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ABSTRACT

We consider several combinatorial optimization problems in a geometric set-

ting. The first problem we consider is the problem of clustering to minimize the sum

of radii. Given a positive integer k and a set of points with interpoint distances that

satisfy the definition of being a “metric”, we define a ball centered at some input

point and having some radius as the set of all input points that are at a distance

smaller than the radius of the ball from its center. We want to cover all input points

using at most k balls so that the sum of the radii of the balls chosen is minimized.

We show that when the points lie in some Euclidean space and the distance measure

is the standard Euclidean metric, we can find an exact solution in polynomial time

under standard assumptions about the model of computation.

The second problem we consider is the Network Spanner Topology Design prob-

lem. In this problem, given a set of nodes in the network, represented by points in

some geometric setting - either a plane or a 1.5-D terrain, we want to compute a

height assignment function h that assigns a height to a tower at every node such

that the set of pairs of nodes that can form a direct link with each other under this

height function forms a connected spanner. A pair of nodes can form a direct link

if they are within a bounded distance B of each other and the heights of towers at

the two nodes are sufficient to achieve Line-of-Sight connectivity - i.e. the straight

line connecting the top of the towers lies above any obstacles. In the planar setting

where the obstacles are modeled as having a certain maximum height and minimum
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clearance distance, we give a constant factor approximation algorithm. In the case

where the points lie on a 1.5-D terrain we illustrate that it might be hard to use

Computational Geometry to achieve efficient approximations.

The final problem we consider is the Multiway Barrier Cut problem. Here,

given a set of points in the plane and a set of unit disk sensors also in the plane

such that any path in the plane between any pair of input points hits at least one of

the given sensor disks we consider the problem of finding the minimum size subset of

these disks that still achieves this separation. We give a constant factor approximation

algorithm for this problem.
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CHAPTER 1
INTRODUCTION

This document contains work on several combinatorial optimization problems

in a geometric setting. The problems considered arise from motivations in network

design. In the design of networks we encounter several issues. For instance, one

might wish to provide complete or maximum coverage for a set of clients via sensor

networks or placing cell-phone towers. However installing too many stations is costly.

In another setting one might wish to provide internet connectivity to a group of

remote rural areas. However these areas are typically low-paying and system cost

is an important consideration. In yet another scenario, one might wish to design a

network of barrier sensors to detect intruders trying to cross over borders etc. Here

too, one wishes to employ as few sensors as possible.

Each of the above problems can be formulated as a combinatorial optimization

problem. For instance, the coverage problems can be formulated as versions of set

cover [29, 19, 40, 49] - like a clustering problem or a facility location problem. In the

clustering problem we are given a set of points in some general space and we want to

group together ”similar” or “nearby” points into a specified number of clusters so as

to optimize some objective function. In the facility location problem one is concerned

with optimal placement of facilities to serve a given set of clients so as to minimize the

cost of opening facilities in addition to the cost of connecting clients to their nearest

open facility. The internet connectivity problem can be formulated as a a problem

of finding a minimum cost connected spanner over a graph where the villages form
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the vertex set and point to point links form the edge set. The problem of designing

a network of barriers that detect motion of intruders has a flavor of a “cut” problem

where we have to cut off all possible paths while minimizing the number of sensors

used.

To begin, we describe the combinatorial problems considered in this document

in their original context and then consider them in a geometric setting.

Set Cover. Let us start with the Set cover problem which has been an extremely

well-studied combinatorial optimization problem [29, 19, 40, 49]. Also several impor-

tant combinatorial problems can be derived from or are special cases of this problem.

These include clustering, dominating set, facility location problems, cut problems etc.

In the set cover problem, we are given a set of objects X and a set F of subsets of

X. The goal is to pick some subset of F that satisfies some constraints and optimizes

some objective value. For example, one might want to pick the smallest subset of F

that contains (covers) all objects of X. Or perhaps there is a weight assigned to each

element in F and the goal is to find a subset that covers everything in X such that

the sum of the weights of the elements in the subset is minimized.

In 1974, Johnson showed that a greedy algorithm for the set cover gives a

logarithmic approximation [40]. That is, the algorithm will return a solution which

is at most an O(log n) factor worse than an optimal solution where n is the size

of the input. In 1993, Lund and Yannakakis [50] and Bellare, Goldwasser, Lund

and Russell [8] showed that there is a positive constant c such that the general set
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cover problem cannot be approximated in polynomial time within a c log n factor

unless NP ⊆ DTIME(nO(log log n)). In 1997, Raz and Safra [58] showed that the

problem cannot be approximated within a c log n factor for some constant unless

P = NP . In 1998, Feige [29] showed that the problem cannot be approximated to

within a (1 − o(1)) log n factor unless NP ⊆ DTIME(nO(log log n)). Note that the

lower bounds and the upper bounds are the same up to a constant factor, and thus

the computational complexity of this problem is settled.

Clustering. Consider the clustering problem. Metric clustering to minimize the

sizes of clusters has been a well-studied problem in general - see for instance [48,

11, 2, 17, 24]. Here we are given a positive integer k and a finite set of points with

interpoint distances that satisfy the condition of being a “metric”. A metric d is a

function defined frpm P → P such that each of the following holds:

• d(u, u) = 0 for each u ∈ P

• d(u, v) = d(v, u) for each u, v ∈ P

• d(u, v) ≤ d(u, z) + d(z, v) for each u, v, z ∈ P

Given a metric d defined on a set P of n points, we define the ball B(v, r) centered at

v ∈ P and having radius r ≥ 0 to be the set {q ∈ P |d(v, q) ≤ r}. We want to cover

all of the points in P using at most k balls, so that some given objective function

of the sizes of the balls is optimized. For example one might want to minimize the

sum of the radii of the k clusters. For simplicity, we call such a problem clustering
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to minimize the sum of radii. In this work the cost of a set of balls is the sum of the

radii of those balls.

Facility Location. In the Facility Location problem we are given a set of potential

facility sites L where a facility can be opened and a set of demand points D that must

be serviced. We are also given a distance function d : L×D →R+ that indicates the

cost of connecting a facility to a client and a cost function f : F →R+ that indicates

the opening cost of the facility. The goal is to pick a subset F ⊆ L of facilities to be

opened and an assignment C : D → F of clients to facilities that minimizes the total

cost
∑

i∈F

f(i) +
∑

i∈D

d(i, C(i)).

In 1982, Hochbaum showed that a greedy algorithm for Facility Location gives

an O(log n) approximation where n is the the number of locations. This factor is

tight via an approximation-preserving reduction from the set cover problem [29].

The Facility Location Problem is NP-complete and MAX-SNP hard [35]. In the

Metric Facility Location problem the connection costs satisfy the condition of being

a metric (as defined above). For this problem, a series of polynomial time algorithms

that return a solution at most a constant factor times worse was provided. See

[62, 35, 46, 18, 38, 16, 37, 51, 63, 13]. Several approaches such as greedy heuristics,

primal-dual approach, linear programming with rounding and greedy local search

have been tried towards improving the approximation factor for this problem.

Network Spanner Topology Design. In certain types of networks there is a

requirement of line of sight connectivity between antennas communicating with each
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other - i.e. the line connecting the two antennas should clear all obstacles in the path.

The obstacles in general may be in the form of trees, buildings and terrain. For this

purpose, antennas are placed on top of towers. The required height of the towers

depends on the positions and the heights of the obstacles along the link. The cost of

a tower depends upon its height.

Let V be the set of nodes in a network. A height (assignment) function h

gives an assignment of tower heights to every node in V . A pair of nodes (i, j) can

see each other under a height function h if tower heights h(i) at i and h(j) at j are

sufficient to achieve Line-of-Sight between i and j. i.e. the line joining the antennas

mounted on the towers should clear any obstacles along the path. A pair of nodes

(i, j) can form a direct link if they can see each other.

Let COV ER(h) denote the set of pairs of nodes that can form direct links

under the height function h. Given a tower height, a cost function c, gives the cost of

building a tower of that height. The total cost of a height function h is
∑

j∈V c(h(v)).

Among all height functions h such that COV ER(h) results in a connected spanner

(graph) on the vertex set V , our goal is to find the height function with the minimum

total cost.

We show that this problem can be reduced to minimum Node Weighted Steiner

Tree problem. A Steiner Tree consists of “extra” vertices (and edges) introduced to

decrease total cost of connection - these are called Steiner Vertices. The classical

Steiner Tree Problem seeks a minimum-cost connected subgraph containing a specified

set of vertices (called terminals). In the Node Weighted Steiner Tree Problem, the
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cost function is defined on the vertices (in addition to the edges, possibly).

Set Cover can also be reduced to the Node Weighted Steiner Tree problem in

general graphs [29, 58], so an approximation ratio better than log n is not achievable in

polynomial time unless P = NP where n is the number of vertices in the graph. Klein

and Ravi [45] gave a polynomial time approximation algorithm with a performance

ration of O(log n), so this ratio is within a constant factor of optimal.

Multiway Cut. In the multiway cut problem we are given an undirected graph

G = (V, E), a cost function c on the edges and a set of terminals T ⊆ V with

|T | = k and we are required to find a set E ′ ⊆ E such that the removal of E ′ from E

disconnects each terminal from all others. The minimization function is the sum of

the costs of the edges in E ′.

The multiway cut problem is shown to be NP-hard when the number of points

that need to be separated from each other is at least 3 [21] It was also shown in

[21] that the problem is MAX-SNP hard and hence cannot have a polynomial time

approximation scheme unless P = NP . Hence the best one can hope for is a constant

factor approximation. A simple algorithm that achieved this was also given by the

authors [21]. This factor was improved to 3
2

by [20] and further to 1.3438 in [41].

Problems in a Geometric Setting. Most versions of all of the above problems are

NP-hard in general. However, it is interesting to explore the corresponding problems

when restricted to a geometric setting. We shall see that some of the problems admit

approximation algorithms with better guarantees than in the general combinatorial
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case in certain quite naturally occuring geometric settings. However for some other

problems this is not the case and geometry does not really make the problem any

easier. We study and evaluate the scenarios in which geometry can make a difference

and try to understand why it cannot in the rest of the cases.

How well a geometric version of a combinatorial optimization problem can be

approximated depends on the problem at hand. For certain problems, the best known

approximation algorithm does no better than the one in the general case. However

for several other problems we are able to do much better than in the general case.

Consider the set cover problem where the set X is a collection of points in

some geometric space and the sets F are subsets of X induced by the intersection of

X with some geometric object. For example, X might be a collection of points in the

plane and each set in F might be the subset of points in X contained within some disk

or triangle in the plane. For the case where the sets F are axis-aligned rectangles the

best known approximation algorithm does not do better than in the general case - i.e.

a guarantee of log n. Some other problems admit approximation ratios better than

O(log n) but are still superconstant. For example, Varadarajan [64] and Aronov, Ezra

and Sharir [3] give an O(log log log n) approximation for set cover with “fat” triangles.

Gibson, Kanade, Krohn and Varadarajan showed that the problem of guarding an

x-monotone polygonal chain has a polynomial time approximation scheme (PTAS)

[34]. That is, for any ǫ > 0, their algorithm returns a solution in polynomial time

whose size is at most a factor of 1+ ǫ worse than the size of an optimal solution. Very

few hardness of approximation results are known. One recent hardness result due to
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Har-Peled [36] is that there is no PTAS for set cover with fat triangles.

Also consider the facility location problem where the set of facility sites L

and demand points D are points in some geometric space and the distance metric

d corresponds to the Euclidean distance. For d = 2 and a positive real c, Arora,

Raghavan and Rao [5] give an algorithm that achieves with a probability 1− o(1) a

solution of cost at most 1 + 1
c

times the optimal in time nO(c+1).

In the rest of this chapter, I discuss the problems named above in more detail

constrained to the geometric setting.

1.1 Clustering to Minimize the Sum of Radii

Given metric d defined on a set V of points (a metric space), we define the ball

B(v, r) centered at v ∈ V and having radius r ≥ 0 to be the set {q ∈ V |d(v, q) ≤ r}.

Here we consider the problem of computing a minimum-cost k-cover for a given set

P ⊆ V of n points where k > 0 is some given integer which is also part of the input.

For κ ≥ 0, a κ-cover for subset Q ⊆ P is a set of at most κ balls, each centered at

a point in P whose union covers (contains) Q. The cost of a set D of balls, denoted

cost(D), is the sum of the radii of those balls.

In the metric version of the k-cover problem, we are given P and k and the

distance d between every pair of points in P . In the Euclidean version, P is given

as a set of points in some fixed dimensional Euclidean space Rl, and d is then the

standard Euclidean distance.
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1.1.1 Previous Work

Bilo et al [11] give polynomial time approximation schemes for generalizations

of this problem where the cost of a set of balls is defined to be the sum of the α-th

power of their radii, where α ≥ 1. They also show that the problem is NP-hard

even in the plane for α ≥ 2. Alt et al. [2] show that the NP-hardness result can be

extended to any α > 1. They give fast constant factor approximation algorithms for

this and related problems. We focus on the case where α = 1.

Charikar and Panigrahy [17] give a poly-time algorithm based on the primal-

dual method that gives a constant factor approximation for the same problem.

1.1.2 Our Contribution

We obtain an “exact” polynomial-time solution for the Euclidean k-clustering

problem to minimize sum of radii under an assumption about the model of compu-

tation not unusual in such contexts. In the geometric min-cost k-cover problem, the

optimal solution is a set of k disks, each of which is centered at some input point and

each of which has a radius that is the distance between two input points. If the input

points have integer co-ordinates, the cost of such a solution is the sum of square roots

of integers. Our algorithm requires the ability to determine, given two such candidate

solutions, the one that has lower cost. We make the assumption that this can be done

in polynomial time.

Notice that for variants of the problem such as the one in which the underlying

distance metric is the L1 rather than the Euclidean metric, we can indeed compare the
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costs of two candidate solutions in polynomial time. In the context of the Euclidean

metric, however, it is a longstanding open problem as to whether two sums of square

roots of integers can be compared in polynomial time [22, 55].

We therefore translate our exact algorithm for the Euclidean metric into an

approximation algorithm that does not make the above assumption on the com-

putational model. We obtain an approximation algorithm that for any parameter

0 < ǫ < 1 runs in polynomial time in the input size and log 1
ǫ

and returns a solution

whose cost is at most (1 + ǫ) times the optimal.

Theorem 1. There is an algorithm that, given a set P of points in the plane, an

integer k ≥ 1 and a parameter 0 < ǫ < 1, runs in time polynomial in the input size

and log 1
ǫ
, and returns a k-cover of P whose cost is at most (1 + ǫ) times the cost of

the optimal k-cover.

The result is enabled by a simple observation about the structure possessed

by optimal solutions - they are eminently separable. To state this formally, we focus

on the planar case. We find a “separator“ that divides the region of interest (i.e.

the region in which the points lie) roughly equally and intersects at most 12 disks

in the optimal k-cover for P . Such a separator is easy to find because we can guess

the disks that this separator intersects since there are only 12 of them. This decom-

poses the problem into two smaller subproblems. With some additional play dealing

mainly with recursion and aspect ratio issues we are able to obtain a polynomial time

algorithm.

In Chapter 2 we give an algorithm for the case where the points under con-
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sideration lie in the plane. Thus we shall prove Theorem 1. This extends easily to

higher dimensional spaces.

1.2 Network Spanner Topology Design

Let V be the set of villages or nodes in the network. Let n = |V |. A height

(assignment) function h gives an assignment of tower heights to every node in V .

A pair of nodes (i, j) can see each other under a height function h if tower heights

h(i) at i and h(j) at j are sufficient to achieve Line-of-Sight between i and j. i.e.

the line joining the antennas mounted on the towers should clear any obstacles along

the path. The actual obstacle model is described later. Nodes i and j are said to

be within transmission range of each other if they are close enough to be able to

transmit signals while obeying constraints on maximum allowed transmit power i.e.

d(i, j) ≤ B where B is the maximum transmission range, and d(i, j) is the Euclidean

distance between i and j. A pair of nodes (i, j) can form a direct link if they can see

each other and are within transmission range of each other.

Let COV ER(h) denote the set of pairs of nodes that can form direct links

under the height function h. Given a tower height, a cost function c, gives the cost of

building a tower of that height. The total cost of a height function h is
∑

j∈V c(h(v)).

Among all height functions h such that COV ER(h) results in a connected spanner

(graph) on the vertex set V , our goal is to find the height function with the minimum

total cost. In our problem the cost of each tower is its height - i.e. ∀i ∈ V, c(h(i)) =

h(i). (This is based on empirical studies and making useful assumptions which we
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describe later.)

1.2.1 Previous Work

A version of this problem was considered as a subproblem in topology planning

for rural wireless mesh networks by Sen and Raman [61]. They describe a heuristic

for the problem where a certain number of spanning trees are considered, and for

each spanning tree, the optimal height assignment to build the edges in the tree is

determined by solving a linear program. However, this is an extremely expensive

process because of the number of trees considered. Panigrahi et al. [54] show that

in a graph theoretic formulation where the set of villages V is the vertex set of

the graph and the set of edges is the set of all candidate point to point links the

problem of finding a height assignment h to V where cover COV ER(h) is a minimum

cost connecting spanner is NP-hard and a better than O(logn) factor approximation

algorithm cannot be expected. They also go on to present a greedy O(log n) factor

approximation algorithm for the problem.

1.2.2 Network Spanner Topology Design in the Plane

Consider the geometric setting where all the nodes (vertices) V are points in

the plane. Also there are certain assumptions made about the placement and heights

of obstacles. In particular for each pair of villages (i, j) we place obstacles of height

L on segment īj at a distance of d from i and at a distance d from j. We assume that

the distance between any 2 villages is at least 2d. This setting is motivated from real

life scenarios in remote rural areas.
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Figure 1.1: What a rural network topology may look like

1.2.2.1 An Example

First, consider an example for the plane setting. Figure 1.1 shows an example

of a rural network setting. The dots are the nodes (villages), the triangles represent

towers and the edges represent point-to-point links. Figure 1.2 describes the obstacle

model for this setting.

1.2.2.2 Our Contribution.

We exploit the underlying geometry in the setting to obtain efficient approx-

imation algorithms. We apply tools developed in the context of geometric set cover

and facility location problems to this setting. We show that the geometric version of
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Figure 1.2: The Obstacle Model

this problem admits a constant factor approximation - i.e. we obtain in polynomial

time a solution whose cost is at most a constant factor times the optimal. The result

is in contrast to the general graph-theoretic formulation where we cannot hope to

obtain a better than O(log n) approximation [54]. We transform the problem into

a two stage problem - the first being a version of a facility location problem and in

the second stage we ensure the connectivity of the solution. In a sense taller towers

are facilities that serve villages with shorter towers in their surroundings and connect

them to other similar cluster like structures in the topology. We use a linear pro-

gramming based primal dual algorithm. In the second stage, we ensure that these

clusters are connected. Our simulation results validate this two stage approach. This

algorithm is efficient and amenable to practical implementation.
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Theorem 2. Given a set of nodes V in the plane, maximum transmission power

range B, and an obstacle model as defined with parameters L (obstacle height) and

d (obstacle clearance) we find a height assignment function h that assigns a non-

negative height value to a tower at each node in V such that COV ER(h) results in

a connected spanner on V and the total height
∑

j∈V

h(j) is within a constant factor of

the total height in the optimal solution.

1.2.3 Network Spanner Topology Design on the Terrain

A 1.5-D terrain is a polygonal chain in the plane that is x-monotone, that is,

any vertical line intersects the chain at most once. A terrain T consists of a set of m

vertices {v1, v2, · · · , vm}. The vertices are ordered in increasing order with respect to

their x-coordinates. There is an edge connecting vi with vi+i for all i = 1, 2, · · ·m−1.

For any 2 points a, b on or above the terrain T , we say that a sees b if the line segment

āb lies entirely above or on the terrain.

The villages (nodes) V in our topology are a subset of the points on the

terrain T . Thus we consider only discrete points on the terrain. Let |V | = n. A

height assignment function h gives an assignment of tower heights to every node in

V . A pair of nodes (i, j) in V can see each other under h if tower heights h(i) and

h(j) are such that the tops of the towers see each other. This setting is interesting

because of the general importance of the 1.5-D terrain in computational geometry.
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Figure 1.3: Example of Network on Terrain

1.2.3.1 Example.

Figure 1.3 shows an example of this. The dots are the nodes (villages) located

in valleys here. The peaks are the obstacles. The straight lines with antennas on top

are the towers constructed that enable line of sight visibility and hence this topology

is connected.

1.2.3.2 Our Contribution

On the 1.5-dimensional terrain the reduction from the Node Weighted Steiner

Tree problem immediately implies a logarithmic approximation. We explore various

approaches to obtain a constant factor approximation and talk about why this prob-

lem might be hard. We describe different approaches used to tackle this problem -

such as greedy algorithm, primal dual algorithm and dynamic programming and the
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issues arising in each of these.

In Chapter 3, we will cover the problem of Network Design in the plane. We

will explain how we formulate it as a geometric facility location problem, provide a

primal dual approximation algorithm and also some empirical results. In Chapter 4

we will consider the problem of network design on a terrain.

1.3 Multiway Barrier Cut

Let P = {p1, p2, · · · pk} be a set of k points in the plane that need to be

separated in some sense (perhaps there are intruders present at each of these spots

and they need to be stopped from meeting each other). Let I denote a given set of

sensors in the form of unit disks in the plane such that I separates P that is every

path in the plane between any pair of points pi, pj ∈ P intersects at least one of the

disks in I. We consider the problem of finding a minimum cardinality subset of I

that separates P . Refer figure 1.4 for an example.

Here we need to cut off all possible paths in the plane between any pair of

points in P . Although there are infinitely many paths it is enough to consider a

representative set of these that we need to cut. Due to this idea of cutting off all

possible paths between every pair of points in P this problem has a flavor of the

well-studied multiway cut problem.

1.3.1 Related Work

Until recently most work related to coverage in wireless sensor networks fo-

cussed on blanket coverage. Barrier coverage involves use of barriers as defense mech-
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(a) (b)

Figure 1.4: Example of a multiway barrier cut. (a) This set of disks separates the
points because every path connecting any two points must intersect a disk. (b) This
set of disks does not separate the points.

anism against intruders [47] and trap coverage ensures that an object cannot travel

too far before being detected [7, 60].

Sankararaman et. al [60] consider the related problem of “weak” coverage. In

their problem, the region under consideration is completely covered by the given set

of unit disk sensors and this set is to be partitioned into as many subsets as possible

such that for each subset, the diameter of any cell of the region not covered is bounded

by some k. Their work differs in flavor for ours mainly due to the assumption that

the input set of disks completely covers the region under consideration.

1.3.2 Our Contributions

To the best of our knowledge we are the first to formulate this as an op-

timization problem. We provide a polynomial time constant factor approximation

algorithm.

Theorem 3. Let I be a set of n unit disks and P a set of k points such that I

separates P . There is a polynomial time algorithm that takes as input such I and P ,
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and returns a subset O ⊆ I of disks that also separates P , with the guarantee that |O|

is within a multiplicative O(1) of the smallest subset of I that separates P .

Our algorithm is simple and combinatorial and is in fact a greedy algorithm.

We first present an O(1)-approximation algorithm for the following two-point sepa-

ration problem: given a set of unit disks G, and two points s and t, and we wish to

find the smallest subset B ⊆ G so that B separates s and t.

Our greedy algorithm to the overall problem applies the two-point separation

algorithm to find the cheapest subset B of I that separates some pair of points in P .

Suppose that P is partitioned into sets P1, P2, . . . , Pτ where each Pi is the subset of

points in the same “face” with respect to B. The algorithm then recursively finds a

separator for each of the Pi, and returns the union of these and B.

In Chapter 5, we describe the problem formulation, our greedy algorithm, and

the analysis exploits the geometry of the setting to give a constant factor approxima-

tion. Our approach immediately generalizes if the input set of disks have arbitrary

radii. This is because we do not make use of any specific geometric properties of unit

disks, but only of disks in general.
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CHAPTER 2
CLUSTERING TO MINIMIZE SUM OF RADII

Given a metric d defined on a set V of points (a metric space), we define the ball

B(v, r) centered at v ∈ V and having radius r ≥ 0 to be the set {q ∈ V |d(v, q) ≤ r}.

In this work, we consider the problem of computing a minimum cost k-cover for a

given set P ⊆ V of n points, where k > 0 is some given integer which is also part of

the input. For κ ≥ 0, a κ-cover for subset Q ⊆ P is a set of at most κ balls, each

centered at a point in P , whose union covers (contains) Q. The cost of a set D of

balls, denoted cost(D), is the sum of the radii of those balls.

Recall Theorem 1 which states that there is an algorithm that, given a set P

of points in the plane, an integer k ≥ 1 and a parameter 0 < ǫ < 1, runs in time

polynomial in the input size and log 1
ǫ
, and returns a k-cover of P whose cost is at

most (1 + ǫ) times the cost of the optimal k-cover. The result is enabled by a simple

observation about the structure possessed by optimal solutions – they are eminently

separable. To state this formally, we focus on the planar case and define the length of

a rectangle R as the length of its longer side. If the rectangle is a square, the longer

side is defined arbitrarily. The width of the rectangle is the length of its shorter side.

A separator for R is any line s that is perpendicular to the longer side (length) of R,

intersects R, and whose distance from each of the two shorter sides of R is at least a

third of the length of R.

Lemma 4. Consider an optimal κ-cover D for some set Q ⊆ P of points contained
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in a rectangle R. The rectangle R has a separator that intersects at most 12 disks in

D.

Proof. Let l denote the length of R. Choose a separator uniformly at random from

the set of separators for R. The probability that it intersects a disk D ∈ D is bounded

by 2·radius(D)
l/3

. It follows that the expected number of disks in D intersected by a

separator is at most 6
l

∑
D∈D radius(D) = 6·cost(D)

l
. Now cost(D), the sum of the

radii of disks in D, is at most 2l. This is because one disk of radius 2l centered at any

point in Q covers Q. We conclude that the expected number of disks in D intersected

by a random separator is at most 12.

This observation opens up the possibility of computing an optimal k-cover

efficiently via dynamic programming, as exemplified by [4, 52]. Some additional play

is however needed to achieve a polynomial time algorithm – we have to deal with the

accumulation of the number of disks we need to guess in a recursive application of

Lemma 4, and also with some complexity that arises because the aspect ratio of the

input point set P is not assumed to be bounded by a polynomial in n.

In Section 2.1, we establish basic observations used subsequently. In Section

2.2, we present the polynomial time algorithm for the min-cost k-cover problem in

the plane. The extensions to any fixed dimensional Euclidean space and to related

problems such as MSRC are straightforward and are omitted here.
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2.1 Preliminaries

The following lemma states a structural property of the optimal solution in

the planar case. It is similar to observations made by Lev-Tov and Peleg [48] and its

proof is sketched here for completeness.

Lemma 5. Let OPT denote an optimal k-cover for P ⊆ ℜ2. Let R be a rectangle of

length a. The number of disks in OPT of radius at least a that intersect R is bounded

by a constant.

Proof. Let OPT′ ⊆ OPT be the disks whose radius is at least a > 0. The rectangle

R can be enclosed by a disk B of radius a. We will show that the number of disks in

OPT′ that intersect B is O(1).

A basic property of the optimal solution OPT is its admissibility, the fact

that no disk in OPT contains in its interior the center of another disk in OPT. This

implies the the centers of any two disks in OPT′ are at least a apart. It follows that

there are O(1) disks in OPT′ whose centers lie within the disk B′ concentric with B

and with radius 10a.

To bound the number of disks in OPT′ with center outside B′ that also in-

tersect B, we partition the plane radially into 8 sectors with angle π/4 and centered

at the center of B. (See Figure 2.1.) It is an easy consequence of admissibility that

for each sector there can be at most one disk in OPT (and thus also OPT′) that is

centered in the sector outside B′ and that intersects B.
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B

B′

Figure 2.1: At most one disk from OPT can have its center in the shaded area and
intersect B.

2.2 The Algorithm in the Planar Case

We describe a polynomial time algorithm to compute an optimal k-cover for

a set P of n points in the plane. We will assume that k ≤ n, since otherwise the

optimal k-cover is trivially computed. We start by observing that there is an optimal

k-cover of P whose disks are chosen from the set D of disks whose center is some

p ∈ D and whose radius is |pq| for some q ∈ P . Note that |D| = n2. In the rest of

the article we will reserve D to denote this set of disks.

Canonical and Critical lines. We say that a vertical (resp. horizontal) line is

critical if it passes through a point in P or a point of vertical (resp. horizontal)

tangency of some disk in D. (See Figure 2.2.) Note that if l and l′ are two vertical

(resp. horizontal) noncritical lines with no vertical (resp. horizontal) critical line



24

between them, then l and l′ intersect the same set of disks in D. Motivated by this,

we define a set of Θ(n2) canonical vertical lines that includes any one vertical line

between every two consecutive vertical critical lines, one vertical line to the left of the

leftmost critical line and one vertical line to the right of the rightmost critical line.

We define a set of Θ(n2) canonical horizontal lines analogously.

Figure 2.2: Critical (dashed) and canonical (solid) lines.

Balanced Rectangles and Compression. A rectangle is said to be balanced if

its width is at least a third of its length. We describe a procedure compress(R) that

takes as input a balanced rectangle R and returns a balanced rectangle R′ such that

(a) R′ is contained in R, (b) R′ contains P ∩R, and (c) for any separator for R′, there
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are points of P ∩ R in both the open halfspaces that it bounds (and consequently,

any separator for R partitions P ∩ R into two nonempty subsets).

To describe the procedure compress(R), we assume without loss of generality

that the separators of R are vertical (its length is horizontal). The procedure first

checks if there is a point in P ∩R that is strictly to the left of the leftmost separator

of R, and if there is a point in P ∩ R that is strictly to the right of the rightmost

separator of R. If so, the procedure returns R′ = R.

Otherwise, let R′ be the minimal rectangle enclosing P ∩ R. Let l′ be its

length and w′ its width. Let l and w denote the length and width of R, respectively.

If w′ ≥ l′/3, we are done and we simply return R′.

If w′ < l′/3, we have to make R′ wider while still keeping it enclosed in R.

There are two cases to consider, depending on whether the longer side of R′ is parallel

to the longer side of R. If the longer side of R′ is parallel to the shorter side of R,

we know that l′ ≤ w. We also know that l ≥ w ≥ l/3. The width of R′ needs to be

expanded to l′/3. Since l′/3 ≤ w/3 ≤ l/3, there is enough room for this expansion.

R′

R

Figure 2.3: R and R′ = compress(R). (Dashed is R′ before expansion.)
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The second case involves the longer side of R′ being parallel to the longer side

of R. (See Figure 2.3.) In this case, it must be that l′ ≤ 2l/3. The width of R′ needs

to be expanded to l′/3. Since l′/3 ≤ 2l/9 ≤ l/3 ≤ w, there is enough room for this

expansion.

The Algorithm. We describe a procedure DC(R, κ, T ) that takes as input a bal-

anced rectangle R, an integer κ ≥ 0, and a subset T ⊆ D. It returns a κ cover of the

set

Q = {q ∈ P ∩R | q is not covered by T}.

We will later argue that DC(S, k, ∅) computes an optimal k-cover for P when S is any

balanced rectangle containing P .

The result of a call to procedure DC(R, κ, T ) is stored in a table entry indexed

by P ∩ R, κ, T ; the entry Table(P ∩ R, κ, T ) stores a κ-cover for the set Q defined

above. It will be useful for the description of the algorithm to define a special “disk”

I whose cost is ∞. If an entry Table(P ∩ R, κ, T ) stores a set that contains I, this

means that the algorithm has determined that there is no κ-cover for Q.

Here we define the procedure DC(R, κ, T )

if Table(P ∩R, κ, T ) has already been created then

return

else

Create table entry Table(P ∩ R, κ, T ) which will be assigned below.
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end if

Let Q = {q ∈ P ∩R | q is not covered by T}.

if Q = ∅ then

let Table(P ∩ R, κ, T )← ∅,

return

end if

if κ = 0 then

let Table(P ∩ R, κ, T )← {I}

return

end if

if |Q| = 1 then

assign to Table(P ∩ R, κ, T ) the set containing the trivial disk consisting of the

one point in Q,

return

end if

if P ∩ R has at least two points in it then

Call compress(R) to obtain a balanced rectangle R′ containing P ∩ R. Let us

assume for the purposes of exposition that the separators for R′ are vertical. Let

L(R′) be the set consisting of those vertical canonical lines that are separators

for R′. Also include in L(R′) the leftmost (resp. rightmost) separator for R′

provided it is not critical. Initialize a cover D′ ← {I}.

for all choice of a separator l ∈ L(R′) do
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for all choice of a set D0 ⊆ D of at most 12 disks that intersects l do

for all choice of κ1, κ2 ≥ 0 such that κ1 + κ2 + |D0| ≤ κ do

Let R1 and R2 be two rectangles into which l partitions R′. Let T1 = {D ∈

T ∪ D0 | D intersects R1}. Let T2 = {D ∈ T ∪ D0 | D intersects R1}.

if |T1| ≤ β and |T2| ≤ β (β is a large enough constant) then

DC(R1, κ1, T1) and DC(R2, κ2, T2)

if cost(D0 ∪ Table(P ∩ R1, κ1, T1) ∪ Table(P ∩ R2, κ2, T2)) < cost(D′)

then

update D′ ← D0 ∪ Table(P ∩R1, κ1, T1) ∪ Table(P ∩R2, κ2, T2).

end if

Assign Table(P ∩ R, κ, T )← D′

return

end if

end for

end for

end for

end if

See Algorithm 2.2 for the description of the procedure DC(R, κ, T ).

A couple of remarks about the algorithm are in order. Observe that partition-

ing a balanced rectangle by a separator results in two balanced rectangles. It follows

that R1 and R2 are balanced given that R′ is balanced.

No separator that the algorithm considers on step 6 passes through a point in
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P . We therefore do not have to worry about breaking ties because input points land

on a separator.

Suppose that the procedure DC(R, κ, T ) finds that in step 1, the entry Table(P∩

R, κ, T ) has not been created. It then proceeds to create this entry. In between the

time this entry is created and subsequently filled in by this procedure, no subproblem

will need the entry Table(P ∩ R, κ, T ). This is because for any call DC(R̂, κ̂, T̂ ) that

is nested within DC(R, κ, T ), P ∩ R̂ is a strict subset of P ∩R. Such a call DC(R̂, κ̂, T̂ )

will not enquire as to whether the entry Table(P ∩R, κ, T ) has been created, nor will

it seek to know the content of this entry.

Running Time. We now bound the overall running time of a call to DC(S, k, ∅),

where S is some balanced rectangle containing P . Note that each table entry is

indexed by a set of points P ∩ R for some balanced rectangle R, a κ ≤ k, and a set

T ⊆ D such that |T | ≤ β. The number of such P ∩R is O(n4), the number of such κ

is O(n) and the number of such T is O(n2β). Assuming β is a constant, the number

of table entries is therefore bounded by a polynomial in n. We use this to bound the

total number of calls DC(R, κ, T ) made.

The number of calls of the form DC(R, κ, T ) that create a corresponding table

entry Table(P ∩R, κ, T ) is polynomially bounded, since the number of table entries is

polynomially bounded and each table entry is created only once. Any call of the form

DC(R, κ, T ) that does not create the table entry Table(P ∩ R, κ, T ) does not make

any recursive calls and takes O(1) time. We charge this to the parent instance of
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DC() that makes the recursive call DC(R, κ, T ). Note that this parent instance creates

its corresponding table entry. Since any instance of DC() makes only a polynomial

number of direct recursive calls, we can conclude using our charging argument that

the number of calls of the form DC(R, κ, T ) that do not create a corresponding table

entry Table(P ∩ R, κ, T ) is also bounded by a polynomial.

Since any instance of DC() takes polynomial time in n not counting the time

for the recursive calls, we can conclude that the overall running time of DC(S, k, ∅) is

bounded by a polynomial in n.

Correctness. Establishing that DC(S, k, ∅) returns an optimal k-cover of P is more

involved than showing that it runs in polynomial running time, mainly because of the

pruning step that ensures that instance DC(R, κ, T ) that is called has |T | bounded by

β. We begin by showing the following fact about the algorithm.

Lemma 6. Let DC(R1, κ1, T1) be a recursive call made inside a sequence of nested

recursive calls that involved DC(G1, k, ∅), DC(G2, ·, ·), . . . , DC(Gt, ·, ·), where G1 = S.

Let G′
j be the result obtained by a call to compress(Gj). Let l(G′

j) be the separator

chosen for G′
j so that for each 1 ≤ j ≤ t − 1, Gj+1 is one of the two rectangles

into which l(G′
j) partitions G′

j, and R1 is one of the two rectangles into which l(G′
t)

partitions G′
t. Denote by a the length of R1. Then the horizontal distance between

any two distinct vertical separators l(G′
i) and l(G′

j) is at least a/3, and the vertical

distance between any two distinct horizontal separators l(G′
i) and l(G′

j) is at least a/3.

Proof. Since R1 ⊆ G′
t ⊆ Gt ⊆ G′

t−1 ⊆ Gt−1 ⊆ · · · ⊆ G′
1 ⊆ G1, the length of any G′

i is
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at least a. Let G′
i and G′

j be such that i < j and l(G′
i) and l(G′

j) are vertical. Note

that G′
j is contained in one of the two rectangles into which l(G′

i) partitions G′
i. Thus

l(G′
i) is either to the left of G′

j or to its right. Now l(G′
j) lies between the two vertical

sides of G′
j at a distance of at least a third of the length of G′

j from either side. Since

the length of G′
j is at least a, it follows that the horizontal distance between l(G′

i)

and l(G′
j) is at least a/3. (See Figure 2.4.)

The case where l(G′
i) and l(G′

j) are horizontal is reasoned similarly.

l(G′
i)

l(G′
j)

G′
i

≥ a

G′
j

≥ a
3

Figure 2.4: Illustration for Lemma 6

The correctness of the algorithm follows from the following lemma; let us fix

an optimal k-cover OPT ⊆ D of P .

Lemma 7. Suppose the recursive instance DC(R, κ, T ) is called (at some recursion
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depth) by the top-level invocation to DC(S, k, ∅). Suppose also that T ⊆ OPT and

T contains every disk in OPT that contains a point in P ∩ R as well as a point

in P \ R. (T possibly contains other disks in OPT as well.) Let Q = {q ∈ P ∩

R | q is not covered by T} and let OPT′ denote the set of disks in OPT that contain

points in Q. Suppose further that κ ≥ OPT′. . Then after the call to DC(R, κ, T ) com-

pletes, Table(P ∩R, κ, T ) contains a κ-cover for Q whose cost is at most cost(OPT′).

Proof. The proof is by induction on |P ∩R|. We may assume that Table(P ∩R, κ, T )

has not been created when DC(R, κ, T ) is called. For otherwise, this table entry was

created by a call DC(R̂, κ, T ) for some rectangle R̂ such that R̂∩P = R∩P . We check

that the suppositions made for T and κ hold with R̂ in the place of R, and Q and

OPT′ are the same in both cases. And we can use the arguments below to conclude

that after the call to DC(R̂, κ, T ) completes, Table(P ∩ R = P ∩ R̂, κ, T ) contains a

κ-cover for Q whose cost is at most cost(OPT′). The subsequent call to DC(R, κ, T )

returns immediately without changing Table(P ∩ R = P ∩ R̂, κ, T ), which therefore

continues to contain a κ-cover for Q whose cost is at most cost(OPT′).

The cases where the call to DC(R, κ, T ) is returned via steps 2 or 4 form the

base cases of the induction, and are easily established. Note that the call cannot

return via step 3, because if Q 6= ∅, then κ ≥ |OPT′| must be at least 1.

The inductive case is when the call returns in step 13. Note that |P∩R|, |Q| ≥ 2

in this case. We will assume without loss of generality that the separators of R′ are

vertical.

We first observe that OPT′ is an optimal |OPT′|-cover for Q. This is because
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points in (P ∩R)\Q are covered by T , and OPT′ does not cover any point in P \R –

so the only role that OPT′ plays is to cover Q, and it therefore must do this optimally.

From Lemma 4, we conclude that R′ has a separator l′ that interesects at most 12

disks in OPT′. Let D0 denote this set. Since the set of critical lines is finite, the

argument of Lemma 4 tells us that we can assume l′ to be line that is not critical. It

is easy to see that we can move l′ to one of the lines in L(R′) (computed in step 5)

without changing the set of disks in D that it intersects. We therefore consider the

choice of a separator l ∈ L(R′) whose intersection with OPT′ is exactly D0. Consider

the body of the innermost for loop where l and D0 have been chosen as above and κ1

is set to be the number of disks in OPT′ to the left of l and κ2 is set to be the number

of disks in OPT′ to the right of l. Let OPT1 and OPT2 denote the disks in OPT′ to

the left and right of l, respectively. Of course, |OPT1| = κ1 and |OPT2| = κ2.

Let R1, R2, T1, and T2 be exactly as in the algorithm. Note that |P ∩ R1| <

|P ∩ R|, and |P ∩ R2| < |P ∩ R|. Notice further that T1 ⊆ OPT and T1 con-

tains every disk in OPT that contains a point in P ∩ R1 as well as a point in

P \ R1. Furthermore, OPT1 is the set of disks in OPT that contain points in

Q1 = {q ∈ P ∩ R1 | q is not covered by T1} and k1 = |OPT1|. We can invoke

the induction hypothesis to claim that if the call DC(R1, κ1, T1) is made, then af-

ter the call, Table(R1 ∩ P, κ1, T1) contains a κ1-cover of Q1 whose cost is at most

cost(OPT1). Similarly, we can invoke the induction hypothesis to claim that if the

call DC(R2, κ2, T2) is made, then after the call, Table(R2∩P, κ2, T2) contains a κ2-cover

of Q2 = {q ∈ P ∩R2 | q is not covered by T2} whose cost is at most cost(OPT2). We
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will show that |T1| and |T2| are bounded by β and that therefore these calls are indeed

made. It follows that in step 12, D0∪Table(P∩R1, κ1, T1)∪Table(P∩R2, κ2, T2) is a κ-

cover for Q whose cost is at most cost(D0)+cost(OPT1)+cost(OPT2) = cost(OPT′).

Thus in step 13 Table(P ∩ R, κ, T ) is assigned a κ-cover of Q with cost at most

cost(OPT′).

To complete the proof we show that |T1| ≤ β, where β is a sufficiently large

constant. The proof for T2 is similar.

Suppose that we arrived at the (R, κ, T ) instance by proceeding through a se-

quence of nested recursive calls that involved DC(G1, k, ∅), DC(G2, ·, ·), . . . , DC(Gt−1, ·, ·),

where G1 = S. Let Gt = R. Let G′
j be the result obtained by a call to compress(Gj).

Let l(G′
j) be the separator chosen for G′

j so that for each 1 ≤ j ≤ t−1, Gj+1 is one of

the two rectangles into which l(G′
j) partitions G′

j. Finally, let l(G′
t) = l and note that

G′
t = R′. Thus R1 is one of the two rectangles into which l(G′

t) partitions G′
t. Further-

more let D0(Gj) denote the corresponding choice of D0 made in the call DC(Gj, ·, ·),

for 1 ≤ j ≤ t− 1, and let D0(Gt) equal the D0 above. Note that T1 ⊆ ∪
t
j=1D0(Gj).

Let R̄ be a square of side 10a that is centered at the center of R1, where a is

the length of R1. Lemma 6 implies that the number of j for which l(G′
j) intersects

R̄ is bounded by a constant. It follows that the number of disks in T1 that belong to

D0(Gj) for such j is bounded by a constant, since |D0(Gj)| ≤ 12.

Now consider the disks in T1 that belong to D0(Gj) for j such that l(G′
j) does

not intersect R̄. Any such disk intersects l(G′
j) as well as R1, so it must have radius

at least a. It follows from Lemma 5 that the number of such disks is also bounded
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by a constant.

We conclude that |T1| ≤ β for a large enough constant β.

It is immediate from Lemma 7 that after the call DC(S, k, ∅) completes, Table(P, k, ∅)

contains a k-cover for P whose cost is at most cost(OPT), i.e. an optimal k-cover.

Theorem 8. There is a polynomial time algorithm that, given a set P of points in

the plane and an integer k ≥ 1, returns an optimal k-cover of P .

2.2.1 Relaxing the Assumption on the Computational Model

We now remove the assumption made in deriving Theorem 8 that the costs of

two candidate solutions can be compared in polynomial time, and obtain an approx-

imation algorithm. Let OPT continue to denote an optimal k-cover for the point set

P . Suppose that for each disk D ∈ D, we are given a proxy cost pcost(D)≥ 0 which

is some rational number. Define the proxy cost pcost(D′) of a set D′ ⊆ D of disks to

be the sum of the proxy costs of the disks in D′.

Let us modify the procedure DC(R, κ, T ) so that in Step 12, it compares proxy

costs rather than the actual costs. That is, the modified predicate checks if pcost(D0∪

Table(P ∩R1, κ1, T1)∪Table(P ∩R2, κ2, T2)) is less than pcost(D′). We also consider

the proxy cost of the special disk I to be infinity. Arguing along the lines of the

previous section we conclude:

Lemma 9. After the call to the modified procedure DC(S, k, ∅) completes, Table(P, k, ∅)

contains a k-cover for P whose proxy cost is at most pcost(OPT), the proxy cost of
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OPT.

Suppose that the co-ordinates of the input points P are integers whose binary

encoding takes at most L bits. Given our tolerance parameter ǫ > 0, we compute

for each disk D ∈ D a rational number that lies in the interval [radius(D), (1 +

ǫ)radius(D)] and set pcost(D) to be this number. This computation is readily ac-

complished in time polynomial in L and log 1
ǫ

for a single disk D. With the proxy

costs set in this manner, we conclude from Lemma 9 that after the call to the modified

procedure DC(S, k, ∅) completes, Table(P, k, ∅) contains a k-cover for P whose cost is

at most (1 + ǫ)cost(OPT).

Finally, it is straightforward to ensure that the computation of the canonical

lines and the lines bounding the rectangles that are encountered as the arguments of

our recursive algorithm takes time that is polynomial in the input size of the problem

(and independent of ǫ). Also, predicates such as testing whether a disk D ∈ D

contains a point p ∈ P , or testing whether a disk D ∈ D intersects a rectangle that is

encountered in the course of the algorithm are also readily implemented in polynomial

time.

Theorem 1 follows.
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CHAPTER 3
NETWORK SPANNER TOPOLOGY DESIGN IN THE PLANE

Providing Internet connectivity to rural areas in developing regions is essential

for enabling access to Information and Communication Technology services. Mini-

mization of construction cost is a major challenge in network deployment here, be-

cause traditionally these populations are low-paying. In this context, we investigate

efficient algorithms for the minimum cost topology construction problem in rural

wireless mesh networks.

It is prohibitively expensive to provide wired connectivity in rural remote areas.

Also, traditional wireless network technologies such as cellular data networks (e.g.

EV-DO) and upcoming technologies like IEEE 802.16 WiMAX have prohibitively

expensive equipment costs. As a result, there has been considerable recent interest

in the design of rural mesh networks using IEEE 802.11 (WiFi) equipment. (See

e.g. [25], [57], [61], [56], [54].) Current deployments include the Ashwini Project in

Andhra Pradesh, [6] the Digital Gangetic Plains (DGP) [10] etc.

In such a network, long-distance wireless links, (typically 7-8 kms), are used

to connect villages. The nodes in the topology are fixed (each node is a village). To

establish long-distance links, it is essential that Line-of-Sight be maintained between

radio antennas at the end-points. For this reason, the antennas need to be mounted

on tall towers. The obstacles, in general, maybe in the form of trees, buildings and

terrain. The required height of the towers depends on the positions and the heights

of the obstacles along the link. The cost of a tower depends upon its height. For
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relatively short heights (upto about 12 meters) antenna masts are sufficient. For

greater heights, sturdier and much more expensive antenna towers are required. Also

for a pair of nodes communicating with each other directly, the transmission power

at the source should be sufficient for the signal to be received at the destination

while obeying given constraints on the maximum Effective Isotropic Radiated Power

(EIRP) at each node.

Obstacle Model. Let the parameter L denote an upper bound on the height

of obstacles and d denote the minimum clearance distance around a tower location in

a village - i.e. there exists a site in every village such that there is no obstacle within

a distance d from this site. Our obstacle model places, for each pair of villages (i, j),

obstacles of height L on segment īj at a distance of d from i and at a distance d from

j. We assume that the distance between any 2 villages is at least 2d.

Note that under this model, if both towers at the end-points of a link (i, j)

have a height greater than (or equal to) L, then Line-of-Sight visibility is achieved

regardless of the distance between them. Similarly, if both towers have a height

less than L, then Line-of-Sight visibility cannot be achieved. This model was first

proposed by Sen and Raman in [61]. It is reasonable to assume that in any village we

can locate a spot that has a clearing of length d in all directions that is free of such

obstacles. Indeed, in practice, d is at least about 1 Km; and often, not much more.

Henceforth, without loss of generality, we shall assume d = 1. With this model, we

do not have to bother about other obstacles on this link placed further from j.

Let COV ER(h) denote the set of pairs of nodes that can form direct links
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under the height function h. Given a tower height, a cost function c, gives the cost of

building a tower of that height. The total cost of a height function h is
∑

j∈V c(h(v)).

Among all height functions h such that COV ER(h) results in a connected spanner

(graph) on the vertex set V , our goal is to find the height function with the minimum

total cost.

Tower Cost. It is well established empirically that for all towers other than

antenna masts, the cost function can be approximated by the linear function [61].

For all towers of positive height h > 0 we thus define the cost function of the form

c(h) = α · h + β. Also we define c(0) = 0. α and β are positive constants. Building

a mast is as easy as placing a tall water pipe and hence the cost of constructing a

mast is negligible in comparison to the cost of taller towers. Taller towers require

large infrastructure cost which is accounted for by the constant β in our function

defined above. Thus under this height function we can think of the topology as being

“elevated” to the height of the masts making the cost of masts 0 for our purposes

and the cost of any non-mast tower a linear function of its height. For the sake

of exposition, we shall assume in most of the rest of this chapter that the cost of

a tall tower is just a scale of its height; hence we attempt to minimize the sum of

heights of towers as our objective function i.e.
∑

j∈V h(j). Under this assumption,

c(h(j)) = h(j). Note, however, that our algorithms and theoretical guarantees about

them hold for the more general cost function. Our numerical experiments and results

will use the more general cost function.

Formally the problem we consider, the Tower Cover With Power Con-
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straints (TCPC) problem, is stated as:

Input. A set of points V in the plane, obstacle height L, minimum clearance

distance d(= 1) and maximum distance B to which a node can transmit given bounds

on transmit power.

Output. A valid height function h such that the set of links in COV ER(h)

form a connected spanner of V such that the total height(cost) of the towers
∑

j∈V h(j)

is minimized.

Contribution and Results Our contributions are threefold. Firstly, we formulate

the Topology Construction Problem as a geometric problem, the TCPC. This allows

us to employ tools developed in the context of geometric set cover and facility location

problems to this setting. Moreover, we believe our geometric framework will also allow

us to place our solution in the context of the larger topology planning problem framed

by Sen and Raman [61] that involves handling inter-link interference, throughput

etc. Indeed, in their pioneering work [61], they mention the possible application

of Computational Geometry techniques to tackle this problem. To the best of our

knowledge we are the first to take this approach. Our approach appears to be robust

enough to handle slight variants of the cost function.

Next, we show that the geometric version of this problem (the TCPC) admits

a constant factor approximation -i.e. we obtain in polynomial time a solution whose

cost is at most a constant factor times the optimal. The result is in contrast to the

general graph-theoretic formulation where we cannot hope to obtain a better than
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O(log n) approximation [54].Thus we prove Theorem 2.

Finally, through several experiments and numerical simulations we show that

our algorithm in practice gives very good results well within the theoretical bounds

we guarantee. In fact in most cases we obtain a solution that is within twice of the

computed lower bound. A key idea that underlies these results is that we reduce the

connectivity problem TCPC to a facility location/geometric cover problem by ignor-

ing connectivity – restoring overall connectivity turns out to require only a modest

increase in cost.

In Section 3.1, we pinpoint the facility location problem that underlies the

TCPC problem. In Section 3.2, we present our constant factor approximation al-

gorithm for the TCPC problem. In Section 3.3 we present results from numerical

simulations that compare our approximation algorithm for TCPC with a computed

lower bound and study the effect of the geometric parameters in the setting.

3.1 A Facility Location Problem

The optimal solution to TCPC consists of “tall towers” - those that are at

least as tall as the obstacle height L and “short towers” those that have height less

than L. (Note, short towers are distinct from masts.) Clearly, two tall towers see

each other, and two short towers don’t. Consider two nodes, i and j, such that j has

a short tower of height h1 and i has a tall tower of height h2; see Figure 1.2. Then

we have Line-of-Sight (LOS) clearance iff [61]

h1 ∗ (d(i, j)− d) + h2 ∗ d ≥ L ∗ d(i, j). (3.1)



42

From the inequality, it is clear that the tall tower at i sees any tower of

height 0 that is at a distance of at most r ≡ h2

L
from i. Thus, the height of the

tall tower is simply a scaled version of the maximum distance to which it can attain

LOS connectivity if a tower of height 0 was placed at that distance (since L is an

independent parameter). Thus we can think of the tall tower of height h as a disk of

radius r = h
L

that ”covers” all nodes that lie within this disk. We call such a disk an

LOS-disk and the location of the tall tower the center of the LOS-disk. Henceforth,

we use the terms “tall tower” and “LOS-disk” interchangeably, the meaning will be

clear from the context.

Now, if d(i, j) > r = h2

L
, the required height of the short tower at j to achieve

LOS visibility with i is given by

h1 ≥
L ∗ (d(i, j)− r)

d(i, j)− 1

Thus, the height of the short tower at j is at least L (d(i,j)−r)
d(i,j)−1

. Note that the height

depends upon the distance from the tall tower which serves it and the height of this

tall tower (L · r). If the height of the tall tower is fixed, the required height of the

short tower increases with the length of the link.

A solution to the TCPC problem consists of tall and short towers so that each

short tower has a direct link with some tall tower. We define the Bounded Range

Tower Cover Problem (BRTC), which just asks for the minimum-cost solution that

guarantees this:

Given a set V of points in the plane, find a set of LOS-disks

I = {(i1, r1), (i2, r2) · · · , (ik, rk)} (where il is the center and rl is the radius of disk l
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and rl ≥ 1 for each l), and a function φ : V → I that assigns each point q ∈ V to

some disk (il, rl) ∈ I such that q ∈ Vl; so as to minimize

L(

k∑

l=1

rl +

k∑

l=1

∑

q:φ(q)=(il,rl)

max(0,
d(q, il)− rl

d(q, il)− 1
))

Here, and in the rest of the paper, Vl denotes the set {q ∈ V |d(q, il) ≤ B}.

The first summation in the objective function corresponds to the heights of the

tall towers, and the second to the minimum heights of the short towers given the tall

towers. Figure 3.1 depicts a tall tower in a solution to BRTC together with the short

towers it “serves”. Clearly, the optimal solution to the BRTC has cost no greater

than the optimal solution to the TCPC. Note that the BRTC does not enforce global

connectivity of the topology and hence, a solution to the BRTC problem results in

a height assignment under which certain pairs of points might be disconnected. Our

strategy for the TCPC problem is to first solve the BRTC problem, - a facility location

problem, and later ensure global connectivity.

3.1.1 Candidate LOS-Disks

Although any radius r (tower height L · r) can be chosen for a given LOS-disk

(tall tower), every solution for the BRTC is dominated by a solution in which for

each chosen radius the corresponding disk has an input point (client node) - that is

distinct from itself - on its border. This allows us to restrict ourselves to consider

only n(n − 1) candidate canonical LOS-disks for our solution. In addition we also

consider LOS-disks corresponding to tall towers of height L - i.e. radius 1 centered at

each point - in our set of candidate disks giving us n2 disks to choose from. It can be
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Figure 3.1: Points served by a tall tower in the BRTC: Note the tall tower at the
center, the LOS-disk with height 0 towers inside it, and short towers outside it

shown that it is enough to consider only those solutions that contain disks from this

candidate set. This is a common idea used in several disk covering problems [48, 32]

which we extend to our setting.

3.2 Algorithm

In this section, we describe our algorithm for the TCPC problem. We first

solve the BRTC problem and later, in Section 3.2.3, we modify our solution to BRTC

by raising the heights of a few towers to ensure global connectivity.

3.2.1 Bounded Range Tower Cover Problem

The cost of our solution is the sum of the tower heights. To simplify our cost

function we can factor out the parameter L. Thus our cost function is the sum of

the radii of LOS-disks and the corresponding heights of short towers scaled down by
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a factor of L.

Let F be the set of n2 canonical disks defined in Section 3.1.1, each such disk

is defined by a center i and radius r and denoted as (i, r). For a point j and a disk

(i, r) ∈ F such that j ∈ Vi, let cr
ij denote the cost of a short tower at j to connect

to disk (i, r). Thus cr
ij = 0 if d(i, j) ≤ r ≤ B and cr

ij = d(i,j)−r
d(i,j)−1

if r < d(i, j) ≤ B.

Observe that the number of such (j, (i, r)) pairs is O(n3).

Our algorithm for the BRTC problem adapts the primal-dual approach of Jain

and Vazirani to the metric uncapacitated facility location problem [39]. We have a

non-negative variable αj for each j ∈ V , and a non-negative variable βr
ij for each disk

(i, r) ∈ F and j ∈ Vi. We compute an assignment to the αjs and the βr
ijs that satisfy

the following “dual” constraints:

∀(i, r) ∈ F :
∑

j∈Vi

βr
ij ≤ r

∀(i, r) ∈ F, ∀j ∈ Vi : αj − βr
ij ≤ cr

ij

We will call an (α, β) assignment that satisfies these dual constraints dual-feasible. We

can interpret these variables as “paying” for a solution to the BRTC. In particular,

αj is the payment of point j. Suppose j ends up being assigned to disk (i, r) in a

solution to BRTC. Then βr
ij is j’s contribution to the cost (radius) of LOS-disk (i, r)

and the rest of the payment αj−βr
ij goes towards the cost cr

ij of connecting j to (i, r).

Because of dual-feasibility, the total payment made by the points
∑

j∈V αj can

be shown to be a lower bound on the cost of any solution to the BRTC problem. In

our analysis as well as in the numerical simulations in Section 3.3, we shall evaluate

the performance of our algorithm against this lower bound. Our algorithm will find
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a dual-feasible solution (α, β) and a corresponding solution to the BRTC with cost

at most a constant times
∑

j∈V αj. This will imply that our BRTC solution is within

a constant factor of the optimal.

Claim 10. Let I ⊆ F , φ : V → I be any (not necessarily optimal) solution to the

BRTC problem and (α, β) be any dual-feasible solution. Then
∑

j∈V

αj ≤
∑

(i,r)∈I

r +

∑

j∈V

cφ(j)j where cφ(j)j = cr′

i′j such that (i′, r′) = φ(j).

Proof. We have by the second dual constraint defined above that for each point j,

αj ≤ βφ(j)j + cφ(j)j (where βφ(j)j = βr′

i′j s.t. (i′, r′) = φ(j))

The proof follows by taking the summation over all points.

Our algorithm will find a dual-feasible solution (α, β) and a corresponding

solution to the BRTC with cost at most a constant times
∑

j∈V αj. This will imply

that our BRTC solution is within a constant factor of the optimal.

3.2.1.1 The Algorithm

The algorithm consists of two phases similar to [39]. The main difference is in

Phase 2 and its analysis.

Henceforth, we shall refer to a pair consisting of a disk (i, r) ∈ F and a point

j ∈ Vi as an “edge” (i, r, j).

Phase 1. A notion of time is defined in this phase, so that each event can be

associated with the time at which it happened; the phase starts at time 0. Initially,

each point in V is defined to be unconnected and the values αj and βr
ij are set to 0.
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Throughout this phase, the algorithm raises the dual variable αj for each unconnected

point j uniformly at unit rate, that is αj will grow by 1 in unit time. When αj = cr
ij

for some edge (i, r, j) (where j ∈ Vi), the algorithm will declare this edge to be tight.

Henceforth, dual variable βr
ij will be raised uniformly, thus ensuring that the first

constraint in the dual LP is not violated. (βr
ij goes towards paying for disk (i, r).)

Each edge (i, r, j) such that βr
ij > 0 is declared special.

Disk (i, r) is said to be paid for if
∑

j∈Vi
βr

ij = r. If so, the algorithm declares

this disk temporarily selected. Furthermore, all unconnected points having tight edges

to this disk are declared connected and disk (i, r) is declared the connecting witness

for each of these points. (Notice that the dual variables αj of these points are not

raised anymore.) In the future, as soon as an unconnected point j gets a tight edge

to (i, r), j will also be declared connected and (i, r) will be declared the connecting

witness for j (notice that βr
ij = 0, and so edge (i, r, j) is not special.) When all points

are connected, the first phase terminates. If several events happen simultaneously,

the algorithm executes them in arbitrary order.

(Note that at the end of Phase 1, a point may have paid towards temporarily

selecting several disks. However, we want to ensure that a point pay for only the disk

that it is eventually connected to. This is handled by Phase 2, which chooses a subset

of temporarily selected disks and scales them up for permanent selection.)

Phase 2. Let Ft denote the set of temporarily selected disks and G denote

the graph consisting of all special edges. Let H denote the graph whose vertex set is

Ft. In this graph there is an edge between a pair of temporarily selected disks (i, r)
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and (i′, r′) iff there is a point j such that (i, r, j) and (i′, r′, j) are both special edges

- i.e. (i, r) and (i′, r′) have special edges to a common neighbor j. Find a maximal

independent set I ′ in H in the following manner [17].

1. Initially, T is the set of tight temporarily selected disks.

2. I ′ = Φ.

3. Repeat steps 3a-3d until T = Φ.

(a) Let (i, r) be the disk of largest radius in T (break ties arbitrarily).

(b) Let N be the set of all disks in Ft that have an edge to (i, r) in H including

(i, r).

(c) I ′ = I ′ ∪ {(i, r)}.

(d) T = T \N .

We call this set I ′ our intermediate solution.

Now, for each disk in I ′ scale its radius by a factor of 3 so long as it is less

than B. We call this scaled version of the radius r as r̂. r̂ = min{3r, B}. Call this

new set of scaled disks I ′′. All disks in I ′′ are declared selected. (Note here that such

disks in I ′′ do not necessarily come from the canonical set of disks.)

In addition, for each disk (i, r) ∈ I ′ we pick (if required) a complementary

set of disks. The disk (i, r̂) along with these complementary disks constitutes the set

C(i,r). We shall describe how we pick this set below.
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Assignment. For point j, define

Fj = {(i, r) ∈ Ft|(i, r, j) is special}

i.e. the set of disks temporarily selected in Phase 1 to which j has special edges.

When picking an independent set I ′ in Phase 2, at most one of the disks in Fj is

selected in I ′. If there is a disk (i, r) ∈ Fj that is selected, then set φ(j) = (i, r̂) (the

scaled version of this disk), and declare city j directly connected.

Otherwise, if there is no disk (i, r) ∈ Fj that is selected in I ′, consider the

tight edge (i′, r′, j) such that (i′, r′) was the connecting witness for j. If (i′, r′) ∈ I ′

again set φ(j) = (i′, r̂′) (Here r̂′ = min{3r′, B}) and declare point j directly connected

(notice that in this case βr′

i′j = 0).

In the remaining case viz. (i′, r′) /∈ I ′, let (i, r) be any neighbor of (i′, r′) in H

such that (i, r) ∈ I ′. We shall assign j to some disk in C(i,r). Say this disk is centered

at i′′. Set φ(j) = (i′′, r̂) and declare point j indirectly connected. Note that such a

disk exists by construction, which we shall describe below. We shall also show that

by making this assignment the connection cost for j (i.e. the cost of the short tower

j) is not increased by more than a constant factor.

Constructing a complementary set C(i,r). For any (i, r) ∈ I ′, we pick

C(i,r) as follows. First add (i, r̂) (the scaled version of (i, r)) to C(i,r). Let J be the

set of points that are assigned to be indirectly connected to a disk in C(i,r). Pick any

point j from this set and put here a disk of radius r̂. Include this in C(i,r). In addition,

assign all points j′ ∈ J such that d(j, j′) ≤ B to this disk i.e. set φ(j′) = (j, r̂). Next

pick any point that is not yet assigned to any disk in C(i,r) and repeat in this manner
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until all points in J are assigned to some such disk in C(i,r).

Let I =
⋃

(i,r)∈I′

C(i,r). (Note that we include all the disks in I ′′ in this set.)

(I, φ) is our final solution to the BRTC problem. Note that if φ(j) = (i, r), then

d(i, j) ≤ B.

Remark. We need to use complementary disks as an artefact of the power

transmission constraint - to ensure that we assign each point to a disk that is centered

not more than distance B from it. Also note that, we first try to cover the points

directly and only if we fail then we go for indirect connections.

3.2.1.2 Analysis

In this section we shall show that our primal-dual algorithm for the BRTC

problem give a constant factor approximation. Thus we prove Theorem 2 which states

that given a set of nodes V in the plane, maximum transmission power range B, and

an obstacle model as defined with parameters L (obstacle height) and d (obstacle

clearance) we find a height assignment function h that assigns a non-negative height

value to a tower at each node in V such that COV ER(h) results in a connected

spanner on V and the total height
∑

j∈V

h(j) is within a constant factor of the total

height in the optimal solution.We start by showing that the cost of the disks in our

final solution is a scaled version of the cost of disks in our intermediate solution I ′ to

within a constant factor. Then we show that the intermediate solution is accounted

for by the payments αj ’s made by the points. These two results are combined to give

the approximation factor for the entire algorithm.
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Lemma 11. For a disk (i, r) ∈ I ′, the total cost of disks in C(i,r) is at most 147r.

Proof. Let j be a point that is to be indirectly connected to (i, r). First, we will show

that d(i, j) ≤ 3B. Let (i′, r′) be the connecting witness of j whose neigbhor in I ′ is

(i, r). Hence, there must be a point j′ such that (i, r, j′) and (i′, r′, j′) are both special

edges and so it follows that each of the distances d(i, j′), d(i′, j′) and d(i′, j) are at

most B. Thus, by triangle inequality, d(i, j) ≤ 3B.

By construction, the distance between centers of any 2 such disks in C(i,r) is

at least B and hence no more than 49 such disks are required to cover J . Thus the

total cost of C(i,r) is at most 49 ∗ r̂.

Since r̂ = min{3r, B}, r̂ = 3r if r ≤ B
3

and r̂ = B if r > B
3
. In either case,

we get that the cost of this set of disks in C(i,r), is at most 147 times the cost r of

(i, r).

Now, we use the above lemma to bound the cost of the disks in our final

solution in terms of the cost of those in our intermediate solution.

Lemma 12. The cost of disks in the final solution I is at most 147 times the cost of

disks in intermediate solution I ′.

Note that I =
⋃

(i,r)∈I′

C(i,r) and hence the above lemma can be verfied easily.

Proof. We have seen that I =
⋃

(i,r)∈I′

C(i,r). .

Clearly, remembering that the cost of a set of disks is the sum of the radii of
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the disks in the set,

cost(I) = cost(
⋃

(i,r)∈I′

C(i,r))

≤
∑

(i,r)∈I′

cost(C(i,r))

≤
∑

(i,r)∈I′

147r (from Lemma 11)

≤ 147
∑

(i,r)∈I′

r

= 147 cost(I ′)

Next, we will show how the dual variables αj ’s pay for the costs (radii) of LOS-

disks in intermediate solution I ′ and connecting points to LOS-disks (short towers).

Let us partition the set of points V into Vdc - the set of directly connected points

and Vic - the set of indirectly connected points. Also define V (i,r) as the set of points

j ∈ V that have a special edge to disk (i, r). First we look only at the costs of the

LOS-disks and the costs of direct connections.

Lemma 13.
∑

j:j∈Vdc

cφ(j)j +
∑

(i,r)∈I′

r ≤
∑

j:j∈Vdc

αj

The proof of this Lemma is similar to that in [39]. Indeed I ′ was chosen to be

an independent set in H with this Lemma in mind.

Proof. For directly connected point j suppose φ(j) = (i, r̂). Let φ′(j) = (i, r) ∈ I ′

be the disk that gave rise to (i, r̂). Note this could have happened either by tripling

r so that r̂ = 3r (if r ≤ B
3
) or else by increasing r to B. As r̂ ≥ r, cφ(j)j ≤ cφ′(j)j .
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(Required height of short tower is less if the tall tower at the other end of the link is

made taller.)

∑

j:j∈Vdc

cφ(j)j +
∑

(i,r)∈I′

r ≤
∑

j:j∈Vdc

cφ′(j)j +
∑

(i,r)∈I′

r

=
∑

j:j∈Vdc

cφ′(j)j +
∑

(i,r)∈I′

∑

j∈V (i,r)

βr
ij

=
∑

j:j∈Vdc

cφ′(j)j +
∑

j:j∈Vdc

βφ′(j)j

=
∑

j:j∈Vdc

αj

Next, we show how αj ’s pay for the cost of indirect connections. In particular

we show that the cost of the short tower (connection cost) at an indirectly connected

point j is at most 3 times its payment αj.

Lemma 14. For an indirectly connected point j,

cφ(j)j ≤ 3αj

Proof. Let (i′, r′) be the connecting witness for point j and (i, r) ∈ I ′ its neighbor

in H . So by our assignment policy, φ(j) ∈ C(i,r); i.e. j is assigned to some (i′′, r̂) ∈

C(i,r). Now, if r > B
3
, then r̂ = B and hence cφ(j)j = 0 by the manner in which

complementary set C(i,r) was constructed. Hence in this case, the lemma is proved.

In the other case when r ≤ B
3

observe that cφ(j)j ≤ c3r
ij . This is because d(i′′, j) ≤ B

(again by the way C(i,r) is constructed) while d(i, j) ≥ B (otherwise φ(j) = (i, r̂) =

(i, 3r) and hence cφ(j)j = c3r
ij ). In the rest of the proof, we show that c3r

ij ≤ 3αj.
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Since j is indirectly connected to (i′′, 3r), and (i′′, 3r) ∈ C(i,r) with (i, r) ∈ I ′,

therefore ((i, r), (i′, r′)) must be an edge in H . In turn, there must be a point j′ such

that (i, r, j′) and (i′, r′, j′) are both special edges. Let t1 and t2 be the times at which

(i, r) and (i′, r′) were declared temporarily selected during Phase 1.

Since edge (i′, r′, j) is tight, αj ≥ cr′

i′j . We will show that αj ≥ cr
ij′ and

αj ≥ cr′

i′j′. This implies that 3αj ≥ cr′

i′j + cr
ij′ + cr′

i′j′. Then we will show that cr′

i′j +

cr
ij′ + cr′

i′j′ ≥ c3r
ij which will prove the lemma.

Since edges (i′, r′, j′) and (i, r′, j′) are tight, αj′ ≥ cr
ij′ and αj′ ≥ cr′

i′j′. During

Phase 1, αj′ stops growing as soon as one of the disks that j′ has a tight edge to is

selected. Therefore, αj′ ≤ min(t1, t2). Finally, since (i′, r′) is the connecting witness

for j, αj ≥ t2. Therefore αj ≥ αj′ and 3αj ≥ cr′

i′j + cr
ij′ + cr′

i′j′.

It remains to be shown that cr′

i′j + cr
ij′ + cr′

i′j′ ≥ c3r
ij . If j lies in the interior of

(i, 3r) then c3r
ij = 0 and we are done.

Otherwise,

c3r
ij =

d(i, j)− 3r

d(i, j)− 1

≤
d(j, i′) + d(i′, j′) + d(j′, i)− 3r

d(j, i′) + d(i′, j′) + d(j′, i)− 1

≤ max{0,
d(j, i′)− r

d(j, i′)− 1
}+ max{0,

d(i′, j′)− r

d(i′j′)− 1
}

+ max{0,
d(j′, i)− r

d(j′, i)− 1
}

= cr
i′j + cr

i′j′ + cr
ij′

≤ cr′

i′j + cr′

i′j′ + cr
ij′

The first step above follows from the triangle inequality while the last inequal-
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ity holds because r ≥ r′. Thus

cr
ij′ + cr′

i′j′ + cr′

i′j ≥ c3r
ij

Corollary 15.
∑

j:j∈Vic

cφ(j)j ≤ 3
∑

j:j∈Vic

αj

Proof. The corollary follows from Lemma 14 and taking the summation over all in-

directly connected points j.

From Lemmas 12, 13 and corollary 15 we get that our final solution (I, φ :

V → I) is at most 147 times
∑

j αj which is 147 times the optimal by Claim 10.

3.2.1.3 Running Time

In Phase 1, for each disk (i, r) we can compute the anticipated time tir at

which it is completely paid for and we maintain these events in a binary heap. Two

types of events can occur that may cause us to update this heap- a) An edge (i, r, j)

becomes tight and b) Disk (i, r) is completely paid for. Each such update can be

done in O(log n2) = O(log n) time. Note each edge (i, r, j) can cause an update at

most twice - once when it goes tight and second, when point j is declared connected.

Hence the running time of Phase 1 is O(n3 log n).

It is easy to see that this is the phase that dominates the running time of our

algorithm and hence the next theorem follows.

Theorem 16. The Algorithm based on the Primal Dual Schema achieves an approxi-

mation factor of 147 for the Bounded Range Tower Cover (BRTC) and has a running
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time of O(n3 log n).

3.2.2 A Local Optimization

At this juncture, we have a constant factor approximation to the BRTC, but

this constant may be quite large for practical purposes. When we tested our algo-

rithm on a few real and synthetic topologies we found that the solution computed is

anywhere between 5-15 times the guaranteed lower bound; so we try to improve this

using a very natural local optimization.

For each tall tower t ∈ I in our solution, and point set U ⊆ V assigned to t,

we find the best height assignment to U that guarantees that a tall tower at t serves

each point in U . We need to search only |U | height assignments.

As a second step, we allow each point to change its server tall tower - i.e. if

a point has several tall towers within distance B from it (candidate servers) it can

pick one so as to minimize the height of its short tower required to achieve LOS-

connectivity. Observe that in both steps above we only improve the cost of the

solution while maintaining feasibility.

3.2.3 Connecting The Solution

As mentioned at the start of the section we need to ensure connectivity in

our solution to make sure that any pair of villages can communicate with each other

along some path P in the topology where the length of each link in the path P is at

most B and the tower heights at the end-points of each link are sufficient to allow

Line-of-Sight visibility.
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Consider a “connected component” induced by the solution I returned by the

above primal dual algorithm. Such a connected component consists of a set of points

such that any two points within this set have a communication path P as mentioned

above. Typically, this might contain one or more disks that our primal dual algorithm

output along with points assigned to these. Signal transmission can be achieved (via

one or more hops) between any two points in a component. Call such a component a

cluster. Let V1, V2 · · · , VK be the clusters induced on V by our solution.

Let H be the graph whose vertices are clusters. If there exists a pair of points

i and j in V such that d(i, j) ≤ B and if i ∈ Vk and j ∈ Vl lie in separate clusters

(k 6= l), then place an edge between Vl and Vk in edge set EH of H . We let the weight

of each such edge be 2. This essentially means that if we find two points lying in

different components that are close enough to be within power transmission range,

but cannot see each other, then we allow them to see each other by making both

towers tall (of height L).

We now find a spanning tree T in H . (Since all edges in H are of weight 2

any spanning tree is a Minimum Spanning Tree.) Finally we connect the topology by

placing at the end points of each edge in T tall towers of height L i.e. LOS-disks of

radius 1. These can now form a direct LOS-link.

The following theorem shows that the cost of connecting up in the solution in

this manner is within a constant factor times the cost of the optimal solution to the

TCPC problem.

Theorem 17. Let V be the set of points in the plane and I be the set of LOS-disks in
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the solution (I, φ) to the BRTC problem obtained above. Let I∗ be the set of LOS-disks

in optimal solution to the TCPC problem for input V . There is an efficient algorithm

that computes a set Ic of towers(disks) such that (I ∪ Ic, φ) is a feasible solution to

the TCPC problem and cost(Ic) ≤ 50cost(I∗).

Proof. Consider any spanning tree T in H and let Ic be the set of disks of radius 1

placed at the end points of the edges in T exactly as described above. Clearly costIc

is at most the cost of the spanning tree. If the solution (I, φ) to our BRTC induces

K clusters on V the cost of this spanning tree is 2(K − 1). Now we show that this

cost is at most a factor of 50 times worse than the cost of the LOS-disks I∗ in the

optimal solution to the TCPC problem, thus completing the proof.

Consider the K − 1 edges in I∗ that connect the K clusters induced on V

by (I, φ). At least one of the end points of each of these edge has a tall tower;

otherwise LOS link could not have been formed. Furthermore a LOS-disk (tall tower)

can contribute to at most 25 such edges : Whenever a tall tower contributes to the

weight of an edge, it connects two clusters in I whose closest points have graph-

theoretic distance at most 2 from it and hence must lie within a distance of 2B from

it. However each of these clusters will have centers that are at least B apart, otherwise

they will collapse into a single cluster because there will be complete LOS and power

connectivity between the clusters. Hence there can be at most 25 such connections

to which a tower can contribute.

Hence the total cost of these edges in I∗ that connect clusters induced by

(I, φ) is at least K−1
25

and so cost(I∗) ≥ K−1
25

. But the cost of our solution obtained
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by adding the edges of a spanning tree of H is at most 2(K − 1) and hence it is most

50 times worse than cost(I∗).

We thus yield Theorem 2.

3.3 Evaluation

We evaluate the main aspects of our approach. We explore whether it is

practical and what results it gives in real-world scenarios. We carry out several

numerical simulations to evaluate our algorithm with respect to the computed lower

bound. These are implemented in C++.

3.3.1 Sample Topologies

We evaluate our algorithm on a bunch of synthetic topologies as well as on one

real-world topology - the Ashwini topology [6] considered by Sen and Raman [61]. We

have tried to model this topology as closely as possible. For the synthetic topologies

we consider the village nodes to lie in an area of 50 sq. Km. We generate the co-

ordinates of these nodes randomly while maintaining minimum intervillage distance

of 2 Km. Also, we generate topologies with varying densitities - viz. topologies with

25, 50, 75 and 100 nodes over the same sized area (50 Sq. Km.) and for each such

density we have a set of 5 randomly generated instances. Note that the Ashwini

topology has 34 nodes spread across a similar area.
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Figure 3.2: Topology Generated For Ashwini

3.3.2 Cost Function

We use a linear cost function for non-mast towers (as mentioned before) - i.e.

c(h) = α · h + β. For a mast of course we assume the cost to be 0. For ease of

exposition we scale the cost by a factor of 1
L
.

3.3.3 Real Topologies

The Ashwini topology [6] consists of 34 nodes (including 1 landline node).

Figure 3.2 shows the topology generated by our algorithm. We assumed L = 0.006,

(6m above mast level) and d = 1Km to be uniform for all links. We also restrict our
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link length B to 15Km. 1

In the figure, the triangles correspond to tall towers, circles correspond to

masts while squares are short towers. Also a dotted circle around a tall tower indicates

that the height of that tower was raised to ensure connectivity in the last phase while a

dotted line indicates a connection between villages served by two different tall towers.

The solution gives two main tall towers (nodes 17, 8), several masts and a few

tall towers of obstacle height (L) some of which are raised during final connectivity

step. The overall cost for this topology is about 63.7 and the algorithm runs almost

instantaneously on a 2.2GHz desktop. The lower bound computed as described in

Section 3.2.1 for this topology is about 47 which gives us a solution well within 35%

of the optimal. A trivial solution which places height L towers at each of the 34 nodes

has cost of about 113.

Importance of local optimization. Without the local optimization, our

solution on the same input topology had cost 209. Clearly optimization results in

savings of a multiplicative factor of more than 3 − 4. Observe Figure 3.3. This

observation also holds for the synthetic topologies.

3.3.4 Synthetic Topologies

We use the following parameter settings for our evaluation. We consider 4

different values for B - 10Km, 12Km, 14Km and 16Km and 4 different values of

obstacle height L (above mast level) - 4m, 6m, 8m, and 10m. Also we use d = 1Km.

1Note height of masts is usually about 12m or so; hence we consider the worst case

scenario for obstacle height.
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Figure 3.3: Advantage of Optimization (Ashwini)

Comparing with Lower Bound. We compute the lower bound in our

algorithm for the BRTC Problem as described in Section 3.2.1. The lower bound is

the sum of the payments made by the points towards the construction of towers i.e.

∑

j∈V

αj. We compare the solution returned by our approximation algorithm with this

lower bound for topologies of different densities and with different values of parameters

L and B.

The results in Table 3.1 show that all our approximations give ratios that

are nearly always within twice the lower bound and in most cases much better. We

compare the costs of our solution before and after the final connecting-up phase (these

are separated by a comma in the table cells). Note that the lower bound is with regard

to the BRTC problem and hence does not take into account the connectivity of the
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Table 3.1: Maximum Values for Ratios Before And After Connecting
@

@
@

@
@

@
L

B
10 Km 12 Km 14 Km 16 Km

4 m 1.79,1.96 1.94,2.00 1.96,2.07 1.95,1.99

6 m 1.69,1.88 1.84,1.90 1.83,1.95 1.90, 1.94

8 m 1.62,1.81 1.79,1.86 1.75,1.85 1.87, 1.91

10 m 1.59,1.73 1.76,1.80 1.69,1.75 1.85,1.90

Table 3.2: Comparison with Greedy Algorithm of [54]

n Avg. Ratio of cost of Greedy Algorithm vs Ours

25 1.19

50 1.37

75 1.41

100 1.47

solution. Hence in reality our algorithm may be doing even better.

Additional Connectivity Cost. While the lower bound does not account

for the connectivity requirements, we show here that additional cost for connectivity

is not too high. This can be seen clearly from Table 3.1. This result in a sense

validates our approach of looking at the problem as primarily a bounded range tower

cover problem postponing the connectivity phase.
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Comparison With Panigrahi et. al [54] We compare our approach with

the greedy algorithm of [54] on the above synthetic topologies. The results in Table

3.2 show that on average for all topology sizes (and densitites) the greedy algorithm

gives solutions that are about 20− 45 percent worse. These averages are again taken

over varying values of B and L.

3.3.5 Running Time

Our algorithm has a theoretical guarantee of a O(n3 log n) for the running

time. This is important because it clearly means that our algorithm can scale to

larger or denser topologies easily. Even for inputs with 100 nodes our algorithm runs

in less than a few seconds. Moreover the run-time of our algorithm is dominated by

the size of the topology and hence values of parameters like L,B and d have very little

effect.

This is in contrast to the exhaustive search approach proposed by Sen and

Raman [61] which does not really scale beyond topologies of size 30 or so as noted.

We have implemented the exhaustive search approach of [61] on Ashwini and as

expected this takes several hours. It is not reasonable to hope to be able to run this

on larger topologies.

3.3.6 Summary

To summarize, our numerical experiments demonstrate that our algorithm per-

forms well within its worst case performance bounds. and much better on topologies

that have density and layout similar to real-world topologies. Also it scales efficiently
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to larger and denser topologies.
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CHAPTER 4
NETWORK SPANNER TOPOLOGY DESIGN ON THE TERRAIN

In this chapter we consider the problem of constructing towers at given villages

(nodes) that lie on a 1.5-dimensional terrain so that the topology formed by the

underlying links is connected. Problems in computational geometry most notably

the guarding problem have been well-studied on the 1.5-D terrain [26, 9, 42, 43, 27,

44, 34]. While the problem is interesting in itself, geometric coverage problems have

been found to be hard on the general 2.5-dimensional terrain and results on this

simpler terrain could possibly provide hints towards obtaining solutions for these.

For instance, the 1.5-D terrain guarding problem is a non-trivial instance of guarding

polygons and has implications for the famous art gallery problem.

A 1.5-D terrain is a polygonal chain in the plane that is x-monotone, that is,

any vertical line intersects the chain at most once. A terrain T consists of a set of m

vertices {t1, t2, · · · , tm}. The vertices are ordered in increasing order with respect to

their x-coordinates. There is an edge connecting ti with ti+i for all i = 1, 2, · · ·m− 1.

Given a point a denote its x-coordinate by ax and y-coordinate by ay. If tx1 ≤ ax ≤ txm

let y∗ be the y-coordinate of the point at which the vertical through a hits the terrain

T . Now point a is said to lie above the terrain if ay > y∗, on the terrain if ay = y∗ and

below the terrain if ay < y∗. For any 2 points a, b, that lie on or above the terrain,

we say that a sees b if the line segment āb lies entirely above or on the terrain.

The villages (nodes) V in our topology are a finite subset of the points on

the terrain T . Let |V | = n. A height assignment function h gives an assignment
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of tower heights to every node in V . Let COV ER(h) denote the set of pairs of

nodes that form direct links under the height function h. A pair of nodes (vi, vj)

in V is in COV ER(h) if tower heights h(i) and h(j) are such that the line joining

the top of the towers lies entirely on or above the terrain T . See Figure 4.1 for an

example. Furthermore, for every vertex v ∈ V we are given a discrete set of candidate

height assignments H(v). We make the assumption that the zero height assignment

is always available i.e. ∀v ∈ V, 0 ∈ H(v) We consider the problem of finding a

height assignment that minimizes the sum of tower heights at all nodes (villages) in

the topology such that COV ER(h) results in a connected spanner (graph) on the

vertex set V . We call this the Min-cost Terrain Spanner problem. We assume that if

every node v is assigned the maximum possible allowed height from its candidate set

H(v) we get a feasible solution. This discrete version of the problem can be obtained

from the continuous version (where the candidate heights need not be discrete) via

a polynomial time reduction such that an α-approximation for the discrete version

gives an O(α)-approximation for the continuous version.

4.1 Our Contribution.

We look for a constant factor approximation algorithm for the discrete version

of the problem defined above. We first prove that existing approaches do not do

better than a logarithmic approximation. The general graph-theoretic approach of

[54] can be applied to our setting here. It is a greedy approach and it cannot do better

in this special case than the general guarantee of the logarithmic approximation it
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(a) (b)

Figure 4.1: Example of height assignments. (a) This height assignment provides a
feasible solution. (b) This height assignment does not provide a feasible solution

gives. We prove this by construction of a tight example for this approach.

Also we show that the Min-cost Terrain spanner problem can be reduced to

the Node Weighted Steiner Tree problem. This independently implies a logarithmic

approximation. A primal-dual algorithm for Node Weighted Steiner Tree problem by

Demaine etal [23] gives a constant factor approximation if the graph under consider-

ation is planar. However it cannot do so for our problem. We prove this again by a

tight example.

We try to use the geometry of this particular setting to see if we can do better

than in the general case - i.e. obtain a sublogarithmic approximation. The 1.5-

D terrain has specific geometric properties w.r.t visibility that have been expolited

previously to obtain solutions for the terrain guarding problem [26, 9, 34, 42, 43, 27,

44]. However we are unable to exploit these geometric properties to obtain an efficient

constant factor approximation algorithm for the topology construction problem. To
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the best of our knowledge we are not aware of any other results on this particular

problem.

In section 4.2 we discuss the greedy approach of [54] and in Section 4.3 we

discuss the linear programming based primal dual approach [23].

4.2 Greedy Algorithm

First we define the general version of the problem as considered by the authors

in [54], then describe their algorithm and then provide an example on the 1.5-D terrain

where it cannot do better than an O(logn) approximation.

4.2.1 Problem Definition

Let G = (V, E) where V is the set of vertices and E is the set of edges. Let

n = |V |. A height assignment function h gives an assignment of tower height to every

node of G. Only discrete height assignments are considered - i.e. for each vertex v

we have a set of candidate height assignments H(v). We assume that it is possible to

determine efficiently if an edge (u, v) is considered to be covered by a height function

(In our application, tower heights h(u) at u and h(v) at v need to be sufficient to

obtain a clear visual line-of-sight between the antennas placed on top of towers of the

respective heights at u and v.) COV ER(h) denotes the set of edges that are covered

by height function h. The cost function c of building a tower is the height of the

tower. The total cost of height function is h is
∑

v∈V

h(v). The objective is to find h of

minimum total cost such that COV ER(h) forms a connected spanner of the vertex

set V . Note that our Min-cost Terrain Spanner problem is a geometric special case
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of this problem.

4.2.2 Algorithm

Consider the following algorithm for the topology cover problem given by [54].

Here COMP (h) denotes the number of components in graph with vertex set V and

edge set COV ER(h).

In Algorithm 4.2.2,the height function is initialized to 0 at all nodes. Thus

at the beginning COV ER(h) = φ and COMP (h) = n. Algorithm 4.2.2 proceeds in

phases. In each phase a height increment incrbest is selected for all nodes which is

then added to the current height function. This is repeated until COV ER(h) is a

connected spanning subgraph.

4.2.2.1 Picking the best height increment in a phase

Every height increment has a cost associated with it, namely the increase in

the total cost of the towers because of applying the increment. Roughly speaking, in a

phase, the algorithm selects that height increment that requires minimum increase in

cost for the maximum reduction in the number of components. This metric is called

the cost-to-benefit ratio. We consider a natural space of increments in V over which

the best cost-to-benefit ratio can be computed easily.

The algorithm searches over each candidate node v for every candidate height

increment via the candidate set H(v). After this we need to search over the possible

height increments at the neighbors of v. This subproblem is called STAR-TC: Given

the current height function h, a central node v and its height increment δ(= α−h(v)),
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Algorithm 4.1 TC-ALGO (G, c)

for each v ∈ V do

h(v) = 0

end for

while COMP (h) > 1 do

rbest =∞

for each v ∈ V do

for α ∈ H(v) s.t. α > h(v) do

(rtmp, incrtmp)← STAR-TC-ALGO(G, h, v, α− h(v));

if rtmp < rbest then

rtmp ← rbest; incrbest ← incrtemp;

end if

end for

end for

for each v ∈ V do

h(v)← h(v) + incrbest(v);

end for

end while

return h
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find a height increment at the neighbors of v that has the lowest cost to benefit ratio.

Now we are ready to describe the procedure STAR-TC-ALGO.

STAR-TC-ALGO. First note that increasing the height at nodes that are in the

same component as v does not reduce the number of components. Thus, the height

increments are restricted only to those neighbors of v that are in a different component

than v in COV ER(h). This set of nodes is called nbr. For every node u in nbr the

smallest height increment h+(u) at u that covers edge (u, v) is computed. The nodes

in nbr are listed in increasing order of their h+ values in a list L. Also it is ensured

that for every component L contains the height increment corresponding to exactly

one node - that with the minimum h+ value over all nodes in that component.

Now the following |L| height increments are considered. Each increment in-

creases the height only at v and nodes that form a prefix of L. More precisely, the

ith height increment increases the height of v by δ, heights of the first i nodes in L

by their respective h+ and all the other nodes by 0. The benefit of such an increment

is exactly i. The cost of such an increment is δ +
∑

1≤j≤i

h+(jthnode in L) Among all

these height increments the one that has the lowest cost-to-benefit ratio is returned.

This algorithm achieves an approximation ratio of O(logn) where n = |V |.

The proof can be found in [54] and is omitted here.

Now consider the following instance of the topology cover problem on the 1.5-D

terrain as shown in Figure 4.2.

Here, v1, · · · vn+2 represent village locations or nodes. The candidate height
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2(n−2)

n−2

1

n−2

n−1

n−2

2

v1 v2 v3 vn v
n+1 v

n+2

Figure 4.2: Bad Example for the Panigrahi et. al Algorithm (Greedy Algorithm)

functions are defined as follows. H(vn+2) = {0}, H(vn+1) = {0, 1}, H(v1) = {0, 2(n−

2)} and ∀2 ≤ i ≤ n, H(vi) = {0, n−2
i−1
}. The tower of height 2(n− 2) at vertex v1 can

see every other candidate tower. ∀1 ≤ i ≤ n+1 the tower of height 0 at vertex vi can

only see this special tower (and the tower at vertex vi of non-zero height). The zero

height tower at node vn+2 can see the height 1 tower at node vn+1. The visibilites

between the non-zero height towers at v2, · · · , vn+1 do not matter. In this example a

single tower of height 2(n− 2) placed at the leftmost node is sufficient to attain line-

of-sight connectivity with all other nodes having zero height towers and thus obtain

a connected topology. This is in fact the optimal solution and its cost is 2(n − 2).
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However Algorithm 4.2.2 will return a solution consisting of the n+1 non-zero height

towers at v1, · · · , vn+1 and a zero height tower at node vn+2 as shown in the figure.

To see this notice that initially constructing a tower of height 1 at the point second

from the right gives a cost-to-benefit ratio of 1 which is the best possible considered

for n > 5. This follows from the visibilities defined above. Based on the visibilities

one can see via an inductive argument that the algorithm will proceed to construct

non-zero height towers at nodes vn+1, vn, vn−1, · · · v1 in the specified order. Thus the

cost of the solution given by this greedy algorithm is 2(n − 2) +

n∑

i=2

n− 2

i− 1
+ 1 =

2n− 3 + (n− 2)θ(log n) which is a Ω(log n) factor worse than the optimal.

4.3 Primal Dual Algorithm

We show how the Min-cost Terrain spanner problem can be reduced to the

Node-weighted Steiner tree problem.

Consider an instance of the problem given as the terrain T , a finite subset

V of T and for each point v in V we have a set of candidate height assignments.

Now construct a graph Gs = (Vs, Es) where Vs consists of copies of each point v ∈ V

corresponding to its possible height assignments H(vi). Again we assume ∀vi ∈ V, 0 ∈

H(vi) Define vih to be the vertex that corresponds to the copy of vertex vi and height

assignment h ∈ H(vi). The set Es consists of edges (vih, vjh′) such that a tower of

height h at vi can see a tower of height h′ at vj . In addition we define a cost function

C : Vs → ℜ such that C(vih) = h - i.e. the cost of a node corresponds to the height

of the tower it represents. Now call the set of all vertices vi0 the set of terminals.
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The goal is to find a Steiner tree that contains all such terminals of minimum total

cost. It is easy to see that a solution to an instance of this Node-Weighted Steiner

Tree Problem gives a solution of exactly the same cost to the instance of the Min-cost

Terrain spanner problem.

Klein and Ravi [45] give a logarithmic approximation for the Node-Weighted

Steiner Tree problem. The algorithm maintains a node-disjoint set of trees containing

all the terminals. Initially, each terminal is a tree by itself. The algorithm uses a

greedy strategy to iteratively merge the trees into larger trees until there is only one

tree. In each iteration, it selects a node and a subset of trees of size at least two so

as to minimize the ratio

cost of the node plus sum of the distances to the trees from node
number of trees

Here the distance along a path does not include the cost of its end points.

Thus the choice minimizes the average node-to-tree distance. The algorithm uses the

shortest paths between the vertex and the selected trees to merge the trees into one.

It is easy to notice the similarities of the algorithm with the one given by

Panigrahi et al [54] in Section 4.2. Moreover, if the example for the algorithm in

Section 4.2 is formulated as a Steiner Tree problem as described above it serves as a

bad example in this case.

4.3.1 Integer Programming

For an instance of a Node Weighted Steiner Tree Problem as described above

with given graph Gs = (Vs, Es), where Vs is as defined in the previous section and
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the set of terminals being the set {vi0|∀vi ∈ V } we obtain an integer programming

formulation. We then explore possible rounding schemes for the fractional solution

obtained by solving a linear programming relaxation. We show that several intuitive

rounding schemes can give an arbitrarily bad approximation.

The following integer programming formulation of the problem is the same as

Demaine et al. [23]. We use Γ(S) to denote the set of nodes that are not in S but

have neighbors in S for S ⊆ Vs. Each vertex v ∈ Vs has an associated variable xv and

an associated cost hv.

min
∑

v∈Vs

hvxv (4.1)

subject to : (4.2)

∑

v∈Γ(S)

xv ≥ f(S), ∀S ⊆ Vs (4.3)

xv ∈ {0, 1}, ∀v ∈ Vs (4.4)

where f(S) = 1 if S contains some terminal but not all. Otherwise f(S) = 0.

The solution to this integer program is a solution to the Steiner Tree instance and

hence a solution to the 1.5-D Topology Construction problem.

The linear relaxation of the above integer program is obtained by replacing

the constraint xv ∈ {0, 1} with the constraint xv > 0. The dual of the resulting linear

program is as follows:
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max
∑

S⊆Vs

f(S)yS (4.5)

subject to : (4.6)

∑

S⊆Vs:v∈Γ(S)

yS ≤ hv, ∀v ∈ Vs (4.7)

yS ≥ 0, ∀S ⊆ Vs (4.8)

There is a dual variable yS for each subset S of Vs. However, the only such

variable that affect the objective function (and therefore the only variables we need

to consider) are those variables yS where f(S) = 1. Intuitively, the goal of the dual

linear program is to find a maximal size family of node sets S with f(S) = 1 subject

to the constraint that each node v is the neighbor of at most hv sets in the family.

Primal-Dual Algorithm. Let X ⊆ Vs be any subset of nodes. A node set S

is a violated connected component with respect to X if S is a connected component

“induced by” X and f(S) = 1. A partial solution is a set X of nodes containing

{v : f(v) = 1} such that there is some violated connected component with respect

to X. An oracle Viol(.) takes a partial solution X as input and outputs the violated

connected components with respect to X. X initially consists of all nodes v such that

f({v}) = 1 (i.e. V ). These nodes of course have cost zero.

The algorithm maintains a dual feasible solution y.

For a set X of nodes of Gs, a set F of nodes is a feasible augmentation of X if

F ⊇ X and F is a feasible solution. If in addition no proper subset of F is a feasible

augmentation of X then F is a minimal feasible augmentation of X.
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1. y ← 0

2. X ← {v : f({v}) = 1}

while there is a violated connected component with respect to X do

(a) Increase y(S) uniformly for all sets S ∈ Viol(X) until the dual linear-program

inequality for some v becomes tight:
∑

S⊆Vs:v∈Γ(S)

yS ≤ hv, ∀v ∈ Vs

(b) Add v to X, i.e. xv ← 1.

end while

for each v in X in the reverse of the order in which they were added during the

while-loop: do

(a) If f(S) = 0 for every connected component S induced by X − {v}, then

remove v from X.

end for

3. Return X.
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Since Demaine et al. [23] consider this problem in a planar graph they are

able to prove a theorem that bounds the number of additional vertices in a minimal

feasible augmentation in terms of the number of violated components. In particular

they prove that
∑
{|F ∩Γ(S)| : S ∈ Viol(X)} ≤ 6|Viol(X)|. However the graph that

is obtained from our problem the Min-cost Terrain Spanner problem is not planar.

On this graph it is not possible to obtain such a bound. The following bad example

illustrates this. See Figure 4.3.
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Figure 4.3: Bad Example for the primal-dual algorithm

On this terrain the vertices V are marked with black dots. For each vertex

only two distinct height assignments are available - height zero and height H - i.e.

∀vi ∈ V , H(vi) = {0, H}. Here, the complete solution consists of n
2

towers of height

0 on the left side and n
2

towers of height H on the right side.
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Thus when formulated as Node Weighted Steiner Tree instance, Vs consists of

{vih|vi ∈ V, h ∈ H(vi)}. Es consists of edges from every vertex in Vs corresponding

to the villages on the left side to every vertex viH for the corresponding villages on

the right hand side.

In this example let X be the set of all terminals i.e. X = V . Hence every ter-

minal is a violated component - i.e. there are n violated components. Clearly the set

F = {viH corresponding to all villages on RHS} is a minimal feasible augmentation

of X. To see this note that by building towers of height H at all vertices on right

hand side gives us a feasible solution and if any one of these towers is not built the

solution no longer remains feasible. Thus
∑
{|F ∩ Γ(S)| : S ∈ Viol(X)} is Ω(n2)

while |Viol(X)| is only O(n). Hence the gap is arbitrarily bad.

We can extend the above example to provide a bad example for the algorithm

itself. Consider a modified terrain (Figure 4.4) where at the rightmost vertex a tower

of height 8H sees all villages and let this be a candidate height assignment. Clearly

the optimal solution builds this single height 8H tower but the algorithm will not be

able to find this solution. This is because the constraints for vertices corresponding

to height H towers will become tight earlier in the Node Weighted Steiner Tree

formulation - i.e. when the values yv will become H
(n

2
+1)

for all v ∈ V . Thus the

optimal solution has cost 8H while the algorithm gives a solution of cost nH
2

- a gap

of Ω(n).
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8H

H

Figure 4.4: Bad Example for the primal-dual algorithm (Figure not to scale). The tall
tower at the rightmost vertex is of height 8H and is part of the optimal solution. The
dark lines indicate visibilities in the optimal solution while the dotted lines indicate
visibilities in the solution built by the algorithm

4.4 Remarks

A couple of remarks about this problem - our approaches towards it and its

hardness - are in order here. Geometry has been found to be helpful in making

it possible to obtain efficient algorithms for a large variety of coverage problems.

However, the connectivity requirement of this problem possibly makes it hard even

with the help of geometry. In particular it makes it hard to find an appropriate
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rounding scheme in the linear programming approach. Also the problem does not

seem easily amenable to dynamic programming. There seems to be no easy intuitive

way to decompose it into smaller subproblems and this might again be an artefact of

the connectivity (in addition to coverage) requirement.
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CHAPTER 5
MULTIWAY BARRIER CUT

Wireless sensors are being extensively used in applications to provide barriers

as a defense mechanism against intruders at important buildings, estates, national

borders etc. Monitoring the area of interest by this type of coverage is called barrier

coverage [47]. Such sensors are also being used to detect and track moving objects such

as animals in national parks, enemies in a battlefield, forest fires, crop diseases etc. In

such applications it might be prohibitively expensive to attain blanket coverage but

sufficient to ensure that the object under consideration cannot travel too far before

it is detected. Such a coverage is called trap coverage [7, 60].

Inspired by such applications, we consider the problem of isolating a set of

points by a minimum-size subset of a given set of unit radius disks. A unit disk

crudely models the region sensed by a sensor, and our work here readily generalizes

to disks of arbitrary, different radii.

(a) (b)

Figure 5.1: Example of a multiway barrier cut. (a) This set of disks separates the
points because every path connecting any two points must intersect a disk. (b) This
set of disks does not separate the points.
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Problem Formulation. The input to our problem is a set I of n unit disks, and a

set P of k points such that I separates P , that is, for any two points p, q ∈ P , every

path between p and q intersects at least one disk in I. The goal is to find a minimum

cardinality subset of I that separates P . See Figure 5.1 for an illustration of this

notion of separation.

For the problem of covering points by the smallest subset of a given set of

unit disks, approximation algorithms have been designed that guarantee an O(1)

approximation and even a PTAS [12, 53]. These results hold even for disks of arbitrary

radii. Our problem can be viewed as a set cover problem where the elements that

need to be covered are not points, but paths. However, known results only imply a

trivial O(n) approximation when viewed through this set cover lens.

Another example of a problem that has received such attention is the inde-

pendent set problem. For many geometric variants [14, 15, 30], approximation ratios

that are better than that for the combinatorial case are known.

Our problem is similar to the node multi-terminal cut problem in graphs [31].

Here, we are given a graph G = (V, E) with costs on the vertices and a subset

U ⊆ V of k vertices, and our goal is to compute a minimum cost subset of vertices

whose removal disconnects every pair of vertices in U . This problem admits a poly-

time algorithm that guarantees an O(1) approximation. We note however that the

problem we consider does not seem to be a special case of the multi-terminal cut

problem.



85

Contribution and Related Work. Our main result is a polynomial time algo-

rithm that guarantees an O(1) approximation for the problem. Thus we prove The-

orem 3 which states that for a set I of n unit disks and P a set of k points such that

I separates P there is a polynomial time algorithm that computes a subset O ⊆ I

of disks that also separates P , with the guarantee that |O| is within a multiplicative

O(1) of the smallest subset of I that separates P .To the best of our knowledge, this

is the first non-trivial approximation algorithm for this problem. Our algorithm is

simple and combinatorial and is in fact a greedy algorithm. We first present an O(1)

approximation for the following two-point separation problem. We are given a set of

unit disks G, and two points s and t, and we wish to find the smallest subset B ⊆ G

so that B separates s and t.

Our greedy algorithm to the overall problem applies the two-point separation

algorithm to find the cheapest subset B of I that separates some pair of points in P .

Suppose that P is partitioned into sets P1, P2, . . . , Pτ where each Pi is the subset of

points in the same “face” with respect to B. The algorithm then recursively finds a

separator for each of the Pi, and returns the union of these and B.

The analysis to show that this algorithm has the O(1) approximation guarantee

relies on the combinatorial complexity of the boundary of the union of disks. It uses a

subtle and global argument to bound the total size of all the separators B computed

in each of the recursive calls.

Our approximation algorithm for the two-point separation problem, which is

a subroutine we use in the overall algorithm, is similar to fast algorithms for finding
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minimum s-t cuts in undirected planar graphs, see for example [59]. Our overall

greedy algorithm has some resemblance to the algorithm of Erickson and Har-Peled

[28] employed in the context of approximating the minimum cut graph of a polyhedral

manifold. The details of the our algorithm and the analysis, however, are quite

different from these papers since we do not have an embedded graph but rather a

system of unit disks. Sankararaman et al. [60] investigate a notion of coverage which

they call weak coverage. Given a region R of interest (which they take to be a square

in the plane) and a set I of unit disks (sensors), the region is said to be k-weakly

covered if each connected component of R −
⋃

d∈I d has diameter at most k. They

consider the situation when a given set I of unit disks completely covers R, and

address the problem of partitioning I into as many subsets as possible so that R is

k-weakly covered by every subset. Their work differs in flavor from ours mainly due

to the assumption that I completely covers R.

In Section 5.1, we discuss standard notions we require, and then reduce our problem

to the case where none of the points in input P are contained in any of the input disks.

In Section 5.2, we present our approximation algorithm for separating two points. In

Section 5.3, we describe our main result, the constant factor approximation algorithm

for separating P . We conclude in Section 5.4 with some remarks.

5.1 Basic Concepts

We will refer to the standard notions of vertices, edges, and faces in arrange-

ments of circles [1]. In particular, for a set R of m disks, we are interested in the faces



87

in the complement of the union of the disks in R. These are the connected compo-

nents of the set ℜ2−
⋃

d∈R d. We also need the combinatorial result that the number

of these faces is O(m). Furthermore, the total number of vertices and edges on the

boundaries of all these faces, that is, the combinatorial complexity of the boundary of

the union of disks in R, is O(m) [1]. We make standard general position assumptions

about the input set I of disks in this chapter. This helps simplify the exposition and

is without loss of generality.

Lemma 18. Let R be a set of disks in the plane, and Q a set of points so that (a) no

point from Q is contained in any disk from R, and (b) no face in the complement of

the union of the disks in R contains more than one point of Q. Then |R| = Ω(|Q|).

Proof. The number of faces in the in the complement of the union of the disks in R

is O(|R|).

Covering vs. Separating. The input to our problem is a set I of n unit disks,

and P a set of k points such that I separates P . Let Pc ⊆ P denote those points

contained in some disk in I; and Ps denote the remaining points. We compute an α-

approximation to the smallest subset of I that covers Pc using a traditional set-cover

algorithm; there are several poly-time algorithms that guarantee that α = O(1). We

compute a β-approximation to the smallest subset of I that separates Ps, using the

algorithm developed in the rest of this chapter. We argue below that the combination

of the two solutions is an O(α + β) approximation to the smallest subset of I that

separates P .
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Let OPT ⊆ I denote an optimal subset that separates P . Suppose that OPT

covers k1 of the points in Pc and let k2 = |Pc| − k1. By Lemma 18, |OPT| = Ω(k2).

Now, by picking one disk to cover each of the k2 points of Pc not covered by

OPT, we see that there is a cover of Pc of size at most |OPT| + k2 = O(|OPT|).

Thus, our α-approximation has size O(α) · |OPT|. Since OPT also separates Ps,

our β-approximation has size O(β) · |OPT|. Thus the combined solution has size

O(α + β) · |OPT|.

In the rest of the chapter, we abuse notation and assume that no point in the

input set P is contained in any disk in I, and describe a poly-time algorithm that

computes an O(1)-approximation to the optimal subset of I that separates P .

5.2 Separating Two Points

Let s and t be two points in the plane, and G a set of disks such that no disk

in G contains either s or t, but G separates s and t. See Figure 5.2. Our goal is

to find the smallest cardinality subset B of G that separates s and t. We describe

below a polynomial time algorithm that returns a constant factor approximation to

this problem.

Without loss of generality, we may assume that the intersection graph of G

is connected. (Otherwise, we apply the algorithm to each connected component for

which the disks in the component separate s and t. We return the best solution

obtained.) Let fs and ft denote the faces containing s and t, respectively, in the

arrangement of G. We augment the intersection graph of G with vertices correspond-
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fs

s
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s′ t′
s

ft

(a) (b)

Figure 5.2: Computing the shortest path σ in the intersection graph. (a) The figure
shows faces fs and ft (b) This figure shows the sequence of disks in σ (their boundaries
are bold) and the path π.

ing to s and t, and add an edge from s to each disk that contributes an edge to the

boundary of the face fs, and an edge from t to each disk that contributes an edge to

the boundary of the face ft. We assign a cost of 0 to s, t, and a cost of 1 to each

disk in G. We then find the shortest path from s to t in this graph, where the length

of a path is the number of the vertices on it that correspond to disks in G. Let σ

denote the sequence of disks on this shortest path. Note that any two disks that are

not consecutive in σ do not intersect.

Using σ, we compute a path π in the plane, as described below, from s to t so

that (a) there are points s′ and t′ on π so that the portion of π from s to s′ is in fs,

and the portion from t′ to t is in ft; (b) every point on π from s′ to t′ is contained

in some disk from σ; (c) the intersection of π with each disk in σ is connected. See

Figure 5.2.

Suppose that the sequence of disks in σ is d1, . . . , d|σ|. Let s′ (resp. t′) be a

point in d1 (resp. dσ) that lies on the boundary of fs (resp. ft). For 1 ≤ i ≤ |σ| − 1,
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choose xi to denote an arbitrary point in the intersection of di and di+1. The path π is

constructed as follows: Take an arbitrary path from s to s′ that lies within fs, followed

by the line segments s′x1, x1x2, . . . , x|σ|−2x|σ|−1, x|σ|−1t′, followed by an arbitrary path

from t′ to t that lies within ft.

Properties (a) and (b) hold for π by construction. Property (c) is seen to

follow from the fact that disks that are not consecutive in σ do not overlap.

Notice that π “cuts” each disk in σ into two pieces. (Formally, the removal

of π from any disk in σ yields two connected sets.) The path π may also intersect

other disks and cut them into two or more pieces, and we refer to these pieces as disk

pieces. For a disk that π does not intersect, there is only one disk piece, which is the

disk itself.

We consider the intersection graph H of the disk pieces that come from disks

in G. Observe that a disk piece does not have points on π, since π is removed; so two

disk pieces intersecting means there is a point outside π that lies in both of them. In

this graph, each disk piece has a cost of 1.

In this graph H , we compute, for each disk d ∈ σ, the shortest path between

the two pieces corresponding to d. Suppose d′ ∈ σ yields the overall shortest path σ′;

let D denote the set of disks that contribute a disk piece to this shortest path. Our

algorithm returns D as its computed solution. See Figure 5.3.

We note that D separates s and t – in particular, the union of the disk pieces

in σ′ and the set π∩d′ contains a cycle in the plane that intersects the path π between

s and t exactly once.
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s’
t

t’
s

Figure 5.3: This figure continues with the example of Figure 5.2. The disks with bold
boundary are the set D computed by our algorithm. The only disk from G with bold
boundary has two disk pieces, and the shortest path between them in graph H yields
D.

5.2.1 Bounding the Size of the Output

Let B∗ denote the smallest subset of G that separates s and t. We will show

that |D| = O(|B∗|). Let f ∗ denote the face containing s in the arrangement of B∗.

Due to the optimality of B∗, we may assume that the boundary of f ∗ has only one

component. Let a (resp. b) denote the first (resp. last) point on path π where π leaves

f ∗. It is possible that a = b. We find a minimum cardinality contiguous subsequence

σ of σ that contains the subpath of π from a to b; let da and db denote the first and

last disks in σ. See Figure 5.4.

We claim that |σ| ≤ |B∗|+ 2; if this inequality does not hold, then we obtain

a contradiction to the optimality of σ by replacing the disks in the σ \ {da, db} by B∗.

Consider the face f containing s in the arrangement with B∗ ∪ σ. Each edge

that bounds this face comes from a single disk piece, except for one edge corresponding

to da that may come from two disk pieces. (This follows from the fact that the portion

of π between a and b is covered by the disks in σ.) These disk pieces induce a path in H
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s
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(a) (b)

Figure 5.4: The shaded disks are in B∗.(a) This figure shows points a and b where
π leaves f ∗ for the first and last time, respectively. (b) This figure shows the face f
containing s in the arrangement with B∗ ∪ σ

in between the two pieces from da, and their cost therefore upper bounds the cost of D.

We may bound the cost of these disk pieces by the number of edges on the boundary

of f (with respect to B∗ ∪ σ). The number of such edges is O(|B∗|+ |σ|) = O(|B∗|).

Theorem 19. Let s and t be two points in the plane, and G a set of disks such that

no disk in G contains either s or t, but G separates s and t. There is a polynomial

time algorithm that takes such G, s, and t as input, and outputs a subset B ⊆ G that

separates s and t; the size of B is at most a multiplicative constant of the size of the

smallest subset B∗ ⊆ G that separates s and t.

5.3 Separating Multiple Points

We now present a polynomial time algorithm that yields an O(1) approxi-

mation to the problem of finding a minimum subset of I that separates the set P

of points thus proving Theorem 3. The algorithm is obtained by calling recSep(P ),
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where recSep(Q), for any Q ⊆ P is the following recursive procedure:

1. If |Q| ≤ 1, return ∅.

2. For every pair of points s, t ∈ Q, invoke the algorithm of Theorem 19 (with

G← I) to find a subset Bs,t ⊆ I such that Bs,t separates s and t.

3. Let B denote the minimum size subset Bs,t over all pairs s and t considered.

4. Consider the partition of Q into subsets so that each subset corresponds to

points in the same face (with respect to B). Suppose Q1, . . . , Qτ are the subsets

in this partition. Note that τ ≥ 2, since B separates some pair of points in Q.

5. Return B ∪
⋃τ

j=1 recSep(Qj).

Clearly, recSep(P ) yields a separator for P . To bound the size of this separator,

let us define a set Q that contains as its element any Q ⊆ P such that |Q| ≥ 2 and

recSep(Q) is called somewhere within the call to recSep(P ). For any Q ∈ Q, define

BQ to be the set B that is computed in the body of the call to recSep(Q). Notice

that recSep(P ) returns ∪Q∈QBQ.

Now we “charge” each such BQ to an arbitrary point within pQ ∈ Q in such a

way that no point in P is charged more than once. A moment’s thought reveals that

this is indeed possible. (In a tree where each interval node has degree at least 2, the

number of leaves is greater than the number of internal nodes.)

Let OPT denote the optimal separator for P and let FQ ⊆ OPT denote the

disks that contribute to the boundary of the face (in the arrangement of OPT) con-

taining pQ. We claim that |BQ| = O(|FQ|); indeed FQ separates pQ ∈ Q from
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any point in P , and thus any point in Q. Thus for any t ∈ Q \ {pQ}, we have

|BQ| ≤ BpQ,t = O(|FQ|).

We thus have

⋃

Q∈Q

|BQ| ≤
∑

Q∈Q

O(|FQ|) = O(|OPT|),

where the last equality follows from union complexity.

Theorem 3 follows.

5.4 Remarks

We have a presented an O(1)-approximation algorithm for finding the mini-

mum subset of a given set I of disks that separates a given set of points P . One way

to understand our contribution is as follows. Suppose we had at our disposal an effi-

cient algorithm that optimally separates a single point p ∈ P from every other point

in P . Then applying this algorithm for each point in P , we get a separator for P .

That the size of this separator is within O(1) of the optimal is an easy consequence of

union complexity. However, we only have at our disposal an efficient algorithm for a

weaker task: that of approximately separating two given points in P . What we have

shown is that even this suffices for the task of obtaining an O(1) approximation to

the overall problem.

Remark on Extension to Disks of Arbitrary Radii. It is easy to see that our

algorithm and the approximation guarantee generalize to the case when the disks

have arbitrary and different radii. To see this note that our analysis does not use any
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property that is specific to unit disks. The only geometric property of disks we use

is the union complexity being linear.
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CHAPTER 6
CONCLUSIONS AND OPEN PROBLEMS

This document has given a summary of some work done in the area of algo-

rithms for combinatorial optimization problems in a geometric setting. Each problem

presents unique geometric properties and as a result the ability to exploit this struc-

ture for providing solutions varies in terms of efficiency and quality of approximation.

Clearly, there are several related open, interesting and challenging problems in this

area. We conclude the document with a discussion of open problems related to our

work.

6.1 Clustering to Minimize the Sum of Radii

Our work on geometric clustering to minimize the sum of radii and the related

work of [33] for the metric version of the problem are very interesting from a theoretical

perspective. The problem seems to be extremely similar to many other variants of

clustering which are NP-hard, yet admits an algorithm that is within a factor ǫ of

optimal and runs in time polynomial in input size n and log 1
ǫ
. Under certain standard

assumptions of model of computation it admits an exact polynomial time algorithm.

The metric version of the problem can be solved exactly in quasipolynomial time

when the aspect ratio is a polynomial in the number of input points. While these

results have great theoretical impact, the running times are too large to be of practical

interest. It would be interesting to see if the separability properties of the problem

can also be used to give exact algorithms or interesting heuristics with polynomial
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running times.

6.2 Network Spanner Topology Design

in the Plane

Our work on network design on the plane is very interesting from a practical as

well as theoretical perspective. We have given a constant factor approximation to the

Tower Cover Problem with power constraints using the geometry of the setting thus

improving over the previous work of [54]. Their approach is not geometric in nature

and as such cannot do better than a logarithmic approximation. Our algorithm is also

very efficient and practical and can be applied to real-world scenarios as indicated by

our experimental results. We thus improve upon the exhaustive search approach of

[61]. However the overall network design problem has a lot more questions that are

still open. The tower cover problem is only a part of the overall topology construction

problem. Some of the challenging issues that are still open include ensuring that

the constructed topology satisfy other constraints regarding maintaining throughput,

avoiding interference and a bound on the hop count of transmission.

6.3 Network Spanner Topology Design

on the Terrain

Our work on the problem of finding a minimum cost tower height assignment

to village nodes lying on a 1.5-dimensional terrain shows some limitations of geometric

techniques. We show that the problem of finding a connected spanner by assigning

heights to towers in this setting can be reduced to a Node Weighted Steiner Tree
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Problem implying a logarithmic approximation. On the other hand this might per-

haps help in explaning and addressing some of the issues faced in obtaining a better

(constant factor) approximation.

6.4 Multiway Barrier Cut

We formulated the Multiway Barrier Cut problem - this problem is also very

interesting form a theoretical and practical point of view. In this problem we seek to

minimize the number of wireless unit disk sensors used to ensure that a given set of

points is “barrier-separated” - i.e. any path between any pair of points is cut off by

some sensor. This problem has practical implications in applications such as border

patrol, guarding estates, national parks etc. On the theoretical side this problem is a

version of geometric set cover with a different flavor - here the elements to be covered

are all possible paths in the plane between any two pair of points and the sets are the

disks representing the sensors. We give a constant factor approximation algorithm

to this problem that is simple, recursive and greedy and easy to implement. Our

algorithm also works for disks of arbitrary radii.

As mentioned in Section 5.4 the tool we have at our disposal is an efficient

algorithm for separating a pair of points. This is a weaker tool than one which would

separate a single point from all other points. Despite this limitation we are able to

efficiently separate all pairs of points. An interesting question then is given a set Z

of k pairs of input points X i.e. Z = {(x1, y1), (x2, y2), · · · (xk, yk)} such that every

pair (xi, yi) ∈ Z needs to be separated can we still obtain an efficient approximation
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with this or some other approach. This problem would then have the flavor of the

multi-cut problem which is harder in the traditional graph theoretic setting than the

multiway cut problem. It will be interesting to see how well this particular problem

can be approximated in this geometric setting. A slight variant would be where the

set of pairs of points that need to be separated consists of all pairs that are at least

some given distance apart. This models more closely the original motivation of trap

coverage.

Finally, implementation of our algorithm and simulation of various scenarios

would be an interesting and challenging project. This would involve representing

the input in terms of arrangement of disks, building the geometric disk intersection

graphs on which shortest path routines are run and verifying separation of points in

the ararangements of the disks picked. While this is a polynomial time algorithm one

does not know how efficient it will be in practice on real-world scenarions but the

algorithm only needs to be run once; so one can afford to spend some time doing this.

An interesting idea would be to design several practical input scenarios - for instance,

border patrol, college campus, guarding estates etc. With each of these the layout of

points and disks maybe slightly different. It would be then interesting to see whether

the algorithm does better on some specific input scenario.
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