows that (3.32) determines U uniquely.

2. Note that

D(ρ) ⊂
d⋂

k=1

C (dU(xk))
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and the right side is equal to D(dU), by Corollary 3.28. It follows that ρ ⊂ dU .

Since dU is selfadjoint, then dU ⊂ ρ∗. It is straightforward to check that ρ∗ is

selfadjoint, therefore, ρ∗ = dU .

3. If, in addition, ρ is selfadjoint, then ρ is integrable.

Since ρ(1−4) dominates the algebra ρ(AC(g)) analytically, it is expected to

obtain conditions on integrability from the Nelson-Laplace operator.

Theorem 3.36. Suppose ρ(4) is essentially selfadjoint, then (3.32) is true.

We summarize the main results in the following theorem.

Theorem 3.37. The following are equivalent.

1. ρ is integrable.

2. ρ is selfadjoint, and Dw(ρ) is dense in H .

3. ρ is selfadjoint, and ρ(4) is essentially selfadjoint.
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CHAPTER 4
NON-INTEGRABLE REPRESENTATIONS

Motivated by the famous example of Nelson [32], we consider a system of n

Hermitian operators, commuting on a common invariant dense domain in a Hilbert

space H , separately essentially selfadjoint, and we ask when do they have mutually

commuting spectral projections? We study an index theory for such systems in view to

extend von Neumann’s extension theory for single Hermitian operators. The solution

is formulated in the settings of representations of ∗-algebras. When adapted to the

Nelson-type examples on various covering surfaces M̃ of the punctured plane, the

index yields a natural link between geometry of the manifolds and spectrum of the

Nelson-Laplace operator on L2(M̃).

4.1 Nelson’s Example

E. Nelson constructed a striking example of two essentially selfadjoint opera-

tors commuting on a common invariant domain in a separable Hilbert space, without

having commuting spectral projections [32]. It raised the question on integrability of

Lie algebras in general. That is, whether a selfadjoint representation of the enveloping

algebra of a Lie algebra can be integrated to a unitary representation of the corre-

sponding Lie group. Nelson’s example shows that the question is intimately related

to the geometry of the underlying manifold, and cannot be answered by algebraic

method alone.
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4.1.1 Covering Surfaces of the Punctured Plane

Let (M̃, π) be the N -covering surface of the punctured plane M ' R2\{0},

and p the projection from M̃ onto M . Each fiber is isomorphic to the cyclic group of

order N . The universal covering, N =∞, corresponds to the Riemann surface of the

complex log function, and each fiber is isomorphic to a copy of the integers.

For all m ∈ M̃ , there exists an open neighborhood U of m, such that

pU := p
∣∣
U

(4.1)

is a homeomorphism from U onto p(U). The family {(U, pU)} forms an open cover of

M̃ .

For all f ∈ Cc(U), the map

f 7→
∫
p(U)

f ◦ p−1
U dµ (4.2)

is a positive linear functional, where µ is the two-dimensional Lebesgue measure. By

Riesz’s theorem, there exists a unique regular Borel measure λU , such that

∫
U

fdλU =

∫
p(U)

f ◦ p−1
U dµ. (4.3)

Let λ be the Riemannian measure on M̃ , uniquely determined by

λ
∣∣
U

:= λU . (4.4)

Let Ui be a locally finite coordinate cover of M̃ , such that U i is compact, and

choose a smooth partition of unity hi subordinate to Ui. For all f ∈ Cc(M̃),

∫
fdλ =

∑
i

∫
Ui

hif dλUi . (4.5)
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and the summation is taken over a finite set.

The Sobolev space Hs(M̃), s ∈ R, consists of ψ such that ψ
∣∣
U
∈ Hs

loc(U), i.e.

ψ ◦ p−1
U ∈ H

s
loc(p(U)) (4.6)

for all chart (U, pU).

We will need to parameterize M̃ using polar coordinates. For N < ∞, let q

be the homeomorphism from M̃ onto

{(r, θ); r ∈ R+, θ ∈ [0, 2πN)}. (4.7)

For N =∞, (4.7) is replaced by

{(r, θ) : r ∈ R+, θ ∈ R}. (4.8)

In both cases, M̃ is covered by a single chart (M̃, q), and

dλ = rdrdθ. (4.9)

Switching coordinates

pU ◦ q−1 : q(U ∩ M̃)→ pU(U ∩ M̃) (4.10)

is given by the standard mapping

x = r cos θ (4.11)

y = r sin θ (4.12)

Every sheet Uθ0 in M̃ is parameterized by

Uθ0 := q−1({(r, θ) : r ∈ R+, θ ∈ [θ0, θ0 + 2π), θ0 ∈ R}). (4.13)



80

For N <∞, it is understood that θ ∈ [θ0, θ0 + 2π) mod 2πN . Thus, p(Uθ0) is a copy

of R2\{0} with a branch cut along some radial direction θ0; form the local Hilbert

space

L2(Uθ0) ' L2(R2). (4.14)

4.1.2 Local Translations

Let m ∈ M̃ . Choose a coordinate chart (U, πU) of m. Let

T (1)(m) := sup{|t| : pU(m) + (t, 0) ∈ p(U), t ∈ R} (4.15)

T (2)(m) := sup{|t| : pU(m) + (0, t) ∈ p(U), t ∈ R} (4.16)

and define local translations

τ
(1)
U (s)(m) := p−1

U (pU(m) + (s, 0)) (4.17)

τ
(2)
U (t)(m) := p−1

U (pU(m) + (0, t)) (4.18)

for |s| < T (1)(m), |t| < T (2)(m). Locally, the two translations commute. That is,

τ
(1)
U (s)

(
τ

(2)
U (t)(m)

)
= τ

(2)
U (t)

(
τ

(1)
U (s)(m)

)
(4.19)

provided that s, t are small so that points stay in U . τ
(k)
U extends uniquely to the

translation group τ (k) on M̃ , given by

τ (k)
∣∣
U

:= τ
(k)
U (4.20)

for k = 1, 2. In general, however,

τ (1) ◦ τ (2) 6= τ (2) ◦ τ (1). (4.21)
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Remark 4.1. To see what happens, imagine the logarithmic Riemann surface as a

two-way spiral parking ramp. One driving in the ramp would end up at a level up or

down by following different drive ways!

4.1.3 Translation Groups in L2(M̃, λ)

Let k = 1, 2. Define

Uk(t)f(m) := f(τ (k)(t)(m)), t ∈ R (4.22)

for all f ∈ L2(M̃\Ek, λ), where

E1 := π−1(R× {0}) (4.23)

E2 := π−1({0} × R) (4.24)

Since Ek is a measure zero set, Uk extend uniquely to a strongly continuous unitary

group on L2(M̃, λ). By Stone’s theorem,

Uk(t) = eitXk (4.25)

where Xk is the unique selfadjoint generator, and D(Xk) consists of all f ∈ L2(M̃, λ),

such that

lim
t→0

Uk(t)− 1

t
f

exists. It follows that

Xk =
1

i

∂

∂xk

∣∣
D(Xk)

. (4.26)

Note that (4.19) and (4.21) implies that U1, U2 commute locally, but in general,

U1(s)U2(t) 6= U2(t)U1(s). (4.27)
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We proceed to show that X1, X2 do not commute strongly. That is, their

spectral projections are non-commuting. This is a result of (4.27) and Theorem 4.2.

Theorem 4.2. Suppose A,B are selfadjoint operators on H . The following are

equivalent.

1. A,B strongly commute.

2. The unitary groups eisA, eitB commute, s, t ∈ R.

Remark 4.3. 1 ⇒ 2 follows from the spectral theorem. The other implication is a

well-known result in the representation theory of Lie groups. We sketch the proof for

the abelian group (R,+) as a special case. An elegant argument using representation

theory of C∗-algebras can be found in Chapter 3, [5].

Proof of Theorem 4.2. Suppose the unitary groups commute, then

U(s, t) := eisAeitB

is a unitary representation of (R2,+). If z1, z2 is a basis of the Lie algebra, the

universal enveloping is identified with C[z1, z2], with an involution determined by

1∗ = 1, z∗k = −zk, for k = 1, 2. Then

dU(z1) = iA
∣∣
D

dU(z2) = iB
∣∣
D

where D is the G̊arding space for U . In particular, the operator

dU(−iz1 + z2) = A+ iB
∣∣
D
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is affiliated with the abelian Von Neumann algebra

{eisA, eitB : s, t ∈ R}′′.

By Stone’s theorem, A+ iB
∣∣
D

is essentially normal, or equivalently, A
∣∣
D

and B
∣∣
D

are

strongly commuting selfadjoint operators. Since A,B are selfadjoint, it follows that

A = A
∣∣
D

, B = B
∣∣
D

, and so A,B strongly commute.

4.1.4 Non-Commuting Operators

We will consider restrictions of X1, X2 to the subspace C∞c (M̃). In fact,

C∞c (M̃) is a core of both operators.

Lemma 4.4. C∞c (M̃) is dense in L2(M̃, λ).

Proof. Let f ∈ L2(M̃, λ). If f ⊥ C∞c (M̃) then f ⊥ C∞c (U), for all coordinate charts

(U, πU). Since C∞c (U) is dense in L2(U, λU), it follows that f
∣∣
U

= 0. Therefore,

f = 0.

Lemma 4.5. Let A be a selfadjoint operator in a Hilbert space H . Let U(t) =

eitA, t ∈ R, be the strongly continuous one-parameter unitary group generated by A.

Suppose D is a dense subspace in H , D ⊂ D(A), and U(t)D ⊂ D , for all t ∈ R.

Then A
∣∣
D

= A. In particular, A
∣∣
D

is essentially selfadjoint.
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Proof. Let B := A
∣∣
D

. Suppose B∗b = ib, for some b ∈ D(B∗). Then for all a ∈ D ,

d

dt
〈b, U(t)a〉 = 〈b, iAU(t)a〉, (D ⊂ D(A))

= 〈b, iBU(t)a〉, (U(t)D ⊂ D)

= i〈B∗b, U(t)a〉

= 〈b, U(t)a〉.

That is, the function f(t) := 〈b, U(t)a〉 satisfies the differential equation f ′ = f . It

follows f(t) = f(0)et, and so

〈U(−t)b, a〉 = 〈etb, a〉

for all a ∈ D , t ∈ R. Since D is dense in H , this implies that U(t)b = e−tb. Since

U(t) is unitary,

‖U(t)b‖ = ‖b‖ = e−t‖b‖

for all t ∈ R. Therefore, ‖b‖ = 0 and b = 0.

Similarly, B∗b = −ib, b ∈ D(B∗), implies that b = 0. Therefore, the deficiency

index of B is (0, 0). By Von Neumann’s index theory of selfadjoint extensions, B is

essentially selfadjoint. Since B ⊂ A and A = A∗, it follows that B = A.

Theorem 4.6. Let Xk, k = 1, 2, as given in (4.26). Then

Xk

∣∣
C∞c (M̃)

= Xk. (4.28)

Proof. The proof of Lemma 4.4 shows that C∞c (M̃\Ek) is dense in L2(M̃, λ). See
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(4.23), (4.24) for the definition of Ek. Moreover,

Xk

∣∣
C∞c (M̃\Ek)

⊂ Xk

∣∣
C∞c (M̃)

⊂ Xk

and Uk(t) leaves C∞c (M̃\Ek) invariant. By Lemma 4.5,

Xk

∣∣
C∞c (M̃\Ek)

= Xk

∣∣
C∞c (M̃)

= Xk.

In summary, setting D = C∞c (M̃), A1 := X1

∣∣
D

, A2 := X2

∣∣
D

, i.e.

A1 =
1

i

∂

∂x1

∣∣
D

A2 =
1

i

∂

∂x2

∣∣
D

The system A1, A2,D has the following properties:

1. A1, A2 ∈ End(D);

2. A1A2ϕ = A2A1ϕ, for all ϕ ∈ D ;

3. A1, A2 are essentially selfadjoint;

4. A1, A2 are not strongly commuting.

Interestingly, with the first three properties, it is reasonable to expect the unique

selfadjoint extensions commute. However, these conditions are still not sufficient.

4.2 Commutativity

Motivated by Nelson’s example, we consider a system of n Hermitian opera-

tors, commuting on a common invariant dense domain in a Hilbert space, separately
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essentially selfadjoint, and we ask when do they have mutually commuting spec-

tral projections? We study an index theory for such systems in view to extend von

Neumann’s extension theory for single Hermitian operators. Adapted to Nelson’s

example, this index naturally brings out the geometry of the covering surfaces.

4.2.1 An Index Theory

The question may be formulated in the setting of representations of ∗-algebras.

Recall that for the abelian group (Rn,+), let z1, . . . , zn be a basis of the Lie algebra

g, then universal enveloping algebra AC(g) is the free abelian algebra on the skew-

Hermitian generators z1, . . . , zn. The involution on AC(g) is determined by 1∗ = 1,

z∗k = −zk, for k = 1, . . . , n.

Theorem 4.7. Let H be a Hilbert space, D0 a dense subspace in H . Let A1, . . . , An

be a system of operators on H satisfying

1. D(Ak) = D0;

2. Ak ∈ End(D0);

3. AkAlϕ = AlAkϕ, for all ϕ ∈ D0;

4. Ak is essentially selfadjoint.

Let z1, . . . , zn be a basis of an n-dimensional abelian Lie algebra, A the universal

enveloping algebra. Setting ρ(zk) := iAk, and extend ρ to a Hermitian representation

of A on the domain D0. Setting

D :=
⋂

D(A
l1
k1
· · ·Alnkn) (4.29)

where k1, . . . , kn ∈ {1, . . . , n}, l1, . . . , ln ∈ N. Then D(ρ∗) = D , and ρ∗ is a selfadjoint
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representation.

Proof. Note that D0 ⊂ D , so that D is dense. Obviously, D(ρ∗) ⊂ D . Conversely,

elements in A are linear combinations of monomials zl1k1 · · · z
ln
kn

, and so

D(ρ∗) =
⋂

D((ρ(zl1k1) · · · ρ(zlnkn))∗)

⊃
⋂

D(ρ(zlnkn)∗ · · · ρ(zl1k1)
∗)

=
⋂

D((Alnkn)∗ · · · (Al1k1)
∗)

=
⋂

D(A
ln
kn · · ·A

l1
k1

)

= D

Thus, D(ρ∗) = D .

By definition, ρ∗(zk) = iAk
∣∣
D(ρ∗)

, k = 1, . . . , n, it follows that ρ∗ is a Hermitian

representation, i.e. ρ∗ ⊂ ρ∗∗. Since ρ∗∗ ⊂ ρ∗ always holds, therefore ρ∗ = ρ∗∗.

Theorem 4.8. The following are equivalent.

1. ρ∗ is integrable.

2. ρ∗(z2
1 + · · ·+ z2

n) is essentially selfadjoint on D(ρ∗).

3. The operators ρ∗(−izk), k = 1, . . . , n, are mutually strongly commuting.

Proof. This follows from general theory on ∗-representations.

Corollary 4.9. Let A1, . . . , An,D0 and D as in Theorem 4.7. The following are

equivalent.

1. A1, . . . , An have mutually commuting spectral projections.

2. (A2
1)∗ + · · ·+ (A2

n)∗ is essentially selfadjoint on D .
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By Corollary 4.9, the question on the commutativity of A1, . . . , An on D0

translates to the essential selfadjointness of

L := (A2
1)∗ + · · ·+ (A2

n)∗
∣∣
D
. (4.30)

Notice that L is semibounded (L ≥ 0), so by von Neumann’s theory on extension

of operators, it has equal deficiency indices. To classify the family of its selfadjoint

extensions, it suffices to characterize one deficiency space. This leads naturally to an

index for the system.

Definition 4.10. Let A1, . . . , An,D0 as before, and D , L as in (4.29) and (4.30). The

defect number of the system (A1, . . . , An,D0) is the dimension of the closed subspace

D−1(L) := {ψ ∈ D(L∗) : L∗ψ = −ψ}

Remark 4.11. It is essential to formuate the index on D , as oppose to D0. This is

expected, as D is the maximal common invariant dense domain such that the system

has all the desired properties. We illustrate with an example where D0  D , and the

index breaks down on D0. It also shows that the Nelson-type example does not exist

on the punctured plane itself, and one has to go to the covering surfaces.

4.2.2 An Example in L2(R2)

Consider the Hilbert space L2(R2), and the unitary groups

U1(s)f(x1, x2) := f(x1 + s, x2) (4.31)

U2(t)f(x1, x2) := f(x1, x2 + t) (4.32)
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for s, t ∈ R, and all f ∈ L2(R2). By Stone’s theorem,

U1(s) = eisX1 (4.33)

U2(t) = eitX2 (4.34)

where X1, X2 are the selfadjoint operators, and

X1 =
1

i

∂

∂x1

∣∣
D(X1)

(4.35)

X2 =
1

i

∂

∂x2

∣∣
D(X2)

(4.36)

both defined on their natural domains. Since U1, U2 commute, X1, X2 are strongly

commuting. Moreover,

U(s, t) := U1(s)U2(t) (4.37)

is a unitary representation of the abelian group (R2,+) on L2(R2). Setting

A1 :=
1

i

∂

∂x1

∣∣
C∞c (R2\{0}) (4.38)

A2 :=
1

i

∂

∂x2

∣∣
C∞c (R2\{0}) (4.39)

and let

D :=
⋂

D(A
l1
k1
A
l2
k2

) (4.40)

where k1, k2 ∈ {1, 2}, and l1, l2 ∈ N. Then,

1. A1, A2 ∈ End(C∞c (R2\{0}));

2. A1A2ϕ = A2A1ϕ, for all ϕ ∈ C∞c (R2\{0});

3. A1 = X1, A2 = X2. In particular, A1, A2 are essentially selfadjoint. See the

proof of Theorem 4.6.
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Lemma 4.12. D is equal to the space D∞(U) of C∞-vectors of U . Moreover, ψ ∈ D

if and only if ψ ∈ C∞(R2) with all the derivatives in L2(R2). That is,

D = D∞(U) =
∞⋂
k=0

Hk(R2) (4.41)

where Hk(R2) is the kth Sobolev space on R2.

Proof. Notice that ψ ∈ D if and only if the map

(s, t) 7→ U(s, t)ψ = eisA1eitA2ψ

is C∞ from (R2,+) into L2(R2), i.e. ψ is a C∞-vector for U . In fact,

(−i∂/∂x1)l1 (−i∂/∂x2)l2 U(s, t)ψ = eisA1eitA2A
l1
1 A

l2
2 ψ.

This proves part 1.

If ψ has the stated properties then integration by parts shows that ψ ∈ D .

Conversely, let ψ ∈ D , then for all ϕ ∈ C∞c (R2),

〈ψ, (−i∂/∂x1)l1(−i∂/∂x2)l2ϕ〉

= (−i∂/∂x1)l1(−i∂/∂x2)l2
∣∣
s,t=0
〈ψ,U(s, t)ϕ〉

= (−i∂/∂x1)l1(−i∂/∂x2)l2
∣∣
s,t=0
〈U(−s,−t)ψ, ϕ〉

= 〈Al11 A
l2
2 ψ, ϕ〉

Thus, ψ has distributional derivatives in L2(R2) of arbitrary order. By the Sobolev

embedding theorem, ψ ∈ C∞(R2) with all the (classical) derivatives in L2(R2). This

proves part 2.
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We will consider restrictions of X2
1 + X2

2 to D and C∞c (R2\{0}) respectively.

By Lemma 4.12 and the definitions of X1, X2, these are precisely

−4
∣∣
D∞(U)

, −4
∣∣
C∞c (R2\{0})

where 4 is the formal Laplace operator in R2. The first operator is essentially self-

adjoint, a fact that holds in the more general setting of representations of Lie groups,

see Theorem 3.22 A direct argument is given in Lemma 4.13. In any case, this agrees

with the fact that A1, A2 are strongly commuting selfadjoint operators. The second

operator, however, is not essentially selfadjoint, see Lemma 4.14. Consequently, our

index theory should be formulated on D as opposed to C∞c (R2\{0}).

Lemma 4.13. −4
∣∣
C∞c (R)

is essentially selfadjoint. Thus, −4
∣∣
D∞(U)

is essentially

selfadjoint.

Proof. Let L := −4
∣∣
C∞c (R)

. We show that L has deficiency indices (0, 0). Since L ≥ 0,

it suffices to check that

D−1(L) := {ψ ∈ D(L∗) : L∗ψ = −ψ}

is trivial. Let ψ ∈ D−1(L), then

〈ψ, (1−4)ϕ〉 = 0

for all ϕ ∈ C∞c (R). Therefore,

(1−4)ψ ≡ 0

in the sense of distributions in C∞c (R)′. But Fourier transform yields

(1 + |ξ|2)ψ̂(ξ) ≡ 0
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so that ψ̂ ≡ 0, and ψ ≡ 0. Thus, D−1(L) is trivial.

Lemma 4.14. −4
∣∣
C∞c (R2\{0,0}) has deficiency indices (1, 1).

Proof. Let L := −4
∣∣
C∞c (R2\{0,0}). Suppose ψ ∈ D(L∗), such that L∗ψ = −ψ. Then

〈ψ, (1−4)ϕ〉 = 0

for all ϕ ∈ C∞c (R2\{0, 0}). Therefore,

(1−4)ψ ≡ 0

in the sense of distributions in C∞c (R2\{0, 0})′. Notice that the Fourier transform

trick does not apply in this case, for ψ might break up at (0, 0), and (1 − 4)ψ is

supported at (0, 0), i.e. it has the form

(1−4)ψ =
∑
finite

ckδ
(k)
0

By elliptic regularity, ψ ∈ C∞(R2\{0}). The problem is whether there exists

an L2-solution. Indeed, there is a unique L2-solution, represented by the Hankel

functions. It follows that L1 has deficiency indices (1, 1). Since we will use these

functions extensively in the examples on the covering surfaces, we leave out the details

here.

4.2.3 Connection to Point Interactions

The subject of point interactions has been extensively studied in [3]. These

models are also known in the literatures as “zero range potentials”, “delta inter-

actions”, “contact interactions” or “solvable models” in the sense that parameters

involved can be explicitly determined.



93

Specifically, we consider the quantum mechanical system

−4+
∑
finite

caδa (4.42)

where 4 denotes the selfadjoint Laplacian in the Hilbert space L2(Rd). The Dirac

delta-type potential models potentials concentrated on a finite subset of Rd. E. Nelson

was the first to study point interactions as limits of potentials with supports shrink

to a point [20]. Various methods to the problem is also considered in [55].

The basic idea is to interpret (4.42) as a selfadjoint operator defined on an ap-

propriately chosen domain. Once the Hamiltonians are well defined and understood,

they may be used to construct more realistic interactions. As an illustration, consider

the one-point interaction at the origin. Mathematically, the Hamiltonian is defined

by

L := −4
∣∣
C∞c (Rd\{0}).

The questoin is whether L is essentially selfadjoint; if it is not, how to select a

suitable selfadjoint extension. Note that L commutes with complex conjugation, and

so it has equal deficiency indices. Recall that −4 is the free Hamiltonian defined on

H2(Rd). Under the Fourier transform, −4 is unitarily equivalent to the operator of

multiplication by |ξ|2. The following formulations of the question are all equivalent:

1. L is essentially selfadjoint.

2. C∞c (Rd\{0}) is a core of −4.

3. C∞c (Rd\{0}) is dense in H2(Rd).

Theorem 4.15 ([19] page 33). C∞c (Rd\{0}) is dense in Hk(Rd) if and only if d ≥ 2k.
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Proof. Let ψ ∈ H−k(Rd) such that ψ vanishes on C∞c (Rd\{0}). Thus, ψ is a tempered

distribution supported at the origin. By the structure theory of distributions,

ψ =
∑
finite

ckδ
(k)
0

and its Fourier transform ψ̂ is a polynomial. Also,

‖ψ‖2
H−2(Rd) =

∫
Rd
|ψ̂(ξ)|(1 + |ξ|2k)−1dξ <∞.

Consequently, ψ̂ ≡ 0 (i.e. ψ ≡ 0) if and only if

∫
Rd

(1 + |ξ|2k)−1dξ =∞.

Passing to polar coordinates, the above equation is equivalent to

∫ ∞
0

1

r2k−d+1
dr =∞

which holds if and only if d ≥ 2k.

Corollary 4.16. C∞c (Rd\{0}) is dense in H2(Rd) if and only if d ≥ 4.

We record the following results in connection to the example in the previous section.

Theorem 4.17 ([3, 7]). Let (n, n) be the deficiency indices of L. For d = 1, n = 2;

for d = 2, 3, n = 1; for d ≥ 4, n = 0.

More generally, we may consider whether the operator −4
∣∣
C∞c (Rd\Γ)

is essen-

tially selfadjoint in L2(Rd), when Γ is a closed subset in Rd with Lebesgue measure

zero. For this development, we refer to Section 7 of [7].
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4.3 The Nelson-Laplace Operator

In this section, we adapt the index theory to the Nelson-type examples on

various covering surfaces of the punctured plane. It turns out that the index is

solvable, and it naturally brings out the geometry of the manifold.

Recall that M̃ is the N -covering surface of R2\{0}, and it carries the Rieman-

nian measure λ, such that the restriction of λ to every coordinate neighborhood is

the two-dimensional Lebesgue measure. Form the Hilbert space L2(M̃, λ), and let

A1 =
1

i

∂

∂x1

∣∣
C∞c (M̃)

(4.43)

A2 =
1

i

∂

∂x2

∣∣
C∞c (M̃)

(4.44)

The special case N = 1 has been treated in Section 4.2.2. We summerize the proper-

ties of the two partial derivative operators below.

1. A1, A2 ∈ End(C∞c (M̃)).

2. A1A2ϕ = A2A1ϕ, for all ϕ ∈ C∞c (M̃).

3. A1, A2 are essentially selfadjoint. eisA1 , eitA2 are the unitary translation groups

along coordinate directions in L2(M̃, λ).

4. The unitary groups eisA1 , eitA2 commute locally. That is, for all m ∈ M̃ , there

is a coordinate neighborhood U of m, and ε > 0, such that

eisA1eitA2ϕ = eitA2eisA1ϕ

for all ϕ ∈ C∞c (U), and all |s|, |t| < ε.

5. Globally, eisA1 , eitA2 do not commute unless in the special case N = 1, see

Section 4.2.2. Equivalently, A1, A2 do not have commuting spectral projections.
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For more details, please refer to Section 4.1.

Lemma 4.18. Let

D :=
⋂

D(A
l1
k1
A
l2
k2

) (4.45)

where k1, k2 ∈ {1, 2}, l1, l2 ∈ N. Then ψ ∈ D if and only if ψ has distributional

derivatives in L2(M̃, λ) for arbitrary orders. That is,

D =
∞⋂
k=0

Hk(M̃) (4.46)

Proof. This follows directly from the definition of the Sobolev spaces on M̃ .

Let 4 be the formal two-dimensional Laplace operator. By Theorem 4.7 and

its corollaries, the operators A1, A2 are strongly commuting if and only if

L := −4
∣∣
D

(4.47)

is selfadjoint in L2(M̃, λ). Since L is semibounded, it has deficiency indices (n, n).

So, it suffices to characterize one deficiency space of L, i.e.

D−1(L) := {ψ ∈ D(L∗) : L∗ψ = −ψ}. (4.48)

See Section 4.2 for more details. Notice that L∗ψ = −ψ if and only if 〈ψ, (1−4)ϕ〉 =

0, for all ϕ ∈ C∞c (M̃). By elliptic regularity,

ψ ∈ C∞(M̃) ∩ L2(M̃).

Remark 4.19. There is a distinction between L and

L′ := −4
∣∣
C∞c (M̃)

.
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For M̃ = R2\{0}, L′ serves as a model for one-point interaction on R2 [3]. L′ has

deficiency indices (1, 1), and it has a one-parameter family of selfadjoint extensions.

D as in (4.45) is the space of C∞ functions on R2 with all the derivatives in L2(R2),

see Lemma 4.12. L is the free selfadjoint Hamiltonian, and it turns out to be the

Friedrichs extension of L′. These facts will be recovered below.

Lifting to the covering surfaces is more subtle. In the following, we explicitly

compute the deficiency indices of L, and characterize its deficiency spaces. It is

convenient to divide the problem into two cases, i.e. N <∞ and N =∞.

4.3.1 N -Covering Surface (N <∞)

Following [49], we show that the classical spherical harmonic analysis on the

plane may be carried over to the covering surface of the punctured plane. This

follows from the fact that M̃ is covered by a single coordinate chart (M̃, q) under

polar coordinates, see (4.7)-(4.14) for definitions.

Define the unitary operator S : L2(M̃, λ)→ L2(R2\{0}) by

(Sf)(r, θ) :=
√
Nf(r,Nθ). (4.49)

The Fourier transform on L2(M̃) is defined by

F̃ := S∗FS (4.50)

where F denotes the two-dimensional Fourier transform. Specifically,

F̃f(r′, θ′) =
1

2πN

∫ 2πN

0

∫ ∞
0

f(r, θ)e−ir
′r cos((θ′−θ)/N)rdrdθ (4.51)

for all f ∈ L2(M̃).
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Theorem 4.20. L2(M̃, λ) has the following decomposition

L2(M̃) =
∑
k∈Z

⊕Hk/N (4.52)

Hk/N := L2(R+, rdr)⊗ span{eikθ/N}. (4.53)

Moreover, Hk/N is invariant under F̃ , for all k ∈ Z.

Proof. Consider the punctured plane R2\{0}, parameterized using polar coordinates.

Fourier series expansion in the θ variable yields the decomposition (Chapter IV [49])

L2(R2\{0}) =
∑
k∈Z

⊕Hk

where Hk = L2(R+, rdr) ⊗ span{eikθ}, and Hk is invariant under F for all k ∈ Z.

Thus,

L2(M̃, λ) = S∗L2(R2\{0}) =
∑
k∈Z

⊕S∗Hk.

Setting Hk/N := S∗Hk. It is invariant under F̃ , since

FHk/N = S∗FSHk/N = S∗FHk = S∗Hk = Hk/N .

Theorem 4.21. Let f ∈ L2(M̃, λ) and suppose f belongs to Hk/N , i.e. f(r, θ) =

f0(r)eikθ/N for some f0 ∈ L2(R+, rdr). Then

(F̃f)(r′, θ′) = F0(r′)eikθ
′/N

F0(r′) =
√

2πik
∫ ∞

0

f0(r)Jk(r
′r)rdr

where Jk is the Bessel function of order k.



99

Proof. Notice that f0(r)eikθ ∈ L2(R\{0}), and its Fourier transform is given by

F
(
f0(r)eikθ

)
=

1√
2π

∫ ∞
0

∫ 2π

0

f0(r)eikθe−ir
′r cos(θ′−θ)rdrdθ

=
1√
2π
eikθ

′
∫ ∞

0

f0(r)

(∫ 2π

0

eikθe−ir
′r cos θdθ

)
rdr

=
1√
2π
eikθ

′
∫ ∞

0

f0(r)
(
2πikJk(r

′r)
)
rdr

=
√

2πikeikθ
′
∫ ∞

0

f0(r)Jk(r
′r)rdr

= F0(r′)eikθ
′

By definition,

F̃f = S∗FS
(
f0(r)eikθ/N

)
=
√
NS∗F

(
f0(r)eikθ

)
=
√
NS∗

(
F0(r′)eikθ

′
)

= F0(r′)eikθ
′/N .

Under the decomposition (4.52), the formal two-dimensional Laplace operator

takes the form,

−4 =
∑
k∈Z

⊕
(
−1

r

d

dr

(
r
d

dr

)
+

(k/N)2

r2

)
⊗ 1 (4.54)

Define W : L2(R+, rdr)→ L2(R+, dr) by

Wf(r) := r1/2f(r) (4.55)

Then

W̃ :=
∑
k∈Z

⊕ (W ⊗ 1) (4.56)
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is a unitary operator on L2(M̃, λ), such that

W̃ (−4)W̃ ∗ =
∑
k∈Z

⊕
(
lk/N ⊗ 1

)
(4.57)

lk/N : = − d2

dr2
+

(k/N)2 − 1/4

r2
(4.58)

Note that (4.58) is the formal Bessel differential operator of order k/N on the half-line

R+, see the example in Section 2.3.3. Setting

D0 :=
∞⋂
k=0

Hk(0,∞) (4.59)

it follows that

W̃ (−4
∣∣
D

)W̃ ∗ =
∑
k∈Z

⊕
(
hk/N ⊗ 1

)
(4.60)

hk/N := lk/N
∣∣
D0
, k ∈ Z. (4.61)

To proceed, we need some facts on the formal Bessel differential operator lν

of order ν acting on the Hilbert space L2(R+, dr), where dr is the Lebesgue measure.

The details can be found in Section2.3.3 and the references therein.

1. The operator lν
∣∣
C∞c (R+)

is essentially selfadjoint if and only if |ν| ≥ 1. Since

C∞c (R+) ⊂ D0, it follows that hk/N is essentially selfadjoint, for k = ±N,±(N+

1), . . .. In view of equations (4.60) and (4.61), the operator L = −4
∣∣
D

only

defects in the components

h0, h±1/N , · · · , h±(N−1)/N

2. For |ν| < 1, the operator lν
∣∣
C∞c (R+)

has deficiency indices (1, 1), and the defect

vectors φ± satisfying (
lν
∣∣
C∞c (R+)

)∗
φν,± = ±iφν,±
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are given by

φν,+(r) = r1/2H(1)
ν (r
√

+i)

φν,−(r) = r1/2H(2)
ν (r
√
−i)

where H
(1)
ν , H

(2)
ν are the Hankel functions of order ν [53][2].

3. The nth derivative of Hankel functions (first or second kind) are given by

(
d

dz

)n
Hν(z) =

1

2k
{Hν−n(z)−

(
n
1

)
Hν−n+2(z)

+

(
n
2

)
Hν−n+4(z)− · · ·+ (−1)nHν+n(z)}

See formula (9.1.31) of [1]. Thus,

(
d

dr

)n
φν,±(r) /∈ L2(R+, dr), n = 1, 2, 3, . . .

That is,

φν,± ∈ C∞(R+) ∩ L2(R+)

but all the derivatives of φν,± are not in L2(R+).

4. By parts 2 and 3, φν,± /∈ D0. It follows that φν,± are also the defect vectors of

the operators hk/N , for k = 0,±1, . . . ,±(N − 1)/N .

5. L = −4
∣∣
D

has deficiency indices (2N − 1, 2N − 1).

We summarize the main results of this section in the theorem below.

Theorem 4.22. Let M̃ be the N-covering surface (N <∞) of the punctured plane.

Let L = −4
∣∣
D

be the Nelson-Laplace operator in (4.47) and D as in (4.46).
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1. L is unitarily equivalent to
∑

k∈Z⊕
(
hk/N ⊗ 1

)
, where hk/N is the formal Bessel

differential operator on the half-line restricted to the domain ∩∞k=0H
k(R+) in

the Hilbert space L2(R+, dr).

2. For |k| < N , hk/N has deficiency indices (1, 1). For |k| ≥ N , hk/N is essentially

selfadjoint.

3. Let D±(L) be the deficiency spaces of L. Then

D+(L) = span{r1/2H(1)
ν (r
√

+i)ei(k/N)θ : k = 0,±1, . . . ,±(N − 1)}

D−(L) = span{r1/2H(2)
ν (r
√
−i)ei(k/N)θ : k = 0,±1, . . . ,±(N − 1)}

Consequently, L has deficiency indices (2N − 1, 2N − 1).

4. The family of selfadjoint extensions of L is indexed by partial isometries V with

initial space D+(L) and final space D−(L). Given V , a selfadjoint extension

L̃V ⊃ L is specified by

D(L̃V ) = {ϕ+ ϕ+ + V ϕ+ : ϕ ∈ D , ϕ+ ∈ D+(L)}

L̃V (ϕ+ ϕ+ + V ϕ+) = Lϕ+ iϕ+ − iV ϕ+.

We single out a sub-family of selfadjoint extensions that are obtained from

extensions of each components hk/N in the Hilbert space Hk/N .

Theorem 4.23. Let α = (αk/N), −∞ < αk/N ≤ ∞, be a multi-index for k =

0,±1, . . . ,±(N − 1). There is a sub-family of selfadjoint extension L̃α ⊃ L such that

W̃ L̃αW̃
∗ =

∑
|k|<N

⊕
(
h̃k/N,αk/N ⊗ 1

)⊕
∑
|k|≥N

⊕
(
hk/N ⊗ 1

)
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where h̃k/N,αk/N is the one-parameter family of selfadjoint extensions of hk/N in Hk/N ,

and

D(h̃k/N,αk/N ) = {f ∈ D(h∗k/N) : αk/Nf0 = f1}

f0, f1 are given by

1. k = 0,

f0 = lim
r→0+

f(r)/
(√

r log r
)

f1 = lim
r→0+

(
f(r)− f0

√
r log r

)
/
√
r

2. |k/N | ∈ (0, 1/2) ∪ (1/2, 1)

f0 = lim
r→0+

f(r)/r−k/N+1/2

f1 = lim
r→0+

(f(r)− f0r
−k/N+1/2)/rk/N+1/2

3. |k/N | = 1/2 (the endpoint 0 is regular)

D(h̃±1/2,α±1/2
) = {f ∈ D(h∗±1/2) : α±1/2f(0) + f ′(0) = 0}.

Moreover, L̃∞ is the Friedrichs extension.

Proof. This follows from Theorem 2.53 and its corollary. For details, please see Sec-

tion 2.3.3.

We make a few comments on the defect vectors. Since the Nelson-Laplace op-

erator L = −4
∣∣
D

is semibounded, it suffices to characterize one particular deficiency

space, i.e. the closed subspace

D−1(L) = {ψ ∈ D(L∗) : L∗ψ = −ψ}.
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ψ ∈ D−1(L) if and only if

(1−4)ψ = 0 (4.62)

in the sense of distribution. By elliptic regularity, ψ ∈ C∞(M̃) ∩ L2(M̃). See also

equation (4.48) and the discussion there. Turns out it is more convenient to work

with D−1(L), and a simple change of variable will yield the deficiency spaces D±(L).

Locally, (4.62) always has solutions of the form

ec1x1+c2x2 (4.63)

with c1, c2 ∈ C, c2
1 +c2

2 = 1. The question is how to piece together these local solutions

and obtain an L2 solution on the covering surface. Formally, the answer would take

the form ∑
k

∫
ec1x1+c2x2dµk (4.64)

where k accounts for the winding number, and µk is a Borel measure supported on

the set {(c1, c2) ∈ C2 : c2
1 + c2

2}.

Passing to polar coordinates and apply the decomposition in (4.60), we obtain

all the product solutions to (4.62), given by

Kk/N(r)e±iθ(k/N) (4.65)

for k = 0, . . . , N − 1. Here, Kν(z) denotes the modified Bessel function of the second

kind of order ν [53].

Remark 4.24. From (4.65), it follows that what accounts for the non commutativity

of the selfadjoint operators A1, A2, see (4.43) and (4.44), is the appearance of the
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phase factors e±iθ(k/N). This is a unique feature of the covering surface. For N = 1,

there is no phase factor, and A1, A2 are strongly commuting.

Linear combinations of (4.65) yields

r1/2K0(r) (4.66)

r1/2Kk/N(r) cos(θ(k/N)) (4.67)

r1/2Kk/N(r) sin(θ(k/N)) (4.68)

for k = 1, . . . , N−1. These are all the linearly independent product solutions to (4.62),

up to multiplicative constants; and they span D−1(L). In particular, for N = 1, i.e.

M̃ = R2\{0}, there is a unique L2 solution r1/2K0(r).

The connection to equation (4.64) can be seen from the integral representations

of Kν(z). Recall that [53, 31]

Kk/N(r) =
1

2

∫ ∞
−∞

e−r cosh(t)−t(k/N)dt. (4.69)

The t variable may be analytically continued to t+ iθ, so that

Kk/N(r) =
1

2

∫ ∞
−∞

e−r cosh(t+iθ)−(t+iθ)(k/N)dt

=
1

2
e−iθ(k/N)

∫ ∞
−∞

e−r cosh(t+iθ)−t(k/N)dt

=
1

2
e−iθ(k/N)

∫ ∞
−∞

e−r(cosh(t) cos(θ)+i sinh(t) sin(θ))e−t(k/N)dt

=
1

2
e−iθ(k/N)

∫ ∞
−∞

e− cosh(t)x1−i sinh(t)x2e−t(k/N)dt.

The last line is precisely of the form (4.64).
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Remark 4.25. To obtain the deficiency spaces D±(L), we use the fact that

H
(1)
k/N(r

√
+i) = −i 2

π
e−iπ(k/N)/2Kk/N(r) (4.70)

H
(2)
k/N(r

√
−i) = +i

2

π
e+iπ(k/N)/2Kk/N(r) (4.71)

4.3.2 N -Covering Surface (N =∞)

In this section, we consider the infinite covering surface of the punctured plane,

i.e. the Riemann surface of the complex log function. As in the finite case, M̃ is

covered by a single chart {(M̃, q)} in the polar coordinates, only the angle variable

takes values in R, instead of [0, 2πN). For definitions, please see Section 4.1.

In contrast to Theorem 4.20, the change in the θ variable yields a direct integral

decomposition. In fact, for all f ∈ L2(M̃, λ), Fourier transform in the θ variable yields

f̂(r, ξ) =
1√
2π

∫
f(r, θ)e−iξθdθ (4.72)

f(r, θ) =
1√
2π

∫
f̂(r, ξ)eiξθdξ (4.73)

and the map f 7→ f̂ is unitary, i.e.

∫ ∫
|f(r, θ)|2rdrdθ =

∫ ∫
|f̂(r, ξ)|2rdrdξ <∞. (4.74)

This leads to the decomposition:

Theorem 4.26. Let M̃ be the Riemann surface of the complex log function. Then

L2(M̃, λ) =

∫ ⊕
R

Hξ dξ (4.75)

Hξ := L2(R+, rdr)⊗ span{eiξθ} (4.76)
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Under the decomposition (4.75), the formal two-dimensional Laplace operator

takes the form,

−4 =

∫ ⊕(
−1

r

d

dr

(
r
d

dr

)
+
ξ2

r2

)
⊗ 1 (4.77)

Let W : L2(R+, rdr)→ L2(R+, dr) by Wf(r) := r1/2f(r) as in (4.55). Then

W̃ :=

∫ ⊕
W ⊗ 1 (4.78)

is a unitary operator on L2(M̃, λ), such that

W̃ (−4)W̃ ∗ =

∫ ⊕
lξ ⊗ 1 (4.79)

lξ := − d2

dr2
+
ξ2 − 1/4

r2
(4.80)

Setting

D0 :=
∞⋂
k=0

Hk(0,∞) (4.81)

it follows that

W̃ (−4
∣∣
D

)W̃ ∗ =

∫ ⊕
hξ ⊗ 1 (4.82)

hξ := lξ
∣∣
D0

(4.83)

Lemma 4.27. Let Kν be the Macdonald function of order ν, and suppose ν ∈ (−1, 1).

Then ∫ ∞
0

|Kν(z)|2zdz =
1

2

πν

sin πν
. (4.84)

Proof. By Nicholson’s integral representation of the product of the Macdonald func-

tions with arbitrary complex orders ([53], page 440),

Kµ(z)Kν(z) = 2

∫ ∞
0

Kµ+ν(2z cosh t) cosh((µ− ν)t)dt. (4.85)
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Setting µ = ν, since Kν is real-valued, it follows that

|Kν(z)|2 = 2

∫ ∞
0

K2ν(2z cosh t)dt (4.86)

Recall also the identity ([53], page 388, equation (8))∫ ∞
0

Kν(z)zβ−1dz = 2β−2Γ

(
β + ν

2

)
Γ

(
β − ν

2

)
, <(β) > |<(ν)|. (4.87)

For ν ∈ (−1, 1), β = 2, (4.87) leads to∫ ∞
0

K2ν(2z cosh t)z dz =
1

(2 cosh t)2
Γ

(
2 + 2ν

2

)
Γ

(
2− 2ν

2

)
=

1

(2 cosh t)2
Γ (1 + ν) Γ (1− ν)

=
1

(2 cosh t)2
νΓ (ν) Γ (1− ν)

=
1

(2 cosh t)2

( πν

sin πν

)
(4.88)

The last step follows from the identity

Γ (ν) Γ (1− ν) =
π

sin πν
(4.89)

for the Gamma function Γ.

Apply (4.86) and (4.88), and switch the order of integration, we get∫ ∞
0

|Kν(z)|2zdz = 2

∫ ∞
0

(∫ ∞
0

K2ν(2z cosh t)dt

)
zdz

= 2

∫ ∞
0

(∫ ∞
0

K2ν(2z cosh t)zdz

)
dt

= 2
( πν

sin πν

)∫ ∞
0

1

(2 cosh t)2
dt

=
1

2

πν

sin πν

∫ ∞
0

1

cosh2 t
dt

=
1

2

πν

sin πν
· lim
s→∞

(
tanh(t)

∣∣s
0

)
=

1

2

πν

sin πν
.
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It remains to justify the switch of order of integration in the computation.

This is based on the following estimates: [53]

1. as z →∞,

Kν(z) ∼ z−1/2e−z

2. as z → 0,

Kν(z) ∼ 1

2
Γ(ν)(

z

2
)−ν , ν 6= 0

K0(z) ∼ − ln z

For z, t→∞,

K2ν(2z cosh t) ∼ (zet)−1/2e−ze
t

so for a, b→∞,∫ ∞
a

∫ ∞
b

|K2ν(2z cosh t)| zdzdt ∼
∫ ∞
a

∫ ∞
b

(zet)−1/2e−ze
t

zdzdt

=

∫ ∞
a

∫ ∞
b

z1/2e−t/2e−ze
t

dzdt

<

∫ ∞
a

∫ ∞
b

z1/2e−t/2e−zdzdt

=

∫ ∞
a

z1/2e−zdz

∫ ∞
b

e−t/2dt

< ∞.

For z, t→ 0, and ν = 0

K0(2z cosh t) ∼ − ln z + ln cosh(t) ∼ − ln z

Since z ln z → 0, as z → 0, so if a, b→ 0,∫ a

0

∫ b

0

|K2ν(2z cosh t)| zdzdt ∼ −
∫ ∫

ln z zdzdt <∞.
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For t, z → 0, and ν 6= 0,

K2ν(2z cosh t) ∼ 1

2
Γ(2ν)(z cosh t)−ν ∼ z−ν

so for a, b→ 0,∫ a

0

∫ b

0

|K2ν(2z cosh t)| zdzdt ∼
∫ a

0

∫ b

0

z−ν zdzdt

=

∫ a

0

∫ b

0

z1−νdzdt <∞

since by assumption, ν ∈ (−1, 1). We conclude that∫ ∞
0

∫ ∞
0

|K2ν(2z cosh t)| zdzdt <∞

and Fubini’s theorem applies. This finishes the proof of the lemma.

Theorem 4.28. Let L = −4
∣∣
D

be the Nelson-Laplace operator, and D−1(L) the

deficiency space corresponding to the eigenvalue λ = −1, see (4.48). Then ψ ∈

D−1(L) if and only if there is a Lebesgue measurable function g supported in (−1, 1)

and satisfies ∫ ∞
−∞
|g(ξ)|2 1

2

πξ

sinπξ
dξ <∞ (4.90)

such that

ψ(r, θ) =
1√
2π

∫ ∞
−∞

g(ξ)Kξ(r)e
iξθdξ. (4.91)

Proof. In view of equation (4.82), ψ ∈ D−1(L∗) if and only if ψ̂ := W̃ψ satisfies∫ ⊕
(h∗ξ ⊗ 1)ψ̂eiξθ = −ψ̂eiξθ

That is, (
− d2

dr2
+
ξ2 − 1/4

r2

)
ψ̂(r, ξ) = −ψ̂(r, ξ) (4.92)
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for all ξ ∈ R.

Fix ξ. The left side of (4.92) is the Bessel differential operator on the half-

line (0,∞). From previous discussions, the unique solution in L2(R+, dr), up to a

multiplicative constant depending on ξ, is given by

r1/2Kξ(r), |ξ| < 1. (4.93)

Here, Kξ is the Macdonald function of order ξ. For |ξ| > 1, there is no L2 solution.

For details, please see Section 2.3.3 and we also refer to [2].

Thus ψ ∈ D−1(L) if and only if

ψ̂(r, ξ) = g(ξ)r1/2Kξ(r) (4.94)

for some measurable function g supported in (−1, 1), such that∫ ∫
|g(ξ)Kξ(r)|2rdrdξ <∞. (4.95)

By Lemma 4.27, condition (4.95) is equivalent to∫ ∫
|g(ξ)Kξ(r)|2rdrdξ =

∫
|g(ξ)|2

(∫
|Kξ(r)|2rdr

)
dξ

=

∫
|g(ξ)|2 1

2

πξ

sin πξ
dξ <∞

This proves (4.90). Finally, ψ = W̃ ψ̂, so that

ψ(r, θ) =
1√
2π

∫
g(ξ)Kξ(r)e

iξθdξ

which is (4.91).

Remark 4.29. The change from the compact group T to the non-compact group R in

the θ variable accounts for some difficulties in representing the solutions. The classical
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Fourier-Bessel series that appears in solving the Helmholtz equation is replaced by

the Fourier-Bessel transform.

Corollary 4.30. Define L2((−1, 1), dµ) with respect to

dµ :=
1

2

πξ

sin πξ
dξ

where dξ is the Lebesgue measure. The map

g 7→ 1√
2π

∫ ∞
−∞

g(ξ)Kξ(r)e
iξθdξ

is a unitary operator from L2((−1, 1), dµ) onto D−1(L).

Corollary 4.31. The Nelson-Laplace operator L has deficiency indices (∞,∞).
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Basel, 1990.

[47] I. E. Segal. A class of operator algebras which are determined by groups. Duke
Math. J., 18:221–265, 1951.



117

[48] I. E. Segal. Hypermaximality of certain operators on Lie groups. Proc. Amer.
Math. Soc., 3:13–15, 1952.

[49] Elias M. Stein and Guido Weiss. Introduction to Fourier analysis on Euclidean
spaces. Princeton University Press, Princeton, N.J., 1971. Princeton Mathemat-
ical Series, No. 32.

[50] M. H. Stone. On unbounded operators in Hilbert space. J. Indian Math. Soc.
(N.S.), 15:155–192 (1952), 1951.

[51] Marshall Harvey Stone. Linear transformations in Hilbert space, volume 15 of
American Mathematical Society Colloquium Publications. American Mathemat-
ical Society, Providence, RI, 1990. Reprint of the 1932 original.

[52] E. C. Titchmarsh. Eigenfunction expansions associated with second-order differ-
ential equations. Part I. Second Edition. Clarendon Press, Oxford, 1962.

[53] G. N. Watson. A Treatise on the Theory of Bessel Functions. Cambridge Uni-
versity Press, Cambridge, England, 1944.

[54] Anton Zettl. Sturm-Liouville theory, volume 121 of Mathematical Surveys and
Monographs. American Mathematical Society, Providence, RI, 2005.

[55] J. Zorbas. Perturbation of self-adjoint operators by Dirac distributions. J. Math.
Phys., 21(4):840–847, 1980.


	University of Iowa
	Iowa Research Online
	Spring 2011

	On commutativity of unbounded operators in Hilbert space
	Feng Tian
	Recommended Citation


	tmp.1317917060.pdf.DoOrq

