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ABSTRACT

An alternate formalism that uses vector variables to treat the two-body Lippmann-
Schwinger equation for realistic nucleon-nucleon potentials in momentum space is dis-
cussed in this thesis. The formalism uses the symmetry properties of the nucleon-nucleon
potential and expands the nucleon-nucleon potential in terms of six linearly independent
spin operators. The alternate formalism discussed in this thesis brings to light the role
of time-odd spin operators. The vector variable formalism’s treatment of spin degrees of
freedom heavily depends on the analytical computation of hundreds of algebraic expres-
sion. A mathematical framework and computer algorithms for an automated symbolic
reduction of algebraic expressions into scalar functions of vector variables are explained
in this thesis. The vector variable formalism requires nucleon-nucleon potentials that
are in operator form as input. The configuration space nucleon-nucleon potential Ar-
gonne V18 is one such potential that can be used for relativistic energies if it can be
computed efficiently in momentum space. This thesis develops an efficient numerical
technique using Chebyshev approximation to compute the Argonne V18 potential in
momentum-space. The tools discussed in this thesis, the algebraic system and the ef-
ficient computation of the Argonne V18 potential in momentum space are tested by
computing the binding energy and bound state wavefunctions of the deuteron using the
vector variable approach. The results were successful and the first step towards a higher
goal of using vector formalism of the three-body Faddeev equations for intermediate and

high energies has been made.
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ABSTRACT
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cussed in this thesis. The formalism uses the symmetry properties of the nucleon-nucleon
potential and expands the nucleon-nucleon potential in terms of six linearly independent
spin operators. The alternate formalism discussed in this thesis brings to light the role
of time-odd spin operators. The vector variable formalism’s treatment of spin degrees of
freedom heavily depends on the analytical computation of hundreds of algebraic expres-
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reduction of algebraic expressions into scalar functions of vector variables are explained
in this thesis. The vector variable formalism requires nucleon-nucleon potentials that
are in operator form as input. The configuration space nucleon-nucleon potential Ar-
gonne V18 is one such potential that can be used for relativistic energies if it can be
computed efficiently in momentum space. This thesis develops an efficient numerical
technique using Chebyshev approximation to compute the Argonne V18 potential in
momentum-space. The tools discussed in this thesis, the algebraic system and the ef-
ficient computation of the Argonne V18 potential in momentum space are tested by
computing the binding energy and bound state wavefunctions of the deuteron using the
vector variable approach. The results were successful and the first step towards a higher
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CHAPTER 1

INTRODUCTION

Few-body methods have provided the most detailed understanding of the microscopic
properties of nuclear systems. The reason for this success is because few-nucleon sys-
tems are simple enough (1) to perform numerically exact calculations of all relevant
observables using realistic models of these systems and (2) to perform almost complete
experimental measurements of the observable properties of these systems. This has led
to realistic potentials of the two-nucleon system. When these nucleon-nucleon potentials
are used in systems of three or more nucleons they can lead to a quantitative under-
standing of most low-energy few-body observables. One of the most interesting energy
scales in nuclear physics is the GeV scale. This is the scale where sub-nucleon degrees of
freedom are expected to be relevant. If the dynamics is still governed by a small number
of relevant degrees of freedom one expects that few-body tools may prove useful for un-
derstanding the relevant dynamics at this interesting energy scale. At this energy scale
a relativistic treatment of the few-body dynamics is necessary. A number of problems
need to be solved to perform realistic few-body calculations at these energies. These
include constructing realistic model Hamiltonians with the relevant degrees of freedom,
and numerically exact computational methods that can be successfully used at these
scales.

The purpose of this thesis is to make modest first steps toward this goal. The
two-body system is the simplest few-body system. The Lippmann-Schwinger equation
is a reformulation of the two-body Schrodinger equation that is used for solving the
bound state and scattering problems. Conventionally a rotationally invariant potential
is expanded in a partial wave basis and the Lippmann-Schwinger equation is replaced by
an infinite number of decoupled one-variable integral equations. The solution is obtained

by adding the contribution from each partial wave basis[1]. At low energies accurate



solutions can be obtained from a small number of partial waves. For three-nucleon
problems the Lippmann-Schwinger equation is replaced by the Faddeev equation [2],
which is a reformulation of the three-body Schrodinger equation as an integral equation
with a compact kernel. The kernel requires fully off-shell solutions of the Lippmann-
Schwinger equation embedded in the three-body Hilbert space as input. Partial wave
expansions also simplify low-energy three-body calculations. As the energy is increased
the number of partial wave channels required for the solution to converge increases. For
each energy the number of partial waves required for convergence needs to be established.
At higher energies the increase in the number of partial waves results in oscillations of
the functions in the kernel of the scattering equation. The numerical treatment of these
oscillations for higher energies makes it difficult to use partial waves. Converged three-
nucleon calculations using partial waves have been computed [3] for energies up to 250
MeV.

An alternative approach that may be useful at higher energies is to use direct inte-
gration methods. Instead of expanding the angular dependence in spherical harmonics,
the angular variables are integrated directly and the variables are treated as vectors.
The benefit of direct integration is that the equations have the same form at all en-
ergies and no convergence needs to be established for each energy with respect to the
number of partial waves. Since the vector form of the Faddeev equation has the same
structure for all energies, it is an attractive alternative to a partial wave formulation.
Converged solutions of the vector form of the three-body Faddeev equation for spin-
independent interactions have been performed by Liu and Elster[4]. At the interesting
GeV energy scale relativistic effects cannot be ignored. Calculations of the relativistic
Faddeev equation[5] in vector variables have also been performed for spin-independent

interactions and convergence has been established for beam energies up to two GeV [6],

7).



Realistic calculations require high-quality spin-dependent nucleon-nucleon interac-
tions. The high-precision nucleon-nucleon potentials that are available are Argonne V18
[8] , CD-BONN [9] and Nijmegen [10] potentials. The high-precision CD-BONN and
Nijmegen nucleon-nucleon potentials are available in momentum space and in different
partial wave channels. They contain parameters fitted to different finite number of par-
tial waves with respect to angular momentum and hence they cannot be transformed to
operator form and are not suited for three-dimensional vector treatment of scattering.
Argonne V18 nucleon-nucleon potential is a high precision configuration space nucleon-
nucleon potential that is available in operator form. At present the best model inter-
actions are phenomenological operators that are motivated by meson exchange physics
with parameters fit to the world nucleon-nucleon scattering data. These non-relativistic
nucleon-nucleon potentials can be reinterpreted as potentials in a relativistic rest-energy
(mass) operator [11] fit to the same data. This identification implies that solutions
of the non-relativistic Lippmann-Schwinger equation can be used directly to construct
the kernel of the relativistic Faddeev equation, [12][6]. Thus, the required input for a
vector treatment of the relativistic Faddeev equation is a vector treatment of the non-
relativistic Lippmann-Schwinger equation for spin % particles. In addition, relativistic
treatments of the dynamics involve momentum-dependent spin rotation functions, so it
is desirable to use momentum-space representations of the interactions. This thesis dis-
cusses the treatment of two-body scattering using vector variables in momentum-space
for realistic nucleon-nucleon potentials. The Argonne V18 nucleon-nucleon potential is
an ideal candidate to be used for relativistic few-body calculations. To use Argonne V18
in the momentum-space two-body scattering the two main problems are (1) constructing
an accurate and easy to compute momentum-space representation of the Argonne V18
potentials and (2) developing methods to treat the spin coupling in the vector forms of
the dynamical equations. The treatment of the spin relies on symbolic methods that

are developed to formulate coupled integral equations. The solutions of both of these



problems are needed to formulate realistic relativistic few-body models.

1.1 Format of the thesis
The thesis explains the innovative methods adopted for the vector solution of spin
dependent two-nucleon systems in momentum-space. The content of each chapter is

summarized below

1. Chapter two discusses recent formalism of the vector treatment of two-nucleon
scattering for a spin-dependent potential in momentum space. This chapter intro-
duces the spin operators and the vector formulation of the Lippmann-Schwinger
equation. The choice of spin operators in [13] and the conclusions of this work are

also discussed in this chapter.

2. Chapter three derives the Fourier transform of the configuration space Argonne

V18 potential.

3. Chapter four discusses the numerical method used to compute the Fourier trans-
form and the Chebyshev approximation to the scalar coefficients in the Argonne

V18 potential.

4. Chapter five discusses the motivation for constructing an automated reduction

mechanism and the algorithm that was developed for this purpose.

5. Chapter six discusses the vector solution of deuteron bound state using the momentum-
space V18 potential. This calculation uses the numerical and algebraic programs
developed in this thesis to calculate the binding energy and bound state wave

functions.

6. Chapter seven discusses the alternative formalism for the vector variable approach

and discusses the role of time-odd operators in the formalism.



CHAPTER 2

FORMALISM OF SCATTERING USING VECTOR VARIABLES

2.1 Spin independent interaction

This section introduces the formalism of two-body and three-body scattering using
vector variables for a spin independent nucleon-nucleon potential. This formalism has
been successfully implemented for two-body and three-body systems. This includes the
treatment of three-body systems with relativity. The first discussion is the vector for-
mulation of the Lippmann-Schwinger equation for a spin-independent(scalar) potential
followed by the embedding of this solution in the numerical realization of the vector
formulation of the three-body Faddeev equation. This is followed by a discussion of the

vector formulation of the relativistic Faddeev equations.

2.1.1  Vector form of the Lippmann-Schwinger equation.
The Lippmann-Schwinger equation for the transition operator is given by
T(z)=V+VGy(2)T(z) (2.1)
where T(z) is the transition operator, V is the potential operator and Ggy(z) is the

resolvent of the free center of mass Hamiltonian, Hy,

1
Gy = 2.2
o= 22)
with 2z = F + 7¢e. In the non-relativistic case
k2
Hy = — 2.3
0 2”7 ( )

where k is the momentum of one of the particles in the rest frame of the two-nucleon
system and g is the reduced mass. For a spin-independent, translationally invariant
interaction we work in a representation where the vector variables are the momentum
of a particle in the center of momentum frame and total momenta of the particles, l;:, p.

Because of the translational invariance and invariance with respect to Galilean boosts,



matrix elements of the interaction have the form
(B, kIVID, k') = 85— 7) (kIIV[E”). (2.4)
If the potential is also rotationally invariant the reduced kernel has the form
E|VIEY = V(k, K u) (2.5)
where u = k-k is the cosine of the angle between k and k' , Where k is the initial relative
momentum of the nucleons and k' is the final relative momentum of the nucleons.

The transition operator has the same structure

(B KT(2)p" k') = (2.6)

with
RITEIRY = T(k, K u, 2) (2.7)
and an additional energy variable, z = F + 0.
In all that follows the overall momentum conserving delta function, which factors
out of all of the dynamical equations, is removed.
In this representation Lippmann-Schwinger equation becomes a two-variable sin-
gular integral equation
Tk, K u, z) = V(k Kk u) + / " pqp / 1 du” / " do
V(k K uu” + 1T —u2y/1— (Ou”)2 cos(gzﬁ))_1 i

k;% k2 .
2w o + 1€

T(K' K ", 2) (2.8)

where £ = % The solution is needed for different choices of the relative momenta &

and k':
1. on shell T'(ko, ko, u, k2 /211 + i€),
2. half shell T'(k, ko, u, k3 /2 + i€),
3. off shell T'(k, k", u, k2 /2p + ie).

The scattering amplitude can be expressed in terms of the on-shell transition matrix:

— =

f(k, k) = —2u(27)*T (ko, ko, u, k3 /24 + i€), (2.9)



where k? = k' = k2. The differential cross-section can then be expressed in terms of
the scattering amplitude,
do P

- = WkE-E )7 (2.10)
To solve for the on-shell transition matrix elements, the half-shell transition matrix
elements are computed.

The kernel of the three-body Faddeev equation is constructed from the off-shell
transition operator, T'(k, k', u, k2 /2pu+i€), for k # k' # ko. Ref [14] discusses the solution
of this form of the Lippmann-Schwinger equation using a Malfliet-Tjon potential [15],

which is the sum of an attractive and repulsive Yukawa potential.

2.1.2  The three-body Faddeev equation
This section discusses how the two-body transition amplitude is embedded in the
three-nucleon Faddeev equation. A three-particle Hamiltonian with two-body interac-
tions has the form
H = Hy + Vi + Vaz + Vi3 (2.11)
where Vj; is the two body interaction between particle i and j and H is the three-particle

kinetic energy operator. This equation is usually written using “odd man out” notation
3

H=H+)Y V (2.12)
i=1
where V; = Vjy,, i # j # k.
The Faddeev equation is a reformulation of the three-particle Schrodinger equation

2],[16] as a compact-kernel integral equation.

The Schrodinger equation for a three-body bound state is given by

3
(Ho+ ) Vi) = El9). (2.13)
i=1
The Schrodinger equation can be transformed into integral form
=3
) = Go(B)(D_ V)IY) (2.14)
i=1

1

= 18 the resolvent of the free three-body Hamiltonian. The Faddeev

where Gy =



decomposition of the state vector is defined by
3

=Dl (2.15)
with =
(i) = Go(E)Vilh) = Go(E)Vilihi) + Go(E)V; ) [ih;). (2.16)

i#j
Re-arranging terms gives

(i) = (1 = Go(E)Vi) "' Go(E)V: Y 15)

i#]
= Go(E)(1 = ViGo(E)™'Vi Y [vy). (2.17)
The formal solution of the Lippmann-Schwinger equatilo?éri for the interacting pair i # (jk)
Ti(2) = Vi + ViGo(2)Ti(2) (2.18)
is

Ti(z) = (1 = ViGo(z)) "' Vi (2.19)

Using (2.19) in (2.17) gives the Faddeev equation for the bound states
(i) = GoTi(E) Y [)- (2:20)

i

The condition @ # j ensures that the first iteration of the kernel is compact, which is
a sufficient condition for the kernel to include the boundary conditions for a unique
solution.

If the three particles are identical fermions then [¢)) is antisymmetric. The states
|11), [12), |13) have identical functional form and all that is required is to permute the
particles. For example, when arbitrarily using |v1).

[19) = PiaPas|tn) (2.21)
13) = Pr3Pas|in) (2.22)
where P;; are transposition operators that interchange particles ¢ and j.
The total wave function is now written as
) = (1+ P)[¢r) (2.23)
where the permutation operator P = P9 Ps3 + Pi3P3 and

1) = Go(E)T1(E)(Pr2Pas + PagPag)|t)1) (2.24)



or
) = Go(B)T3(E)Pli), (2.25)
where the energy eigenvalue E has to be determined by the condition that the equation
has a non-trivial solution. Using the component [i1) does not restrict generality of the
formulation.
For three-body scattering the scattering asymptotic conditions need to be imposed.
For an initial state consisting of a free particle (also called the beam) and a bound two-
body pair the state vector has the asymptotic form
9i) = |a, 40)i; (2.26)
where ¢, is the bound state of the bound two-body pair and |g)) the is a plane wave
representing the beam particle ¢ with momentum ¢y. The result of a scattering reaction
can be classified into 1.) elastic scattering, where in the final state the bound pair
continues to exist and the final state has the same form as the initial state but with
different relative momenta, 2.) breakup scattering, where all the particles in the final
state are free.
For the elastic channel the final state is given by
65) = 1ba, Di,  lal = |gol, (2.27)
where ¢'is the final relative momenta of the incident particle i. Without loss of generality
particle (1) is taken to be the incident particle and particles (23) are bound. The
asymptotic states are eigenstates of the channel Hamiltonians
H, = Hy + V. (2.28)
where Hj is the three-body kinetic energy operator and V; is the pair interaction that

forms the bound state:

— 3 —
Hilg:i @) = (Eq+ ng)’@, i), (2:29)
E,; is the binding energy of the pair, %qg is the relative kinetic energy of the beam

particle, and m is the mass of each particle. The Schrodinger equation for the scattering
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eigenstate can be put in the form ,
)T = Gz(B)) Vilv)*, (2.30)
where Z = FE +ie" and F is the energy of the Zinitial incident state.

The Faddeev decomposition can be apg)lied to equation (2.30)

[ ="l (2.31)
with -
)" = Go(E)Vily)™. (2.32)
Similar to the bound state Faddeev equation, the Faddeev equation for the scattering
state is
)" = ¢1, @) + Go(E)TL (E) Pln) ™ (2.33)
The Faddeev equation of the three-body transition operator T(E):
T(Z)=T\(Z)P + T\ (Z)PGy(Z2)T(Z). (2.34)
The operator T}(Z) is the two-body transition operator embedded in the three-particle
Hilbert space
(@ BT (2017 o) = 00— )Rl T(Z = ), (235
where k, k' are the relative initial and final momentum of the bound (23) particle system,
¢y is the relative momentum of the incident free particle (1) with respect to the center of
mass of the bound pair, and (k|T(Z — ;—;)|E23> is the kernel of the off-shell two-body
transition operator.

The summary of the discussion is that the off-shell two-body transition matrix ele-
ments are needed as input to the Faddeev equations. The two-body transition operators
embedded in the three particle Hilbert space are multiplied by an identity operator in
the spectator spin. Further discussion of the three-body Faddeev equation using partial
waves can be found in references [17],[3],[16]. The vector form of the Faddeev equation

for spinless interactions is discussed in [18].



11

2.1.3 Introducing relativity

Relativistic three-body problems require the construction of a unitary representa-
tion of the Poincaré group [19] on the three-nucleon Hilbert space. The Poincaré group
has two Casimir operators, the mass and spin. One way to construct a consistent rel-
ativistic three-body dynamics is to add interactions to the mass (rest energy operator)
that commute with the three-body spin. The dynamical problem is then reduced to di-
agonalizing the mass operator [5]. Solutions of the Faddeev equation for the three-body
mass operator give the required scattering eigenstates.

Two-body nucleon-nucleon interactions are constructed by fitting interactions mo-
tivated by meson-exchange models to scattering data that is properly Lorentz trans-
formed to the two-body center of momentum of system. Because of this it follows that
any nucleon-nucleon potential can be used to generate a relativistic mass (rest energy)
operator for two interacting nucleons [11][6]:

Mos = mos + v, 1= \/k;2 + 22UV +m3 + \/k;2 + 21V, + m3. (2.36)

Because the Msys is a function of the non-relativistic rest Hamiltonian, both M, and
Hyy = k?/2p + Vi, have identical wave functions and scattering phase shifts.
The relativistic form of the three-body equations involve the following replacements
in the non-relativistic equation. The interaction V; is replaced by
(@i, ks Vi@ Khy) = 0(di — q?’)<E23I[\/M223 +af - \/M2230 + g\ khs)  (2.37)

where Maysq is obtained from Ms3 by setting the two-body interaction to zero, the vectors

¢1 and /523 are relativistic Jacobi-momenta obtained from the single particle momenta
by replacing the Galilean boosts used to define standard Jacobi momenta by Lorentz
boosts. The free resolvent Gy(z) is replaced by

Go(2) = (2 — /My + @ — /@ +m2)”! (2.38)

and the two-body transition operator embedded in the three-particle Hilbert space is

the solution to

Ti(2) = Vi + ViGo(2)Ti(2). (2.39)
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The relation between M, and His can be used to express the half-shell solution to (2.39)

by [12]
- o 20 (wo + ws3)? + (wh + wh)?
<(71: é3|T1(E)’q17k23> = 1, 2 2 - / : \2 2
Wats + Whwz \/(we + w3)? + ¢3 + v/ (wh + wh)? + ¢F
0@y — @) x (kas|Tour (k2s/210)) [ Ks) (2.40)
where

w; =k +m? i€ {23} (2.41)

Here it should be emphasized, that the above expression requires the solution of the
non-relativistic half-shell transition operator associated with the realistic non-relativistic
interaction, V,,,.. The fully off-shell relativistic two-body transition operators, which are
needed in the relativistic Faddeev equations, can be constructed from the half shell
transition operators by solving the first resolvent equations [12]

/
= E\ZO)_(:)_ MO)Tl(ZO) 2 # 2 (2.42)

rather than directly solving the for the off-shell transition operators at each off-shell

T (') = Ti(z0) + T1(2)

energy. The treatment of the spins in the transition operators remains unchanged,
although the permutation operators that appear in the relativistic Faddeev equation
get modified [6]. The vector formalism of the two-body scattering for spin-dependent

nucleon-nucleon potential is discussed in the next section.

2.2 Spin-dependent nucleon-nucleon potentials

Different formalisms that treat realistic nucleon-nucleon scattering without using
a partial wave decomposition were proposed in [20],[21],[22],[23],[24],[13]. A helicity
based formalism is discussed in [21],[23]. The most recent formalism uses vector vari-
ables [24],[13]. This chapter discuss the formalism of 3D scattering with spin-dependent
nucleon-nucleon potentials using vector variables. The basic foundation of this formal-
ism is the property [25] that a general nucleon-nucleon potential which is invariant with

respect to rotations, time reversal, space reflection and permutation symmetry can be
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expanded in a basis of six rotatior16ally invariant spin operators. This is expressed as

V(' k) = vilk, K k- K ywi(k, K, 1, %). (2.43)
In (2.43), V is the nucleon—nuclecirzllpotential which is a function of the initial and final
momentum vectors k and £’ , the scalar function v; is the expansion coefficient function
and w; is the rotationally invariant spin operator. Nucleon-nucleon potentials expressed
in the form

V(b K) =Y Vilk,K k- K)Oy(61, 65, k. &) (2.44)
are ideal candidates to be emplé}:ftled in this formalism. Here V; is a scalar function
and O; is the corresponding spin operator and n the number of spin operators. The
candidate selected in this thesis is the Argonne V18 nucleon-nucleon potential. It has

eighteen operators, n=18. Examples of nucleon-nucleon potential’s spin operators are

given below:

1, & -5, iS-(Exk), 8% - (K -k K-k, (§-&S-k) (245
where S = %((ﬂ + d3) is the total spin of the nucleon-nucleon system. These spin opera-
tors are invariant under rotation, time reversal and space reflection symmetry transfor-
mations. Realistic nucleon-nucleon potentials include the Bonn-B [26], NNLO[27] and
Argonne V18 [8] potentials. Bonn-B and NNLO are momentum-space nucleon-nucleon
potentials and Argonne V18 is a configuration-space potential.

The transition amplitude has the same properties as the nucleon-nucleon potential.
This allows the expansion of the transition amplitude in terms of the six basis operators
for off-shell values of the momenta. However, the on-shell transition amplitude requires
only five operators [25]. This is because one of the basis elements, o7 - 09, becomes
linearly dependent on other elements of the basis or the coefficient of expansions of one
element vanishes. The loss of linearly independence on-shell is explained in the later
section of this chapter.

The operator w; is constructed out of the scalar products of the Pauli matrices

and linearly independent vectors ]3, K and N constructed out of the momentum vectors.
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Equation (2.43) shows that the nucleon-nucleon potential V(E’ , l;) preserves the discrete
symmetry conditions if both the terms w; and v; are symmetry even or odd. The

formalism using vector variables is tested with a basis of symmetry even spin operators

in ref [13].

2.3 Structure of the formalism
This section discusses the formalism used to solve the Lippmann Schwinger equa-
tion in [16],[24] and [13]. As discussed earlier in this chapter, a nucleon-nucleon potential
that is invariant under rotation, time reversal, permutation symmetry and space inver-
sion symmetry transformations [25] can be expanded using six rotationally invariant spin
operators (2.43). The Euclidean space is spanned by three linearly independent vectors
constructed from the initial and final momenta & and k. They are
R N
P — %, — —»——»/7 N — —;——»/
|k + K| |k — K| |k < K|
The time reversal and space reflection operations on the vectors k | k', 1, 05 are illus-
trated in Table[2.1].

(2.46)

Time reversal and space reflection symmetry
Operator | Time Parity

k —K —k

K —F —K

o1 -0 a1

o3 —0% o2

Table 2.1: Time reversal and space

reflection symmetry
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The action of time reversal and space reflection on the three unit vectors is shown in
Table[2.2].

Space inversion and time invariance of vectors
Vector | Parity Time invariance

P -1 1

K -1 1

N 1 -1

Table 2.2: Symmetry transformations

of the vectors

The scalar products of the unit vectors for off-shell values of k and k' are

P-N=0
P-K+#0
N-K=0. (2.47)
While on-shell values (k = &)
P.-N=0
P-K=0
K-N=0 (2.48)

The rotationally invariant spin operators required to expand the potential (2.43) are
the scalar products of the Pauli matrices and the three linearly independent vectors.

These are called spin-momentum operators. The spin-momentum operators that can be
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formed by the product of Pauli matrices and the vectors are

—

Gi s (GiE) A (A-G)A @), 1, (A-A)B-a), (6 xa)- A (249
Here /_f, B e {I? , 13, N }. Since the nucleon-nucleon potential has spin operators that
are even under discrete symmetry transformations it is simpler if the basis operators
have the same even symmetry properties. From the above list, the following six linearly
independent spin operators are invariant with respect to rotation, time reversal and

space inversion [13]. They are

L. (2.50)
These basis elements are the w;s in (2.43) that are used to expand the nucleon-nucleon
potential.
The transition operator has th% same properties as the potential hence
T(K b z) =Y Tk k& 2wk, k). (2.51)

i=1
The Lippmann-Schwinger equation in vector form is given by

(', 1y, | TR, pra, ) = (K, i, | VK, o, ) + <E’,uijuélv$ K, pur, piz).
(2.52)
Using (2.43) in (2.52), (2.52) becomes
S K 2y ) Z(k: E R D)
+/Zvﬂ'(1§,k”,l%-k”)wj(k,k”) ,,QHEZ# E R E B 2wk B)PE . (2.53)

Multiplying by the operators wk(k‘, K ) and taking traces over both spins gives six coupled

scalar equations for the six coefficient functions ¢i(k, k', k - K z).

Z:tz(k’,k,k-k’,z)Aip:Z vk, K k- k) A,p—l—/ZvJ (k, K" k- )m

7
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> Bk k(KR K E K 2)dk (2.54)

where :
By (I, k' k') = Te(w; (k, K Yw (k' K wy (k) (2.55)
Ak, K'Y = Tr(w; (k, k), wy(k, k). (2.56)

A;p is the element of matrix A. To compute the traces the properties of the Pauli spin

matrices
(61-E)(oy-F)=E-F+io - (E x F) (2.57)
01, 05] =0 (2.58)
Tr(o;) =0 (2.59)
Tr((6; - E)(G; - F)) = 2E - F (2.60)
Tr((6; - D)(; - F)(6; - G)) = Tr(0:0im0in) DiF Gy =
2(D x F)-G. (2.61)

are used. Using properties of Pauli spin matrices the trace (2.56)

8(N - N) 0 0 0 0 0
0 A(K - K)? 0 AK-P)? 4K-K) 0
0 0 4(N - N)? 0 4N-N) 0
A =
0 A(K - P)? 0 AP-P)?* 4(P-P) 0
0 AK-K) 4(N-N) 4(P-P) 12 0
0 0 0 0 0 4

can be computed. A set of operators must meet the criteria of linear independence to
form a basis. A linearly independent set of operators has the property

det|A| # 0. (2.62)
At the on-shell point

k=K, (2.63)
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and
2 1.2
K-P = Hkﬁ_]f =0, (2.64)
|k —K'||k + K|
and
det|A| = —8192(N? + K* + P*> — 3)N*P?K*. (2.65)

Since the vectors N, K, P are unit vectors, N2 + K2 + P2 = 3. the result is det|A| = 0.
This linear dependence arises from the fact that, for on-shell values the three vectors
are orthogonal (2.48) and the spin operator ] - g3 can be expanded as

1+ 0 = (01 K) (0% - K) + (61 - P)(d% - P) + (61 - N)(d - N). (2.66)

This leaves only five linearly independent spin operators on-shell. They are

The solution of the Lippmann-Schwinger equation gives the matrix element
(1, o, KT ()|, oy, 1) Zt (k, K k- K i (B, ) (2.68)
of the 4 x 4 transition amplitude matrix T and the 4 x 4 scattering amplitude ma-
trix(defined on-shell)
M(k, k') = —(27)2uT (K, k). (2.69)
Here k = k’. The general representation of M [25] is
M = a+ b(d} — )N +c(ci +32) - N +m(oi - N)(&% - N) + (g + h) (67 - P)( - P)
+(g = h)(01 - K)(0% - K). (2.70)
The nucleon-nucleon potentials are also isospin invariant.
(t,my| VIt my) = V™6, 6, (2.71)
In (2.71), t is the isospin and ¢, is the z component of the isospin ¢. The symmetries
of the potential imply that the Pauli exchange symmetry can be implemented by anti-
symmetrizing the initial state (2.52). The anti-symmetrized state can be expressed as
|k, 1, pi2) = (1= Pra) |k, oo, o, t,me), (2.72)

where Pj5 is the permutation operator that interchanges the spin magnetic quantum
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numbers of the two particles. The matrix elements of the scattering amplitude are [13]

— — —

Myt (K k) = —pu(2m)*(ph, b (87 (K K) + (=)™ (K, k) Pro) |, o),
with
k =k (2.73)
This can expressed as
M = a+e(di+63)- N+ m(Gi - N)(G- N) + (g h) (G- P) (G5 P) + (g— h) (67 - K) (65 K).
(2.74)
The parameters { a, ¢, m, g+h, g-h } are called the Wolfenstein parameters [25]
[16]. The five Wolfenstein parameters are obtained by taking the trace of Mw; where
j € {1, ,5} and w; is the j™ operator in which M is expanded. The five Wolfen-
stein parameters directly lead to the scattering and spin observables. One advantage

of the vector formalism is that it can be used directly with the density matrices that

experimentalists use to extract spin observables.

2.3.1 Conclusions

The formalism to solve the Lippmann-Schwinger equation using vector variables
was discussed in this chapter. The formalism was employed in [13] to compute the
scattering cross sections. The calculation was done using the spin-dependent Bonn-B
[26] and the chiral NNLO [27] momentum space potentials. This thesis attempts to
take an alternate approach to formulate the two-body scattering problem using vector

variables. The approach taken solves for the following problems

1. The formalism discussed in this chapter requires a basis of six spin operators
that are rotationally invariant to solve the Lippmann-Schwinger equation. The
operators are selected by choosing rotationally invariant spin operators that are
linearly independent and meet the required symmetry conditions. This choice is
determined by the choice of three linearly independent vectors. If an orthonormal

set of three vectors are used then the spin operator g; - 05 is a linear combination
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of the other spin operators.

510 = (01 K) (0% - K) + (61 - N)(d - N) + (61 - P)(c% - P).
One of the spin operators from the above equation needs to be removed from
the list of possible spin operators that make the elements of the basis. A general
representation of spin operators that can be used to construct a basis for any choice
of three vectors K , P and N is required. An important requirement is that at the

on-shell point five basis elements instead of six elements are needed to expand the

transition amplitude.

In general the symmetry conditions allow the product of a symmetry-odd expansion
coefficient and the corresponding symmetry-odd spin-momentum operator. Hence
this symmetry-odd spin operator can be an element of the basis. What role do
these symmetry-odd spin operators play in the solution of Lippmann-Schwinger

equation?

. This formalism is dependent on computing the trace of the products of spin oper-
ators. Since the vector treatment of two-body scattering is aimed at solving the
three-body problem at energies close to or above the pion production threshold it
is efficient to analytically compute these trace equations. For a two-body problem,
two hundred and sixteen trace expressions (2.55) need to be computed analytically.
Using properties of Pauli matrices the trace equations can be expressed as scalar
products of the vectors that are functions of k and k'. The vector functions can
be numerically computed. However, expressing these trace expressions as scalar
products of momenta, k and K , can result in some expressions being zero [13]
which improves the efficiency of computation. This process is however tedious and

makes the vector variable approach difficult to implement.
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3. The nucleon-nucleon potentials that were used are spin-dependent momentum-

2.4

space nucleon-nucleon potentials Bonn-B and NNLO. The Argonne V18 nucleon-
nucleon potential however is in configuration space and the numerical computation
of the Fourier transform at every grid point is inefficient. A new technique for
computing the Fourier transforms is required to use the Argonne V18 nucleon-

nucleon potential in this formalism for both two-body and three-body scattering.

What does this thesis offer?

The vector treatment of the relativistic three-body problem requires realistic mo-

mentum space interactions in operator form. In this thesis the momentum space Argonne

V18 nucleon-nucleon potential is expressed as an expansion in operators. This provides

needed input to test the limits of meson exchange models in realistic relativistic few-

nucleon calculations. A useful operator representation of this potential that is applicable

to the most general potential involving two spin % particles is introduced. Symbolic tools

for performing all of the algebraic operations with these operators that are needed to

formulate the relativistic two and three-body problems are developed. To the best of

the author’s knowledge this is one of the first symbolic programs written explicitly to

perform complex algebra in nuclear physics problems. These contributions are discussed

below:

1. Consider an example, a trace of product of Pauli spin matrices

Te((67 - P)(63 - P) (67 - K1)(6% - K1)(G71 - Na)( - Na)) = 4((P x K1) - Ny)¥(2.75)
where P is a function of q1 and ¢, K, is function of ¢z and ¢3 and N, is a function
of ¢1 and ¢3. The equation (2.75) can be numerically computed in two different

ways.

(a) ﬁ, K, and N, are computed as functions of ¢1, ¢5 and ¢3 and these are used
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in (2.75). For example let
P=(G+@) x (G — )
[?1 = (2 — 43),
Ny = (G — ) x (4 + ¢3) x (¢ — ).
(b) Equation (2.75) is expanded in terms of ¢i, ¢ and ¢3, (2.75) is re expressed
in a reduced form as
—4((qi x @) - @) — 4(gi - ai) (@ @)® +4(d1 - @) (61 @3)®)
+A(q1 - @)(a1 - @)@ - ¢3) — 4G - )G - )@ - )+ 4G - di) (@ d3)(G - ds)
(G- 63)(q1 - G3) (@3- @) — 4(di - 62) (41 @) (G5 - 63) — (i - @) (1 - @3)- (2.76)

This equation is then computed for values of ¢i, g3 and ¢3.

The numerical computation of (2.76) requires 20 % less cpu time than the compu-
tation of (2.75) using the first method. Reducing the trace expressions to explicit
scalar functions results in an increase in efficiency thereby reducing the computa-
tional load in the three-body problem for spin-dependent potentials. The vector
solution with a spin-dependent potential requires repeating this process hundreds
of times for algebras that are far more complex than the example above. Re-
ducing the trace expressions result in an increase in efficiency thereby reducing
the computational load in the three-body problem for spin-dependent potentials.
For two and three-body non-relativistic and relativistic scattering problems the
vector treatment of the spins is a major algebraic complication. An algebraic sys-
tem that can be used automate the reduction of the trace expression and can be
easily integrated with the numerical codes will eliminate the difficulty of dealing
with complex algebraic equations in the vector formulation of the two-body and

three-body problems.

This thesis shares the view of the developers of the symbolic manipulation com-

puter system GINAC[28] that the existing computer algebraic systems are not able
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to handle large scale symbolic computations and the reduction techniques are not
sufficient. Further discussions can be found in ref[28]. The GINAC algebraic sys-
tem is used to achieve the reduction of large algebraic expressions for the vector

treatment of two-body and three-body systems.

2. The Fourier transform of local momentum-space potentials involves two vector
variables which require additional evaluations or interpolations. In this thesis the
Fourier transforms are represented using Chebyshev expansions of the momentum
space potential. These are fast to compute and do not require interpolations of
explicit evaluations of the Fourier transform. This method is applied to Argonne

V18 potential.

3. A new basis for expanding operators on the two-nucleon Hilbert space is intro-
duced. These operators are similar to the operators that are used in the Wolfen-
stein parametrization of nucleon-nucleon scattering amplitudes, but lead to better
behaved two-body equations. It was also observed that iterations of potentials can
sometimes generate time-odd operators multiplied by time-odd coefficients which
may need to be included in the representation of the transition operator, even if
they do not appear in the potential. The need for additional time-odd operators
can be established by considering the output of the symbolic code. The role of

these time-odd operators in the dynamics merits further investigation.

4. The realistic momentum space Argonne V18 potential and the symbolic reduction
system is used to compute the deuteron bound state. This tests the method

developed in this thesis.

The next chapter discusses the Fourier transform of the Argonne V18 nucleon-

nucleon potential.
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CHAPTER 3

THE NUCLEON-NUCLEON POTENTIAL - ARGONNE V18

The Argonne V18 potential [8] is a realistic nucleon-nucleon potential that is expressed
as a linear combination of 18 spin-isospin operators with rotationally invariant coefficient
functions. It has the general form ;

V(i) =Y Owi(r) (3.1)
where O; is the spin-isospin operator and vz?;) is the scalar function. The Tables 3.1 3.2

below lists the eighteen operators, O;.

Argonne V18 operators in configuration space

Operator V(1)

! Vi

(71~ 72) Vy

0 - 09 v,

(51 G2) (71 - T) v,

(361 - PGy - 7 — Gy - Fa) V.
(301 - 70 - 7 — 1 - 02)(Th - T2) Vs

Table 3.1: Argonne V18 operators in configuration

space



Argonne V18 operators in configuration space
Operator V(r)

(L-5) Vi

(L-S) (7 - 7) Vs

L? Vo

L*(7y - Ty) Vio

L?G, - 75 Vi

L2 - 62) (7 - 7) Viz

(L-S) Vis

(L-8)(7-7) Via

(37'1z7'2,z — 7 7:5) Vis
(3leTZZ_F1'F2)&1'52 Vie
(351'f52'f—51'52)(371272z—7:1'72) Vir
(712 + 722) Vis

Table 3.2: Argonne V18 operators in configuration

space
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This potential is a local configuration space potential. Table 3.1 3.2 represents
the different types of spin operators that appear in a typical realistic nucleon-nucleon
potential. The next section derives the momentum-space nucleon-nucleon Argonne V18

potential.

3.1 Momentum-space representation
The momentum-space Argonne V18 nucleon-nucleon potential is an ideal candidate
for areas of nuclear research that require the nucleon-nucleon potential to be computed
at high energies. Examples of such studies are modeling relativistic effect in three-
body systems and the problem of electron deuteron scattering. This section analytically
derives the Argonne V18 potential in momentum-space , using its configuration space
spin operators and the corresponding scalar functions (3.1). A local nucleon-nucleon
potential in configuration space has the property
(FVI) = 87— )V (7) (3.2)
where 7 is the relative position between two nucleons. In momentum-space the Fourier

transform of the potetnial is given by

- - 1 o0 Ny o
(K'|V|k) = 2 / eCHF DV (7)) g3, (3.3)
)" Jo
Using (3.1) in (3.3) gives
18

N | L 1 o ik-k) 3=
(k yvyk>:ZW/0 e TRy (1) 0;e R0 g3

i=1
1=18

18
= > _(Floi(r)Oilk) = Y _ ViK' k) (3.4)
i=1 i=1
where
1
(2m)?
The type of spin operators O; that appear in the Argonne V18 nucleon-nucleon potential

ViR R) = / eI 15 (1) OreTF 1 GO (3.5)
0

I (3.6)
301 - ()3 - () — 01 - 7% (3.7)



(L-S) (3.8)
L? (3.9)
S? (3.10)

(L-S)? (3.11)

The Argone V18 potential is a linear combination of the product of isospin operators
with the spin operators listed above. The Fourier transform of each type of operator is

derived next.

3.1.1 Operator : 1
The identity operator includes the O;s in (3.1) that are not functions of the integral

variables. Equation (3.5) can be written as

- - 1 o iy o
(K'\VIk) = O, /0 e Dy (1) e @37,

(2m)
1 © e o
= (—)301-/ vi(r)e T = V(K k). (3.12)
2m 0
Using the plane wave expansion
i =B7) 47TZ Vii(pr) YL (p)YH(F) (3.13)
where
k - k — —
ﬁ m, P = \/k/2 + k2 - 21{? . l{?l (314)

and the relation
[ A7) = VR0 (3.15)

n (3.12), the momentum-space respresentation becomes

1

~—0i /000 vi(r)jo(pr)ridr = O (p). (3.16)

. _), I —

where
() = - / o (r)jolprirdr (3.17)

272
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3.1.2  Operator : 3(a1 - 7)(0% - 7) — 01 - 03
The operator 3(oy - 7) (02 7) — 71 - 05 contributes to the tensor force of the Argonne

V18 nucleon-nucleon potential. This operator can be re-expressed as

3(o1-7) (o9 - T7) — 1 - Gy = (3.18)
71"5 +2r2 — 2 3.1y 4+ (=3r.ry)i 3r.ry 4+ (=3rury)i 73r§ +3r2 + (—6ryry)i
3r.ry + (3r.ry)i rf, —2r2 442 ri —2r2 442 —3r.ry + (3r.ry)i
3r.ry + (3r.1y)i e —2r2 472 e —2r2 472 —3r,ry + (3r.7y)i
—37"5 +3r2 + (6ryry )i —3r.ry + (=3r.ry)i —3r.ry + (=3r.my)i —ri +2r2 — 2

Using the spherical harmonics expressions for Y,2(#) the matrix can be re-written as
WAYEEIVE  SVRYLN S SVAYA()f VA BYA)
NGV GO N OV N GGV Vo RO

SR RVEE) —AVAEEOVE —EVAEEVE VA

GHON N RGN I NG GONE

The momentum-space representation of the term v;(r)(3(o1 - 7)(02 - 7) — 71 - 02) |
i€ {5,6,17} is obtained by substituting v;(r)O; in (3.5), then

VOED) = 5 3 [ (Bl - )on) = 63 - V)Y, i) dr

:7%§Aﬂ%wmm/mmwy (3.19)
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NG GONCIE N N NEE N O VE I NEVE D END

SBVE RV —AVARENE —EVAREVE —3VEY ()
YAl ()Y (p)  (3.20)

m

Sy RV VARG —AVmYIVE —3yEY2 ())&

WAROVE  svEEVR0) aEERG) VERGIVE

- / T jy(pru(r)(-1)

WY2(WVEE Y2 (P EVE 3YZ (0 EVE  3Y%(0)\/2vT
SSYEG) VA —RGVEVE —RFGIVEVE -3V (0 v

3O RVE —AOVEVE —8R(OVEVE -3V () VA

= (=3(d} - poy - p) + 771 - g‘é)# /000 vi(r) g2 (pr)ridr. (3.21)
The momentum-space representation of (3(oy - 7)(0g - 7) — g7 - 03)v;(r) is given by
ViK' k) = (=3(1 - ps - p) + o1 - 52)I2(p) (322)
where
12(p) — 2%2 /0 " () jalpr)ridr. (3.23)

3.1.3 Operator: L-S

The operator L-S can be expressed as

L-S=8(=iVy x k) (3.24)
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The momentum-space representation of v;(r)L - S is derived by substituting (3.24) in

(3.5). This is shown below

oL 1 00 .
Vi(K' k) = (2—)3/ vi(r)e L - SeTdPr, (3.25)
™ Jo
Using the relation (3.24) in the above equation leads to
- = 1 3 o0 iy A N — 7o
%Wjﬁ_(EJ / vi(r)e TS - (—iV), x k)e*Tdr, (3.26)
T 0

and

VR =8 (it x DY oy / " drur)iler) / A=) ()Y, (7)Y, (0)
Im - 0

1 . S0
= (2_7r2)/ TQ(—ZVk X k)jo(pr)vi(r)dr. (3.27)
0
Using the following identities,
. , djo(pr) Op
Vijo(pr) Ok, Jo(pr) 90 Ok’ (3.28)
07 .
j(é(ppT) = —rji(pr), (3.29)
1 ,
2= oK) (3.30)
. . P
Vijolpr) = —T]l(p’l”)< ; >, (3.31)
(@ x Bialpr) = rinlor) EEXE, (3.32)

in (3.27) the momentum-space representation of L - Sv;(r) is given by

— » = -1 o
Vi(k' k) = —iS-(K xk) 27r2p/0 v; (r)r341(pr)dr. (3.33)
Thus, the momentum-space representaion of vi(r)[j .S s
Vik k) = —iS- (K x b (p) (3.34)
where
1 > :
IB(p) = 27T2p/0 v; (r)r341(pr)dr. (3.35)

3.1.4  Operator : L-L

The following relations are useful in the rest of the discussion.

— .

F=kK—k
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@AY dh (@) )
(@ V,(b-Voflo) = f@— "5+ F@—= = @) 55337
YUY P () N AL

- p((f(p) ) )+ pf(p)

1
(2m)?
= (iﬁpxlg’)-(iﬁﬁx k)

1 k7 g = g
(zﬂ)g/\/i(r)e’k dr'=—(V,xk')-

(3.38)
To compute the derivatives the following equations are used
(Vo xK)-(V,x k) = (kF-K)YV,-V,)—(k-V,)(k-V,) (3.39)
Using this in relation (3.38) gives
(XK (9, xF) (2477:) / T ialpryrtdr = — ((F B2 - (7 -9,)(F-¥,)) 1),
(3.40)

where Evaluating this gives

——<15'~E><I%”<p>+/—1)13’<p>+ Vi) - (). (341

p? p
To eliminate the derivatives equations (3.43) and (3.44) are used.
” 1. . 1 e T
) -1 - 5 | o Gstr® = sitor) Sy (3.42)

_ Ly age = 2 [ oy (o)t
- / vi(r)(Jg (pr) — 74 (pr)pr)r dr = 5.2 /0 vi (1) 2 (pr)ridr
= p{%p / (r)ga(pr)rtdr} = T (p)p®

” 1 .7 1 o0 . 1 . 1
I (p)+ ;Iil (0) = 55 [ wl)Uer) —Jé(pr)p—+2jé(m’)ﬁ)r4dr (3.43)
1 o 1 2
= —/ vi(r) g2 (pr)rtdr — —2—/ vi(r) g1 (pr)rdr
0 2m% p

= Lp)p" - ;I?(p)
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This gives
(271r)3 /e_ig'%i(f)(?xz?)-(FXﬁ)eiE'FdFZ — (K- ) (¢} (p) =283 (0)) + (K- 9) (k- )T (p).
(3.44)

Re expressing (3.44) in terms of cross products, the momentum-space representation of

(L - Lv;(r)) is given by

ViK' F) = —TE(p) (K x B) - (K x F) +2(K - B)I}(p), (3.45)
where
) = 5o [ walor)rtar (3.40
‘ 21202 Jg

—,

3.1.5 Operator :(L - 5)2:
The momentum-space representation of (L - S)2v;(r) is derived by substituting the

operator in (3.5). This leasds to

The momentum-space representation of (L - §)2v;(r) is given by

— — —

VK E) = —((S - (kx k) T4p) + (K x ) - (k x SI(p). (3.48)

3.2 Conclusion
The Fourier transform of the Argonne V18 potential for the different types of

operators are computed using the equations

18
V(K k) =" fi(A. B)Vi(k k) (3.49)
=1
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where f;(71,73) is the isospin component for index i and the spin-dependent functions

V,L-(l;’, k) are given by

—

Vi(k' k) =1}p) ie{1,2,3,4,15,16,18},

-

ViR F) = (=3(d1 - pds - p) + 01 - ) 12(p) i € {5,6, 17},

Vi(k' k) = —((S - (k x K)2IE(p) + (K x S) - (k x I(p) ie{13,14}.

In the next chapter the numerical technique used to compute the integrals I* (p), I2(p), I3(p)

and I#(p) are discussed.



34

CHAPTER 4

NUMERICAL EVALUATION OF INTEGRALS

This chapter describes the numerical technique adopted to compute the integrals that
appear in the momentum-space Argonne V18 nucleon-nucleon potential. The spin op-
erators in the momentum-space Argonne V18 potential are multiplied by the following

scalar functions of the magnitude of the momentum transfer, p, (3.14):

I (p) = 2—; Ooovi(r)jo(pfr’)err,iE{1,2,3,4,15,16,18} (4.1)
IZ(p) = 2—;2 Ooovi(r)jg(pr)rzdr,i6{5,6,17} (4.2)
B(p) = 2732p/0mvi(r)j1(pr)r3dr,i€{7,8,9,10,11,12,13,14} (4.3)
I'(p) = %W/Omvi(r)jg(pr)r‘ldr,i6{9,10,11,12,13,14} (4.4)

The indices ¢ = {1,..18} label the 18 scalar coefficient functions that appear in
the Argonne V18 potential. To numerically compute these integrals a standard method
like the Filon quadarature formula[29] could be used, but an alternative approach that
exploits the properties of the potential and spherical Bessel functions is used in this
thesis. The integrands in the above integrals are products of the form P(r)j,(pr) where

Pi(r) = ‘/;(7’)7’2,

Pr) = Vir?
or

Py(r) = Vi(r)r* (4.5)
and V; is one of the 18 scalar coefficient functions that appear in the Argonne V18
potential.

The following properties of the functions in the integrand are used:

1. The value of the function r2V;(r) drops from it maximal value by at least a factor
of < 107 when 7 is 50 fm. The integral’s upper limit is initially taken to be

Tmaz = H0fm. The integrals {I} (p), 12(p),I3(p),I}(p)} are evaluated at p = 0. If
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the value of 7,4, is reduced to 20 fm , the error between computed integrals with
Tmaz = 90 and 7,4, = 20,

Iso — 1
error = M. (4.6)

| L0
is of the order, error < 1079, except in the component ¢ = 16 which is of the order,

error < 107, The integrals used in this thesis are computed with 7,4, = 20 fm.

. The spherical Bessel functions are oscillatory and the plots for jo(x),j1(z) and
Jo(x) are shown in figure [4.1]. In the integrals

T = pr.

| Bessel functions

0 10 20 30 40 50

Figure 4.1: Plot of jo(z), ji(z) and ja(x)

with respect to x

The maximum value of the momentum transfer p is limited to ppe, = 100fm=1. It
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follows that the largest value of & that appears in the integrand for 7,,,, = 20fm is
Tmaz = 2000. The zero values of all three spherical Bessel functions are computed

for values of x <= x,,,, using standard numerical software [30].
The following steps are used for the numerical evaluation of the integrals.

. The zeros between, x = 0 and = = 2000, of each spherical Bessel function
Jo(z),j1(x), j2(x) are computed and stored as three different arrays. The zeros
are labeled in the array as
X = X1, T2, X3, .. T4, .o, TN, (4.7)
where
m = {jo, j1, J2}

and x is the largest zero <= Ty400 = Prmac"maz-

. The number of zeros between zero and r,,,, is determined by the value of p. For
example if

p=20
then the integrand has no non-trivial zeros. Similarly if for all values of p <

100fm=1
rmaz < ﬂ

then the first zero is larger than 7,4, Pmae- and the spherical Bessel function has no

non-trivial zeros in the domain of integration.

In general for a given value of p, the values of r at the zeros of the spherical Bessel

functions are given by

T Ly Tlim
r={—., ..., —, ..., }
p’ " p p
where [im is the i'" position of the zero, which has the value
Ty Tlim+1
lim < Fonaw <= lim+ .
p p

. For value of p where the spherical Bessel function has no zero in the domain of

integration the integral is computed using 100 Gaussian quadrature points. The
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number of points is large to remove any doubt that the integrals will converge.
Later the number of Gaussian points are reduced. However, the final goal is to use
Chebyshev polynomials to approximate the scalar functions and the coefficients

are then extracted for computing the functions. For values of p satisfying
L1
Tmaz = ——

the region of integration is decomposed into intervals between successive zeros of

the spherical Bessel functions. The lower and upper limits of each interval are
Ty 21 T2 Tlim—1 Llimy ,Llim

0= 07_7 T T )\ T Ty T )y e ) ) ) s P'max) 5+ 4.8

{( p)(p p)(p p) (p p)(p )} (4.8)

The integral of each interval is evaluated using a Gauss-Legendre quadrature. The

integrals I{ (p), I2(p), I3(p) and I}(p) are then the sum of each integrated interval.

The integrals can be written as the sum
z1 2

/on% Py(r)drj,(pr) = /0 p Py(r)jn(pr)dr + /wlp Pi(r)jn(pr)dr + (4.9)

P

Llim

o P+ [ R

lim—1 Tlim

where the integrals on each interval can be approximated by

zitl t=NN
.

Z Pi(r)jn(pr) = Z Pi(re) jn(pre)wy. (4.10)

- t=0

The number of Gauss-Legendre quadrature points used on intervals with right
endpoint r < 5 was initially taken to be 40 and 100 for intervals with right endpoint
5 < r < 20. These numbers were reduced to 20 Gauss points for right endpoint r < 5fm,
40 Gauss points for right endpoint » < 10fm and 80 Gauss points for right endpoint
r < 20fm. The maximum difference observed was 107",

The plots of the computed integrals as functions of the momentum transfer p are

shown in sections 4.2, 4.3, 4.4 and 4.5.
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4.1 Chebyshev approximation of integrals

The numerical computation of integrals described above is not efficient for large
calculations, where these integrals need to be evaluated many times. A more efficient
representation is constructed by making polynomial approximations to the integrals
as functions of momentum transfer over the range p € [0,100fm™']. This interval is
decomposed into three sub-intervals and the numerical values of the integrals are used to
construct Chebyshev polynomial approximations to these integrals in each of the three-
sub intervals. Chebyshev polynomials are useful for approximating functions because
they vary strictly between —1 and 1 due to their relation to trigonometric polynomials.
The coefficients of the Chebyshev expansion can be computed using a Clenshaw-Curtiss
quadrature.

The function f(x) is approximated on the interval z € [a,b] by Chebyshev poly-

nomials, 75, (y)
100

a+b 2
Nco/2—|—ch n b—a+b—ax)’

where
Tu(y) = cos(ncos™ (y)
are the Chebyshev polynomials. The coefficients ¢,,, of the expansion, computed using

the Clenshaw- Curtiss quadrature are:

an;(; +Zf a+b+b; cos(mj/N)) cos(njm/N) + (— )"%f(a)). (4.11)

The Chebyshev polynomlals are computed using the recurrence relations

Toi1(z) = 22T, (x) — Tma (), To(z) =1, Th(x) =
This entire process is used in standard software package [30].
The approximation requires evaluations of the function f(z) at the transformed
Clenshaw-Curtiss quadrature points z; := %t 4 =% cos(mj/N). The function f(y) is

replaced by each of the integrals, {I} (p),I?(p), I3(p),I}(p)} and y by p. These func-

tions are then approximated by expansions in Chebyshev polynomials on three different
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intervals of the variable p, which are

0<=p<10fm™, 10<=p<50fm™", 50<=p<100fm= . (4.12)
A polynomial approximation of 101 terms is used for each of these intervals. The result-
ing expansion coefficients are stored, and used to with the polynomials to evaluate the
functions and any value of p € [0, 100]fm ™",

The choice of intervals above is dictated by the Argonne V18 interaction. The
first interval, 0 — 10fm™!, is where the potential structure is observed. The other two
intervals provide an adequate range of values for most applications.

The Chebyshev functions reproduce the integrals with an uniform error (I(p) —
Tehebyshen(p)) of the order 1079 (there are some exceptions in the region between 0—1 fm ™
of orders 107 for potential 4 and 6).

In the next chapter these Fourier transforms are tested by computing the wave
functions and binding energy of the deuteron in momentum space. In addition, expansion
in lesser numbers of Chebyshev polynomials are examined in the next chapter.

The remaining sections show the reults of the numerical Fourier-Bessel transforms.

The Fourier-Bessel equations

I (p) = 2—;2 DOO vi(r)jo(pr)ridr,i € {1,2,3,4,15,16,18} (4.13)
IZ(p) = 2_71r2 /000 v;(r)ja2(pr)r?dr,i € {5,6,17} (4.14)
B(p) = 273% /Ooo vi(r) g1 (pr)ridr,i € {7,8,9,10,11,12,13, 14} (4.15)
I'(p) = %2’02 /OOO vi(r)jo(pr)rtdr,i € {9,10,11,12,13, 14} (4.16)

are numerically computed and the results are shown in the remaining sections. In
these sections the functions {I}(p), I*(p), I3(p), I}(p)} are computed for different values

of p and the plots are shown.
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CHAPTER 5

A FORMALISM FOR AUTOMATED ALGEBRAIC REDUCTION

The solution of the three-body problem using vector variables stretches the limi-
tations of existing computing resource. The three-body problem with a scalar potential
has been successfully solved using the vector variable approach. This required state of
the art super computing facilities. The solution of the two-body problem is embedded
in the three-body Faddeev equation and hence an efficient code that would make the
optimum use of the finite computing resource becomes an important aspect of solving
the two-body problem. The vector variable formalism of two-body scattering for realis-
tic nucleon-nucleon potentials with spin degrees of freedom requires the solution of six
coupled equations. These equations are dependent on the trace expressions of Pauli ma-
trices that are computed analytically. Hundreds of algebraic expressions are repeatedly
computed for each grid point of the three dimensional integral. It has been shown in
chapter two that these algebraic expressions if simplified, would result in reducing the
time of computation. However manual reduction is time consuming and error prone. It
is therefore ideal to build an automated system that can reduce these large algebraic

expressions. This chapter describes an algorithm that can simplify these expressions.

5.1 Description of reduction mechanism
Let S be the set of scalar polynomials to be constructed from a given set of vectors
V: {\71, Vo, Vi, .., V;V} Two types of representation can be used to express any element

x € S. They are,
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1. Irreducible scalars that can be constructed out of the set V are classified as

1
1

Type ] 7 7
Type  II /v,
Type III  (VixVj)-Vi

where V; € V. It is then possible to define sets

S1: (Vi Vi, Vo Vo, o Vi - Vi (5.1)
sp: ViV, Vo Vo ,V,-V..} i#j ije{l, .. n} (5.2)
sg: {(Vix Vo) Vi, (Vix V) - Vi), Ji# j # ki (5.3)

ij.ke{l,...n}, (5.4)

where s1,8, and sz are the sets of combinations of one, two and three variable
irreducible scalars. The set of all the irreducible scalars is given by

S =81 Usy Usg, (5.5)

sCS. (5.6)

Let P(s) be the set of polynomials in s and m(s) is the set of all the multi variable

monomials. Any element J(s) € P(s) can be expressed as

S(s) = Z difi(s). (5.7)

The " monomial f;(s) € m(s) and d; ZGZ?R. Let DEGP2(S3(s)) be defined as the

degree of the polynomial 3(s) € P(s). For any element x € S there exists an ele-

ment J(s) € P(s) that represents x. In addition , [5(s)] = {Bi(s),..0i(s).., Bu(s)}

is also defined. The rest of the thesis uses the notation [ ] for the set of all

monomials in a polynomial.

2. A general representation of any vector V is in terms of euclidean coordinates Ve, Vy
and V. The set v : {Vi,, Viy, Vi, Vau, Vay, ..., Vv, } is the set of components of N
vectors of the set V. P(v) is the set of rotationally invariant polynomials in v

constructed from the scalars in S. Let m(v) be the set of all possible multivariable
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monomials for any element € S. There exists an element F(v) € P(v) that
represents x. .

F(v) = iciai(v), (5.8)
where the i'" term is a;(v) € m(v) an(i ¢; € R Let [a(v)] : {aq(v),...an(v)}.
DEGP1(F(v)) is the degree of F(v) and LENTGH(F(v)) is the length of the

polynomial.

The reduction or "term re-writing” is a change of representation (or variables).
This transformation is possible since every = € s can be represented by an element in
P(v). Let the representation of the irreducible sets s1, s and s3 be given by the corre-
sponding sets P1(v) C P(v), P2(v) C P(v) and P3(v) C P(v). The representation of

the irreducible scalars by the elements of P(v) are given by

Type I Vi Vi=V24+V2+V2=pi(v), (5.9)
Type Il V; V) = ViuVjo + Vi Vjy + Vi Vi = ;a(v), (5.10)
Type II1 (Vi x V}) - Vi = €56ViViVie = p3(v). (5.11)

Here, Type I is the length of a vector, Type Il is the dot product and Type III is the triple
product, p;(v) € P1(v),p2(v) € Pa(v) and ps3(v) € Pa(v). Because of this relationship
, it possible to define sets of polynomials Qq(v), Qa(v) and Qz(v) that represent the

set of monomials m(s;), m(sz) and m(s3),

@1(v) € Qu(v)
%(v) € Qa(v)
g3(v) € Qs(v).
Any monomial in g(s) € m(s) can then be written as a product of
9(s) = g1(s1)g2(s2)gs(ss) (5.12)
where g1(s1) € m(s1),g2(s2) € m(sz) and g3(s3) € m(ss). The representaion of ¢ in
polynomials pia3 € P(v) is given by the equation

9(s) = p123(v) = 01(v)g2(v)gs(v) € Q(v), (5.13)
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where Q(v) represent all the possible products of ¢, g, and ¢3. A polynomial J(s) €
(P(s)) is given by

= diBi(s) (5.14)
where d; € R and f;(s) € m(s). They cainzobe represented by F(v) € P(v) by trans-

forming all f;(s) € [ (S)] using (5. 13) This can be formally expressed as

ni

(s Zdz@ dem ) =Y ca(v) = F(v),

=0

Pras(V Zﬁl (5.15)

Here a;(v) € m(v) and VfG;(s) € [B(s)] the representation in v are the polynomials

Plys(v). The monomials of pi,g(v) are given by the set [3;(v)]. The transformation is
represented by the expression

Bils) = [5'(v)] (5.16)

The next section the transformation of elements F(v) € P(v) to J(s) € P(s) is dis-

cussed.

5.2 Inverse transformation
The process of transforming a polynomial F'(v) to a polynomial (s) is discussed

in this section.

5.2.1 Uniqueness
Since the monomials m(s) € m(s) are generated from three irreducible scalars,
their representation is a polynomial p(v) € Q(v). Let the monomial m,(s) € (m(s)) be
represented as
=) wiFl(v), (5.17)
where 7(v) € m(v). Since the polynoﬁi?ﬂs are generated from three distinct poly-

nomials that represent irreducible scalars, if any two monomials mP(s), mi(s) € m(s)
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fulfil

(V)] = [ (v)] (5.18)
then the set of coefficients [wP] = [w?] and therefore the two monomials m”(s) and mi(s)
give the same representation and either one can be used to represent the RHS of the
(5.17).

Let the set of sets that represents the set of monomials in m(s) in v be I'(v) =
{(7*(v)], [72(v)], ...}. There is a one to one correspondence between m(s) and F(V). This
relationship is used to reconstruct the monomials m;(s) € m(s) from the monomials

m(v) € m(v). Re-writing (5.15) the polynomial J(s) can be written as

S(s) = Zdi@-(s) = chaj(v) = F(v), (5.19)

and

Bils) = [B'(v)].
The elements of the set [a(v)] are also elements of ¥ = | J;_, [ (v)]. To further investigate

the relationship between [a(v)] and 4, for the n sets [37(v)], i = 1...n the sets

(v T=0B"N U B, (5.20)
i=0,ir

iv)T= U (B nE ™) (5.21)
i=0,ir
are defined. Here \ is the symbol for compliment. The set [¢(v)"] is the set of elements

that exists in [3"] but not in any other set. The set [i(v)"] represents the set of common

elements that exist in the pairs [6"(v)] ,[3%(v)] with i # 7. For r = 1,...,n two sets

n

1(v)] = ")l (5.22)
are defined. Any set [a(v)] can be decompors_ed into [a(v)]" and [a(v)]¢

()] = [a(v))! Ula(v)] (5.23)
where [a(v)]¢ = [C(v)] and [a(v)]] C [I(v)]. Decomposing the set [a(v)] into [a(v)]!

and [a(v)] plays an important role in the transformation of elements F(v) € P(v) to



69

3(s) € P(s) discussed in the next section.

5.2.2  Structure of transformation
The mathematical process of transforming F'(v) to J(s) requires defining new sets
P(M) =P(v)U (P(s)) as well as set
m(M) = m(v) Um(s).
Then (5.13) can be re-written as

9(s) = (@1 (v))(g2(v)) (gs(v)) = 0. (5.24)

An example to illustrate this is shown in the next equation.

(Vi Vol (Vi Va) = (Vi 4 Vig + VP (Vi + Vg Vi + Vie Vi) = 0. (5:25)
To inverse transform a scalar represented by polynomial F'(v) € P(v) to a polynomial
3(s),

l l2
F(v) =) cai(v) = Y diBils), (5.26)

is not a straight forward process. Zz_Al monomial ii;lm(v) is not rotationally invariant
unlike the elements in m(s) and cannot be expressed in elements of m(s). Hence the
starting point of the transformation is to find the elements in m(s) that may contain the
monomial term in m(v). The number of terms are finite and this property is exploited
to inverse transform F(v) to (s). The replacement of a monomial m, € [a(v)] by
polynomial G(M) in F(v) is called an elementary transformation. Here G(M) € P(M),
has only one monomial mg € m(s) and the rest of the monomials are elements of m(v).
The transformation is carried out through a sequence of elementary transformations.
The transformation of a polynomial F'(v) € P(v) to S(s) € P(s) can be symbolically
expressed as

rLg. (5.27)
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The transformation — is carried out by by a series of elementary transformation. This
can expressed as a recurrence relation

F)BS(s) = 0v) % i) ey 2 e (5.28)
EO M)

here ”—" represents the elementary transformations or "term re-writing”, the term on

X" H (M)

the left side of the — is the polynomial x*(M), the term on the — is the initiating
monomial /(M) being transformed and the function at the end of the arrow is the

tth transformation.

polynomial x;.1(M) where the index t is the

Since the transformations are done to simplify the expressions for computational
purposes, the elementary transformation must satisfy

LENTGH (x1+1(M)) < LENTGH (x:(M)). (5.29)

Xo = F(v) is the function to be transformed and DEGP2(F(v)) = 0, the transformed

function after n-1 elementary transformations is y, = $(s) and DEGP1(3(s)) = 0.

The condition that decides that transformation has been successful is called termination

step and the terminating step is when DEGP1 = 0.

5.2.3 Elementary transformation
Let the j monomial of F(v) (5.26), ;(s) initiate the transformation. A finite
set Hi(s) : {h1(s), h)(s), ..., hi(s)} represents all the monomials in m(s), whose repre-

sentation in P(v) contains the monomial a;(v). The element h?(s) is written as,

q

= Zwlml(v) = Zwlml Z wlml —|— wqmq(v) (530)
— =0 l=q+1

where m;(v) € m(v) and for n = ¢, my(v) = «;(v). If we take the coefficients into

consideration then,

5)] hl (s (Zwlml Z wymy (v > + cjmy(v) (5.31)
q I=q+1
where ¢; is the coefficient of aj( v). This can be re-expressed as

qu B (s (Z Wi (v EL: wmn(V)) — e;mg(v) =0 (5.32)

I=q+1
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An elementary transformation is described in the following steps:

1. The first step of the elementary transformation adds (5.32) to F(v).

la

F(v)+0 = Zciai(v)wjaj(vw 3 ciai(v)—l—;—i]hi(s) (5.33)

i=j+1

q—1 n
C; v
_w_(Zwlml + Z wlml(v)) — c;my(v)
7\ =0

l=q+1

l3
Ci
= w—hi(s) + Z 0% (v) = x1(M).
4 i=0
The above equation adds function A (s) to the polynomial F'(v) and then subtracts

the term «;(v) = m,(v) and other monomials that are elements of the set [m'(v)]N

[o].

2. The set [B(s)] : {B(s), ..., 37(s)} has all the monomial elements of the polynomial

3(s). There are two cases that are being discussed:

(a) Let ® = [3(s)]NHI(s). If |®| = 1 then there is one element in H(s) for which
the condition (5.29) is satisfied. This can be extracted by transforming all of

the elements in H7(s) until the element satisfies (5.29).

(b) If @ : {h, h{+3, ..} , the number of elements is more than one, the condition
(5.29) will not be met. This is because the monomial being transformed is

a;j(v) € a(v).

To avoid ambiguities that come from terms that are elements of [a(v)]! , the ele-
mentary transformation is carried out for all monomial terms «;(v) and the polyno-
mial {x"(M),, } (transformed by the term o, (v)) that has the least LENGT H i (X3,
(M)) is used for the next transformation. This ensures that only elements of
[a(v)]¢ are picked for elementary transformations. This is expressed as

0 2 v (5.34)

The index «,, is understood implicitly.
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The result x'(M) is tested for the termination condition. (This step can be done
every time the elementary transformation condition (5.29) is met.) If the condition
is not met the elementary transformation is done for all the terms in the polynomial
x (M) and this transformation process is repeated until the termination condition

is satisfied.

In practice, it is simpler to fix an algorithm called A that reconstructs a certain type of
scalar monomials and its representation in v. The algorithm is used for the elementary
transformation of all the monomials «;(v) and the transformed polynomial with the
least length y4'(M) . The next algorithm called B generates a different type of scalar
monomials and the corresponding transformed polynomials are used. One of the possible
combinations of the algorithms result in a transformed polynomial with the least length.

This process is repeated till the termination condition is reached.

5.2.4  Illustration
The transformation from F(v) to $(v) is illustrated by an example. Consider the
expression that is generated by (5.35)
F(V) = qiy@2:93: — Q12032029 + Q22012 — G2:G12G3y + Q1yd2y — Q1yG3:G22

1292293y + Qe Qic + G3:G12G2y- (5.35)

The sequence of transformation of (5.35) are
42291z

F(v) 22 g + (G X @) - @) + Qryloy + Gatie 225 (G X @) - @) + (G- 63)

where ((¢3 X ¢1) - ¢2) + (i - ¢2) is the termination step or the reduced equation J(s).

5.3 Description of algorithm
This section discusses the algorithms that are used for the elementary transfor-
mations. The algorithms follow the structure of scalar monomials m(s) € m(s) and

m(s) = my(s)ma(s)ms(s) where my(s) € my(s), ma(s) € ma(s), ms(s) € ms(s). The
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following rules are used in the algorithm

R (V)2 — Vi. Vi (5.36)
R Vivi = Vi. Vi (5.37)
R ViVIVE (Vi Vi) - (V). (5.38)

where I, m,n = {1,2,3}. R} reconstructs the irreducible scalar of type I, Ry’ reconstructs
the irreducible scalar of type II, Ré’j’k reconstructs the irreducible scalars of type III,
where i # j # k. Using these rules, the algorithm reconstructs monomial m;(s), ma(s)
and ms(s).
A monomial «;(v) is expressed as
ai(v) = Ty (V)T (V) I (V)™ (5.39)
Here ng,ng, n, are the powers of the components V* VI V* where s,t,u = {1,2,..N}.

zr Vyr Vz
The elements of v are decomposed into sets X = {V1, V2 ... VI VN Y = {V;, V;IQ, L, VY
and Z = {V}, V2 .. VN}. Three matrices X X,YY and ZZ of dimensions (N x N) are
used for storing the degrees of elements X; € X,Y; € Y and Z; € Z.

The degrees of each component X* € X of the monomial «, are stored in the
diagonal of the matrix X X where the i*" position represents the i’ vector and X X, ; is
the degree of the variable X;. Similarly the degree of variables Y; and Z; are stored as
diagonals in Y'Y and X X. The degrees are elements of the set of non-negative integers.

Let set D = [X XU [YY]|U[ZZ] represent all the diagonal elements in matrix X X, Y'Y
and ZZ given by set [XX],[YY] and [ZZ]. In addition let

Algorithm 1 reconstruct monomials that are elements of mj(s),
Algorithm 2 reconstruct monomials that are elements of ma(s),

Algorithm 3 reconstruct monomials that are elements of ms(s).

Let the combinations of algorithms be defined by set ALGO : {123,231, ..}, which
has six elements. These algorithms are used to reconstruct the scalar monomials in the

set HJ(s) and their representation in v. For an input a;(v), any combination of algorithm
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ABC € ALGO, where A, B and C are elements of {1,2,3}, reconstructs the scalars in

the following steps

Algorithm A takes the input XX, YY and ZZ and reconstructs the monomial
ma(s) € ma(s). For example A could be I and element reconstructed is m(s) €
ma (s). The output consists of the matrices X X', YY" and ZZ' and the monomial
my(s). If the matrices X X', YY", ZZ" are null matrices then m(s) is the required
scalar and the algorithm terminates. Otherwise the algorithm contiues to the next

step.

Algorithm B takes the input XX, YY" and ZZ and reconstructs the monomial
mp(s) € mp(s). The output consists of the matrices XX, YY" and ZZ" and
the monomial m4(s)mp(s). If the matrices XX, YY" ZZ" are null matrices
then ma(s) is the required scalar and the algorithm terminates. Other wise the

algorithm continues to the next step.

This step is similar to previous steps and reconstucts m.(s) € mc(s). The output
matrices are X, Y, 72" I {XX", YY", ZZ"} are null matrices then the output

is a scalar monomial A/ (s) = ma(s)mp(s)mc(s).

If the matrices are not null matrices then the algorithm has failed to reconstruct

a;(v) and the process is repeated with another algorithm ACB.

The algorithms are discussed next.

5.3.1 Algorithm: 1
This algorithm reconstructs monomials that are elements of my(s) where
ma(s) = TN (V- Vo (5.40)
where n; is the power of the i term. This algorithm uses rule R¢. To use this rule the

condition

dJreD:xz>1 (5.41)
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must be satisfied.

If (5.41) is not satisfied the output of the algorithm is the input XX, YY" and

!

47 .

If the condition holds in then X X', YY" and ZZ are decomposed into

XX = XX" + xXx°ven (5.42)
YY =YY +YYyeen (5.43)
27 =77" + 27", (5.44)

where matrices X X" YY" and ZZ°*" are given by the equations

Vi XX;;>1, XX, =2n'+1 nf={0,1,2,.}

XX =2nf , XX, =1, (5.45)
and
Vi, XX, <2
XXPr =0, XX, =XX,, (5.46)

The same applies for YY" and ZZ'. The monomial m,(s) € my(s) is reconstructed

using rule R;.

even even even
(XXm' YV T 225 )

my(s) = Ty (V; - V) 3 (5.47)

The monomial m,(s), the representation of m;(s) in v and the matrices X", V"

and Z" are the output of the algorithm.

5.3.2  Algorithm: 2
This algorithm reconstructs the monomials ms(s) € ma(s). Let the input matrices
XX',YY and ZZ'. This algorithm uses R, (5.38) to reconstruct ms(s). The matrices

are decomposed as

/

XX, = XX, — minimum(X X, ;, XX ) (5.48)

2,09
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and

I

XX, ; = minimum(X X, ,;, X)) (5.49)
After rearranging the elements, the matrices XX, YY" and ZZ are decomposed into
diagonal and non-diagonal matrices
XX =XX"+Xxx™
VY =YY +yym™
77 =27" + 772" (5.50)
Then rule R, is used to re-construct the scalars. The reconstruction equation is
ma(s) = TG I (V - V) SXEYE2215) (5.51)

The output of the algorithm are my(s), representation in v and the matrices X X " YY"

and 27",

5.3.3 Algorithm: 3

The algorithm uses rule Ry (5.38). For this algorithm to be useful, the condition
that there 3X;, € [XX],3Y;; € [YY] and 3Z;, € [ZZ] for any value of {i,j,k : i #
Jj # k # i} must be satisfied. Let 3DN be a three dimensional matrix of dimensions

(N x N x N). Defining

ni e = minimum(X X, ;. YY; . Zi k), (5.52)
the new matrices are
XX;:i = X'L/z — Nijk (5.53)
YV =Y, —niu (5.54)
ZZIZ,I@ = lec,k — Mgk (5.55)
3DN; jk = Nijk (5.56)

The scalar m3(s) is constructed by the equation
ma(s) = LG50 ey (Vi x V) - V)P (5.57)
The output of algorithm are ms(s) , the representation in v and matrices X X", YY"

and 27",
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5.4 Conclusion
To test the algebraic reduction mechanism discussed in this chapter the reduction
algorithms are tested first by generating the representation of a monomial m(s) € m(s)
in v and using the reduction algorithm to reproduce the monomial m(s). The algorithm
was successful in reproducing the monomial. An example of a test monomial is
m(s) = (q1 - @)(G - @) G - Gs) + 56(q1 X @2)(G % @) (G X o) (5.58)
The algorithms were successful in reducing the trace expressions (2.55) and the output
is given in Appendix A of this thesis. These functions are re-expressed in terms of
momenta variables and a random set is chosen to compare with the expressions in [13].
The test expressions reduced matched the same trace expressions in [13]. The algebraic
system dicussed in this chapter is used in solving the bound-state of the deuteron and
in formalism of the two-body scattering using vector variables. They are discussed in

later chapters of this thesis.
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CHAPTER 6

DEUTERON BOUND STATE OF ARGONNE V18

This chapter discusses the computation of the binding energy and wave functions of
the deuteron. The two-body bound state problem is solved using vector variable ap-
proach [31]. The realistic nucleon-nucleon potential used is the Argonne V18 potential.
This calculation provides a test of all of the methods developed in this thesis. These

calculations test
1. the Fourier transform of the Argonne V18 interaction in operator form,
2. the convergence of the Fourier-Bessel integrals,
3. the Chebyshev approximation of the Fourier-Bessel integrals,

4. the symbolic methods for treating the spin in the vector form of the dynamical

equations.

6.1 Numerical realization

The Schrodinger equation for the two-nucleon system in the center of mass frame

is given by
k2
—+V =F 6.1
(5 + V) = Bl (61)
which leads to a momentum space integral equation,
- 1 R
(kl) = T F A’ (kIV|E') (K ), (6.2)
d— 5, J0

where £ is the nucleon momentum in two-body rest frame, and E is the energy eigenvalue.
In general a vector representative of an isosinglet bound state will have four amplitudes
corresponding to the four different spin combinations. Space reflection symmetry reduces
this to two spin combinations. These properties can be encoded into the representation

for the deuteron eigenstate. Ref [31] gives the following representation for the deuteron
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eigenstate [¢)) in operator form:

(o) = (n08) + (o1 Fon ) = £3609 ) 1, m.) (63)
This is for isospin t = 0, spin S =1, 7 = 1 and
bolk) = b1(k) (6.4
k) = 2 k) (6.5)
1 — 3\/5 2 .

where 1)y(k) is the s wave function and (k) is the d wave function.

The vector |1,m,) on the right side of this equation can be thought of as the
Clebsch-Gordan coefficient <%, 41, %, 2|1, mg) in the tensor product representation. When
the operator on the left side of this expression acts on |1, my) it generates the linear com-
bination of spin and spherical harmonic states corresponding to a spin 1 deuteron with
magnetic quantum number my = ms.

The following notation is used for the operators
1. Operator: Oy (k) is the identity operator I
2. Operator: Oy(k) is (771 - k)(3 - k) — O1 (k).
In this notation equation (6.2) becomes
(610101 + OulFroa(t) ) 1,m.) = (66)

1 OO 37,0 o ’ = /

m

To solve the Schodinger equation the operators O,-(lg), where i = {1,2} are applied
to both sides of (6.7) and the result is multiplied by a projection operator on the spin

S =1 subspace. This is expressed in the equation below
(L0, (1 (OUR) + 0a(0() ) 1,m.) =
1

— (1, m;|Oi(E)/ PRV (1 (K)OL(R) + ¢o(K)Oo(KN)[1,ms)  (6.7)
d = 5 0
which is a 3 x 3 matrix in spin projection ms.

After the projection on the spin S = 1 states the 4 x 4 matrices that appear in
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(6.7)are replaced by the following 3 x 3 matrices:

(1,m4]Os(F)Ov(F)|1,ms) — AA(K) (6.8)

(1,m|Oi(k)Os(k)[1,ms) — BB;(k) (6.9)

(1,m.|0;(F)V Oy (K1, my) — CCi(k, k', k- k') (6.10)

(1, m’|0:(F)V O (K1, my) — DD;(k, k', k- k) (6.11)
(

Equations for the wave functions ¢;(k) are obtained by taking the trace of (6.7) over

mys. The resulting equations are
1

S (Lmi]0F) (¢1<k>ol<l¥> n ¢2<k>02<1%‘>) Lm,) =

ms=—1
1 ) B . .
3 ﬁg,msy@(/z) / BEV (60 (K)O1(F') + da(K)Ox(R) |1, ms)  (6.12)
ms=—1 d— m 0

and can be expressed in terms of the operators (6.11) as
Tr(AAy)pi(k) + Tr(BB;)gy(k) = (6.13)
1 o /A ~ ;oA ~ / —
W/ {TT‘(CCZ'(]C, k. k- k’))gbl(k:) + TT(DDZ-(k, k. k- k')gbg(k ) }dPE
—2

The functions obtained by taking the traces are scalar functions of the form F(k, k', - ).
These scalar functions are given by
Tr(AA(k)) = Ai(k),
Tr(BB;(k)) = B;(k),
Tr(CCi(k, K, k- k') = Co(k, K k- &),
Tr(DD,(k, k' k- k) = Dy(k, k' k- K). (6.14)
Inserting the traces into (6.14) gives a pair of coupled integral equations for ¢;(k'):
E%% OOO {Ci(k, K kK)o (k) + Di(k K k- 1%')¢2(k’)}k’2dk’d9<1%’)
= Ai(k)o1(k) + Bi(k)da(k). (6.15)
The trace expressions of these spin operators and the reduction of the trace expression
into scalar products are carried out using the algebraic reduction mechanism discussed in

chapter 5. In the next section the reduced expressions are given. The integral equation

is solved by the collocation method. The collocation points are taken as Gauss Legendre
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quadrature points where the upper limit of the integral is set to a finite value. The
optimum value value was determined through convergence tests. With this discretization

the Schrodinger equation turn into the matrix equation,
t=N tt=N

E27Tkl2 Z Z {Ci(kla ki, ) o1 (ki) + Di(ki, ke, ﬂftt)¢2(k’t)}kt?wtwtt
— n =0 1t=0
= Ai(k)pr (k1) + Bi(ki) (k) (6.16)

The angular variable does not appear in the wavefunctions, so it can be integrated out

without seperately. Defining

tt=N
Cilki, k) = Z Ci(ku, ke, o )wee (6.17)
tt=0
=N
Di(ki, k) = Z Di(ky, ki, w)wy (6.18)
tt=0
gives
o X
S (Gulhndon () + Dt ko) Ko = Adhonth) + Bl
— o =0

(6.19)
The Gauss-Legendre quadrature points and the weights for radial integral are ky, k,,, and
wy . Similarly, x; and wy, are the Gauss Legendre quadrature points and weights for the
angular integral. In abstract form, the integral equation is a matrix,
A; O o1 E 0 C: G, o1
= (6.20)
0 B O2 0 E D, D. G2,
with size (2N x 2N). The matrices A1, By and E are diagonal N x N matrices. The

matrix element is a function of the energy eigenvalue
2m

ki

T m

Eqj = Oij

and the equation in matrix form is
AB¢ = ECDé
where AB is the matrix with A;, B; ,C/'l\) is the matrix with C;, D; and ¢ is the column

vector. To solve for ¢, the eigenvalue equation

6= AB 'ECDé
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is solved for X\ as a function of K. E is varied until A = 1, which results in £ being an
eigenvalue of H.

The equation (6.1) determines the wave function at the collocation points. Since
these are also the quadrature points the solution can be evaluated at any point by
inserting the discrete solution back into the integral equation.

For p > 50 fm ™! the Fourier-Bessel transformed integrals fall off with values of the
order I(p) < 107" fm™! (except the integral I?(p) that has order of 107°fm~1). The
integral can be approximated with an upper limit of k,,,,. The upper limits k., =
{50fm=",30fm=1,10fm~ 5fm~'} are chosen to test for convergence of the integral.
To compute the eigenvalue (6.1) the number of Gaussian quadrature points and weights
for the radial integral is fixed at 60 and the angular integral is fixed at 40. The Gaussian
quadrature points are sufficient for different £,,,, values and hence in the discussion of
computing equation (6.1) the number of Gaussian quadrature points are fixed at 40 for
angular integral and at 60 for radial integral. The eigenvalues are determined using
the LAPACK [32] subroutine "dgeev”. This subroutine computes the eigenvalues and
eigenvectors for a real non-symmetric square matrix .

The eigenvalue )\ is a function of energy and the bound state energy is when the
solution results in A = 1. To calculate the binding energy, the eigenvalue is computed for
different energies. The smallest interval between A > 1.0 and A < 1.0 is where the bound
state energy can be obtained. Table 6.1 gives the interval between energy values -2.235
MeV and -2.24 MeV. The eigenvalue for different energy values is then computed in this
interval. Depending on the number of significant figures required for the bound state
the process is repeated. An example is shown in Table[6.1]. Table[6.1] illustrates the
dependence of the energy on the eigenvalue \ for a cutoff of k., = 10fm~1. Table[6.1]
gives the energy for different values of the A near A = 1. A = 1 is obtained at the energy
value E, = —2.3829MeV .



Energy values vs eigenvalue A

Energy(Mev) A
-2.22 1.00083
-2.225 1.00061
-2.23 1.00038
-2.235 1.00015
-2.24 0.999927
-2.245 0.999927
-2.25 0.999701
-2.255 0.999476
-2.26 0.99925
-2.265 0.999025

Table 6.1: Energy values vs A for
Emae = 10fm™1

83
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Convergence: k., vs binding energy
Emaxz(fm=h) Ey(Mev)

10 -2.3829

20 -2.242212

30 -2.242212

40 -2.242212

Table 6.2: Convergence test for k,,q.

Table[6.2] shows the binding energy computed for different values of k,,4,. The binding
energy converges to seven significant figures Fj, = —2.242219 MeV and the eigenvalue
A = 0.99999999. This value of the binding energy is reached at ke, = 20fm~t. The

E, results are constant after 20fm™!.

As discussed before, the number of Guassian
quadrature grid points used is fixed for different k,,,, values. The Argonne V18 potential
does not include the electromagnetic terms and the binding energy is computed for strong
interaction. This is compared with a direct calculation of the deuteron binding energy
using partial waves in configuration space which gives E, = —2.242211 MeV. Reference
[33] gives a binding energy of —2.224574 MeV. But this also includes the electromagnetic
terms in the potential.

The s wave and d wave functions for the deuteron are computed and shown in
Fig[6.1] and Fig[6.2]. The s state probability is P, = 0.942241 and d state probability is
P; = 0.0577595.

Now that the Fourier transform of the Argonne V18 has been directly computed
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and used for calculating the bound state of deuteron , an efficient method of computing
these Fourier transforms using Chebyshev approximation is explored in the following
discussions. The Chebyshev approximation of the Fourier-Bessel integrals reduce the
time of computation. Table[6.3] shows the cpu (dual core 3Ghz pentium processor)
time for the direct numerical computation of the Fourier-Bessel integrals compared with
the same calculation using the Chebyshev approximations to these integrals. The total
number of Chebyshev points used in the approximation is 303 with 101 polynomials

used for each of the three intervals discussed on page 39 equation (4.12).

ARGONNE V18 s wave

12

10

W(k)
RN -
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Figure 6.1: The s wave function of deuteron
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Figure 6.2: The d wave function of deuteron
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Direct vs Chebyshev approximation

Method

Direct

Chebyshev

Binding Energy(Mev)
-2.242219

-2.242219

Time(in sec)

16915

Table 6.3: Comparison of direct and Chebyshev

integration.
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The Chebyshev coefficients are extracted seperately and used in the computation of
deuteron binding energy. Now that the Chebyshev approximation has been successful,
the dependence on the number of Chebyshev functions that are needed to accurately
compute the deuteron binding energy are investigated next. The results of the number

of Chebyshev functions and Ej, are given in Table[6.4]

Number of Chebyshev functions vs Ej
nl | n2 | n3 E,

100 | 100 | 100 -2.242219

50 | 50 | 50 -2.24225

50 | 30 | 30 -2.24225

30 | 50 | 50 -2.242402

30 | 30 | 30 -2.242402

Table 6.4: Change in bound state energy

with number of Chebyshev functions

The investigation shows that it takes 93 Chebyshev functions to get a binding energy

with an accuracy of 5 significant figures.
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6.2 Computation of traces

In this chapter the deuteron two-body problem was solved for the bound state
by taking traces of the spin matrices. Each expression is reduced to scalar products of
momentum vectors & and k. A variable change of RN ¢1 and k — g2 is made. The

traces involve the operators defined in the wave function given in (6.14)

O,=1
- - -1 -1
02(P>:(‘ﬂ‘P)(U_é'P)—§P201:A(P)_§P201
where P = {Gi, @} and A(P) = (61 - P)(d% - P). The spin operators of the momentum-

space nucleon-nucleon potential Argonne V18 are listed below

w = (61 5) (6.21)

b (30 @~ @) (&~ @) 62
0

wy = (~i(5( + ) (6 x D) (6.23)

w = (G0 +03) - (501 + ) (6.2

ws = (301 + ) B3 +3) - ) (6.25)

w = (50 + ) @ x DG+ - @Exd). (620

Here Q) = \/ @+ ¢35 — 2q1G2G1 - ¢2. To calculate these traces and simplify the results the
symbolic algebraic system is used. The symbolic program gives the following values for
the traces of the operators. The left side of the equation is the operator and the right
hand side of the equation is the trace of the operator (please note that the symbol used

to represent imaginary numbers i is replaced by j) :

0,0, = 3.0. (6.27)
0161 - 5)0; = 3.0. (6.28)

o0, (=301 (6 — %)2)(03 (B—d) g _
)~ OO ) 4365 o0
Or(=3((3(61 +3)) - (@ % )01 = . (6:30)
01((%(0—1 ) (%(rﬂ +63)))01 = 6.0. (6.31)



89

Ou((3(i +3)) - B)((5(0 + ) - G)0s = 2 - ) (6:32)
Ox((5(61 +3)) - (@ x dD))(5(0 + ) - (& x )0 =

—(2.0)(di - )P + (2.0)(di - @)(3 - @)

—(¢2- q_é)OlOl% + 01A(¢2) =0 (6.33)
(@ B0+ 7)015 + O1(6 - FA(G) = (6:34)
(@0, Bl (@ q;)g(fz (@ — q?)))Olé 40,230 (@ - q;)g(c?z (B =) 4 () =
%—(36.0)({1 ~3)*0) — (24.0)(q;2 ~g2)? +12.0(q1 - G1) (G2 - 43)
L (48.0)(di Zq;z)(qé - 2)

(- B0+ 53)) - (65 % D)0 5

01 ({50 + ) - (@ % ) A(GE) = 0 (6.35)

(& B0 ({01 +53) - (33 +53)0r 5

DN —

FO1((5(01 +3)) - (503 + ) Ald3) = 0.

~( @O0+ 53) B30 +53)) - )0

+01((5(61 +3)) - B)((5(0 + ) - 4 A(G) =
10 B)(@ - B) (6.36)
(@ B0 ({01 + ) - (65 x @)1 + ) - (6 x 60)01g
0151 +3)) - (@ x aD)(5(05 + ) - (& x 40) () =

~ S (OG- B0 + 20)(di - i) - B @) (6.37)

. 1 .
—(qi 'Q1)0101§ + A(¢i)O1 = 0. (6.38)

A (=301 - (@2 — %)2)(03 (@ —q1)))

—(24.0)(di - 41)* — (36.0)(i - g3)** + (48.0) (di - 1) (di - @2) + 12(qi - 41)(3 - ¢3)

0, =

(6.39)
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FA)(5(01 +02) - (561 +3))01 = 0
(G @D)01 (561 + 53) - 3)(5(6 +3)) )0 g
FAG@)(5( +2) - B)(5(01 +3)) - d0)01 =
(% +1.0)(¢1 - 41)(di - 63) (6.40)
(- )05 +02) - (@ x @))((F + ) - (@ x )O3
FAWG (50 +02) - (@ x ) (501 + 53)) - (63 x )01 =
(RO B0 + 20)G )@ - B))(di ) (6.41)

L . 1 L . 1 R, 1 N .
—(qi 'Q1)01A(C]2)§ — (g3 'Q2)A(Q1)01§ + (41 - 41) (g2 'Q2)O101§ + A(q1)A(¢) =

L 1.0 N o o
(4.0)(di - ¢3) % — (? +1.0)(q1 - 41)(¢3 - ¢2) (6.42)
o oL S 1 oL IR 1
*((h : Q1)01(01 : 02)A(Q2)§ - (QQ 'Q2)A(Q1)(01 : 02)01§

N~ o . 1 o o -
+(CI1 'CI1)(Q2 : Q2)01(01 : 02)01§ + A(Ql)(01 '02)A(Q2) =

1.0

(4.0)(di - @) = (5 + 1.0)(di - 6i) (33 - ) (6.43)
—(§i- GO (=3(d1 - (g3 — qgg(tfz (@ — ‘ﬁ)))A(qa)%
(- @)AG) (=3(a1 - (g2 — %)2)(03 (@2 —di))) Olé
i) - )0 BT B o,

A (=3(d% - (5 — q_i)z)(O'_é (g2 — QE)))A(q—é) —

%—(48-0)((1? 0)(@ - @) (B B) — (12-0)(22- )% (@ - @) + (36.0)(di - ) >V (3 - ¢a)
. (36.0)(di - 61)(di - qé)(;(;) — 12(qi - 41)(G3 - @3)* (6.44)
(i )0 (563 + 53) - (65 x @A) — (6 B)AG) (~H((5(0 + ) - (6 x )01
i 60)(@ - B0 +3) - (65 x 60))Org + AWG)(—3(5( +3)) - (63 x D)) A(3) =
(4.0)(di - 41)(di - 62)(3 - ) — (4.0)(di - G3)
(- 01 (503 + ) (503 + ) AG) 5
(- BAG(§( +63) - (5(6 + )01 5
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Ha @)@ )01 (5(01 +2) - (571 + )0 g

FAW@D (5 (0 4 05)) - (507 + 73)A(®) =

DO —

(30 - @) — (5 + 10)(di - i) 5 - &) (6.45)

(@ )05 + ) - B3 +2) - G)AG) 5

—
DO =
—_

—(@ - ) A(q1)((5(d1 +02)) - @2)((5(d1 + 62)) - 4i)Or 5

@)@ B0 (07 +02) - ) (5 (0 +02) - 605

FAWG) (50 +52) - B)(5(6 + ) DAG) =
(5 +30)(d @)@ B)G &) + (10)(di - d3) O, (6.46)
(7 - )05 +02) - (@ x B))(5 (0 +2) - (@ x E)AGB) 3
(- BAG) (T + ) (@ x B0+ ) (@ x aD)0r3
H@ - 0@ - BION(5 (01 +0) - (& % @) (0 +03) - (@ x 7)O0r g
FAG (50 +02) - (@ x D)0 +02) - (@ x 6)AG) =
(0GB O~ + 5+ L0 (BB + 5 + 506 E) 0 (6 E). (647)

These traces serve as input to the computation of the deuteron bound state. The

time for the program to execute and print these expressions was 13 seconds.

6.3 Conclusion

The vector solution of the deuteron bound state problem, discussed in this section

provides a good test of all the tools developed in this thesis. These include
1. The Fourier transform of the Argonne V18 potential.

2. The numerical method for computing with oscillatory integrals in the Fourier-

Bessel transformation.
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3. The use of the Chebyshev expansion of the Fourier Bessel integrals to reduce the
time of computation. Three hundred and three Chebyshev functions were used
and employed for calculating the bound state energy of deuteron. When compared
with the direct method, the Chebyshev functions reproduce the bound state energy
calculated by the direct method but reduce the time of execution by a factor of

2800.

4. The algebraic system discussed in Chapter 5 was successful in computing traces

and reducing them to simple scalar functions.
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CHAPTER 7

GENERAL REPRESENTATION OF BASIS OPERATORS

7.1 Basis operators

This chapter adopts an alternative formulation of the two-nucleon problem using
vector variables. A general representation that can be used to expand any nucleon-
nucleon potential for a given choice of three linearly independent vectors is introduced.
The representation to expand any nucleon-nucleon potential expressed in a form similar
to the Argonne V18 potential is tested for two different choice of linearly dependent three
vectors. The first choice is to construct the basis using the three vectors given by (2.46)
in Chapter two. This choice is called Type I. Another choice that may be convenient is
a basis of operators constructed using an orthogonal set of vectors. The second choice
is called Type II. This chapter also investigates the contribution of time-odd operators
in defining a basis and their importance in computing the Wolfenstein parameters. The
algebraic system introduced in chapter four is used for computing the equations that

appear throughout this chapter.

7.2 Representation

The representation that is used to solve the Lippmann-Schwinger equation in vector
variables for scattering of two spin % particles is discussed in this section. While in
general there are four initial and four final spin states, the size of the system of coupled
linear equations can be reduced by taking advantage of symmetries of the interaction.
In order to take advantage of these symmetries the interaction is expressed as a linear
combination of scalar coefficient functions multiplied by linearly independent rotationally
invariant spin operators that have well-defined transformation properties with respect to

time-reversal and space reflection. The spin operators for two spin % particles are given

by the set{S'} = {0} ® o2} where p,q = 0,1,2,3 and 7 = {1,2,..,16}. Rotationally
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invariant spin operators are constructed by taking scalar products of the Pauli spin
matrices with independent vectors. If }3, K , N are three linearly independent unit vectors
constructed from & and &’ then the Pauli matrices for each particle can be replaced by

the rotationally invariant spin operators

ol=(oh, &-P, & K, & N), (7.1)
where
o, = (05, o1, 03, o). (7.2)

Tensor products of these spin operators for particle 1 and particle 2 give a set of sixteen
rotationally invariant operators that can be used to expand any two-particle spin oper-
ator (also called spin momentum operators) represented in the % ® % space. These spin

operators are

— —~ —~ —
il o ol o
o= L w
~— ~— ~— ~—

(o1 - N)(o% - N). (7.3)
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The sixteen operators form the basis for the expansion of a spin-dependent nucleon-
nucleon given by (7.4)

16
~ /

V(b k) = vk, K k- ywi(k, K, (7.4)
where v; and w; are the % expansiorilzclzoefﬁcient function and the rotationally invariant
spin operator. As discussed in chapter 2 the potential V(l;, l?) also preserves time-
reversal and space-reflection symmetry ,

T'VT =V = T 'vwT = vw;, (7.5)

P'VP =V = P lywP = vuw;, (7.6)
where T and P are the time-reversal and space-reflection operators. Those products,
v;w; in (7.4) that preserve time-reversal and space-reflection symmetry are selected for
the basis. The product of v;w; is invariant with respect to space-reflection and time-
reversal if both terms v; and w; are even (or odd). The symmetry of the spin operator
w; and coefficient of expansion v; are determined by three linearly independent vectors
that define the scattering geometry. These three vectors are constructed from initial and
final momentum vectors k and k. The isospin invariance of the potential adds particle
exchange symmetry to the existing list of symmetry conditions. These conditions are
used to reduce the number of basis elements thatexpand the nucleon-nucleon potential
from sixteen to six.

It is useful to chose three linearly independent vectors of the form ff, Band Ax B.
For this choice of three vectors a scalar that preserves the space-reflection symmetry is
necessarily a scalar product of a pseudo-vector (A x B) and a vector (A) or (B). This
scalar product is always zero by geometry. A space-reflection odd expansion coefficient
is a pseudo-scalar and is always zero. This leaves time-reversal odd basis elements as
the only allowed symmetry odd basis elements.

In order to retain only those basis elements that preserve symmetry transforma-

tions, a maximal set of spin operators w; that are even with respect to time-reversal and
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space-reflection are initially selected. The additional time-odd symmetry coefficient-

operator pairs are extracted by investigating the nucleon-nucleon potential.

7.3 Typel

This section uses the three linearly independent vectors (2.46) to construct the
basis. The elements of the basis (7.3) can be classified by their symmetry transformation
properties under time-reversal and space-reflection. This is listed in Table[7.1]. The
ones that are symmteric with respect to space-reflection and time-reversal symmetry
are given a value of 1 and those that do not have these symmetries are given a value
of 0. As discussed in the earlier section, only the basis elements that are symmetric in
time-reversal and space-reflection are retained. The time-odd symmetry basis elements
are later extracted from the nucleon-nucleon potential. Five of these operators are even
with respect to space-reflection and time-reversal. These operators are present in the list

(2.50). The following 4 x 4 matrix representation is used to express these basis elements

01y -

Oly :




Operators vs Symmetry

Operator Invariance(time and space-reflection)

1 1
(61 +02) - K) 0
(61 +72) - Q) 1
(61 +d2) - N) 0
(g1 - K)(d% - K)) 1
(61 - K)(d3 - Q)) 0
(61 - K)(d% - N)) 0
(01 - Q)(d3 - K)) 0
(01 - Q)72 Q) 1
(01 - Q)(d5 - N)) 0
(61 - N)(d% - K)) 0
(g1 - N)(0% - Q)) 0
(61 - N)(d5 - ) 1

Table 7.1: Total symmetry (time-reversal and

space-reflection of spin operators).
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01z
1 0 0 O
0 -1 0 O
0 0 1 0
0 0 0 -1
094
0 010
0 0 01
10 0 0
01 0 0
O2y:
0 0 (=i 0
0 0 0 (1)
()i 0 0 0
0 ()i 0 0
09,
1 0 O 0
01 0 0
00 -1 0
0 0 0 -1

In this representation the time-even, parity-even spin operators are

- -,

wy = ((01 +02) - N) :
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9N, N, + (=N,)i
Ny + (Ny)i 0
Ny + (Ny)i 0
0 Ny + (Ny)i
wy = ((ol

K K. K.+ (-K.K,)i
K.K. + (K.K,)i ~K?
K. K. + (K. Ky)i K?+ K2

K2 - K2+ (2K, K,)i —K.K.+ (~K.K,)i

ws = ((ol
N? NN, + (—Ny N, )i
N.N. + (N,N.)i —N?
NN, + (NyN.)i NZ+ N2

—NJ 4+ N? + (2NyN,)i —N,N. + (—N,N.)i
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Nw + (—Ny)l 0
0 N, + (—Ny)i
(7.7)
0 Ny + (—Ny)i
N, + (N,)i —2N,
K)(02- K))

K, K.+ (—K_.K,)i

-N)(c2-N)):

N2 + N2 —N,N. + (N,N.)i

—N? ~N,N. + (N, N.)i

—N,N. + (—N,N.)i

wy = ((01- P)(02- P)):

P? P,P, + (~P,P.)i
P,P, + (P,P.)i —P?
P,P. + (P,P.)i P + P}

—P2+ P2+ (2P,P,)i —P,P.+ (—P,P.)i

PyP,+ (=PyP.)i =P} + P+ (=2PP,)i

P2+ P? —P,P. + (P,P.)i
—p2 —P,P, + (P,P.)i

P2

z

—P,P. + (=P, P.)i
(7.10)
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(7.11)

The operator o - g5 is present in the tensor operator of the nucleon-nucleon inter-
action. To extract the time-odd operator and the corresponding coefficient of expansion

this spin operator of the potential is investigated next.

7.3.1 Time-odd operator and the basis
Even though the time-odd operators are present in (7.1) the symmetry conditions
of the nucleon-nucleon potential are met only if the expansion coefficient functions are
also time-odd. The time-odd operators are obtained from the spin-spin operator oy - 0».
g1 - 03 is expanded in the basis (7.3) associated with the vectors K, P and N. The result
is .
L (@GR

[V}
=
N~—

(K- P){(01- K)oz P) + (01 - F)o2- K)} | ( ' '
(1-K.DPp (1-K-P)?

. (7.12)

In the above expression the expansion of the spin-spin interaction o; - oo includes the
linear operators (61 - K)(d% - P) and (67 - P)(d3 - K). These operators are odd under
time-reversal. These operators can appear in the expansion for the potential provided
the coefficient function is also time-odd, as is the case in the above equation. While there
are two time-odd operators , they are related by particle exchange-symmetry, so they
always appear in exchange symmetric combinations. The time-odd scalar coefficients

are proportional to |k?| — |k?| and hence the coefficient vanishes on shell.
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7.3.2  Conclusion of Type I

Of the sixteen basis elements, only six have the required symmetry properties that
can be used to expand nucleon-nucleon potentials. Five of the elements are invariant
under time-reversal and space inversion transformations. The sixth is symmetry-odd
with respect to time-reversal and symmetric with respect to space inversion. The basis

elements are

(7.13)
The matrix A in this basis is
A_ =

8(K -K)(P-P)+8(P-K)® 0 8(K -K)(P-K) 0 8(P-K)P-P) 0

0 —8(N - N) 0 0 0 0

8(K - K)(P-K) 0 4K - K)? 0 4P-K)® 0

0 0 0 4(N - N)2 0 0

8(P-K)(P-P) 0 4(P-K)® 0 4(P - P)? 0

0 0 0 0 0 4
(7.14)

The determinant of the matrix is computed as

det|A| = 49152(K - K)?(N - N)3(P - K)®(P - P)? (7.15)

—49152(K - K)(N - N)3(P - K)®(P - P) — 16384(K - K)*(N - N)*(P - P)?

+16384(N - N)3(P - K)(©.
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On on shell K - P = 0 and the determinant reduces to

det|A| = —16384(K - K)*>(N - N)*(P - P)3. (7.16)

which is non zero at on shell. This shows that this basis has the same number of
elements on shell. However, at the on shell point the coefficient of expansion of the
time-odd operator is zero resulting in 5 operators for the on shell condition. The next

section describes with a different basis derived from three orthogonal vectors.

7.4 Orthogonal vectors -Type II

A basis of spin operators using three orthogonal vectors is constructed.

K=k—Fk
Q= (
N = (K x Q). (7.17)

—

+1)x K

Eal}

The vectors are not normalized for sake of convenience. For simplicity we use the abstract

terms K ,@ and N. The identities

N-k=N-¥ (7.18)
are used in the rest of the discussion. The time and space-reflection symmetry properties
of the vectors are given in Table[7.2].

For this choice of three linearly independent vectors the basis elements that are

symmetric with respect to time-reversal and space-reflection symmetry properties are

wy = j(01 + 02) @
wg—(c?l-[?(é'g }?)

S
Ny
I
el
Q1
= = = <
Qi A
no (Y]
S =

(7.19)
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Symmetry properties of three Vectors
Vector | Time Space-Reflection
K 1 -1
Q -1 1
N -1 -1

Table 7.2: Effect of time and

space-reflection operators on vectors.

7.4.1 Time-odd basis elements
As explained before basis elements that are symmtery odd with respect to time-
reversal are extracted by investigating the nucleon-nucleon potential. The spin operator

(G +3) - )((i + 52) - F) (7.20)
is expanded in terms of the basis listed in Table [7.3].

3 ” o (K- (E )k K)(K -K)  (N-6i)(N-a3)(k- N)(K - N)
((01+U2> k)((al +02) k)_2 (I—(*I—(*)Q +2 (]\7 N)2
L(E-a)(N-a)(E-B)F-N) (K- -a1)(F- MK -K) | (K -61)(N-0)(k-K)(F - N)

(K - K)(N - N) (K - K)(N - N) (K - K)(N - N)
(B )W) E-N)E -K) | (K-a@)(N-6)(E-B)K-N) | (K-3)(N-o1)(k- N)(F - K)
(K - K)(N - N) (K - K)(N - N) (K - K)(N - N)
(B )N @) E-B)E -N) | (K-@)(N o) (k- MK -K) | (K-61)’(F-B)(K - K)
(K- K)(N - N) (K- K)(N - N) (K - K)
LB E R K) (NP NE - N) (N6 (F M- N) 72
(K- K)? (N -N)2 (N -N)2
- Lo (Ba) (K- a)(k K)K - R) (N6 (N - a3)(k- N)(K - N)
((01+0’2) k)(<01+02> k)_2 ([—(*I—(*)Q +2 (NN)2
B )N -a)(k-E)F-N) (K- -d1)(E-N)(# -F) | (K -6)(N-63)(k-E)(F - )
(K - K)(N - N) (K - K)(N - N) (K - K)(N - N)
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(E-a)(N-a)(k-N)F-K) | (K- -a)(F-K)F -N) | (K -6p)(N-a1)(k-N)(F - K)
(K- K)(N-N) (K-K)(N-N) (K- K)(N-N)
(BN -a)(E-R)F -N) | (K-6)(N-3)(E-N)(F -K) | (K-61)(F K)(F - K)
(K-K)(N-N (K - K)(N - N) (K - K)?

LB aPE-R)E-K) (N6 FNE-N) (N5 NE-N) (722)
(K- K)? (N-N)? (N-N)?
(6 +03) - F(@i + o) Ky =2 & AE - F)EK)E-K) (N A)W - 03)(E- MK - )
(K- K)? (N-N)2
LB )W a)(E-R)K-N) (K- a)(N-a)(F-N)F - K) | (R-a)(V - ay)(k - K)(K - N)
(K- K)(N-N) (K- K)(N-N) (K- K)(N-N)
(E-a)(N-a)(k-N)(F-K) | (K- -a1)(F-B)F -N) | (K -6p)(N-a1)(k-N)(F - K)
(K - K)(N - N) (K - K)(N - N) (K - K)(N - N)
(B o) (N @) (E-B)E - N) | (K-a@)(N o)k MK -K) | (K-60)’(k-B)(K - K)
(K-K)(N-N (K - K)(N - N) (K - K)?
LB a)PE-B)E-K) (N6 (FNE-N) (N5 N)E - N) (7.23)
(K - K)? (N -N)2 (N -N)?
where B o B o B o
(4 o)y = B VEK) (Ko K) | (V- 6i)(E-N)
L (K -K) (K -K) (N -N)
LWNoa)EN) (@) d) (@ ) (724)
(N-N) (@ Q) (@ Q)
(@ +op) ) = FoE B) | (RoA)E-R) (N o))
(K- K) (K - K) (N -N)
(N-a)F - N) (@) Q) , (@ a)F -G (7.25)
(N-N) @ Q) (G- Q)
Substituting the expressions
. K@ _ . N
T T 720
LKLy L@
) RSN T el 70
(K-c)(N-61)+(K-a)(N-c2) = j(di+a3) @
in (7.20) gives
L7 R w(/%‘-z?)(ié’-k) w(E-J\?)(k?.z\?)
(01 + 02) - k)((d1 + 02) - k') = 2w, iR + 2wy N - N)2
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(7.28)

Here wy, wq, wy, w5 are the basis elements that are symmetric with respect to time-
reversal and space inversion (7.19). In addition, the spin operator {(K -71)(N -3)+ (K -
73)(N - 1)} is required for the expansion of (674 %) - k) (G +03) l;') This operator is
a linear combination of two basis elements that are symmetry-odd under time-reversal
and symmetry even under space inversion. Due to particle exchange symmetry of the
nucleon-nucleon potential, the two time-odd elements are combined. The expansion

coefficient of this operator (7.29) is a scalar function with the same symmetry properties
(k- K)K -N)+ (K - K)(k - N)

(K- K)(N-N)
The product of the basis element {(K - 3)(N - 63) 4 (K - 63)(N - 67)} and its coefficient

(7.29)

of expansion (7.29)is symmetric with respect to space-reflection and time-reversal. The
coefficient of expansion for the time-odd operator is given by
(k- K)F - N)+ (K- K)
k)@ 420k B)(K - K2 (7.30)
For |k'| = |k| (the on shell point)
(k- K)YK - N+ (K - K)(k-N) =0. (7.31)
Equation (7.31) shows that similar to the coefficient of time-odd operator in Type I the

time-odd expansion coefficients vanish on shell.

7.4.2  Conclusion for Type II

Orthogonal vectors N , K , 65 were used to construct a rotationally invariant basis
(7.3). This basis is used to expand the nucleon-nucleon potential (particle exchange
symmetry is also included). Only those elements of the basis that preserve the symmetry

conditions of the nucleon-nucleon potential are retained. This condition is met by
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1. five basis elements that are symmetric with respect to time-reversal and space

invariance,

2. the sixth basis element and its expansion coefficient is symmetry-odd with respect

to time-reversal and and symmetry even with respect to space-reflection,
3. the expansion coefficient function of the sixth element vanishes on shell.

The basis elements are

1 (7.32)
The matrix A for this basis is given by

8(K - K)(N - N) 0 0 0 0 0
0 —8(Q - Q) 0 0 0 0
0 0 A(K - K)? 0 0 0
A =
0 0 0 4(N - N)2 0 0
0 0 0 0 4Q-Q)% 0
0 0 0 0 0 4
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Operators vs Symmetry
Operator Invariance(time and space-reflection)

1 1
(61 +02) - K) 0
(61 +72) - Q) 1
(61 +d2) - N) 0
(g1 - K)(d% - K)) 1
(61 - K)(d3 - Q)) 0
((d1 - K) (0% - N)) 0
(01 - Q)(d3 - K)) 0
(01 - Q)72 Q) 1
(01 - Q)(d5 - N)) 0
(61 - N)(d% - K)) 0
(g1 - N)(0% - Q)) 0
(1 - N)(% - N)) 1

Table 7.3: Total symmetry ( time-reversal and space-

reflection) of spin operators.
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7.5 Conclusion

This chapter introduces a general representation for constructing a basis of oper-
ators that can expand a nucleon-nucleon potential. For any linearly independent three
vectors (the third is perpendicular to the other two) the elements of the basis can be
constructed Table[7.3]. From this general representation the following procedure can
be used to obtain the elements that can be used to expand a nucleon-nucleon potential
which is symmetric with respect to time-reversal, rotations, space-reflection and particle

exchange symmetries.
1. The number of basis elements (or spin momentum operators) are six.
2. Five of them conserve time-reversal invariance and space-reflection symmetry.

3. The sixth is symmetry-odd with respect to time-reversal and symmetric with re-

spect to space-reflection.

4. The time-odd expansion coefficient vanish on shell. At the on shell point the

number of basis elements required are five.

The investigation used the algebraic system developed in this thesis .
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CHAPTER 8

SUMMARY AND OUTLOOK

A summary of the modest contributions made by this thesis to the field of scattering of
nucleon-nucleon systems using the vector variable approach are discussed in this chapter.

This thesis adopts an alternate formalism of the vector variable approach. The
formalism develops a systematic way of choosing the linearly independent and rotation-
ally invariant operators. The formalism does not restrict itself to only operators that
are invariant under time and parity but also includes the time-odd operators. Chapter 7
shows that one time odd operator is needed to make the matrix A in (2.56) non-singular
at the on-shell point. The coefficient of this time-odd operator vanishes on-shell, ful-
filling the condition that an on-shell transition amplitude is expanded in terms of five
linearly independent operators. The formalism is formulated in momentum-space since
the ultimate goal is to use this vector variable approach to solve relativistic three-body
systems that are readily treated in momentum space.

The discussion turns towards the nucleon-nucleon potentials that can be used
as input for this formalism. The configuration space Argonne V18 nucleon-nucleon
potential was used as an input for this formalism. The analytical Fourier transform
and an efficient method to compute the Argonne V18 potential in momentum space
are discussed in Chapter 3 and Chapter 4. A Chebyshev approximation of the Fourier-
Bessel integrals listed in Chapter 4 (4.4) achieve the goal of a computationally efficient
representation of the Argonne V18 potential in momentum space.

The next discussion is the treatment of spin degrees of freedom. As explained
in Chapter 2 the spin traces are analytically computed. This results in large-scale
algebraic expressions that need to be reduced to scalar functions of vector variables.
Apart from dealing with the spin algebraic systems, the expansion of the nucleon-nucleon

potential in a basis of six linearly independent operators may also require algebraic
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manipulations to extract the scalar coefficient for basis operators. To compute these
algebraic expressions and reduce them to scalar functions of vector variables, an algebraic
system that can automate the computation and reduction of large scale expressions
becomes indispensable for the implementation of the vector variable formalism. To meet
this goal, Chapter 5 discusses the mathematical framework that allows the possibility of
an automated algebraic reduction system.

Having developed the tools, the algebraic reduction system and the efficient com-
putation of the Fourier transform, are tested in a realistic calculation of the deuteron
binding energy and bound-state wave functions. The automated algebraic reduction
mechanism is used to treat the spin degrees of freedom. The test was successful and
Chapter 6 discusses the results of the calculation. The cpu time utilized by the Cheby-
shev approximated momentum space Argonne V18 potential is efficient by a factor of
2800 compared to the direct numeric computation of the momentum space Argonne V18.
The success of the bound state calculation is the first milestone in the development of
the tools and techniques for the vector variable approach.

With the successful computation of the deuteron binding energy and wave func-
tions, the next step is to calculate the scattering observables with the Argonne V18
potential as input. At this point the discussion comes to an end with the hope that a
successful calculation of the scattering observables for two nucleons with the tools and
methods explained in this thesis will lead the way towards applying the vector variable

formalism to relativistic three-body systems.
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APPENDIX A: TRIPLE TRACES USING AUTOMATED ALGEBRAIC

SYSTEM

The computer output of the results for the input choice of vectors [13] and in 14 is given

below. The trace of operators given equation (2.55) in Chapter 2 is shown in the next

few pages.
Matrix A =
8(N - N) 0 0 0 0 0
0 4K - K)? 0 AK-P)? 4K-K) 0
0 0 4(N - N)? 0 4N-N) 0
0 4K - P)? 0 AP-P)2 4P-P) 0
0 AK-K) 4(N-N) 4P-P) 12 0
0 0 0 0 0 4
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Operator

(01 +02) - N)((o1 + 2) - N1)((01 + 02) - N2)

- - —

(614 62) - N)((61 4 62) - N1)((o1 - K2)(c2 - K2))

((o1+02) - N)((o1 + a2) - N1)(o1 - 02) 8(N - N1)
(o1 +02) - N)((o1 + 02) - N1) 8(N - N1)
(o1 + 02) - N)((o1 - K1)(c2 - K1))((d1 + 02) - N2) 8(K1-N2)(N - K1)

(61 +02) - N)((o1 - K1)(a2- K1))((o1 - N2)(62- N2)) | (8((N2x K1)- N)(K1-N2))j

(614 a2) - N)((c1 - K1)(c2- K1))((d1 - P2)(c2- P2)) | (=8((P2 x N)-K1)(K1- P2))j
(01 +02) - N)((o1- K1)(02- K1))(o1 - 02) 0
((o1+02)- N)((o1- K1)(02 - K1)) 0

S
+

Q

%
Q,
2,
R
2,
B
2
S
2

(—8((N2 x N)- N1)(N1- N2))j

(8((P2 x N1) - N)(N1- P2))j

(o1 + 02) - N)((a1 - P1)(02- P1))((d1 - P2)(d2- P2)) | (8((P2x P1)- N)(P1-P2))j
(01 +02) - N)((o1 - P1)(c2- P1))(c1 - 02) 0
(01 +02) - N)((o1 - P1)(02 - P1)) 0
(01 +02) - N)(o1 - 02)((o1 + 02) - N2) 8(N - N2)




Operator Trace
(61 +02) - N)(c1-62)((c1 - K2)(c2 - K2)) 0
(1 4 02) - N)(a1 - o2)((a1 - N2)(c2 - N2)) 0
(61 4 62) - N)(o1 - 02)((a1 - P2)(c2- P2)) 0

(61 4 62) - N)(o1 - 02)(c1 - 02) 0
(01 +02) - N)(cl - 02) 0

(61 4 62) - N)((c1 4 02) - N2) 8(N - N2)

(01 +02) - N)((o1 - K2)(02 - K2)) 0
(o1 +02) - N)((o1- N2)(02 - N2)) 0
(o1 +02) - N)((o1 - P2)(02 - P2)) 0
(o1 4 02)- N)(o1-02) 0

(61 4 o2) - N) 0

((o1- K)(o2- K))((01 + 02) - N1)((01 + 02) - N2) 8(K - N1)(K - N2)

(1 K)(02- K))((01 + 02) - N1)((o1 - P2)(02- P2)) | (=8((P2x K) - N1)(K - P2))j
(61 K)(02- K))((c1 + 02) - N1)(c1 - 62) 0
((o1- K)(62- K))((cl + 02) - N1) 0

((61-K)(02- K))((o1- K1)(c2- K1))((c1 - P2)(c2 - P2)) —4((P2 x K1) - K)2
((61-K)(02-K))((o1-K1)(c2- K1))(al - 02) —4((K x K1) - (K x K1))
(c1- K)(2- K))((e1 - K1)(62 - K1)) 4(K - K1)2

(c1-K)(02- K))((61- N1)(c2- N1))((c1 + 62) - N2)

—~

- - -

(o1 K)(62- K))((c1- N1)(62- N1))((c1 - K2)(c2 - K2))
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operator

Trace

—4((N2 x N1) - K)?

—4((P2 x K) - N1)2

(71 B)(o2 - K))((o1 - P1)(o2 - P1)((01 - P2)(52- P2)) —4((P2 x R) - P1)?
(71 R)(o2 - K))((o1 - P1)(o2 - P1))(o1 - 52) ~4((R x P1) - (R x PY))
(o1 R)(o2- K))((o1 - P1)(o2 - P1)) 4R - P12
(71 R)(o2 - R))(o1 - a2)((o1 + 02) - N2) 0

((01- K)(02- K))(o1- 02)((01 - P2)(o2 - P2)) —4((K x P2)- (K x P2))

(o1- K)(02- K))(ol-02)(al - 02) —8(K - K)
((01-K)(02- K))(o1 - 02) 4K - K)

((o1- K)(02- K))((o1 + 02) - N2) 0
(o1 K)(02- K))((o1 - K2)(02- K2)) A(K - K2)?
((01- K)(a2- K))((o1 - N2)(o2 - N2)) 4(K - N2)?
((o1- K)(02- K))((o1 - P2)(02 - P2)) A(K - P2)?
((01-K)(02- K))(o1 - 02) 4K - K)

((o1- K)(02- K)) 0

114



115

operator Trace
-N)(02- N)((o1 + 02) - N1)((a1 - P2)(02 - P2)) (8((P2 x N1) - N)(N - P2))j
((c1- N)(o2- N))((o1 + 2) - N1)(c1 - 62) 0
((e1- N)(o2- N))((o1 + 02) - N1) 0
N)(o2- N))((o1- K1)(c2 - K1))((c1 4 02) - N2) (8((N2 x K1) - N)(N - K1))j
(61 - N)(62- N))((o1- K1)(62- K1))((c1 - K2)(c2 - K2)) —4((K2 x N)- K1)2

Y02 N))((o1- K1)(62- K1))((c1 - N2)(62 - N2)) —4((N2 x K1) - N)2
N)(e2- N))((o1- K1)(c2 - K1))((o1 - P2)(c2 - P2)) —4((P2 x N) - K1)?
((o1- N)(o2- N))((o1- K1)(02 - K1))(01-02) —4((N x K1) - (N x K1))

((e1- N)(o2- N))((o1- K1)(02- K1)) AN - K1)

N)(e2- N))((o1- N1)(a2- N1))((c1 - P2)(c2 - P2)) —4((P2 x N1)- N)2
(01-N)(o2- N))((o1- N1)(o2- N1))(o1 - 02) —4((N x N1) - (N x N1))
(61 N)(62- N))((61 - N1)(c2- N1)) 4(N - N1)2
(01-N)(o2- N))((o1- P1)(02- P1))((o1 + 02) - N2) (8((N2x P1)- N)(N - P1))j
N)(02- N))((a1 - P1)(c2- P1))((cl - K2)(c2 - K2)) —4((K2 x N) - P1)2
N)(02 - N) (a1 - P1)(c2- P1))((c1 - N2)(c2 - N2)) —4((N2 x P1) - N)2
N)(02- N))((a1- P1)(02- P1))((c1 - P2)(52 - P2)) —4((P2 x P1)- N)2
(o1 N)(c2- N))((c1 - P1)(c2- P1))(c1 - 02) —4((N x P1) - (N x P1))
((o1- N)(o2- N))((a1- P1)(02- P1)) 4(N - P1)?
(61 - N)(62- N))(ol-c2)((c1l + a2) - N2) 0
(61 - N)(2- N))(ol-02)((c1 - K2)(02 - K2)) —4((N x K2) - (N x K2))
((61- N)(62- N))(col-c2)((c1 - N2)(c2 - N2)) —4((N x N2) - (N x N2))

(o1 N)(62- N))(ol-2)((c1- P2)(c2 - P2)) —4((N x P2) - (N x P2))




operator Trace
(o1 N)(02- N))(o1 - 02)(o1 - 72) —8(N - N)
(o1 N)(o2- N))(ol - o2) 4(N - N)
(o1 N)(02- N)((c1 + 02) - N2) 0
(o1 N)(02- N)((o1 - K2)(02- K2)) 4N - K2)?
(o1 - N)(02- N)((o1 - N2)(02 - N2)) 4(N - N2)?
(01 N)(e2 - N))((o1 - P2)(02- P2)) A(N - P2)?
(o1 N)(02- N))(o1 - 02) (N - N)
(o1 - N)(o2- N)) 0
(o1 - P)(02- P))((o1 + 02) - N1)((o] + 02) - N2) 8(P- N1)(P- N2)

(—8((N2 x P)- K1)(P - K1))j

—4((K2 x K1) - P)2

—4((N2 x P)- K1)2

(61 P)(02- P))((cl - K1)(02- K1))((cl - P2)(c2 - P2)) —4((P2 x K1) - P)
(61 P)(02- P))((61 - K1)(02 - K1))(o1 - 02) —4((P x K1) - (P x K1))
(o1 P)(o2 - P))((o1 - K1)(02 - K1)) 4(P - K1)?

—4((K2 x P)- N1)2

—4((N2 x P)- N1)2

—4((P2 x P) - N1)?2
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operator

(o1 - P)(o2- P))((c1 - N1)(c2- N1))

(61 - P)(e2- P)((o1 - P1)(c2 - P1))((c1 4 02) - N2)

(8((N2 x P1)- P)(P - P1))j

T
)
[\
el

- - - - =

- P)((e1- P1)(c2- P1))((c1 - K2)(c2 - K?2))

((o1-P)(o2- P))(ol - 02)(01-02) —8(P- P)
((o1- P)(o2- P))(ol - 02) A(P-P)

((o1- P)(02- P))((01 + 02) - N2) 0
((e1- P)(02- P))((o1 - K2)(02 - K2)) A(P - K2)?
((o1- P)(o2- P))((o1- N2)(s2- N2)) 4(P - N2)?
(o1 P)(o2- P))((o1- P2)(02- P2)) 4(P- P2)?
((o1- P)(02- P))(01-02) A(P-P)

((c1- P)(02- P)) 0
(01-02)((o1 + 02) - N1)((01 + 02) - N2) 8(N1-N2)

(01-02)((o1 + 02) - N1)((o1 - K2)(02 - K2)) 0

(o1-62)((c1 4 a2) - N1)((o1 - N2)(c2 - N2)) 0

(01-02)((01 + 02) - N1)((01 - P2)(02 - P2)) 0

(01-02)((o1 +02) - N1)(o1 - 02) 0

5 5 H 0
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operator

Trace

- -, -

(c1-02)((c1 - K1)(c2- K1))((c1 4 02) - N2)

0

—4((K1 x K2) - (K1 x K2))

(o1-02)((o1 - K1)(02- K1))(o1 - 02) —8(K1- K1)
(o1-02)((a1- K1)(a2- K1)) 4(K1- K1)
(61-62)((61 - N1)(62- N1))((c1 + o2) - N2) 0

—4((N1 x K2) - (N1 x K2))

—4((N1 x N2)- (N1 x N2))

- —

—4((N1 x P2) - (N1 x P2))

(o1-02)((61 - N1)(c2- N1))(c1 - o2) —8(N1-N1)
(o1 62)((o1- N1)(c2- N1)) 4(N1-N1)
(o1 62)((ol - P1)(62- P1))((c1 + 02) - N2) 0

—4((P1 x K2) - (P1 x K2))

—4((P1 x N2) - (P1 x N2))

(01-02)((o1- P1)(02- P1))(o1-02) —8(P1-P1)
(o1-2)((1 - P1)(c2- P1)) 4(P1- P1)
(o1-02)(ol - o2)((ol + o2) - N2) 0
(o1-02)(cl-02)((cl- K2)(c2 - K2)) —8(K2- K2)
(01-02)(a1-02)((o1 - N2)(02- N2)) —8(N2- N2)
(o1 - 62) (ol - 02)((o1 - P2)(c2 - P2)) —8(P2- P2)
(01-02)(01-02)(01-02) —24
(o1-62)(ol-02) 12
(01-02)((o1 + 02) - N2) 0
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operator Trace
(o1-02)((ol - K2)(c2 - K2)) 4(K2- K2)
(o1-02)((s1 - N2)(c2- N2)) 4(N2- N2)
(01-02)((o1- P2)(02 - P2)) A(P2- P2)
(01-02)(cl-02) 12
(o1 -02) 0
(o1 +02) - N1)((d1 + 02) - N2) 8(N'1- N2)
(61 + 02) - N1)((o1 - K2)(02 - K2)) 0
(614 62) - N1)((c1 - N2)(62 - N2)) 0
(614 02) - N1)((c1 - P2)(c2 - P2)) 0
(614 02) - N1)(c1 - 02) 0
(61 4 a2) - N1) 0
((e1- K1)(c2 - K1))((o1 + 02) - N2) 0
((61- K1)(c2- K1))((ol - K2)(c2- K?2)) | 4(K1- K2)?
((61- K1)(c2- K1))((d1 - N2)(c2- N2)) | 4(K1- N2)2

4(K1 - P2)2

((61- K1)(c2 - K1))(c1 - 02) 4(K1- K1)
((c1- K1)(c2- K1) 0
(61 - N1)(c2- N1))((c1 + 62) - N2) 0

4(N1- K2)2

4(N1- N2)2

((o1- N1)(c2- N1))((c1 - P2)(c2- P2)) | 4(N1- P2)2
((61-N1)(c2- N1))(ol - 02) 4(N1-N1)
((61- N1)(c2- N1)) 0
(o1 - P1)(c2- P1))((ol + 02) - N2) 0
(o1 - P1)(c2- P1))((cl - K2)(c2 - K2)) | 4(P1- K2)2
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operator Trace
(o1 - P1)(c2- P1))((c1 - N2)(c2- N2)) | 4(P1- N2)2
(o1 - P1)(c2- P1))((c1- P2)(62 - P2)) | 4(P1- P2)?
((o1- P1)(02- P1))(01 - 02) A(PL-P1)

((o1- P1)(c2- P1)) 0

(o1-02)((gl + 02) - N2) 0
(o1-02)((o1 - K2)(a2 - K2)) 4(K2 - K2)
(c1-02)((c1 - N2)(c2- N2)) 4(N2- N2)
(01-02)((o1- P2)(02 - P2)) A(P2- P2)

(01-02)(l-02) 12

(o1 -02) 0

(o1 +02)- N2) 0

(o1 - K2)(c2 - K2)) 0

((c1-N2)(c2- N2)) 0

((o1- P2)(a2 - P2)) 0

(o1 -02) 0

120



1]
2]
3]

[4]

121

REFERENCES

J.J.Sakurai, “Modern quantum mechanics,”
L.D.Faddeev Sov.Phys,JETP, vol. 12, p. 1014, 1961.

W. Glockle, H. Witala, D. Hber, H. Kamada, and J.Golak Phys.Rep, vol. 274,
p. 107, 1996.

H. Liu, C. Elster, and W. Glockle, “Three-Body Scattering without Partial Waves,”
AIP Conf. Proc., vol. 768, pp. 430-432, 2005.

F. Coester, “Scattering theory for relativistic particles,” Helv. Phys. Acta, vol. 38,
pp. 723, 1965.

W. N. Polyzou, T. Lin, C. Elster, and W. Glockle, “Three-body scattering in
Poincaré invariant quantum mechanics,” Few Body Syst., vol. 44, pp. 287-289,
2008.

C. Elster, T. Lin, W. N. Polyzou, and W. Glockle, “Poincare Invariant Three-Body
Scattering,” Few Body Syst., vol. 45, pp. 157-160, 2009.

V. G. J. S. R. B. Wiringa and R. Schiavilla Phys. Rev., vol. C51, 1995.

R. Machleidt, “High-precision, charge-dependent bonn nucleon-nucleon potential,”
Phys. Rev. C, vol. 63, p. 024001, Jan 2001.

V. G. J. Stoks, R. A. M. Klomp, M. C. M. Rentmeester, and J. J. de Swart, “Partial-
wave analysis of all nucleon-nucleon scattering data below 350 mev,” Phys. Rev. C,
vol. 48, pp. 792-815, Aug 1993.

F. Coester, S. C. Pieper, and F. J. D. Serduke, “Relativistic effects in phenomenolog-
ical nucleon-nucleon potentials and nuclear matter,” Phys. Rev., vol. C11, pp. 1-18,
1975.

B. D. Keister and W. N. Polyzou, “Quantitative Relativistic Effects in the Three-
Nucleon Problem,” Phys. Rev., vol. C73, p. 014005, 2006.

J. Golak et al., “The Two-Nucleon System in Three Dimensions,” 2010.

C. Elster, J. H. . Thomas, and W. Gloeckle, “T'wo-body T-matrices without angular-
momentum decomposition: Energy and momentum dependences,” Few Body Syst.,
vol. 24, pp. 55-79, 1998.

R. A. Malfliet and J. A. Tjon Nucl. Phys., vol. A127, 19609.

W. Gloeckle, The Quantum Mechanical Few-Body Problem. Springer-Verlag, Berlin-
Heidelberg, 1983.

J. L. Friar, G. L. Payne, W. Glockle, D. Huber, and H. Witala, “Benchmark solu-
tions for n-d breakup amplitudes,” Phys. Rev., vol. C51, pp. 2356-2359, 1995.



[18]

[19]

[20]

[21]

[22]

[23]

122

H. Liu, C. Elster, and W. Gloeckle, “Three-Body Elastic and Inelastic Scattering
at Intermediate Energies,” Nucl. Phys., vol. A790, pp. 262-266, 2007.

E. P. Wigner, “On Unitary Representations of the Inhomogeneous Lorentz Group,”
Annals Math., vol. 40, pp. 149-204, 1939.

M. Rodriguez-Gallardo, A. Deltuva, E. Cravo, R. Crespo, and A. C. Fonseca, “Two-
body scattering without angular-momentum decomposition,” Phys. Rev., vol. CT78,
p. 034602, 2008.

. Fachruddin, C. Elster, and W. Gloeckle, “Nucleon-Nucleon Scattering in a Three
Dimensional Approach,” Phys. Rev., vol. C62, p. 044002, 2000.

I. Fachruddin and I. Abdulrahman, “Scattering of Spin-Zero and Spin-Half Particles
in Momentum-Helicity Basis,” 2007.

S. Bayegan, M. A. Shalchi, and M. R. Hadizadeh, “The three dimensional calcula-
tions of NN bound and scattering states with chiral potential up to N3LO,” Phys.
Rev., vol. C79, p. 057001, 2009.

W. Glockle et al., “A New Treatment of 2N and 3N Bound States in Three Dimen-
sions,” Few Body Syst., vol. 47, pp. 25—38, 2010.

L. Wolfenstein, “Possible Triple-Scattering Experiments,” Phys. Rev., vol. 96, pp. 1654—
1658, 1954.

R.Machleidt Adv.Nucl. Phys, vol. 19, 1989.

E.Epelbaum Prog. Part. Nucl. Phys, vol. 57, 2006.

GINAC. Accessed November 10, 2010. Available at http://www.ginac.de/.
J. M.Abramowitz, “Handbook of Mathematical Functions.”

Gnu scientific library numerical library for C and C++ programmers. Accessed
November 10, 2010. Available at http://www.gnu.org/software/gsl/.

I. Fachruddin, C. Elster, and W. Gloeckle, “New Forms of Deuteron Equations and
Wave Function Representations,” Phys. Rev., vol. C63, p. 054003, 2001.

LAPACK (Linear algebra package) version 3. Accessed November 10, 2010. Avail-
able at http://www.netlib.org/lapack/.

Deutron wave functions of Argonne V18. Accessed November 10, 2010. Available
at http://www.phy.anl.gov/theory/research/avi8/deut.wf/.



	University of Iowa
	Iowa Research Online
	2011

	Solution of two nucleon systems using vector variables in momentum space - an innovative approach
	Saravanan Veerasamy
	Recommended Citation



