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ABSTRACT

Listeners use perceptual learning to rapidly adapt to manipulated speech input.

Examination of this learning process can reveal the pathways used during speech per-

ception. By assessing generalization of perceptually learned categorization boundaries,

others have used perceptual learning to help determine whether abstract units are nec-

essary for listeners and models of speech perception. Here we extend this approach to

address the inverse issue of specificity. In these experiments we have sought to discover

the levels of specificity for which listeners can learn variation in phonetic contrasts. We

find that (1) listeners are able to learn multiple voicing boundaries for different pairs

of phonemic contrasts relying on the same feature contrast. (2) Listeners generalize

voicing boundaries to untrained continua with the same onset as the trained continua,

but generalization to continua with different onsets depends on previous experience

with other continua sharing this different onset. (3) Listeners can learn different voic-

ing boundaries for continua with the same CV onset, which suggests that boundaries

are lexically-specific. (4) Listeners can learn different voicing boundaries for multiple

talkers even when they are not given instructions about talkers and their task does not

require talker identification. (5) Listeners retain talker-specific boundaries after training

on a new boundary for a second talker, but generalize boundaries across talkers when

they have no previous experience with a talker. These results were obtained using a new

paradigm for unsupervised perceptual learning in speech. They suggest that models of

speech perception must be highly flexible in order to accommodate both specificity and

generalization of perceptually learned categorization boundaries.
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CHAPTER 1
INTRODUCTION

When learning a language, acquisition of all the categories of sounds it uses is a

critical problem faced by all learners. Figuring out which differences between sounds

are meaningful for language is typically considered to occur during infancy as infants

are exposed to their language (Werker & Tees, 1984; Werker & Curtin, 2005). However,

although these sound categories must be learned early, they must also remain malleable

even in adults. This is critical given that pronunciations of phonemes change over time,

both for individuals (Bauer, 1985; Harrington, Palethorpe, & Watson, 2000) and for en-

tire language communities (Cox, 1999; Labov, 1994; Watson, Maclagan, & Harrington,

2000). Listeners must thus be able to accommodate these changes. Moreover, the mal-

leability of phonetic categories may also help listeners adjust to individual variability

in speech production and to accented speech (Bradlow & Bent, 2008; Clarke & Garrett,

2004; Kraljic, Samuel, & Brennan, 2008; Magen, 1998; Sidaras, Alexander, & Nygaard,

2009), as short-term learning mechanisms allow them to determine the relevant pho-

netic categories while speaking to someone with an accent. This type of plasticity has

been supported by substantial work over the last few years, which has shown that in

laboratory settings, adult listeners use a process of perceptual learning to quickly adjust

their phoneme categories to better match the input they hear (e.g., Norris, McQueen, &

Cutler, 2003; McQueen & Mitterer, 2005; McQueen, Cutler, & Norris, 2006; Eisner & Mc-

Queen, 2005, 2006; Kraljic & Samuel, 2005, 2006, 2007; Kraljic et al., 2008; Clarke & Luce,

2005; Clarke-Davidson, Luce, & Sawusch, 2008; Sjerps & McQueen, 2010).

A key question regarding perceptual learning in speech perception is the degree

to which it generalizes. For example, after learning how a single talker produces a given

category, do listeners generalize this to all talkers, assuming that everyone produces that

sound in the same way? Similarly, if they learn how voicing is instantiated at one place of



2

articulation (e.g., b/p) do they generalize it to others (k/g)? Generalization across talkers

in particular may be helpful for adapting to groups of similar talkers, but there must also

be some degree of specificity to perceptual learning; otherwise listeners would be un-

able to cope with individual variability or adapt to multiple accents. A number of stud-

ies have addressed generalization of perceptual learning. In these studies, the question

is whether listeners generalize what they learn to new words, talkers, and phonemes.

The inverse question of specificity, on the other hand, has received little attention. It is

largely unknown whether it is possible for listeners to learn shifts that apply only to spe-

cific talkers, phonemes, or words. Indeed, if such specificity can be found, it would allow

us to pinpoint where in the language-processing stream this learning occurs. Moreover,

examining the specificity of perceptual learning along with generalization may provide

us with additional information about the degree of abstraction present in the speech

perception system. Thus, the goal of this dissertation is to determine what levels of pro-

cessing are affected by perceptual learning, to discover the levels of specificity for which

listeners can learn variation in phonetic contrasts, and to examine the implications of

these results for various models of speech perception.

In the remainder of this chapter I will first discuss the different levels at which

the perceptual system might be sensitive to perceptual learning, the different patterns

generalization and specificity in learning that may occur, and which models of speech

perception would be consistent with different patterns of results. Next I will review some

basic findings on perceptual learning and discuss the existing literature on the general-

ization and specificity of perceptual learning for words, phonemes, and talkers. The

review ends with the specific aims of the experiments included in this dissertation. Fi-

nally, the following chapters present a methodological overview and a series of six ex-

periments examining the level at which specific or generalized perceptual learning can

be observed in speech perception.
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1.1 Theoretical Implications of Perceptual Learning

One of the reasons that perceptual learning is worth examining in detail is that

it may provide key insights about what levels of processing comprise the speech per-

ception system, and the degree of abstraction necessary at these different levels. While

models of speech perception were, for the most part, not developed to address questions

about learning, experiments on learning may still tell us something about what type of

architecture a model of speech perception needs. This approach assumes that learning

could, at some point, be incorporated into any of the models. While this has not been

demonstrated for many models of speech perception, at least some models that were

not built for learning have had learning incorporated quite successfully. The best exam-

ple of this is the extension of the TRACE model (McClelland & Elman, 1986) developed

by Mirman, McClelland, and Holt (2006). Interactive activation and Hebbian learning

are used to adjust pre-lexical representations based on feedback from the lexicon, which

allows the model to explain a number of perceptual learning effects, including lexically

driven perceptual learning for shifted phoneme category boundaries and generalization

of perceptual learning across talkers.

With regard to what perceptual learning can tell us about the appropriate archi-

tecture for a model of speech perception, the intermediate levels (such as features and

phonemes) are of particular interest because they are the most controversial. The key

issue is at what point continuous speech information is categorized. What representa-

tions lie between continuous acoustic cues and words? Different models of speech per-

ception posit categorization at different points. Some prototype models, like TRACE and

MERGE (McClelland & Elman, 1986; Norris, McQueen, & Cutler, 2000), predict that cate-

gorization of acoustic input occurs at some intermediate level before words, as they have

abstract units at a sub-lexical level. Not all prototype models may be as constrained:

FLMP (Oden & Massaro, 1978) posits a continuous flow of information through various
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levels, with integration occurring at each level up to the decision point. While initially

the syllable was proposed as the decision point, this claim is not central to the model.

The decision point could be task dependent, and is likely to occur as late as possible

(G. Oden, personal communication, October 3, 2011). Exemplar models do not pre-

dict any type of categorization before words, so they require no intermediate units (e.g.

Goldinger, 1996, 1998; Johnson, 1997). By investigating whether perceptual learning

generalizes or is specific at the levels of both words and phonemes, we can find out

which intermediate representations are necessary and which are superfluous.

Using perceptual learning data to infer the types of levels and abstractions nec-

essary for speech perception is not novel to this dissertation. This same approach has

already been taken by McQueen et al. (2006); Cutler (2010); Cutler, Eisner, McQueen,

and Norris (2010). One of the main points in all of these papers is that perceptual learn-

ing generalizes to untrained items (such as novel words), and that this type of gener-

alization requires sub-lexical abstraction (such as phoneme units). The problem with

this approach to date is that while there have been numerous experiments that tested

generalization of perceptual learning, there have been very few experiments that tested

specificity. This is unfortunate because specificity is equally critical when making strong

claims about the necessity of abstract units in the perceptual system. Abstract units sup-

port and predict generalization, so generalization has been used as evidence in favor of

abstraction. However, abstract units also predict that highly specific perceptual learn-

ing is not possible because of the information that is lost or discarded along the way. For

example, if perceptual learning generalizes across words because listeners use abstract

sub-lexical units like phonemes, then listeners should not be able to perceptually learn

lexically specific boundaries. Similarly, if perceptual learning of a boundary between

voiced and voiceless sounds relies on feature-level abstraction, then listeners should not

be able to learn separate boundaries for the same feature in different phonemic contexts
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(such as /b/ and /p/ vs. /g/ and /k/). This is a simplification in that it assumes both

a single-stream system and discarding of information at each level of abstraction, but

models have made these simplifications as well. By only looking for generalization and

not testing specificity, previous perceptual learning experiments have failed to make the

stronger test of sub-lexical abstraction in speech perception. It is surprising that this av-

enue of investigation has been overlooked, especially given that the talker specificity of

perceptual learning has not been so neglected. Both generalization and specificity are

important for distinguishing models of speech perception, and the consideration of the

specificity (in addition to generalization) at the level of words and phonemes is a novel

contribution of this dissertation. In the next few sections I discuss what patterns of per-

ceptual learning results might be observed at different levels in the speech perception

system, and which models and theories would be consistent with each pattern of results.

1.1.1 The Lexical Level

Generalization of learned category boundaries across different words would be

observed if listeners learned a shifted boundary between a pair of words like park and

bark, and subsequently applied that boundary to two other words like paste and baste

that were not present during training. This generalization across words would suggest

that the speech perception system contains abstract sub-lexical units that listeners can

use to generalize. For successful generalization, the boundary would need to be learned

somewhere below the level of words, either at the level of the phonemes /b/ and /p/,

the level of features (voiced and voiceless), or at some other abstract unit. MERGE and

TRACE both predict this pattern of results because they have abstract sub-lexical units

(McClelland & Elman, 1986; Norris et al., 2000).

In contrast, lexically specific learning would be observed if listeners learned a

shifted boundary between park and bark but did not shift the boundary between paste

and baste, or if they were able to simultaneously learn different boundaries for park/bark
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and paste/baste. This lexical specificity would not indicate a need for any type of abstrac-

tion before the level of words, suggesting instead that words may be the level at which

speech information is categorized. This would mean that phoneme-like units, features,

or other sub-lexical units are either unnecessary for speech perception or are not in-

volved in perceptual learning for speech. It would furthermore indicate that acoustic

cues can be mapped (and re-mapped) directly onto words. This pattern of results would

be consistent with exemplar or episodic models, which lack sublexical units (Goldinger,

1996, 1998; Johnson, 1997).

To summarize, models of speech perception that have abstract sub-lexical units

predict generalization of perceptually learned category boundaries across words. Mod-

els without such units predict lexically specific learning of category boundaries. It would

be strange to encounter both generalization and specificity, which could be seen if par-

ticipants were able to learn lexically specific boundaries but could also generalize across

words. Since existing models either have or do not have sub-lexical units, it would be dif-

ficult for these models to accommodate this unexpected combination of results without

some modification.

One possible hybrid model that could accommodate both lexical specificity and

generalization is a dual path or triangle model, an example of which is shown in Figure

1.1. This type of model would allow listeners to use abstract sub-lexical representations

like phonemes in order to generalize category boundaries across words, but also have

an additional route directly to words (bypassing any sub-lexical units) that would allow

for lexically specific boundary learning. This model is analogous to the triangle model

for reading (Seidenberg & McClelland, 1989). In the triangle model for reading, readers

can access words either directly from graphemes (sight-reading), or by way of phonemes

(sounding out words). Sight-reading is a much faster and more direct path to meaning,

but the phoneme route is better for some tasks, and may be all that learners have access
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Direct 
Pathway

Acoustics Features

Words

Phonemes
Abstract 
Pathway

Figure 1.1: Dual-route or triangle model example. The direct pathway leads from acous-
tics to words without intermediate levels of abstraction. A second pathway leads from
acoustics to words with different types of abstract units (such as features and phoneme)
along the way.

to for other tasks (like reading unfamiliar words). A triangle model for speech perception

might be similarly advantageous, allowing listeners to typically rely on a direct path to

words, but also allowing them to use a path through phonemes or some other sub-lexical

unit. This indirect path would presumably be advantageous for learning and performing

meta-linguistic tasks.

The triangle model has an architecture that that shares some commonalities with

MERGE, and with some modification MERGE could account for the same results (both

lexical specificity and generalization) as well. In order to do generalization of learned

category boundaries, MERGE would need connections from phonemes to words in ad-

dition to its existing connections from words to phonemes. These would essentially

make MERGE into a version of the triangle model, or a hybrid MERGE-triangle model.

However, bi-directional connections between phonemes and words would go against

the nature of MERGE as a model without feedback.
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The triangle model also shares some characteristics of the dual-stream speech

processing model proposed by Hickok and Poeppel (2007). While both models offer an

account of speech processing that involves multiple processing routes, one of which

may be helpful for learning and speech production, the two pathways proposed do not

appear to be equivalent. Hickok and Poeppel’s model has a ventral stream pathway for

mapping sound to meaning and a dorsal stream pathway for mapping sound to motor

representations, while the triangle model has two routes to meaning. While the dor-

sal pathway appears to offer a secondary route to meaning as well, a second difference

is that in Hickok and Poeppel’s model, phonological processing occurs before the two

pathways diverge. In our proposed triangle model for speech perception it is critical

that only one of the two pathways involves this type of sub-lexical abstraction. This dif-

ference means that the Hickok and Poeppel model would not be able to account for both

lexical specificity and generalization in perceptual learning, even though it has two pro-

cessing routes, since neither of the routes provides a path to the lexicon independent

from sub-lexical abstraction. This model does suggest, however, that a dual-path model

of speech perception is not entirely unreasonable.

Adaptive Resonance Theory or ART (e.g. Grossberg, Boardman, & Cohen, 1997;

Grossberg, 2003; Goldinger & Azuma, 2003) is a second class of model that might be

able to handle both lexical specificity and generalization across words. In fact, ART ap-

pears to be able to handle any pattern of results (lexical specificity, generalization across

words, and the combination of these results), although it is unclear whether this is true.

ART does not specify the units that exist within the speech perception system: instead,

the units are learned attractor states that can be nested, since speech input can be con-

sistent with many different size units (e.g. phonemes, syllable, and words). During pro-

cessing, the speech perception system will eventually reach a stable state where a par-

ticular unit achieves resonance. Task demands contribute to the relative weighting of
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top-down versus bottom-up information, which influences the size of the units that can

achieve resonance. This flexibility, along with the lack of defined levels and direct con-

nections between levels, allows ART to predict many different patterns of results based

on the particular stimuli and task demands that a listener might encounter. Some sit-

uations will favor resonance and learning at the level of words, while others may favor

sub-lexical units.

FLMP (Oden & Massaro, 1978) is another model that might be able to handle

both lexical specificity and generalization across words if the decision point used by lis-

teners is flexible. If listeners did not make voicing decisions until the word level, we

should see lexically specific learning of category boundaries. An earlier decision point

would lead to generalization across words. This presumes that some task demands

would pressure listeners to either delay decisions in some circumstances, or make early

decisions in other circumstances, and that we should see lexical specificity in the first

case and generalization across words in the second.

Finally, parsing models like C-CuRE (McMurray & Jongman, 2011; Cole, Linebaugh,

Munson, & McMurray, 2010; McMurray, Cole, & Munson, 2011) should also be able to

accommodate a combination of lexical specificity and generalization. Listeners may

store lexically-specific information and use this to conditionalize cue values on individ-

ual words or lexical contrasts, leading to lexically-specific boundaries. Generalization

would be seen when listeners lack this lexically-specific information, or fail to condi-

tionalize upon it, instead relying on global boundaries.

1.1.2 The Phoneme Level

While examining the lexical specificity and generalization of perceptual learning

can tell us about whether models of speech perception require phonemes, looking at

the phoneme level can tell us about whether the same models require features. As with

the lexical level, generalization of learned category boundaries across different phone-
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mic contexts that are distinguished by the same feature contrast would suggest that the

perceptual system contains abstract feature units. For example, if a listener learns a new

boundary for /b/ and /p/, generalization of that boundary shift to a coronal context

(/d/ to /t/) would suggest that it was a voiced to voiceless feature boundary shift that oc-

curred (rather than a phoneme-specific /b/ to /p/ boundary shift). TRACE and MERGE

both predict this effect since they have abstract feature representations (McClelland &

Elman, 1986; Norris et al., 2000).

In contrast, phoneme-specific learning would not require a level of abstraction

before phonemes. If a learned boundary shift between /b/ and /p/ did not generalize

to a different phonemic context like /d/ to /t/, this would be an example of phoneme-

specific learning. This level of learning specificity would suggest that features are un-

necessary or not important for perceptual learning in speech, and that acoustic cues

are mapped to higher-level representations (either phonemes or words). Exemplar or

episodic models of speech perception predict this pattern of results since they do not

have abstract representations other than words (Goldinger, 1996, 1998; Johnson, 1997).

At the level of phonemes, it would again be surprising to encounter both speci-

ficity and generalization, and most models would find this combination of results dif-

ficult to account for. ART (Grossberg et al., 1997) is an exception since its lack of pre-

defined units appears to allow it to account for any pattern of results: phoneme speci-

ficity, generalization across phonemic contexts, or both. The one pattern of results that

ART could not account for is lexical specificity and phoneme generalization, but no

other models could accommodate this pattern of results either.

A second model that could account for a combination of phoneme specificity

and generalization would be a dual-path or triangle model like the one mentioned pre-

viously. To accommodate both types of phoneme results, it would be important to have

a path directly from acoustic cues to phonemes or words (which would allow for speci-
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ficity), plus a second path through features (which would allow for generalization). It is

important to note that a single triangle model could handle the combination of general-

ization and specificity at both the lexical and phoneme levels, since the model needed to

accommodate complex phoneme results would work equally well with multiple routes

to phonemes or multiple routes to words.

Similarly, FLMP and C-CuRE (Oden & Massaro, 1978; Cole et al., 2010) could

accommodate both phoneme specificity and generalization in the same way that they

could handle lexical specificity and generalization. FLMP could do so by flexible move-

ment of the decision point, and C-CuRE by conditionalizing (or not conditionalizing)

upon phoneme-specific representations.

1.1.3 Talker Compensation

Another variant in the architecture of different models of speech perception is

the point at which talker compensation occurs. Here again perceptual learning may be

able to provide evidence to determine the appropriate architecture: where (or whether)

a model of speech perception should incorporate talker compensation. If perceptual

learning is talker-specific, it would indicate that the speech perception system main-

tains talker-specific representations or does not normalize for talkers, while perceptual

learning that generalizes across talkers would suggest that the system does involve a

process of talker compensation.

Generalization across talkers would occur if a perceptually learned boundary

shift learned for one talker also shifted the boundary for a different talker. For exam-

ple, if listeners were exposed to a female talker with a shifted boundary, and later tested

on a male talker, they might generalize the shifted female boundary to the male talker as

well. If this type of generalization occurred it would indicate that talker compensation

must occur at or before the level of abstraction where the boundary is observed. If the

boundary was at the phoneme level, this would mean that talker compensation occurs
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at or before phonemes. TRACE is an example of a model with this type of early talker

compensation—talker-specific information is stripped out on the way to phoneme rep-

resentations (McClelland & Elman, 1986). If the boundary was at the word level, it would

mean that talker compensation must occur at or before words (in which case sub-lexical

units could still be talker-specific).

The opposite effect, talker-specific learning, would occur if a boundary learned

for one talker did not transfer to another talker. For example, if listeners learned a

boundary shift for a female talker but when tested on a male talker showed no evidence

of a boundary shift, it would suggest that their learning of the new boundary for the fe-

male talker was specific to that particular talker. Talker-specific learning would indicate

that talker compensation does not occur until after the level at which boundaries are

perceptually learned, or doesn’t occur at all. This is the prediction made by exemplar

models, which do not have talker compensation: talker-specific characteristics are pre-

served even at the level of the lexicon (Goldinger, 1996, 1998; Hawkins, 2003; Johnson,

1997; Pierrehumbert, 2001; Pisoni, 1997).

A combination of talker-specific learning and generalization across talkers would

not be quite as surprising as the combination of phoneme-specific boundary learning

and generalization across phonemic contexts–exemplar models (e.g. Goldinger, 1996,

1998; Johnson, 1997) should be able to accommodate some degree of both generaliza-

tion and specificity in this particular area, though their ability to show generalization

is fairly limited. Since talker-specific information is preserved, generalization across

talkers should depend on their acoustic similarity or experience with the most recently

trained talker "overwriting" the previously trained talker. Talker-specific boundaries

should be observed for talkers with fairly different voices (perhaps male and female talk-

ers), while generalization might be observed for talkers with less distinct voices (such as

two female talkers). Generalization might also be observed because of limited exemplar
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storage: if listeners can only store a limited number of exemplars, experience with a new

talker might overwrite the exemplars from a previous talker, leading to generalization

based on the more recently trained talker. The storage of talker-specific information in

the lexicon could allow exemplar models to account for both talker-specific boundaries

and generalization of boundaries across talkers without any extra processing for talker

compensation, but only if generalization across talkers was limited to talkers with fairly

similar voices or occurred only after blocked training. Exemplar models would also be

unable to account for talker-specific boundaries and generalization across talkers oc-

curring with the same two talkers, though other models may be able to account for this

pattern of results.

The same dual-path model that could account for the combination of bound-

aries that could be specific to pairs of words or phonemic contexts, but also allow for

generalization, would able to account for talker specificity and generalization as well.

The path from acoustics to words, which allows for lexically specific boundaries, would

also need to be talker-specific, while the second path through an abstract sub-lexical

representation like phonemes or features would allow for generalization across words

or phonemic contexts, and talkers.

C-CuRE could also accommodate both specificity and generalization. Listen-

ers may track talker-specific characteristics, allowing them to conditionalize cue values

based on talker-specific representations stored in the feedback connections between

talkers and individual cues. This would also allow the model to use (and generalize) a

single bottom-up mapping from cues to categories.

1.1.4 Theoretical Summary

The degree of both specificity and generalization found in perceptual learning

for speech has important implications for theories and models of speech perception.

Generalization would provide evidence in favor of abstract units like the phoneme and
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feature units in MERGE and TRACE. More specific learning would suggest a lack of ab-

straction, and would thus be consistent with models that do not have pre-lexical ab-

straction (like the episodic model). The combination of generalization and specificity

at the same level would be unexpected and difficult for most models to accommodate,

but might be compatible with ART, a dual-route model, C-CuRE, or FLMP. While the

specificity and generalization of perceptual learning have not both been examined for

words, phonemes, and talkers, there have been many studies looking at some of these

issues. The next sections review this literature before and states the specific aims of the

experiments that follow.

1.2 Basic Findings in Perceptual Learning

The majority of recent studies investigating perceptual learning in speech have

used a paradigm first developed by Norris et al. (2003) in a study using Dutch fricatives.

The paradigm depends on an effect known as the Ganong Effect, in which listeners are

biased toward a word interpretation when listening to stimuli on a word to non-word

continuum—their boundaries shift so that they make more word than non-word re-

sponses (Ganong, 1980). Listeners in the Norris et al. (2003) study were exposed to am-

biguous fricatives (halfway between /f/ and /s/) spliced onto the ends of either /f/-

or /s/-final words. These lexical contexts biased listeners to perceive the ambiguous

sounds as either /f/ or /s/, depending on which context group they were in. For exam-

ple, an ambiguous fricative spliced onto the end of “house” would likely be interpreted

as an /s/ since “houf” is not a word; the same fricative spliced onto the end of “staff”

would be heard as an /f/ since “stass” is not a word. Norris asked whether repeated

exposure to such contexts would result in listeners shifting their category boundaries

between the fricatives. Listeners who heard the ambiguous fricative in the /f/ context

heard normal endings for the /s/ final words, and vice versa. Listeners performed a lex-

ical decision task with these stimuli over several hundred trials, and then performed a
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fricative categorization task on sounds along an /Ef/ to /Es/ continuum.1

During this subsequent categorization task, listeners showed boundary shifts

that reflected their experimental group: those participants who heard ambiguous /f/

sounds showed a boundary closer to /s/, while those for whom the /s/ was ambiguous

showed a boundary closer to /f/. In other words, the boundary shifted toward /s/ for lis-

teners who heard the ambiguous fricative in /f/ final words, and toward /f/ for listeners

who heard the ambiguous fricative in /s/ final words. Norris argued that listeners used

their lexical knowledge to help them learn how they should interpret ambiguous speech

sounds: feedback from the lexicon was used to modify some pre-lexical representation

in order to better accommodate the ambiguous fricatives.

Sjerps and McQueen (2010) replicated this result using /T/ instead of an ambigu-

ous fricative between /f/ and /s/—listeners in the experiment were Dutch, so /T/ did

not map onto their native-language phoneme categories. This experiment showed that

the Norris et al. (2003) results were not an artifact of the method used to create the am-

biguous fricative, which involved blending recordings of naturally produced /f/ and /s/

fricatives. It is possible that during perceptual learning listeners were really just learning

to ignore the irrelevant aspects of the blended fricative, and hear it as either the /f/ or /s/

depending on their training group. However, listeners in the Sjerps and McQueen (2010)

study were trained to accept /T/-final words as /f/ or /s/ final words, which means it is

unlikely that the Norris et al. (2003) results were due to this type of selective filtering.

The same lexical feedback paradigm has since been used to show perceptual

learning (as evidenced by shifted category boundaries) for a variety of phoneme con-

trasts. For fricatives it has been shown with /f/ and /s/ (Eisner & McQueen, 2005, 2006;

Norris et al., 2003; McQueen et al., 2006; Sjerps & McQueen, 2010) and /s/ and /S/

(Clarke-Davidson et al., 2008; Kraljic & Samuel, 2005, 2007; Kraljic et al., 2008). For stops

1The most ambiguous step along this continuum, as determined by stimulus piloting, was
used as the ambiguous fricative at the end of the words in the lexical decision task.
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it has been shown with /d/ and /t/ (Clarke & Luce, 2005; Kraljic & Samuel, 2006, 2007).

Finally, with vowels it has been used for /i/ and /e/ (McQueen & Mitterer, 2005).

While the boundary shifts observed using this paradigm have been assumed to

reflect changes in category representation, there was initially no evidence that they were

not merely due to a change in decision bias following the training task. Clarke-Davidson

et al. (2008) investigated this possibility with two experiments and a signal detection

analysis. First they replicated the training and categorization tasks used by Norris et al.

(2003) and added an AXB discrimination task. The discrimination task showed that the

location of the peak in discrimination changes based on training and in accordance with

the boundary shift, which suggests changes in category representations rather than de-

cision bias. In a second experiment Clarke-Davidson et al. (2008) sought to reduce deci-

sion bias introduced by the training task, so they trained listeners using a same-different

discrimination task rather than the lexical decision task. Both the boundary shift and

discrimination peak results were replicated in this experiment. Finally, Clarke-Davidson

et al. (2008) used a signal detection analysis to separate the behavioral effects due to de-

cision bias from the effects due to category change. While this analysis indicated that the

discrimination training task (meant to reduce decision bias) actually introduced a deci-

sion bias not seen with the lexical decision training task, boundary shifts were driven by

both decision bias and category remapping, and changes in discrimination were driven

solely by changing categories.

In addition to being driven (at least partially) by true changes in category repre-

sentation, the boundary shifts produced with the lexical feedback paradigm are surpris-

ingly persistent over time. Kraljic and Samuel (2005) found that shifts grew larger after a

25 minute delay, while Eisner and McQueen (2006) found that they lasted for 12 hours,

even when listeners heard speech from other talkers during that time. However, under

some circumstances, they can disappear quite rapidly. Kraljic and Samuel (2005) found
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that hearing good (unambiguous) tokens of the previously-ambiguous phoneme caused

the shift to disappear, as long as these unambiguous tokens were produced by the same

talker who produced the ambiguous tokens. The persistence of boundary shifts (across

intervening talkers) and the finding that they are not disrupted by speech input from

new talkers both suggest that perceptual learning might be fairly specific with regard

to different sources of variability in the speech signal. They suggest talker-specificity

in particular; however, none of these studies have directly tested this (e.g., trained lis-

teners on two talkers with different boundaries). Moreover, learning may also be word

or phoneme specific—this has not been extensively examined. This dissertation ad-

dresses issues of generalization and specificity in learning at the level of individual talk-

ers, phonemes, and words. Each of these topics is reviewed in more depth below.

1.3 Word-Specific Learning

While no studies have addressed the possibility of independently adjusting phoneme

category boundaries for different minimal pairs of words, six studies have examined

how category boundaries generalize across words. As I shall describe, five found ev-

idence that perceptual learning generalizes: Allen and Miller (2004); McQueen et al.

(2006); Maye, Aslin, and Tanenhaus (2008); A. Hervais-Adelman, Davis, Johnsrude, and

Carlyon (2008); Sjerps and McQueen (2010), and one did not (Buchholz, 2009). In addi-

tion to these studies there have been a number of experiments on generalization across

phonemes. These experiments are discussed in the following section on phoneme-

specific learning, but they are worth mentioning here as well since generalization across

different phonemic contrasts relying on the same acoustic cues necessarily requires gen-

eralization across words. Of these studies, two found evidence of generalization (Kraljic

& Samuel, 2006; Theodore & Miller, 2010) and three were inconclusive (Clarke & Luce,

2005; Maye, Weiss, & Aslin, 2008; McQueen & Mitterer, 2005). An additional pair of re-

lated studies, though not on the topic of phoneme generalization in particular, suggest
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that perceptual learning may occur at a level of abstraction below phonemes (Skoruppa

& Peperkamp, 2011; A. G. Hervais-Adelman, Davis, Johnsrude, Taylor, & Carlyon, 2011).

This would prohibit both phoneme- and lexically-specific perceptual learning. Thus,

a fair amount of evidence suggests that lexically-specific learning may not be possible,

and that learning is constrained at the phonemic or sub-phonemic level of processing.

Exemplar or episodic models, however, predict that lexically-specific learning should be

possible (e.g. Goldinger, 1996, 1998; Johnson, 1997).

McQueen et al. (2006) tested this hypothesis by looking at whether perceptual

learning for ambiguous fricatives affected the interpretation of words that were not used

during the training or exposure phase of the experiments. If perceptual learning for the

shifted phoneme category boundary was lexically specific, it should not have an effect

on the perception of other words. Training was done with a lexical decision task as in

Norris et al. (2003), where listeners heard an ambiguous fricative between /f/ and /s/

replacing either /s/ or /f/ word-finally, and the other fricative was produced normally.

After training, listeners completed a cross-modal identity priming task where they heard

an auditory prime and made a lexical decision task in response to a visually presented

word or non-word. The auditory prime words ended with the ambiguous fricative used

during training, and were minimal pairs that were words whether completed with an /f/

or an /s/. The boundary shift training was effective, as demonstrated by response time

and word acceptance rate interactions between training condition and fricative end-

ing. For cross-modal identity priming, there was a three-way interaction between prime

type (ambiguous vs. unrelated), training condition, and target word ending (/f/ or /s/),

which indicated that training condition affected the way that listeners responded to /f/

and /s/ words primed by ambiguous fricatives. Subsequent analyses showed that par-

ticipants who were trained with ambiguous fricatives in /f/-final words were faster to

respond to/f/-final targets when primed with an ambiguous fricative instead of an un-
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related prime. The same pattern of results was seen for participants who were trained

with the ambiguous fricative at the end of /s/-final words: they were faster to respond

to /s/-final targets when primed with an ambiguous fricative than with an unrelated

prime. The ambiguous fricative did not prime words that were trained with the natural

endpoint fricatives for either training group. These priming results showed that percep-

tual learning affects the way that listeners respond to untrained words; that is, listeners

generalize across words.

The lexical generalization result was replicated by Sjerps and McQueen (2010)

using the same procedure as McQueen et al. (2006). In an additional experiment, /T/

was used instead of the ambiguous /f/ and /s/ blend, so instead of hearing an ambigu-

ous fricative at the end of either /f/ or /s/-final words, listeners heard /T/. Since the

listeners were Dutch, this sound did not map onto their native language phoneme cat-

egories. There was a difference between the training conditions on the lexical decision

task, where words ending with /T/ were more often accepted as words for the group

that heard /T/ in/f/-final words. On the cross-modal identity priming task used to test

lexical generalization, hearing /T/ at the end of prime words did prime either/f/ or /s/-

final target words, depending on training groups. This provides further evidence that

perceptual learning generalizes to untrained words.

Allen and Miller’s (2004) study on talker-specific learning also included a word

generalization test relevant to the question of lexical specificity in perceptual learning.

Listeners were trained on two talkers with different voice-onset-times (VOTs) during the

first session, and later returned for a second session where they were tested on new

words that they hadn’t heard during training. (VOT is a cue that distinguishes voiced and

voiceless sounds like /b/ and /p/ or /d/ and /t/.)These generalization words shared the

same onset consonant as the words from training. As in the test on the trained words,

listeners were told which talker they were being tested on and selected which of two VOT
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variants of the test word was spoken by that talker. They showed generalization to the

new words, selecting the VOT variants that were consistent with their training for each

talker.

Maye, Aslin, and Tanenhaus (2008) also found generalization to untrained words

in their study of perceptual learning for shifted vowels. During the lexical decision task,

listeners responded to words they hadn’t heard during a training task as well as words

that they had heard during training. After training, listeners showed an increase in

“word” responses to the vowel-shifted words, and this increase generalized to untrained

words containing the same vowels.

Additional studies have examined generalization across words following training

on different types of speech. While these studies involve perceptual learning, they do

not focus on boundary shifts. A. Hervais-Adelman et al. (2008) looked at perceptual

learning for noise-vocoded speech. On training trials their listeners heard a vocoded

word, repeated it back, and then heard the word in its natural form and again in its

vocoded form. They were trained on 120 words with 60 in each block. Across blocks

the number of words and phonemes that they correctly produced showed significant

improvement. Of interest here is that this improvement generalized to untrained words.

The one study that failed to find evidence of generalization in perceptual learn-

ing for speech was an experiment on adaptation to dysarthric speech (Buchholz, 2009).

Here listeners exposed to dysarthric speech showed improvements in recognition accu-

racy for the original wordlist, indicating that learning had occurred, but performance

on a list of novel items was similar to performance on the original items before familiar-

ization had occurred. Buchholz hypothesized that dysarthric speech is more difficult to

adapt to than typical synthetically manipulated speech, and suggested that more train-

ing might have resulted in better generalization to novel words.

As five out of six studies that tested generalization across words found evidence
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that listeners generalize to new words, this seems likely to be true. Perceptual learn-

ing is certainly of greater benefit to listeners if they can generalize learning to untrained

words. However, the ability to generalize does not rule out the possibility of more spe-

cific learning. Although listeners seem to generalize perceptual learning across words,

word-specific perceptual learning may still be possible if the task demands it.

Although the research on lexical specificity in perceptual learning has suggested

that listeners generalize across words, there are no studies that have intentionally ad-

dressed the question of whether word-specific perceptual learning is possible. Research

on lexical specificity for perception more generally, however, suggests that listeners do

represent multiple variants of word forms in the lexicon. Some phonemes vary allo-

phonically, meaning there are multiple acceptable ways of producing the same phoneme.

A /t/, for example, can be produced canonically or it can be reduced (flapped) when

following a stressed vowel. In conversational speech, talkers largely tend to produce the

flapped form (Connine, 2004). Since /t/ has multiple allophones, listeners might store

multiple variants of words that contain this phoneme (one with the canonical /t/ and

the other with the flapped version).

Connine (2004) used a word to non-word continuum to study variant represen-

tation, examining the size of the boundary shift produced by the Ganong Effect—a bias

to interpret stimuli as words instead of non-words (Ganong, 1980). Connine used the

size of the boundary shift produced by the Ganong Effect as a measure of lexical activa-

tion. She found that the boundary shift is larger when the word end of the continuum

contains the more frequent of two variant word forms (e.g. a flapped versus a canonical

/t/). Similarly, for word forms that can be produced with intact or deleted schwas, the

more frequent of the schwa forms leads to faster lexical decisions (Connine, Ranbom,

& Patterson, 2008). Listeners are also more likely to judge the words as having three

syllables when the form with the intact schwa is more frequent (Connine et al., 2008).
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Finally, less frequent word forms produce small cross-modal priming effects (Ranbom,

Connine, & Yudman, 2009).

The evidence that listeners respond differently to more frequent forms of words

suggests that lexically-specific perceptual learning may be possible. That is, listeners

must have learned that each specific word is associated with a specific phonetic instan-

tiation. While this presumes learning, it does not attempt to manipulate it. Thus, we

will test whether listeners can learn different boundaries for individual words that share

the same CV at onset, despite their apparent ability to generalize perceptually learned

boundaries across words.

1.4 Phoneme-Specific Learning

As with lexical generalization, there has been a fair amount of research on phoneme

generalization in perceptual learning. After words, phonemes are the next obvious level

of abstraction that listeners might generalize across on the basis of some lower level

of abstraction, or conversely, the level of abstraction for which boundaries might be

learned. If phonemes (or similar units of abstraction) are the critical unit for which per-

ceptual learning of categories takes place, we would expect listeners to have category

boundaries specific to individual pairs of phonemic contrasts. Whether or not listen-

ers generalize across phonemes can tell us about what kinds of abstract representations

they might have, and what role they play in speech perception.

Clarke and Luce (2005) exposed listeners to shifted or typical VOTs for /d/ and

/t/ words in a word-monitoring task. The sentences used in this task were designed

to contain only alveolar stops, and most of the words participants were monitoring for

were not /d/- or /t/-initial. Participants also completed a categorization pre-test on syl-

lables along a /ta/ to /da/ continuum, and then repeated this task every 20 sentences.

They used a categorization task as a pre-test and then repeated it every 20 trials. Listen-

ers in the shifted VOT condition showed corresponding boundary shifts during catego-
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rization, but when tested on a /g/ to /k/ continuum the shift did not clearly generalize.

The control listeners showed a shift in the opposite direction for the /g/ to /k/ con-

tinuum while the experimental group did not, leading the authors to hypothesize that

the lack of a shift might actually reflect generalization from learning a shifted boundary

between /d/ and /t/. While this is possible, the argument is based on a null effect, so

stronger evidence is needed to conclude that listeners generalize boundary shifts across

phonemes. Although it is not critical for interpreting the phoneme generalization re-

sults of this experiment, it is important to note (as a methodological aside) that listeners

in a two-task experiment like this could learn from both the categorization and word-

monitoring tasks. The range of VOT exemplars that listeners are exposed to has been

shown to affect their categorization boundaries (e.g. Rosen, 1979), so because the syl-

lables in the categorization task used here had a different range of VOTs than listeners

would typically experience while listening to English, this task could have contributed to

the boundary shift seen for listeners in the shifted VOT condition. However, since there

was no boundary shift observed for listeners exposed to typical VOTs during the word-

monitoring task, the range of exemplars presented during this particular categorization

task does not appear to be sufficient to drive a boundary shift on its own.

Returning to the topic of phoneme generalization, Kraljic and Samuel (2006)

tested generalization across phonemes in addition to generalization across talkers. Lis-

teners who initially heard ambiguous /d/ or /t/ sounds and were later tested on a /b/

to /p/ continuum showed generalization to this new continuum. This indicates that

learning may be changing something about voicing in general, or how listeners shift the

acoustic cues to voicing (e.g., VOT) for all phonemes, rather than shifting boundaries

between specific phonemes. Most recently, the Theodore and Miller (2010) study on

talker-specific learning also tested generalization across phonemes. Though listeners

were trained only on /b/ and /p/ words, they were tested on both /p/ and /k/ words.
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Since the talker-specific variation only affected the voiceless side of the training contin-

uum, only words with voiceless onsets were used to test generalization to a new place

of articulation. During testing listeners selected the VOT variant consistent with their

training for each talker, for both the trained (/p/) words and the novel (/k/) words. This

provides further evidence that perceptual learning may occur at the level of features (in

this case voicing again), acoustic cues, or somewhere below phonemes. Theodore and

Miller (2010) discuss the possibility that generalization could be based on raw acoustic

similarity between trained and novel words.

If perceptual learning does adjust representations of acoustic cues rather than

phonetic contrasts, then talker or lexical specificity may be very difficult to attain; rather

generalization should be the norm. As a result, shifting one vowel contrast should affect

all of the rest of the vowels as well. Here the evidence for generalization has been incon-

clusive. McQueen and Mitterer (2005) used the lexical feedback paradigm from Norris

et al. (2003) to examine perceptual learning for shifted vowels. Listeners were exposed

to words with /i/ and /e/ vowels with one of the endpoints replaced with an ambiguous

vowel between /i/ and /e/. They found that listeners adapted to the vowel shifts, but

generalization to untrained contrasts was weak. Maye, Aslin, and Tanenhaus (2008) also

used lexical feedback to induce perceptual learning for vowels, but their method was

different. They exposed listeners to vowels that had been shifted to an entirely different

phoneme (/i/ pronounced as /I/, rather than something ambiguous) in a passive listen-

ing task. Listeners heard a passage from the Wizard of Oz with the front vowels lowered.

As in McQueen and Mitterer (2005), lexical context indicated the intended vowel. Lis-

teners performed a lexical decision task before and after training. Following training

they accepted more of the words with lowered vowels as real words, showing that they

adapted to the vowel shift. Although there was some suggestion that the shift general-

ized to vowels that were not presented during exposure, the effect was not significant.
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The results of these two vowel studies indicate that either perceptual learning does not

generalize well across vowels, or that generalization effects are small and difficult to de-

tect.

Although the previous two studies failed to find conclusive evidence for gener-

alization across vowels, there is other vowel-based evidence that a feature-level repre-

sentation may be important for perceptual learning. This would mean that we should

observe generalization across phonemic contexts that rely on the same feature distinc-

tion, and we should not see phoneme-specific learning.

Skoruppa and Peperkamp (2011) found that French listeners adapt well to ac-

cents with consistent vowel harmony or disharmony, but not as well to an accent in

which some vowels harmonize and other vowels disharmonize. This could be because

listeners are making inferences on the level of phonological features or continuous acous-

tic cues, rather than phonemes. Like Theodore and Miller (2010), Skoruppa and Peperkamp

(2011) point out that acoustic similarity could play the same role as features, so learning

need not be based on abstract features per se.

However, there is other evidence that perceptual learning occurs not at the level

of the raw acoustic signal, but after some abstraction has occurred. This evidence comes

from a recent study on perceptual learning of vocoded speech that tested generalization

to different frequency ranges. This study differs from the previously discussed studies

in that the perceptual learning involved was not focused on phoneme boundary shifts,

thus its relationship to the previous studies must be interpreted with caution. Here

the dependent measure was how well listeners adapted to vocoded speech (such that

it becomes more intelligible with increased exposure) rather than to shifted phoneme

boundaries. A. G. Hervais-Adelman et al. (2011) trained listeners on either 20 hi-pass or

lo-pass filtered vocoded speech sentences and tested them on 20 sentences in either the

same or different frequency range. They found that listeners tested in the untrained fre-
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quency range were just as good at recognizing the final 20 sentences as the listeners who

heard those sentences in the frequency range that matched their training. A second ex-

periment tested generalization among three carrier signals used to create noise-vocoded

speech (noise bands, pulse trains, and sine waves). Critically, these stimuli shared the

same envelope cues but differed in their fine-structure cues. They found that listeners

generalized partially but not completely across carrier signals. These two experiments

suggest that perceptual learning does not occur at the level of the raw acoustic signal,

but rather at some level of processing where there has been a degree of abstraction from

the signal, though it is not clear whether this is at the level of continuous acoustic cues,

features, phonemes or words. This abstraction allows generalization across frequency

ranges, which could not have been entirely due to envelope cues since generalization in

the second experiment was not complete.

Together the studies on generalization of perceptual learning across phonemes

suggest that generalization can occur, though more research on this topic is needed. Two

studies found evidence of generalization (Kraljic & Samuel, 2006; Theodore & Miller,

2010). Others suggest that generalization might occur, but failed to find concrete evi-

dence that it does (Clarke & Luce, 2005; Maye, Weiss, & Aslin, 2008; McQueen & Mitterer,

2005). Such studies suggest that perceptual learning may be phoneme specific, which

would mean that lower-level abstractions like features might not be necessary, at least

for perceptual learning. In contrast, other studies on generalization of perceptual learn-

ing (though not about phonemes in particular) suggest that this learning may occur at

the level of features or some other abstract unit below the level of phonemes (Skoruppa

& Peperkamp, 2011; A. G. Hervais-Adelman et al., 2011). This would constrain percep-

tual learning in a way that would make it difficult for listeners to do phoneme-specific

perceptual learning.

None of the studies on phoneme generalization addressed the question of whether
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it is possible to confine perceptual learning to a pair of phonemes (as opposed to learn-

ing a feature like voicing that applies to many phonemes), or to learn conflicting shifts

for a given contrast in different phonemic contexts. Listeners doing perceptual learning

may learn shifts for features or acoustic cues that they apply to all phonetic contrasts

that rely on those features or cues. This would lead to generalization across phonemes.

If this is the case, it would be difficult to shift different phoneme boundaries based on the

same feature or cue in opposite directions. On the other hand, listeners do have differ-

ent boundaries (for a single acoustic cue) for different phonemes—for instance, the VOT

boundary between /d/ and /t/ is not the same as the boundary between /b/ and /p/—

so this might make it possible for listeners to learn different shifts for different phoneme

contrasts, even when those contrasts are based on the same acoustic cue. While mod-

els of speech perception do not differ in the predictions that they make about whether

phoneme specific learning is possible (all predict that it is), there is little concrete evi-

dence in favor of phoneme specific learning. Experiments on the specificity of percep-

tual learning for phonemes and the degree of generalization across phonemes may also

help define the level at which perceptual learning occurs. I will look at phoneme-specific

learning and generalization in Experiments 2 and 3.

1.5 Indexical/Talker-Specific Learning

Talker generalization, the inverse of specificity, is perhaps the best-studied do-

main in perceptual learning for speech. Initially, Eisner and McQueen (2005) tested

whether a shifted boundary between /f/ and /s/ generalized to a novel talker. The

stimuli used for testing in this study were unusual in that they cross-spliced vowels and

fricatives from the trained and novel talkers, so when testing listeners on the “novel”

talker, sometimes the fricative was actually from the trained talker (so only the vowel

was produced by the novel talker). They found generalization to the novel talker (as de-

termined by the vowel) only when the fricative was produced by the original (trained)
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talker, and they saw no generalization when both the vowel and fricative came from the

novel talker. In their final experiment, however, listeners who were trained on the talker

who had been the “novel” talker in the previous experiment did show effects of percep-

tual learning. This showed that the lack of generalization across talkers was not due

to some characteristic of the novel talker’s voice that might have prevented perceptual

learning.

Kraljic and Samuel (2006) also examined talker generalization. They trained lis-

teners on shifted /d/ and /t/ boundaries for either a male or female talker and then

tested generalization with the talker of the opposite gender. Unlike the Eisner and Mc-

Queen (2005) study, here listeners showed generalization to completely novel talkers:

the shifted boundary acquired under exposure to one talker generalized to a second

talker. A subsequent study by Kraljic and Samuel (2007) addressed the question of whether

boundary generalization differs for fricatives and stops, which could have caused the

discrepancy between Eisner and McQueen (2005) and Kraljic and Samuel (2006). In this

study, listeners were trained on two talkers, one after the other. In one experiment, lis-

teners heard shifted stops (/d/ and /t/), and in another, other listeners heard fricatives

(/s/ and /S/). Training was blocked so that listeners completed training for one talker

before they began training for the second talker. After training was completed, listeners

performed speech categorization tasks for both talkers, one after the other. Listeners

in the fricative experiment had talker-specific boundaries, while listeners in the stop

consonant experiment generalized the most recently trained talker’s boundary to the

previous talker. Together, these studies on talker generalization support generalization

of perceptually learned boundary shifts across talkers for stops, but not for fricatives.

Kraljic and Samuel (2007) suggest that the difference in talker generalization for

stops and fricatives may indicate a difference in learning mechanisms for acoustic cues

differentiated by spectral properties instead of temporal properties, but there are at least
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two alternative explanations for these results. The first is that stops and fricatives might

not contain equal information about talkers, or that talker-specific information may not

be as readily available in the stops. Indeed, phonetic analyses of fricatives suggest that

talker variation is a significant contributor of the variance to almost all of the cues to

fricatives (e.g., McMurray & Jongman, 2011; Newman, Clouse, & Burnham, 2001; Mun-

son, McDonald, DeBoe, & White, 2006), while voicing (and VOT in particular), while still

showing between-talker variability, may be more invariant with respect to talker (Allen,

Miller, & DeSteno, 2003; Syrdal, 1996). That is, determining fricative place of articulation

may require listeners to take into account talker identity in a way that stop-voicing may

not. This could lead to greater generalization across talkers for stops. Secondly, and con-

versely, the overlap of talker-specific distributions may be greater for stop-voicing than

for fricative place of articulation: talkers may vary more in their fricative productions

than in their VOT productions. This could make it more difficult to determine talker

identity based on stop-voicing than based on fricative place, thereby leading to greater

generalization across talkers for stops than for fricatives.

In either case, however, while listeners in the stop consonant experiments showed

generalization across talkers, these experiments primarily showed that generalization is

possible, and were not designed to rule out talker-specific learning. Since talker-specific

learning did appear to occur for fricatives, listeners may also be able to learn talker-

specific boundaries for stop-voicing, but they may require greater exposure or a differ-

ent training paradigm.

In contrast to these studies on generalization, two studies, both using a different

paradigm, provide evidence for specificity, suggesting that it is possible to learn differ-

ent stop-voicing category boundaries for different talkers. Allen and Miller (2004) and

Theodore and Miller (2010) addressed the issue of talker specificity by testing whether

listeners are capable of tracking individual talker differences on the basis of VOT. In Allen
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and Miller (2004), listeners were trained on two talkers, one with VOTs that were shorter

than average for both voiced and voiceless words, and one with VOTs that were longer

than average. Stimuli were synthetic speech with 3 different VOT variants for each talker.

Of these variants, one was voiced (/d/) and two were voiceless (/t/). Each of the two

voiced tokens was heard twice as often as the four voiceless tokens so that there was

an even number of voiced and voiceless trials. The training task was a 4AFC task for

which listeners selected both talker (Annie or Laura) and voicing category (/d/ or /t/).

Feedback was provided for the talker decision but not the voicing decision. During test-

ing, listeners were told which talker was being tested and decided which of two novel

VOT variants sounded more like that talker. Listeners chose the test stimuli that corre-

sponded with their training: they chose the shorter of the two test tokens for the talker

with short VOTs, and the longer of the test tokens for the talker with long VOTs. Theodore

and Miller (2010) replicated this result using the same design but with /b/ and /p/ words

instead of /d/ and /t/. These two studies provide evidence that listeners are capable of

learning different phoneme category boundaries for individual talkers.

However, because of the explicit emphasis placed on learning the two differ-

ent talkers in the study, we do not know whether listeners automatically learn differ-

ent phoneme boundaries for each talker. It is possible that they only do so when they

receive prompting to pay attention to talker differences or when task demands require

talker differentiation. Talker differences were especially emphasized in these studies

since listeners received feedback on their talker decisions but not their VOT decisions.

Additionally, both studies used synthetic speech, which does not have as many index-

ical cues as natural speech. It is possible that with other indexical cues being weaker

than normal, listeners could be falling back on VOT as a cue to talker identity, when they

might not typically pay attention to talker-specific variation in VOT. These experiments

would then be an example of listeners learning to associate VOTs with talkers rather than
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talker-specific shifting of phoneme boundaries.

To summarize, Allen and Miller (2004) and Theodore and Miller (2010) found ev-

idence of talker-specific learning while Kraljic and Samuel (2006, 2007) and Eisner and

McQueen (2005) found generalization across talkers. These results are not as contra-

dictory as they might seem, given that generalization across talkers does not really rule

out talker-specific learning, but the apparent contradiction is also unsurprising given

the many methodological differences between the studies. Both Allen and Miller (2004);

Theodore and Miller (2010) emphasized talker identification and trained listeners on

both talkers simultaneously, while listeners in the other studies were not told that talker

identification was important and were trained on only one talker at a time (sequential

talker training). It is possible that either of these differences in methodology could pro-

duce the discrepancy in results.

If simultaneous training does lead to talker-specific learning and blocked train-

ing leads to generalization across talkers, it would suggest that listeners need exposure

to multiple talkers within a short timespan in order to form talker-specific representa-

tions. This effect could be explained in a number of different ways. One possible expla-

nation is that listeners are unable to store speech information for an extended period

of time. If listening to new speech overwrites storage of previously experienced speech,

sequential talker training would lead to the most recent talker overwriting the previous

talker. Another possibility is that intermixed trials of multiple talkers allow listeners to

do some type of talker comparison that is not possible when they can’t hear both talk-

ers together. Finally, it may be that listeners only do talker-specific learning in situations

where it appears that it may have some benefit. It may be more efficient to adapt a single

set of boundaries when that appears to be sufficient for task performance (e.g. during

single or sequential talker exposure), but when the task demands multiple boundaries

(or lends itself to adjusting multiple boundaries), listeners are capable of talker-specific
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learning even though it is more challenging.

With respect to talker-specific issues in perceptual learning, this dissertation ad-

dresses a number of questions: 1) whether listeners spontaneously (or without prompt-

ing) learn talker-specific boundaries; 2) whether this learning occurs when the task does

not require talker identification. If so, this would suggest a much more robust talker-

specific learning mechanism than what is suggested by prior studies. Finally, I ask 3)

whether simultaneous exposure to multiple talkers leads to talker-specific boundaries,

while exposure to one talker at a time leads to generalization of boundaries across talk-

ers. This allows us to examine the relationship of specificity to generalization. These

questions will be addressed in Experiments 5 and 6.

Finally, if listeners do show evidence of talker-specific learning, and also show

word-specific learning, then it would make sense to test talker by word-specific learning.

While this would provide evidence for the most highly specific learning possible, it is

unfortunately beyond the scope of this dissertation, and will thus remain an avenue

open to further investigation.

1.6 Specific Aims

To summarize our current state of knowledge about generalization and speci-

ficity in perceptual learning for speech, most studies that have examined generalization

to untrained lexical items have found that perceptual learning generalizes across words

(Allen & Miller, 2004; McQueen et al., 2006; Maye, Aslin, & Tanenhaus, 2008; A. Hervais-

Adelman et al., 2008; Sjerps & McQueen, 2010). However, while listeners may typically

generalize across words, this does not necessarily preclude lexically-specific learning.

Research on lexical representation of variant word forms suggests that listeners have

multiple lexical representations for the same word (e.g. Connine, 2004; Connine et al.,

2008; Ranbom et al., 2009), which suggests that lexically-specific boundary learning may

be possible.
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Results from studies on generalization of perceptual learning across phonemes

have been more variable. While some have found evidence of generalization (Kraljic &

Samuel, 2006; Theodore & Miller, 2010), other evidence has not been as strong (Clarke

& Luce, 2005; Maye, Weiss, & Aslin, 2008; McQueen & Mitterer, 2005). Another line of re-

search has suggested that perceptual learning occurs at the level of features (Skoruppa

& Peperkamp, 2011; A. G. Hervais-Adelman et al., 2011), which would constrain percep-

tual learning such that phoneme-specific learning may not be possible. There has been

no research directly addressing this question.

Studies on talker specificity and generalization using the lexical-feedback per-

ceptual learning paradigm have suggested that listeners can learn talker-specific bound-

aries for fricatives but generalize across talkers for boundaries between stops (Eisner &

McQueen, 2005; Kraljic & Samuel, 2006, 2007). However, other studies using a different

paradigm have suggested that listeners are capable of learning talker-specific bound-

aries for stops as well (Allen & Miller, 2004; Theodore & Miller, 2010). Training differ-

ences between the studies may be responsible for the discrepancy in the results.

Despite the large amount of research that has been done on perceptual learning

for speech, there are many questions that remain unanswered. With regard to words,

we do not know if it is possible to learn different boundaries for words that share the

same CV at onset. Similarly, with regard to phonemes, we do not know if it is possible

to learn conflicting boundary shifts for a given feature contrast in different phonemic

contexts. With regard to talkers, we do not know if listeners are able to learn talker-

specific category boundaries without prompting, and under what circumstances this

might occur. Previous studies have found generalization across talkers, perhaps due

to blocking exposure by talker. These issues lead directly to the specific aims of this

dissertation:

1) To test whether perceptual learning in speech is phoneme-specific. This
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aim will be addressed in Experiment 2, where continua with one onset phoneme will

be shifted to the left and continua with another onset phoneme will be shifted to the

right.

2) To assess the degree of generalization to different phonemic contexts that

rely on the same feature contrast. This aim will be addressed in Experiment 3, where

listeners will be exposed to shifted continua in a single phonemic context, and then

tested on generalization to new words in the same and different phonemic contexts.

3) To test whether perceptual learning can be specific to particular words. This

aim will be addressed in Experiment 4, where listeners will hear words with the same CV

onset shifted in opposite directions.

4) To test whether spontaneous talker-specific perceptual learning can be ob-

served task that does not emphasize talker identification. This aim will be addressed

in Experiments 5 and 6, where listeners will hear two different talkers with speech dis-

tributions shifted in opposite directions.

5) To test whether sequential versus simultaneous talker training affects the

degree of talker-specificity in learning. This aim will be addressed in Experiments 5

and 6 as well. Experiment 5 will use a mixed design with training on the two talkers

interspersed. Experiment 6 will use a blocked design with training on each talker pre-

sented on a different day.

To meet these aims we needed a paradigm for perceptual learning. While the

lexical-feedback paradigm used in many other studies would have been perfectly ap-

propriate, we accidentally stumbled upon a different perceptual learning paradigm that

could be used to shift categorization boundaries. Although we used this new paradigm,

we could have used the lexical-feedback paradigm (e.g. Norris et al., 2003) instead. The

next chapter explores these issues in more detail before presenting Experiment 1.
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CHAPTER 2
METHODOLOGY AND PILOT DATA

2.1 A New Paradigm for Perceptual Learning

The majority of the studies reviewed in the introduction have relied on a type

of implicit supervised learning to train listeners on shifted category boundaries. The

difference between this and unsupervised learning is that supervised learning requires

some kind of error signal. While these error signals are often thought of as a very ex-

plicit kind of feedback, they need not be. In the Norris et al. (2003) paradigm, lexi-

cal knowledge provides an error signal that helps fluent listeners interpret ambiguous

speech sounds. Feedback from the lexicon biases listeners to perceive spoken language

as words that they already know (Ganong, 1980). If a listener perceives an /s/ at the end

of a string of sounds that only forms a word when ended with an /f/, lexical knowledge

will help the listener figure out that the speaker probably meant to produce an /f/, and

that they should subsequently remap this sound to their /f/ category. Cutler, McQueen,

Butterfield, and Norris (2008) suggest that it is phonotactic knowledge rather than lexi-

cal knowledge that drives perceptual learning for shifted phoneme category boundaries,

but this still allows for an error signal: simply one from a different source.

However, in many cases (e.g., learning a new language, minimal pairs where both

forms are words) participants may not have access to this source of feedback. Here, un-

supervised perceptual learning may be needed. In an unsupervised perceptual learning

paradigm, listeners would shift their phoneme category boundaries without any kind

of error signal telling them to do so, lexical or otherwise. One way this could occur is if

listeners were sensitive to the distribution of sounds that they hear. For example, VOT

typically shows two clusters centered around 0 and 50 ms with a boundary at 25 ms

(e.g., Lisker & Abramson, 1964). However, if a talker’s VOTs cluster around 15 and 65

ms, listeners might reasonably learn a new boundary at 35 or 40 ms. In this case, lis-
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teners hearing shifted distributions of speech sounds would shift their category bound-

aries to match the talker’s distribution, changing their phonetic categories even in the

absence of feedback from lexical or phonotactic knowledge. Indeed, Maye and Gerken

(2000, 2001) have shown that adults are capable of extracting category structure (e.g.,

the number of categories) from a series of non-word stimuli based solely on their dis-

tributional statistics, and if listeners can determine the number of categories based on

distributional statistics, then these same statistics might also help them determine the

category boundary locations.

Unsupervised learning of phoneme category boundaries is interesting for a num-

ber of different reasons. The first of these is that distributional learning has been sug-

gested as a likely mechanism for infant speech category development (Maye, Werker,

& Gerken, 2002). Unsupervised learning is certainly a more plausible mechanism for

infant speech category development than supervised learning, given that early in de-

velopment, infants lack lexical or phonotactic knowledge as sources of error signals for

supervised learning. Further, there is no reason to assume such a mechanism would

not operate during adulthood, so adult category boundaries may remain sensitive to

this same type of learning. Secondly, unsupervised learning would allow adult listeners

to take advantage of information from all the words they are exposed to instead of only

the ones that lack minimal pairs. When learning the boundary between /b/ and /p/, the

words beach and peach would be uninformative for listeners relying supervised learning

to bias them in one direction or another. However, these words are useful for unsuper-

vised learning of /b/ and /p/ categories. Finally, supervised learning for speech relies

on a process of inference: listeners hear an ambiguous sound and must infer its cate-

gory membership based on the context in which it was heard, though they may not be

aware of the process. Unsupervised learning for speech, in contrast, relies on the simpler

process of data accumulation: categories may be defined based on how frequently dif-
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ferent sounds occur. Supervised learning need not be dismissed as a useful mechanism

because it relies on inference, but neither should a simpler mechanism be discounted

when it may also contribute to learning.

If listeners are able to do both supervised and unsupervised learning, they should

take advantage of all sources of information that are available to them. In fact, the per-

ceptual learning effects observed in studies that have used the lexical feedback paradigm

may be partially dependent on unsupervised learning. Listeners in these studies hear

typical pronunciations for one speech category (e.g. /f/) and another category is en-

tirely replaced by an ambiguous pronunciation for another (e.g. something between an

/f/ and an /s/). In essence, the distribution has shifted so that the ambiguous sound

has become the prototypical (most frequent) exemplar of a category. An unsupervised

learning account of the boundary shift would suggest that it is this shift in statistical dis-

tribution that drives the categorization boundary shift, not lexical feedback. This does

not appear to be true since no boundary shift is observed when the ambiguous sounds

are embedded in non-words (Norris et al., 2003). However, in the lexical feedback con-

dition (where ambiguous sounds are embedded in words), listeners could be using both

supervised and unsupervised learning, while in the non-word condition the underlying

statistics are the only possible source of learning. It could be the combination of ef-

fects due to both types of learning that allow us to observe a boundary shift in the word

condition but not the non-word condition, and that unsupervised learning alone is not

enough to drive the effect. This could be because unsupervised learning takes longer

(more exposures) than supervised learning, or that effects of unsupervised learning are

smaller and more difficult to detect.

Although most research on distributional or statistical learning has been done

with infants (Maye et al., 2002; Maye, Weiss, & Aslin, 2008), there has also been work

showing that adult listeners are sensitive to statistical information about the distribu-
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tions of speech input. Clayards, Tanenhaus, Aslin, and Jacobs (2008) manipulated the

shape of VOT distributions that listeners were exposed to and measured the effect that

this had on their activation for lexical competitors. Listeners in this study had their eye-

movements recorded while they listened to target words along VOT continua from /b/

to /p/ and clicked on corresponding target images. The VOT distributions were manip-

ulated so that not all steps along the continuum were equally likely. Listeners who heard

wide (high variance) distributions of VOTs made more eye-movements to competitor

objects than listeners who heard narrow (low variance) distributions.

While this addressed the width of the categories—rather than their locations

along the continuum (and the consequent boundary)—a version of this paradigm might

be able to shift VOT boundaries as seen in the lexically driven studies on perceptual

learning, but in an unsupervised perceptual learning task. If listeners track how often

different VOTs occur, then they should shift their voicing category boundaries to the

left or right based on the placement of the prototype steps (those that occur most fre-

quently) along the VOT continuum. This should involve perceptual learning rather than

selective adaptation because we are not manipulating the frequency with which listen-

ers are exposed to the different endpoints of the continuum–both groups of listeners

will hear a similar number of VOT exemplars associated with each voicing category (al-

though this may vary slightly according to individual differences in voicing boundary

location). As in Norris (2003), it is simply the side of the continuum that is ambiguous

(either voiced or voiceless) that should drive perceptual learning, albeit through a dif-

ferent mechanism.

Experiment 1 examines whether listeners shift their VOT boundaries to corre-

spond with the distributions they are exposed to in this unsupervised perceptual learn-

ing paradigm. Critically, in this paradigm, there is no lexical information for listeners

to use when determining whether a given sound is voiced or voiceless, since there are
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words at both the voiced and voiceless ends of the continuum.

2.1.1 Eye-Tracking

Although Clayards et al. (2008) recorded eye-movements in order to measure ac-

tivation of lexical competitors, our interest is in assessing phoneme category boundary

shifts. This can be accomplished simply by recording mouse-clicks, so tracking eye-

movements during these studies is not strictly necessary. However, eye-movements may

provide a more sensitive measure than mouse-clicks alone. For example, eye-movements

could allow us to address when (during real-time processing) different effects occur

(e.g., McMurray, Clayards, Tanenhaus, & Aslin, 2008). Since eye-movements are sen-

sitive to the timecourse of lexical activation, eye-tracking is well-suited to studying the

timecourse of different effects. For instance, if listeners show evidence of talker-specific

learning, we might ask if this effect is apparent at the earliest moments of lexical pro-

cessing, or only after some initial processing that is talker-independent. It is possible

that talker identity can only affect voicing judgments after some initial processing has

occurred. Similar questions can be asked with regard to phoneme or word identifica-

tion. Moreover, eye-movement analyses may also allow comparison of the timing of

different effects across experiments.

2.2 Experiment 1

Experiment 1 establishes an unsupervised learning paradigm that can be used to

shift speech category boundaries through perceptual learning. As a kind of pilot exper-

iment for the paradigm this experiment does not have strong theoretical implications,

and was originally run for a different purpose all together. Our discovery that perceptual

learning of category boundaries can occur in this unsupervised manner was a serendip-

itous finding, and we present the results of this experiment here to simply demonstrate

that listeners are sensitive to distributional statistics in a short-term perceptual learning
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study. Each listener was exposed to either a right- or left-shifted VOT distribution during

the experiment. Since listeners did not hear multiple distributions or talkers, the exper-

iment did not address questions of specificity or generalization and cannot be used to

test learning specificity.

The design of the study is based on Clayards et al. (2008), who manipulated the

shape of VOT distributions that listeners heard. For perceptual learning of category

boundaries, our interest is in manipulating the location of the distributions rather than

their shape. A study by Sumner (2011) suggests that moving the entire distribution—

rather than the prototype steps alone—should be more likely to elicit a perceptually

learned boundary shift. Sumner (2011) found that listeners trained on a speaker with

a French accent showed a boundary shift only when trained on stimuli with variable

VOTs. Though she used a perceptual learning paradigm based on lexical feedback, as in

Norris et al. (2003), these results suggest that variability in VOT is critical for perceptual

learning of shifted category boundaries.

This experiment involves a fairly large number of trials, which increased the like-

lihood of that we would be able to detect learning. Since the number of trials was large

enough that it would be impractical or unpleasant for participants to complete the en-

tire experiment in one day, participants completed the study in two sessions. Sessions

were scheduled one week apart to make scheduling easier for participants, although

they were able to reschedule follow-up sessions if they were unable to return to the lab

at the same time a week after their initial session. Fortuitously, having sessions spaced

a week apart also provides an opportunity to test boundary shift maintenance over a

longer period of time than has been examined in previous studies, although this oppor-

tunity should only arise if listeners show evidence of a boundary shift by the end of the

first session.
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Table 2.1: Experiment 1 stimulus items.

/b/ /p/ /l/ /r/

beach peach lace race

bees peas lake rake

beak peak lei ray

bit pit lock rock

bin pin lamp ramp

bill pill lane rain

2.2.1 Method

2.2.1.1 Design

The first experiment tested whether shifting the prototypes of VOT distributions

is enough to induce perceptual learning of shifted category boundaries. Half of the par-

ticipants (the left-shifted group) heard categories centered at steps -10 and 40ms, and

the other half of the participants (the right-shifted group) heard categories centered at

steps 10 and 60ms. The exact distributions of VOTs within each category were roughly

Gaussian and are shown in Figure 2.1. On each day of the two-day study, listeners heard

300 critical trials that consisted of words along six VOT continua. The specific tokens

were selected according to the distribution assigned to each group. There were 50 ex-

perimental trials from each continuum, but the VOT distribution for each group was

maintained across the six continua and not within each individual continuum. In ad-

dition to these 300 experimental trials, listeners also heard 300 trials of filler words with

/l/ and /r/ onsets. As with the experimental trials, each filler pair was heard 50 times

(25 times for each filler word). The words from the six continua and the filler items that

they were paired with are shown in Table 2.1.
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Table 2.2: Experiment 1 VOT distributions.

VOT Step -30 -20 -10 0 10 20 30 40 50 60 70 80

Left-Shifted Distribution 4 36 70 36 4 4 36 70 36 4 0 0

Right-Shifted Distribution 0 0 4 36 70 36 4 4 36 70 36 4

Note: The prototype steps (the VOT steps with the most frequently occurring exemplars)
were shifted two steps between distributions.

Along the VOT distribution used for the experimental trials, the two prototypical

VOTs occurred most frequently and the VOT steps farthest from the prototypes occurred

the least frequently. The two distributions used in the experiment are shown in Figure

2.1, which includes dashed lines marking the ideal boundaries for each distribution. Ta-

ble 2.2 also contains the number of tokens heard at each step for each of the two distri-

butions. These distributions were chosen to match the shape of the distributions used

by Clayards et al. (2008) as closely as possible. The 300 experimental and 300 filler trials

totaled 600 trials per day and 1200 trials across both days. As the planned talker-specific

learning experiments were designed to have participants learn different boundaries for

each of two voices, it was necessary to ensure that boundary shifts would work for both

voices. Thus, half the participants in the current experiment were run with a male talker

and half were run with a female talker. Talker condition was crossed with the left-/right-

shift condition for a complete 2x2 design.

2.2.1.2 Participants

Participants were 38 individuals from the University of Iowa community who

participated in the study in exchange for course credit or a nominal payment. All were

monolingual native English speakers who reported normal hearing and normal or corrected-

to-normal vision. Informed consent was obtained in accordance with university and

APA standards. We had difficulty retaining participants across both days of testing, and
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Figure 2.1: Experiment 1 VOT distributions, or the number of tokens heard at each VOT
step for the left- and right-shifted distributions. The dashed lines at 15 and 35 ms indi-
cate the ideal boundary locations for each distribution.

as a result approximately half of the participants did not return for the second day of the

study. These were excluded from analysis, leaving a total of 17 participants who com-

pleted both days of the study.

2.2.1.3 Stimuli

2.2.1.3.1 Auditory Stimuli

Auditory stimuli consisted of twelve VOT continua (six per talker) ranging from

-30 to 80 ms in twelve steps. Continua were created by cross-splicing recordings of nat-

ural speech using a technique similar to McMurray et al. (McMurray, Aslin, Tanenhaus,

Spivey, & Subik, 2008). First, both talkers were recorded in a sound-attenuated room
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using a Kay CSL 4501. Recordings were made using Praat sampling at 44.1 kHz. Talkers

recorded several tokens of each word and we selected the best quality recordings with

sufficient voicing and prevoicing for the experiment. The twelve filler words (six per

talker) were recorded in the same recording sessions.

Next, we constructed the twelve continua from these recordings. Since each con-

tinuum contained both prevoiced and aspirated tokens, the prevoiced and aspirated

portions were created using separate procedures. For both the prevoiced and aspirated

sets, a voiced /b/ onset stimulus was selected (from the recorded tokens) to use as the

base in both sets. A second /b/-initial word with prevoicing and a /p/-initial word with

aspiration were selected to use for cross-splicing.1 For the prevoiced portion of each

continuum, progressively longer segments of prevoicing (beginning at the onset of voic-

ing) were spliced onto the beginning of base stimulus. For the aspirated portion of each

continuum, progressively longer segments of aspiration (beginning with the burst) re-

placed the onset portions of the base stimulus. As a result of this procedure, the vocalic

segments were the same across the prevoicing and aspiration portion of each contin-

uum (they were from the base stimulus). Aspiration and prevoicing were manipulated

in approximately 10 ms increments, but because splicing was done at zero-crossings,

splice points are not exactly 10 ms from each other. This is especially true for the pre-

voiced stimuli because there were fewer available zero-crossings in the prevoiced seg-

ments than in the aspirated segments. The VOT measurements of the completed stimuli

are shown in Table 2.3.

Before splicing, each of the selected recordings had noise removed using Gold-

wave and was amplitude normalized in Praat. All recordings from the female talker were

1A second /b/ initial word was used for cross-splicing (instead of the same /b/ initial record-
ing used as the base stimulus) so that neither the aspirated nor the pre-voiced sounds would be
identity splices. Using the same /b/ onset stimulus for the pre-voicing portion and the base may
have resulted in the prevoiced steps of the continuum sounding more natural than the aspirated
steps, which we wished to avoid.
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Table 2.3: Experiment 1 VOT measurements.

Female Talker

beach/peach beak/peak bees/peas bill/pill bin/pin bit/pit

-35 -34 -36 -31 -31 -31

-23 -23 -24 -19 -25 -24

-12 -11 -12 -12 -12 -12

0 1 0 0 0 2

10 10 12 10 10 11

20 20 21 20 20 21

30 30 30 30 30 31

40 40 40 40 40 41

50 50 50 50 50 51

60 61 61 60 60 61

70 71 71 70 70 71

80 80 81 80 80 80

Male Talker

-32 -30 -32 -33 -29 -33

-23 -17 -24 -25 -19 -23

-12 -8 -8 -8 -10 -14

0 0 0 0 0 0

10 10 10 10 9 8

21 20 20 21 20 20

31 33 30 31 30 30

41 40 40 41 40 40

51 52 50 51 50 51

61 60 60 61 60 61

71 71 70 71 71 71

80 80 80 81 80 81
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scaled to maximum amplitudes of .95. Spliced stimuli from the male talker sounded

over-aspirated when scaled to the same amplitude, so the base stimuli recordings were

scaled to .99 and the aspirated recordings were scaled to .30. A few of the recordings

required additional pre-processing, such as deleting a large initial peak in aspiration,

duplicating short segments of aspiration to lengthen the aspirated portion of the word,

or removing an audible click by deleting a pitch pulse.

Stimuli were piloted in a categorization task performed by six lab members. This

piloting was done to ensure that all continua had boundaries at relatively central steps

in the VOT continuum, and more importantly, that the cross-splicing manipulations

still led to well-perceived endpoints that were consistently identified as either voiced

or voiceless. On each pilot trial participants used a key-press to identify the given stim-

ulus as beginning with /b/ or /p/. Each of the 144 stimulus items was repeated three

times for a total of 432 trials per participant. At the /b/ endpoint, pilot listeners cor-

rectly identified the stimulus as a /b/ on 98.9% of the trials for the male talker, varying

from 91.7% to 100% on the six different continua. They were at 97.3% correct for the fe-

male talker, from 84.6% to100% for the six continua. At the /p/ endpoint listeners were

100% correct for the male talker on all continua, and at 98.7% for the female talker (from

91.6% to 100% on individual continua). The point at which the identification functions

for each talker crossed 50% was between steps 6 and 7 for both talkers, which is close to

the middle of the 12-step continua.

2.2.1.3.2 Visual Stimuli

Pictures representing each item listed in Table 2.1 were constructed using a pic-

ture norming process that was developed in the McMurray lab to ensure that pictures

were prototypical exemplars of their corresponding words (e.g., McMurray, Samelson,

Lee, & Tomblin, 2010; Apfelbaum & McMurray, 2011). First, a number of candidate

images were downloaded from a commercial clipart database. A committee of under-
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graduate and graduate students then selected the best (i.e. most prototypical) image.

The committee also gave suggestions on how the selected images might be improved

by changing colors, deleting unnecessary components, or adding in additional details.

Finally, all pictures were edited to ensure uniform size and brightness. When appropri-

ate images were not available in the commercial database, Adobe Illustrator was used

to draw a clipart style image based on a reference photograph. Only the “ramp” image

needed to be constructed this way. The final images were approved by the author and

thesis supervisor.

2.2.1.4 Procedure

An Eye-Link-II head-mounted eye-tracker was calibrated to each participant be-

fore the beginning of the experiment. Following calibration, participants read the in-

structions for the experiment and practiced the drift-correct procedure.

On each trial of the experiment, participants were presented with four images

from an item-set (a /b/, /p/, /l/, and /r/ onset item), one in each corner, and a red dot

in the middle of the screen. After 500 ms the dot turned blue. When participants clicked

on the blue dot they heard the auditory stimulus for the trial over headphones. They

clicked on the corresponding image and moved on to the next trial.

The 500 ms delay before the dot turned blue was included to give participants

a chance to see what images were on the screen and where they were located before

hearing the auditory stimulus. The sudden change in dot color was also likely to drive

an eye-movement that would center eye-gaze at the onset of the auditory stimulus.

Throughout the experiment, participants’ eye-movements were recorded by the

Eye-Link II sampling gaze position every 4ms. Recording began at trial onset and lasted

until a picture was selected. The Eye-Link II compensates for head movements so the

participants were able to move freely during the study. Gaze position for both eyes was

recorded when possible, but when calibration was not good for both eyes then one eye
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was tracked. When both eyes were tracked the one with better calibration was used dur-

ing analysis. Drift correct events (to compensate for slippage of the eye-tracker on the

head) occurred every 30 trials. Eye-tracking data was automatically parsed into saccade,

fixation, and blink parameter based on the system’s default parameters. Because the

mouse-click results showed a fairly robust effect, we did not analyze the eye-movement

data that was collected.

2.2.2 Results

First, we address overall task performance to establish that participants were

paying attention to the auditory stimuli and could reliably identify the endpoints of

the continua. The second section explains the analytic strategy and predicted results

for the following two sections. The third section addresses perceptual learning of the

shifted distributions, to show that group differences in boundary location emerged over

the course of the experiment. The final section addresses talker differences, exploring

whether the effect of distribution varied by talker.

2.2.2.1 Overall Performance

Mouse-click responses were first examined to assess overall performance on the

task. On experimental trials where the stimulus began with a /b/ or /p/, participants

clicked on a filler item on only 0.14% of the trials, which indicates that they were paying

attention to both the auditory and visual stimuli.

Next, performance on the unambiguous endpoints of the continua was assessed.

VOT steps -30, -20, and -10 were considered clear /b/ endpoints and steps 60, 70, and

80 were considered clear /p/ endpoints. Performance on both endpoints was very good.

On the /b/ side, participants selected the /b/ image for 99.9% of the trials. On the /p/

side, participants selected the /p/ image for 97.8% of the trials. Endpoint performance,

shown in Table 2.4, remained uniformly high when broken down by talker and distribu-
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Table 2.4: Experiment 1 percent correct on endpoints by talker and distribution.

Male Talker Female Talker

Endpoint Left Right Left Right

/b/ 99.9 100 99.9 100

/p/ 100 98.9 93.8 98.6

tion shift.

2.2.2.2 Analytic Strategy and Predictions

After establishing that endpoint performance was good, mouse-clicks across the

entire continua were assessed to determine whether phoneme category boundaries dif-

fered between participants in the left- and right-shifted distribution groups, whether

this difference increased over time, and whether participants learned shifted bound-

aries equally well for both the male and female talkers.

Both distribution and talker analyses were conducted with mixed effects models

using the lme4 package (Version 2.12) in R (Bates, 2005) and a binomial linking func-

tion appropriate for binary data.2 Mixed-effects models are advantageous for designs

with both within- and between- participant effects, and for unbalanced designs, which

makes this analytic strategy particularly appropriate for our experiments. While the

number of data points in each distribution should be equal across the two distribution

2Technically our data are not binary because participants performed a 4AFC task, selecting
the target image from the four images displayed on the screen. We used the binomial linking
function as there is no multinomial linking function available, and this seemed like the most
appropriate way to analyze our data. Although this is a simplification, treating our data as binary
is appropriate because two of the response choices available were filler items. The fillers had
very different names from the experimental items so they could be ignored on the experimental
trials that we analyzed. This makes our task essentially a 2AFC task. We also excluded from
analysis any trials for which participants selected one of the two filler images instead of one of
the experimental images.
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conditions, the two conditions have a different number of observations at each step. We

chose not to use a curvefitting approach with these data because it would not be possible

to get very good fits once we had binned the data (e.g. by participant, day, and contin-

uum). The effects of learning and talker were assessed in separate analyses because of

the number of factors necessary for each model, which led to over-specification when a

combined analysis was attempted.

We initially examined a range of models to determine the best way to handle

random-effects. Fixed effects were only examined after model selection. The initial

models for each analysis included all of the fixed-factors and random intercepts for both

random-effects factors. A second version of the models excluded the random effect of

continuum, a third version included random slopes for participants, and a fourth in-

cluded random slopes for both participants and words. Some of these models were

over-specified and did not converge. Models were excluded if they did not converge

within 300 iterations or were reported as having fitted probabilities of 0 or 1. The re-

maining models were then compared using Chi-Squared tests of model fit to select the

best model.

For both analyses, if participants were learning category boundaries based on

the shifted distributions, we predicted a main effect of distribution-group such that left-

shifted group should be biased to respond with more /p/’s and the right-shifted group

should be biased toward more /b/’s. For the learning analysis, we also expected to see

a distribution × trial interaction showing that the group difference was larger later on

in the experiment. Conversely, in the talker analyses, if both talkers support perceptual

learning, we should see no interaction of talker and distribution.

2.2.2.3 Learning Effects

The first models looked at the effect of distribution over the course of the exper-

iment. Response (/b/ or /p/, dummy-coded as 0 or 1 respectively) was the dependent
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variable. Distribution (left or right), day of the experiment (first or second), and half of

the experiment (for each day) were all used as fixed-factors with two dummy-coded and

centered levels. The VOT step of the stimulus was also treated as a fixed-factor. This

was coded as a continuous covariate and centered. Only the eight middle steps of the

continua (-10 to 60 ms) were analyzed as those steps were shared in the distributions for

both conditions. Participant and continuum were treated as random-effects.

The random slopes models failed to converge so only the two random intercepts

models were compared. The model with random intercepts for both subject and word

was better than the model that excluded word (χ2(2)=16.19, p<.001), and was selected

as the final model in the learning analysis.

The selected learning effects model is reported in Table 2.5. Critically, there was

a significant main effect of distribution (β=-1.85, p<.01) indicating that participants in

the left- and right-shifted distribution groups had different voicing category boundaries.

There was also an effect of VOT step (β=.22, p<.0001), indicating that VOT affects voicing

judgements. We would expect this to be significant in all of our models. The interaction

between distribution and day (β=-.51, p<.05) was significant, suggesting that the ob-

served boundary shift difference is due to learning over the course of the experiment

since the effect is larger on the second day. This is illustrated in Figure 2.2, where each

of the four panels shows a different quarter of the experiment. Initially there is little

difference between the two distributions, but the difference grows as participants learn

over time. By the end, the listeners who heard the left distribution have a categorization

function that is shifted to the left relative to listeners who heard the right distribution.

Finally, there was a three-way distribution by step by half interaction (β=.05, p<.05), in-

dicating that the slope of the identification curves (as a function of VOT) changed over

the course of the experiment. We did not conduct follow-up analyses on any slope ef-

fects because our interest is in the boundary differences, and in future models we do not
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Table 2.5: Experiment 1 perceptual learning model.

Coef β SE(β) z p

Intercept 0.18 0.34 0.5 >0.6

Distribution −1.85 0.63 −2.9 <.01

Day −0.22 0.13 −1.8 >0.1

Half −0.08 0.13 −0.6 >0.5

VOT Step 0.22 0.01 35.9 <.0001

Distribution x Day −0.51 0.25 −2.0 <.05

Distribution x Half 0.23 0.25 0.9 >0.4

Day x Half 0.13 0.26 0.5 >0.6

Distribution x Step 0.01 0.01 0.5 >0.6

Day x Step −0.02 0.01 −1.5 >0.1

Half x Step −0.01 0.01 −1.0 >0.3

Distribution x Day x Half −0.23 0.51 −0.4 >0.7

Distribution x Day x Step 0.01 0.02 0.5 >0.6

Distribution x Half x Step 0.05 0.02 2.3 <.05

Day x Half x Step −0.02 0.02 −1.0 >0.3

Distribution x Day x Half x Step −0.04 0.04 −1.0 >0.3

Note: The maximum correlation among fixed effects was r=.055 between distribution
and step.



53

VOT (ms)

P
ro

po
rt

io
n 

R
es

po
ns

e 
P

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

First Half

● ●

●

●

●
●

●
●

●

●
● ●

0 10 20 30 40 50

Second Half

● ●

●

●
● ●

●

●

●

● ● ●

0 10 20 30 40 50

D
ay 1

D
ay 2

Distribution

● Left Right

Figure 2.2: Experiment 1 distribution effect in each quarter of the experiment.
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report VOT and slope effects in the text (although the relevant statistics will always be

reported in a table).

Since the main analysis revealed an interaction between distribution and day,

our next step was to run simple effects analyses to examine this in more detail. We

wanted to determine when in the experiment an effect of distribution could be ob-

served, as this tells us how rapidly participants learned the distributions and if learning

persisted across the week between experiment sessions.

To run the simple effects analysis for each experiment session we split the data

by day and applied the previous model (without day as factor) to each subset of the data.

These two models are reported in Table 2.6. Both models showed effects of distribution

(Day 1: β=-1.53, p<.02; Day 2: β=-2.22, p<.002). The significance of the distribution ef-

fect on the first day suggests that participants learned the distributions quite rapidly.

Moreover, the larger boundary shift on the second day suggests that listeners retained

what they had learned on the first day across the intervening week—if they had not re-

tained what they had learned, they would have been effectively starting over again on

the second day, and the boundary shift would have been the same on the two days.

2.2.2.4 Talker Effects

Since we used two talkers, one male and one female, we wanted to determine

whether there was an effect of talker and if the effect of distribution varied by talker. That

is, were participants able to learn the shifted distributions equally well for the two talk-

ers? This analysis is similar to the prior analysis, but as the prior analysis showed similar

learning effects across experiment days and the two halves of each day, we collapsed

across the day and half factors to simplify the new model. Talker was dummy-coded (0

for male and 1 for female) and centered. A model with random slopes for both partici-

pants and words failed to converge and we compared three other models. The version

with random slopes for participants and random intercepts for words was better than
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Table 2.6: Experiment 1 simple effects for days one and two.

Coef β SE(β) z p

Day 1

Intercept 0.24 0.34 0.7 >0.5

Distribution −1.54 0.64 −2.4 <.05

Half −0.15 0.18 −0.8 >0.4

VOT Step 0.23 0.01 24.4 <.0001

Distribution x Half 0.30 0.37 0.8 >0.4

Distribution x Step 0.01 0.02 0.6 >0.6

Half x Step 0.00 0.02 −0.1 >0.9

Distribution x Half x Step 0.07 0.03 2.2 <.05

Day 2

Intercept 0.11 0.40 0.3 >0.8

Distribution −2.23 0.69 −3.2 <.01

Half −0.02 0.18 −0.1 >0.9

VOT Step 0.22 0.01 26.3 <.0001

Distribution x Half 0.09 0.36 0.2 >0.8

Distribution x Step 0.00 0.02 0.2 >0.9

Half x Step −0.02 0.01 −1.8 >0.1

Distribution x Half x Step 0.02 0.03 0.9 >0.4

Note: The maximum correlation between factors was r=.059 in the day 1 model (between
half and step), and r=-.042 in the day 2 model (between distribution and step).
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Table 2.7: Experiment 1 talker model.

Coef β SE(β) z p

Intercept 0.20 0.32 0.6 >0.5

Distribution −1.85 0.59 −3.1 <.01

Talker −0.69 0.59 −1.2 >0.2

VOT Step 0.22 0.01 34.5 <.0001

Distribution x Talker 0.19 1.19 0.2 >0.9

Distribution x Step 0.00 0.01 −0.3 >0.8

Talker x Step −0.04 0.01 −3.1 <.01

Distribution x Talker x Step 0.07 0.03 2.8 <.01

Note: The maximum correlation among the fixed factors was correlations r=.34.

the next best model (χ2(2)=159.075, p<.0001), so we selected this model.

The talker model for Experiment 1 is reported in Table 2.7. There was a signif-

icant effect of distribution (β=-1.85, p<.01) which observed previously in the learning

analysis. Based on a plot of the data (Figure 2.3), we expected to find a distribution by

talker interaction showing that the boundary effect was larger for the female talker, but

this interaction was not significant in the model (β=.19, p>.8). There were, however,

other interactions indicating that the slope effects were different across talkers. These

were an interaction between talker and step (β=-.04, p<.01) and a three-way distribution

by talker by step interaction (β=.07, p<.01).

2.2.3 Discussion

The first experiment established an unsupervised learning paradigm that can be

used to shift category boundaries by perceptual learning. Listeners exposed to the left

distribution had different (left-shifted) category boundaries than listeners exposed to
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Figure 2.3: Experiment 1 distribution effect for each talker.

the right distribution. The learning analysis showed that this effect is due to learning

and not a priori differences between the groups: the distribution effect is larger on the

second day, when participants have had more exposure to the distributions. This also

suggests that participants retained the boundary learning from the first day across the

week between the two experiment days, which in turn suggests that the boundary shift-

ing may have been talker-specific (listeners were certainly exposed to many other talkers

and VOT exemplars in the week between the two sessions). Since this paradigm is effec-

tive in shifting category boundaries, it can be used in the remaining experiments that

test the specificity and generalization of perceptual learning.
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CHAPTER 3
PERCEPTUAL LEARNING FOR PHONEMES AND WORDS

3.1 Experiment 2

Experiment 2 addresses Aim 1: to test phoneme-specific perceptual learning.

That is, are listeners able to learn different boundaries for a single feature contrast in

multiple phonemic contexts? For example, the distinction between /b/ and /p/ relies

on the same feature (voicing) as the distinction between /d/ and /t/. Listeners may

be able to learn different voicing boundaries for these two contrasts (phoneme-specific

learning), or they may only be able to learn a single voicing boundary that generalizes

across phonemic context. Thus far the research related to this question has been in-

conclusive or suggested that perceptually learned boundary shifts generalize beyond

the phonemic contexts in which they are learned (Kraljic & Samuel, 2006; Theodore &

Miller, 2010; Clarke & Luce, 2005; Maye, Weiss, & Aslin, 2008; McQueen & Mitterer, 2005).

However, these studies have not trained listeners on multiple conflicting boundaries si-

multaneously. It is possible that generalization is the default pattern when listeners do

not have a reason to employ phoneme-specific boundary learning, but that this type of

specificity is still possible in the right learning environment.

As discussed in the introduction, phoneme-specific learning would have impor-

tant implications for models of speech perception. Phoneme-specific learning would

indicate that abstraction at the feature level is not necessary for perceptual learning,

and would be most compatible with models that do not rely on sub-lexical abstraction

(such as Exemplar models, normalization, and parsing theories). Models like TRACE

and MERGE would also be able to account for phoneme specific learning, but this level

of specificity would mean that abstract units at a sub-phonemic level (like features) are
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superfluous for perceptual learning. 1 Generalization across phonemes would support a

feature-like or sub-phonemic level of abstraction that could be accounted for by TRACE

or MERGE but not by models lacking abstract units at a sub-lexical level.

3.1.1 Method

3.1.1.1 Design

Experiment 2 tested whether listeners can show evidence of phoneme-specific

boundary shifts driven by unsupervised perceptual learning. Voicing continua with one

place of articulation (e.g. bilabial) were shifted to the left and voicing continua with an-

other place (e.g. coronal) were shifted to the right. The shift direction for each place of

articulation was counterbalanced across participants. We used three item-sets with two

continua each (one at each place). Each item-set consisted of a four-way contrast be-

tween the endpoints of coronal and bilabial continua (e.g. beer/pier and deer/tear. The

words in each item-set are shown in Table 3.1. This four-way contrast design was used

so that participants would have a reason to pay attention to place of articulation as well

as VOT, which we thought might facilitate learning of the different voicing contrasts at

each place. If the words were beer/pier and dart/tart, participants could ignore place of

articulation and still discriminate the words. In Appendix A we report a previous exper-

iment that did not use four-way contrast design and did not work as well (Experiment

2A).

For the distribution shift manipulation, the left and right distributions were cen-

tered at the same steps used in Experiment 1, but the number of repetitions at each step

was modified to accommodate the different number of continua used. In addition, un-

like the distributions in Experiment 1, both of the new distributions extended the full

width of the VOT range used in the experiment, so there were no steps with 0 repetitions

1While TRACE and MERGE do not have such units, as abstractionist models they share this
spirit.
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Table 3.1: Experiment 2 stimulus items.

/b/ /p/ /d/ /t/

bart part dart tart

beer pier deer tear

bot pot dot tot

Table 3.2: Experiment 2 VOT distributions.

VOT Step -30 -20 -10 0 10 20 30 40 50 60 70 80

Left-Shifted Distribution 1 12 24 12 2 2 12 24 12 1 1 1

Right-Shifted Distribution 1 1 1 12 24 12 2 2 12 24 12 1

in either distribution. This was done to eliminate the possibility that boundary shifts

could occur because of range differences between the distributions. Here there are the

same number of repetitions at the endpoints of both distributions, so any boundary

shifts should be due to the difference in location of the prototype steps instead of any

differences at the endpoints. Finally, the distributions were applied to each individual

continuum rather than across continua, which was possible because we did not have as

many continua as in Experiment 1. The numbers of exemplars presented at each VOT

step each continuum in the two distributions is shown in Table 3.2.

Participants completed a total of 624 trials per day, or 312 trials in each distribu-

tions/place of articulation. These were split evenly between the three continua at each

place, so there were 104 trials per continuum in each distribution. The experiment was

run over two sessions held approximately a week apart (1248 trials all together). Listen-

ers heard the continua shifted in the same direction on the second day as they had on
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the first.

3.1.1.2 Participants

Participants were 22 individuals from the University of Iowa community who

participated in the study in exchange for course credit or pay. All participants were

monolingual native English speakers who reported both normal hearing and vision that

was either normal or corrected-to-normal. Informed consent was obtained in accor-

dance with University and APA standards. 20 participants completed both sessions of

the study, and 2 participants completed only one session. These 2 participants were

excluded from analysis.

3.1.1.3 Stimuli

3.1.1.3.1 Auditory Stimuli

Auditory stimuli consisted of six twelve-step VOT continua ranging from -30 to

80ms. We used three /b/ to /p/ continua and three /d/ to /t/ continua. The continua

were created in the same manner as those in Experiment 1, by cross-splicing recordings

of natural speech. The recording and cross-splicing methods used to create the stimuli

are described in Chapter 2. The male speaker who was recorded for Experiment 1 was

also recorded for the new continua. When piloting the stimuli we discovered that the

categorization boundaries for one of the continua, deer/tear, was located farther to the

voiceless end of the continuum than the rest of the boundaries. Since our experimental

manipulation relied on shifting this boundary, we wanted it to lie near the center of the

continuum. In order to move the boundary towards the voiced side of the continuum

we shortened the vowel in the voiced base stimulus (deer) by removing pitch pulses from

the vowel center. VOT measurements of the completed stimuli are shown in Table 3.3.

The stimuli were piloted by six lab members using the same procedure that we

used to pilot the stimuli for Experiment 1. On each pilot trial participants used a key-
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Table 3.3: Experiment 2 VOT measurements.

bart/part beer/pier bot/pot dart/tart deer/tear dot/tot

-30 -30 -31 -30 -30 -31

-22 -22 -23 -17 -20 -24

-15 -15 -15 -9 -12 -15

0 0 0 0 0 0

12 12 15 10 10 10

21 21 21 20 20 21

30 30 30 30 30 31

40 40 40 40 40 40

51 51 51 50 50 51

61 61 61 60 60 61

71 71 70 70 70 70

81 81 80 80 80 80
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press to identify the given stimulus as beginning with /b/ or /p/ for the bilabial con-

tinua, or /d/ or /t/ for the coronal continua. The two types of continua were piloted

in separate blocks. Each of the stimulus items was repeated three times. At the voiced

endpoint, listeners correctly identified the stimulus as a /b/ on 100% of the trials and as

/d/ on 97.8% of the trials. At the voiceless endpoint they identified the stimulus as a /p/

or /t/ on 100% of the trials. The point at which the identification functions crossed 50%

was between steps 6 and 7 for all of the bilabial continua, and between 6 and 8 for the

coronal continua. 2

3.1.1.3.2 Visual Stimuli

Pictures representing each item listed in Table 3.1 were constructed using the

same picture norming technique described for Experiment 1. Images that were included

in the previous study were re-used here. The final images were approved by the author

and thesis supervisor.

3.1.1.3.3 Procedure

The procedure was identical to that used in Experiment 1. An Eye-Link-II head-

mounted eye-tracker was calibrated to each participant before the beginning of the ex-

periment. Following calibration, participants read the instructions for the experiment

and practiced the drift-correct procedure.

On each trial, participants were presented with the four images from an item-set

(e.g. beer, pier, deer, and tier). They saw one image in each corner and a red dot in the

middle of the screen. After 500ms the dot turned blue. When participants clicked on the

blue dot they heard the auditory stimulus for the trial over headphones. They clicked on

the corresponding image and moved on to the next trial.

2Despite the vowel-shortening procedure, the deer/tear continua crossed the 50% point be-
tween steps 7 and 8. The other coronal continua crossed 50% between steps 6 and 7.
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The Eye-Link II recorded participants’ eye-movements throughout the experi-

ment, but we did not analyze the eye-movement data because the effects were large

enough to see with mouse-click data.

3.1.2 Results

The structure of the results section mirrors that used for Experiment 1 in Chapter

2, where each section addresses a different question. The same mixed-effects modeling

strategy is also employed. First we address overall task performance. Then we assess

perceptual learning of the distributions over the course of the experiment, our primary

interest in this study. A boundary shift is predicted such that categorization data for

continua trained on the left distribution (either bilabial or coronal onset) will have a

boundary shifted towards the left, while data for the other continua (those trained on

the right distribution) will show a boundary shifted towards the right. The final section

of the results collapses across time to examine whether the distribution effect varied

depending on shift-condition (which place was shifted to the left), and then whether it

varied by item-set.

3.1.2.1 Task Performance

Mouse-click responses were first examined to assess overall performance on the

task. Participants clicked on non-target continua items (e.g. dart or tart when the target

word was bart or part) on only .38% of the trials, and all participants selected an image

from the target continuum on over 97% of the trials, indicating that they were paying

attention to both the auditory and visual stimuli. Performance on continua endpoints

was also very good. On the voiced side (VOT steps -30 to -10ms), participants selected

the /b/ image for 99.6% of the bilabial trials and the /d/ image for 99.9% of the coronal

trials. On the voiceless side (VOT steps 60 to 80ms), participants selected the /p/ image

for 99.9% of the bilabial trials and the /t/ image for 99.7% of the coronal trials.



65

3.1.2.2 Perceptual Learning

The critical analysis concerns perceptual learning. That is, were participants able

to learn (over the course of the experiment) different boundaries for the same feature

contrast (voicing) in two different phonemic contexts (/b/ and /p/ vs. /d/ and /t/)? To

assess the change in the voicing boundaries over time we examined the effect of distri-

bution (a within-participants variable) in each quarter of the experiment (by dividing

each of the two days in half). Response (voiced or voiceless, dummy-coded as 0 or 1 re-

spectively) was the dependent variable. VOT step, distribution, day, and half were fixed

factors, and were held constant in the different versions of models that we compared.

All of these except for VOT step were coded as dummy variables with values of 0 or 1

and then centered. VOT step was coded from -30 to 80 (in 10ms increments) and cen-

tered. Participant and continuum were treated as random-effects. One version of the

model had only random intercepts for participants and another had random intercepts

for both participants and continua. A third variant with random slopes for participants

and random intercepts for words failed to converge. Including continua as a random

effect in addition to participants improved the fit of the model (χ2(2)=712.25, p<.0001),

so this model is the one we report.

The full model for distribution learning over time is reported in Table 3.4. There

was a main effect of distribution (β=-1.21, p<.0001) which indicates that there was a

boundary difference between the two distribution groups. Participants in the left-shifted

condition showed a boundary to the left of those in the right-shifted condition, as can

be seen in Figure 3.1. The critical interactions were between distribution and day (β=-

.55, p<.005) and distribution and half (β=-.64, p<.001), both of which suggest that the

boundary shift was different on the first and second day of the experiment and during

the first and second half of each day. This could be indicative that some perceptual

learning occurred, as one would expect the effect of distribution to grow over the course
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Figure 3.1: Experiment 2 distribution effect by experiment quarter.

of the experiment (as can be observed across panels of Figure 3.1).

Since the main analysis revealed interactions between distribution, day, and half,

our next step was to run simple effects analyses to examine these in more detail. We par-

ticularly wanted to chart when (across days and halves) an effect of distribution could

be observed in order to determine how rapidly participants learned the distributions.

To run the simple effects analysis on day and half we split the data by day and

applied the previous model (without day as factor) to each subset of the data. These two

models are reported in Table 3.5. On the first day there was a main effect of distribution
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Table 3.4: Experiment 2 perceptual learning model.

Coef β SE(β) z p

Intercept −0.33 0.57 −0.6 >0.6

Distribution −1.21 0.10 −12.3 <.0001

Day −0.16 0.10 −1.6 >0.1

Half −0.12 0.10 −1.2 >0.2

VOT Step 0.29 0.01 45.0 <.0001

Distribution x Day −0.55 0.19 −2.8 <.01

Distribution x Half −0.64 0.19 −3.3 <.001

Day x Half 0.24 0.19 1.2 >0.2

Distribution x Step 0.03 0.01 2.3 <.05

Day x Step 0.00 0.01 0.1 >0.9

Half x Step −0.02 0.01 −1.7 >0.1

Distribution x Day x Half 0.46 0.39 1.2 >0.2

Distribution x Day x Step −0.03 0.02 −1.2 >0.2

Distribution x Half x Step −0.04 0.02 −1.8 >0.1

Day x Half x Step −0.05 0.02 −2.2 <.05

Distribution x Day x Half x Step 0.00 0.04 0.0 >0.9

Note: The maximum correlation among the fixed factors was r=.16, between distribution
and step.
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(β=-1.00, p<.0001), but there was also an interaction between distribution and half (β=-

.92, p<.002). This suggests that the boundary shift may be changing from the first to the

second half of this (day 1) experiment session as participants were exposed to the shifted

VOT distributions. A follow-up analysis (Table 3.6) showed that the effect of distribution

was significant and in the same direction for both halves (Half 1: β=-.52, p<.01; Half 2:

β=.070, p<.003), suggesting that the distributions were rapidly learned during the first

half, but that learning continued during the second half as well.

In contrast, on the second day there was an effect of distribution, (β=-1.42, p<.0001)

but no interaction between distribution and half (β=-.33, p>.2) While the boundary shift

(distribution effect) was present on the second day, the lack of interaction between dis-

tribution and half suggests that there was no further learning taking place from the first

to the second half of this day. Critically, these analyses revealed that there were bound-

ary shifts on both days (the distribution effects), and that the boundary shift was likely

due to learning (since it differed by day and by half on the first day).

These results indicate that responses were influenced by distribution even in the

first quarter of the experiment, when listeners had not had much exposure to the dis-

tributions. While other experiments on perceptual learning have found that boundary

shifts occur relatively quickly, this experiment suggests that this is also the case in our

unsupervised perceptual learning paradigm.

3.1.2.3 Place Direction Condition

Since we counterbalanced the direction that each place of articulation was shifted

across participants, this analysis asks whether this interacted with the distribution ef-

fect; that is, whether distributional learning worked equally well in both directions for

both places. This analysis is similar to the prior learning analysis, but as there were

similar learning effects across day and half, we simplified by collapsing across day and

half. Shift-condition (which place went to the left, a between-participants variable) was
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Table 3.5: Experiment 2 simple effects for days one and two.

Coef β SE(β) z p

Day 1

Intercept −0.28 0.66 −0.4 >0.7

Distribution −1.00 0.14 −7.0 <.0001

Half −0.22 0.14 −1.6 >0.1

VOT Step 0.31 0.01 31.0 <.0001

Distribution x Half −0.92 0.28 −3.2 <.01

Distribution x Step 0.04 0.02 2.6 <.01

Half x Step 0.00 0.02 0.3 >0.8

Distribution x Half x Step −0.04 0.03 −1.2 >0.2

Day 2

Intercept −0.39 0.49 −0.8 >0.4

Distribution −1.42 0.14 −10.4 <.0001

Half 0.00 0.13 0.0 >0.9

VOT Step 0.28 0.01 32.5 <.0001

Distribution x Half −0.33 0.27 −1.2 >0.2

Distribution x Step 0.01 0.02 0.8 >0.4

Half x Step −0.04 0.01 −2.8 <.01

Distribution x Half x Step −0.03 0.03 −1.1 >0.3

Note: The maximum correlations were r=.21 for day 1 and r=.13 for day 2, and were
between distribution and step on both days.
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Table 3.6: Experiment 2 simple effects for each half of day one.

Coef β SE(β) z p

First Half

Intercept −0.18 0.70 −0.3 >0.8

Distribution −0.52 0.20 −2.6 <.01

VOT Step 0.31 0.01 22.3 <.0001

Distribution x Step 0.07 0.02 3.0 <.01

Second Half

Intercept −0.40 0.65 −0.6 >0.5

Distribution −1.48 0.21 −6.9 <.0001

VOT Step 0.31 0.01 21.4 <.0001

Distribution x Step 0.02 0.02 0.8 >0.5

Note: The correlation between the fixed factors was r=.32 for the first half and r=.13 for
the second half.

dummy-coded as 0 (bilabial left) or 1 (coronal left) and centered. The models with ran-

dom slopes failed to converge and the model including continuum as a random factor

was better than the version without this factor, (χ2(2)=397.11, p<.0001), this is the model

we report (see Table 3.7).

The shift-condition model showed a main effect of distribution (β=-1.61, p<.0001),

which we saw in the previous analyses, and also an effect of shift-condition (β=.72,

p<.04). This indicates that responses differed based on which onset was shifted to the

left (a between-participants comparison). There was also a marginal interaction be-

tween distribution and shift-condition (β=-3.27, p<.07), which suggests that there might

be differences in the degree of boundary shifting for the two different groups (coronals

left and bilabials left). Figure 3.2 shows the proportion of voiceless (/p/ or /t/) responses

by distribution in the two different shift-conditions. The boundary difference is in the

predicted direction (consistent with the VOT distributions) for the group of participants
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Table 3.7: Experiment 2 shift-condition model.

Coef β SE(β) z p

Intercept −0.22 0.47 −0.5 >0.6

Distribution −1.61 0.14 −11.4 <.0001

Shift-condition 0.72 0.34 2.1 <.05

VOT Step 0.29 0.01 43.2 <.0001

Distribution x Condition −3.27 1.74 −1.9 >0.1

Distribution x Step 0.01 0.01 1.2 >0.2

Shift-condition x Step 0.04 0.01 3.4 <.001

Distribution x Condition x Step −0.13 0.03 −5.1 <.0001

Note: The maximum correlation among the fixed factors was r=-.033, between distribu-
tion and shift-condition.

who heard the bilabial continua shifted to the left, but the effect appears to be either

null or reversed in the group that heard the coronal shifted to the left. Because of the

marginal distribution by shift-condition interaction we ran simple effects analyses to

determine whether the distribution manipulation was successful for both conditions.

The full results of the models for each shift-condition group are shown in Table

3.8. For the group that heard bilabials on the left (and coronals on the right), there was

the predicted effect of distribution (β=-3.05, p<.0002), with the left-distribution con-

tinua (/b/-initial) showing a left-shifted boundary relative to the right-shifted continua

(/d/-initial). For the group that heard coronals on the left (and bilabials on the right) we

found no effect of distribution (β=.19 , p>.8), so we have no evidence that these partic-

ipants shifted their categorization boundaries according to the VOT distributions they

were exposed to.
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Figure 3.2: Experiment 2 distribution effect by shift-condition (which place was shifted
to the left).

Table 3.8: Experiment 2 simple effects for shift-conditions.

Coef β SE(β) z p

Bilabials Left

Intercept 0.09 0.46 0.2 >0.8

Distribution −3.05 0.80 −3.8 <.001

VOT Step 0.31 0.01 30.9 <.0001

Distribution x Step −0.04 0.02 −2.1 <.05

Coronals Left

Intercept −0.62 0.51 −1.2 >0.2

Distribution 0.19 0.90 0.2 >0.8

VOT Step 0.27 0.01 30.4 <.0001

Distribution x Step 0.08 0.02 4.8 <.0001

Note: The maximum correlation between the fixed factors was r=-.045 for the bilabial
left model and r=.071 for the coronal left model.
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3.1.3 Discussion

Experiment 2 aimed to test whether place-specific perceptual learning is pos-

sible. We did this by manipulating the VOT distributions of continua that shared the

same feature contrast (voicing) but differed in place of articulation. Overall, participants

showed categorization patterns consistent with the distributions they heard for each

place, but this seemed to be driven by the group that heard the bilabial words shifted to

the left since there was no effect of distribution for the other half of the participants.

One possible explanation for this result is that the auditory stimuli contained

cues to voicing other than VOT, and these secondary cues (like F2) made it difficult to

shift the coronal continua to the left and bilabial continua to the right. Other studies

have found that natural-speech continua can have extra cues that interfere with the in-

tended manipulation (Toscano & McMurray, 2011). Coronals have higher F2 values than

labials and in typical, untrained performance have a voicing boundary to the right of

that for labials (Sawusch & Pisoni, 1974). This could make it difficult for listeners to

learn that coronals have a boundary shifted to the left of the labial boundary. This result

is consistent with our piloting results as well, which indicated that the deer/tear con-

tinuum had a boundary that was already shifted towards the voiceless end of the con-

tinuum. At this time we have not measured secondary cues (such as F1 and F2) in our

stimuli, but this is one way we might verify that this explanation of our results is correct.

When we plotted the effect of distribution for each of the three item-sets in the two con-

ditions, shown in Figure 3.3, we saw that the continua in one of the item-sets showed a

boundary pattern consistent with the VOT distributions in both of the conditions, but

the other two did not.

While the evidence in favor of phoneme or place-specific learning for bound-

aries is somewhat mitigated by the differences between the two conditions, the results

of this experiment still suggest that participants can learn multiple boundaries for a sin-
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Figure 3.3: Experiment 2 distribution effect by shift-condition and item-set.
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gle feature contrast, rather than a single boundary that generalizes to all contrasts rely-

ing on that feature. If participants can learn multiple boundaries, then it is possible that

boundaries are even more specific than we have shown here, and could even apply to

contrasts between individual lexical items. Another issue is the degree to which listen-

ers generalize the boundaries that they learn. Previous studies have found evidence that

voicing boundaries generalize across place, but perhaps boundaries are in fact lexically

specific, and generalize more to words that share a place onset and less to words with

different onsets. This possibility will be investigated in Experiment 3.

3.2 Experiment 3

Experiment 2 suggests that people can learn voicing boundaries specific to par-

ticular places of articulation, but some previous research has suggested that perceptu-

ally learned boundary shifts generalize to new phonemic contexts (Kraljic & Samuel,

2006; Theodore & Miller, 2010; Clarke & Luce, 2005; McQueen & Mitterer, 2005). This

raises the possibility that generalization is determined by the degree of feature overlap

between lexical items. Thus, Experiment 3 addresses Aim 2: to test boundary generaliza-

tion to different phonemic contexts that rely on the same feature contrast. Experiment 2

indicates that despite the evidence for generalization, perceptually learned boundaries

may be more context-specific than previous research has shown. If this is the case, we

would expect to see significant boundary generalization to untrained words in the same

phonemic context as the trained words, and little generalization (though possibly still

some) to words in a different phonemic context.

This kind of learning would have implications similar to those of the previous

experiment. Models like TRACE and MERGE have abstract sub-lexical representations

at the phoneme level that would allow them to account for phoneme-specific learning.

Additionally, while these models do not have feature-level abstractions, they could be

adapted to have hierarchical abstraction (features, phonemes, and words), which would
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be consistent with their current architecture. Feature-like or sub-phonemic abstraction

would be necessary to account for generalization across phonemes. Phoneme-specific

learning, however, would indicate that abstraction at the feature level is not necessary

for perceptual learning, and would also be compatible with models that do not rely on

other sub-lexical abstraction (such as Exemplar models, normalization, and parsing the-

ories).

3.2.1 Method

3.2.1.1 Design

Experiment 3 had a design similar to that of Experiments 1 and 2, but with some

modifications to address the issue of generalization. Although we describe training and

testing trials, we used the same type of implicit training as before, and participants re-

ceived no instructions distinguishing the generalization testing trials from the training

trials. As in Experiment 2, listeners heard VOT distributions that varied by place of ar-

ticulation, but they were exposed to the distribution of only one place per day. Day 1

training-place (bilabial or coronal) and shift-condition (left or right) were counterbal-

anced across participants, and the untrained-place and distribution were trained on the

second day.

The distributions used for training exposure in Experiment 3 are shown in Table

3.9. These distributions held across the continua for a given place of articulation, not

within each continuum. After exposure to the training place and distribution for the day,

listeners completed generalization test trials for some continua with a different place

of articulation (untrained-place trials) and others with the trained-place of articulation

(trained-place trials), but in different lexical items. Generalization testing was done with

a flat distribution (an equal number of repetitions for each tested VOT step). Testing

items were the same on both days and are listed in Table 3.10 along with both sets of

training items.
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Table 3.9: Experiment 3 VOT distributions.

VOT Step -30 -20 -10 0 10 20 30 40 50 60 70 80

Left-Shifted Distribution 3 25 52 25 4 4 25 52 25 3 3 3

Right-Shifted Distribution 3 3 3 25 52 25 4 4 25 52 25 3

Table 3.10: Experiment 3 stimulus items.

Set Type Voiced Voiceless /l/ /r/

Bilabial Training

beach peach lace race

bin pin lake rake

bug pug lei ray

bear pear lock rock

Coronal Training

dot tot link rink

dune tune lip rip

dime time lute root

dent tent loom room

Testing

bath path lane rain

beer pier list wrist

dart tart lamp ramp

deer tear leaf reef

Note: Images for beach/peach, beer/pier, dart/tart, and dot/tot were also used in previous
experiments.
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Participants completed 224 experimental training trials per day, divided evenly

between the four training continua for a given place, so they heard 56 experimental

training trials per continuum each day. Participants also heard an equal number of filler

trials which were divided evenly between item-sets and between /l/ and /r/ onset fillers.

Participants completed a total of 448 training trials on each day of the two-day experi-

ment.

Generalization testing was limited to a subset of VOT steps (-10 to 60) to increase

the number of repetitions possible at each step while limiting the total number of gen-

eralization trials. All the eight VOT steps used for testing were repeated three times (a

flat distribution) for each of the generalization item-sets. Two of the testing item-sets

were coronal and the other two were bilabial, so there were six repetitions at each VOT

step for each place. There were 96 experimental testing trials in all and an equal number

of filler testing trials, evenly divided between the /l/ and /r/ filler items. Participants

completed a total of 192 generalization testing trials per day.

3.2.1.2 Participants

Participants were 20 individuals from the University of Iowa community who

participated in the study in exchange for course credit or pay. All were monolingual na-

tive English speakers who reported normal hearing and normal or corrected-to-normal

vision. Informed consent was obtained in accordance with University and APA stan-

dards. All participants completed both sessions of the study, but due to an experimenter

error one participant ran the experiment with the same stimuli on both days instead of

hearing new stimuli on the second day. This participant was excluded from analysis.
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3.2.1.3 Stimuli

3.2.1.3.1 Auditory Stimuli

Auditory stimuli consisted of six twelve-step VOT continua ranging from -30 to

80ms. There were three /b/ to /p/ continua and three /d/ to /t/ continua. These were

created in the same manner as the continua in Experiment 1, by cross-splicing record-

ings of natural speech. The beach/peach and bin/pin were re-used from Experiment 1

and the beer/pier, dart/tart, and dot/tot continua were re-used from Experiment 2. The

recording and cross-splicing methods used to create the stimuli are described in Chap-

ter 2. The male speaker who was recorded for Experiments 1 and 2 was also recorded for

the new continua. The vowel shortening procedure in which we removed pitch pulses

from the center of the base stimulus vowel (previously described for the deer/tear contin-

uum) was used for the dent/tent continuum because the boundary during piloting was

shifted towards the voiceless end of the continuum. VOT measurements of the com-

pleted bilabial and coronal stimuli are shown in Tables 3.11 and 3.12, respectively.

Each continuum was piloted by four to six lab members using the same proce-

dure that we used to pilot the stimuli for Experiments 1 and 2. On each pilot trial partici-

pants used a key-press to identify the given stimulus as beginning with /b/ or /p/ for the

bilabial continua, or /d/ or /t/ for the coronal continua. The two types of continua were

piloted in separate blocks. Each of the stimulus items was repeated three or four times

(with the same number of repetitions for each step of a given continuum). For the bil-

abial continua, listeners correctly identified the stimulus as a /b/ on 100% of the voiced

endpoint trials and as /p/ on 98.9% of the voiceless endpoint trials. For the coronal con-

tinua they identified the stimulus as a /d/ or /t/ on 98.9% of the trials at each endpoint.

The point at which the identification functions crossed 50% was between steps 6 and 7

for all of the continua except deer/tear and dent/tent, which crossed the 50% point be-

tween steps 7 and 8 despite the vowel shortening procedure used to shift the boundary
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Table 3.11: Experiment 3 VOT measurements for bilabial onset continua.

beach/peach bin/pin bug/pug bear/pear bath/path beer/pier

-32 -29 -32 -31 -33 -30

-23 -19 -24 -22 -24 -22

-12 -10 -8 -13 -15 -15

0 0 0 0 0 0

10 9 9 7 9 12

21 20 19 18 21 21

31 30 29 29 31 30

41 40 39 40 40 40

51 50 50 50 51 51

61 60 60 60 61 61

71 71 70 70 71 71

80 80 80 80 81 81
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Table 3.12: Experiment 3 VOT measurements for coronal onset continua.

dot/tot dune/tune dime/time dent/tent dart/tart deer/tear

-31 -30 -33 -32 -30 -30

-24 -23 -23 -24 -17 -20

-15 -14 -9 -15 -9 -12

0 0 0 0 0 0

10 10 10 10 10 10

21 20 20 20 20 20

31 30 30 30 30 30

40 39 40 40 40 40

51 50 50 50 50 50

61 60 60 60 60 60

70 69 70 70 70 70

80 80 80 80 80 80
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towards the voiced endpoint.

3.2.1.3.2 Visual Stimuli

Pictures representing each item listed in Table 3.10 were constructed using the

same picture norming technique described for Experiment 1. Images that were included

in previous studies were re-used here. The final images were approved by the author and

thesis supervisor.

3.2.1.3.3 Procedure

The procedure was identical to that used in Experiments 1 and 2. An Eye-Link-II

head-mounted eye-tracker was calibrated to each participant before the beginning of

the experiment. Following calibration, participants read the instructions for the experi-

ment and practiced the drift-correct procedure.

On each trial, participants were presented with the four images from an item-set

(e.g. bear, pear, lock, and rock). They saw one image in each corner and a red dot in the

middle of the screen. After 500ms the dot turned blue. When participants clicked on the

blue dot they heard the auditory stimulus for the trial over headphones. They clicked on

the corresponding image and moved on to the next trial. Training and testing trials were

identical except that listeners heard different continua during the testing portion of the

experiment.

Participants’ eye-movements were recorded during the experiment, but since the

mouse-click results showed boundary shift effects we did not analyze the eye-movement

data.

3.2.2 Results

The structure of the results section mirrors that used for the previous experi-

ments, where we used mixed-effects modeling to address a different question in each
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section. First we assess overall task performance. Then we examine perceptual learning

of the training distributions. A boundary shift is predicted such that categorization data

for continua trained on the left distribution (either bilabial or coronal onset) will have

a boundary shifted towards the left, while data for the other continua (those trained on

the right distribution) will show a boundary shifted towards the right. In this section

we address both training day (first or second) and onset place (bilabial or coronal). Fi-

nally we examine generalization trials. For each day of training, we were interested in

knowing whether the generalization testing trials would show the same boundary as the

training trials, and whether the two types of generalization trials (trained and untrained-

place) would share the same boundary. Because generalization on day 2 was not directly

comparable to generalization on day 1 (since by the end of the second day listeners had

been exposed to both distributions), we examined each day separately. For each day we

examined both types of generalization trials: those that shared on onset with the train-

ing trials for that day (called the trained-place trials), and those with a different onset

(called the untrained-place trials). For example, test trials from the beer/pier contin-

uum would be trained-place trials for a listener trained on bilabial continua, and trials

from the deer/tear continuum would be untrained-place trials since this continuum has

a coronal onset. We asked whether each type of test trial differed from the training trials,

and whether the two test types differed from each other.

3.2.2.1 Task Performance

Mouse-click responses to filler images during experimental trials (e.g. clicks on

lock or rock when the stimulus was bear or pear) were examined to assess task perfor-

mance. Participants selected filler images for only .12% of the experimental trials, which

indicates that they were paying attention to the task and not selecting images randomly.

Performance at the continuum endpoints was also very good. On the voiced side (VOT

steps -30 to -10ms), participants selected the /b/ image for 99.8% of the bilabial trials
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and the /d/ image for 99.9% of the coronal trials. On the voiceless side (VOT steps 60

to 80ms) participants selected the /p/ image for 100% of the bilabial trials and the /t/

image for 99.1% of the coronal trials. This provides further evidence that participants

were attending to both the auditory and visual stimuli.

3.2.2.2 Perceptual Learning for Training Distributions

Before assessing generalization to the different types of testing trials, we needed

to establish that training was successful. To do this we first examined the effect of dis-

tribution for the training trials on both days of the experiment. Response (voiced or

voiceless, dummy-coded as 0 or 1 respectively) was the dependent variable. VOT step,

distribution (left or right), and day (first or second) were fixed factors held constant in

the different versions of models that we compared. Distribution and day were coded as

dummy variables with values of 0 (left distribution and first day) or 1 and then centered.

Because participants were trained on the two distributions on different days, distribu-

tion was a within-participants variable across the two days but a between-participants

variable when each day is examined in isolation. VOT step was coded as a continuous

variable ranging from -30 to 80 (in 10ms increments). This was centered as well. Par-

ticipant and continuum were treated as random-effects and we compared models with

the same random-effects structures used in previous analyses. The random slopes mod-

els failed to converge and including continuum as a random effect improved the model

(χ2(2)=110.77, p<.0001), so this is what we report.

The full model of Experiment 3 distribution learning over time is reported in Ta-

ble 3.13. The main effect of distribution (β=-1.50, p<.0001) was of primary interest since

it indicates that there was a boundary difference between the left- and right-shifted con-

tinua, such that the boundary for continua heard in the left distribution is shifted to the

left relative to those heard in the right distribution. Figure 3.4 shows this effect. Because

listeners were trained on a different distribution on each day, the listeners in the left dis-
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Table 3.13: Experiment 3 perceptual learning model.

Coef β SE(β) z p

Intercept 0.25 0.35 0.7 >0.5

Distribution −1.50 0.16 −9.1 <.0001

Day 0.37 0.16 2.3 <.05

VOT Step 0.26 0.01 28.0 <.0001

Distribution x Day −0.06 0.57 −0.1 >0.9

Distribution x Step −0.01 0.02 −0.3 >0.8

Day x Step 0.02 0.02 1.3 >0.2

Distribution x Day x Step −0.02 0.03 −0.7 >0.5

Note: The maximum correlation among the fixed factors was r=.19, between distribution
and step.

tribution group on day 1 are in the right distribution group on day 2. The perceptual

learning model also showed there was an effect of day (β=.37, p<.03), which suggests

that responses were influenced by experiment session. However, we saw no distribution

by day interaction (β=-.06, p>.9), which would have suggested that the boundary effect

differed between sessions.

Next we examined whether onset-condition (bilabial or coronal on the first day,

and the opposite on the second day) affected performance on the training trials. Like

distribution in this experiment, onset-condition was a within-participant variable across

days but between-participants on each day. Since the previous analysis found no dif-

ference in boundary learning between the two days, we collapsed across day for this

analysis. The other factors in the model were the same with the addition of day 1 train-

ing onset condition as a fixed factor. This was dummy-coded (0 for bilabial, 1 for coro-

nal) and centered. The random slopes models failed to converge and the model includ-
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Figure 3.4: Experiment 3 training distribution effect by day. Listeners were trained on
different distributions each day, so the left group on day 1 is the right group on day 2.

ing the random effect of continuum was better than the next best model (χ2(2)=112.53,

p<.0001), so this is the model we report.

The full onset-condition training model is reported in Table 3.14. The model

showed a main effect of distribution (β=-1.55, p<.0001) as seen in the perceptual learn-

ing model. There was no main effect of onset-condition ((β=.01, p>.9), but there was a

significant interaction between distribution and onset (β=1.05, p<.003). This indicates

that the boundary shift was larger for the group of participants who heard the bilabial

continua on the first day, which can be seen in Figure 3.5. While both onset-condition

training groups appear to show distribution effects, the effect is smaller for listeners who

were initially trained on the coronals. We next ran simple effects analyses to verify that

the distribution effect was significant for both groups of participants. These analyses,

reported in Table 3.15, showed effects of distribution for both onset-conditions (Bil-

abial: β=-2.06, p<.0001; Coronal: (β=-1.09, p<.0001). Critically, this indicated a signifi-

cant boundary difference for both groups of participants, meaning that the distribution
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Table 3.14: Experiment 3 onset-condition model.

Coef β SE(β) z p

Intercept 0.26 0.36 0.7 >0.5

Distribution −1.55 0.17 −8.9 <.0001

Day 1 Onset 0.01 0.29 0.0 >0.9

VOT Step 0.27 0.01 24.5 <.0001

Distribution x Onset 1.05 0.34 3.1 <.01

Distribution x Step −0.03 0.02 −1.6 >0.1

Onset x Step −0.06 0.02 −3.0 <.01

Distribution x Onset x Step 0.15 0.04 3.4 <.001

Note: The maximum correlation among the fixed factors was r=.17, between distribution
and step.
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Figure 3.5: Experiment 3 distribution effect by day 1 training onset-condition.
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Table 3.15: Experiment 3 simple effects for onset groups.

Coef β SE(β) z p

Bilabial Training on Day 1

Intercept 0.19 0.45 0.4 >0.7

Distribution −2.06 0.27 −7.6 <.0001

VOT Step 0.32 0.02 15.8 <.0001

Distribution x Step −0.12 0.04 −3.1 <.01

Coronal Training on Day 1

Intercept 0.19 0.45 0.4 <.0001

Distribution −2.06 0.27 −7.6 <.0001

VOT Step 0.32 0.02 15.8 <.0001

Distribution x Step −0.12 0.04 −3.1 <.0001

Note: The correlation between fixed factors was r=.09 for Bilabial training and r=.3 for
Coronal training.

shifts were learnable for participants trained on either bilabial or coronal continua on

the first day.

While the order of training on the two place contrasts did not affect learning, Ex-

periment 2 showed that the direction of each place did affect learning–only participants

who heard the bilabial continua in the left distribution were able to learn the boundary

shifts. We assess the affect of place direction for Experiment 3 in another model, coding

place direction as 0 for bilabial left and 1 for coronal left. The other factors in the model

were unchanged. The random slopes models failed to converge and the model includ-

ing the random effect of continuum was better than the next best model (χ2(2)=28.43,

p<.0001), so this is the model we report.

The place-direction training model is reported in Table 3.16. The model showed

a main effect of distribution (β=-1.18, p<.0001) as seen in the perceptual learning model.

There was also a main effect of place direction ((β=1.16, p<.0001) and an interaction be-
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Table 3.16: Experiment 3 place-direction model.

Coef β SE(β) z p

Intercept 0.49 0.23 2.1 <.05

Distribution −1.18 0.19 −6.1 <.0001

Place Direction 1.16 0.26 4.4 <.0001

VOT Step 0.29 0.01 24.1 <.0001

Distribution x Direction 3.78 0.85 4.5 <.0001

Distribution x Step 0.04 0.02 1.5 >0.1

Direction x Step 0.04 0.02 1.9 >0.1

Distribution x Direction x Step 0.26 0.05 5.5 <.0001

Note: The maximum correlation among the fixed factors was r=.37, between distribution
and step.
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Figure 3.6: Experiment 3 distribution effect by place direction condition.
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Table 3.17: Experiment 3 simple effects for place direction.

Coef β SE(β) z p

Bilabial Left

Intercept −0.10 0.16 −0.6 >0.5

Distribution −2.87 0.31 −9.2 <.0001

VOT Step 0.25 0.01 19.6 <.0001

Distribution:Step −0.07 0.03 −2.9 <.01

Coronal Left

Intercept 1.15 0.40 2.8 <.01

Distribution 0.77 0.70 1.1 >0.3

VOT Step 0.32 0.02 16.1 <.0001

Distribution:Step 0.19 0.04 4.9 <.0001

Note: The correlation between fixed effects was r=-.06 for Bilabial left and r=.3 for Coro-
nal left.

tween distribution and direction (β=3.78, p<.0001). These indicate that not only did

responding differ between the direction conditions overall, but that the effect of distri-

bution was also different for the two groups. This can be seen in Figure 3.6, where as in

Experiment 2, the only visible boundary difference is for the listeners who heard the bi-

labial continua shifted left (and the coronal continua shifted right). Follow-up analyses

(Table 3.17) confirmed that the distribution effect was only significant for the bilabial-

left group (Bilabial left: β=-2.87, p<.0001; Coronal left: β=.77, p>.2). This suggests that

blocking exposure to the two distributions does not make it easier for listeners to learn

boundary shifts that conflict with secondary cues to voicing, which are inherent to place

of articulation.
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3.2.2.3 Generalization Trials on Day 1

Our next analysis examined generalization trials. We first assessed the trained-

place trials from the first day by comparing them with the training trials for that day. Our

goal here was to determine whether the boundary learned during the training phase of

the first session would also be used with the generalization continua that had the same

onset place as the continua listeners heard during training. This is an odd analysis be-

cause for each participant we are comparing a large number of training trials (224) with

a bi-modal distribution to a small number of generalization trials (48) with a uniform

distribution. Mixed-effects models are an especially appropriate approach in this case

because they can handle the imbalance present in our design, accounting for the num-

ber of data points present.

As in the previous analyses, response was the dependent variable, and VOT step

and training distribution were fixed factors. The new fixed factor introduced here was

trial-type (training or testing), dummy coded at 0 or 1 and centered. These factors were

held constant in all versions of the models we compared. A model with random slopes

for participants failed to converge, and including random intercepts for continua as well

as participants improved the fit of the model (χ2(2)=53.82, p<.0001), so this was the se-

lected model.

The model comparing day 1 training trials and trained-place generalization trials

is shown in Table 3.18. There was a main effect of training distribution (β=-1.62, p<.0001)

but not trial-type (β=.86, p>.2), shown in Figure 3.7, where the training and testing tri-

als appear to have the same boundary. Our failure to find evidence of any difference

between training and testing trials suggests that listeners generalize training distribu-

tions to the trained-place generalization continua. An interaction between trial-type

and step (β=.093, p<.02) and a marginal interaction between distribution, trial-type, and

step (β=-.13, p<.08) suggest there were slope differences present, but we will remain fo-
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Figure 3.7: Experiment 3 day 1 training and trained-place generalization trials.
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Table 3.18: Experiment 3 day 1 trained-place trials model.

Coef β SE(β) z p

Intercept 0.30 0.34 0.9 >0.4

Training Distribution −1.62 0.39 −4.2 <.0001

Trial-type 0.86 0.63 1.4 >0.2

VOT Step 0.28 0.01 22.3 <.0001

Distribution x Trial-type 0.18 0.51 0.4 >0.7

Distribution x Step −0.03 0.02 −1.4 >0.2

Trial-type x Step 0.09 0.04 2.5 <.05

Distribution x Trial-type x Step −0.13 0.07 −1.8 >0.1

Note: The maximum correlation among the fixed factors was r=-.037, between training
distribution and trial-type.

cused on boundary differences.

While we observed no boundary differences between training trials and trained-

place testing trials, we were equally interested in any differences between training and

untrained-place testing trials (the generalization continua with the untrained-place of

articulation). That is, we wanted to know whether boundary shift training would gener-

alize to continua with a new place of articulation, just as it generalized to continua with

the trained-place onset. The model we used to look at untrained-place generalization

trials was identical to the trained-place models except that we compared training trials

with untrained-place trials instead of trained-place trials.

The model comparing day 1 training and untrained-place generalization trials

showed a main effect of training distribution (β=-1.39, p<.0009) but not trial-type (β=.16,

p>.8), just like the trained-place model, again indicating a lack of overall difference be-

tween training and testing trials. However, there was a significant interaction between
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Figure 3.8: Experiment 3 day 1 training and untrained-place generalization trials.
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Table 3.19: Experiment 3 day 1 untrained-place trials model.

Coef β SE(β) z p

Intercept 0.15 0.36 0.4 >0.7

Training Distribution −1.39 0.42 −3.3 <.001

Trial-type 0.16 0.64 0.3 >0.8

VOT Step 0.26 0.01 23.5 <.0001

Distribution x Trial-type 1.52 0.39 3.9 <.001

Distribution x Step 0.00 0.02 0.0 >0.9

Trial-type x Step 0.00 0.02 0.0 >0.9

Distribution x Trial-type x Step 0.03 0.04 0.8 >0.4

Note: The maximum correlation among the fixed factors was r=.057, between training
distribution step.

distribution and trial-type (β=.1.51, p<.0002), which suggests that the difference be-

tween training and testing trials is not the same for the two distribution groups (the

participants trained on the left distribution and those trained on the right). Figure 3.8

shows the response data from each distribution group for the two different trial-types.

Although there are no obvious boundary differences, we ran simple effects analyses to

follow-up on the distribution by trial-type interaction. These models, reported in Ta-

ble 3.20, showed no effect of trial-type (Left: (β=-.71, p>.3; Right: (β=.87, p>.1), so the

difference between training and testing trials was not significant for either distribution

group.

3.2.2.4 Generalization Trials on Day 2

We assessed generalization trials for the second day in the same way that we ap-

proached generalization for the first day. Testing continua were the same on both days

but because listeners were trained on new continua their second day (those with the
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Table 3.20: Experiment 3 simple effects for day 1 untrained-place trials.

Coef β SE(β) z p

Left-Shift on Day 1

Intercept 0.95 0.44 2.1 <.05

Trial-type −0.71 0.71 −1.0 >0.3

VOT Step 0.27 0.02 15.8 <.0001

Trial-type x Step −0.03 0.03 −0.9 >0.4

Right-Shift on Day 1

Intercept −0.49 0.40 −1.2 >0.2

Trial Type 0.87 0.64 1.3 >0.2

VOT Step 0.26 0.02 17.2 <.0001

Trial Type x Step 0.02 0.04 0.6 >0.5

Note: The correlation between the fixed factors was r=.035 for the left-shifted model and
r=-.29 for the right-shifted model.

place they were not initially trained on), the untrained-place continua from the first day

became the trained-place continua on the second day.

In the first analysis we compared day 2 training trials to day 2 trained-place tri-

als with the same model structure used to examine generalization on day 1. Because

distribution training condition was coded according to day 1, the distribution effect is

expected to have the opposite direction from that observed for the day 1 models. The

model with random slopes for participants and random intercepts for words failed to

converge, and including both words and participants as random effects improved the fit

of the model (χ2(2)=48.21, p<.0001), so this model is the one we report.

The day 2 trained-place trials comparison model is shown in Table 3.21. The

model showed a main effect of training distribution (β=1.28, p<.007), indicating bound-

ary differences between the two training distribution groups. As on the first day there

was no effect of trial-type (β=.42, p>.5), suggesting listeners used the same boundary for
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Figure 3.9: Experiment 3 day 2 training and trained-place generalization trials.
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Table 3.21: Experiment 3 day 2 trained-place trials model.

Coef β SE(β) z p

Intercept 0.49 0.37 1.3 >0.2

Day 1 Distribution 1.29 0.47 2.7 <.01

Trial-type 0.42 0.62 0.7 >0.5

VOT Step 0.29 0.01 21.5 <.0001

Distribution x Trial-type −2.09 0.45 −4.6 <.0001

Distribution x Step 0.01 0.03 0.5 >0.6

Trial-type x Step 0.03 0.03 1.0 >0.3

Distribution x Trial-type x Step −0.04 0.06 −0.8 >0.4

Note: The maximum correlation among the fixed factors was r=-.07, between training
distribution and step.

the training trials and the trained-place generalization trials. There was, however, a sig-

nificant interaction between distribution and trial-type (β=-2.09, p<.0001) which indi-

cates that the differences between training and testing trials is larger for the group of lis-

teners trained on the right distribution (on the second day) than for those trained on the

left. This can be seen in Figure 3.9. Follow-up analyses (reported in Table 3.22) showed

no significant effect of trial-type for either group (Left: β=-.57, p>.3; Right: β=1.51, p>.1),

indicating that there was no difference between training and trained-place testing trials

for either distribution group.

We compared day 2 training and untrained-place generalization trials in a similar

model. The version with random slopes failed to converge, random intercepts for con-

tinua as well as participants improved the fit of the model (χ2(2)=46.04, p<.0001). The

results are reported in Table 3.23. There was an effect of distribution (β=1.03, p<.04) and

a significant interaction between distribution and trial-type (β=-3.18, p<.0001). A plot of
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Table 3.22: Experiment 3 simple effects for day 2 trained-place trials.

Coef β SE(β) z p

Left-Shift on Day 2

Intercept 1.09 0.38 2.9 <.01

Trial-type −0.57 0.52 −1.1 >0.3

VOT Step 0.29 0.02 15.6 <.0001

Trial-type x Step 0.02 0.04 0.4 >0.7

Right-Shift on Day 2

Intercept −0.23 0.55 −0.4 >0.7

Trial-type 1.51 1.04 1.5 >0.1

VOT Step 0.31 0.02 14.9 <.0001

Trial-type x Step 0.00 0.05 0.0 >0.9

Note: The correlation between the fixed factors was r=.079 for the left-shift model and
r=.013 for the right-shift model.

these data, Figure 3.10, shows that that the direction of the difference between training

and testing trials is reversed between the two training distribution groups. The testing

trials appear shifted in the direction of the day 1 training, which suggests that listeners

may have retained the day 1 distribution and are using the boundaries from day 1 for

day 2 generalization untrained-place continua (which have an onset that matched the

day 1 training continua). Follow-up analyses (reported in Table 3.24) showed that there

was an effect of trial-type for both the left- and right-shifted groups (initially trained

on the opposite distributions) (Left: β=-1.20, p<.04; Right: β=2.09, p<.03). Both distri-

bution groups showed a significant boundary difference between training and testing

trials, and the effects were in the opposite direction for the two groups. Moreover, the

direction of the effects suggests that the difference may be due to the training from the

first day: perhaps listeners have retained their boundaries from the training on day 1

and are using these for the day 2 untrained-place trials.
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Table 3.23: Experiment 3 day 2 untrained-place trials model.

Coef β SE(β) z p

Intercept 0.41 0.36 1.1 >0.3

Training Distribution 1.03 0.49 2.1 <.05

Trial-type 0.33 0.59 0.6 >0.6

VOT Step 0.29 0.01 21.6 <.0001

Distribution x Trial-type −3.18 0.46 −6.9 <.0001

Distribution x Step −0.01 0.03 −0.5 >0.6

Trial-type x Step 0.02 0.03 0.6 >0.6

Distribution x Trial-type x Step −0.04 0.06 −0.7 >0.5

Note: The maximum correlation among the fixed factors was r=-.07, between training
distribution and step

Table 3.24: Experiment 3 simple effects for day 2 untrained-place trials.

Coef β SE(β) z p

Left-Shift on Day 2

Intercept 0.88 0.34 2.6 <.01

Trial-type −1.20 0.57 −2.1 <.05

VOT Step 0.28 0.02 15.9 <.0001

Trial-type x Step 0.01 0.04 0.2 >0.9

Right-Shift on Day 2

Intercept −0.12 0.54 −0.2 >0.8

Trial-type 2.09 0.96 2.2 <.05

VOT Step 0.32 0.02 14.8 <.0001

Trial-type x Step 0.02 0.05 0.5 >0.6

Note: The correlation between the fixed factors was r=.034 for the left-shift model and
r=.054 for the right-shift model.
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Figure 3.10: Experiment 3 day 2 training and untrained-place generalization trials.
Untrained-place trials from day 2 share an onset with the training trials from day 1,
which were trained in the opposite distribution.
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Table 3.25: Experiment 3 day 1 training and day 2 untrained-place model.

Coef β SE(β) z p

Intercept 0.27 0.33 0.8 >0.4

Training Distribution −1.69 0.47 −3.6 <.001

Trial-type 0.73 0.53 1.4 >0.2

VOT Step 0.27 0.01 23.2 <.0001

Distribution x Trial-type 0.21 0.46 0.4 >0.7

Distribution x Step −0.01 0.02 −0.6 >0.6

Trial-type x Step 0.04 0.03 1.5 >0.1

Distribution x Trial-type x Step −0.05 0.06 −0.9 >0.3

Note: The maximum correlation among the fixed factors was r=.071 between trial-type
and step.

To test this hypothesis we compared the day 2 untrained-place trials with the

day 1 training trials. The modeling procedure and structure of the model was identical

to that used for the previous analyses. The model with random slopes for participants

and random intercepts for words failed to converge, and including both words and par-

ticipants as random effects improved the fit of the model (χ2(2)=34.59, p<.0001), so this

model is the one we report.

The model comparing day 1 training and day 2 untrained-place generalization

is shown in Table 3.25. There was an effect of training distribution (β=-1.69, p<.0004)

but no effect of trial-type (β=.73, p>.2) or trial-type by distribution interaction (β=.21,

p>.7). Thus, we have no evidence of a difference between the day 1 training data and

the day 2 untrained-place testing data. A plot of these data is shown in Figure 3.11.

Critically, the day 2 untrained-place continua had the same place as the day 1 training

continua. The lack of a difference between the boundaries for these two types of con-
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Figure 3.11: Experiment 3 day 1 training and day 2 untrained-place generalization trials.
Untrained-place trials from day 2 share an onset with the training trials from day 1.
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tinua, coupled with the difference seen between these test trials and the day 2 training

trials, suggests that participants have retained the boundaries they learned on the first

day and are using those boundaries (instead of the more recently trained boundaries)

for the test continua that have the initially trained onset.

3.2.3 Discussion

Experiment 3 aimed to test boundary generalization to different phonemic con-

texts that rely on the same feature contrast. We did this by manipulating the VOT dis-

tributions of continua with a single onset place, and testing generalization to new con-

tinua with the same onset place and a different onset place. On the first day, participants

generalized perceptually learned voicing boundaries to untrained continua with both

the same and different places of articulation. This is consistent with previous research

showing generalization across phonemic contexts relying on the same feature contrast

(Kraljic & Samuel, 2006; Theodore & Miller, 2010; Clarke & Luce, 2005; Maye, Weiss, &

Aslin, 2008; McQueen & Mitterer, 2005). However, on the second day, listeners were

trained on a new boundary for continua with a different onset place than the one they

were trained on the first day. Generalization testing trials for the second day showed

that listeners generalized this new boundary to the testing continua with the same place

onset, but not to those with a different place. Instead, listeners used the boundary from

the first day for these continua.

The results of this experiment suggest that participants can generalize bound-

aries across different phonemic contrasts relying on the same feature contrast, but they

can also learn and retain multiple boundaries for a feature contrast in different phone-

mic contexts. It appears that listeners generalize boundaries when they do not have a

reason to do otherwise (as on the first day), but are able to use more specific bound-

aries when they have learned them previously. Experiment 4 investigates the degree of

specificity that is possible with this type of learning, asking if listeners are able to learn
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different boundaries for individual word pairs that have the same onsets.

3.3 Experiment 4

Experiments 2 and 3 offer strong support for the possibility that people can learn

voicing boundaries specific to particular places of articulation. This raises the possibil-

ity that learning could also be conditionalized on other sources of information, possibly

even more specific. Thus, Experiment 4 addresses Aim 3: to test whether word-specific

perceptual learning is possible. Exemplar and parsing theories could both account for

word-specific learning since acoustic information is linked directly to lexical represen-

tations. Theories with abstract sub-lexical representations (such as the phonemes in

TRACE and Merge) would find it more difficult to explain categorization boundaries that

only apply to specific words. If listeners were able to learn different voicing boundaries

for words with the same onset CVs, it would support direct links from acoustic represen-

tations to the lexicon.

3.3.1 Method

3.3.1.1 Design

Participants in Experiment 4 heard words with the same consonant-vowel onsets

shifted in opposite directions (e.g. beach/peach was shifted to the left, and beak/peak was

shifted to the right). It is important to hold the onset of the words constant in order to

test lexically-specific boundary learning, because if the words had different onsets then

lexically-specific learning would look the same as sub-lexical learning. For example, if

listeners learned different boundaries for beach/peach and bin/pin, then listeners might

simply be learning boundaries conditionalized on the vowel context, or that were bi-

phone specific (/bi/ and /bI/) instead of lexically-specific. By keeping the CV onsets

the same, we eliminate these possibilities, increasing our confidence that any observed

boundary shifts are lexically-specific.
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For each participant, half of the continua were heard with VOTs from the left dis-

tribution (the left-shift words) and the other half from the right distribution (the right-

shift words). Table 3.26 shows the words used for the experiment, which included only

experimental words and no filler items. Fillers were eliminated from Experiment 4 so

that items from two experimental continua sharing the same CV onset could appear to-

gether on each trial. This was done so that participants would have an incentive to track

which distribution each continuum belonged with, in order to make faster decisions

about which word they heard on each trial. If pairs of experimental items were instead

paired with filler items, as in Experiment 1, there would be no advantage to tracking

the distribution of each word pair. A previous experiment with filler items instead of

item-sets with pairs of experimental items is reported in Appendix B (Experiment 4A).

The items listed in Table 3.26 are divided into three sets with two minimal pairs each.

For each participant, one word pair from each of these sets was randomly assigned to

the left-distribution. The other pair with the same CV onset was then assigned to the

right-distribution.

Table 3.27 shows the VOT distributions that were used for each continuum. In

this experiment the distributions held within continuum as well as across all the con-

tinua in each distribution. The overall distributions that participants heard on each day

had three times the number of repetitions shown in Table 3.27 because there were three

continua in each distribution. Both of the distributions extended the full width of the

VOT range used in the experiment (as in Experiment 2).

Listeners completed a total of 648 critical trials per day, 324 in each distribution

(108 per continuum). Each listener participated in two experiment sessions for a total

of 1296 trials per listener. The assignment of continua to distribution condition (for

each participant) was kept the same for the second session, so trial order was the only

difference between the two sessions.



107

Table 3.26: Experiment 4 stimulus items.

left distribution right distribution

Participant /b/ /p/ /b/ /p/

1

beach peach beak peak

bill pill bin pin

buck puck bug pug

2

beak peak beach peach

bill pill bin pin

bug pug buck puck

3

beach peach beak peak

bin pin bill pill

bug pug buck pick

Note: For each participant, one continuum from each of the three CV onsets pair was
randomly assigned to each of the two distributions, so this is a sample of possible distri-
bution assignments.

Table 3.27: Experiment 4 VOT distributions

VOT Step -30 -20 -10 0 10 20 30 40 50 60 70 80

Left-Shifted Distribution 2 12 24 12 2 2 12 24 12 2 2 2

Right-Shifted Distribution 2 2 2 12 24 12 2 2 12 24 12 2
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3.3.1.2 Participants

Participants were 22 individuals from the University of Iowa community who

participated in the study in exchange for course credit or pay. All participants were

monolingual native English speakers who reported normal hearing and normal or corrected-

to-normal vision. Informed consent was obtained in accordance with University and

APA standards. 20 participants completed both sessions of the study, and 2 participants

completed only one session. These 2 participants were excluded from analysis.

3.3.1.3 Stimuli

3.3.1.3.1 Auditory Stimuli

Auditory stimuli consisted of six twelve-step /b/ to /p/ VOT continua ranging

from -30 to 80ms. Four of the continua were originally constructed for Experiment 1 and

the remaining two continua (buck/puck and bug/pug) were new. The new continua were

created in the same manner as those in Experiment 1, by cross-splicing recordings of

natural speech. The recording and cross-splicing methods used to create the stimuli are

described in Chapter 2. The same male speaker who was recorded for Experiment 1 was

also recorded for the two new continua. The recordings were made in the same location

and we tried to match the recording levels as closely as possible. VOT measurements of

all the stimuli used in this experiment are shown in Table 3.28.

The new stimuli were piloted using the same categorization task that was used

to pilot the original continua. The buck/puck continuum was piloted by six lab mem-

bers and the bug/pug continuum was piloted by seven lab members. On each pilot trial

participants used a key-press to identify the given stimulus as beginning with /b/ or

/p/. Each of the 24 stimulus items was repeated three or four times (consistent for each

continuum and participant). At the /b/ endpoint, listeners correctly identified the stim-

ulus as a /b/ on 100% of the trials. At the /p/ endpoint they identified the stimulus as a

/p/ on 100% of the buck/puck trials and 95.8% of the bug/pug trials. The point at which
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Table 3.28: Experiment 4 VOT measurements.

beach/peach beak/peak bill/pill bin/pin buck/puck bug/pug

-32 -30 -33 -29 -31 -32

-23 -17 -25 -19 -22 -24

-12 -8 -8 -10 -11 -8

0 0 0 0 0 0

10 10 10 9 9 9

21 20 21 20 19 19

31 33 31 30 30 29

41 40 41 40 40 39

51 52 51 50 50 50

61 60 61 60 60 60

71 71 71 71 70 70

80 80 81 80 80 80

Note: Buck/puck and bug/pug were the new continua created for this experiment.

the identification functions crossed 50% was between steps 6 and 7 for both continua,

which was the same crossover point seen when piloting the four other continua.

3.3.1.3.2 Visual Stimuli

Pictures representing each item listed in Table 3.26 were constructed using the

same picture norming technique described for Experiment 1 in Chapter 2. Images that

were included in the previous study were re-used here. The final images were approved

by the author and thesis supervisor.
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3.3.1.4 Procedure

The procedure was identical to that used in Experiment 1, described in Chapter

2. An Eye-Link-II head-mounted eye-tracker was calibrated to each participant before

the beginning of the experiment. Following calibration, participants read the instruc-

tions for the experiment and practiced the drift-correct procedure.

On each trial, participants were presented with four images from two different

continua sharing the same CV-onset (e.g. beach, peach, beak, and peak). They saw one

image in each corner and a red dot in the middle of the screen. After 500ms the dot

turned blue. When participants clicked on the blue dot they heard the auditory stimulus

for the trial over headphones. They clicked on the corresponding image and moved on

to the next trial. The Eye-Link II recorded participants’ eye-movements throughout the

experiment, but because effects were observable in the mouse-click data we did not

analyze the eye-movement data.

3.3.2 Results

The structure of the results section mirrors that used for previous experiments,

where each section addresses a different question. The same mixed-effects modeling

strategy is also employed. The first part of the results section addresses overall task per-

formance. The second section assesses perceptual learning of the distributions over the

course of the experiment. If listeners can lexically-specific boundaries, we predict that

continua trained in the left distribution will have a boundary shifted towards the left,

while the other continua (those trained on the right distribution) will have a boundary

shifted towards the right. If this boundary shift is learned over the course of the exper-

iment, this trend should increase over time. The final section of the results collapses

across time in order to investigate whether the effect of distribution varied by vowel, as

the six continua used had three different vowels.
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Table 3.29: Experiment 4 percent correct at endpoints.

Continuum /b/ /p/

beach/peach 99.2 100

beak/peak 99.3 93

bill/pill 98.8 100

bin/pin 99.3 100

buck/puck 99.7 100

bug/pug 98.1 100

3.3.2.1 Task Performance

Mouse-click responses were first examined to assess overall performance on the

task. Participants clicked on an image from the incorrect continuum (e.g. beach or peach

when the stimulus was beak or peak) on an average of .36% of the trials, and the lowest

individual accuracy score was 98.9%. Performance at continuum endpoints was also

excellent: /b/ steps (-30 to -10ms) averaged 99.5% correct, and /p/ steps (60 to 80ms)

averaged 99.2%. Performance was high for all continua (reported in Table 3.29).

3.3.2.2 Perceptual Learning

The most important analysis concerns perceptual learning, asking whether lexi-

cally specific boundary shifts emerged over the course of the experiment. To look at the

learning effect over time we looked at the effect of distribution, a within-participant vari-

able, day, and half. This model is the same as the perceptual learning model constructed

for Experiment 2. Response (/b/ or /p/, coded as 0 or 1 respectively) was the dependent

variable. VOT step, distribution, day, and half were fixed factors that were held constant

in the different versions of models. The random slopes models failed to converge and
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Figure 3.12: Experiment 4 distribution effect by experiment quarter.

including random intercepts for continuum improved the fit of the model compared to

a version with random intercepts only for participants (χ2(2)=246.39, p<.0001).

The full perceptual learning model is reported in Table 3.30. We are primarily

interested in the main effect of distribution and the interactions involving distribution,

day, and half, since these interactions show how the effect of distribution changed over

the course of the experiment. All of the main effects were significant. Most critically,

distribution (β=-1.48, p<.0001) affected responses as predicted: categorization bound-

aries for continua heard in the left-shifted distribution were to the left relative to those
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Table 3.30: Experiment 4 perceptual learning model.

Coef β SE(β) z p

Intercept 0.35 0.30 1.2 >0.2

Distribution −1.48 0.09 −16.8 <.0001

Day −0.17 0.08 −2.1 <.05

Half −0.24 0.08 −2.9 <.01

VOT Step 0.23 0.00 54.0 <.0001

Distribution x Day −0.78 0.17 −4.7 <.0001

Distribution x Half −0.45 0.17 −2.7 <.01

Day x Half 0.16 0.17 1.0 >0.3

Distribution x Step −0.01 0.01 −1.5 >0.1

Day x Step 0.00 0.01 0.1 >0.9

Half x Step 0.01 0.01 1.6 >0.1

Distribution x Day x Half 0.58 0.33 1.7 >0.1

Distribution x Day x Step −0.05 0.02 −3.5 <.001

Distribution x Half x Step −0.04 0.02 −2.7 <.01

Day x Half x Step −0.02 0.02 −1.4 >0.2

Distribution x Day x Half x Step 0.04 0.03 1.3 >0.2

Note: The maximum correlation among the fixed factors was r=.12, between distribution
and step.
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heard in the right-shifted distribution. Figure 3.12 shows the distribution effect in each

experiment quarter. Distribution interacted with day (β=-.78, p<.0001) and half (β=-.45,

p<.008), and marginally with both (β=.58, p<.09). These interactions suggest that partic-

ipants learned the distributions over time since the boundary shifts were greater on the

second day of the experiment and during the second half of each session. Overall, this

analysis supports the idea that listeners can learn lexically-specific boundaries, since

changes in lexical responding were consistent with the VOT distribution manipulations

and increased exposure to these distributions. Since there were significant two- and

three-way interactions between distribution, day, and half, we next ran simple effects

analyses to determine when the effect of distribution was significant.

The simple effects models for both days are reported in Table 3.31. Just like in

our analyses of phoneme specificity, on the first day there was a significant effect of dis-

tribution (β=-1.17, p<.0001), so participants were able to learn the distributions quickly.

There was also an effect of half (β=-.35, p<.004) and an interaction between distribution

and half (β=-.75, p<.002) showing that the distribution effect was larger in the second

half of the first experiment session. On the second day there was a significant effect of

distribution (β=-1.77, p<.0001) but the distribution by half interaction was not signif-

icant (β=-.14, p>.5). Further analyses of the first day (reported in Table 3.32) revealed

effects of distribution for both halves of the session (First Half: β=-.81, p<.0001; Second

Half: β=-1.44, p<.0001). These results indicate that listeners learned the distributions

very quickly, as boundary shifts were present on both days and even during the first

quarter of the experiment.

3.3.2.3 Vowel Effects

Since there were three pairs of continua that varied by vowel in this experiment,

we also ran a secondary analysis to determine whether the distribution effect varied by

vowel. Since the previous analysis showed similar distribution effects over the course
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Table 3.31: Experiment 4 simple effects for days one and two.

Coef β SE(β) z p

Day 1

Intercept 0.46 0.35 1.3 >0.2

Distribution −1.17 0.13 −9.2 <.0001

Half −0.35 0.12 −2.9 <.01

VOT Step 0.24 0.01 37.1 <.0001

Distribution x Half −0.75 0.24 −3.1 <.01

Distribution x Step 0.01 0.01 1.3 >0.2

Half x Step 0.02 0.01 2.0 <.05

Distribution x Half x Step −0.07 0.02 −2.9 <.01

Day 2

Intercept 0.25 0.26 1.0 >0.3

Distribution −1.77 0.12 −14.4 <.0001

Half −0.14 0.12 −1.2 >0.2

VOT Step 0.22 0.01 39.5 <.0001

Distribution x Half −0.14 0.23 −0.6 >0.5

Distribution x Step −0.04 0.01 −3.4 <.001

Half x Step 0.00 0.01 0.2 >0.9

Distribution x Half x Step −0.02 0.02 −0.9 >0.4

Note: The maximum correlation between fixed factors was r=.21 for the first day and
r=.056 for the second day, both between distribution and step.
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Table 3.32: Experiment 4 simple effects for each half of day one.

Coef β SE(β) z p

First Half

Intercept 0.67 0.42 1.6 >0.1

Distribution −0.81 0.17 −4.7 <.0001

VOT Step 0.24 0.01 26.2 <.0001

Distribution x Step 0.05 0.02 3.3 <.001

Second Half

Intercept 0.28 0.29 0.9 >0.3

Distribution −1.44 0.18 −7.8 <.0001

VOT Step 0.24 0.01 26.4 <.0001

Distribution x Step −0.01 0.02 −0.8 >0.4

Note: The correlation between fixed factors was r=.31 for the first half and r=.18 for the
second half.

of the experiment, we collapsed across the day and half factors in order to simplify the

new model. In this model, reported Table 3.33, vowel was defined as a fixed factor with

three levels (/i/, /I/, and /2/). Our primary interest was in vowel by distribution interac-

tions since these would indicate a difference in the boundary shift effect for the different

pairs of continua. There was a two-way interaction between distribution and vowel /I/

(β=-.79, p<.0003), so we ran simple effects analyses to determine whether the effect of

distribution was significant in each of the three vowel contexts.

The vowel simple effects models are reported together in Table 3.34 and responses

by distribution for each vowel context are plotted in Figure 3.13. The effect of distri-

bution was significant in all three vowel contexts (/i/: β=-1.02, p<.0001; /I/: β=-1.90,

p>.0001; /2/: β=-1.09, p>.0001), indicating boundary differences in the predicted direc-

tion for continua with all three vowels. We were surprised that there was an effect of

distribution for the words with an /i/ vowel since there is no visible difference between
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Table 3.33: Experiment 4 vowel model.

Coef β SE(β) z p

Intercept 0.16 0.40 0.4 >0.7

Distribution −1.16 0.14 −8.1 <.0001

Vowel /I/ −0.15 0.53 −0.3 >0.8

Vowel /2/ 0.67 0.53 1.3 >0.2

VOT Step 0.20 0.01 34.9 <.0001

Distribution x Vowel /I/ −0.79 0.22 −3.7 <.001

Distribution x Vowel /2/ 0.01 0.21 0.0 >0.9

Distribution x Step −0.02 0.01 −2.0 <.05

Vowel /I/ x Step 0.05 0.01 4.8 <.0001

Vowel /2/ x Step 0.03 0.01 2.8 <.01

Distribution x Vowel /I/ x Step 0.00 0.02 −0.2 >0.9

Distribution x Vowel /2/ x Step 0.05 0.02 2.7 <.01

Note: The maximum correlation between fixed factors was r=.22, between distribution
and step.
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Figure 3.13: Experiment 4 distribution effect by stimulus vowel.
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Table 3.34: Experiment 4 simple effects for vowels.

Coef β SE(β) z p

/i/

Intercept 0.17 0.20 0.8 >0.4

Distribution −1.02 0.13 −7.7 <.0001

Step 0.21 0.01 33.5 <.0001

Distribution x Step −0.02 0.01 −2.0 <.05

/I/

Intercept 0.00 0.16 0.0 >0.9

Distribution −1.90 0.16 −11.8 <.0001

Step 0.25 0.01 28.8 <.0001

Distribution x Step −0.02 0.02 −1.4 >0.2

/2/

Intercept 0.80 0.22 3.7 <.001

Distribution −1.09 0.15 −7.2 <.0001

Step 0.22 0.01 31.7 <.0001

Distribution x Step 0.03 0.01 2.1 <.05

Note: The correlation between fixed factors was r=.23 for the /i/ model, r=.14 for the /I/
model, and r=.26 for the /u/ model.

the two distributions in Figure 3.13. However, when we plotted each of the two /i/ con-

tinua separately (shown in Figure 3.14), the difference between the two distributions

was quite apparent for the beak/peak continuum, which explains the distribution effect

in this vowel context.

3.3.3 Discussion

Experiment 4 tested whether word-specific perceptual learning is possible. We

did this by manipulating the VOT distributions of word pairs with the same CV onsets,

and examining how these distributions affected categorization. Participants showed
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Figure 3.14: Experiment 4 distribution effects for /i/ continua.

categorization patterns consistent with the distributions they were exposed to for dif-

ferent words: left-shift words had more /p/ responses (a left-shifted boundary), and

right-shift words had more /b/ responses (a right-shifted boundary). This pattern was

stronger during the second half of each experiment session and during the second day

overall, suggesting perceptual learning of the distributions over time. Since pairs of con-

tinua with matching CV onsets were randomly assigned to opposing distribution condi-

tions for each participant, it is unlikely that the distribution effects were caused by prior

variation in lexically-specific boundaries.

Our interpretation of the current results is not that listeners do not generalize

across words, but that lexically-specific learning is also possible. Generalization is im-

portant for learning, and there have been many studies showing that listeners generalize

perceptually learned boundary shifts to untrained words (Allen & Miller, 2004; McQueen

et al., 2006; Maye, Aslin, & Tanenhaus, 2008; A. Hervais-Adelman et al., 2008; Sjerps &
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McQueen, 2010). However, we find that under the right conditions, listeners can also

learn lexically-specific boundaries.

3.4 General Discussion

The experiments in this chapter tested lexical and phoneme specificity in per-

ceptual learning as well as generalization across words and onset places of articulation.

The results showed evidence in favor of both generalization and specificity.

In Experiment 2 we found that listeners were able to learn multiple boundaries

for the same feature contrast in different phonemic contexts–the boundaries appeared

to be phoneme or place-specific, not generalized on the basis of the shared voicing fea-

ture. However, this specificity was limited to listeners who heard the bilabial onset con-

tinua shifted towards the left. Listeners who heard the coronal continua in the left dis-

tribution showed no boundary difference between the left- and right-shifted continua.

This may have been because of secondary voicing cues present in our stimuli which

made it difficult for participants to shift the coronal boundary to the left and the bilabial

boundary to the right.

In Experiment 3 we found evidence supporting both generalization and speci-

ficity. Initially listeners generalized perceptually learned boundaries to new continua

with both the trained and untrained onset place of articulation. After exposure to a dif-

ferent boundary for the second place of articulation, however, listeners used the new

boundary for all of the continua with that place onset, and the initially trained bound-

ary for the continua with the initially trained place. This suggests that listeners can learn

place- or phoneme-specific boundaries, but generalize across different phonemic con-

texts when they lack more specific boundary information.

Finally, in Experiment 4 we found that listeners can learn lexically-specific bound-

aries as well. Learning these boundaries may even have been easier for listeners than

learning phoneme-specific boundaries. Although this seems counterintuitive, the sec-
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ondary voicing cues for the continua in the lexical-specificity experiment (which all

shared the same onset place of articulation) should have been more similar than the

secondary cues in the phoneme-specificity experiment (which had different onsets).

These results of these three experiments are somewhat different from other re-

search on perceptual learning. Previous research has suggested that listeners generalize

boundaries across different phonemes (Kraljic & Samuel, 2006; Theodore & Miller, 2010;

Clarke & Luce, 2005) and across words (Allen & Miller, 2004; McQueen et al., 2006; Maye,

Aslin, & Tanenhaus, 2008; Sjerps & McQueen, 2010). These results do not completely

conflict with ours since we found evidence for generalization as well, and the ability of

listeners to learn phoneme-specific and lexically-specific boundaries has not been pre-

viously examined. Thus, the existing literature on perceptual learning, in combination

with our results, suggests that listeners can learn highly specific boundaries but also

generalize learned boundaries across words or phonemic contexts.

As discussed in the introduction, the combination of specificity and generaliza-

tion is not a pattern of results that many models of speech perception are prepared to

handle. In general, theories that involve direct connections from acoustic information to

words without intermediate levels (such as exemplar theory) are well-prepared to han-

dle lexical-specificity but not generalization. Theories that involve abstract sub-lexical

representations (such as TRACE and Merge) can handle generalization but not speci-

ficity.

The models that might allow listeners to use lexically-specific information but

also generalize across words are quite variable. A dual-route model could allow for both

generalization and specificity with one pathway directly from acoustics to words and an-

other pathway through some level of abstraction (like features or phonemes). ART could

also handle both generalization and specificity because it does not have defined levels

or connections between levels, and can flexibly weight different types of information in
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response to task demands. Finally, C-CuRE could handle both generalization and speci-

ficity because it allows listeners to take lexically-specific information into account when

it is available. While the initial bottom-up processing might be somewhat abstract, C-

Cure could allow phoneme-specific or lexically-specific information to play a role in the

relativization of cues, providing listeners with both the ability to make abstractions and

take highly specific information into account.

Flexibility seems to be the key feature shared among models that might allow for

both generalization and specificity. All of these models allow for flexible speech process-

ing by way of multiple paths, re-weighting of information, or optional processing. The

results of our experiment on lexically-specific perceptual learning suggest that listeners

are sensitive to and take advantage of lexically-specific information when processing

speech. Models of speech perception need to reflect listeners’ use of this type of infor-

mation, which may require increased flexibility.
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CHAPTER 4
PERCEPTUAL LEARNING FOR MULTIPLE TALKERS

The experiments in this chapter address Aims 4 and 5: to test whether listeners

spontaneously exhibit talker-specific perceptual learning in a task that does not empha-

size talker identification, and to assess whether sequential versus simultaneous expo-

sure to multiple talkers affects the degree of talker-specificity in learning.

According to exemplar theories of speech perception (e.g. Goldinger, 1996, 1998;

Johnson, 1997), listeners store detailed representations of the input to which they are ex-

posed, including indexical information. During speech recognition, both indexical and

phonetic information is mapped onto existing exemplars, with no intermediation from

sub-lexical units. This suggests that talker-specific perceptual learning should be easy.

Parsing theories would also be able to account for talker-specific boundary learning by

conditionalizing boundaries by talker. This would require storage of talker-specific in-

formation (e.g. the type of VOT values typically produced by a given talker). Prototype

theories would find it more difficult to account for talker-specific learning, since the

point of having prototypes is to eliminate the need for storage of more specific informa-

tion.

It’s not entirely clear how many of these models could account for both talker-

specific learning and generalization across talkers, but exemplar models may be able

to do so. While exemplar models have been criticized for positing storage of too many

detailed exemplars, these models do not suppose unlimited storage. It is possible that

listeners only store some number of the exemplars they experienced most recently. If

this were the case, we would expect to see talker-specific learning when listeners are

given mixed training on multiple talkers, but generalization across talkers occurs when

they receive blocked training–exemplars from the more recently trained talker might

overwrite those from previous talkers. Parsing theories might also predict differences
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in generalization and specificity based on training paradigm–listeners might do talker-

specific learning when trained on two talkers simultaneously, but not bother storing

talker-specific information when it is unclear that it is needed (leading to generaliza-

tion across talkers). Similarly, the dual-route model could allow for both generalization

and specificity by way of different processing routes—the phonological route could store

general boundaries, while the exemplar route could handle talker-specific boundaries.

Thus, Experiments 5 and 6 test whether listeners learn talker-specific boundaries when

trained on two talkers at once (Experiment 5), but generalize across talkers when train-

ing is blocked by talker (Experiment 6).

4.1 Experiment 5

The aim of this experiment was to test whether listeners spontaneously exhibit

talker-specific perceptual learning in a task that did not emphasize talker identification.

Listeners were exposed to two talkers, one male and one female, with different VOT dis-

tributions. As in previous experiments their task was simply to click on the picture of the

word that they heard on each trial, so they were not required to pay attention to talker

differences in order to complete the task.

4.1.1 Method

4.1.1.1 Design

Experiment 5 used the same stimulus items as Experiments 1, listed again in Ta-

ble 4.1. The design was also similar to Experiment 1 in that participants were exposed to

shifted VOT distributions of male and female talkers. The main difference from the first

experiment is that in Experiment 5, all participants were exposed to both talkers and

both distributions instead of a single talker with one of the distributions. Trials from the

two talkers were intermixed in a random order. The assignment of talker to distribution

was counterbalanced across participants so that half of the participants heard the male
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Table 4.1: Experiment 5 stimulus items.

/b/ /p/ /l/ /r/

beach peach lace race

bees peas lake rake

beak peak lei ray

bit pit lock rock

bin pin lamp ramp

bill pill lane rain

Note: These items are identical to those used in Experiment 1.

Table 4.2: Experiment 5 VOT distributions.

VOT Step -30 -20 -10 0 10 20 30 40 50 60 70 80

Left-Shifted Distribution 4 36 70 36 4 4 36 70 36 4 0 0

Right-Shifted Distribution 0 0 4 36 70 36 4 4 36 70 36 4

talker with the left distribution while the other half of the participants heard the male

talker with the right distribution. The female talker was always heard with the other dis-

tribution. The two distributions were centered at the same steps used as prototypes in

Experiment 1, but because listeners heard both talkers they heard only half as many ex-

emplars from each distribution. The numbers of exemplars presented at each VOT step

are shown in Table 4.2. These distributions occurred across continua rather than within

each continuum, which would have required many more trials.

Listeners heard a total of 300 experimental trials per day, 150 per talker. These

were split evenly among the six continua so there were 25 experimental trials per con-
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tinuum for each talker. There were also 25 filler trials per item-set for each talker, so

there was an equal number of experimental and filler trials. Since the 25 filler trials for

each talker and item-set could not be split evenly between /l/ and /r/ onset fillers, lis-

teners who heard an extra /l/ filler for an item-set in the male talker’s voice heard an

extra /r/ filler in the same set with the female talker’s voice. This kept the number of

/l/ and /r/ onset filler trials even for each word and item-set (across talkers). Listeners

heard a total of 600 trials per session and completed two sessions (approximately one

week apart) for a total of 1200 trials.

4.1.1.2 Participants

Participants were 20 individuals from the University of Iowa community who

participated in the study in exchange for course credit or a nominal payment. All were

monolingual native English speakers who reported normal hearing and normal or corrected-

to-normal vision. Informed consent was obtained in accordance with University and

APA standards. Three participants did not return for the second day of the study and

were therefore excluded from analysis, leaving 17 participants who completed both ex-

periment sessions.

4.1.1.3 Stimuli & Procedure

Stimuli were identical to those used in Experiment 1.

The procedure was identical to Experiment 1 as well. Participants were given

no instructions concerning the two different talkers they heard during the experiment.

An Eye-Link-II head-mounted eye-tracker was calibrated to each participant before the

beginning of the experiment. Following calibration, participants read the instructions

for the experiment and practiced the drift-correct procedure.

On each trial, participants were presented with the four images from an item-set

(e.g. beach, peach, lace, and race). They saw one image in each corner and a red dot in
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the middle of the screen. After 500ms the dot turned blue. When participants clicked

on the blue dot they heard the auditory stimulus for the trial over headphones. They

clicked on the corresponding image and moved on to the next trial. Although the Eye-

Link II recorded participants’ eye-movements throughout the experiment, we did not

analyze the eye-movement data since the effects were large enough to observe in the

mouse-click data.

4.1.2 Results

The structure of the results section mirrors that used for previous experiments,

where each section addresses a different question. The first part of the results section

addresses overall task performance. The second section assess perceptual learning of

the two talker distributions over the course of the experiment. A boundary shift is pre-

dicted such that categorization data for continua from the talker trained on the left dis-

tribution will have a boundary shifted towards the left, while data for the other continua

(from the talker trained on the right distribution) will show a boundary shifted towards

the right. The final section of the results collapses across time to examine whether the

distribution effect varied depending on shift condition (which talker was shifted to the

left). Only steps -10 to 60 were analyzed in the mixed effects models since these were the

steps shared between the two distributions.

4.1.2.1 Task Performance

Mouse-click responses were first examined to assess performance on the task.

On critical trials where the stimulus began with a /b/ or /p/, participants clicked on

a filler item on only .13% of the trials. We also found excellent performance on both

endpoints: /b/s (-30 to -10 ms) averaged 99.2% correct and /p/s averaged 99.0% correct.

Endpoint performance was also high for both talkers and distributions (see Table 4.3 for

details). Three participants had endpoint performance below 75% correct and were thus
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Table 4.3: Experiment 5 percept correct at endpoints for each talker.

Male Talker Female Talker

Endpoint Left Right Left Right

/b/ 99.5 100 99.8 97.5

/p/ 97.5 99.6 100 99

excluded from further analysis.

4.1.2.2 Perceptual Learning of Talker-Specific Distribu-
tions

After establishing that endpoint performance was good, mouse-clicks across the

continua were assessed in order to see whether participants learned boundary differ-

ences for the left- and right-shifted distributions. The response data are shown in Figure

4.1, with each quarter of the experiment in a separate panel. The boundary difference

appears larger on the second half of both days.

To analyze these data we looked at the effect of distribution, day, and half (of each

day). Response (/b/ or /p/, 0 and 1 respectively) was the dependent variable. VOT step,

distribution (a within-participants variable), day, and half were fixed factors treated as in

previous analyses. Participant and continuum were treated as random-effects. The ran-

dom slopes models failed to converge and including random intercepts for continua as

well as participants improved the fit of the model (χ2(2)=44.98, p<.0001), so this model

was selected.

The model for distribution learning over time is reported in Table 4.4. There was

a main effect of distribution (β=-.48, p<.02) indicating that the boundary for the talker

with the left-shifted distribution was to the left of that for the talker with right-shifted

distribution. There was also an interaction between distribution, day, and half (β=-2.50,



129

VOT (ms)

P
ro

po
rt

io
n 

R
es

po
ns

e 
P

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

First Half

● ●

●

● ● ●

● ●

●

● ● ●

0 10 20 30 40 50

Second Half

● ●

●

●
● ●

● ●

●

● ● ●

0 10 20 30 40 50

D
ay 1

D
ay 2

Distribution

● Left Right

Figure 4.1: Experiment 5 distribution effect by experiment quarter.
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Table 4.4: Experiment 5 perceptual learning model.

Coef β SE(β) z p

Intercept 1.35 0.28 4.8 <.0001

Distribution −0.48 0.19 −2.5 <.05

Day 0.16 0.19 0.8 >0.4

Half −0.31 0.19 −1.6 >0.1

VOT Step 0.30 0.01 25.5 <.0001

Distribution x Day 0.48 0.38 1.3 >0.2

Distribution x Half −0.69 0.38 −1.8 >0.1

Day x Half −0.61 0.38 −1.6 >0.1

Distribution x Step 0.04 0.02 1.9 >0.1

Day x Step 0.06 0.02 2.9 <.01

Half x Step −0.03 0.02 −1.3 >0.2

Distribution x Day x Half −2.50 0.76 −3.3 <.01

Distribution x Day x Step 0.02 0.04 0.3 >0.7

Distribution x Half x Step −0.04 0.04 −0.8 >0.4

Day x Half x Step −0.16 0.04 −3.6 <.001

Distribution x Day x Half x Step −0.21 0.09 −2.3 <.05

Note: The maximum correlation among the fixed factors was r=.45, between distribution
and step.
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p<.001) and a marginal interaction between distribution and half (β=-.69, p<.08), which

both suggested that the effect of distribution changed over the course of the experiment.

This can be observed in Figure 4.1, where the identification functions do not appear

equal in each quarter. Follow-up analyses (reported in Table 4.5) revealed an effect of

distribution on the first day (β=-.75, p<.003), and no interaction with half (β=.51, p>.3),

suggesting a fairly robust effect. On the second, there was no effect of distribution (β=-

.29, p>.3). However, there was an effect of half (β=-.62, p<.04) and an interaction be-

tween distribution and half (β=-1.90, p<.002). Further analyses (reported in Table 4.6)

suggested that this interaction was due to the fact that there was no effect of distribution

in the first half of the second day (β=.66, p>.2), but a significant effect of distribution dur-

ing the second half of the second day (β=-1.22, p<.0008). These results suggest that over

the week between the two experiment sessions, participants did not retain the talker-

specific boundaries learned on the first day. However, they were clearly able to re-learn

the boundary shifts on the second day.

4.1.2.3 Talker-condition Effects

Since the assignment of talker to distribution was counterbalanced across par-

ticipants, half of the participants heard the male talker with the left-shifted distribution

and the other half heard the male talker with the right-shifted distribution. The next

analysis collapses across the two days of the experiment to examine whether talker-

condition affected boundary learning. The responses for each talker-condition are shown

in Figure 4.2, where there appears to be a large boundary difference for the group with

the female talker shifted to the left, and no difference for the group with the male talker

shifted to the left. In the model, talker-condition was dummy-coded as 0 for the listeners

who heard the male talker shifted to the left and 1 for the female talker shifted to the left.

All listeners heard both talkers and distributions, but talker-condition was a between

participants variable. The random slopes model failed to converge and including ran-
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Table 4.5: Experiment 5 simple effects for days one and two.

Coef β SE(β) z p

Day 1

Intercept 1.30 0.34 3.9 <.001

Distribution −0.75 0.25 −3.0 <.01

Half 0.01 0.25 0.1 >1

VOT Step 0.27 0.01 20.3 <.0001

Distribution x Half 0.51 0.50 1.0 >0.3

Distribution x Step 0.03 0.03 1.3 >0.2

Half x Step 0.05 0.03 2.1 <.05

Distribution x Half x Step 0.06 0.05 1.2 >0.2

Day 2

Intercept 1.39 0.25 5.6 <.0001

Distribution −0.29 0.29 −1.0 >0.3

Half −0.62 0.29 −2.1 <.05

VOT Step 0.32 0.02 17.0 <.0001

Distribution x Half −1.90 0.58 −3.3 <.01

Distribution x Step 0.05 0.04 1.2 >0.2

Half x Step −0.11 0.04 −2.9 <.01

Distribution x Half x Step −0.14 0.07 −1.9 >0.1

Note: The maximum correlations among fixed factors were r=.39 for the first day and
r=.45 for the second day, and were between distribution and step on both days.
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Table 4.6: Experiment 5 simple effects for each half of day two.

Coef β SE(β) z p

First Half

Intercept 1.77 0.35 5.0 <.0001

Distribution 0.66 0.46 1.4 >0.2

VOT Step 0.39 0.03 11.4 <.0001

Distribution x Step 0.12 0.07 1.7 >0.1

Second Half

Intercept 1.06 0.22 4.7 <.0001

Distribution −1.22 0.36 −3.4 <.001

VOT Step 0.26 0.02 14.3 <.0001

Distribution x Step −0.03 0.04 −0.8 >0.4

Note: The correlations between fixed factors were r=.61 for the first half and r=.21 for the
second half.
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Figure 4.2: Experiment 5 distribution effect by talker-condition.
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Table 4.7: Experiment 5 talker-condition model.

Coef β SE(β) z p

Intercept 1.36 0.28 4.9 <.0001

Distribution −0.80 0.20 −4.0 <.0001

Talker-condition 0.42 0.37 1.1 >0.3

VOT Step 0.29 0.01 27.2 <.0001

Distribution x Condition −1.44 0.39 −3.6 <.001

Distribution x Step 0.02 0.02 0.9 >0.3

Condition x Step 0.06 0.02 2.7 <.01

Distribution x Condition x Step −0.01 0.04 −0.2 >0.8

Note: The maximum correlation among the fixed factors was r=.27, between distribution
and step.

dom intercepts for continua as well as participants improved the model fit (χ2(2)=43.15,

p<.0001), so this model was selected.

The talker-condition model, reported in Table 4.7, showed the same main effect

of distribution (β=-.80, p<.0001) that was seen in the perceptual learning model. There

was also an interaction between distribution and talker-condition (β=-1.44, p<.0003)

showing that that the effect of distribution was greater for listeners who heard the fe-

male talker with the left distribution. Follow-up analyses on each talker (reported in

Table 4.8) showed that there was an effect of distribution for the listeners who heard the

female talker shifted left (β=-1.62, p<.0001), but no distribution effect for the group that

heard the male talker shifted left (β=-.09, p>.7), suggesting that listeners only learned a

boundary difference between the two talkers if the female talker was heard in the left

distribution.
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Table 4.8: Experiment 5 simple effects for talker-condition.

Coef β SE(β) z p

Female Talker Left

Intercept 1.54 0.37 4.2 <.0001

Distribution −1.62 0.32 −5.0 <.0001

VOT Step 0.31 0.02 18.1 <.0001

Distribution x Step 0.01 0.03 0.2 >0.8

Male Talker Left

Intercept 1.20 0.41 2.9 <.01

Distribution −0.09 0.24 −0.4 >0.7

VOT Step 0.27 0.01 21.0 <.0001

Distribution x Step 0.02 0.02 1.0 >0.3

Note: The correlation between the fixed factors was r=.15 for the female-left model and
r=.48 for the male-left model.

4.1.3 Discussion

Experiment 5 aimed to test whether talker-specific perceptual learning is possi-

ble in a task that does not require talker identification, and when VOT was not one of

the more prominent cues to talker identity. We did this by manipulating the VOT dis-

tributions of continua for the same words produced by two different talkers. Overall,

participants showed boundary differences between the two distributions, but this effect

seems to have been driven by the group that heard the female talker with the left distri-

bution since there was no effect of distribution for the other half of the participants.

This result is similar to that found in Experiment 2, which tested place-specific

perceptual learning. Listeners only showed boundary differences in the group that heard

the /b/ words shifted to the left. The same explanation given also applies to this exper-

iment: in retrospect, it seems likely that the auditory stimuli contained cues to voicing

other than VOT (such as F1 and pitch) which made it difficult to shift the male con-
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tinua to the left and female continua to the right. By training these shifted boundaries,

for half of the participants we are effectively asking them to relearn secondary cues to

voicing as opposite what they have previously known. Men have lower formant fre-

quencies than women, and listeners associate lower F1 values with more voiced sounds

(Summerfield, 1977). As a result, to shift the male talker’s boundary to the left (so that

there are more voiceless sounds along the continuum), listeners must learn that higher

(instead of lower) F1 values go with voiced sounds. This may explain why listeners had

trouble shifting the male talker’s boundary to the left of the female’s even though male

talkers tend to have shorter VOTs (Swartz, 1992).

Although one group of participants did not learn separate boundaries for the

two talkers, the other group did. This suggests that learning different voicing bound-

aries for different talkers (or perhaps different groups of talkers) is possible. Since this

experiment trained listeners on boundary differences between a male and female talker,

it is possible that listeners are learning about gender differences in voicing boundaries

rather than talker-specific differences. In any case, listeners do not appear to be re-

stricted to a single boundary. If listeners can learn multiple voicing boundaries, why

then have previous studies found generalization across talkers? One possibility is that

this is due to training listeners on each talker in a separate block instead of with inter-

mixed trials. This hypothesis is addressed in Experiment 6.

4.2 Experiment 6

The aim of this experiment was to see if a blocked design would lead to gener-

alization across talkers. After training on a single talker, listeners may generalize per-

ceptually learned boundary shifts to a novel talker. Training on this second talker may

then shift the boundary for both talkers, although if blocked training is not responsible

for generalization across talkers, then it is possible that on the second day, listeners will

show talker-specific boundaries after they have been trained on both talkers.
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4.2.1 Methods

4.2.1.1 Design

Experiment 6 used the stimulus items from Experiments 1 and 5. Listeners heard

distributions that varied by talker and were exposed to the distribution of only one talker

per day (the training distribution). The distributions used in Experiment 6 are shown in

Table 4.10. Like Experiments 1 and 5, the left- and right-shifted distributions have differ-

ent ranges in this experiment. After exposure to the training talker for the day, listeners

completed generalization trials (in a flat distribution) for the second talker. Trials for the

two talkers are referred to as training and testing trials, but training remained implicit as

it was in Experiment 1, and participants received no instructions that distinguished the

generalization testing from the training trials.

Participants received 264 experimental training trials per day, divided equally be-

tween six continua. They received the same number of filler trials in the training talker’s

voice, also divided evenly between item-sets, and between /l/ and /r/ onset fillers for

each item-set. The item-sets are listed in Table 4.9. In total participants completed 528

training trials during each of two experiment sessions.

Testing for generalization across talkers was limited to VOT steps -10 to 60 as in

Experiment 3 (the phoneme generalization Experiment). Each of the 8 testing steps was

repeated once (a uniform distribution) for each of the 6 continua, totaling 48 experi-

mental testing trials per day. Listeners also heard an equal number of filler testing trials,

again divided equally between item-sets and onset phoneme. Listeners completed a

total of 96 testing trials per experiment session.

Talker voice and distribution shift direction on the first day were counterbal-

anced across participants, and the untrained talker and distribution were trained on

the second day. The training talker from the first day became the tested talker on the

second day.
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Table 4.9: Experiment 6 stimulus items.

/b/ /p/ /l/ /r/

beach peach lace race

bees peas lake rake

beak peak lei ray

bit pit lock rock

bin pin lamp ramp

bill pill lane rain

Note: These items are identical to those in Experiments 1 and 5.

Table 4.10: Experiment 6 VOT distributions.

VOT Step -30 -20 -10 0 10 20 30 40 50 60 70 80

Left-Shifted Distribution 4 31 62 31 4 4 31 62 31 4 0 0

Right-Shifted Distribution 0 0 4 31 62 31 4 4 31 62 31 4
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4.2.1.2 Participants

Participants were 22 individuals from the University of Iowa community who

participated in the study in exchange for course credit or pay. All were monolingual

native English talkers who reported normal hearing and normal or corrected-to-normal

vision. Informed consent was obtained in accordance with University and APA stan-

dards. Six participants who did not complete both days were excluded from analysis,

leaving 16 participants (4 in each condition) who completed both sessions of the exper-

iment.

4.2.1.3 Stimuli and Procedure

Stimuli were re-used from Experiment 1 and were therefore identical to those

described in Chapter 2.

The experiment procedure was also identical to that used in Experiment 1. Al-

though this experiment added a testing component, testing trials were indistinguishable

from training trials except by talker voice, and no new directions were given to partic-

ipants before they began the testing trials. An Eye-Link-II head-mounted eye-tracker

was calibrated to each participant before the beginning of the experiment. Following

calibration, participants read the instructions for the experiment and practiced the drift-

correct procedure.

On each trial, participants were presented with the four images from an item-set

(e.g. beach, peach, lace, and race). They saw one image in each corner and a red dot in

the middle of the screen. After 500ms the dot turned blue. When participants clicked on

the blue dot they heard the auditory stimulus for the trial over headphones. They clicked

on the corresponding image and moved on to the next trial. Although participants’ eye-

movements were recording by the Eye-Link II, the effects were large enough to observe

with the mouse-click data, so eye-movement data was not analyzed.
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4.2.2 Results

The structure of the results section mirrors that used for previous experiments,

where each section addresses a different question. The same mixed-effects modeling

strategy is also employed. The first part of the results section addresses overall task per-

formance. The second section assesses perceptual learning of the training distributions.

A boundary shift is predicted such that categorization data for continua trained on the

left distribution (in either the male or female talker’s voice) will have a boundary shifted

towards the left, while data for the other continua (those in the other talker’s voice) will

show a boundary shifted towards the right. The final two sections address generalization

trials. We wanted to determine whether listeners would use the trained boundary for the

generalization talker on each day. On the first day this was a new talker that hadn’t been

heard before, but on the second day this was the talker who the listener had heard a

week ago with a different VOT distribution. Since these are very different trial-types we

examined each day separately and asked whether boundaries varied between training

and testing trials.

4.2.2.1 Task Performance

Mouse-click responses were first examined to assess overall performance on the

task. Participants selected filler images on experimental trials (e.g. lace or race when

the stimulus was beach or peach) for only .19% of the experimental training trials, which

shows that they were paying attention to the task and not selecting images randomly.

Performance on the unambiguous endpoints of the continua was also high. For the

male talker, participants were 99.9% correct for both the /b/ (-30 to -10 ms) and /p/

(60 to 80 ms) endpoints. For the female talker, participants were 99.9% correct for the

/b/ endpoint and 97.9% correct for the /p/ endpoint. The slightly lower accuracy at

the female /p/ endpoint was driven by one participant who was at 70% correct for this

endpoint. All other participants were above 98% percent correct at all the endpoints.



141

VOT (ms)

P
ro

po
rt

io
n 

R
es

po
ns

e 
P

0.0

0.2

0.4

0.6

0.8

1.0
Day 1

● ●

●

●
● ●

0 10 20 30 40 50

Day2

● ●

●

● ● ●

0 10 20 30 40 50

Distribution

● Left Right

Figure 4.3: Experiment 6 training distribution by day. Participants in the left distribution
on day 1 are in the right distribution on day 2.

4.2.2.2 Perceptual Learning for Training Distributions

Before assessing generalization to the different types of testing trials, we needed

to establish that training was successful. To do this we first examined the effect of dis-

tribution on the two days of the experiment. Response (/b/ or /p/, coded as 0 or 1

respectively) was the dependent variable. VOT step, distribution, and day were the fixed

factors. Distribution was a within participants variable across the two training days,

but between participants for the training on each day (since listeners were trained on

only one talker and distribution each day). Participant and continuum were treated

as random-effects. The random slopes models failed to converge and including ran-

dom intercepts for continua as well as participants increased the model fit (χ2(2)=15.28,

p<.0001), so this is the model we selected.

The model for Experiment 6 distribution learning is reported in Table 4.11. There

was a main effect of distribution in the predicted direction (β=-1.01, p<.0001), indicating
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Table 4.11: Experiment 6 perceptual learning model.

Coef β SE(β) z p

Intercept 0.67 0.22 3.1 <.01

Distribution −1.01 0.16 −6.3 <.0001

Day 0.04 0.16 0.3 >0.8

VOT Step 0.23 0.01 29.4 <.0001

Distribution x Day −1.06 0.68 −1.6 >0.1

Distribution x Step 0.00 0.02 0.2 >0.8

Day x Step 0.04 0.02 2.6 <.01

Distribution x Day x Step −0.04 0.03 −1.1 >0.3

Note: The maximum correlation among the fixed factors was r=.31, between distribution
and step.

that participants had voicing boundaries shifted to the left for the talker heard with the

left-distribution (relative to the talker heard with the right distribution). This is shown

in Figure 4.3.

Since participants in Experiment 5 could successfully shift the female talker bound-

ary to the left and the male talker boundary to the right, but not the opposite, we needed

to examine the effect of talker-condition in this experiment as well. To do this we col-

lapsed across day and half (the previous analysis showed not difference in the distribu-

tion effect over time) and included talker-condition as a new factor in the model. This

between-participants variable was coded as 0 for participants who heard the male talker

with the left distribution and 1 for participants who heard the female talker with the left

distribution. The random slopes models failed to converge and including random in-

tercepts for continua as well as participants improved the fit of the model (χ2(2)=14.77,

p<.0001), so this is the model version we report.
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Table 4.12: Experiment 6 talker-condition model.

Coef β SE(β) z p

Intercept 0.69 0.23 3.0 <.01

Distribution −0.95 0.16 −5.9 <.0001

Talker-condition −0.04 0.37 −0.1 >0.9

VOT Step 0.24 0.01 28.9 <.0001

Distribution x Condition 0.65 0.32 2.0 <.05

Distribution x Step 0.01 0.02 0.8 >0.4

Condition x Step 0.02 0.02 1.2 >0.2

Distribution x Condition x Step 0.11 0.03 3.4 <.001

Note: The maximum correlation among the fixed factors was r=.36, between distribution
and step.
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Figure 4.4: Experiment 6 training distribution by talker-condition.
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Table 4.13: Experiment 6 simple effects for talker-conditions.

Coef β SE(β) z p

Male Talker Left

Intercept 0.72 0.37 2.0 >0.1

Distribution −1.36 0.23 −5.9 <.0001

VOT Step 0.24 0.01 21.4 <.0001

Distribution x Step −0.04 0.02 −2.1 <.05

Female Talker Left

Intercept 0.70 0.51 1.4 >0.2

Distribution −0.75 0.25 −3.1 <.01

VOT Step 0.27 0.01 19.1 <.0001

Distribution x Step 0.07 0.03 2.8 <.01

Note: The correlations between the fixed factors were were r=.16 for the male-left model
and r=.42 for the female-left model.

The talker-condition model for Experiment 6 is reported in Table 4.12. The model

showed a main effect of distribution (β=-.95, p<.0001) and an interaction between distri-

bution and talker-condition (β=.65, p<.05), suggesting that the boundary shift was larger

for participants who heard the male talker shifted to the left. A plot of the response data

(Figure 4.4) suggests that unlike the previous experiment, there was a distribution effect

for both groups of participants. Follow-up analyses (reported in Table 4.13) confirmed

this was the case: the effect of distribution was significant in both models (Male Left:

β=-1.36, p<.0001; Female Left: β=-.75, p<.003), so participants in both talker-condition

groups were able to learn boundary shifts based on the distributions they were exposed

to for each talker.

4.2.2.3 Generalization Trials on Day 1

The generalization trials from the first day were used to test whether listeners

generalize trained voicing boundaries to novel talkers. We compared training and test-
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Table 4.14: Experiment 6 day 1 generalization model.

Coef β SE(β) z p

Intercept 0.72 0.29 2.5 <.05

Training Distribution −0.57 0.45 −1.3 >0.2

Trial-type 0.17 0.21 0.8 >0.4

VOT Step 0.23 0.01 24.8 <.0001

Distribution x Trial-type 0.15 0.41 0.4 >0.7

Distribution x Step 0.00 0.02 0.0 >1

Trial-type x Step 0.03 0.02 1.4 >0.2

Distribution x Trial-type x Step −0.06 0.05 −1.2 >0.2

Note: The maximum correlation among the fixed factors was r=.13, between training
distribution and step.

ing trials from the first day using models similar to the previous analyses, although in

this analysis distribution is a between-participants variable since we are only examin-

ing one day. Trial-type was coded as dummy variable with 0 for training trials and 1 for

testing trials, and then centered. The random slopes models failed to converge and in-

cluding random intercepts for continua as well as participants improved the fit of the

model (χ2(2)=21.19, p<.0001), so this is the model we report.

The day 1 generalization comparison model is shown in Table 4.14. There was

no effect of distribution (β=-.57, p>.2), which we found surprising, although we thought

it might be because training distribution for each day was between participants, and

since we were including participants as a random factor, all the variance due to distri-

bution would be attributed to participant. When we ran a version of the model without

participants as a random effect (Table 4.15), we did see an effect of training distribu-

tion (β=-.39, p<.03). Critically, there was no effect of trial-type (train vs. test) in either
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Figure 4.5: Experiment 6 day 1 training and testing trials.



147

Table 4.15: Experiment 6 day 1 generalization model without random participants.

Coef β SE(β) z p

Intercept 0.63 0.18 3.4 <.001

Training Distribution −0.39 0.18 −2.3 <.05

Trial-type 0.17 0.20 0.9 >0.4

VOT Step 0.21 0.01 25.3 <.0001

Distribution x Trial-type 0.06 0.39 0.2 >0.9

Distribution x Step 0.02 0.02 0.9 >0.3

Trial-type x Step 0.03 0.02 1.2 >0.2

Distribution x Trial-type x Step −0.05 0.04 −1.1 >0.3

Note: The maximum correlation between fixed factors was r=.4, between distribution
and step.

model (Version1: β=.17, p>.8; Version 2: β=.17, p>.9), which indicates that participants

did not respond differently to training and testing trials–they had the same boundary

for the training and testing talkers on the first day. This suggests that listeners generalize

learned voicing boundaries to novel talkers.

4.2.2.4 Generalization Trials on Day 2

The models of generalization on day 2 had the same structure as those for day 1.

Because we coded talker-condition according to the training distribution on day 1, the

distribution effect in the model (if any) is expected to have the opposite direction from

that observed for the day 1 models. That is, we have typically expected to see a negativeβ

for distribution because left is coded as 0 and right as 1. On the second day, since we are

coding distribution according to day 1 condition, day 2 distributions are coded as 0 for

right and 1 for left, so a positive β will indicate a distribution shift in the direction of the

day 2 training distributions. The model with random slopes for participants and random
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Table 4.16: Experiment 6 day 2 generalization model.

Coef β SE(β) z p

Intercept 0.69 0.17 4.0 <.0001

Training Distribution 1.39 0.35 4.0 <.0001

Trial-type −0.07 0.21 −0.4 >0.7

VOT Step 0.24 0.01 22.2 <.0001

Distribution x Trial-type −0.97 0.41 −2.4 <.05

Distribution x Step 0.05 0.02 2.1 <.05

Trial-type x Step −0.03 0.02 −1.2 >0.2

Distribution x Trial-type x Step 0.13 0.05 2.6 <.01

Note: The maximum correlation among the fixed factors was r=-.10, between training
distribution and step.

intercepts for continua failed to converge, and including continuum as a random effect

in addition to participants did not improve the fit of the model (χ2(2)=48.21, p<.0001),

so we report the model without the random effect of continuum.

The day 2 generalization model is shown in Table 4.16. There was a main effect of

training distribution (β=1.39, p<.0001) but no effect of trial-type (β=-.07, p>.7). However,

there was also an interaction between distribution and trial-type (β=-.97, p<.02) that we

did not find on the first day. This can be observed in Figure 4.6, where the effect of trial-

type appears to be reversed for the two training distribution conditions. The direction

of the trial-type by distribution interaction is consistent with the training from day 1–

that is, when listeners are re-tested on the day 1 training talker at the end of day 2, they

appear to show boundaries consistent with their training on that same talker on day 1,

rather than the other talker that was trained more recently. Follow-up analyses (Table

4.17) revealed that on day 2, the effect of trial-type was marginal for both groups (R:
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Figure 4.6: Experiment 6 day 2 training and testing trials.
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Table 4.17: Experiment 6 simple effects for day 2 distribution groups.

Coef β SE(β) z p

Right-Shift on Day 2

Intercept −0.07 0.22 −0.3 >0.8

Trial-type 0.40 0.24 1.7 >0.1

Step 0.24 0.02 13.9 <.0001

Trial-type x Step −0.09 0.02 −4.2 <.0001

Left-Shift on Day 2

Intercept 1.51 0.31 4.9 <.0001

Trial-type −0.57 0.34 −1.7 >0.1

Step 0.26 0.02 14.3 <.0001

Trial-type x Step 0.04 0.04 0.8 >0.4

Note: The correlations between the fixed factors were r=-.4 for the right-shifted model
and r=-.03 for the left-shifted model.

β=.40, p<.09; L:β=-.57, p<.1). In both cases the trend was in the direction predicted by

the day 1 training trials.

Therefore, our final analysis examined whether the generalization trials from day

2 had the same boundary as the training trials from day 1. The model with random

slopes for participants and random intercepts for continua failed to converge, and in-

cluding random intercepts for continua in addition to participants improved the fit of

the model (χ2(2)=8.96, p<.003), so this is the model we report.

The day 1 training and day 2 testing comparison model is shown in Table 4.18

and the data are plotted in Figure 4.7. There were no main effects of training distribution

or trial-type, but there was an interaction between distribution and trial-type (β=1.29,

p<.002). Follow-up analyses (Table 4.19) showed an effect of trial-type for the left-shifted

listeners only (L: β=-.67, p<.006; R: Lβ=-.51, p>.1). This suggests that listeners in the

group trained on the right-shifted distribution on the first day may have formed a more
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Figure 4.7: Experiment 6 day 1 training and day 2 testing trials.
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Table 4.18: Experiment 6 day 1 train and day 2 generalization model.

Coef β SE(β) z p

Intercept 0.73 0.30 2.5 <.05

Training Distribution −0.44 0.53 −0.8 >0.4

Trial-type −0.03 0.20 −0.2 >0.9

VOT Step 0.23 0.01 24.5 <.0001

Distribution x Trial-type 1.29 0.41 3.1 <.01

Distribution x Step 0.03 0.02 1.7 >0.1

Trial-type x Step 0.01 0.02 0.4 >0.7

Distribution x Trial-type x Step 0.13 0.05 2.8 <.01

Note: The maximum correlation among the fixed factors was r=.13, between training
distribution and step.

robust representation of that distribution, since they showed the same boundary when

re-tested on that speaker at the end of the second day.

4.2.3 Discussion

In Experiment 6 we aimed to test whether a blocked training design would lead

to generalization across talkers. We found that after a day of training on a single talker

and distribution, listeners showed no difference in categorization boundary between

the trained talker and a second talker introduced to test for generalization at the end of

the session. Similarly, on the second day listeners were able to learn new boundaries

for the second talker, but did not use the same boundary when categorizing speech

from the talker trained in the first day (with a different distribution). Instead, partici-

pants showed categorization boundaries more consistent with their training from the

first day, so the intervening training on the new talker did not overwrite what they had

learned about the first talker. This suggests that it is not blocked training that leads to
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Table 4.19: Experiment 6 simple effects for day 1 training and day 2 testing comparison.

Coef β SE(β) z p

Right-Shift on Day 1

Intercept 0.43 0.30 1.5 >0.1

Trial-type 0.51 0.32 1.6 >0.1

Step 0.23 0.02 14.6 <.0001

Trial-type x Step 0.07 0.04 1.7 >0.1

Left-Shift on Day 1

Intercept 1.06 0.44 2.4 <.05

Trial-type −0.67 0.24 −2.8 <.01

Step 0.22 0.01 17.6 <.0001

Trial-type x Step −0.06 0.02 −2.9 <.01

Note: The correlation between the fixed factors was r=-.33 for the right-shifted model
and r=.018 for the left-shifted model.

generalization across talkers, but rather a lack of talker-specific information. Perhaps

previous experiments that have shown voicing boundary generalization across talkers

have not provided listeners with enough training or the right kind of training necessary

for forming talker-specific representations.

4.3 General Discussion

The experiments in this chapter tested talker-specificity and generalization in

perceptual learning. Like the experiments in Chapter 3, we found evidence for both

generalization and specificity.

In Experiment 5 we found that participants were able to learn talker-specific VOT

distributions, but not when these distributions did not conflict with secondary voicing

cues (e.g. F1). That is, listeners learned talker-specific boundaries when the female-

talker had VOTs shifted towards the voiced end of the continuum, but not when the male
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talker was shifted in that direction. While we discuss this as talker-specific learning, it

also possible that this learning is not truly talker-specific, but applies to groups of talkers

(e.g. male and female). This still suggests that listeners can learn multiple boundaries

for a contrast, and do so automatically in a task that does not require them to do so. Crit-

ically, this is difficult to accommodate in models in which talker compensation occurs

prior to recognizing a phoneme or feature of some kind.

In Experiment 6 we found that listeners generalize learned voicing boundaries

to novel talkers but retain talker-specific boundaries once they are learned. That is, lis-

teners generalized boundaries learned on day 1 to a novel talker, but on day 2, learned

a new boundary for the novel talker. When re-tested on the initial talker, boundaries

were more consistent with the training from that talker rather than the more recently

trained talker. This suggests that the more recent training on the second talker did not

overwrite the initial training for the original talker, and that listeners can retain talker-

specific boundaries even after prolonged exposure to other talkers.

The results of these experiments share some similarities with previous studies on

perceptual learning, but also some differences. While talker-specific learning for voicing

boundaries has been shown using tasks that require talker identification (Allen & Miller,

2004; Theodore & Miller, 2010), perceptual learning studies using the lexical-feedback

paradigm have shown that voicing boundaries are generalized across talkers (Kraljic &

Samuel, 2006, 2007). Perhaps listeners in these studies did not receive enough exposure

to the initially trained talker to form a robust, talker-specific voicing boundary.

As discussed previously, the combination of specificity and generalization is a

more complicated pattern than those predicted by most models of speech perception,

and one that many models may not be prepared to handle. Theories that posit abstract

representations of speech input (such as TRACE and Merge) are well-equipped to han-

dle generalization across talkers, but not talker-specificity. Theories that posit veridical
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storage of speech input (such as exemplar theory) are well-equipped to handle talker-

specificity, but the degree to which listeners should generalize across talkers is some-

what unclear. It is unlikely that these models could accommodate both generalization

and talker-specificity for the same two talkers, which was the pattern of results that we

observed.

Both parsing and dual-route models may be able to handle this pattern of results

in different ways. Dual-route models could allow for both generalization and specificity

with one pathway involving abstract talker-specific representations, and another path-

way without this type of abstraction. It is logical that the abstraction pathway would

involve abstraction across different types of variability (words, place of articulation, talk-

ers), and the other direct pathway would be an exemplar-type route. This second path-

way could accommodate talker-specific learning via direct connections between cues

and words.

Parsing models could show the same pattern if listeners could conditionalize

voicing categorization on talker when talker-specific representations were available. When

such representations were not available (as with a novel talker), boundaries would gen-

eralize across talkers. Talker-specific representations could be stored in feedback con-

nections between talkers and individual cues, and listeners could use these represen-

tations to re-code cue values on the basis of individual talkers. When encountering a

novel talker such talker-specific representations would not be available and listeners

would generalize on the basis of the category.

Either way, the results of our experiments on talker-specificity and generalization

across talkers suggest that listeners are sensitive to and take advantage of differences be-

tween talkers when processing speech. Many models of speech perception do not reflect

this sensitivity and should strive to incorporate the use of talker-specific information in

the future.
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CHAPTER 5
GENERAL DISCUSSION

The experiments in this dissertation had four specific aims. In the first part of

this discussion I will review those aims and our results. In the next section I will address

the shortcomings of our data. In the third section I will discuss the ways in which our

results conflict with previous studies on perceptual learning, and possible reasons for

our results being different. Next I will talk briefly about how our unsupervised learning

paradigm may be related to developmental processes. Finally, and most importantly, I

will discuss the implications of our results for theories and models of speech perception.

5.1 Specific Aims and Results

1) To test whether perceptual learning in speech is phoneme-specific. In Ex-

periment 2, we found that listeners are able to learn multiple voicing boundaries for

different pairs of phonemic contrasts relying on the same feature contrast. This sup-

ports phoneme-specificity in perceptual learning. For example, listeners can learn that

the boundary for /b/ to /p/ continua was shifted to the left of that for /d/ to /t/ con-

tinua. The opposite shifts did not appear to be learnable, possibly because of secondary

voicing cues that we did not (and could not) manipulate—the lower F2 of a /b/ and

higher F2 of a /d/ are inherent to place of articulation. Listeners may not be able to

learn all boundary shifts equally well because they conditionalize on secondary cues.

Experiment 3 also provides support for phoneme-specific learning–boundaries for gen-

eralization trials on day 2 were consistent with the boundaries trained for each place of

articulation.

2) To assess the degree of generalization to different phonemic contexts that

rely on the same feature contrast. In Experiment 3, we found that listeners general-

ize voicing boundaries to untrained continua with the same onset as the trained con-
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tinua. For example, a boundary learned in the context of beak/peak will generalize to

beach/peach. Listeners can also generalize learned boundaries to continua with differ-

ent onsets (like dart/tart), but only do so if they have not already learned a different

boundary for other continua (like dime/time) with this onset. If listeners have experi-

ence with a boundary for a particular phonemic contrast, they retain that boundary and

apply it to other continua with matching onsets. Generalization occurs when listeners

do not have this type of experience.

3) To test whether perceptual learning can be specific to particular words. Ex-

periment 4 found that listeners can learn different voicing boundaries for continua with

the same CV onset. For example, the boundary for beach/peach can be shifted to the

left while the boundary for beak/peak is shifted to the right. This suggests there is some

degree of lexical-specificity in perceptual learning.

4) To test whether spontaneous talker-specific perceptual learning can be ob-

served task that does not emphasize talker identification. Listeners in Experiments 5

and 6 learned different voicing boundaries for multiple talkers even though they were

not given explicit instructions to pay attention to talker differences. In Experiment 5 ex-

posure to the two talkers was simultaneous (with trials for both talkers randomly mixed

on both days), while in Experiment 6 exposure to the two talkers was blocked by day,

with listeners hearing a single talker and distribution on each day. In both cases, listen-

ers were able to learn talker-specific boundaries (although in Experiment 6 they gen-

eralized these boundaries when they had experience with only a single talker), and the

talker-specific learning occurred even though our unsupervised perceptual learning paradigm

did not require listeners to use multiple boundaries.

5) To test whether sequential versus simultaneous talker training affects the

degree of talker-specificity in learning. Generalization in Experiment 6 was related to

previous experience with a talker, not to training structure. Listeners with no exposure
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to a new talker generalized a learned boundary to that talker, but listeners with previous

experience with a talker retained that talker’s boundary even after extensive exposure

to a second talker. The blocked training in Experiment 6 appeared to be more powerful

than the simultaneous training in Experiment 5, as it overcame the effect of secondary

cues (F0 and F1).

5.2 Shortcomings in the Data

While the global pattern just described largely supports our hypotheses (and

challenges current models of speech perception) there were some more idiosyncratic

results. The best example of this was in Experiment 2 on phoneme-specific learning.

Listeners were able to learn different boundary shifts for continua beginning with bi-

labial onsets and coronal onsets (both distinguished by voicing), but the participants

who learned the left-shifted boundary for labial items (and the right boundary for coro-

nal items) were responsible for effect–the other group showed no boundary difference

between the two distributions. A likely explanation for this is that our continua con-

tained secondary cues to voicing that indicated a boundary more on the left for the

bilabial continua, and on the right for the coronal continua. These cues are inherent

to place of articulation: bilabials, for example, have lower F2 onset transitions (a cue

to voicing), while coronals have higher F2 onsets (a cue to voicelessness). Thus, in

some conditions we were asking listeners to learn to use F2 in a completely reversed

way (higher F2s/coronals leads to more voiced sounds). When asking participants to

learn such conflicting distributions they were able to shift the boundaries only enough

that they matched the boundaries instead of reversing them. This alone is intriguing as

in typical, untrained, performance, listeners show a d/t boundary to the right of the b/p

boundary (Sawusch & Pisoni, 1974). However, it also suggests that perceptual learning

may not always overcome inherent differences in the stimuli on which the new bound-

aries may be conditionalized.
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An alternative possibility is that listeners have an innate or a priori constraint

that does not allow coronal voicing boundaries to be shifted to the left of bilabial voicing

boundaries. We prefer the previous account to the constraint-based account because it

provides a more explanatory mechanism. If there were to be such a constraint, where

would it come from? If the constraint were learned, would this be particularly different

from the previous account, which relies on learned cues to voicing? In fact, our sec-

ondary cue account could serve this same stabilizing role, without the need to resort to

innate constraints on learning.

Similarly, in the Experiment 5 (the talker-specific learning experiment), we found

that listeners only learned two different boundaries when the female talker was heard

with the left distribution and the male with the right. The same explanations can also

account for these results. Males have lower F1 and F0 values (cues to voicing) than fe-

males. This might make it difficult to shift male talker voicing boundaries such that

more VOT values are identified as voiceless while shifting female voicing boundaries in

the opposite direction. Intriguingly, in Experiment 6, in which listeners were trained on

the two distributions and talkers on separate days, both groups of participants were able

to learn the two different boundaries. This suggests that blocked training may allow lis-

teners to more effectively track the distributions for individual talkers. A similar effect

has been observed for listeners learning Mandarin tone contrasts, where at least some

listeners benefit from reduced trial-by-trial variability (Perrachione, Lee, Ha, & Wong,

2011). Perhaps more broadly, Experiment 6 makes it clear that listeners can learn more

difficult boundary shifts with sufficient or more effective training. This makes an innate

constraint-based account of their inability to learn boundary shifts in particular direc-

tions less plausible. This could only account for our results of listeners can un-learn

constraints, which would make it difficult to distinguish between the learned cues to

voicing and constraint-based accounts of the data.
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While interleaved training typically leads to more robust learning in other do-

mains, perhaps it is worse in this case because blocking allows listeners to implicitly

down-weight the irrelevant secondary cues which are more salient during interleaved

training. Our suggestion that learning is better when exposure to the two talkers is

blocked relies on the learnability of of the boundary shifts for both the male-left and

female-left conditions. While blocking may facilitate acquisition of difficult boundary

shifts, it may not have a positive effect on the magnitude of the boundary shifts observed–

we have not done a direct comparison of the distribution effect in the two different ex-

periments, but contextual interference predicts that the shifts should be smaller in the

blocked condition.

At a broader level, the presence of these secondary cues (which may exert an im-

portant limitation on learning) is not just an artifact of stimulus construction–coronals

have higher F2s than labials and men have lower F1s and F0s than women. This has

important consequences for the types and directions of boundary shifts that are likely

to be learnable, both in laboratory experiments and more typical real-world settings.

While we have referred to talker-specific learning throughout our discussion of

our results, our data do not distinguish between boundaries that apply to specific sub-

groups of talkers or truly talker-specific boundaries. Since we had a male and female

talker, it is impossible to know from our experiments if listeners can only learn one

boundary that applies to all female talkers and another that applies to all male talk-

ers, or it they can learn multiple boundaries for talkers of the same gender. Other ex-

periments suggest that listeners can do talker-specific boundary learning for talkers of

the same gender (Allen & Miller, 2004; Theodore & Miller, 2010), but this remains to

be demonstrated with our paradigm. We predict that listeners can learn talker-specific

boundaries in this paradigm, although they may require additional training. Blocking

the exposure to the two talkers may be more effective, as we saw in Experiment 6. Cru-
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cially, however, this does not undermine the broader theoretical implications of these

experiments: although listeners may have learned boundary shifts for groups of talkers

rather than individual talkers, this still supports our assertion that listeners employ spe-

cific boundaries (either talker-specific or group-specific) in certain circumstances, and

more general boundaries in others.

5.3 Conflicts with Previous Studies

A number of our results conflict with those of previous experiments on percep-

tual learning in speech perception. These studies have almost entirely used the lexi-

cally driven learning paradigm in which an ambiguous sound is disambiguated by lex-

ical context, thereby shifting the category boundary so that the previously ambiguous

sound is included in the appropriate category. In these studies, lexical feedback pro-

vides an implicit error signal for what category the ambiguous sound must belong to.

While we have referred to this as supervised learning, it is not a typical form of super-

vised learning since listeners receive no external error signal telling them whether their

decisions were correct or incorrect. However, lexically supervised learning still contrasts

with our unsupervised or distributional paradigm, in which tracking how frequently dif-

ferent VOT values occur is sufficient to drive a boundary shift. The conflicts between our

results and previous studies suggest that previously hypothesized limits on perceptual

learning in speech perception may need to be relaxed.

First, in Experiments 2 and 3 we found that listeners were able to learn different

boundaries for two different types of stop-voicing continua (e.g. coronal and labial on-

sets), while previous studies have shown only generalization across these types of con-

tinua. For example, Kraljic and Samuel (2006) found that listeners exposed to ambigu-

ous /d/ or /t/ sounds also generalized learned boundary shifts to a /b/ to /p/ con-

tinuum. This is consistent with our results in Experiment 3: on the first day of the

experiment, listeners generalized the coronal or labial boundaries they learned to the
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untrained continua types. However, when listeners are trained on two different bound-

aries, we find that they can learn both. This may be a limitation of what previous stud-

ies have tested rather than a limitation of the lexical-feedback paradigm–there’s no rea-

son to think that listeners trained in the lexical-feedback paradigm used by Kraljic and

Samuel (2006) might not also be able to learn more specific boundaries if they had ex-

posure to multiple boundaries shifted in opposite directions.

Secondly, we found talker-specific perceptual learning for stop consonant voic-

ing boundaries, even when exposure to the two talkers was blocked. Previous studies

have shown generalization across talkers (Kraljic & Samuel, 2006, 2007). Since these

studies also used talkers of opposite genders, the difference in results is unlikely to be

due to higher similarity between talkers in the previous experiments. Kraljic and Samuel

(2006) suggested that listeners learn talker-specific boundaries for spectral contrasts

(like fricative voicing) and generalize across talkers for temporal contrasts (like stop con-

sonant voicing, for which VOT is the primary cue). We failed to find any support for this

pattern of results since our listeners were able to learn talker-specific boundaries for

stop-voicing contrasts as well. Since unsupervised learning is typically considered to be

less powerful than supervised learning, it is surprising that we observed talker-specific

learning in our unsupervised paradigm, while Kraljic and Samuel (2007) did not find

talker-specific learning using lexically-supervised learning. As listeners in the Kraljic

and Samuel (2007) study were trained on different boundaries for the two talkers, it can-

not be a complete lack of experience with a talker that leads to generalization across

talkers. However, listeners in our study had much more experience with each talker,

which may have led to more robust representations of each talker’s boundary, despite

the differences in training paradigm.

Finally, we found perceptual learning for shifted boundaries at the onset of words,

while other studies have failed to show perceptual learning for boundary shifts when the
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critical segments are heard at word onset. Jesse and McQueen (2011) used the lexical-

feedback paradigm and compared learning when the ambiguous segments were heard

word-finally (as in Norris et al. (2003)) or word-initially. While listeners showed evidence

of boundary shifts when the ambiguous segments were heard word-finally, they did

not have shifted boundaries when ambiguous segments were heard word-initially. In

contrast, we found that unsupervised perceptual learning is capable of driving bound-

ary shifts for word-initial segments. This is one way that our unsupervised learning

paradigm may be more powerful than the lexical-feedback paradigm.

It is likely that our paradigm is more powerful due to the increased number of

exposure trials that listeners get. The lexical-feedback paradigm provides more infor-

mation in a single trial than our distributional learning paradigm, which requires lis-

teners to track distributions over a number of trials, but even so the difference in trial

numbers is striking. Participants in Kraljic and Samuel (2007) heard 20 critical trials for

each talker, but participants in Experiment 6 (the blocked talker experiment) heard 264

critical trials per talker. Our increased exposure time may also be responsible for driving

boundary shifts for segments at word-onset, although the lack of effect in the lexical-

feedback paradigm could also be due to the source of information driving the boundary

shift. Lexical items are more active by the time listeners reach the final phoneme than at

word onset. When the ambiguous segment is encountered word initially, listeners may

struggle to retain the information until they have built up the lexical activation neces-

sary to disambiguate the segment. When the ambiguous sound is word final, this is not

a problem. This provides an alternative explanation for why listeners in our distribu-

tional learning paradigm are able to learn boundary shifts for word-initial sounds: these

boundary shifts are not driven by lexical feedback. While it remains to be seen whether

some types of learning we found can also be supported by other training paradigms, an-

other advantage to unsupervised learning is that it maps onto what children are likely to
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do during development.

5.4 Learning and Development

In our studies, participants learned phoneme boundaries by tracking the distri-

butional statistics of the input. This fits well with theories of learning in infancy (e.g.

Maye et al., 2002; Maye, Weiss, & Aslin, 2008; McMurray, Aslin, & Toscano, 2009; Kuhl,

2004). Very young infants lack the lexical or phonotactic knowledge that is needed as an

error signal for supervised learning, and yet it is clear that significant speech develop-

ment occurs over the first year of life (e.g. Werker & Tees, 1984; Kuhl et al., 2006; Werker

& Curtin, 2005). This makes unsupervised learning an attractive candidate mechanism

for infant speech category development: infants could track how frequently different

values along a given cue dimension occur (e.g. VOT values), and then use the clusters

to form categories (e.g. voiced and voiceless). If infants do use this mechanism to ac-

quire sound categories then the same mechanism might also be used to adjust these

categories during adulthood.

Although we do not have evidence that the perceptual learning observed in our

experiments is driven by the same learning mechanism used by infants, we do not have

a reason to believe that it must be a different mechanism either. The simplest expla-

nation is that listeners take advantage of all sources of information that are available to

them. For infants, this may mean relying on distributional statistics. For adults, this

mechanism may continue to be available in addition to others that become available as

listeners acquire more knowledge necessary to take advantage of other types of infor-

mation.

Although adults may use learning mechanisms beyond those available to infants,

our studies suggest that unsupervised learning allows adults, and likely infants as well,

to track highly specific distributional information. For example, infants may be able to

track distributions specific to both talkers and lexical items, something that has not yet
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been tested during infancy. However, if infants are tracking such highly conditionalized

statistics, it is not clear how they could be developing robust context-invariant phono-

logical categories using this mechanism alone, as a number of researchers have sug-

gested (Werker & Curtin, 2005; McMurray et al., 2009). On the other hand, perhaps in-

fants do not have or need such categories, and rely on an exemplar-type route to speech

processing. Perhaps the phonological route does not develop until later, possibly when

children are learning to read.

5.5 Implications for Theories of Speech Perception

Most importantly, these experiments on both specificity and generalization of

perceptual learning are critical to our understanding of the types of abstract units and

the levels and pathways of processing in the speech perception system. Previous per-

ceptual learning studies have generalization across factors like talker and phoneme and

have used this to argue in favor of abstract units, suggesting that if listeners generalize

a boundary shift along a b/p continuum to a d/t continuum as well, they must have ad-

justed the mappings between VOT and voicing features rather than specific phonemes

(McQueen et al., 2006; Cutler, 2010; Cutler et al., 2010). Tests of specificity, however, pro-

vide a stronger test of abstraction, in that phoneme- or talker-specific learning should

not be possible if speech perception is mediated by units of this sort. Thus, we should

not interpret generalization as indicating that more specific learning is impossible.

Models of speech perception posit categorization at different points in process-

ing, making the issue of abstraction contentious. Prototype models like TRACE and

MERGE have abstract units that allow for categorization of speech information before

it reaches the lexicon. As a result, if a listener learns that the b/p boundary should be

shifted left in the context of beach/peach, they will have to generalize this to all other

words (since this learning occurs in the mapping between VOT and phonemes). In con-

trast, exemplar models have no abstraction, even at the level of the lexicon. As a result,
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each word can be mapped quite independently to continuous speech cues like VOT,

allowing for a high degree of specificity. By testing the level of specificity with which lis-

teners are able to learn different voicing boundaries, we have sought to determine the

level of abstraction found within the perceptual system.

The experiments presented here found evidence in favor of both specificity and

generalization in perceptual learning. Listeners were able to learn voicing boundaries

that are specific to 1) both talkers (or perhaps categories of talkers), 2) both places of

articulation, and 3) even individual lexical items. However, at the same time, they also

generalized boundaries to new talkers and new places of articulation (and by extension,

new words). This generalization occurred when listeners did not have prior exposure to

the stimuli that informed them of a different boundary location.

Since models of speech perception typically have abstract units or do not, this

combination of specificity and generalization is not a pattern of results that many mod-

els are prepared to handle. Models that are able to accommodate these results do so

by providing multiple ways of mapping low-level cues (like VOT) onto higher-level ele-

ments (such as words). This can be done with a variety of different mechanisms.

ART (Grossberg et al., 1997; Grossberg, 2003; Goldinger & Azuma, 2003) is one

model that should be able to handle both talker-specific and lexically-specific informa-

tion. One of its unique characteristics is that it has no defined units or connections.

During speech processing, the perceptual system eventually reaches a state of resonance

for a particular unit (which could be a phoneme, syllable, or word). Task demands can

change the relative weighting of top-down and bottom-up information, thereby affect-

ing the size of the units able to achieve resonance. In tasks demanding lexical-specificity,

for example, lexically specific information should play a larger role and allow listeners

to make categorization judgments specific to individual lexical contrasts. In other situa-

tions, features or phonemes might play a larger role, leading to generalization. Although



167

ART should be able to account for a wide variety of results in different circumstances, it

may also be more flexible than human listeners. It is difficult to know whether it would

show our pattern of results without running simulations.

Parsing models like C-CuRE (McMurray & Jongman, 2011; Cole et al., 2010; Mc-

Murray et al., 2011) can accommodate both specificity and generalization because they

allow listeners to parse information with different sources of variability depending on

experience. For example, listeners exposed to a single talker may adjust their cate-

gorization boundaries based on global characteristics like the task context, since this

situation provides no evidence that talker-specific representations are necessary. If a

second talker is introduced, then generalization will occur. Listeners exposed to mul-

tiple talkers, however, may track talker-specific characteristics. This might allow lis-

teners to conditionalize cue values based on talker-specific representations, leading to

talker-specific categorization judgments. Critically, these talker-specific representations

would be stored in the feedback connections between talkers and individual cues (used

to recode cue-values on the basis of talker), allowing the model to also use (and gen-

eralize) a single bottom-up category. While this architecture should be able to account

for our pattern of results, this implementation requires us to make some specific archi-

tectural assumptions that were not a part of C-CuRE’s original instantiation, which left

C-CuRE’s architecture unspecified.

A dual-route model is transparent in the way it provides multiple pathways for

mapping cues to categories, which is an advantage it has over the other models with

alternative mechanisms. Like TRACE, there is one pathway from cues to words that

makes use of sub-lexical abstract units, a sort of “phonological” pathway. However, un-

like TRACE the dual-route model has an additional pathway directly from cues to words

with no intermediate abstraction. The first pathway allows for generalization on the ba-

sis of abstract units. Feature-like units, for example, would allow listeners to generalize
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a shifted b/p/ boundary to other contrasts that rely on the same cues, like the d/t or g/k

voicing contrasts. This pathway would also allow listeners to generalize across talkers,

assuming the abstract units were not talker-specific. The second pathway directly from

cues to words would allow for more specific boundary learning, like talker-specific or

lexically specific boundaries. Having two routes may be advantageous because a direct

route might be faster or more efficient for typical speech perception, but a phonological

route would allow for processing of non-words, metalinguistic task performance, and

generalization across talkers when encountering a novel talker.

While a number of approaches to speech perception can potentially accommo-

date our findings that listeners can show both specificity and generalization for talkers

and lexical contrasts, other models will require modification. The different mechanisms

used by the dual-route model, parsing models, and ART may have varying degrees of

compatibility with other models of speech perception. For example, TRACE and MERGE

could be fairly compatible with the dual-route model since they already have defined

pathways and units that could instantiate one of the two routes—these defined units

and connections are incompatible with ART, which is designed to function without spe-

cific units and connections.

The high degree of learning specificity encountered in these experiments sug-

gests a certain arbitrariness to the learning, which is to say that this learning may not

be specific to speech perception. Perhaps listeners could learn different distributions

of associated with different colored backgrounds instead of different talkers. Although

colored backgrounds are not related to speech stimuli in any obvious way, the speech

perception system would still need to have some representation of voicing for these col-

ored backgrounds to have an effect on voicing continua. While the results of these ex-

periments may be due to a more general learning process not specific to speech, they

clearly indicate what representations must be present in the speech processing stream.
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5.6 Conclusion

While there have been many previous studies on the generalization of perceptual

learning, the inverse issue of specificity has been relatively neglected. The experiments

presented here contribute to filling this gap. While generalization is an important aspect

of perceptual learning for speech, a degree of specificity is also critical—without speci-

ficity, listeners would be unable to cope with individual variability or adapt to multiple

dialects or accents. We have found evidence that listeners can learn voicing boundary

shifts that apply only to specific talkers (or groups of talkers), places of articulation, and

lexical contrasts, as well as generalizing across both talkers and place. This suggests

that the speech processing system has mechanisms that allow for both specificity and

generalization of learning, a feature shared by only a small subset of models. Speech is

so noisy and context dependent that perhaps the only way to reliably perceive speech

is for listeners to retain flexibility while simultaneously being able to generalize as the

situation demands.
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APPENDIX A
EXPERIMENT 2A

The experiment reported in this Appendix was the first attempt to get at the

question better answered by Experiment 2. Experiment 2A was meant to test phoneme-

specific boundary learning and was run before Experiment 2. As is reported below, the

results were inconclusive. There was little indication of learning but we thought it possi-

ble that this was because the learning context emphasized only voicing and not place of

articulation (the other feature that distinguished the two VOT distributions). The exper-

iment was re-designed (Experiment 2) to provide listeners with a reason to pay attention

to place as well as voicing.

Experiment 2A addresses Aim 1: to test phoneme-specific perceptual learning.The

Introduction and Chapter 3 discuss this possibility and the theoretical implications of

this type of learning in more detail. The goal was to expose listeners to conflicting dis-

tribution shifts in different phonemic contexts relying on the same feature contrast. For

example, voicing is used to distinguish between /b/ and /p/ as well as /d/ and /t/. We

wanted to see if listeners could shift the boundary between the bilabial sounds in one

direction and the boundary between the coronals in the opposite direction. If listeners

can learn different category boundaries for these two contrasts, it would indicate that

these boundaries are not being learned at the feature level.

A.1 Method

A.1.1 Design

Experiment 2A tested whether listeners can show evidence of phoneme-specific

boundary shifts driven by unsupervised perceptual learning. Voicing continua with one

onset place (e.g. bilabial) were shifted to the left and voicing continua with another

onset place (e.g. coronal) were shifted to the right. The shift direction for each place
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Table A.1: Experiment 2A stimulus items.

/b/ or /d/ /p/ or /t/ /l/ /r/

beach peach lace race

bin pin lake rake

bug pug lei ray

bear pear lock rock

dart tart lamp ramp

deer tear lane rain

dime time leaf reef

dent tent list wrist

of articulation was counterbalanced across participants. We used four continua (each

with a different vowel) for each place of articulation. The words at the endpoints of these

continua are shown in Table A.1 along with the filler items that were used in this exper-

iment. Each set of experimental and filler items was kept constant across participants

and only the male talker was used for this experiment.

For the distribution shift manipulation, the left and right distributions were cen-

tered at the same steps used in Experiments 1 and 2, but the number of repetitions at

each step was modified to accommodate the different number of continua used. Like

the distributions in Experiment 2, both of the distributions extended the full width of

the VOT range. The number of exemplars presented at each VOT step for the two dis-

tributions is shown in Table A.2. Distributions were applied across the four continua at

each place of articulation.

Participants completed a total of 320 critical trials per day, 160 critical trials in

each distributions/place of articulation. These were split evenly between the four con-
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Table A.2: Experiment 2A VOT distributions.

VOT Step -30 -20 -10 0 10 20 30 40 50 60 70 80

Left-Shifted Distribution 3 18 34 18 4 4 18 34 18 3 3 3

Right-Shifted Distribution 3 3 3 18 34 18 4 4 18 34 18 3

tinua at each place, so there were 40 critical trials per continuum in each distribution.

There were an equal number of filler trials for each item set that were split evenly be-

tween the /l/ and /r/ fillers. The 320 experimental and 320 filler trails totaled 640 trials

per session. The experiment has two sessions held approximately a week apart (1280

trials all together). Listeners heard the continua shifted in the same direction on the

second day as they had on the first.

A.1.2 Participants

Participants were 23 individuals from the University of Iowa community who

participated in the study in exchange for course credit or pay. All participants were

monolingual native English speakers who reported normal hearing and normal or corrected-

to-normal vision. Informed consent was obtained in accordance with University and

APA standards. 21 participants completed both sessions of the study, and 2 participants

completed only one session. These 2 participants were excluded from analysis.

A.1.3 Stimuli

A.1.3.1 Auditory Stimuli

Auditory stimuli consisted of eight twelve-step VOT continua ranging from -30 to

80ms. Four continua were from /b/ to /p/ and the remaining four were from /d/ to /t/.

Four of the continua were used in previously reported experiments. The beach/peach

and bin/pin continua were used in Experiment 1, and the dart/tart and deer/tear con-
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Table A.3: Experiment 2A bilabial VOT measurements.

beach/peach bin/pin bear/bear bug/pug

-32 -29 -31 -32

-23 -19 -22 -24

-12 -10 -13 -8

0 0 0 0

10 9 7 9

21 20 18 19

31 30 29 29

41 40 40 39

51 50 50 50

61 60 60 60

71 71 70 70

80 80 80 80

tinua were used in Experiment 2. The remaining continua were new and were created in

the same manner as the other continua, by cross-splicing recordings of natural speech.

The recording and cross-splicing methods used to create the stimuli are described in

Chapter 2. The same male speaker was recorded for the new continua. The recordings

were made in the same location as the other continua and we tried to match the record-

ing levels as closely as possible. VOT measurements for completed continua are listed

in Tables A.3 and A.4.

The stimuli were piloted by six lab members using the same procedure as the

stimuli in Experiment 1. On each pilot trial participants used a key press to identify the

given stimulus as beginning with /b/ or /p/ for the bilabial continua, or /d/ or /t/ for
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Table A.4: Experiment 2A coronal VOT measurements.

dart/tart deer/tear dent/tent dime/time

-30 -30 -32 -33

-17 -20 -24 -23

-9 -12 -15 -9

0 0 0 0

10 10 10 10

20 20 20 20

30 30 30 30

40 40 40 40

50 50 50 50

60 60 60 60

70 70 70 70

80 80 80 80
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the coronal continua. The two types of continua were piloted in separate blocks. Each of

the stimulus items was repeated three times. At the voiced endpoint, listeners correctly

identified the stimulus as a /b/ or /d/ on 100% of the trials. At the voiceless endpoint

they identified the stimulus as a /p/ or /t/ on 98.3% of the trials. The point at which

the identification functions crossed 50% was between steps 6 and 7 for all of the bilabial

continua, and between 6 and 8 for the coronal continua.1

A.1.3.2 Visual Stimuli

Pictures representing each item listed in Table A.1 were constructed using the

same picture norming technique described for Experiment 1. Images that were included

in previous study were re-used here. The final images were approved by the author and

thesis supervisor.

A.1.3.3 Procedure

The procedure was identical to that used in Experiment 1. An Eye-Link-II head-

mounted eye-tracker was calibrated to each participant before the beginning of the ex-

periment. Following calibration, participants read the instructions for the experiment

and practiced the drift-correct procedure.

On each trial, participants were presented with four images from an item set, two

experimental and two filler (e.g. dent, tent, list, and wrist). They saw one image in each

corner and a red dot in the middle of the screen. After 500ms the dot turned blue. When

participants clicked on the blue dot they heard the auditory stimulus for the trial over

headphones. They clicked on the corresponding image and moved on to the next trial.

Participants’ eye-movements were recorded by the Eye-Link II but eye-movement data

was not analyzed.

1The dart/tart and dime/time continua crossed the 50% point between steps 6 and 7 and the
deer/tear and dent/tent continua crossed the 50% point between steps 7 and 8.
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A.2 Results

A boundary shift is predicted such that categorization data for words trained on

the left distribution (either bilabial or coronal onset) will have a boundary shifted to-

wards the left while data for the other words (those trained on the right distribution) will

show a boundary shifted towards the right.

The structure of the results section mirrors that used for previous experiments,

where each section addresses a different question. The same mixed-effects modeling

strategy is also employed. The first part of the results section addresses overall task per-

formance and the second section assess perceptual learning of shifted boundaries over

the course of the experiment.

A.2.1 Task Performance

Mouse-click responses were first examined to assess overall performance on the

task. On experimental trials where the stimulus began with a /b/ or /p/, participants

clicked on a filler item on only .13% of the trials, which indicates that they were paying

attention to both the auditory and visual stimuli. Performance on the unambiguous

endpoints of the continua was also high. On the voiced side (-30 to -10 ms), participants

selected the /b/ image for 99.8% of the bilabial trials and the /d/ image for 99.7% of the

coronal trials. On the voiceless side (60 to 80 ms), participants selected the /p/ image

for 99.9% of the bilabial trials and the /t/ image for 97.9% of the coronal trials.

A.2.2 Perceptual Learning

The most critical analysis concerns learning of the shifted distributions. Re-

sponse (voiced or voiceless, coded as 0 or 1 respectively) was the dependent variable.

VOT step, distribution, and day were fixed factors coded and centered as in previous

experiments. Participant and continuum were treated as random-effects. The random

slopes models failed to converge and adding random intercepts for continua as well im-
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Figure A.1: Experiment 2A distribution effect.

proved the model fit (χ2(2)=254.21, p<.0001), so we selected this model.

The perceptual learning model with the best fit to the data is reported in full in

Table A.5. The model showed a main effect of distribution (β=-.40, p<.004) in the di-

rection predicted by the distribution manipulation. There was also a distribution by

half interaction (β=.56, p<.01) indicating that the distribution effect was larger in the

second halves of the experiment sessions. While these effects were promising, we were

concerned that they did not match our plots of the data, which seemed to show a distri-

bution effect in the wrong direction (Figure A.1).
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Table A.5: Experiment 2A perceptual learning model.

Coef β SE(β) z p

Intercept 0.12 0.39 0.3 >0.8

Distribution −0.40 0.14 −3.0 <.01

Day 0.33 0.11 3.1 <.01

Half 0.35 0.11 3.2 <.01

VOT Step 0.25 0.01 39.2 <.0001

Distribution x Day −0.02 0.22 −0.1 >0.9

Distribution x Half 0.56 0.22 2.6 <.01

Day x Half −0.30 0.22 −1.4 >0.2

Distribution x Step 0.04 0.01 2.9 <.01

Day x Step 0.03 0.01 3.0 <.01

Half x Step 0.04 0.01 3.6 <.001

Distribution x Day x Half −0.01 0.43 0.0 >1

Distribution x Day x Step 0.02 0.02 0.7 >0.5

Distribution x Half x Step 0.06 0.02 2.4 <.05

Day x Half x Step −0.09 0.02 −3.7 <.001

Distribution x Day x Half x Step −0.01 0.05 −0.3 >0.8

Note: The maximum correlation between the fixed factors was r=.18, between distribu-
tion and step.
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Table A.6: Experiment 2A place condition model.

Coef β SE(β) z p

Intercept 0.17 0.21 0.8 >0.4

Distribution 0.44 0.20 2.2 <.05

Condition −0.59 0.35 −1.7 >0.1

VOT Step 0.25 0.01 39.2 <.0001

Distribution x Condition 4.13 0.68 6.1 <.0001

Distribution x Step 0.05 0.01 3.7 <.001

Condition x Step 0.03 0.01 2.4 <.05

Distribution x Condition x Step 0.19 0.03 6.9 <.0001

Note: The maximum correlation between the fixed factors was r=.14, between distribu-
tion and step.
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Figure A.2: Experiment 2A distribution by place condition.
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Table A.7: Experiment 2A simple effects for place condition.

Coef β SE(β) z p

Bilabial Left

Intercept 0.63 0.25 2.5 <.05

Distribution −2.71 0.44 −6.2 <.0001

VOT Step 0.22 0.01 18.7 <.0001

Distribution x Step −0.10 0.02 −4.4 <.0001

Coronal Left

Intercept 0.02 0.24 0.1 >0.9

Distribution 1.43 0.34 4.2 <.0001

VOT Step 0.25 0.01 34.4 <.0001

Distribution x Step 0.09 0.02 5.9 <.0001

Note: The correlations in the models were r=-.22 for the bilabial left condition and r=.16
for the coronal left condition.

To determine why this was the case we ran an analysis on the effect of place con-

dition (which place was shifted to the left). Bilabial left was coded as 0 and coronal left

as 1. We collapsed across day and half to simplify this model (reported in Table A.6).

We found a significant effect of distribution (β=.44, p<.03) and an interaction between

distribution and condition (β=4.13, p<.0001). The interaction, illustrated in Figure A.2,

indicated that the distribution effect was reversed between listeners in the two place

conditions: listeners who heard bilabials shifted left showed a boundary difference in

the predicted direction, while listeners who heard coronals shifted left showed a rever-

sal. Follow up analyses (Table A.7 confirmed that both these effects were significant

(Bilabials: β=-2.71, p<.0001; Coronals: β=1.43, p<.0001).
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A.3 Discussion

Experiment 2A aimed to test phoneme-specific learning. While we found that

participants did show boundary differences between the continua with different onsets,

these did not seem to be due to training as half of the listeners showed boundaries op-

posite the distributions they were trained on. We thought that listeners might be more

successful in learning the boundary shifts if we re-designed the experiment so that they

would need to pay attention to place as well as voicing in order to perform the task. This

was Experiment 2, described in Chapter 3.



182

APPENDIX B
EXPERIMENT 4A

The experiment reported in this Appendix was the first attempts to get at the

question better answered by Experiment 4, which tested word-specific boundary learn-

ing. The initial design (Experiment 4A) had a similar problem to Experiment 2A, in that

participants had little reason to pay attention to lexically specific information. Since we

had already run and thought about the results of Experiment 2A, we were able to more

quickly move to a new version of this experiment, which is why Experiment 4A has so

few participants.

Experiment 4A addresses Aim 3: to test whether word-specific perceptual learn-

ing is possible. The Introduction and Chapter 3 discuss this possibility and the theoreti-

cal implications of this type of learning in more detail. The goal was to expose listeners

to some words with a VOT distribution shifted to the left, and other words with distribu-

tions shifted to the right. Critically, both sets of words shared the same consonant-vowel

(CV) onset. If listeners can learn VOT distributions that apply to individual words, then

they should show different category boundaries for words in the two different distribu-

tions.

B.1 Method

B.1.1 Design

Experiment 4A participants heard words with the same CV onset shifted in oppo-

site directions. For each participant, half of the continua were heard with VOTs from the

left distribution (the left-shift words) and the other half from the right distribution (the

right-shift words). Table B.1 shows the experimental and filler words used for the ex-

periment: words with /b/ and /p/ onsets are the experimental items and words with

/l/ and /r/ onsets are fillers. These item sets can be divided into three pairs where
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Table B.1: Experiment 4A stimulus items

/b/ /p/ /l/ /r/

beach peach lace race

left-distribution bin pin lake rake

bug pug lane rain

beak peak lei ray

right-distribution bill pill lock rock

buck puck lamp ramp

the experimental words share a CV onset. Each participant was assigned to one of two

lists in which one item set from each of the three CV onset pairs occurred in the left-

distribution, and the other set with the same onset CV occurred in the right-distribution.

One of these lists is shown in Table B.1, and the other list was the same but with the op-

posite distributions for each item set. (check that the combination of sets listed was one

of the lists)

Listeners completed a total of 324 critical trials per day, 162 in each shift direc-

tion. Distributions held within each item set instead of only across item set, so each

continuum had 54 trials each day. The number of repetitions per continuum at each

step is shown in Table B.2, and the number of repetitions for the shift direction as a

whole is three times these numbers. Unlike Experiment 1, both distributions extended

the full width of the continuum so there were no steps in either distribution that had 0

exemplars. This was done to eliminate the possibility that boundary shift affects would

occur because of differences in the range of the continua. In addition to the experiment

trials there were an equal number of filler trials per item set, which were split evenly be-

tween the /l/ and /r/ filler words for a total of 324 filler trials per day. In total, listeners
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Table B.2: Experiment 4A VOT distributions.

-30 -20 -10 0 10 20 30 40 50 60 70 80

left distribution 1 6 12 6 1 1 6 12 6 1 1 1

right distribution 1 1 1 6 12 6 1 1 6 12 6 1

completed 648 trials per session and participated in two sessions each (1296 trials). The

second session was identical to the first except for the order of trials which was random-

ized for each session.

B.1.2 Participants

Participants were 9 individuals from the University of Iowa community who par-

ticipated in the study in exchange for course credit or pay–the reason for the small num-

ber of participants in this study is discussed later in the discussion section for this exper-

iment. All participants were monolingual native English speakers who reported normal

hearing and normal or corrected-to-normal vision. Informed consent was obtained in

accordance with University and APA standards. While the majority of participants (8)

completed both sessions of the study, 1 participant completed only one of the two ses-

sions and was therefore excluded from analysis.

B.1.3 Stimuli

B.1.3.1 Auditory Stimuli

Auditory stimuli consisted of six twelve-step /b/ to /p/ VOT continua ranging

from -30 to 80ms. Two of the continua were used in Experiment 1 and the remaining

continua were new. The new continua were created in the same manner as those in

Experiment 1 (by cross-splicing recordings of natural speech). The recording and cross-

splicing methods used to create the stimuli are described in Chapter 2.
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B.1.3.2 Visual Stimuli

Pictures representing each item listed in Table B.1 were constructed using the

same picture norming technique described for Experiment 1 in Chapter 2. The final

images were approved by the author and thesis supervisor.

B.1.4 Procedure

The procedure was identical to that used in Experiment 1, and is described in

Chapter 2. Because of the different number of trials in this experiment, drift correct

events (to compensate for small movements of the eye-tracker) occurred every 24 trials

instead of every 30. This split the 648 trials per session 27 blocks.

B.2 Results

A boundary shift is predicted such that categorization data for words trained on

the left distribution will have a boundary shifted towards the left, while data for the other

words (those trained on the right distribution) will show a boundary shifted towards the

right.

The structure of the results section mirrors that used for previous experiments,

where each section addresses a different question. The same mixed-effects modeling

strategy is also employed. The first part of the results section addresses overall task per-

formance and the second section assess perceptual learning of shifted boundaries over

the course of the experiment.

B.2.1 Task Performance

Mouse-click responses were first examined to assess overall performance on the

task. On experimental trials where the stimulus began with a /b/ or /p/, participants

clicked on a filler item on only .14% of the trials, which indicates that they were paying

attention to both the auditory and visual stimuli. Performance on the unambiguous
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Table B.3: Experiment 4A percent correct at endpoints for each continuum.

continuum /b/ /p/

beach 99.8 99.7

beak 99.0 99

bill 99.8 99.3

bin 99.9 99.1

buck 98.8 100

bug 99.8 98.7

continuum endpoints was also good. On the /b/ side (-30 to -10 ms), participants were

99% correct. On the /p/ side (60 to 80 ms), participants were 98.7% correct. Endpoint

performance was also high when broken down by continuum (Table B.3).

B.2.2 Perceptual Learning

The most critical analysis concerns learning of the shifted distributions. Re-

sponse (voiced or voiceless, coded as 0 or 1 respectively) was the dependent variable.

VOT step, distribution, and day were fixed factors coded and centered as in previous

experiments. Participant and continuum were treated as random-effects. The random

slopes models failed to converge and adding random intercepts for continua as well im-

proved the model fit (χ2(2)=21.3, p>.6), so we selected this model.

The perceptual learning model with the best fit to the data is reported in full

in Table B.4. The model showed a main effect of distribution (β=-1.61, p<.0001) in the

direction predicted by the distribution manipulation. A marginal interaction between

distribution, day, and half (β=-1.38, p<.06) suggested that the learning effect for the two

halves of each day was not the same on both days. A plot of the data (Figure B.1) revealed

that contrary to expectations, the boundary shifts looked reversed or smaller in the sec-
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Table B.4: Experiment 4A perceptual learning model.

Coef β SE(β) z p

Intercept 0.67 0.28 2.4 <.05

Distribution −1.61 0.19 −8.5 <.0001

Day 0.14 0.18 0.8 >0.4

Half 0.06 0.18 0.3 >0.7

VOT Step 0.20 0.01 26.6 <.0001

Distribution x Day −0.48 0.36 −1.3 >0.2

Distribution x Half 0.43 0.36 1.2 >0.2

Day x Half −0.17 0.36 −0.5 >0.6

Distribution x Step −0.03 0.01 −2.0 <.05

Day x Step −0.02 0.01 −1.3 >0.2

Half x Step 0.03 0.01 2.4 <.05

Distribution x Day x Half −1.38 0.72 −1.9 >0.1

Distribution x Day x Step 0.01 0.03 0.4 >0.7

Distribution x Half x Step 0.02 0.03 0.8 >0.4

Day x Half x Step −0.06 0.03 −2.1 <.05

Distribution x Day x Half x Step −0.01 0.06 −0.1 >0.9

Note: The maximum correlation between the fixed factors was r=.046, between distri-
bution and step.
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Figure B.1: Experiment 4A distribution effect by experiment day and half.
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ond half of each training session. Follow-up analyses (Table B.5) revealed an effect of

distribution for both days (Day 1: β=-1.35, p<.0001; Day 2: β=-1.89, p<.0001) and a dis-

tribution by half interaction for the first day (β=1.17, p<.03). This interaction indicated

that as suggested by the figure, the boundary shift in the second half of the first day was

smaller than the shift in the first half, so listeners did not show evidence for perceptual

learning of the boundary shifts based on the distributions to which they were exposed.

B.3 Discussion

Experiment 4A aimed to test lexically specific learning. Instead, we failed to find

evidence of sensitivity to our distributional manipulation: although there was a differ-

ence between the boundaries for words in the left- and right-shifted distributions, this

seemed to grow smaller instead of larger over time. We thought that a different design

might encourage participants to pay attention to the distributions of each continuum,

so we ran a new version of this experiment to address the same question. This was Ex-

periment 4, described in Chapter 4.
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Table B.5: Experiment 4A simple effects for days one and two.

Coef β SE(β) z p

Day 1

Intercept 0.59 0.27 2.2 <.05

Distribution −1.35 0.26 −5.1 <.0001

Half 0.14 0.26 0.5 >0.6

VOT Step 0.21 0.01 17.3 <.0001

Distribution x Half 1.17 0.52 2.3 <.05

Distribution x Step −0.04 0.02 −1.5 >0.1

Half x Step 0.07 0.02 2.8 <.01

Distribution x Half x Step 0.02 0.05 0.5 >0.6

Day 2

Intercept 0.74 0.31 2.4 <.05

Distribution −1.90 0.27 −7.0 <.0001

Half −0.03 0.25 −0.1 >0.9

VOT Step 0.19 0.01 21.1 <.0001

Distribution x Half −0.24 0.51 −0.5 >0.6

Distribution x Step −0.02 0.02 −1.4 >0.2

Half x Step 0.00 0.02 0.3 >0.8

Distribution x Half x Step 0.02 0.03 0.6 >0.5

Note: The maximum correlations in both models were between distribution and step,
and were r=.18 for the first day and r=-.11 for the second day.



191

REFERENCES

Allen, J. S., & Miller, J. L. (2004). Listener sensitivity to individual talker differences in
voice-onset-time. The Journal of the Acoustical Society of America, 115(6), 3171–
3183.

Allen, J. S., Miller, J. L., & DeSteno, D. (2003). Individual talker differences in voice-onset-
time. The Journal of the Acoustical Society of America, 113(1), 544–552.

Apfelbaum, K. S., & McMurray, B. (2011). Using Variability to Guide Dimensional Weight-
ing: Associative Mechanisms in Early Word Learning. Cognitive Science, 1–2.

Bates, D. (2005). Fitting Linear Mixed Models in R. R News, 5(1), 27–30.

Bauer, L. (1985). Tracing phonetic change in the received pronunciation of British En-
glish. Journal of Phonetics, 13, 61–81.

Bradlow, A. R., & Bent, T. (2008). Perceptual adaptation to non-native speech. Cognition,
106(2), 707–729.

Buchholz, L. K. (2009). Perceptual Learning of Dysarthric Speech: Effects of Familiariza-
tion and Feedback. Unpublished doctoral dissertation, The University of British
Columbia.

Clarke, C. M., & Garrett, M. F. (2004). Rapid adaptation to foreign-accented English.
Journal of the Acoustical Society of America, 116(6), 3647–3658.

Clarke, C. M., & Luce, P. A. (2005). Perceptual adaptation to speaker characteristics: VOT
boundaries in stop voicing categorization. In Isca workshop on plasticity in speech
perception (pp. 23–26). London.

Clarke-Davidson, C. M., Luce, P. A., & Sawusch, J. R. (2008). Does perceptual learning
in speech reflect changes in phonetic category representation or decision bias?
Perception & Psychophysics, 70(4), 604–618.

Clayards, M., Tanenhaus, M. K., Aslin, R. N., & Jacobs, R. A. (2008). Perception of speech
reflects optimal use of probabilistic speech cues. Cognition, 108(3), 804–809.

Cole, J., Linebaugh, G., Munson, C., & McMurray, B. (2010). Unmasking the acoustic
effects of vowel-to-vowel coarticulation: A statistical modeling approach. Journal
of Phonetics, 38(2), 167–184.

Connine, C. M. (2004). It’s not what you hear but how often you hear it: on the neglected
role of phonological variant frequency in auditory word recognition. Psychonomic
bulletin & review, 11(6), 1084–1089.

Connine, C. M., Ranbom, L. J., & Patterson, D. J. (2008). Processing variant forms in spo-
ken word recognition: The role of variant frequency. Perception and Psychophysics,
70(3), 403–411.



192

Cox, F. (1999). Vowel change in Australian English. Phonetica, 56(1-2), 1–27.

Cutler, A. (2010). Abstraction-based Efficiency in the Lexicon. Laboratory Phonology,
1(2), 301–318.

Cutler, A., Eisner, F., McQueen, J. M., & Norris, D. (2010). How abstract phonemic cat-
egories are necessary for coping with speaker-related variation. In C. Fougeron,
B. Kühnert, M. D’Imperio, & N. Vallée (Eds.), Laboratory phonology 10 (pp. 91–
111). Berlin: de Gruyter.

Cutler, A., McQueen, J. M., Butterfield, S., & Norris, D. (2008). Prelexically-driven per-
ceptual retuning of phoneme boundaries. In Proceeding of interspeech (pp. 2056–
2056).

Eisner, F., & McQueen, J. M. (2005). The specificity of perceptual learning in speech
processing. Perception & Psychophysics, 67(2), 224–238.

Eisner, F., & McQueen, J. M. (2006). Perceptual learning in speech: Stability over time.
The Journal of the Acoustical Society of America, 119(4), 1950–1953.

Ganong, W. F. (1980). Phonetic categorization in auditory word perception. Journal of
experimental psychology. Human perception and performance, 6(1), 110–125.

Goldinger, S. D. (1996). Words and voices: Episodic traces in spoken word identification
and recognition memory. Journal of Experimental Psychology: Learning, Memory,
and Cognition, 22(5), 1166–1183.

Goldinger, S. D. (1998). Echoes of echoes? An episodic theory of lexical access. Psycho-
logical review, 105(2), 251–279.

Goldinger, S. D., & Azuma, T. (2003). Puzzle-solving science: the quixotic quest for units
in speech perception. Journal of Phonetics, 31(3-4), 305–320.

Grossberg, S. (2003). Resonant neural dynamics of speech perception. Journal of Pho-
netics, 31(3-4), 423–445.

Grossberg, S., Boardman, I., & Cohen, M. (1997). Neural dynamics of variable-rate
speech categorization. Journal of experimental psychology. Human perception and
performance, 23(2), 481–503.

Harrington, J., Palethorpe, S., & Watson, C. I. (2000). Does the Queen speak the Queen’s
English? Nature, 408(6815), 927–928.

Hawkins, S. (2003). Roles and representations of systematic fine phonetic detail in
speech understanding. Journal of Phonetics, 31(3-4), 373–405.

Hervais-Adelman, A., Davis, M. H., Johnsrude, I. S., & Carlyon, R. P. (2008). Perceptual
learning of noise vocoded words: effects of feedback and lexicality. Journal of ex-
perimental psychology: Human perception and performance, 34(2), 460–474.

Hervais-Adelman, A. G., Davis, M. H., Johnsrude, I. S., Taylor, K. J., & Carlyon, R. P. (2011).
Generalization of perceptual learning of vocoded speech. Journal of Experimental
Psychology Human Perception and Performance, 37(1), 283–295.



193

Hickok, G., & Poeppel, D. (2007). The cortical organization of speech processing. Nature
Reviews Neuroscience, 8(5), 393–402.

Jesse, A., & McQueen, J. M. (2011). Positional effects in the lexical retuning of speech
perception. Psychonomic bulletin & review, 18(5), 943–50.

Johnson, K. (1997). Speech perception without speaker normalization: An exemplar
model. In K. Johnson & J. W. Mullennix (Eds.), Talker variability in speech process-
ing (pp. 145–166). San Diego, CA: Academic Press.

Kraljic, T., & Samuel, A. G. (2005). Perceptual learning for speech: Is there a return to
normal? Cognitive psychology, 51(2), 141–178.

Kraljic, T., & Samuel, A. G. (2006). Generalization in perceptual learning for speech.
Psychonomic bulletin & review, 13(2), 262–268.

Kraljic, T., & Samuel, A. G. (2007). Perceptual adjustments to multiple speakers. Journal
of Memory and Language, 56(1), 1–15.

Kraljic, T., Samuel, A. G., & Brennan, S. E. (2008). First impressions and last resorts: how
listeners adjust to speaker variability. Psychological science, 19(4), 332–8.

Kuhl, P. K. (2004). Early language acquisition: cracking the speech code. Nature Reviews
Neuroscience, 5(11), 831–843.

Kuhl, P. K., Stevens, E., Hayashi, A., Deguchi, T., Kiritani, S., & Iverson, P. (2006). Infants
show a facilitation effect for native language phonetic perception between 6 and
12 months. Developmental Science, 9(2), F13–F21.

Labov, W. (1994). Principles of linguistic change (Vol. 1) (No. 1). Cambridge, MA: Black-
well.

Lisker, L., & Abramson, A. S. (1964). A cross-language study of voicing in initial stops:
Acoustical measurements. Word Journal Of The International Linguistic Associa-
tion, 20(3), 384–422.

Magen, H. (1998). The perception of foreign-accented speech. Journal of Phonetics,
26(4), 381–400.

Maye, J., Aslin, R. N., & Tanenhaus, M. K. (2008). The Weckud Wetch of the Wast: Lexical
Adaptation to a Novel Accent. Cognitive Science, 32(3), 543–562.

Maye, J., & Gerken, L. (2000). Learning Phonemes Without Minimal Pairs. In S. C. How-
ell, S. A. Fish, & T. Keith-Lucas (Eds.), Proceedings of the 24th annual boston uni-
versity conference on language development (Vol. 2, pp. 522–533). Cascadilla Press.

Maye, J., & Gerken, L. (2001). Learning phonemes: how far can the input take us? In
A. H.-J. Do, L. Domínguez, & A. Johansen (Eds.), Proceedings of the 25th annual
boston university conference on language development. (pp. 480–490).

Maye, J., Weiss, D. J., & Aslin, R. N. (2008). Statistical phonetic learning in infants: facili-
tation and feature generalization. Developmental Science, 11(1), 122–134.



194

Maye, J., Werker, J. F., & Gerken, L. (2002). Infant sensitivity to distributional information
can affect phonetic discrimination. Cognition, 82(3), B101–B111.

McClelland, J. L., & Elman, J. L. (1986). The TRACE model of speech perception. Cognit
Psychol, 18(1), 1–86.

McMurray, B., Aslin, R. N., & Toscano, J. C. (2009). Statistical learning of phonetic cat-
egories: insights from a computational approach. Developmental Science, 12(3),
369–378.

McMurray, B., Clayards, M. A., Tanenhaus, M. K., & Aslin, R. N. (2008). Tracking the time
course of phonetic cue integration during spoken word recognition. Psychonomic
Bulletin & Review, 15(6), 1064–1071.

McMurray, B., Cole, J., & Munson, C. (2011). Features as an emergent product of per-
ceptual parsing: Evidence from V-to-V coarticulation. In G. N. Clements & R. Ri-
douane (Eds.), Where do features come from? (pp. 197–235).

McMurray, B., & Jongman, A. (2011). What information is necessary for speech catego-
rization? Harnessing variability in the speech signal by integrating cues computed
relative to expectations. Psychological Review, 118(2), 219–46.

McMurray, B., Samelson, V. M., Lee, S. H., & Tomblin, J. B. (2010). Individual differences
in online spoken word recognition: Implications for SLI. Cognitive Psychology,
60(1), 1–39.

McQueen, J. M., Cutler, A., & Norris, D. (2006). Phonological abstraction in the mental
lexicon. Cognitive science, 30(6), 1113–26.

McQueen, J. M., & Mitterer, H. (2005). Lexically-driven perceptual adjustments of vowel
categories. In Isca workshop on plasticity in speech perception (pp. 233–236). Lon-
don.

Mirman, D., McClelland, J. L., & Holt, L. L. (2006). An interactive Hebbian account
of lexically guided tuning of speech perception. Psychonomic Bulletin & Review,
13(6), 958–965.

Munson, B., McDonald, E. C., DeBoe, N. L., & White, A. R. (2006). The acoustic and
perceptual bases of judgments of women and men’s sexual orientation from read
speech. Journal of Phonetics, 34(2), 202–240.

Newman, R. S., Clouse, S. A., & Burnham, J. L. (2001). The perceptual consequences of
within-talker variability in fricative production. Journal of the Acoustical Society of
America, 109(3), 1181–1196.

Norris, D., McQueen, J. M., & Cutler, A. (2000). Merging information in speech recogni-
tion: Feedback is never necessary. Behavioral and Brain Sciences, 23(3), 299–325.

Norris, D., McQueen, J. M., & Cutler, A. (2003). Perceptual learning in speech. Cognitive
Psychology, 47(2), 204–238.

Oden, G., & Massaro, D. (1978). Integration of featural information in speech perception.
Psychological Review, 85(3), 172–191.



195

Perrachione, T. K., Lee, J., Ha, L. Y. Y., & Wong, P. C. M. (2011). Learning a novel phono-
logical contrast depends on interactions between individual differences and train-
ing paradigm design. Journal of the Acoustical Society of America, 130(1), 461–472.

Pierrehumbert, J. B. (2001). Exemplar dynamics: Word frequency , lenition and contrast.
In J. Bybee & P. Hopper (Eds.), Frequency effects and the emergence of linguistic
structure (pp. 137–157). Amsterdam: John Benjamins.

Pisoni, D. (1997). Some thoughts on ‚Äúnormalization‚Äù in speech perception. In
K. Johnson & J. W. Mullennix (Eds.), Talker variability in speech processing (pp. 9–
32). San Diego, CA: Academic Press.

Ranbom, L. J., Connine, C. M., & Yudman, E. M. (2009). Is phonological context always
used to recognize variant forms in spoken word recognition? The role of variant
frequency and context distribution. Journal of experimental psychology: Human
perception and performance, 35(4), 1205–1220.

Rosen, S. M. (1979). Range and frequency effects in consonant categorization. Journal
of Phonetics, 7(4), 393–402.

Sawusch, J. R., & Pisoni, D. B. (1974). On the identification of place and voicing features
in synthetic stop consonants. Journal of Phonetics, 2(3), 181–194.

Seidenberg, M. S., & McClelland, J. L. (1989). A distributed, developmental model of
word recognition and naming. Psychological Review, 96(4), 523–568.

Sidaras, S. K., Alexander, J. E. D., & Nygaard, L. C. (2009). Perceptual learning of system-
atic variation in Spanish-accented speech. The Journal of the Acoustical Society of
America, 125(5), 3306–3316.

Sjerps, M. J., & McQueen, J. M. (2010). The bounds on flexibility in speech perception.
Journal of Experimental Psychology: Human Perception and Performance, 36(1),
195–211.

Skoruppa, K., & Peperkamp, S. (2011). Adaptation to Novel Accents: Feature-Based
Learning of Context-Sensitive Phonological Regularities. New York, 35(2), 348–
366.

Summerfield, Q. (1977). On the dissociation of spectral and temporal cues to the voic-
ing distinction in initial stop consonants. The Journal of the Acoustical Society of
America, 62(2), 435–448.

Sumner, M. (2011). The role of variation in the perception of accented speech. Cogni-
tion, 119(1), 131–136.

Swartz, B. L. (1992). Gender difference in voice onset time. Perceptual and Motor Skills,
75(3, Pt 1), 983–992.

Syrdal, A. K. (1996). Acoustic variability in spontaneous conversational speech of Amer-
ican English talkers. In Proceeding of fourth international conference on spoken
language processing icslp 96 (pp. 438–441). Ieee.

Theodore, R. M., & Miller, J. L. (2010). Characteristics of listener sensitivity to talker-



196

specific phonetic detail. Journal of the Acoustical Society of America, 128(4), 2090–
2099.

Toscano, J. C., & McMurray, B. (2011). Cue integration and context effects in natural and
synthetic speech. Manuscript under review.

Watson, C. I., Maclagan, M., & Harrington, J. (2000). Acoustic evidence for vowel change
in New Zealand English. Language Variation and Change, 12(1), 51–68.

Werker, J. F., & Curtin, S. (2005). PRIMIR: A developmental framework of infant speech
processing. Language Learning and Development, 1(2), 197–234.

Werker, J. F., & Tees, R. C. (1984). Cross-language speech perception: Evidence for per-
ceptual reorganization during the first year of life. Infant Behavior and Develop-
ment, 7(1), 49–63.


	University of Iowa
	Iowa Research Online
	Fall 2011

	Perceptual learning in speech reveals pathways of processing
	Cheyenne Michele Munson
	Recommended Citation


	tmp.1330727050.pdf.C4mOs

