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ψ   Phase-field in the range of 0≤ψ≤1 

θ=tan
-1

(ϕy/ϕx)  Angle between fixed frame, i.e. x coordinate axis and n


 

ζ =(T-Tm)/(L/cp) Dimensionless temperature 

Q Coefficient on relaxation time in phase-field equation 

(polycrystalline model) 

q   Conserved noise term 

R   Radial distance 

ρ   Density 

s and l of suffixes s=solid, l=liquid 

s or sij   Deviatoric part of the Cauchy stress 

vpvp SS ,   Weighted shape function and its gradient 

σ or ζij   Cauchy stress tensor 

ζY   Yield stress 

t   Time 

η   Relaxation time 

ηp   Pseudo time 

ηvisc   Relaxation time of Perzyna type visco-plasticity model 

T   Temperature 

Tm   Melting temperature 

Tp   Time period 

extv


   Velocity of external field 

gridv


   Grid velocity 

vi   Normal velocity to the interface 

liquidv


, solidv


  Velocity of liquid and solid phase, respectively 

Vp   Volume of material point 

W   Interface thickness 

ω or ωij  Spin tensor 
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Ω   Domain 

Ωp   Support domain of material point 

x, y   Coordinates 

ξ   Anisotropy 

χp(x)   Particle characteristic function 

δ   Non-conserved noise term 

1   The second order identity tensor 

<x> = (x+|x|)/2  The Macaulay brackets 

<•>   Mean average value 
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CHAPTER 1 

INTRODUCTION 

1.1 Background and Motivation 

Metal casting is a well-established manufacturing process to produce complexly 

shaped metalwares by utilizing solidification from liquid melt in a single operation.  A 

recognized disadvantage of the process is formation of defects.  Most of the defects are a 

result of solidification process.  Porosities and hot tears are considered to be some of the 

most severe defects and may preclude applying castings to metal products which require 

high reliability or integrity, for example a suspension arm of an automobile.  The main 

cause of the defect formation is a deformation in the mushy zone by various external 

loading during casting process, i.e. contact force applied by rolls in continuous casting 

and pressure casting, and a volume change associated with phase change [1].  Mechanical 

response and feeding of liquid melt in mushy zone influences the defect formation. 

Mushy zones are characterized by partially solidified regions, and the structure is 

intermediate between microstructure and grain-scale macrostructure.  Grain-scale 

macrostructure is a result of the following series of microstructure evolution.  (i) Solid 

seeds randomly created in the liquid melt freely and evolve their morphologies, i.e. 

equiaxed or columnar dendrite structures, until impingements on one another occur. (ii) A 

coherent network is formed among dendrite structures. The network can become 

interlocked, and it begins to have mechanical strength.  (iii) Liquid melt trapped inside 

the solid skeleton solidifies with the forming grain boundaries.  In terms of mechanical 

response, the morphology of the solid evolved in the process of (i) is significant because 

it strongly affects on interlocking property in the process of (ii).  A network of dendrites 

is interlocked at a relatively low solid fraction while a network of spheroidal or globular 

grains must have a higher solid fraction than dendritic network to have the same 

mechanical strength [2].  Deformation applied to the microstructure also has a significant 
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effect on the microstructure evolution.  Figure 1. 1 (a)-(b) shows snapshots of preliminary 

experiments examining deformation of dendrite arms in the mushy zone by applied load 

which were performed  at the University of Iowa’s solidification laboratory.  Two 

horizontally extended dendrite arms in succinonitril-3%water alloy are pushed in the 

horizontal direction.  As indicated by an arrow in Figure 1. 1 (b), a bridging of side 

branches is observed.  Complex phenomena taking place at the contact area, such as the 

formation and breakage of bridging, sliding motion among branches etc., would lead the 

microstructure change.  Pores are formed in the process of (iii).  Density change 

associated with phase change [3] or contraction/expansion of solid due to applied 

deformation [4] induces fluid flow to the part through a porous solid network.  A lack of 

feeding of liquid melt to the part is a main cause of the formation of pores.  Residual 

stress associated with rapid cooling or non-isothermal distribution causes dilatation of 

solid and leads a formation of hot tears.  Shear deformation in mush during continuous 

casting is said to be one of the causes of macrosegregation, whose formation is strongly 

dependent on a relative velocity of liquid with respect to solid [5].  The deformation in 

mushy zones is strongly related to the formation of defects from various aspects. 

Based on the above discussion, a numerical prediction of mushy zone deformation 

in the evolving microstructure scale should provide innovative insights to improve an 

existing casting process from the standpoint of the management of defect formation.  

Morphological change under applied deformation is one of the challenging aspects of the 

problem.  A formation of bridges among branches and coarsening grains are determined 

by interfacial energy associated with crystallographic orientation mismatch among them.  

An approach with energetic considerations is necessary.  Deformation of evolving 

microstructure is another challenging task.  A breakage of the bridges and fragments of 

dendrite arms are a result of deformation applied to the parts, and it, in turn, affects the 

microstructure change. The solid itself behaves as elasto-visco plastic material at high 

temperatures, and possibly causes large deformation.  A numerical method which handles 
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large deformation with evolving microstructure is essential.  State-of-art numerical 

methodology designed to simulate the complex coupling phenomena would cover the 

limitations of experimental investigation in terms of resolution of time and length scale. 

1.2 Literature Review 

A brief overview of experimental and numerical work regarding mush zone/semi-

solid deformation is described in this section. 

1.2.1 Experimental investigations of mushy zone/semi-

solid under deformation 

Flemings [2] performs a series of experiments on alloy semi-solids in order to 

investigate a wide variety of topics, i.e. crystallization, ripening, interdendritic flow, and 

solid motion etc.  One of the major experimental findings is a morphological change of 

the solid due to applied deformation.  Higher shear rate results in more spheroidal 

microstructure than dendritic microstructure as shown in Figure 1. 2.  This, in turn, 

affects on the mechanical strength of the material.  For instance, shear strength of a 

dendritic microstructure is three orders of magnitude larger than that of a spheroidal 

microstructure at the early stage of microstructure evolution, i.e. when the solid fraction 

is 0.4.  Contacts among crystals have an important role on generating shear stress against 

shear strain.   When the fraction of solid is less than 0.9, deformation of the solid is 

mainly caused by grain-boundary sliding. 

Recent advances in technology make it possible to visualize and analyze dynamic 

solidification processes in a microstructural scale.  Billia et al. [6] employ in-situ and real 

time investigations of solidification dynamics with X-ray radiography.  Dynamic 

morphological change of dendrites of aluminum alloy under the gravitational force is 

successfully captured.  One fascinating result of their work is a bending of secondary 

dendrite arm caused by two precipitating equiaxed dendrite crystals (indicated by 1and 2 

in Figure 1. 3).  Reinhart et al. [7] demonstrates a similar experiment to Billa’s work, and 
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showed that the stress caused by bending acting on the thin neck part where a secondary 

arm attaches to a primary arm is estimated by measuring bending angle.  They conclude 

that a sudden and irrecoverable rotation of the secondary dendrite arm is caused by 

yielding at the thin neck due to stress concentration.  Moreover, the mechanical response 

of the solid itself shows strain rate dependency (i.e. [8]). In-situ observations of the 

deformation behavior of a semi-solid Al-Cu alloy with the X-ray microtomography 

employed by Terzi et al. [9] show that the deformation in the semi-solid is highly 

inhomogeneous.   The inhomogeneity is an important characteristic of semi-solid material 

with an applied deformation and is due to a different mechanical response of solid and 

liquid phases.  Motion of liquid melt induced by solid contraction/expansion is also 

ascertained by the observation and a formation of pores is clearly shown to be a result of 

a lack of liquid feeding. 

As a summary, the experimental investigations mentioned in above indicate the 

following: 

(1) Mutual interaction between microstructure change and stress field through 

mechanical response of the solid network. 

(2) Mechanical response of the solid itself follows elasto-visco-plastic material law. 

(3) Fragmentation of dendrite arms arises from stress/strain localization associated with 

morphology of the solid structure. 

(4) Deformation of the solid phase affects the formation of pores through the formation 

of void space and an induction of fluid flow. 

Although the experimental facts listed above provide useful knowledge about the 

mushy zone/semi-solid under applied deformation, the measurement of various physical 

quantities, i.e. stress, strain, velocity, temperature etc., in a microscopic scale still have 

limitations.  Complete control of experimental conditions, i.e. a control of nucleation of 

multiple seeds, is nearly impossible.  Numerical methodology of the system can be 

essential to clarify the detailed mechanisms which explain the experimental results.  
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1.2.2 Numerical modeling of the mushy zone/semi-solid 

under deformation 

1.2.2.1 Averaging model approach 

Some numerical methodologies to investigate a mechanical response of mushy 

zone/semi-solid have been developed by researchers.  One approach is based on an 

averaging model.  Lalli [10] employs numerical analysis with averaged continuity and 

momentum equations based on a two phase model.  The mushy zone is modeled as a 

mixture of regularly allocated globular grains and fluid in a unit cell.  Mechanical 

equilibrium equations with a plasticity constitutive model are applied to compute the 

stress distribution within the solid phase while fluid flow is calculated based on D’Arcy’s 

law. A one-dimensional axisymmetric compression simulation provides liquid fraction 

and stress distribution to evaluate the severity of segregation within the material.  Monroe 

[11] introduces the effects of thermally induced strain and visco-plastic strain to the 

mechanical equilibrium equation for porous solids in order to investigate the deformation 

of casting material during an actual process.  The constitutive model used in his study 

(Cocks model) accounts for solid fraction, temperature dependency of material properties, 

strain rate, strain, and hardening effect, so the effect of coherency of the solid network is 

considered through solid fraction dependent mechanical response.  All model parameters 

are determined experimentally, and the model gives a good prediction of hot tear 

formation. 

Such models are inherently phenomenological because the characteristics of 

microstructure within a unit cell are averaged out.  To recover the characteristics, several 

model parameters such as solid fraction dependent constitutive behavior have to be 

experimentally specified, and thus the model itself is strongly problem dependent.   
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1.2.2.2 Deformation analysis of microstructure 

In the averaging model approach, the mechanical response depending on 

microstructure is consolidated to model parameters.  An attempt to avoid the 

phenomenological treatment and to consider the actual physics at the micro-scale 

structure has been made by modeling an actual microstructure.  The model developed by 

Phillion et al. [12] is composed of multiple grain structures with liquid and pores (three-

phase model) illustrated in Figure 1. 4.  The grains are generated by the Voronoi 

tessellation technique such that the solid fraction of the model corresponds to that 

obtained by experiments, thus the geometry of the model is arbitrarily defined.  Liquid is 

simply assumed to be a perfectly plastic material with very low yield stress.   A notable 

result of their FEM analysis is that strain localization in liquid degrades macroscopic 

mechanical properties, and the localization is strongly influenced by grain size and 

porosity.  This indicates that grain sliding is the possible cause of microstructure-

dependent mechanical response.  This fact also implies that a property of bridging and 

coarsening at the grain boundary is an influential factor of macroscopic mechanical 

response. 

The FEM model developed by Fuloria et al. [13] reproduces an actual three-

dimensional dendrite captured by X-ray microtomography.  The experimentally measured 

constitutive relation of Al-Cu alloys, which is a function of plastic strain, strain rate, 

temperature, flow stress, and solid fraction, is used in the model.  A columnar dendritic 

structure is compressed up to 5% macroscopic strain for different solid fractions.  Flow 

stress obtained from their simulation shows good correlation with experimental data.  

Some limitations of their  FEM analysis are reported.  Firstly, a numerical divergence 

associated with contact, i.e. interdendritic impingements, restricts a simulation of more 

than 5% compression.  Stress/strain localization should be expected within complicated 

dendritic structure even if the applied displacement to the dendritic structure is small with 
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respect to macroscopic scale.  A capability for handling large deformation and contact is 

required for a numerical methodology of solid deformation. 

Both methodologies are well developed to examine the stress-state in microscopic 

scale structure.  However, neither of them combine microstructure evolution due to phase 

change and relaxation process taking place at contact region among dendrites. 

1.2.2.3 Numerical analysis of microstructure evolution 

The solidification phenomenon is a so-called moving boundary problem and is 

inherently difficult to solve.  Limiting our interest to pure substances, the solidification 

phenomenon is governed by the following equations. 
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The first equation is the heat conduction equation which is valid in bulk solid and 

liquid phases. The term θ=(T-Tm)/(Lf/cp) denotes the dimensionless temperature, and T, 

Tm, Lf and cp are temperature, melting point of planer interface, latent heat of fusion and 

specific heat under constant pressure, respectively. The term D is the thermal diffusivity 

which is assumed to be identical in both solid and liquid phases in this thesis.  The second 

equation is the Stefan condition.  Motion of the solid-liquid interface is expressed as 

energy conservation at the interface under phase transformation.  The term  vi denotes the 

normal component of the interfacial velocity and n is the direction normal to the interface.  

The subscripts S and L stand for solid and liquid phase, respectively.  The third equation 

is the Gibbs-Thomson effect which defines the equilibrium temperature of the solid-

liquid interface.  The temperature is shifted as a function of the mean curvature κ of the 
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interface and interfacial velocity.  The coefficients d(α)and β(α) are the capillary length 

and the kinetic coefficient, and are dependent on the crystallographic orientation α. 

Numerical methodology for the moving boundary problem is generally divided 

into two major categories.  One is called the fixed grid method, and another is the front 

tracking method [14].  The former method allows the interface to pass through fixed 

meshes whereas in the latter method computational grids follow the motion of the 

interface directly, i.e. by adapting grids to the interface.  In the fixed grid method, 

additional numerical treatments satisfy the interfacial boundary conditions exactly at the 

interface, i.e. eq.(1.2.2) and (1.2.3), are essential.  The front tracking method often 

sufferes from mesh entanglement due to large deformation and the complex topology of 

the interface.  In this thesis, the fixed grid method is adopted to compute the complex 

morphological change of dendritic structures. 

The fixed grid method is sub-categorized into the sharp interface method (SIM) 

and the diffuse interface method.  The interface is tracked as a sharp entity in the former 

method while the latter method treats the interface as steep but sufficiently smooth 

transition.  In the SIM, solid and liquid phases are completely separated by the interface, 

and the problem becomes a free boundary problem.  The interface tracking method, i.e. 

volume-of-fluid (VOF) method [15], and a method to impose interfacial boundary 

conditions exactly at the interface are necessary to find the location and the motion of the 

interface.  The level-set method [16] is regarded as a highly successful interface tracking 

method.  The interface is tracked as a sharp discontinuity throughout computation while 

re-initialization is necessary to pursue an accurate calculation result.  The ghost fluid 

method [17] makes it easy to impose interfacial boundary conditions.   However, an 

actual implementation of the interface tracking method and imposing interfacial 

conditions is not a trivial procedure. 
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1.2.2.3.1 Phase field simulation of solidification 

The phase-field method has been a popular computational method that has 

successfully been applied to various solidification problems, i.e. dendritic solidification 

of pure substance [18-19], and eutectic solidification [20], in the last decade as one of the 

diffuse interface methods.  The main feature of the method is an introduction of an order 

parameter ϕ which denotes the phase at given location and time, A phase of ϕ=-1 and ϕ=1 

refer the bulk liquid and solid phase, respectively.  The phase field varies smoothly from 

bulk solid to liquid within the diffuse interface, thus the phase is treated as “diffuse” 

rather than the “sharp” interface used in the usual sharp interface method.  A free energy 

model of the system is constructed as a thermodynamically consistent function of ϕ and θ  

[21].  The time evolution of the phase-field is determined by the time dependent 

Ginzburg-Landau (TDGL) type equation which ensures that the total free energy of the 

system decreases with time, and is solved in a single computational domain.  The 

interface is implicitly evolved without any special treatment, so tremendous efforts 

regarding to an interface tracking and assignment of interfacial conditions are avoided.  

This is the significant advantage of the phase-field method over the sharp interface 

method, and the method is chosen to simulate microstructure evolution in this thesis. 

1.2.2.3.2 Phase-field simulation of solidification with stress 

evolution 

Phase-field solidification simulation with the evolution of the stress field is 

employed by Uehara et al. [22].  Elastic strain energy and plastic dissipation energy are 

additionally considered to derive their governing equations.  Phase-field, temperature, 

and mechanical equilibrium equations with an elasto-plastic constitutive model are solved 

by finite difference and finite element methods.  Heat release due to plastic deformation, 

thermal stress, and phase transformation stress is included in their model.  Stress 

concentration around thin neck part and residual stress evolution around interdendritic 
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impingement region are computed as shown in Figure 1. 6.  Stress distribution depends 

on the morphology of the microstructure.  In their work, the simulation is performed in 

the confined computational domain, i.e. no displacement and traction boundary 

conditions are imposed on mechanical equilibrium equation.  Stress is only induced by 

volumetric contraction/expansion due to temperature change or phase transformation, so 

the effect of an applied load on evolving microstructure is not considered.  Furthermore, a 

bridging and a coarsening process at the interdendritic impingement region are not  

included. 

Powell et al. [23] combine the phase-field equation with a unified equation of 

motion for both liquid and solid phases in order to simulate fluid-structure interaction.  

Non-uniform solid motion is only limited in the range of elastic regime, and volumetric 

change of the solid is neglected.  Since the phase-field model should be extended to 

handle solidification phenomenon, a simulation of microstructure evolution with 

deforming solid phase is possible.  However, the constitutive model is not suitable for an 

actual metallic material in the elastic range and plastic flow in the large deformation 

range (the model assumes incompressibility of the material).  The authors note a 

possibility of an extension of the model to elasto-plastic and elasto-visco-plastic 

constitutive behaviors, but an actual methodology for an extension is not indicated. 

1.2.2.3.3. Phase-field solidification simulation of 

polycrystalline material 

As mentioned in the preceding section, a relaxation process, i.e. a bridging or a 

coarsening, at the interdendritic or grain impingement region, is an important factor on 

the resulting microstructure and the mechanical response against an applied load to the 

structure.  The process is dependent on interfacial energies associated with 

crystallographic orientation mismatch at the dendrite or grain impingement region.  The 

smallest unit of structure of metallic materials is a crystal lattice, and the structure 
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represents favorable sites for atoms which minimizes energy of the system.  Therefore, 

the crystallographic orientation is determined by the direction where an atom favorably 

binds to the existing structure, thus the direction of anisotropy in the phase-field model 

corresponds to the direction.  When two grains have different crystallographic 

orientations and lie next to each other, the status is unfavorable for the system in terms of 

energy.  Grain rotation, grain boundary migration, and the introduction of dislocation 

occur in order to minimize energy of the system.  Therefore a complex morphological 

change associated with bridging, a coarsening of grains, and the formation of a (dry or 

wetting) grain boundary is observed. 

A polycrystalline phase-field model which can treat grain boundary formation and 

the grain coarsening process is developed by Warren et al. [24].  An energy penalty due 

to orientation mismatch is introduced to their free energy function, and its form is 

designed such that a grain rotation and a grain boundary migration are possible.  Grain 

wetting is incorporated as a balance among solid-liquid surface energy and grain 

boundary energy.  The model needs some numerical treatments for an actual 

implementation, but an evolution of multiple crystals with the complex relaxation 

phenomena associated with grain boundary is successfully computed as shown in Figure 

1. 7. 

Although there are some other numerical models which can handle from a single 

dendrite growth to multiple grain formation as statistical mechanics based model, i.e. 

cellular automaton, this kind of method is less compatible in terms of coupling with a 

continuum based model, i.e. solid deformation analysis with FEM.  The length scale 

intended in molecular dynamics and phase-field crystal method ( i.e. [25]) is too small in 

terms of multiple grain scale.  In this sense, the choice of phase-field method should be 

feasible in order to perform the solidification simulation in a range of the length scale. 
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In summary, some research concerning numerical methods for mushy zone 

deformation with or without microstructure evolution is presented.   Points are listed in 

the following: 

(1) The averaging model requires empirically determined model parameters in order to 

consider characteristics of a microstructure whose length scale is smaller than the 

unit cell used in the model. 

(2) Deformation analyses with a model based on an actual microstructure have been 

performed by some researchers.  However, none of the models have treated 

microstructure changes due to phase change under the applied deformation.  A 

numerical issue associated with contact and large deformation should be kept in 

mind for a choice of numerical method. 

(3) Simulations of microstructure evolution under stress field evolution  

1.3 Scope of This Thesis 

This thesis addresses the deformation of dendrite structures based on micro-scale 

physics.  Situations where this research can be applied are inherent in a variety of casting 

processes.  These issues have received almost no research attention in the past as stated in 

the preceding section.  This thesis is aimed at obtaining fundamental knowledge of the 

mechanical behavior of dendritic microstructures in mushy zones under applied external 

loads through numerical investigation.  The scale focus of this thesis is from the 

microscopic scale where the solid-liquid interfaces can be directly resolved to the scale 

where solidification of clusters of dendrites is observed.  Therefore, this thesis is focused 

primarily on developing a direct numerical simulation method of microstructure 

evolution under externally applied deformation.  The thesis topic should be a first attempt 

to develop a physics-based model for deformation of the mushy zones with the 

consideration of the microstructure.  The methodology should advance the fundamental 
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understanding of mushy zone deformation and provide innovative insights to control the 

formation of defects in an existing casting process. 

In order to accomplish these goals, a suitable coupling methodology among 

“solidification”, “solid deformation with proper crystallographic orientation treatment”, 

and has to be developed.  The methodology should advance the fundamental 

understanding of mushy zone deformation and provide innovative insights to control the 

formation of defects. 

For solidification phenomenon, complex evolution of the microstructure has to be 

accurately tracked.  For this purpose, the development of a phase field model is pursued.  

Since the method is a potential tool to handle the simulation of grain boundary formation, 

the feature should consider the change of crystallographic orientation due to solid 

deformation. 

For solid deformation, localization of the deformation within the dendritic 

structure needs to be addressed.  In order to represent shear dependent material 

constitutive behavior against mechanical loading, an elasto-visco-plastic material model 

will be included.  A numerical method which has capability of handling large 

deformation should be applied to this aim. 

Specific targets of this thesis are the following: 

1 To develop a phase field model of dendritic solidification under externally applied 

loading with the appropriate crystallographic orientation treatement 

2 To develop a structural analysis model of the solid phase which has the capability of 

handling large deformations and elasto-visco-plastic material behavior  
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Figure 1. 1 Experiments of the dendrite deformation under an applied load; two 
horizontally extended dendrite arms in a succinonitrile-3% water alloy are 

pushed in the horizontal direction; (a) before deformation; (b) after 
deformation.  

 

Figure 1. 2 Morphological change of solid body under applied shear. 

Source: Flemings, M. Metall. Mater. Trans. 1991, 22B, 269-293 

(a) (b) 
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Figure 1. 3 A secondary arm bending due to two precipitating equiaxed dendrite crystals 
(indicated by 1 and 2). 

Source: Billa, B. et al. Trans. Indian Inst. Met. 2007, 60, 287-291 

 

 

Figure 1. 4 Plastic strain contour obtained by FEM analysis with three phase model. 

Source: Phillion, A.B. et al. Acta Mater. 2008, 56, 4328-4338 
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Figure 1. 5 Von Mises stress contour computed by FEM analysis with the model based on 
an actual dendritic microstructure captured by the X-ray microtomography. 

Source: Fuloria, D.; Lee, P.D. Acta Mater. 2009, 57, 5554-5562 

 

Figure 1. 6 A series of phase-field simulation of solidification coupled with stress/strain 
effect; (a) Phase-field and (b) Equivalent stress evolution 

Source: Uehara, T. et al. J. Cryst. Growth. 2008, 310, 1331-1336 
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Figure 1. 7 A series of phase-field evolution (indicated by each dendrite or grain shape) 
and an evolution of crystallographic orientation (indicated by colors) 

employed by polycrystalline phase-field model. 

 Source: Warren J. A. et al. Acta Mater. 2003,51,6035-6058 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



21 
 

 

2
1
 

behavior made the simulation more difficult.  If a solid model is updated, the historical 

variables at Gaussian points on the updated model need to be specified as initial 

conditions for the further deformation analysis.  In commercial software, a low order 

mapping method is used for the purpose, and iterative computation is performed such that 

the new stress state becomes consistent with the stress state before the model update.  An 

updated model often was not available due to a convergence issue in the new stress state 

calculation process.  As mentioned in chapter 1, contact analysis also presents difficulties.  

In the usual FEM analysis, the master and slave elements which represent a pair of 

contact elements should be defined for the contact analysis.  Every time the solid model 

is updated, the elements must be found and determined automatically, and the code 

development is not trivial process.  In terms of the solid model update and the stress 

determination process associated with the model update, the development of our own 

MPM code is decided.  As we will discuss later, the calculation code is based on an 

explicit scheme, and no-slip contact is automatically satisfied.  Those are also 

determining factors to select the MPM as a numerical method of solid deformation 

analysis.  

2.1.2 Solution strategy and assumptions 

Figure 2. 1 (a)-(b) show diagrams of the interactions among “phase-field”, 

“temperature”, and “solid stress field”.  Figure 2. 1 (a) describes the case of full coupling 

among the fields while Figure 2. 1 (b) denotes the simplified coupling case applied to this 

thesis.  Assumptions for the simplified coupling are described in the following 

subsections. 

2.1.2.1 Phase-field – temperature field coupling 

In the phase-field method, the free energy function of the system of concern is 

constructed.  Basically, the free energy includes the information about two stable phases, 

i.e. solid and liquid in this thesis, described by the double-well potential and excess 
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surface energy.  Since a stable phase is dependent on temperature, i.e. liquid phase is 

more stable than solid phase above melting point, the effect is considered through the 

introduction of a temperature dependent term for free energy (temperature  phase-field 

coupling).   

Throughout this thesis, the densities of both solid and liquid phases are assumed 

to be equivalent.  Under this assumption, a rate change of the phase field at an arbitrary 

spatial location denotes the rate change of solid mass created from liquid melt.  As 

mentioned in chapter 1, the creation of solid mass due to phase change is accompanied by 

latent heat release.  A source term for latent heat release is introduced to heat equation 

(phase-field  temperature coupling). 

2.1.2.2 Phase-field – solid stress field coupling 

Stress applied to the system of interest might induce phase transformation.  

However, it is mainly observed in solid-solid phase transformation, so the effect can be 

neglected.  Instead, a change of solid shape is reflected in the solid model used in 

deformation analysis (phase-field  solid stress field coupling). 

Solid stress may caused by phase change.  The stress is induced by 

dilatation/contraction due to density change.  As mentioned in the previous section, no 

density change due to phase change is assumed, and the effect is neglected.  Alternatively, 

solid motion due to applied deformation is included as the advection velocity solidv


 in the 

phase-field equation (solid stress field  phase-field coupling). 

2.1.2.3 Temperature field – solid stress field 

Thermal stress is induced by thermal expansion/contraction associated with a 

change of material properties due to temperature change or non-uniform temperature 

distribution within the solid structure.  As pointed out by Dantzig and Rappaz [1], 

thermal stress is the major cause of hot tearing, but the effect is remarkable when the 

system is under rapid cooling, i.e. cooling from melting temperature to room temperature.  
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In this thesis, the solid phase is assumed to be held around the melting temperature and 

the thermal stress should be negligible.  Heat generation associated with plastic 

deformation (dissipation) is not included this thesis.  Instead, solid deformation is 

introduced as the advection velocity solidv


 in the heat equation (solid stress field  

phase-field coupling). 

2.2 Equations 

Equations used in dendritic solidification simulation with applied deformation are 

presented in the following subsections 

2.2.1 Phase-field dendritic solidification simulation 

Dendritic solidification of a pure substance is of interest in this thesis.  The 

following non-conserved Allen-Cahn model given by Karma and Rappel [19] is solved as 

an evolution equation of phase-field ϕ. 
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 (2.2.1) 

 

where η is a relaxation time (~10
-10

[sec]), and W is an interface thickness.   The 

term F(ϕ,λθ)=f(ϕ)+ λθg(ϕ) denotes the phenomenological bulk free energy.  As 

mentioned in the previous section, “temperature θ  phase-field ϕ” coupling is 

considered by the θg(ϕ) term with a coupling parameter λ.  A double-well potential  

f(ϕ)=- ϕ
2
/2+ ϕ

4
/4 is a typical choice to have two stable phases at ϕ=1 (solid) and ϕ=-1 

(liquid), and an odd function g(ϕ)= ϕ-2 ϕ
3
/3+ ϕ

5
/5 is specified to represent a stable phase 

at given temperature θ.  Anisotropy has an important role on the determination of the 

dendritic structure, and it reflects preferable growth directions.  The effect is generally 

introduced through direction dependent parameters η(θ) and W(θ) in case no orientation 
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change during solidification is assumed. The term θ denotes the angle between the 

interface normal n and the fixed x-coordinate axis defined by 

 









 

x

y




 1tan  (2.2.2) 

where ϕx=∂ϕ/∂x and ϕy=∂ϕ/∂y. The term vext represents the external field velocity 

given by 

   liquidsolidext vvv


  1  (2.2.3) 

The velocity is defined by the phasic average of the solid vsolid and the liquid 

velocity vliquid through a fraction of solid ψ=(1+ϕ)/2.  Thus, the motion of phase-field is 

considered to be convection due to external field velocity. 

2.2.2 Heat equation 

The evolution of the dimensionless temperature field is described by the 

following heat conduction equation. 

dt

d
Dv

t
ext






2

12 


 
 (2.2.4) 

The latent heat release at the solidification front is introduced through a source 

term as a function of rate change of ϕ.  A factor of 1/2 on the rate change of phase-field 

term of the equation is for normalization (range of phase-field is -1≤ϕ≤1).  Convection by 

an external field velocity is also considered in the equation.  

In order to have consistency between the phase-field model and the sharp 

interface model, solutions obtained by both models should be equivalent.  The way to 

maintain the consistency in the phase-field model is called the thin-interface analysis [19] 

and is adopted in this thesis.  The analysis defines relationships among model parameters 

appearing in eq.(2.2.1) and (2.2.4), and the details of the parameter determination will be 

presented in the later section. 
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2.2.3 Solid deformation 

Phase-field simulation is classified as a numerical model of meso-scale 

phenomena.  In the micro-scale, plasticity is characterized by the rearrangement of atoms, 

i.e. dislocation, sliding, and events taking place at grain boundary.  The phenomena are 

numerically investigated by atomic scale analysis, i.e. molecular dynamics.  However, the 

scalability of the method is not applicable to the scale of interest in this thesis due to its 

extensive computational cost, thus we limit our scope of solid deformation analysis in the 

range of continuum mechanics. 

Under the above assumption, the equation of motion for solid structure can be 

written in the following form. 

 b
dt

vd solid


  σ  (2.2.5) 

Here ρ is the density, vsolid is again the velocity of solid phase, σ is the Cauchy 

stress tensor, and b is a body force vector.  The equation is solved by the material point 

method (MPM) and its discritization and numerical procedure will be presented in a later 

section. 

2.2.3.1 Constitutive equation 

In order to solve eq.(2.2.5), a relationship between stress and strain (constitutive 

relation) is necessary.  As pointed out in chapter 1, a consideration of non-linear 

mechanical response, i.e. visco-plasticity, is essential, so a rate form of the constitutive 

relation should be suitable.    As commonly done, the total strain ε is decomposed into 

elastic ε
e
 and plastic part ε

p
. 

 
dt

d

dt

d

dt

d p

ij

e

ijij 
  (2.2.6) 

We also assume that stress is generated only by the elastic part of the strain. 
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dt

d

dt

d eε
C

σ
0 :  (2.2.7) 

where C0 is the fourth order elasticity tensor.  A relation between strain and 

displacement is also needed to compute eq.(2.2.5).  Generally, the strain rate is defined 

by a rate of deformation tensor. 

   T

solidsolid vv
dt

d 


2

1ε
 (2.2.8) 

In order to describe the mechanical behavior of elasto-inelastic materials, the 

following pure elastic, elasto-perfectly plastic, and elasto-perfectly-visco-plastic material 

response are numerically implemented.  

2.2.3.1.1 Elastic response 

The linear-elastic material response can be represented by the following equation 

(tensor notation). 

 
   ijiiijij

EE










2111 



  (2.2.9) 

where E and ν are Young’s modulus and Poisson’s ratio, respectively.  The two 

dimensional plane strain condition is assumed throughout this thesis, i.e. ε33=ε13=ε23=0.  

This condition gives us the relation ζ13=ζ23=0, ζ33=ν(ζ11+ζ22).  Using these relations, the 

resulting constitutive equation of linear-elastic material in vector-matrix representation is 

given by 
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 (2.2.10) 

The constitutive relation is adopted to compute stresses for the inelastic material 

model. 


