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ABSTRACT

In this thesis we accomplish two goals: We construct a two dimensional con-

formal field theory (CFT), in the form of a Liouville theory, in the near horizon

limit for three and four dimensions black holes. The near horizon CFT assumes the

two dimensional black hole solutions that were first introduced by Christensen and

Fulling (1977 Phys. Rev. D 15 2088104) and later expanded to a greater class of

black holes via Robinson and Wilczek (2005 Phys. Rev. Lett. 95 011303). The two

dimensions black holes admit a Diff(S1) or Witt subalgebra, which upon quanti-

zation in the horizon limit becomes Virasoro with calculable central charge. These

charges and lowest Virasoro eigen-modes reproduce the correct Bekenstein-Hawking

entropy of the four and three dimensions black holes via the Cardy formula (Blöte

et al 1986 Phys. Rev. Lett. 56 742; Cardy 1986 Nucl. Phys. B 270 186). Fur-

thermore, the two dimensions CFT’s energy momentum tensor is anomalous, i.e.

its trace is nonzero. However, In the horizon limit the energy momentum tensor

becomes holomorphic equaling the Hawking flux of the four and three dimensions

black holes. This encoding of both entropy and temperature provides a uniformity

in the calculation of black hole thermodynamics and statistical quantities for the

non local effective action approach.

We also show that the near horizon regime of a Kerr-Newman-AdS (KNAdS)

black hole, given by its two dimensional analogue a la Robinson and Wilczek, is

asymptotically AdS2 and dual to a one dimensional quantum conformal field theory

(CFT). The s-wave contribution of the resulting CFT’s energy-momentum-tensor
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together with the asymptotic symmetries, generate a centrally extended Virasoro al-

gebra, whose central charge reproduces the Bekenstein-Hawking entropy via Cardy’s

Formula. Our derived central charge also agrees with the near extremal Kerr/CFT

Correspondence in the appropriate limits. We also compute the Hawking temper-

ature of the KNAdS black hole by coupling its Robinson and Wilczek two dimen-

sional analogue (RW2DA) to conformal matter.
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CHAPTER 1

INTRODUCTION

The thermodynamic and statistical properties of black holes have provided a

unique insight and test for theories of quantum gravity. Though a fully formulated

quantum field theory of gravity is lacking, a multitude of candidates exists, with

string theory and loop quantum gravity leading in popularity. Despite a variety

of theories, it is the hope that any serious candidate reproduce a variant of the

Bekenstein-Hawking entropy [1]

SBH =
A

4~G
(1.1)

and Hawking temperature [2, 3]

TH =
~κ
2π
, (1.2)

where A is the horizon area and κ the surface gravity of the black hole. The fact that

these quantities depend on both ~ and G is evident of their quantum gravitational

origin.

Effective quantum gravity theories have had much success in reproducing (1.1)

and (1.2) via analysis of anomalous energy momentum tensors,
{
gµν 〈Tµν〉 ≡

〈
T µ
µ

〉
6= 0 Trace Anomaly (CFT)〈

∇νT
ν

µ

〉
−∇ν

〈
T ν
µ

〉
6= 0 Gravitational Anomaly

, (1.3)

of non-local effective actions [4] and holographic one and two dimensional conformal

field theories [5], respectively. We will discuss this in more detail next and sketch

where the work of this thesis fits into the current plethora of approaches to quantum
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gravitational affects in the near horizon regime of black holes.

1.1 Quantum Gravity

The main difficulty with constructing a quantum field theory of gravity lies in

its renormalizabilty. To see this let us exam the vacuum theory with zero cosmo-

logical constant given by the Einstein-Hilbert functional:

SEH =
1

16πG

∫
d4x
√−gR. (1.4)

Next, we will consider small perturbations to second order in hµν where we assumed

a spacetime:

gµν = ηµν + hµν . (1.5)

To second order the theory (1.4) is linear in h and behaves as a gauge theory, i.e.

∂xα

∂x′µ
∂xβ

∂x′ν
gαβ = ηµν + hµν + ∂µξν + ∂νξµ +O

(
h2
)
. (1.6)

Imposing the Hilbert gauge

∂µh
µ
ν − ∂νhµµ = 0 (1.7)

the Lagrangian density, to lowest order reads:

L0 =
1

2
hαβ∂γV

αβµν∂γhµν , (1.8)

where V αβµν = 1
2
δαµδβν− 1

4
δαβδµν . From the lowest order Lagrangian we obtain the

graviton propagator in Hilbert gauge

Gαβµν =
δµαδνβ + δµβδνα − δµνδαβ

k2 + iε
, (1.9)

which allows the study of the Feynman rules for the tree level diagrams in Figure 1.1,

from which we obtain the simple formula for the naive degree of momentum diver-
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(a) (b) (c)

Figure 1.1: First few graviton graviton diagrams.

gences:

D = 4− E + n, (1.10)

where E is the number of external legs and n the number of vertexes. This simple

formula indicates non-renormalizabilty due to the fact that it increases with the

number of vertexes. In other words, an infinite sum within the path integral to all

orders in ~ will be plagued by infinite ever-diverging diagrams. Thus the theory

is non-renormalizable. There are several ideas and theories to attack this problem

and for a comprehensive review of approaches to quantum gravity see [6, 5, 7].

1.2 Effective Action and Hawking Temperature

Analysis of an anomalous energy momentum tensor to compute (1.2) was first

carried out by Christensen and Fulling in [8]. Considering the most general solution

to the conservation equation

∇µT
µ
ν = 0, (1.11)

they found that by restricting to the r−t plane of a free scalar field in Schwarzschild

geometry the energy momentum tensor exhibits a trace anomaly leading to the

result:

〈T rt 〉 =
1

768πG2M2
=

π

12
TH

2, (1.12)
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which is exactly the luminosity (Hawking flux, Hawking radiation) of the 4-dimensional

black hole in units ~ = 1 (similarly T r
U(1) t carries the electromagnetic Pointing flux).

A similar approach was studied in [9] where the authors determined the s-wave

contribution of a scalar field to the 4-dimensional effective action for an arbitrary

spherically symmetric gravitational field. Applying their results to a Schwarzschild

black hole, the authors showed the energy momentum tensor of the non-local ef-

fective action to contain the Hawking Flux. Other closely related approaches for

scalar fields and two dimensional theories include [10, 11, 12, 13, 14]. The general

idea follows from studying the effective action of the functional:

Z(ϕ, g) =

∫
Dϕe−iSD[ϕ,g], (1.13)

where SD[ϕ, g] is the action of a free scalar field in D dimensions on the background

spacetime g
(D)

µν . For the case where D = 2 the effective action is given by the

non-local Polyakov Action [15, 16]

ΓPolyakov =
1

96π

∫
d2x
√
−g(2)R(2) 1

�g(2)

R(2), (1.14)

which has shown to play an important role for computing quantum gravitational

quantities near black hole horizons [17, 18, 19, 20] and exhibits a unique relationship

to conformal algebras [21, 22].

Another method for computing Hawking radiation, first introduced by Robin-

son and Wilczek [23], considers a quantum chiral-scalar field theory of 2-dimensions

in the near horizon limit of a static 4-dimensional black hole. A two dimensional

chiral field theory is known to exhibit a gravitational anomaly of the form:

∇µ 〈T µν 〉 =
1

96π
√
−g(2)

εγρ∂ρ∂λΓ
(2)λ

νγ, (1.15)

where g
(2)
µν contains the leftover components of the 4-dimensional metric which are
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not redshifted away in the near horizon limit of the functional

Sfree scalar =
1

2

∫
d4x
√−g∇µϕ∇µϕ. (1.16)

Robinson and Wilczek showed in the near horizon regime of a Schwarzschild black

hole, that to ensure a unitary quantum field theory, the black hole should radiate as

a thermal bath of temperature equaling TH . In other words, quantum gravitational

effects in the near horizon regime cancel the chiral/gravitational anomaly [24]. This

method has been expanded to include gauge/gravitational anomalies and covariant

anomalies [25, 26, 27, 28] and has successfully reproduced the black hole tempera-

ture for charged-rotating black holes [18, 19], dS/AdS black holes [29, 30], rotating

dS/AdS black holes [31, 32], black rings and black string [33, 34], 3-dimensional

black holes [35, 36] and black holes of non spherical topologies [37]. This method

provides a fundamental reason for black hole thermodynamics based on symmetry

principles of a near horizon quantum field theory. It also provides a Robinson and

Wilczek two dimensional analogue (RW2DA), for higher dimensional black holes

besides the Schwarzschild case. This is a rather useful fact since the Ricci tensor in

2-dimensions is always Einstein, i.e.1

R(2)
µν −

1

2
g(2)

µνR
(2) ≡ 0. (1.17)

Thus classically, in 2-dimensions, there are no general relativistic dynamics and any

gravitational effects that are present must have risen from some (effective) quantum

gravity of metric g
(2)
µν .

1In 2-dimensions the curvature of any Riemannian manifold is completely characterized by its
scalar variant. This is because any 2-form has only one independent component. Thus for any
Riemannian-Levi-Cevitia connection 2-form ωαβ , dω12 = Kvol2,where K = 1

(2)((2)−1)R
(2) is the

Gauss curvature
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1.3 Holographic CFT and Entropy

Combining two dimensional near horizon physics with holography has pro-

vided a unique scenario for studying black hole entropy by asserting that quantum

gravity in two dimensions is dual to a conformal field theory of equal or lesser dimen-

sion. This duality is richly exemplified in the well known AdS/CFT correspondence

of string theory [38]. One simplistic viewpoint of this correspondence is to analyze

the asymptotic symmetry group of an AdS space. Then choosing a particular set

of boundary conditions the asymptotic symmetry group my includ the generators

of conformal symmetry. In fact in their seminal work [39], Brown and Henneaux

showed the algebra of the asymptotic symmetry group of three dimensional grav-

ity with a negative cosmological constant is a Virasoro algebra (conformal algebra)

with calculable central charge. This is widely considered to be the first example of

an AdS3/CFT2 correspondence. Applying this to the three dimensional BTZ-black

hole [40], Strominger [41] reproduced the Hawking-Bekenstein Entropy [1]

SBH =
A

4~G
(1.18)

via Cardy’s Formula [42, 43]. This idea has been generalized and applied to various

black holes in near horizon regimes and at asymptotic infinity by Carlip and others

[17, 44, 20, 45, 46, 47, 48, 49, 50, 51], where the general idea is summarized as

follows. Given a set of consistent metric boundary or fall-off conditions, there exists

an associated asymptotic symmetry group (ASG). This ASG is generated by a finite

set of diffeomorphisms which have a mode decomposition into a set of discrete ξn

for all n ∈ Z satisfying a Diff(S1) subalgebra:

i {ξm, ξn} = (m− n)ξm+n. (1.19)
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Consistency necessitates that these generators, ξn, be finite and well behaved at the

respective boundary. Upon quantization, ξn → Qn via Hamiltonian or Covariant

Lagrangian techniques, Brown and Henneaux showed [39]

[Qm,Qn] = (m− n)Qm+n +
c

12
m
(
m2 − 1

)
δm+n,0 (1.20)

where c is a calculable central extension. We should note that (1.20) assumes a fixed

normalization of the lowest Virasoro mode due to the linear term in the center. This

ambiguity was first addressed by string theory in [52, 53, 41, 54], where it was shown

that the massive BTZ black hole is a solution to low energy superstring theory lying

in the Neveu-Schwarz sector (antiperiodic BC). This implies a mass shift Q0 = c
24

and thus fixes the normalization such that:

(
Q0 −

c

24

)
|0〉 = 0. (1.21)

In the case for non-supersymmetric theories the requirement for the generators

of the ASG to include a proper SL(2,R) subgroup, i.e. {Q−1,Q0,Q1} form a

proper sl(2,R) subalgebra, is synonymous to the requirement that the vacuum be

annihilated according to (1.21). The Bekenstein-Hawking entropy is then obtained

from Cardy’s Formula [42, 43] in terms of c and the proper normalized lowest eigen-

mode via:

S = 2π

√
c · Q0

6
. (1.22)

Applying the above outline to the two dimensional dilaton black hole

ds2 = gDµνdx
µdxν

= −
[
(λx)2 − 2M

λ
(λx)3

]
dt2 +

[
(λx)2 − 2M

λ
(λx)3

]−1

dx2,
(1.23)

Cadoni computed the following central extension and zero mode [46]:

c = 48
M2

λ2
and ξ0 =

M2

2λ2
. (1.24)
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Cadoni further showed by conformally mapping (1.23) to the s-wave sector of the

Schwarzschild metric:

g(2)
µν = 2φgDµν (1.25)

with

λ2 =
1

G
(1.26)

and

x =
G

r
(1.27)

(1.24) and (1.22) reproduced the Bekenstein-Hawking Entropy for the respective

4-dimensional black hole. In other words, together with Robinson and Wilczek’s

results [23] both entropy and temperature of the Schwarzschild black hole induces

some effective two dimensional semiclassical spacetime

ds2 = −
(

1− 2GM

r

)
dt2 +

(
1− 2GM

r

)−1

dr2. (1.28)

Our goal will be to expound and extend this idea to include a greater class of

rotating, charged and other types of black holes.

1.4 Kerr/CFT Correspondence

A recent study by Guica, Hartman, Song and Strominger [55] proposed that

the near horizon geometry of an extremal Kerr black hole is holographically dual

to a two dimensional chiral CFT2 with non vanishing left central extension cL. The

2Chiral in this part means that the generators of conformal symmetry split into two holomorphic
sectors each with its own central extension.
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Kerr geometry is given by the line element:

ds2 = g(4)
µνdx

µdxν

= −∆(r)

ρ2

(
dt− a sin2 θ

Ξ
dφ

)2

+
ρ2

∆(r)
dr2 +

ρ2

∆θ

dθ2

+
∆θ sin2 θ

ρ2

(
adt− r2 + a2

Ξ
dφ

)2

,

(1.29)

where

∆(r) =
(
r2 + a2

)
− 2GMr,

∆θ = 1,

ρ2 = r2 + a2 cos2 θ and

Ξ = 1

(1.30)

and the horizons are located at r± = GM ±
√
G2M2 − a2. An extremal Kerr

black hole is one for which GM = a, leaving one horizon located at r+ = GM .

By constructing the Frolov-Thorne vacuum for generic Kerr geometry [56], which

reduces to the Hartle-Hawking vacuum [57] for a → 0, GHSS obtain a non van-

ishing left Frolov-Thorne temperature TL in the near horizon, extremal limit. The

Hartle-Hawking vacuum is obtained by quantizing a scalar field in the Schwarzschild

spacetime. This spacetime has a well defined time-like killing vector which allows

for the definition of well behaved positive frequency base modes. A given quan-

tum scalar will then be given by a standard Fourier decomposition of these base

modes and their Hermitian conjugates, who’s Fourier coefficients, â† and â act as

creation and annihilation operators. The vacuum annihilated by â is called the

Hartle-Hawking vacuum. The extension of this construction to a Kerr black hole is

not obvious and is only well behaved near the horizon, which is all that is necessary

for Kerr/CFT.
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The temperature together with cL inside the thermal Cardy formula [58] re-

produces the Bekenstein-Hawking entropy for the extremal Kerr black hole:

SBH =
π2

3
cLTL. (1.31)

This correspondence has been extended to various exotic black holes in string theory,

higher dimensional theories and gauged supergravities to name a few [59, 60, 61,

62, 63, 64, 65, 66, 58, 67, 68].

One of the main arguments of the Kerr/CFT correspondence is to apply the

rich ideas of holographic duality to more astrophysical objects/black-holes, such as

the nearly extremal GRS 1915+105, a binary black hole system 11000pc away in

Aquila [69]. In [55] the authors show that GRS 1915+105 is holographically dual

to a two dimensional chiral CFT with cL = (2± 1)× 1079 and in the extremal limit

the inner most stable circular orbit corresponds to the horizon. Thus, the authors

conclude, any radiation emanating from the inner most circular orbit should be well

described by the two dimensional chiral CFT, making the Kerr/CFT correspondence

an essential theoretical tool in an astrophysical observation.

Despite the various models observationalists employ they all incorporate four

main quantities: black hole mass M and spin J , poloidal magnetic field at the hori-

zon B0 and (Eddington) luminosity L for both supermassive [70] and stellar [71]

black holes. This provides a new testable playing field for holography, i.e. to use

some induced two dimensional CFT in the near horizon regime of extremal and

non-extremal black holes to model the four main quantities in accordance with ob-

servation. In particular, the origin or mechanism of B0 is unclear from a theoretical

standpoint, since it must be due to an accreting disk for non gauged black holes.

Yet, it might find its origin in some black-hole/CFT duality.
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1.5 Goals and Outline of Our Work

The aim of this thesis is to apply the rich ideas of holography and effective

action approache to the two dimensional near horizon theory of four dimensional

black holes. The near horizon theories are derived via Robinson and Wilczek’s

dimensional reduction procedure and are referred to as two dimensional analogues

(RW2DA). The salient new features of this this thesis are:

• The study of the conformal equivalence between solution spaces of two dimen-

sional near horizon CFTs and their centers in order to compute the Bekenstein-

Hawking entropies of more general black holes based on the well known dilaton

gravity theory.

• The introduction of a new method for computing Hawking flux by studying

the holomorphic behavior of the energy momentum tensor of conformal matter

at a predefined metric boundary.

• The demonstration that the near horizon, a la Robinson and Wilczek, of a

Kerr-Newman-AdS (KNAdS) metric is asymptotically AdS for a suitable

choice of metric fall off conditions. Then using a covariant Lagrangian tech-

nique and a Liouville type action resulting from the s-channel of a minimally

coupled scalar, the asymptotic quantum generator (charge) algebra is com-

puted, which is a centrally extended Virasoro algebra. This central exten-

sion together with the lowest normalized eigen-mode reproduce the KNAdS

Bekenstein-Hawking entropy inside Cardy’s formula.

The thesis is outlined as follows: Chapter 2 is devoted to the relevant back

ground and motivational material necessary to understand the methodology used

to obtain the main results. Readers with a working knowledge in general relativity,
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black hole physics, quantum field theory in curved spacetime and conformal field

theory may skip this chapter, or refer to it when prompted. Chapter 3 contains the

first part of the original research. The RW2DAs of a large class of black holes are

analyzed and used to compute entropy and temperature. The conformal equivalence

between two dimensional spacetimes are exploited in what is called the ”Cadoni

map”. Chapter 4 contains the second part of the main results of this thesis, namely

the asymptotic symmetry generators, both classical and quantum, of the RW2DA

field theory for the general KNAdS black hole and its coupling to conformal matter

in order to obtain Hawking temperature. In Chapter 5 we discuss our results and

possible future directions.
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CHAPTER 2

BLACK HOLES AND QUANTUM FIELDS REDUX

In this chapter we will follow the conventions outlined in [72, 73, 74, 75, 76, 77]

where the Einstein-Hilbert action with cosmological constant and matter sector, is

given by the functional:

SEH =

∫
d4x
√−g

{
1

16πG
(R− 2Λ) + Lmatter

}
. (2.1)

The Einstein field equation for the above functional, resulting from variation with

respect to the inverse metric tensor is

Rµν −
1

2
gµνR + gµνΛ = 8πGTµν , (2.2)

where Tµν is the energy momentum tensor of the matter sector in (2.1). Solutions

to the Einstein field equation are given by the spacetime pair (M, gµν), where M

is an n-dimensional Riemannian Manifold and gµν its metric tensor.

2.1 Black Holes

In this thesis, we will consider a black hole any region in spacetime, (M, gµν),

that cannot be mapped to conformal infinity. This includes for the most part a

curvature singularity hiding behind a killing horizon or coordinate singularity. As

an illustration of the above definition let us examine the Schwarzschild metric in

Kruskal coordinates

ds2 = −(1− 2GM/r)dudv + r2dΩ2 (2.3)
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where we employed the transformations u = t− r∗,v = t+ r∗ and r∗ =
∫
dr 1

1− 2GM
r

.

We can conformally map (2.3) to Minkowski spacetime via the transformations

U = tan
u√

2GM
& V = tan

v√
2GM

(2.4)

T = V + U & R = V − U (2.5)

modulo a conformal factor 2 cosU cosV . The transformations (2.4) rescale ±∞ to

±π
2

and thus the entire Schwarzschild spacetime can be contained on a finite region

of the U − V plane as depicted in the conformal diagram of Figure 2.1 with labels

defined in Table 2.1. In Figure 2.1 the region bounded by the lines r = 2GM and

r = 0

r = 0

I+

I−

I+

I−
i−

i+

i−

i+

i0i0 r +

=
2G

M

r +

=
2G

M

r
+=

2G
M

r
+=

2G
M

Figure 2.1: Conformal map of the Schwarzschild metric. The surface r = 2GM is
located at U = V = 0, the singularity at r = 0 is the line U + V = ±π

2
, and the

points (U, V ) = (±π
2
,±π

2
) are the limits of r → ±∞.

r = 0 is the black hole and time like curves emanating from here terminate at the

horizon and never reach I+, thus a black hole is said to be present.
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Label Name Definition

I+ Future Null ∞ v =∞, u = finite

I− Past Null ∞ u = −∞, v = finite

io Spatial ∞ r =∞, t = finite

i+ Future Time-like ∞ t =∞, r = finite

i− Past Time-like ∞ t = −∞, r = finite

Table 2.1: Labels for Fig. 2.1

2.2 Killing Vectors and Horizons

Given a Riemannian spacetime metric ds2 = gµνdx
µdxν a vector ξ is called

Killing if

Lξgµν = 0, (2.6)

where Lξ denotes the Lie derivative along ξ. Writing (2.6) out in components yields

the Killing equation:

ξα∇αgµν − gαν∇µξ
α − gµα∇νξ

α = 0

∇µξν +∇νξµ = 0
. (2.7)

In most spacetimes considered there are two such vectors, a time-like and an angular-

like, ξα(t) ≡ tα = ∂xα

∂t
and ξα(ϕ) ≡ ΩHϕ

α = ∂xα

∂ϕ
. Combining these two gives a general

Killing vector:

ξα = aξα(t) + bξα(ϕ) (2.8)

= tα + ΩHϕ
α, (2.9)
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where ΩH = − gtφ
gφφ
|r+ is the angular velocity of the black hole at the horizon r = r+.

A Killing vector ξ also satisfies a non-homogeneous wave equation, which is obtained

by its action on the Rieman tensor;

−Rµ
ναβξ

ν = (∇β∇α −∇α∇β)ξµ, (2.10)

which can be rearranged via the Jacobi Identity to yield

∇µ∇αξβ = −Rµναβξ
ν (2.11)

and contracting over α and µ gives

�ξβ = −Rβνξ
ν . (2.12)

The isometries are manifested in the inner product between the four velocity and

the Killing vectors, i.e.

uαξ
α = uαξ

α
(t) + uαξ

α
(ϕ) (2.13)

= Ẽ + L̃, (2.14)

where Ẽ and L̃ are the conserved quantities energy and angular momentum. (2.6)

also implies that ξ satisfies a geodesic and geodetic equation, i.e.
{

(∇βξ
α)ξβ = 0 r > r+

(∇βξ
α)ξβ = κξα r = r+

. (2.15)

Next, we will define the notion of a Killing horizon and its relevance in black

hole physics. Let ξ be a Killing vector, then a Killing horizon is the surface defined

by

ξαξ
α = 0, (2.16)

i.e. the surface on which the Killing vectors become null generators. A trivial

example is the Killing vector ξ = x∂t + t∂x in Minkowski space. In this case, ξ is

null on the surface x = ±t, thus defining a Killing horizon. Another example is the
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event horizon of a black hole, which we will denote by ξµξ
µ|r+ = 0. It is important to

note that every event horizon defines a Killing horizon, but not ever Killing horizon

defines an event horizon. This is easily verified by the example in Minkowski space,

which exhibits no coordinate or curvature singularities. To every Killing horizon

we can associate a quantity κ called the surface gravity. It is the force required, by

an observer at infinity, to hold a particle (of unit mass) stationary at the horizon1.

Yet, before calculating κ explicitly we need to first make some general statements

about the geometry of the horizon. Combining (2.15), and (2.16) we conclude that

the Killing vectors define a congruence of null geodesics at the horizon, which is

necessarily hypersurface orthogonal. Thus we may employ Frobenius’ theorem [73],

which states that for null generators ξα on a horizon the congruence is hypersurface

orthogonal if and only if

(∇[βξα)ξγ] = 0. (2.17)

Expanding (2.17) and acting on it with ∇βξα and making use of (2.7) and (2.15)

yields

(∇βξα)(∇βξα)ξγ = −2κ2ξγ

=⇒ κ2 = −1

2
(∇βξα)(∇βξα), (2.18)

which allows us to determine the surface gravity of any given spacetime ds2 by

extracting the Killing vectors thereof.

2.3 Surface Element for Null Generators

Let Σ be a null surface then we may write the directed surface element as

dΣµ = −ξµ
√
hd3y, (2.19)

1We will only be concerned with the surface gravity of black holes.
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where hab is the metric of the hypersurface (horizon) and ya = (λ, θ1, θ2) are its

coordinates and ξµ acts as the normal vector. We are implying an embedding of the

hypersurface such that for some auxiliary null vector Nα2. The metric is given by

gαβ = −2ξ[αNβ] + habeαae
β
b , completeness relation (2.20)

where

eαa =
∂xα

∂ya
(2.21)

are the pull backs from the original spacetime to the embedding. Given (2.21) we

can rewrite (2.19) as

dΣµ = ξνdSµνdλ, (2.22)

where

dSµν = 2ξ[µNν]

√
hd2θ. (2.23)

We can draw a direct relation between (2.19) and (2.23) via Stokes theorem, which

states that for any p-1 form ω
∫

∂M
ω =

∫

M
dω. (2.24)

A direct consequence of (2.24) for any antisymmetric contravariant two tensor is

that
∫

Σ

(
∇βB

αβ
)
dΣα =

1

2

∮

∂Σ

BαβdSαβ. (2.25)

(2.25) has the form of a Gauss theorem and it will come in handy when calculating

mass and angular momentum transfer across a horizon.

2N2 = 0, Nαξα = −1
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2.4 The Laws of Black Hole Mechanics

The laws of black hole mechanics where formulated by Bardeen, Carter and

Hawking during the period from 1971-1973 [3], though Israel presented the first

rigorous proof of the third law in 1986 [78]. In this section we work in units of

G = c = ~ = 1 and the laws are as follows.

Law 2.1. [Zerothe Law of Black Hole Mechanics] The zeroth law states that the

surface gravity of a stationary black hole is constant cross the event horizon, i.e. we

need to show that

∂µκ = 0 and (∂µκ) eµa = 0 , (2.26)

where eµa is the pull back from the 4-dimensional spacetime to the horizon. This

my be established by differentiating (2.18) and employing (2.11) to yield:

ξµ∂µκ = 0, (2.27)

which shows the first equation in (2.26). The second equation can be determined

by assuming geodesic completeness on the horizon and thus, since (∂µκ) eµa = 0 in

the bifurcation two-sphere3 of the spacetime, it holds across the entire horizon.

Law 2.2. [First Law of Black Hole Mechanics] Our starting point will be the Komar

formulae [73]

Mtot =
−1

8π

∮

S

(∇αξβ(t))dSαβ

Jtot =
1

16π

∮

S

(∇αξβ(ϕ))dSαβ

(2.28)

from which we will derive the Smarr formula and expressions for the mass and

angular momentum transfer across the horizon. Taking the Komar formulae and

3(u, v) = (0, 0) in the conformal diagram of Figure 2.1
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applying them across the hrizon of a black hole we get

MBH =
−1

8π

∮

H
(∇αtβ)dSαβ

JBH =
1

16π

∮

H
(∇αϕβ)dSαβ,

(2.29)

where BH stands for black hole and H denotes its horizon. Next, consider

MBH − 2ΩHJBH =
−1

8π

∮

H
(∇αtβ)dSαβ −

1

8π

∮

H
(∇αΩH)ϕβdSαβ

=
−1

8π

∮

H
(∇αξβ)dSαβ

=
−1

4π

∮

H
(∇αξβ)ξαNβdS

=
−1

4π

∮

H
κξβNβdS

=
κ

4π
ABH

thus arriving at the general Smarr formula

MBH =
κ

4π
ABH + 2ΩHJBH . (2.30)

next, considering the integral
∮
S
(∇αξβ)dSαβ and using (2.25) we have

∮

S

(∇αξβ)dSαβ = 2

∫

Σ

∇α∇αξβdΣβ

= 2

∫

Σ

Rα
βξ

βdΣα

(2.31)

and invoking the Einstein field equation4 we have
∮

S

∇αξβdSαβ = −16π

∫

Σ

(
Tαβ −

1

2
gαβT

)
nαξβ

√
hd3y, (2.32)

where nα is the outward normal to the surface. Now we can now rewrite the Komar

formulae as

M = 2

∫

Σ

(
Tαβ −

1

2
gαβT

)
nαξβ(t)

√
hd3y (2.33)

4Rµν = 8π(Tµν − 1
2gµνT )
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and

J = −
∫

Σ

(
Tαβ −

1

2
gαβT

)
nαξβ(ϕ)

√
hd3y. (2.34)

Next, we introduce the vector currents

εα = −Tαβξβ(t) (2.35)

and

lα = Tαβξ
β
(ϕ), (2.36)

which interpret to the energy and angular momentum flux. In fact for a perfect

fluid Tαβ = ρuαuβ they take the form εα = Ẽjα and lα = L̃jα, where jα is the

current density ρuα and Ẽ and L̃ are the conserved quantities (2.13). From energy

conservation we know that jα is divergenceless and thus we conclude that
∮

∂V

εαdΣα = 0 and

∮

∂V

lαdΣα = 0 (2.37)

by Stokes theorem. (2.37) is the statement that the total energy transfer across a

closed surface ∂V is conserved. If we take a partition H of this closed surface we

have that the energy transfer through it is

δM = −
∫

H
Tαβ ξ

β
(t)dΣα and δJ =

∫

H
Tαβ ξ

β
(ϕ)dΣα. (2.38)

Using (2.38) we can now derive the First Law of Black Hole Mechanics as follows:

Given the linear combination δM − ΩHδJ , we have

δM − ΩHδJ = −
∫

H
Tαβ

(
tβ + ΩHϕ

β
)
dΣα

=

∫

H
Tαβξ

αξβdSdλ.

(2.39)

Next, we need to relate the integrand to the geometric evolution of the horizon to

complete the integration over λ. This may be done via Raychaudhuri’s equation

dθ
dλ

= κθ − 8πTαβξ
αξβ, which is an evolution equation for the expansion parameter
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θ of a two dimensional medium, i.e. θ is the fractional rate of change of the con-

gruence’s cross-sectional area (θ = 1
dS

ddS
dλ

and θ|λ=±∞ = 0). Thus, substituting for

Tαβξ
αξβ yields

δM − ΩHδJ = − 1

8π

∫
dλ

∮

H

(
dθ

dλ
− κθ

)
dS

=
κ

8π

∫ ∮

H
θdSdλ

=
κ

8π

∫ ∮

H

1

dS

ddS

dλ
dSdλ

=
κ

8π

∮

H
dS|±∞

=
κ

8π
δA

(2.40)

thus arriving at the First Law of Black Hole Mechanics:

δM =
κ

8π
δA+ ΩHδJ . (2.41)

Law 2.3. [Second Law of Black Hole Mechanics] The second law was established by

Hawking in 1971 [79], which states that the area of a black hole can never decrease:

δA ≥ 0 . (2.42)

This follows directly from the focusing theorem and from the observation that the

null generators’ geodesics have no future endpoints in the given spacetime. The

focusing theorem states that assuming the strong energy condition Rabk
akb ≥ 0,

for null vector ka, an initially negative expansion θ implies that the generators will

converge in a caustic at θ = −∞. This is a contradiction to the initial observation

and we conclude that θ ≥ 0.

Law 2.4. [Third Law of Black Hole Mechanics] The third law follows from the weak

energy condition

Tµνu
µuν > 0 (2.43)
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for an observer moving with four velocity uα in a bounded energy momentum tensor

Tµν . It states that the surface gravity of a black hole cannot be reduced to zero in

a finite advanced time v = t + r∗. The third law may be illustrated by help of the

general Vaidya spacetime [80] given by the line element:

ds2 = −fdv2 + 2dvdr + r2dΩ2, (2.44)

where f = 1 − 2m(v)
r

+ q2(v)
r2 . This metric describes a spacetime in which the mass

and charge vary with time due to some fictitious irradiating charged null dust with

T µν = T µνdust + T µνU(1), (2.45)

where
{
T µνdust = ρlµlν ρ = 1

4πr2
∂
∂v

(
m− q2

2r

)

T µνU(1) = Pdiag(−1,−1, 1, 1) P = q2

8πr4

. (2.46)

For a charged spacetime the surface gravity vanishes in the case of extremality, i.e.

m(v0) = q(v0) for some advanced time v0 < ∞. Assume an observer is restricted

to moving along the radial direction then T µνuµuν = ρ
(
dv
dτ

)2
+ P . Now since we

require (2.43) this implies ρ > 0. In particular we have the relation on the horizon

r+ = m
√
m2 − q2:

4π
(
r+
)3
ρ
(
r+
)

= mṁ− qq̇ +
√
m2 − q2ṁ > 0, (2.47)

where dot means differentiation with respect to v. The above equation implies that

m(v0)∆̇(v0) > 0, (2.48)

where ∆ = m− q. This means that if we assume the black hole becomes extremal

in some advanced time v0 then ∆ must be decreasing, i.e. there exists v0 for which

∆̇(v0) < 0 (2.49)

and ∆ will become zero in a finite time, but this is a contradiction to (2.48). Thus
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the weak energy condition prevents the black hole from becoming extremal in a

finite advanced time.

2.5 Black Hole Thermodynaimcs

The laws of black hole mechanics, Law 2.1, Law 2.2 and Law 2.3, bear a

striking resemblance to the laws of thermodynamics5 with κ ∼ temperature, A ∼

entropy and M ∼ internal energy. This duality was first noticed by Bekenstein [1]

and solidified by Hawking [2] by examining quantum processes near black holes. The

exact duality is outlined in Table 2.2. Classically, black holes where considered a

Thermodynamics Black Hole

Temperature T ~
2π
κ

Entropy S A
4~G

Energy E M

Thermo. Equilib. κ = constant

1st Law 1st Law

δS > 0 δA > 0

Table 2.2: Black Hole Thermodynamic Analogy.

region in spacetime from which escape was impossible. Yet, by combining a general

relativistic and quantum field theoretic description of the region just outside the

event horizon, Hawking and his contemporaries demonstrated that black holes are

not so black after all. Instead they behave as thermodynamic objects, where the

5In the special case of an isolated system in thermal equilibrium.
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horizon area encodes information about the quantum spacetime, thus their relevance

to the study of quantum gravity. Another interesting fact is that black hole entropy

scales with the area instead of volume as compared to a traditional thermodynamic

system. These interesting facts about black hole thermodynamics are summarized

in the principle of holographic scaling:

Principle 2.1 (Holographic Scaling).

• The entropy depends on area and not volume

• The horizon area encodes information at the quantum level

• Any viable quantum gravity candidate should reproduce the duality of Ta-

ble 2.2

2.6 Canonical Quantum Fields in Curved Space

In this section we will restrict our analysis to a scalar field theory. We be-

gin by first reviewing quantization in flat spacetime and then extend to a curved

background. The Lagrangian density is given by

L = −1

2

(
ηµν∂µϕ∂νϕ+m2ϕ2

)
(2.50)

with line element

ηµνdx
µdxν = −dt2 + d~x2. (2.51)

Varying the functional
∫
d4xL with respect to ϕ yields the equation of motion:

�ϕ−m2ϕ = 0. (2.52)

A solution to this equation is given by the complex exponential

ϕ = ϕ0e
ikµxµ , (2.53)
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where kµ = (ω,~k). Substituting the solution (2.53) into (2.52) implies the relativistic

dispersion:

ω2 = k2 +m2. (2.54)

An orthonormal inner product is defined by the constant time integral

(ϕ1, ϕ2) = −i
∫
d3x (ϕ1∂tϕ

∗
2 − ϕ∗2∂tϕ1) , (2.55)

which implies an orthonormal set of modes

fk =
eikµx

µ

√
(2π)3 2ω

(2.56)

since

(fk1 , fk2) = δ3 (k1 − k2) . (2.57)

Given the dispersion relation (2.54) we will take ω to always be a positive number

and thus complement the set (2.56) with its complex conjugate, f ∗k . This strategy

allows for the definition of both positive and negative frequency modes:
{
∂tfk = −iωfk positive

∂tf
∗
k = iωf ∗k negative

, (2.58)

with the following orthogonal relationships

(fk1 , fk2) = δ3 (k1 − k2) ,
(
f ∗k1
, f ∗k2

)
= −δ3 (k1 − k2) and

(
fk1 , f

∗
k2

)
= 0. (2.59)

{fk, f ∗k} form a complete set and any solution to (2.52) is ∈ Span ({fk, f ∗k}), i.e.

ϕ(t, x) =

∫
d3k

[
akfk(t, x) + a†kf

∗
k (t, x)

]
. (2.60)

To canonically quantize this theory we promote the fields ϕ and π = ∂L
∂(∂0ϕ)

to
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operators satisfying the equal time commutation relations:

[ϕ(t, x), ϕ(t, x′)] =0

[π(t, x), π(t, x′)] =0

[ϕ(t, x), π(t, x′)] =iδ3(x− x′)

(2.61)

these relations imply the standard creation and annihilation operator algebra

[âk, âk′ ] =0

[â†k, â
†
k′ ] =0

[âk, â
†
k′ ] =δ3(k − k′)

(2.62)

with Fock state

|nk〉 =
1√
nk!

(
â†k

)nk |0〉 (2.63)

and number operator

n̂k = â†kâk. (2.64)

The above analysis may be repeated for scalar field in a curved background

with Lagrangian density:

L = −1

2

(
gµν∂µϕ∂νϕ+m2ϕ2 + ξRϕ2

)
, (2.65)

where ξ may have the following numerical couplings

ξ =

{
0 minimal
d−2

4(d−1)
conformal

. (2.66)

The field equation now takes the form

�ϕ−m2ϕ− ξRϕ = 0 (2.67)

and adhere to the modified orthogonal inner product:

(ϕ1, ϕ2) = −i
∫

Σ

√
γd3x (ϕ1∇µϕ

∗
2 − ϕ∗2∇µϕ1)nµ, (2.68)

where ∇µ is the covariant derivative compatible with gµν , γij is the metric of the
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hyper surface Σ obtained from gµν |t=0 and nµ is its unit normal. Defining the

canonical momentum as π = ∂L
∂(∇0ϕ)

we impose the canonical commutation relations

[ϕ(t, x), ϕ(t, x′)] =0

[π(t, x), π(t, x′)] =0

[ϕ(t, x), π(t, x′)] =
i√−g δ

3(x− x′)

(2.69)

and assuming a complete orthonormal decomposition

ϕ =
∑

i

(
âifi + â†if

∗
i

)
(2.70)

such that

(fi, fi) = δij, (f ∗i , f
∗
i ) = −δij and (fi, f

∗
i ) = 0 (2.71)

arrive at the creation annihilation commutator algebra:

[âi, âj] =0

[â†i , â
†
j] =0

[âi, â
†
j′ ] =δij

(2.72)

with Fock state

|ni〉 =
1√
ni!

(
â†i

)ni
|0f〉 (2.73)

and number operator

n̂fi = â†i âi. (2.74)

We should note that the choice of basis {fi, f ∗i } is not unique and we could

have instead chosen an alternative basis {gi, g∗i } such that

ϕ =
∑

i

(
b̂igi + b̂†ig

∗
i

)
, (2.75)
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where b̂† and b̂ are a new set of creation and annihilation operators satisfying:

[b̂i, b̂j] =0

[b̂†i , b̂
†
j] =0

[b̂i, b̂
†
j′ ] =δij

(2.76)

and new Fock state |ni〉 = 1√
ni!

(
b̂†i

)ni
|0g〉. This fact begs the question what is

the difference between the vacuum states |0f〉 and |0g〉? Or analogues, how do the

excitations above |0f〉 and |0g〉 differ? This question may be addressed via the

Bogolyubov transformations:

gi =
∑

j

(
αijfj + βijf

∗
j

)

fi =
∑

j

(
α∗ijgj − βijg∗j

)
,

(2.77)

where

αij =(gi, fi)

βij =− (gi, f
∗
i )

(2.78)

are called the Bogolyubov coefficients and satisfy

∑

k

(
αikα

∗
jk − βikβ∗jk

)
=δij (2.79)

∑

k

(αikβjk − βikαjk) =0. (2.80)

Given the above, the Bogolyubov coefficients may also be used to transform between

the operators:

âi =
∑

j

(
αij b̂j + β∗ij b̂

†
j

)

b̂i =
∑

j

(
α∗ij âj − β∗ij â†j

). (2.81)

Next, let us imagine a system with vacuum state |0f〉, in which there are no excita-

tions above the ground state, i.e. no particles are observed. We may now calculate

the particle excitations as observed using the g-modes, in other words we evaluate
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the expectation value of n̂gi with respect to the f -vacuum:

〈0f |n̂gi| 0f〉 = 〈0f
∣∣∣b̂†i b̂i

∣∣∣ 0f〉

=

〈
0f

∣∣∣∣∣
∑

jk

(
αij â

†
j − βij âj

)(
α∗ikâk − β∗ikâ†k

)∣∣∣∣∣ 0f
〉

=
∑

jk

βijβ
∗
ik

〈
0f

∣∣∣âj â†k
∣∣∣ 0f
〉

=
∑

jk

βijβ
∗
ik

〈
0f

∣∣∣
(
â†kâj + δjk

)∣∣∣ 0f
〉

=
∑

j

|βij|2

. (2.82)

This shows that the number of g-particles in the f -vacuum is nothing but the square

of the beta sector of the Bogolyubov coefficients.

2.7 Effective Action in Curved Space

Given a generic theory S of fields ϕ we can always write a quantum theory as

given by the path integral

Z =

∫
DϕeiS. (2.83)

We will restrict our analysis to the case when S is a two dimensional free scalar

field. We define the effective field theory as the logarithm of the partition function,

i.e.

Γeffective = lnZ. (2.84)

There are many ways to determine the functional Γ with the heat kernel approach

leading in popularity. In this approach the strategy is to first Wick rotate (2.83)

from Lorentzian to Euclidean time, t→ iτ and expand the fields as in an orthogonal

set of functions satisfying the eigen value problem:

�ϕn = λnϕn, (2.85)
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where ϕ =
∑

n cnϕn. For the free two dimensional scalar this strategy has the

advantage of reducing the functional of (2.83) to:

∫ ∞∏

n=0

dcn√
2π
e−

1
2
λnc2n =

√√√√
∞∏

n=0

λn. (2.86)

This equates the computation of the effective action with computing the functional

determinant of the differential operator �g, i.e.

Γ =
1

2
ln det �g. (2.87)

At first glance the expressions in (2.86) and (2.87) are infinitely divergent due to

the infinite spectrum of �g and a standard tool to regulate these divergencies is via

analytic continuation of the zeta function. The zeta function for �g is defined as

ζ�g(s) =
∞∑

n=0

(
1

λn

)s
= Tr

(
�−sg

)
(2.88)

and satisfies the relation:

dζ�g(s)

ds
=

d

ds

∞∑

n=0

e−s lnλn = −
∞∑

n=0

e−s lnλn lnλn. (2.89)

Thus, the effective action is recast in terms of the zeta function as:

Γ = − 1

2

dζ

ds

∣∣∣∣
s=0

. (2.90)

The heat kernel is defined as

K̂(τ) ≡ e−�gτ (2.91)

and relates to the the zeta function via the integral

ζ(s) =
1

Γ(s)

∫
dττ s−1TrK̂(τ). (2.92)

The operator K̂ derives its name from the diffusion equation:

d

dτ

〈
x
∣∣∣K̂(τ)

∣∣∣x′
〉

=
d2

dx2

〈
x
∣∣∣K̂(τ)

∣∣∣x′
〉
. (2.93)
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The task of computing the effective action is now reduced to solving the PDE

(2.93), then using its solution in (2.92) to determine the zeta function in terms of

the parameter s and finally evaluating its derivative in (2.90). Applying this outline

to the theory of (2.65) with d = 2 and m = 0 yields the Polyakov two dimensional

gravitational action:

Γgrav =
1

96π

∫
d2x
√−gR�−1

g R. (2.94)

In the case of a massless charged scalar field, ∂µ → ∂µ − iAµ the effective action

will have obtain a gauge field sector:

Γ = Γgrav + ΓU(1), (2.95)

where

Γgrav =
1

96π

∫
d2x
√
−g(2)R(2) 1

�g(2)

R(2) (2.96)

ΓU(1) =
e2

2π

∫
F

1

�g(2)

F. (2.97)

2.8 The Unruh Effect

The Unruh effect is basically the fact that an observer in Minkowski space at

rest will disagree with the thermal spectrum around it as compared to an observer

accelerating with uniform acceleration a. In other words an observer accelerating

at constant acceleration a will observe a thermal bath of particles with temperature

TU =
a

2π
(2.98)
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called the Unruh temperature [81]. To arrive at this conclusion we will start with

the metric written in inertial coordinates

ds2 = −dt2 + dx2 (2.99)

and define coordinate adapted for uniform acceleration given by the transformations

t =
1

a
eaξ sinh (aη) (2.100)

x =
1

a
eaξ cosh (aη), (2.101)

in which the metric reads:

ds2 = e2aξ
(
−dη2 + dξ2

)
. (2.102)

The region where −∞ < η and ξ <∞ covering the wedge x > |t| is called Rindler

space, as depicted in by region I in Figure 2.2. As mentioned earlier the presence of

t

x

H+

H−

II

III

IIV

Figure 2.2: Rindler coordinates. The Region I is accessible to a positive constant
accelerating observer. The coordinates (η, ξ) may be used in region IV as well
with opposite orientation. H± corresponds to a Killing horizon of the symmetries
generated by ∂η, which are Lorentz boosts.
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a Killing horizon does not necessarily imply a black hole, yet we may still compute

the surface gravity following from (2.15), which gives

κ = a. (2.103)

We will proceed to quantize the free scalar field in Rindler coordinates. The

equation of motion (2.52) reads

e−2aξ
(
−∂2

η + ∂2
ξ

)
ϕ = 0 (2.104)

with normalized eigen mode solution

g
(1)
k =

{
1√
4πω

e−iωη+ikξ I

0 IV

g
(2)
k =

{
0 I

1√
4πω

eiωη+ikξ IV
.

(2.105)

The distinction between the two modes stems from the fact that the future time-like

killing vectors of region I and IV differ by on overall minus sign and both modes

will be positive frequency with respect to these isometries:

∂ηg
(1)
k =− iωg(1)

k

∂−ηg
(2)
k =− iωg(2)

k

. (2.106)

Following the canonical quantization prescription outlined in Section 2.6 we obtain

the quantum field

ϕ =

∫
dk
(
b̂

(1)
k g

(1)
k + b̂

(1)†
k g

(1)∗
k + b̂

(2)
k g

(2)
k + b̂

(2)†
k g

(2)∗
k

)
(2.107)

analogous to (2.60). Using the modes (2.105) we define a set of alternate Rindler

modes which are analytic and well defined along the entire surface t = 0 and thus
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share the same vacuum as Minkowski. These modes properly normalized are:

h
(1)
k =

1√
2 sinh

(
πω
a

)
(
eπω/2ag

(1)
k + e−πω/2ag

(2)∗
−k

)

h
(2)
k =

1√
2 sinh

(
πω
a

)
(
eπω/2ag

(2)
k + e−πω/2ag

(1)∗
−k

) (2.108)

and the quantum scalar field may now be expanded in terms of these new modes as

ϕ = ϕ =

∫
dk
(
ĉ

(1)
k h

(1)
k + ĉ

(1)†
k h

(1)∗
k + ĉ

(2)
k h

(2)
k + ĉ

(2)†
k h

(2)∗
k

)
. (2.109)

Equation (2.108) should be recognized as a Bogolyubov transformation and from

Section 2.6 we have:

b
(1)
k =

1√
2 sinh

(
πω
a

)
(
eπω/2aĉ

(1)
k + e−πω/2aĉ

(2)†
−k

)

b
(2)
k =

1√
2 sinh

(
πω
a

)
(
eπω/2aĉ

(2)
k + e−πω/2aĉ

(1)†
−k

). (2.110)

We know ask the question about particles observed in region I, i.e. we need to

compute
〈

0M

∣∣∣n̂(1)
R

∣∣∣ 0M
〉

=
〈

0m

∣∣∣b̂(1)†
k b̂

(1)
k

∣∣∣ 0M
〉

=
1

2 sinh πω
a

〈
0M

∣∣∣e−πω/aĉ(1)
−kĉ

(1)†
−k

∣∣∣ 0M
〉

=
e−πω/a

2 sinh πω
a

δ(0)

=
1

e2πω/a − 1
δ(0),

(2.111)

where the δ(0) is due to the fact that our basis consists of plane waves and we used

the fact that c
(1)†
−k

∣∣∣ 0M
〉

is a one particle normalized state. The result of (2.111) is

a thermal Planck distribution with temperature:

TU =
a

2π
, (2.112)

thus arriving at the Unruh effect.
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2.9 The Hawking Effect

In this section we will draw a direct analogy to the Unruh effect, by extend-

ing the above analysis to quantum fields in a black hole background. We have

already seen how to quantize a scalar field in a curved background in Section 2.6

and Section 2.7. We will now apply these results directly to the s−wave sector of

the Schwarzschild black hole of Section 2.1, given by the two dimensional metric:

g(2)
µν =


 −

(
1− 2GM

r

)
0

0
(
1− 2GM

r

)−1


 . (2.113)

We will be considering the massless theory of (2.65) in this background. When

restricting to two dimensions (2.65) is naturally conformally coupled and it will be

to our interest to exploit this convenience via light cone and Kruskal coordinates.

The light cone is defined via the transformations

u = t− r∗ and v = t+ r∗, (2.114)

where dr∗

dr
=
(
1− 2GM

r

)−16. In these coordinates the metric takes the form:

ds2 =

(
1− 2GM

r

)
dudv. (2.115)

The light cone has the advantage that it is naturally conformally flat and coincides

with Minkowski at asymptotic infinity. Yet we will need another coordinate system

to cover the region on the black hole horizon and its interior. The desired coordinate

system is the Kruskal one given by the transformations:

U = −4Me−u/4M and V = −4Me−v/4M (2.116)

6We use (u, v) instead of x± in this section to be consistent with current literature on this
subject.
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and define the Kruscal light cone via

U = T −R and V = T +R. (2.117)

The metric in Kruskal reads

ds2 =
2GM

r
e1− 2GM

r dUdV (2.118)

and we see the Kruskal choice eliminates the coordinate singularity for the curvature

one at r = 0 and thus we now have covered the entire spacetime.

A quantized light cone mode expansion is given by:

ϕ =

∫
dΩ√
4πΩ

(
e−iΩub̂Ω + eiΩub̂†Ω + e−iΩv b̂−Ω + eiΩv b̂†−Ω

)
, (2.119)

where the operators b̂±Ω correspond to excitations observed by a stationary observer

a uniform distance from the horizon. This is directly analogous to a uniformly

accelerating observer in Rindler space. Similarly the mode expansion in Kruskal

coordinates reads:

ϕ =

∫
dω√
4πω

(
e−iωU âω + eiωU â†ω + e−iΩV â−ω + eiωV â†−ω

)
, (2.120)

where â±ω correspond to excitations measured by an observer falling past the horizon

into the black hole.

We see now that we have two different sets of creation and annihilation both

annihilating the vacuums:

â±ω |0K〉 = 0 and b̂±Ω |0lc〉 = 0 (2.121)

and just as in Section 2.8 we can now compute the Bogolyubov coefficients and thus

the particle spectrum of the black hole at some distance from the black hole. Yet,

a direct analogy to the Unruh system, studied in Section 2.8, may be drawn due

to the fact that the massless two dimensional scalar in Rindler space is conformally
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equivalent to its variant in both light cone and Krusakal coordinates. This analogy

is detailed in Table 2.3. From this analogy we deduce that a calculation of the

Rindler Schwarzschild

Stationary |0M〉 Free Fall |0K〉

Accelerated |0R〉 r = const |0lc〉

κ = a κ = 1
4GM

U = − 1
a
e−au U = −4GMe−u/GM

V = − 1
a
e−av V = −4GMe−v/GM

Table 2.3: Analogy between the Unruh and Hawking effect for conformally coupled
massless two dimensional scalar field and Rindler space the light cone coordinates
u = η − ξ and v = η + ξ.

density of state will yield a thermal spectrum

nΩ =
1

e
2πΩ
κ − 1

(2.122)

thus arriving at the Hawking temperature of a Schwarzschild black hole:

TH =
1

8πGM
(2.123)

2.10 Hawking Effect and Energy Momentum

It was first shown by Christensen and Fulling [8] and expounded upon by

others [9, 17, 82] that the quantum energy momentum tensor of conformal matter

near a black hole, encodes quantum information about the respective spacetime.

We will exploit and modify this fact in latter chapters of this thesis, but for now we
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will show how the Hawking temperature may be alternatively derived by analyzing

the energy momentum tensor of the effective action (2.94). The energy momentum

tensor is defined as

〈Tµν〉 =
2√−g

δΓ

δgµν
(2.124)

and in the case of the functional (2.94) we obtain:

〈Tµν〉 =
1

48π

{
−2∇µ∇ν

(
�−1
g R

)
+∇µ

(
�−1
g R

)
∇ν

(
�−1
g R

)
(2.125)

+gµν

[
2R− 1

2
∇γ

(
�−1
g R

)
∇γ
(
�−1
g R

)]}
. (2.126)

Choosing (2.113) as our spacetime we obtain

〈Tµν〉 =




r4(A2+α2)−4G2M2

96πr2(r−2GM)2
Arα

48πr−96GMπ

Arα
48πr−96GMπ

(A2+α2)r4−16GMr+28G2M2

96πr4


 , (2.127)

where A and α are integration constants left over from evaluating
(
�−1
g R

)
. The

integration constants may be determined by choosing Unruh vacuum boundary

conditions (UBC) [81]:
{
〈T++〉 = 0 r →∞
〈T−−〉 = 0 r → r+

, (2.128)

where we have introduced light cone coordinates x± = t ± r∗. These conditions

basically ensure that there is no ingoing flux at r = ∞ and a free falling observer

should observe regular energy momentum at r = r+. Applying the UBC yields:

A =− α

α =− 1

4GM

. (2.129)

Now we may analyze the 〈T rt 〉 component after substitution of the integration

constants. We find

〈T rt 〉 =
1

768πG2M2
, (2.130)
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which is the energy flux of the energy momentum tensor and in this case known as

the Hawking flux

HF =
π

12
T 2
H (2.131)

TH =
1

8πGM
. (2.132)

We now have an alternative method for computing black hole temperature via the

path integral quantization and analyzing the quantum energy momentum tensor of

the resulting effective action.

2.11 Generators of Conformal Symmetries

In this section we will focus only on certain features of a conformal field theory

that will be used and recalled in some of the main calculations of the latter chapters.

We will restrict ourselves to two dimensions and analyze the generator algebra and

energy momentum tensor in this setting. A conformal field theory is one, who’s

action functional S =
∫
d2x
√−gL is invariant under a conformal transformation:

g′µν =
∂xα

∂x′µ
∂xβ

∂x′ν
gαβ = Ωgµν . (2.133)

Let us consider an infinitesimal coordinate transformation where x′µ = xµ + ξµ,

for some ξ such that ξ2 � 1. We know from Section 2.2 how the metric varies

infinitesimally and thus introduce the conformal Killing equation

∇µξν +∇νξµ = Λgµν , (2.134)

where Ω = 1 + Λ +O(ξ2). Tracing (2.134) yields the convient relation:

∇µξν +∇νξµ = ∇µξ
µgµν . (2.135)
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For convenience, but without loss of generality, let us consider a flat spcetime7 and

the complex variables:

z = x0 + ix1 ξ = ξ0 + iξ1

z̄ = x0 − ix1 ξ̄ = ξ0 − iξ1.

Taking ξ(z) to be holomorphic we see that z → f(z) is an infinitesimal conformal

transformation, with the trivial example f(z) = z + ξ(z).

Next, let us determine the generators of infinitesimal conformal transforma-

tions. Consider the holomorphic functions

z′ =z +
∑

n∈Z

ξn
(
−zn+1

)
(2.136)

z̄′ =z̄ +
∑

n∈Z

ξn
(
−z̄n+1

)
, (2.137)

where we have performed a Laurent expansion about zero of ξ(z). The generators

corresponding to infinitesimal conformal transformations are

ln = −zn+1∂z and l̄n = −z̄n+1∂z̄. (2.138)

Since n takes its values form the integers it becomes apparent that the generators

form an infinite set, i.e. the algebra of conformal transformations in two dimensions

is infinite dimensional. The generators satisfy the commutation relations:

[lm, ln] =(m− n)lm+n

[l̄m, l̄n] =(m− n)l̄m+n

[lm, l̄n] =0

(2.139)

known as one copy of a Witt algebra.

An interesting subset of the Witt algebra is the conformal group SL(2,C)/Z2

generated by {l−1, l0, l1}. To see this we perform the change of variables z = reiφ

7In two dimensions any two Riemannian metrics are conformally equivalent and thus for a
conformal field theory statements in Minkowski space will hold in general for any curved space.
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and obtain the generators:

l−1 =− ∂z translation (2.140)

l0 + l̄0 =− r∂r dilatation (2.141)

i
(
l0 − l̄0

)
=− ∂φ rotation (2.142)

l1 =− z2∂z modular. (2.143)

In other words {l−1, l0, l1} generate transformations of the form

z → az + b

cz + d
(2.144)

this transformation is clearly invariant under a sign change and invertible if (ad −

bc) = 1, thus arriving at SL(2,C)/Z2.

The Witt algebra does not take into account the possibility of a center. Math-

ematically any Lie algebra may be centrally extended as long as it vanishes with

respect to the Jacobi identity:

[Lm, [Ln, Lr]] + [Lr, [Lm, Ln]] + [Ln, [Lr, Lm]] = 0. (2.145)

In physical theories it is common to violate symmetry upon quantization, thus giving

rise to anomalies. Mathematically this is the case when transitioning from a center

less Witt algebra to a centrally extended one and the center is commonly referred

to as the conformal anomaly. A center satisfying the condition (2.145) is given by

Cmn =
c

12
m
(
m2 − 1

)
δm+n,0 (2.146)

where c is called the central charge and gives rise to the Virasoro algebra:

[Lm, Ln] = (m− n)Lm+n +
c

12
m
(
m2 − 1

)
δm+n,0. (2.147)
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2.12 The Energy Momentum Tensor of a Con-
formal Field

Let us recall Noether’s theorem, which states for every continuous symmetry

in in a field theory there exists an associated conserver current such that ∇µJ
µ = 0.

In the case of conformal symmetries we have the obvious current

Jµ = Tµνξ
ν , (2.148)

where Tµν is defined as in (2.124). Taking the divergence of (2.148) and employing

(2.135) gives the equation:

ΛT µµ = 0, (2.149)

which is the statement that the energy momentum tensor of a conformal field is

always traceless. As mentioned in the previouse section upon quantization anomalies

may apear. This was in fact the case when we quantized the free two dimensional

scalar field and computed its quantum energy momentum tensor in Section 2.10.

A quick calculation would show that the energy momentum tensor of the Polyakov

action is not traceless, but satisfies:

〈
T µµ

〉
=

1

24π
R. (2.150)

This is known as the trace anomaly of a quantum conformal field theory and has

the general form in two dimensions

〈
T µµ

〉
=

c

24π
R, (2.151)

which includes the central charge of the conformal anomaly.

Next, we may associate to each conserved current a conserved charge

Q =

∫
Jµdx

µ (2.152)
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which is the generator of symmetry transformations of any field, i.e.

δξϕ = {Q,ϕ} . (2.153)

This allows us to define the quantum symmetry generators of a quantum conformal

field theory as:

Qn =
1

2πi

∫
dzT (z)ln(z), (2.154)

where we have expressed the energy momentum tensor in complex coordinates and

defined T = Tzz. Qn is now the quantum generator of conformal symmetry and

from our discussion at the end of Section 2.11 we should expect Qn to satisfy a

Virasoro algebra. This is in fact the case which may be verified by computing the

blacket:

δlnQm = [Qm,Qn]. (2.155)

One way to compute this bracket is to introduce the operator product expansion

(OPE)

T (z)T (w) =
c/2

(z − w)4
+

2T (w)

(z − w)2
+
∂wT (w)

(z − w)
+ · · · (2.156)

and the contour C(w) as depicted in Figure 2.3 which stems form Wilson’s hy-

−0 0 0=

�

|z|>|w|

�

|w|>|z|

�

C(w)

Figure 2.3: Appropriate contour for computing commutators of radial ordered op-
erators.
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pothesis on short distance expansions and the fact that any correlation function

of a given quantum field theory only makes sense when defined as a time ordered

product. Analogous, the product (2.156) only makes sense for z > w, eliminating

the ambiguity wether w is inside or outside the contour, which is referred to as

radial ordering and the radial ordering of [, ] is ensured by the contour relation of

Figure 2.3, i.e.:
∮
dz[A(z), B(w)] =

∮

|z|>|w|
A(z)B(w)−

∮

|w|>|z|
B(w)A(z). (2.157)

Upon application of these tools yields the Virasoro algebra:

[Qm,Qn] = (m− n)Qm+n +
c

12
m
(
m2 − 1

)
δm+n,0. (2.158)

The OPE and contour C(w) provide another benefit to analyze how the energy

momentum tensor responds to an infinitesimal conformal transformation:

δξT (z) =
1

2πi

∮

C

(z)ξ(w)T (w)T (z)

=ξT ′ + 2Tξ′ +
c

12
ξ′′′

. (2.159)

We see that in the case of a quantum conformal field theory the energy momentum

tensor transforms as a quadratic differential form, as should, with the addition of

an anomalous term c
12
ξ′′′8.

2.13 The Eentropy of a Conformal Field

In this section we will present a heuristic derivation of the Cardy formula. For

a micro canonical ensemble the relation ship between the entropy and density of

states is given by

S = ln(ρ), (2.160)

8The factor of 1
12 is dependent upon the choice of conformal coordinates and normalization of

Q. For conformal light cone coordinates and unit normalization, the the factor is 1
24π



46

where S is the entropy and ρ the density of states. This will be our starting point,

and we will need to manipulate the partition function in order to yield ρ. This

procedure applied to conformal field theories gives rise to Cardy’s formula. Given a

CFT who’s symmetry is generated by a centrally extended Virasoro algebra, Cardy’s

basic result relies on the partition function

Z0 = Tre2πi(L0− c
24

)τe−2πi(L̄0− c
24

)τ̄ (2.161)

beeing modular invariant, i.e. invariant under the transformation τ → −1
τ

. Applyed

to the torus gives:

Z = Tre2πi(L0)τe−2πi(L̄0)τ̄ (2.162)

=
∑

ρ(∆, ∆̄)e2πi(∆)τe−2πi(∆̄)τ̄ (2.163)

The above functional has a direct analogy to a unitary theory for ∆ and ∆̄ the eigen

values of L0 and L̄0. This analogy is observed by inserting a complete set of states

into the trace, allowing the extraction of ρ via contour integration and Fourier’s

trick. Assume τ is a complex variable, then

ρ(∆, ∆̄) =
1

(2πi)2

∫
dq

q∆+1

dq̄

q̄∆̄+1
Z(q, q̄) (2.164)

where q = e2πiτ and q̄ = e−2πiτ̄ . We will focus on the ∆ integral and add the other

contributions later. It is easily observed that Z(τ) = e
2πicτ

24 Z0(τ) and employing the

modular invariance yilds:

Z(τ) = e
2πicτ

24 Z0

(−1

τ

)
= e

2πicτ
24 e

2πic
24τ Z

(−1

τ

)
(2.165)

and thus

ρ(∆) =

∫
dτe−2πi∆τe

2πicτ
24 e

2πic
24τ Z

(−1

τ

)
. (2.166)

This integral may be evaluated by means of a saddle point approximation. By
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assuming that Z
(−1
τ

)
varies slowly near the extremum τ = i

√
c

24∆
, so that:

ρ(∆) ∼= e2π∆
√

c
24∆ e

−2πc
24

√
c

24∆ e
2πc
24 (
√

c
24∆)

−1

Z(i∞)

= e2π
√

c∆
6 Z(i∞)

⇒ ρ(∆, ∆̄) = e
2π

„√
c∆
6

+
q
c̄∆̄
6

«
.

(2.167)

Nex, the entropy is given by the logarithm of the density of state, such that

S = 2π

(√
c∆

6
+

√
c̄∆̄

6

)
Cardy’s Formula (2.168)

arriving at the desired result.

2.14 AdS/CFT

In this section we will motivate a duality between a quantum gravity theory

on a d+1-dimensional AdS bulk space and a d-dimensional CFT at the asymptotic

boundary. This duality, known as the AdS/CFT correspondence and depicted

in Figure 2.4, was first rigorously conjectured and formulated by Maldacena who

showed that a type II B string theory on AdS5 × S5 is dual to a N = 4, d = 4

super-Yang-Mills theory [38]. To begin we will need to briefly review some aspects

of quantum conformal field theory and AdS not perviously addressed.

As in any quantum field theory we may classify a field operator O∆(xµ) via its

transforms under the respective symmetry group. In the case of a conformal field

theory the symmetry group is the conformal group in d+1 dimensions, SO(d+1, 1)

and the field operator transforms under scaling as

O∆(xµ)→ O∆(λxµ) = λ−∆O∆(xµ), (2.169)

where ∆ is called the scaling dimension. The Partition function is defined in the
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AdSd+1

CFTd

r
→
∞

Figure 2.4: Cartoon depiction of the AdS/CFT correspondence.

usual sense

ZCFT [ϕ∆] =
〈
e
R
ddxϕ∆(x)O∆(x)

〉
, (2.170)

where 〈〉 denotes path integration and ϕ∆(x) is a conformal field. Treating ϕ∆(x)

as a source, we may employ functional methods to study the correlator:

〈O∆1O∆2 . . .〉 =
δZCFT

δϕ∆1(x1)δϕ∆2(x2) . . .
, (2.171)

which is conformally invariant if and only if the partition function is invariant under

the scaling:

ϕ∆(x)→ λd−∆ϕ∆(λx) (2.172)
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since ∫
ddxϕ∆(x)O∆(x) =

∫
dd(λx)ϕ∆(λx)O∆(λx)

=λd−∆

∫
ddxϕ∆(x)O∆(x).

(2.173)

The duality between a quantum gravity and a quantum conformal field theory

relies heavily on the fact that the isometry group of the respective spacetime is

isomorphic to the conformal group. This makes AdS a natural choice since its

isometries generate conformal transformations of the respective field content on the

space. The metric for AdS with radius R is given by the line element:

ds2 =
R2

r2
dr2 +

r2

R2

(
−dt2 + dxidxi

)
, (2.174)

where r is denoted as the radial coordinate and r →∞ is the asymptotic boundary

and r = 0 may be considered a horizon.

The boundary r →∞ is particularly interesting, since the asymptotic confor-

mal isometries generate conformal transformations of the (conformal) d-dimensional

fields ϕ̄ = ϕ(∞, x). In other words the asymptotic AdS isometries generate a d-

dimensional conformal group for boundary fields ϕ̄. Such invariant boundary fields

may be interpreted as sourcing an operator O∆(x) of scaling dimension ∆:

Z [ϕ̄] =

∫

ϕ=ϕ̄

Dϕe−S[ϕ] =
〈
e
R
ddxϕ̄∆(x)O∆(x)

〉
, (2.175)

where Z is conformally invariant provided ϕ behaves near the boundary as

ϕ(r, x) ∼
(

1

r

)d−∆

ϕ̄+O
(

1

r

)d−∆+1

, (2.176)

which implies

ϕ̄(x)→ λd−∆ϕ̄(λx) (2.177)

and following from (2.172) we conclude Z must be a quantum conformal field theory.

The above conclusion will hold in general irrespective of the field species and in the
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case of a free massless two dimensional scalar it is not to difficult to show that the

scaling dimension satisfies:

∆ =
d

2
+

√
d

2
+m2R2

=2

(2.178)

i.e. the conformal dimension must be equal to the spacetime dimension.

In Section 2.12 we have already seen that for a given CFT we may derive the

local field T µν by variation of the CFT action functional via the massless symmetric

spin two field gµν . This means that the AdS theory must include a graviton in its

field content, giving rise the the AdS/CFT correspondence: The partition function

of a quantum gravity theory on an asymptotically d + 1-dimensional AdS, as a

function of the boundary values of its field content, is equivalent to the partition

function of a d-dimensional CFT where the boundary fields source an operator

O∆(x) of scaling dimension ∆

Zgrav [ϕ̄] = ZCFT [ϕ̄] =
〈
e
R
ddxϕ̄∆(x)O∆(x)

〉
. (2.179)

2.15 Gravity and 2-Dimensions

For a given two dimensional Riemannian-Levi-Cevita connection 2-form ωαβ,

the Gauss curvature is simply:

dω12 = Kvol2 (2.180)

and relates to the Ricci scalar curvature as

K =
1

(2)((2)− 1)
R(2). (2.181)
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This implies that the curvature of any Riemann-Surface is completely determined by

its scalar variant and the Einstein equation is always trivially satisfied. Following a

Cartan application to (2.180) and (2.181) it is not difficult to show in two dimensions

that:

R(2)
µν =

1

2
gµνR

(2). (2.182)

The above equation may also be realized from a gravitational view point by tracing

the Einstein equation, which implies that in two dimensions there exists no classi-

cal energy momentum configurations which can gravitate. Thus classically, in two

dimensions, there are no general relativistic dynamics and any gravitational effects

that are present must have quantum gravitational implication/origin. This is an

interesting conclusion since the existence of two dimensional black holes has been

well established, see [83] for a comprehensive review, and their associated theories

usually contain additional field content beyond the metric such as dilatons or auxil-

iary scalar fields. In other words, the classical Einstein equations in two dimensions

do not admit black hole solutions. Thus any two dimensional black hole must orig-

inate from some two dimensional effective quantum gravity theory such as string

theory.

One example, dilaton gravity, is found by studying the s-wave sector of classi-

cal four dimensional gravity. Almost all salient features of black holes are encoded

in their respective s-wave sectors, irrespective of the symmetries of the spacetime.

To arrive at two dimensional dilaton gravity, we begin with the four dimensional

metric ansatz

ds2 = g(2)
µνdx

µdxν +
1

λ2
e−2ϕdΩ2

(2) (2.183)
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and substituting into the Einstein-Hilbert action (2.1) and integrating out the an-

gular degrees of freedom we are left with the theory:

SDG =
1

2π

∫
d2x
√
−g(2)e−2ϕ(r)

{
R(2) + 2 (∇ϕ)2 + λ2e2ϕ

}
, (2.184)

with a dimensionless coupling of e−2ϕ(r+)

2π
=

4πr2
+

16πG
and λ2 = π

2G
. A black hole solution

to this theory was discussed briefly in Section 1.3 and its relationship to conformal

field theory and quantum gravity. Though the functional (2.184) is in general not

a conformal field theory, we know from the c-Theorem [44, 84] that (2.184) must

flow, under the renormalization group, to a quantum conformal field theory. The

c-Theorem establishes the following relationships of the renormalization group of a

two dimensional field theory with beta function β, coupling g and invariant under

a one parameter group of transformations:

• There exists a function c(g) such that
[
ċ(g) = β(g) ∂c

∂g

]
g∗

, where g∗ is a fixed

point of β.

• At a fixed point the two dimensional field theory has an infinite conformal

symmetry.

• The value of c at the fixed point is the central extension of the generator

algebra which is Virasoro.

and is proved in [84]. There exists strong evidence [17, 20, 44, 85, 86, 87], that in

the near horizon this CFT takes the form of a Liouville Theory [88]

SLiouville =
c

96π

∫
d2x
√
−g(2)

{
−Φ�g(2)Φ + 2ΦR(2)

}
(2.185)

with effective dimensionless coupling proportional to:

A

16πG
, (2.186)
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where the numerator originates from the dimensional reduction procedure and the

denominator is a remnant of the parent classical gravitational theory (general rela-

tivity).

To see this, let us study the quantum theory of (2.184) in the conformal gauge

g+− =− 1

2
e−2ρ

g++ =g−− = 0

(2.187)

and from our discussion in Section 1.3 and Section 2.14 we know this gauge leaves

unfixed a set of diffeomorphisms

δξ+g++ =0

δξ−g−− =0,
(2.188)

which generate a conformal group at asymptotic infinity and the corresponding

quantum charges of T±± generate a Virasoro algebra with calculable central charge.

This is a familiar setting and is well understood from the study of bosonic string

theory with conformally invariant sigma model

S = − 1

2π

∫
d2x
√−γ

{
gµν∇Xµ∇Xν +

1

2
ΦRγ + T

}
, (2.189)

where γmn is a fiducial metric, Xµ = (ρ, ϕ) and the couplings gµν , Φ and T 9 are

functions of Xµ with known gravitational beta-functions to lowest order:

βgµν =2∇µ∇νΦ +Rµν + · · ·. (2.190)

From the above we see that conformal symmetry (βgµν = 0) severally restricts the

possible quantum gravity theories in two dimensions. One obvious choice is the

Liouville functional (2.185) for field redefinition Φ→ 2Φ in (2.190).

A similar analysis for a large class of non-extremal weakly isolated horizons,

including cosmological and of non-spherical spacetimes, by Chung [89, 90] showed

9We have restricted to the case Bµν = 0 since we are only interested in gravity at this stage.
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by considering near-horizon Gauss Null Coordinates, given by the line element

ds2 = r̃F (r̃)du2 + 2dudr̃ + 2r̃hidudx
i + gijdx

idxj (2.191)

which takes the form

ds2 = 2g+−
(
dx+dx− + h+idx

+dxi
)

+ gijdx
idxj (2.192)

on the light cone,10 that in the near horizon regime general relativity reduces to a

two dimensional Liouville type conformal field theory to O(r̃). This was done by

considering diffeomorphisms ξ± preserving specific metric boundary conditions on

the isolated horizon, then evaluating the Einstein-Hilbert Action for g′µν = gµν +

Lξgµν and integrating out the angular degrees of freedom. This near horizon theory

again exhibited the same pre-factor A
16πG

and a center proportional to this coupling.

It may seem unclear why we would consider studying quantum gravity in two

dimensions, especially since in four dimensions the problem is yet to be solved. Yet

when restricting our analysis to the near horizon regime of black holes the tools

from two dimensions become very useful, since in this isotropic region the only

relevant degrees of freedom are contained in the r − t plane. In other words we

may extract four dimensional quantum black hole quantities from two dimensional

quantum gravity in the near horizon regime. This will be the premise of the original

research presented in this thesis.

10For the line element (2.191) the horizon is located at r̃ = 0 and x± are defined in terms of
(u, r̃).
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CHAPTER 3

BLACK-HOLE/NEAR-HORIZON-CFT DUALITY AND THE
CADONI MAP

In this chapter we present a method for computing black hole temperature

and entropy from a near horizon quantum conformal field theory. The goal is to

make contact with methods from both effective action approaches (Section 1.2 and

Section 2.10), holographic duality (Section 2.11 and Section 2.15) and the conformal

equivalence between spacetimes in two dimensions. We have addressed a large class

of four dimensional black holes and the three dimensional BTZ as well. Yet it is

not clear that the methods of this chapter apply to most general four dimensional

static black hole of Kerr-Newman-AdS. This particular spacetime exhibits four

complex horizon radii for which only one does not diverge in the Schwarzschild

limit. This problem is addressed in Chapter 4 with an elegant solution. The work

in this chapter is published in [17].

Motivated by Section 2.15 we will model the near horizon regime with a two

dimensional Liouville type quantum field theory

SLiouville =
1

96π

∫
d2x
√
−g(2)

{
−Φ�g(2)Φ + 2ΦR(2)

}
. (3.1)

We make this choice based on the fact that in this regime all mass and angular

terms of (1.16) fall of exponentially fast upon transformation from r → r∗, were

∂r
∂r∗

= f(r) [23]. This leaves us with an infinite collection of two dimensional free

scalars in spherically symmetric spacetime g
(2)
µν

1. The effective action of each

1g
(2)
µν may always be assumed spherically symmetric since any Riemannian Space in 2-

dimensions is conformally flat.
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partial wave is given by the Polyakov action of Section 2.7:

ΓPolyakov =
1

96π

∫
d2x
√
−g(2)R(2) 1

�g(2)

R(2) (3.2)

and integrating out Φ in SLiouville yields ΓPolyakov. In the case where the original four

dimensional metric is not spherically symmetric [18, 19], a U(1) gauge sector appears

in addition to (3.2), which adds a gauge anomaly to Robinson and Wilczek’s method

for computing Hawking Radiation. In this chapter we will ignore this contribution

since we are mainly focused on Hawking effects and address the gauge field sector

in Chapter 4.

The energy momentum tensor for (3.1) was defined in Section 2.10:

〈Tµν〉 = − 2√
−g(2)

δSLiouville
δg(2)µν

= − 1

48π

{
∂µΦ∂νΦ−∇µ∂νΦ + g(2)

µν

[
2R(2) − 1

2
∇αΦ∇αΦ

]} (3.3)

and the equation of motion for the auxiliary scalar Φ is:

�g(2)Φ = R(2) (3.4)

As an ansatz for the two dimensional metric g
(2)
µν , we choose the RW2DA a la

Robinson and Wilczek of Section 1.2. Thus given a g
(2)
µν we are free to solve (3.4)

and (3.3) up to integration constants. The integration constants are addressed by

adopting Unruh Vacuum boundary conditions [81] with a slight modification [17]
{
T++ = 0 r →∞, l→∞
T−− = 0 r → r+

(3.5)

where x± = t ± r∗ are light-cone coordinates, r+ is the horizon radius defined as

the largest real root of f(r) = 0 and l is the de Sitter radius. At the horizon and

asymptotic infinity for
(
Λ = ± 1

l2

)
= 0 and at the horizon only for Λ 6= 0, (3.3) will

be dominated by one holomorphic component. This component equals the Hawking

flux of the four and three dimensional black holes, which determines the Hawking
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temperature. In other words, at the boundary2 of the RW2DA there exists a one

dimensional quantum conformal field theory who’s holomorphic energy momentum

tensor contains the higher dimensional black hole’s Hawking temperature.

The entropy will be determined by counting the horizon microstates of g
(2)
µν

via the Cardy formula (1.22). Following the outline proposed in [45] we construct a

near horizon Diff(S1) or Witt subalgebra satisfying (1.19) based on the isometries

of g
(2)
µν . In the horizon limit (I+ boundary) the Diff(S1) subalgebra takes the form:

i2
{
ξ+
m, ξ

+
n

}
= (m− n)ξ+

m+n, (3.6)

where the factor 2 comes from neglecting the asymptotic infinity limit (I− bound-

ary). On the I+ boundary the energy momentum tensor is holomorphic given by

the 〈T++〉 component. Next, we define the charge on the I+ boundary3

Qn =
3A

πG

∫
dx+ 〈T++〉 ξ+

n , (3.7)

where A is the horizon area of the higher dimensional black hole. The coefficient

on the integral of Qn is chosen such that in the case when the higher dimensional

black hole is Schwarzschild Qn = 1
16πG

∫
dx+ 12

π(T 2
H)

2 〈T++〉 ξ+
n , where we have nor-

malized the units of the energy momentum tensor. For a 1-dimensional CFT with

holomorphic energy momentum tensor T (z) we have from Section 2.12:

δξ(z)T (z) = ξT ′ + 2Tξ′ +
k

24π
ξ′′′, (3.8)

where k is the central extension associated with the CFT and not with the mi-

crostates of g
(2)
µν . In the case for two dimensional quantum scalar k = 1 [91].

Thus, given the transformation (3.8) and compactifying the I+ boundary to a cir-

cle with period (1/2 · 1/TH), where the 1/2 takes the I− boundary into account, we

2Boundary is used loosely and refers to either r = r+ or r →∞.
3Qn is only conserved on the I+ boundary.
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obtain the following charge algebra:

[Qm, Qn] = (m− n)Qn +
c

12
m
(
m2 − 1

)
δm+n,0, (3.9)

where c is the central extension associated with the microstates of g
(2)
µν . The

Bekenstein-Hawking entropy of the four and three dimensional black holes is then

given by Q0 and c via (1.22).

Finally we compare our results to [46] by conformally mapping gDµν to g
(2)
µν

g(2)
µν = 2φgDµν (3.10)

for some conformal factor 2φ = (λx)2, where (1.24) is invariant under conformal

transformations [13, 92]. This is what we will refer to as the Cadoni map.

We will now apply the method, outlined above, to various four and three

dimensional black holes with zero and non zero cosmological constant and construct

their Hawking flux, associated entropy and temperature.

3.1 Spherically Symmetric Solutions

In this class we will consider the Scwarzschild (SS) and Reissner-Nordström

(RNS) black holes. Their two dimensional analogues have the form [93, 23]

g(2)
µν =


 −f(r) 0

0 1
f(r)


 , (3.11)

where

fSS(r) = 1− 2GM

r
(3.12)

and

fRNS(r) = 1− 2GM

r
+
Q2G

r2
(3.13)
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Next, using the above ansatz and solving (3.4) we get:

ΦSS = C2t+ C1r + ln r − (1− 2GMC1) ln (r − 2GM) + C3 (3.14)

and

ΦRNS =C2t+ C1r +
C1

√
G (2GM2 −Q2)√
GM2 −Q2

arctan

(
GM − r√
G2M2 −GQ2

)

+ 2 ln r − (1−GMC1) ln
(
r2 − 2GMr +GQ2

)
+ C3

(3.15)

Using these auxiliary fields in (3.3) and transforming to light cone coordinates we

obtain:
〈
T SS++

〉
=
−r4(C1 + C2)2 + 8rGM − 12G2M2

192πr4

〈
T SS−−

〉
=
−r4(C1 − C2)2 + 8rGM − 12G2M2

192πr4

〈
T SS+−

〉
=
〈
T SS−+

〉
=
GM(r − 2GM)

24πr4

(3.16)

and 〈
TRNS++

〉
=
[
−r6(C1 + C2)2 + 8r3GM − 12r2G

(
GM2 +Q2

)

+24rG2MQ2 − 8G2Q4
]
/
[
192πa6

]

〈
TRNS−−

〉
=
[
−r6(C1 − C2)2 + 8r3GM − 12r2G

(
GM2 +Q2

)

+24rG2MQ2 − 8G2Q4
]
/
[
192πa6

]

〈
TRNS+−

〉
=
〈
TRNS−+

〉
=
G (2rM − 3Q2) (r2 − 2rGM +GQ2)

48πr6

(3.17)

The fact that both energy momentum tensors are not holomorphic/anti-homolomorphic

signals the existence of a conformal anomaly taking the form

〈
T µ
µ

〉
= − 1

24π
R(2) (3.18)

due to the trace anomaly [91]. Imposing (3.5) to eliminate C1 and C2 our final

steps are to analyze
〈
Tµν
〉

at the horizon and construct the conformal map (3.10).

At the horizon the energy momentum tensors are dominated by one holomorphic
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component 〈T++〉 given by

〈
T SS++

〉
=

1

768πG2M2
=

π

12
(TH)2 (3.19)

and

〈
TRNS++

〉
=
G2 (GM2 −Q2)

(
2M
√
G (GM2 −Q2) + 2GM2 −Q2

)

48π
(√

G (GM2 −Q2) +GM
)6

=
π

12
(TH)2 ,

(3.20)

which are in agreement with Hawking’s original results [2, 3].

Following [45], we compute the near horizon diffeomorphisms satisfying (1.19).

We get:

ξSSn = 4GMeinκt∂t +
in(r − 2GM)2einκt

GM
∂r (3.21)

and

ξRNSn =

(√
G (GM2 −Q2) +GM

)3

eiκnt

G
(
M
√
G (GM2 −Q2) +GM2 −Q2

)∂t+

ineiκnt (r2 − 2rGM +GQ2)
2

rG (rM −Q2)
∂r,

(3.22)

where κ is the horizon surface gravity. Transforming to x± coordinates and taking

the horizon limit, we obtain the I+ boundary charge algebras:

[Qm, Qn]SS = (m− n)Qn + 2GM2m
(
m2 − 1

)
δm+n,0, (3.23)

and

[Qm, Qn]RNS =(m− n)Qn+
(
M
√
G (GM2 −Q2) +GM2 − Q2

2

)
m
(
m2 − 1

)
δm+n,0,

(3.24)
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which imply

QSS
0 =GM2 (3.25)

cSS =24GM2 (3.26)

and

QRNS
0 =

(√
G (GM2 −Q2) +GM

)2

4G
(3.27)

cRNS =
6
(√

G2M2 −GQ2 +GM
)2

G
(3.28)

and using these values in (1.22) we get:

SSS = 4πGM2 =
A

4G
(3.29)

and

SRNS =
π
(√

G (GM2 −Q2) +GM
)2

G
=

A

4G
. (3.30)

Finally, conformally mapping g
(2)
µν to g

(D)
µν implies:

λ2
SS =

1

G
(3.31)

xSS =
G

r
(3.32)

cSS =48GM2 (3.33)

ξSS0 =
GM2

2
(3.34)
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as in [46] and

λ2
RNS =

4GM2

(√
G2M2 −GQ2 +GM

)2 (3.35)

xRNS =
G (2rM −Q2)

2r2M
(3.36)

cRNS =
12
(√

G2M2 −GQ2 +GM
)2

G
(3.37)

ξRNS0 =

(√
G2M2 −GQ2 +GM

)2

8G
(3.38)

where λRNS and xRNS are such that

lim
Q→0

λRNS = λSS and lim
Q→0

xRNS = xSS (3.39)

Using (1.22) we find the respective entropies:

SSS = 4πGM2 =
A

4G
(3.40)

and

SRNS =
π
(√

G (GM2 −Q2) +GM
)2

G
=

A

4G
. (3.41)

We see that our central extension and zero-mode relate to Cadoni’s via

c =
cc
2

(3.42)

and

Q0 =2ξ0. (3.43)

Yet, their respective products are equal and invariant under two dimensional con-

formal transformations and produce entropies in agreement with the Bekenstein-

Hawking area law [1] for ~ = 1. Thus, we may choose to conformally map into

Cadoni’s solution for all g
(2)
µν for calculational simplicity.

We will proceed to solidify our main argument by applying the methods of
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Section 1.5 to several more black hole solutions of various types.

3.2 Axisymmetric Solutions

For this class we analyze the Kerr (K) and Kerr-Newman (KN) Black holes

with two dimensional analogues [18, 93]

g(2)
µν =


 −f(r) 0

0 1
f(r)


 , (3.44)

where

f(r) =
∆

r2 + J2
(3.45)

and

∆ =

{
r2 − 2rGM + J2 K

r2 − 2rGM +GQ2 + J2 KN
. (3.46)

The auxiliary scalars read:

ΦK =rC1 + tC2 + (C1GM − 1) log
(
r2 − 2rGM + J2

)
+ log

(
r2 + J2

)
+

2C1G
2M2 arctan

(
r−GM√
J2−G2M2

)

√
J2 −G2M2

+ C3

(3.47)

and

ΦKN = rA+ tC2 + (C1GM − 1) log
(
r2 − 2rGM +GQ2 + J2

)
+

log
(
r2 + J2

)
+

C1G (2GM2 −Q2) arctan

(
r−GM√

G(Q2−GM2)+J2

)

√
G (Q2 −GM2) + J2

+ C3

(3.48)
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from which we obtain the energy momentum tensors:
〈
TK++

〉
=−

[
r8(C1 + C2)2 + 4r6J2(C1 + C2)2 − 8r5GM + 6r4

(
C2

1J
4+

2C1J
4C2 + 2G2M2 + J4C2

2

)
+ 16r3GJ2M + 4r2

(
C2

1J
6+

2C1J
6C2 − 10G2J2M2 + J6C2

2

)
+ 24rGJ4M + C2

2J
8+

2C1J
8C2 − 4G2J4M2 + J8C2

2

]
/
[
192π

(
r2 + J2

)4
]

〈
TK−−

〉
=−

[
r8(C1 − C2)2 + 4r6J2(C1 − C2)2 − 8r5GM + 6r4

(
C2

1J
4−

2C1J
4α + 2G2M2 + J4α2

)
+ 16r3GJ2M + 4r2

(
C2

1J
6−

2C1J
6C2 − 10G2J2M2 + J6C2

2

)
+ 24rGJ4M + C2

1J
8−

2C1J
8C2 − 4G2J4M2 + J8C2

2

]
/
[
192π

(
r2 + J2

)4
]

〈
TK+−

〉
=
〈
TK−+

〉
=
rGM (r2 − 3J2) (r2 − 2rGM + J2)

24π (r2 + J2)4

(3.49)



65

and〈
TKN++

〉
=−

[
r8(C1 + C2)2 + 4r6J2(C1 + C2)2 − 8r5GM + 6r4

(
C2

1J
4+

2C1J
4C2 + 2G2M2 + 2GQ2 + J4C2

2

)
− 8r3GM

(
3GQ2−

2J2
)

+ 4r2
(
C2

1J
6 + 2C1J

6C2 + 2G2
(
Q4 − 5J2M2

)
+

2GJ2Q2 + J6C2
2

)
+ 24rGJ2M

(
GQ2 + J2

)
+ C2

1J
8+

2C1J
8C2 − 4G2J4M2 − 4G2J2Q4 − 4GJ4Q2 + J8C2

2

]
/

[
192π

(
r2 + J2

)4
]

〈
TKN−−

〉
=−

[
r8(C1 − C2)2 + 4r6J2(C1 − C2)2 − 8r5GM + 6r4

(
C2

1J
4−

2C1J
4C2 + 2G2M2 + 2GQ2 + J4C2

2

)
− 8r3GM

(
3GQ2−

2J2
)

+ 4r2
(
C2

1J
6 − 2C1J

6C2 + 2G2
(
Q4 − 5J2M2

)
+

2GJ2Q2 + J6C2
2

)
+ 24rGJ2M

(
GQ2 + J2

)
+ C2

1J
8−

2C1J
8C2 − 4G2J4M2 − 4G2J2Q4 − 4GJ4Q2 + J8C2

2

]
/

[
192π

(
r2 + J2

)4
]

〈
TKN+−

〉
=
〈
TKN−+

〉
=
[
G
(
2r3M − 3r2Q2 − 6rJ2M + J2Q2

) (
r2−

2rGM +GQ2 + J2
)]
/
[
48π

(
r2 + J2

)4
]

(3.50)

which exhibits conformal anomaly (3.18). Applying (3.5) and taking the horizon

limit we obtain the holomorphic pieces

〈
TK++

〉
=

π (G2M2 − J2)

12
(
4πGM

√
G2M2 − J2 + 4πG2M2

)2 =
π

12
(TH)2 (3.51)

and
〈
TKN++

〉
=− G (Q2 −GM2) + J2

48π

((√
G2M2 −GQ2 − J2 +GM

)2

+ J2

)2

=
π

12
(TH)2

(3.52)
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agreeing with Hawking’s result [2, 3]. Next, from (3.10) and applying similar bound-

ary conditions as in (3.39) we obtain

λ2
K =

4GM2

(√
G2M2 − J2 +GM

)2
+ J2

(3.53)

xK =
aG

a2 + J2
(3.54)

cK =
12
((√

G2M2 − J2 +GM
)2

+ J2
)

G
(3.55)

ξK0 =

(√
G2M2 − J2 +GM

)2
+ J2

8G
(3.56)

and

λ2
KN =

4GM2

(√
G2M2 −GQ2 − J2 +GM

)2

+ J2

(3.57)

xKN =
2aGM −GQ2

2a2M + 2J2M
(3.58)

cKN =

12

((√
G2M2 −GQ2 − J2 +GM

)2

+ J2

)

G
(3.59)

ξKN0 =

(√
G2M2 −GQ2 − J2 +GM

)2

+ J2

8G
(3.60)

which give the respective entropies:

SK = 2πM
(√

G2M2 − J2 +GM
)

=
A

4G
(3.61)

and

SKN = π
(

2M
(√

G (GM2 −Q2)− J2 +GM
)
−Q2

)
=

A

4G
(3.62)

reproducing the Bekenstein-Hawking area law [1] and continuing the trend of Sec-

tion 3.1.
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3.3 Spherically Symmetric SSdS and Rotating
BTZ

Now, we turn our attention to black holes with non zero cosmological constant:

Λ =

{
1
l2

dS

− 1
l2

AdS
, (3.63)

where l is the de Sitter radius. In this black hole class we consider the spherically

symmetric dS (SSdS) with line element

ds2 =−
(

1− 2GM

r
− r2Λ

3

)
dt2 +

(
1− 2GM

r
− r2Λ

3

)−1

dr2

+ r2dΩ

(3.64)

and the three dimensional BTZ black hole with line element

ds2 =−
(
−8GM +

r2

l2
+

16GJ2

r2

)
dt2 +

(
−8GM +

r2

l2
+

16GJ2

r2

)−1

dr2

+ r2

(
dφ− 4GJ

r2
dt

)2

.

(3.65)

Their two dimensional analogues [36, 29] are as in (3.44) where

f(r) =

{
1− 2GM

r
− r2Λ

3
SSdS

−8GM + r2

l2
+ 16GJ2

r2 BTZ
(3.66)

Following the steps outlined in Section 1.5 we obtain the energy momentum tensors:
〈
T SSdS++

〉
=−

[
r4
(
3C2

1 + 6C1C2 + 3C2
2 − 4Λ

)
+ 24r3GMΛ

−24rGM + 36G2M2
]
/
[
576πr4

]

〈
T SSdS−−

〉
=
[
r4
(
−3C2

1 + 6C1C2 − 3C2
2 + 4Λ

)
− 24r3GMΛ

+24rGM − 36G2M2
]
/
[
576πr4

]

〈
T SSdS+−

〉
=
〈
T SSdS−+

〉
= −

[
r6Λ2 − 3r4Λ + 12r3GMΛ− 18rGM

+36G2M2
]
/
[
432πa4

]

(3.67)
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and 〈
TBTZ++

〉
=−

[
r6
(
C2

1 l
2 + 2C1l

2C2 − 32GM + l2C2
2

)
+ 384r4G2J2

−1536r2G3J2l2M + 2048G4J4l2
]
/
[
192πr6l2

]

〈
TBTZ−−

〉
=−

[
r6
(
C2

1 l
2 − 2C1l

2C2 − 32GM + l2C2
2

)
+ 384r4G2J2

−1536r2G3J2l2M + 2048G4J4l2
]
/
[
192πr6l2

]

〈
TBTZ+−

〉
=
〈
TBTZ−+

〉
= −

[(
r4 + 48G2J2l2

) (
r4 − 8r2Gl2M

+16G2J2l2
)]
/
[
48πr6l4

]

(3.68)

with conformal anomaly (3.18). Applying (3.5) we obtain the holomorphic piece

〈T++〉 =
π

12
(TH)2 (3.69)

for both spacetimes in their respective horizon limits and agreeing as before with

Hawking’s results [2, 3]. Next, their respective entropies are computed via (1.22),
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(3.10),

λ2
SSdS =−

[
16GM2Λ2

(√
Λ3 (9G2M2Λ− 1)− 3GMΛ2

)2/3
]
/

[((√
3− i

)(√
Λ3 (9G2M2Λ− 1)− 3GMΛ2

)2/3

(3.70)

+
(
−
√

3− i
)

Λ
)2
]

xSSdS =
r3Λ + 6GM

6rM
(3.71)

cSSdS =−
[
3

((√
3− i

)(√
Λ3 (9G2M2Λ− 1)− 3GMΛ2

)2/3

+
(
−
√

3− i
)

Λ
)2
]
/
[
GΛ2

(√
Λ3 (9G2M2Λ− 1) (3.72)

−3GMΛ2
)2/3
]

ξSSdS0 =−
[((√

3− i
)(√

Λ3 (9G2M2Λ− 1)− 3GMΛ2
)2/3

+
(
−
√

3− i
)

Λ
)2
]
/
[
32GΛ2

(√
Λ3 (9G2M2Λ− 1) (3.73)

−3GMΛ2
)2/3
]

and

λ2
BTZ =

4GM2

√√
G2l2 (l2M2 − J2) +Gl2M

(3.74)

xBTZ =
(−r4 + r2l2 − 16G2J2l2 + 8r2Gl2M)

(2r2l2M)
(3.75)

cBTZ =
12
√√

G2l2 (l2M2 − J2) +Gl2M

G
(3.76)

ξBTZ0 =

√√
G2l2 (l2M2 − J2) +Gl2M

8G
(3.77)

reproducing the Bekenstein-Hawking area law [1]

S =
A

4G
(3.78)



70

in both cases via (1.22). Thus, we have shown that both entropy and temperature

induce an effective two dimensional quantum gravity in the near horizon regime

of four dimensional Schwarzschild, Reissner-Nordström, Kerr, Kerr-Newman and

Spherically Symmetric dS and three dimensional BTZ black hole.
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CHAPTER 4

BLACK-HOLE/NEAR-HORIZON-CFT DUALITY FROM AdS2/CFT1

CORRESPONDENCE AND KERR-NEWMAN-AdS

In this chapter we address the general classical Kerr-Newman-AdS black hole

and its RW2DA analogue theory. Our goal here will be to show that the near

horizon is asymptotically AdS2 and then apply the AdS/CFT correspondence to

compute its entropy. The Hawking temperature will be computed via the techniques

of the previous chapter by computing the holomorphic energy momentum tensor of

a quantum conformal field on the horizon. The work of this chapter is published in

[82].

4.1 Near Horizon Geometry

The Kerr-Newman-AdS metric is a solution to the Einstein-Hilbert Action

with negative cosmological constant coupled to a Maxwell field given by the line

element [31, 94]:

ds2 = g(4)
µνdx

µdxν

= −∆(r)

ρ2

(
dt− a sin2 θ

Ξ
dφ

)2

+
ρ2

∆(r)
dr2 +

ρ2

∆θ

dθ2

+
∆θ sin2 θ

ρ2

(
adt− r2 + a2

Ξ
dφ

)2

,

(4.1)

where

∆(r) =
(
r2 + a2

)(
1 +

r2

l2

)
− 2GMr +GQ2,

∆θ = 1− a2

l2
cos2 θ,

ρ2 = r2 + a2 cos2 θ and

Ξ = 1− a2

l2

(4.2)
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and M is the mass, a is the angular momentum per unit mass, Q is the charge, G

is Newton’s constant and l the de Sitter radius. In general there are four horizon

radii for which ∆(r) vanishes, but only two are physical. Of these two, only one, r+,

reduces to Kerr-Newman, Kerr, Reissner-Nördstrom and Schwarzschild black hole

horizons in the appropriate limits. Thus, given we choose this respective horizon

radius, any closed forms for entropy and temperature will hold in general for all

sub-leading black holes in their respective limits.

The RW2DA is found by examining the functional

S(4)[ϕ, g] = −1

2

∫
dx4
√−g∇µϕ∇µϕ (4.3)

in the regime where r is close to r+. Expanding ϕ in terms of spherical harmonics,

transforming to tortoise coordinates and integrating out the angular degrees of

freedom, we obtain the near horizon theory [31, 95]:

S(4)[ϕ, g]
r∼r+−→ S(2)[ϕlm, g

(2)] =
(r2

+ + a2)

2Ξ

∫
dtdrϕ∗lm

[
1

f(r)
(∂t− iAt)2 − ∂rf(r)∂r

]
ϕlm

(4.4)

where

f(r) =
∆(r)

r2 + a2
(4.5)

with RW2DA

g(2)
µν =


 −f(r) 0

0 1
f(r)


 (4.6)

and a gauge field containing the contributions of the U(1) charge and angular mo-

mentum

At = − eQr

r2 + a2
− Ξam

r2 + a2
. (4.7)

The above dimensional reduction suggests that in the near horizon regime the
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KNAdS metric has the form:

ds2 = g(2)
µνdx

µdxν +B (ϕ) [dφ−Atdt]2 + C (ϕ) dθ2 (4.8)

assuming we consider ϕ as a component of the gravitational field. Motivated by the

approaches in Section 2.15, we will consider a slight modification and elevating ϕlm

to a gravitational field via the field redefinition

ϕlm =

√
6

G
ψlm, (4.9)

where ψlm is now unit less and the
√

6 was chosen to recover the Einstein cou-

pling 1
16πG

in the quantum gravitational effective action of (4.4) within the s-wave

approximation.

4.2 Effective Action and Asymptotic Symme-
tries

Applying the field redefinition (4.9) to (4.4) yields:

S(2)[ψ, g] =
3(r2

+ + a2)

GΞ

∫
d2x
√
−g(2)ψ∗lm

[
Dµ

(√−gg µν
(2) Dν

)]
ψlm, (4.10)

where Dµ is the gauge covariant derivative. The effective action of each partial wave

is given by the sum of two functionals [18, 96],

Γ(lm) =Γgrav + ΓU(1), (4.11)

where

Γgrav =
(r2

+ + a2)

16πGΞ

∫
d2x
√
−g(2)R(2) 1

�g(2)

R(2) and

ΓU(1) =
3e2(r2

+ + a2)

πGΞ

∫
F

1

�g(2)

F.

(4.12)

We will discuss the s-wave contribution of (4.11) shortly and instead turn our at-

tention to computing the ASG of (4.10). The asymptotic or large r behavior of
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(4.6) and (4.7) are given by

g(0)
µν =



− r2

l2
− 1 + 2GM

r
− GQ2

r2 +O
((

1
r

)3
)

0

0 l2

r2 +O
((

1
r

)3
)


 , (4.13)

A(0)
t =

eQ2

r2
+O

((
1

r

)3
)

(4.14)

and define an asymptotically AdS2 configuration with Ricci Scalar, R = − 2
l2

+

O
((

1
r

)1
)

. We also impose the following metric and gauge field boundary or fall-off

conditions:

δgµν =




O (r) O
((

1
r

)0
)

O
((

1
r

)0
)
O
((

1
r

)3
)


 and δA = O

((
1

r

)3
)

(4.15)

A set of diffeomorphisms preserving the asymptotic metric structure is given by

ξn = ξ1(r)
einκ(t±r∗)

κ
∂t + ξ2(r)

einκ(t±r∗)

κ
∂r, (4.16)

where r∗ is the tortoise coordinate defined by dr∗ = 1
f(r)

dr,

ξ1 =
iAr4einκr

∗

nκ (−2Gl2Mr +Gl2Q2 + l2r2 + r4)
, ξ2 = Areinκr

∗
, (4.17)

A is an arbitrary normalization constant and κ is the surface gravity of the KNAdS

black hole. Applying this set of diffeomorphisms to the gauge field we find

δξAµ =

(
−3 (eQ2neintκ)

r2
+O

((
1

r

)3
)
,O
((

1

r

)4
))

. (4.18)

Thus to satisfy all the imposed fall of conditions we must consider total symmetries

of the action, which implies

δξ → δξ+Λ, (4.19)

where

Λ = −3ieQ2eintκ

r2κ
. (4.20)
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Evaluating the gauge field under this total symmetry we find

δξ+ΛA = O
((

1

r

)3
)

(4.21)

in accordance with (4.15). Finally switching to light cone coordinates x± = t± r∗,1

the set ξ±n is well behaved on the r →∞ boundary and obey the centerless Virasoro

or Diff(S1) subalgebra

i
{
ξ±m, ξ

±
n

}
= (m− n)ξ±m+n. (4.22)

Evaluating the wave equation

Dµ

(√−gg µν
(2) Dν

)
ψlm = 0 (4.23)

in this asymptotic behavior we find a product solution for ψlm, which is complex

hypergeometrical in r, but decays exponentially fast in t for higher orders in m.

Thus we only consider the s-wave contribution to (4.11), Γ00 = Γ, leaving us with

a near horizon effective action:

Γ =
(r2

+ + a2)

16πGΞ

∫
d2x
√
−g(2)R(2) 1

�g(2)

R(2)

+
3e2(r2

+ + a2)

πGΞ

∫
F

1

�g(2)

F.

(4.24)

The above functional may be recast in the familiar form of a Liouville type CFT by

introducing auxiliary scalars Φ and B satisfying

�g(2)Φ = R and �g(2)B = εµν∂µAν . (4.25)

1Large r behavior will be synonymous with large x+ behavior.
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In terms of these new fields our near horizon CFT takes its final form:

SNHCFT =
(r2

+ + a2)

16πGΞ

∫
d2x
√
−g(2)

{
−Φ�g(2)Φ + 2ΦR(2)

}

+
3e2(r2

+ + a2)

πGΞ

∫
d2x
√
−g(2)

{
−B�g(2)B

+ 2B

(
εµν√
−g(2)

)
∂µAν

}
(4.26)

4.3 Energy Momentum and The Virasoro alge-
bra

The energy momentum tensor and U(1) current of (4.26) are defined as:

〈Tµν〉 =
2√
−g(2)

δSNHCFT
δg(2)µν

=
r2

+ + a2

8πGΞ

{
∂µΦ∂νΦ− 2∇µ∂νΦ + g(2)

µν

[
2R(2) − 1

2
∇αΦ∇αΦ

]}

+
6e2(r2

+ + a2)

πGΞ

{
∂µB∂νB −

1

2
gµν∂αB∂

αB

}
and

〈Jµ〉 =
1√
−g(2)

δSNHCFT
δAµ

=
6e2(r2

+ + a2)

πGΞ

1√
−g(2)

εµν∂νB

(4.27)

and the equation of motions for the auxiliary fields are:

�g(2)Φ =R(2)

�g(2)B =εµν∂µAν
(4.28)

Thus, given the metric (4.6) and gauge field (4.7) and adopting modified Unruh

Vacuum boundary conditions (MUBC)
{
〈T++〉 = 〈J+〉 = 0 r →∞, l→∞
〈T−−〉 = 〈J−〉 = 0 r → r+

, (4.29)

where the modification takes the AdS radius into account, all relevant integration

constants of (4.27) and (4.28) are determined. for large r and to O(1
l
)2, the result-

ing energy momentum tensor is dominated by one holomorphic component, 〈T−−〉.

Expanding this component and the U(1) current in terms of the boundary fields
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(4.13) and (4.14), we compute their responses to the total symmetry δξ−n +Λ, yielding:



δξ−n +Λ 〈T−−〉 = ξ−n 〈T−−〉′ + 2 〈T−−〉 (ξ−n )

′
+

r2
++a2

4πGΞ
(ξ−n )

′′′
+O

((
1
r

)3
)

δξ−n +Λ 〈J−〉 = O
((

1
r

)3
) (4.30)

This shows that 〈T−−〉 transforms asymptotically as the energy momentum tensor

of a one dimensional CFT with center:

c

24π
=
r2

+ + a2

4πGΞ
⇒ c =

3A

2πG
, (4.31)

where A =
4π(r2

++a2)
Ξ

is the horizon area of the KNAdS black hole. It is well known

that a two dimensional CFT exhibits a conformal/trace anomaly of the form [91]

〈
T µ
µ

〉
= − c

24π
R(2) (4.32)

and evaluating the trace of (4.27) agrees with the above equation yielding the same

center as in (4.31).

The entropy of our near horizon CFT will be determined by counting the

microstates of the total quantum asymptotic symmetry generators on the r → ∞

boundary via the Cardy formula (1.22). The quantum generators are defined via

the charge:

Qn = lim
r→∞

∫
dx− 〈T−−〉 ξ−n , (4.33)

Computing its response to a total symmetry and compactifying the x− coordinate

to a circle from 0→ 2π/κ yields the charge algebra:

δξ−m+ΛQn = [Qm,Qn] = (m− n)Qn +
c

12
m
(
m2 − 1

)
δm+n,0, (4.34)

which takes the familiar form of a centrally extended Virasoro algebra.
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4.4 Entropy

Summarizing our results from (4.31) through (4.34) we have:

c =
3A

2πG

Q0 =
A

16πG

(4.35)

Substituting this into the Cardy Formula (1.22) we obtain:

S = 2π

√
cQ0

6
=

A

4G
, (4.36)

which is in agreement with the Bekenstein-Hawking entropy of the four dimensional

KNAdS black hole. Taking the limit of (4.31) to Kerr and to extremality yields

lim
l→∞, Q→0, M→a

c = 12J, (4.37)

which is the same value of the left central charge obtained in the Kerr/CFT corre-

spondence [55], further strengthening the proposal of GHSS.

4.5 Temperature

To compute the black hole temperature, we will couple the metric (4.6) to a

single quantum conformal field Φ with Liouville functional

SLiouville =
1

96π

∫
d2x
√
−g(2)

{
−Φ�g(2)Φ + 2ΦR(2)

}
(4.38)

and following the steps (4.27) through (4.29), we obtain an energy momentum tensor

which is dominated by one holomorphic component in the limit r = r+ given by:

〈T++〉 = −f
′ (r+)

2

192π
. (4.39)

This is the value of the Hawking Flux of the KNAdS black hole, from which we

obtain the known Hawking temperature[31, 94]:

HF = − π

12
(TH)2 ⇒ TH =

f ′ (r+)

4π
. (4.40)
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CHAPTER 5

CONCLUSION

To conclude, we have analyzed quantum black hole properties in the near

horizon regime via CFT techniques of quantum effective actions and extended the

analysis of Chapter 3 to the more general KNAdS spacetime in Chapter 4. The

main premiss is that the near horizon of four dimensional black holes is dual to a two

dimensional Liouville type quantum CFT whose conformal symmetry is generated

by the centrally extended Virasoro algebra. The central charge and lowest Virasoro

eigen-mode (4.35) together reproduce the correct form of the Bekenstein-Hawking

entropy and analysis of the RW2DA (4.6) coupled to a single quantum conformal

field reproduce the known form of the Hawking temperature.

It is interesting to note that the lowest Virasoro eigen-mode satisfies

Q0 = GM2
irr (5.1)

where M2
irr is the irreducible black hole mass, i.e. the final mass state after radiating

away its angular momentum via a Penrose type process. This suggests that the eigen

value of a CFT’s Hamiltonian is proportional to the irreducible mass of its black

hole dual.

In (4.9) we elevated the scalar field to a gravitational one. This was first

suggested and outlined by Solodukhin in [87] and extended to compute Hawking

radiation by RW in their seminal work [23]. Yet, in this approach the scalar field is

still treated mathematically as a matter field. It is also unclear the exact details of

the four dimensional gravitational theory, perhaps an ultraviolet complete extension

of general relativity that dimensionally reduces to (4.26) except that it has the same
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coupling as standard Einstein gravity.

It still remains an open question to generalize the methods of this note to

more exotic, higher dimensional black holes. In [33, 34, 37] the authors showed

that the RW method for computing Hawking radiation via gauge and gravitational

anomalies holds for their respective exotic black holes in arbitrary topologies and

thus we believe our construction for a near horizon CFT dual should extend to these

cases as well.



81

REFERENCES

[1] J. D. Bekenstein, “Black holes and entropy,” Phys. Rev. D7 (1973)
2333–2346.

[2] S. W. Hawking, “Particle Creation by Black Holes,” Commun. Math. Phys.
43 (1975) 199–220.

[3] J. M. Bardeen, B. Carter, and S. W. Hawking, “The Four laws of black hole
mechanics,” Commun. Math. Phys. 31 (1973) 161–170.

[4] A. Wipf, “Quantum fields near black holes,” arXiv:hep-th/9801025.

[5] S. Carlip, “Horizon constraints and black hole entropy,”
arXiv:gr-qc/0508071.

[6] G. K. Au, “The Quest for quantum gravity,” arXiv:gr-qc/9506001.

[7] C. Rovelli, “Strings, loops and others: A critical survey of the present
approaches to quantum gravity,” arXiv:gr-qc/9803024.

[8] S. M. Christensen and S. A. Fulling, “Trace Anomalies and the Hawking
Effect,” Phys. Rev. D15 (1977) 2088–2104.

[9] V. F. Mukhanov, A. Wipf, and A. Zelnikov, “On 4-D Hawking radiation from
effective action,” Phys. Lett. B332 (1994) 283–291, arXiv:hep-th/9403018.

[10] R. Balbinot and A. Fabbri, “4D quantum black hole physics from 2D
models?,” Phys. Lett. B459 (1999) 112–118, arXiv:gr-qc/9904034.

[11] R. Balbinot and A. Fabbri, “Hawking radiation by effective two-dimensional
theories,” Phys. Rev. D59 (1999) 044031, arXiv:hep-th/9807123.

[12] M. Cadoni, “Trace anomaly and Hawking effect in generic 2D dilaton gravity
theories,” Phys. Rev. D53 (1996) 4413–4420, arXiv:gr-qc/9510012.

[13] M. Cadoni, “Trace anomaly and Hawking effect in 2D dilaton gravity
theories.” 1997.



82

[14] S.-Q. Wu, J.-J. Peng, and Z.-Y. Zhao, “Anomalies, effective action and
Hawking temperatures of a Schwarzschild black hole in the isotropic
coordinates,” Class. Quant. Grav. 25 (2008) 135001, arXiv:0803.1338
[hep-th].

[15] V. Mukhanov and S. Winitzki, Intro. To Quantum Effects In Gravity.
Cambridge, 2007.

[16] A. M. Polyakov, “Quantum geometry of bosonic strings,” Phys. Lett. B103
(1981) 207–210.

[17] L. Rodriguez and T. Yildirim, “Entropy and Temperature From
Black-Hole/Near-Horizon-CFT Duality,” Class. Quant. Grav. 27 (2010)
155003, arXiv:1003.0026 [hep-th].

[18] S. Iso, H. Umetsu, and F. Wilczek, “Anomalies, Hawking radiations and
regularity in rotating black holes,” Phys. Rev. D74 (2006) 044017,
arXiv:hep-th/0606018.

[19] K. Murata and J. Soda, “Hawking radiation from rotating black holes and
gravitational anomalies,” Phys. Rev. D74 (2006) 044018,
arXiv:hep-th/0606069.

[20] S. Carlip, “Conformal field theory, (2+1)-dimensional gravity, and the BTZ
black hole,” Class. Quant. Grav. 22 (2005) R85–R124,
arXiv:gr-qc/0503022.

[21] B. Rai and V. G. J. Rodgers, “From Coadjoint Orbits to Scale Invariant
WZNW Type Actions and 2-D Quantum Gravity Action,” Nucl. Phys. B341
(1990) 119–133.

[22] G. W. Delius, P. van Nieuwenhuizen, and V. G. J. Rodgers, “The Method of
Coadjoint Orbits: an Algorithm for the Construction of Invariant Actions,”
Int. J. Mod. Phys. A5 (1990) 3943–3984.

[23] S. P. Robinson and F. Wilczek, “A relationship between Hawking radiation
and gravitational anomalies,” Phys. Rev. Lett. 95 (2005) 011303,
arXiv:gr-qc/0502074.

[24] S. Das, S. P. Robinson, and E. C. Vagenas, “Gravitational anomalies: a
recipe for Hawking radiation,” Int. J. Mod. Phys. D17 (2008) 533–539,
arXiv:0705.2233 [hep-th].



83

[25] R. Banerjee, “Covariant Anomalies, Horizons and Hawking Radiation,” Int.
J. Mod. Phys. D17 (2009) 2539–2542, arXiv:0807.4637 [hep-th].

[26] R. Banerjee and S. Kulkarni, “Hawking Radiation and Covariant Anomalies,”
Phys. Rev. D77 (2008) 024018, arXiv:0707.2449 [hep-th].

[27] R. Banerjee and S. Kulkarni, “Hawking Radiation, Effective Actions and
Covariant Boundary Conditions,” Phys. Lett. B659 (2008) 827–831,
arXiv:0709.3916 [hep-th].

[28] R. Banerjee and S. Kulkarni, “Hawking Radiation, Covariant Boundary
Conditions and Vacuum States,” Phys. Rev. D79 (2009) 084035,
arXiv:0810.5683 [hep-th].

[29] S. Gangopadhyay, “Hawking radiation from black holes in de Sitter spaces via
covariant anomalies,” Gen. Rel. Grav. 42 (2010) 1183–1187,
arXiv:0910.2079 [hep-th].

[30] Q.-Q. Jiang, “Hawking radiation from black holes in de Sitter spaces,” Class.
Quant. Grav. 24 (2007) 4391–4406, arXiv:0705.2068 [hep-th].

[31] Q.-Q. Jiang and S.-Q. Wu, “Hawking radiation from rotating black holes in
anti-de Sitter spaces via gauge and gravitational anomalies,” Phys. Lett.
B647 (2007) 200–206, arXiv:hep-th/0701002.

[32] Z. Xu and B. Chen, “Hawking radiation from general Kerr-(anti)de Sitter
black holes,” Phys. Rev. D75 (2007) 024041, arXiv:hep-th/0612261.

[33] B. Chen and W. He, “Hawking Radiation of Black Rings from Anomalies,”
Class. Quant. Grav. 25 (2008) 135011, arXiv:0705.2984 [gr-qc].

[34] J.-J. Peng and S.-Q. Wu, “Covariant anomalies and Hawking radiation from
charged rotating black strings in anti-de Sitter spacetimes,” Phys. Lett. B661
(2008) 300–306, arXiv:0801.0185 [hep-th].

[35] S. Nam and J.-D. Park, “Hawking radiation from covariant anomalies in 2+1
dimensional black holes,” Class. Quant. Grav. 26 (2009) 145015,
arXiv:0902.0982 [hep-th].

[36] M. R. Setare, “Gauge and gravitational anomalies and Hawking radiation of
rotating BTZ black holes,” Eur. Phys. J. C49 (2007) 865–868,
arXiv:hep-th/0608080.



84

[37] E. Papantonopoulos and P. Skamagoulis, “Hawking Radiation via
Gravitational Anomalies in Non- spherical Topologies,” Phys. Rev. D79
(2009) 084022, arXiv:0812.1759 [hep-th].

[38] J. M. Maldacena, “The large N limit of superconformal field theories and
supergravity,” Adv. Theor. Math. Phys. 2 (1998) 231–252,
arXiv:hep-th/9711200.

[39] J. D. Brown and M. Henneaux, “Central Charges in the Canonical
Realization of Asymptotic Symmetries: An Example from Three-Dimensional
Gravity,” Commun. Math. Phys. 104 (1986) 207–226.

[40] M. Banados, C. Teitelboim, and J. Zanelli, “The Black hole in
three-dimensional space-time,” Phys. Rev. Lett. 69 (1992) 1849–1851,
arXiv:hep-th/9204099.

[41] A. Strominger, “Black hole entropy from near-horizon microstates,” JHEP 02
(1998) 009, arXiv:hep-th/9712251.
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