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ABSTRACT

Model selection criteria frequently arise from constructing estimators of dis-

crepancy measures used to assess the disparity between the data generating model

and a fitted approximating model. The widely known Akaike information criterion

(AIC) results from utilizing Kullback’s directed divergence (KDD) as the targeted

discrepancy. Under appropriate conditions, AIC serves as an asymptotically un-

biased estimator of KDD. The directed divergence is an asymmetric measure of

separation between two statistical models, meaning that an alternate directed di-

vergence may be obtained by reversing the roles of the two models in the definition

of the measure. The sum of the two directed divergences is Kullback’s symmetric

divergence (KSD).

A comparison of the two directed divergences indicates an important distinc-

tion between the measures. When used to evaluate fitted approximating models

that are improperly specified, the directed divergence which serves as the basis for

AIC is more sensitive towards detecting overfitted models, whereas its counterpart

is more sensitive towards detecting underfitted models. Since KSD combines the

information in both measures, it functions as a gauge of model disparity which is

arguably more balanced than either of its individual components. With this mo-

tivation, we propose three estimators of KSD for use as model selection criteria in

the setting of generalized linear models: KICo, KICu, and QKIC. These statistics

function as asymptotically unbiased estimators of KSD under different assumptions

and frameworks.

As with AIC, KICo and KICu are both justified for large-sample maximum

likelihood settings; however, asymptotic unbiasedness holds under more general

assumptions for KICo and KICu than for AIC. KICo serves as an asymptotically

unbiased estimator of KSD in settings where the distribution of the response is
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misspecified. The asymptotic unbiasedness of KICu holds when the candidate model

set includes underfitted models.

QKIC is a modification of KICo. In the development of QKIC, the likelihood

is replaced by the quasi-likelihood. QKIC can be used as a model selection tool

when generalized estimating equations, a quasi-likelihood-based method, are used

for parameter estimation.

We examine the performance of KICo, KICu, and QKIC relative to other rel-

evant criteria in simulation experiments. We also apply QKIC in a model selection

problem for a randomized clinical trial investigating the effect of antidepressants on

the temporal course of disability after stroke.
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ABSTRACT

Model selection criteria frequently arise from constructing estimators of dis-

crepancy measures used to assess the disparity between the data generating model

and a fitted approximating model. The widely known Akaike information criterion

(AIC) results from utilizing Kullback’s directed divergence (KDD) as the targeted

discrepancy. Under appropriate conditions, AIC serves as an asymptotically un-

biased estimator of KDD. The directed divergence is an asymmetric measure of

separation between two statistical models, meaning that an alternate directed di-

vergence may be obtained by reversing the roles of the two models in the definition

of the measure. The sum of the two directed divergences is Kullback’s symmetric

divergence (KSD).

A comparison of the two directed divergences indicates an important distinc-

tion between the measures. When used to evaluate fitted approximating models

that are improperly specified, the directed divergence which serves as the basis for

AIC is more sensitive towards detecting overfitted models, whereas its counterpart

is more sensitive towards detecting underfitted models. Since KSD combines the

information in both measures, it functions as a gauge of model disparity which is

arguably more balanced than either of its individual components. With this mo-

tivation, we propose three estimators of KSD for use as model selection criteria in

the setting of generalized linear models: KICo, KICu, and QKIC. These statistics

function as asymptotically unbiased estimators of KSD under different assumptions

and frameworks.

As with AIC, KICo and KICu are both justified for large-sample maximum

likelihood settings; however, asymptotic unbiasedness holds under more general

assumptions for KICo and KICu than for AIC. KICo serves as an asymptotically

unbiased estimator of KSD in settings where the distribution of the response is
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misspecified. The asymptotic unbiasedness of KICu holds when the candidate model

set includes underfitted models.

QKIC is a modification of KICo. In the development of QKIC, the likelihood

is replaced by the quasi-likelihood. QKIC can be used as a model selection tool

when generalized estimating equations, a quasi-likelihood-based method, are used

for parameter estimation.

We examine the performance of KICo, KICu, and QKIC relative to other

relevant criteria in simulation experiments. We also apply QKIC in a model selection

problem for a randomized clinical trial investigating the effect of antidepressants on

the temporal course of disability after stroke.
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CHAPTER 1

INTRODUCTION

A statistical model can be defined as a simplified or idealized description of

a phenomenon, generally cast in probabilistic terms. Models help us understand

phenomena, extract information, validate, predict and draw inferences. Modeling

plays a critical role in scientific discovery. Hence, statistical modeling is one of the

main activities for applied statisticians.

One of the fundamental problems in modeling data is that of selecting an

appropriate model from a potentially large set of candidates. Choosing the model

that best characterizes the data requires the determination of an appropriate and

explicit structural form for the model. Improper model specification may substan-

tially affect both the model estimators and predictors, not to mention scientific

interpretations.

Consider a collection of data that has been generated according to an unknown

parametric model. The model that gave rise to the data is called the generating

model.

In traditional modeling, outcome data are represented using random variables.

A parametric model implies a probability distribution for these random variables,

where the parameters of the distribution may be defined as functions of explanatory

variables. A model where the parameters are estimated from the observed data is

referred to as a fitted model.

The goal of statistical modeling is to find a fitted model that provides the

“best” approximation to the generating model. To this end, a parametric set of

candidate models is often proposed that contains a collection of models with various

structures. A candidate model is a model that could potentially be used to describe

the data.
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Model selection criteria are statistical tools that help identify the “best” fitted

candidate model among the set of candidates. Inspired by the seminal work by Hi-

rotugu Akaike (1927-2009), investigators have designed model selection criteria for

different types of data and statistical frameworks and under different sets of assump-

tions. Many of the criteria developed are well justified when modeling continuous,

independent, normally distributed outcomes. The problem of adequately modeling

a phenomenon is more intricate for outcomes without these characteristics.

1.1 Model Selection Principles

An optimal statistical model is characterized by the principles of generaliz-

ability, goodness-of-fit and parsimony. Failure to conform with these principles can

lead to improper model specification, affecting both the estimators of the model

parameters and the predictors of the response variable. In this section, we discuss

the fundamental modeling principles that determine model quality.

1.1.1 Generalizability

The principle of generalizability refers to the ability of a model to explain new

data. A generalizable model is capable of describing or predicting future observa-

tions as accurately as possible. Akaike (1974, 1985) believed that the purpose of

statistical modeling should be that of predicting new data as opposed to precisely

characterizing the true model that generated the data. With an infinite amount

of data or with data that are noiseless, Konishi and Kitagawa (2008) explain that

a model designed to predict new data does not differ from one intended to mirror

the structure of the data generating model. However, in usual practice, with finite

sample sizes and noisy data, the differences between these two types of models can

be substantial.

In some instances, the existence of a generating model that is accessible and

amenable to estimation is often questioned (Burham and Anderson, 2002; Konishi
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and Kitagawa, 2008). For example, in the life sciences, the phenomenon of interest

can be so complex that any statistical model is necessarily a major simplification

of reality. In spite of this limitation, striving for generalizability is one of the main

model selection objectives.

1.1.2 Goodness-of-Fit versus Parsimony

Goodness-of-fit refers to the extent to which a fitted candidate model will

conform to the data used in the model construction. With many model selection

criteria, a goodness-of-fit term includes a measure that reflects the discrepancy

between the observed outcomes employed to construct the model and their expected

values under the fitted model. It may be possible to fit a model that conforms to

the data very well, but does so because the model is excessively complicated and

possibly difficult to interpret. For this reason, the principle of parsimony must also

be considered.

The idea of parsimony relates directly to Occam’s razor, which is a principle

credited to the medieval English philosopher William of Ockham (1285-1349). Oc-

cam’s Razor may be stated as follows: given two or more competing explanations for

a phenomenon, none of which can be discounted, the simplest explanation is to be

preferred. Occam’s razor recommends that we “shave off” extraneous ideas to bet-

ter reveal the truth. Relating this principle to model selection, within a candidate

collection of fitted models, the simplest model that adequately fits the data should

be preferred. A key objective in model selection is achieving a balance between

goodness-of-fit and parsimony. As Albert Einstein stated, “Everything should be

made as simple as possible, but not simpler.”



4

1.1.3 Over and Under Specification

The concepts of under and over specification are also pertinent in determining

the quality of a model. Both concepts are defined in terms of the generating model.

Suppose the generating model belongs to the set of candidate models.

A candidate model that has the same structure as the generating model is

called correctly specified. The resulting fitted candidate model would be correctly

fit.

A candidate model that provides an incomplete representation of the gen-

erating model, perhaps because it does not include necessary variables, is called

underspecified. The resulting fitted candidate model would be underfitted. Choos-

ing such a model is referred to as underfitting.

A candidate model that is more complex than the generating model (e.g.,

one that contains extraneous variables) is called overspecified. The resulting fit-

ted candidate model would be overfitted. Choosing such a model is referred to as

overfitting.

In a practical setting, where researchers do not have access to the generating

model, overfitting and underfitting can be thought of in terms of the best fitted

candidate model. An underfitted model will fail to include the important variables,

while an overfitted model will contain all the important variables as well as some

spurious ones.

Both underfitting and overfitting can lead to problems in statistical modeling.

Underfitting may lead to results that are biased while overfitting may lead to re-

sults with unnecessarily high variability. Burnham and Anderson (2002, p 17), in

reference to Shibata (1989), state “While one must worry about errors due to both

underfitting and overfitting, it seems that modest overfitting is less damaging than

underfitting.” This may be conceptualized by realizing that it may be less dam-

aging to additionally include an irrelevant variable in a correctly specified model
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(i.e., overfitting), whereas the failure to include an important variable in a model

(i.e., underfitting) could be more problematic. In the next section we develop these

notions further.

1.1.4 Variability and Bias

As mentioned in the previous section, a key objective in model selection is

achieving a balance between goodness-of-fit and parsimony. This objective is simi-

lar to balancing bias and variability. Technically speaking, a parameter estimate is

biased when its expected value differs from the true parameter value. For instance,

if a candidate model fails to include all of the relevant variables in the generat-

ing model, the estimates for the included parameters will be biased. Intuitively

speaking, the parameters included in the model will “absorb” in an erratic way

the missing effects, and will not correctly represent the corresponding effects in the

generating model.

On the other hand, if a candidate model includes more variables than that

which are required to explain the data, extraneous parameters will be estimated.

This will not result in biased parameter estimates, but rather in parameter estimates

that are excessively variable. That is, if we collected many different samples to study

the same phenomenon, the parameter estimates resulting from each sample will vary

more when the model includes parameters that are not necessary. In such a setting,

we will be using a finite amount of data to estimate more parameters than that

which are actually needed, and as a result, we will have less evidence per parameter

than the evidence we would have for the adequate number of parameters. The larger

the variability, the less precise the parameter estimates.

In summary, from a theoretical standpoint, a goal in model selection is to
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choose a candidate model that “best” approximates the generating model. The con-

cept of “best” implies properly achieving the objectives of generalizability, goodness-

of-fit and parsimony. In many statistical modeling applications, especially those in

the biomedical and health sciences, the notion of having access to the generating

model is somewhat difficult to defend. However, in theoretical frameworks, it must

be acknowledged that there is a probabilistic mechanism that generated the data.

From a practical point of view, a more realistic goal in model selection is to attempt

to capture the most salient features of the generating model using the best fitted

candidate model. As George Box famously stated, “All models are wrong, some are

useful.” Model selection criteria are the statistical tools designed to choose a useful

model.

1.2 Introduction to Model Selection Criteria

Model selection criteria are statistical instruments that serve the purpose of

choosing a suitable statistical model from a candidate class. A researcher study-

ing a phenomenon often postulates different mechanisms that could explain the

phenomenon. The different mechanisms hypothesized usually generate a group of

candidate models that could serve as viable characterizations of the data. Model

selection criteria are used to assign scores to each of the fitted candidate models

in order to assist the data analyst in selecting a good model; that is, a model that

conforms to the principles explained in the previous section.

Different criteria were developed under different assumptions and for differ-

ent statistical frameworks and data types. Akaike pioneered the work in this area.

Indeed, the Akaike information criterion (AIC) (Akaike, 1973) remains the most

widely known and used model selection criterion. AIC is applicable in a broad

array of modeling frameworks, since its justification primarily relies upon conven-

tional large-sample properties of maximum likelihood estimators. A short list of
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other popular model selection criteria includes the Bayesian information criterion

(BIC), the corrected Akaike information criterion (AICc) and Mallows’ conceptual

predictive statistic (Cp).

BIC, also known as Schwarz information criterion, was introduced by Schwarz

(1978) as a competitor to AIC. BIC was justified for the case of independent, iden-

tically distributed observations, and linear models, under the assumption that the

likelihood is from the regular exponential family. The use of BIC seems justifiable

for model screening in large-sample Bayesian analyses. However, BIC is often em-

ployed in frequentist analyses. Some frequentist practitioners prefer BIC to AIC

because BIC tends to choose fitted models that are more parsimonious than those

favored by AIC.

AICc was first suggested for normal linear regression by Sugiura (1978). Hur-

vich and Tsai (1989) demonstrated the small-sample superiority of AICc over AIC,

and justified the use of AICc in the frameworks of nonlinear regression and au-

toregressive models. In the last 20 years, AICc has been extended to a number of

additional modeling frameworks (e.g., autoregressive moving-average models, mul-

tivariate linear regression models, models for longitudinal data analysis under the

assumption of a known covariance structure, etc.).

Cp was introduced by Mallows (1973) as a screening tool in multiple linear

regression analyses. AIC and Cp are asymptotically equivalent: in large-sample

settings, the two criteria will select the same fitted model from a candidate family.

Model selection criteria are often developed by constructing estimators of or-

acle measures that quantify the separation between the generating model and a

fitted model. These measures are considered oracles because they have access to

the “truth” (i.e., the generating model). Cp is derived as an estimator of an oracle

called the Gauss discrepancy, while AIC and AICc serve as estimators of another

oracle based on Kullback’s directed divergence (KDD).
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1.3 Introduction to Kullback’s Divergences

Kullback’s directed divergence (Kullback and Leibler, 1951), also known as

the Kullback-Leibler information, the I-divergence, or the relative entropy, is one

of many possible oracles used to design model selection criteria. Other oracles in-

clude the Kolmogorov discrepancy, the Cramer-von Mises discrepancy, the Pearson

chi-squared discrepancy, the Neyman chi-squared discrepancy and the Gauss dis-

crepancy (Linhart and Zucchini, 1986).

KDD is an asymmetric disparity measure, meaning that an alternative di-

rected divergence can be obtained by reversing the roles of the two models in the

definition of the measure. The sum of the two directed divergences is Kullback’s

symmetric divergence (KSD), also known as the J-divergence.

In the framework of linear models, a comparison of the two directed diver-

gences indicates an important distinction between the measures. When used to

evaluate fitted approximating models that are improperly specified, the directed di-

vergence which serves as a basis for AIC is more sensitive towards detecting overfit-

ted models, whereas its counterpart is more sensitive towards detecting underfitted

models (Cavanaugh, 2004). Since KSD reflects the sensitivities of both directed

divergences, it functions as a discrepancy measure which is arguably more balanced

than either of its individual components. With this motivation, KSD is the oracle

we choose as a basis for the development of the criteria presented in this dissertation.

1.4 Research Goals

Some model selection criteria were developed under very general assumptions

and can be used in a wide range of statistical settings (e.g., AIC, BIC, etc.). Other

criteria (e.g., Cp, AICc, etc.) were initially developed only in a particular modeling

framework. The applicability of such criteria in other settings requires further

justification.
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We are interested in general model selection tools. Thus, we will focus on

generalized linear models (GLMs) using both likelihood-based analytical frameworks

(e.g., normal, logistic, and Poisson regressions, etc.) and frameworks based on

quasi-likelihood and generalized estimating equations (GEEs), suitable for modeling

correlated binary or count response data.

Our goal is to develop and investigate model selection criteria based on KSD

for use in GLM frameworks with independent or correlated responses. We expect

that the criteria we propose will improve upon model selection criteria based on

KDD by reflecting the increased sensitivity of KSD over KDD as a disparity measure.

1.5 Relevant Literature Review

In this section, we present the literature on existing criteria for modeling

independent and correlated data under some of the modeling options available in the

GLM framework. We also introduce previously developed model selection criteria

based on using KSD as an oracle.

A review of the model selection tools available within the GLM framework is

daunting, as this is a broad framework for which a variety of model selection tools

has been designed from various perspectives. Common model selection tools devel-

oped for this framework include modifications of AIC, Bayesian-inspired method-

ologies, and AIC-like approaches combined with resampling techniques such as cross

validation and bootstrapping. Since the criteria proposed in this dissertation are

based on estimators of KSD and KDD and do not entail resampling techniques, we

only review criteria relevant to the work presented in the following chapters.

Likelihood-based GLMs can be used to model independent continuous, bi-

nary, count or nominal data. In this framework, any model selection criterion can

be used that is primarily justified by assuming the traditional large-sample prop-

erties of maximum likelihood estimation. AIC (Akaike, 1973) is the most popular
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criterion for this type of modeling. However, when the sample size is small relative

to the larger model dimensions represented within the candidate set, AIC is less

protective against overfitting than many other likelihood-based criteria (Cavanaugh

and Shumway, 1997; McQuarrie and Tsai, 1998; Rao and Wu, 2001).

Another likelihood-based criterion is the Takeuchi information criterion (TIC)

(Takeuchi, 1976). TIC is justified for use in the GLM framework. TIC is a more

general criterion than AIC; in fact, AIC may be viewed as a simplification of TIC

that results under more restrictive conditions. However, TIC is considerably less

known among practitioners than AIC. TIC has not become widely accepted because

it was published in a difficult-to-find Japanese paper, and because the criterion

requires the evaluation of more likelihood-based constructs than AIC. Shibata (1989)

noted that the error incurred by this additional estimation can cause instability

of the model selection results yielded by TIC. Therefore, TIC is not universally

recommended (Burnham and Anderson, 2002).

AIC and TIC are two criteria that serve as estimators of KDD. Specifically,

both may be viewed as asymptotically unbiased estimators of KDD, derived under

different sets of assumptions. Both can be used with independent data in the GLM

framework. Other criteria that can be used in this framework include those pre-

sented in Konishi and Kitagawa (1996), Ishiguro et al. (1997), Goutis and Robert

(1998), Claeskens and Hjort (2003), Claeskens and Hjort (2008), Muller and Welsh

(2009), Nott and Leng (2010), and many others. We do not discuss these contribu-

tions as they are not directly related to the criteria presented in this dissertation.

When data are correlated, one can model them using conditional or marginal
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models. This choice depends on the investigator’s question and the type of inter-

pretation that she or he seeks to make using the data. When a subject-specific in-

terpretation is sought, then conditional models are indicated and pseudo-likelihood-

based generalized linear mixed models are employed. Alternatively, if a population-

averaged interpretation is of interest, then marginal models are adequate. For

marginal model parameter estimation, it is common to use quasi-likelihood-based

GEEs.

An investigator seeking to model correlated data using a GLM will need to

choose not only a suitable set of covariates for the mean structure, but also the

working correlation structure, the variance function and the link function. Model

selection criteria can inform all these choices. In this literature review we focus only

on model selection tools primarily developed for choosing the mean and the working

correlation structures when GEEs are used for parameter estimation. Model selec-

tion tools designed for additional GLM frameworks, and approaches to modeling

correlated data, can be found in Liu et al. (1999), Vaida and Blanchard (2005),

Yafune et al. (2005), Azari et al. (2006), Pu and Niu (2006), Kinney and Dunson

(2007), Lavergne et al. (2008), Shang and Cavanaugh (2008) and Jiang et al. (2009)

among others.

In the GEE approach for parameter estimation a likelihood is not specified;

thus, AIC is not available as a model selection tool in this setting. Instead of a

likelihood, unbiased estimating equations are employed. These estimating equa-

tions were derived as an extension of the quasi-likelihood equations introduced by

Wedderburn (1974). Pan (2001) considered the problem of model selection in GEE

applications and proposed the quasi-likelihood information criterion (QIC), a mod-

ification of AIC for use with GEEs and correlated data. QIC is widely known and

used in this framework; since its introduction, over one hundred published appli-

cations have appeared where QIC is used for model selection. The success of QIC



12

stems from its ease of use, its similarity to AIC, and the fact that it has been im-

plemented in popular statistical softwares such as Stata (Cui and Qian, 2007), R

(Cui and Qian, 2007) and SAS (SAS Institute, 2007). QIC was also included in

the guidelines by Hardin and Hilbe (2002, pp 139-142) for choosing an appropriate

marginal model. A clear advantage of QIC is that it can be used to select suitable

mean and working correlation structures.

Comparisons of the performance of QIC to other criteria are rare in the litera-

ture. Hin and colleagues (2007) use simulations to compare QIC and the Rotnisky-

Jewell criterion (RJC) for the selection of working correlation structures. RJC is

based on a heuristic approach that assesses the adequacy of the correlation struc-

ture when using GEEs by comparing the fitted model covariance structure to the

empirical (a.k.a. robust) covariance estimate (Rotnitzky and Jewel, 1990). Hin et

al. (2007) contrast the criteria performance to identify the true correlation struc-

ture for Gaussian or binomial data, covariates varying at the cluster or observation

level, and exchangeable or autoregressive of order 1 (AR-1) intracluster correlation

structures. The results indicate that QIC outperforms RJC for AR-1 structures,

while RJC is better than QIC for exchangeable correlation structures.

Based partly on their previous results, Hin and Wang (2009) propose the

correlation information criterion (CIC) as a complement to QIC for correlation

structure selection when marginal models are used. CIC is a refinement of QIC that

works appreciably better than QIC for correlation structure selection. However, CIC

cannot be used for mean structure selection. Other work (e.g., Pan and Connett,

2002; Cantoni et al., 2005; Shults et al., 2009; Wang and Qu, 2009; Wang and Hin,

2010; etc.) present potentially competing alternatives to QIC; however, none of

these publications compare the proposed criteria to QIC.

The first criterion developed using KSD as an oracle is the Kullback infor-

mation criterion (KIC) (Cavanaugh, 1999). KIC functions as an asymptotically
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unbiased estimator of KSD, under the same assumptions for which AIC serves as

an asymptotically unbiased estimator of KDD. Similar to AIC, KIC is an effective

model selection criterion in large-sample applications. KIC can be used in the GLM

framework with independent data, and selects overspecified candidate models less

often than AIC. Cavanaugh’s development is supported by Broersen and Wensink

(1996), who empirically find that the penalty term for KIC provides the best protec-

tion against underfitting and overfitting for autoregressive order selection in finite

samples.

Nevertheless, in settings where the sample size is small and the candidate set

consists of models which are excessively over parameterized, both KIC and AIC

may exhibit a tendency to choose overfitted models. As mentioned in section 1.2,

small-sample refinements of AIC have been derived assuming a particular modeling

framework, giving rise to AICc (e.g., Sugiura, 1978; Hurvich and Tsai, 1989; and

1993; Bedrick and Tsai, 1994; Azari et al., 2006; etc.). AICc serves as an exactly

unbiased estimator of KDD in the framework of linear regression with normal errors.

AICc also functions as an approximately unbiased estimator in many other modeling

frameworks. Analogously, Cavanaugh (2004) proposes corrected KIC (KICc) as an

exactly unbiased estimator of KSD for traditional linear regression models. In this

setting, KICc outperforms AIC, AICc and KIC in both small and large sample

settings when all possible combinations of covariates are considered for the class

of candidate models. These results further document the advantage of using KSD

instead of KDD as an oracle.

Other contributions based on KIC include an improved KIC for nonlinear re-

gression models (Kim and Cavanaugh, 2005), corrected KICs for time series and

multivariate regression (Hafidi and Mkhadri, 2006), and a corrected KIC for vec-

tor autoregressive models (Seghouane, 2006). Other criteria designed using KSD

as oracle include a criterion for the simultaneous determination of the number of
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components and predictors in finite mixture regression models (Hafidi and Mkhadri,

2010).

Cavanaugh (2004) concludes his work by suggesting that different estimators

of KSD are possible, both in the setting of linear models and in other modeling

frameworks. He specifically mentions that “criteria based on more sophisticated

estimators of KSD have the potential to effectively guard against both under and

over fitting over a wide array of different applications” (Cavanaugh, 2004, p 272).

This notion provides the impetus for the developments presented in this dissertation.

1.6 Outline

The remainder of this dissertation is organized as it follows:

Chapter 2 includes an overview of parameter estimation and GLM concepts,

the definition and characterization of KDD and KSD, and a simulation example to

illustrate the efficacy of KSD as a discrepancy measure for linear model selection.

We also include technical details of model selection criteria directly related to the

criteria proposed in the following chapters.

In chapter 3 we derive KICo and KICu, two new likelihood-based model selec-

tion criteria using KSD as the oracle. KICo is designed to excel in settings where

overspecification prevails. KICu results from modifying the assumptions adopted

for developing KICo, and unlike KICo, is suitable for model selection in scenarios

prone to underspecification.

Chapter 4 compares the performance of KICo and KICu using a simulation

study based on factorial experimental designs. In this study, we also evaluate the

performance of model selection criteria presented in chapter 2.

Chapter 5 consists of the development of QKIC, a quasi-likelihood-based

model selection criterion for correlated response data. The oracle for the devel-

opment of QKIC is KSD. We characterize the performance of QKIC through a
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simulation study. The chapter concludes with a modeling application where QKIC

is used for model selection.

In chapter 6 we discuss the model selection criteria presented in chapters 3

through 5 and describe future directions suggested by this work.
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CHAPTER 2

PRELIMINARY CONCEPTS

This chapter presents and develops notions that provide a technical and con-

ceptual foundation for the remainder of the dissertation. We include an overview

of likelihood-based and quasi-likelihood-based parameter estimation and the GLM

framework. We also formally define KDD and KSD and use a simulation example

to illustrate the potential superiority of KSD over KDD for linear model selection.

Finally, we provide an overview of those model selection criteria that are directly

pertinent to the tools proposed in the following chapters.

2.1 Relevant Parameter Estimation and GLM
Concepts

Nelder and Wedderburn (1972) introduce the term generalized linear model

to unify a wide array of modeling frameworks for continuous, discrete, and categor-

ical outcome data (e.g., linear, logistic and Poisson regression; ANOVA; ANCOVA;

multinomial regression; etc.). GLMs can be used to model outcomes which have

distributions within the exponential family of probability distributions. When out-

comes are independent, parameter estimation is usually performed by maximizing

the likelihood function.

However, data are generally correlated when measurements are collected to

describe or explain clustered phenomena. For instance, with data that represent the

evolution of patients over time, the geographical disposition of biological specimens,

or the heritability of a disease within a family, clustering would occur naturally

among the measured outcomes. In such cases, the practitioner should use modeling

approaches that accommodate the sources of correlation within the data.

Marginal models are among the different avenues available for modeling cor-

related data. Unlike GLM approaches for independent data, the specification of a
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likelihood is often not possible for parameter estimation in marginal models. In-

stead, a quasi-likelihood may be employed. The quasi-likelihood is formulated based

upon the postulated mean and variance of the individual outcomes. The outcomes

are treated as independent, which leads to straightforward estimating equations.

Liang and Zeger (1986) propose an extension of quasi-likelihood-based estimation

for correlated data, utilizing GEEs within the GLM framework. The GEE approach

allows one to incorporate a proposed correlation structure in the parameter estima-

tion process.

We start by introducing notation and basic results regarding likelihood-based

estimation. We then proceed to introduce GLM notation and some of the funda-

mental concepts of the GLM framework. We conclude this section with a discussion

of results pertaining to quasi-likelihood-based estimation and GEEs.

2.1.1 Likelihood-Based Estimation for Independent Re-
sponses

Let yi (i = 1, . . . , n) be a sequence of independent observations taken on n

experimental units. Assume that each yi has a marginal probability density or mass

function f(yi|θ), where θ = (θ1, θ2, . . . , θk)
′. Given a collection of observations

y = (y1, y2, . . . , yn)′, the function of θ given by

L(θ|y) =
n∏

i=1

f(yi|θ) (2.1)

defines the joint likelihood function. Maximizing L(θ|y) is the most popular tech-

nique for deriving parameter estimators. The parameter value at which L(θ|y)

attains its maximum as a function of θ, with y held fixed, is the maximum likeli-

hood estimator (MLE) of θ, denoted by θ̂. One can maximize any monotonically

increasing function of L(θ|y) to find the MLE. The natural logarithm is the most
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convenient among such functions. Let

�i(θ|yi) = ln f(yi|θ).

The log-likelihood,

�(θ|y) =
n∑

i=1

�i(θ|yi),

is then maximized by solving the likelihood equations :

u(θ|y) ≡
n∑

i=1

ui(θ|yi) = 0, where

ui(θ|yi) =
∂�i(θ|yi)

∂θ
.

The function u(θ|y) is the score of θ. To determine whether the solution to

the likelihood equations represents a maximum, one must check that the matrix

of second derivatives of the log likelihood is negative definitive. The negative of

the matrix of second derivatives provides the amount of information the data have

available for θ and is known as the observed information,

I(θ|y) = −∂2�(θ|y)

∂θ∂θ′
. (2.2)

The expected value of (2.2) is known as the expected information; we denote it as

I(θ). The matrix I(θ) is often also referred to as the Fisher information.

Let

J (θ) = E{u(θ|y)u(θ|y)′}. (2.3)

When the model is correctly specified, J (θ) = I(θ). The matrix J (θ) can be

estimated using J (θ|y) =
∑n

i=1 ui(θ|yi)ui(θ|yi)
′.

Maximum likelihood estimation is widely used because θ̂ has desirable statis-

tical properties. Assume that the model is properly specified and let θ0 represent

the data generating model parameter vector. Given suitable regularity conditions
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(e.g., Casella and Berger, 2002, p 516), the MLE is consistent for θ0: θ̂ → θ0 as

n → ∞. The MLE is also asymptotically unbiased for θ0: E(θ̂) → θ0 as n → ∞.

The large-sample variance/covariance matrix of the MLE is given by the inverse of

the Fisher information:

Σ(θ0) = I(θ0)
−1.

Under certain conditions, I(θ0) = I(θ0|y). In general, V ar(θ̂) can be estimated by

using either the observed or expected information matrix evaluated at θ̂.

The MLE of θ is also asymptotically efficient and asymptotically normally

distributed:

θ̂
·∼ Nk[θ0, Σ(θ0)].

The specification of the model chosen for parameter estimation may affect

the consistency, bias, and variability of θ̂. Misspecification may arise due to an

improper choice for the distribution of the response, an improper formulation for the

variance/covariance structure, or an improper formulation for the mean structure.

Other sources of misspecification may arise, yet the preceding are the most relevant

for our purposes.

If the distribution of the response is misspecified but the model structure

based on θ is correctly specified, according to White (1982), θ̂ is still asymptotically

normally distributed with mean θ0, but the large-sample variance/covariance matrix

of θ̂ becomes

Σ(θ0) = I(θ0)
−1J (θ0)I(θ0)

−1. (2.4)

The parameter (2.4) is known as the sandwich, robust or empirical variance. The

sandwich variance can be estimated by replacing I(θ0) and J (θ0) with I(θ̂|y) and

J (θ̂|y), respectively. Note that, from a practical perspective, I(θ̂) and J (θ̂) are
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not accessible due to the misspecification of the distribution needed to evaluate the

expectations of I(θ|y) and J (θ|y).

If the model structure based on θ is misspecified, θ̂ will not necessarily con-

verge to θ0 as n increases. If the model is overspecified, θ̂ → θ0 assuming θ̂ and

θ0 are configured to have the same dimension. If the model is underspecified, θ̂

converges to the pseudo-true parameter, denoted by θ̄. For the postulated model,

the pseudo-true parameter is the parameter that is closest to θ0, where proximity is

measured by the Kullback-Leibler information. Under appropriate regularity con-

ditions (e.g., Ljung and Caines, 1979), θ̂ is consistent and asymptotically unbiased

for θ̄: θ̂ → θ̄ and E(θ̂) → θ̄ as n →∞. Also,

θ̂
·∼ Nk[θ̄, Σ(θ̄)], where

Σ(θ̄) = I(θ̄)−1J (θ̄)I(θ̄)−1. (2.5)

For estimating (2.5), one may use I(θ̂|y) to approximate I(θ̄) and J (θ̂|y) to ap-

proximate J (θ̄).

2.1.2 Notation and Basic GLM Concepts

Let yi (i = 1, . . . , n) be a sequence of independent observations taken on n

experimental units. Assume that each yi has a marginal probability density or mass

function of the form

f(yi|γi, φ) = exp

(
yiγi − b(γi)

a(φ)
+ c(yi, φ)

)
, (2.6)

which depends on the unknown parameters γi and φ.

A density of the form (2.6) belongs to the exponential dispersion family. When

φ is known, this form simplifies to the one-parameter exponential family. Distri-

butions such as the Bernoulli, binomial, multinomial, Poisson, negative binomial,

normal, geometric, gamma and inverse Gaussian are members of the exponential



21

family. In (2.6), γi corresponds to the natural parameter and φ is the dispersion

parameter.

The GLM framework is formulated based on the assumption that yi has a

density in the exponential family. Suppose that we seek to explain each yi with a

set of explanatory variables. Let xij (j = 1, . . . , p) be the measurement of the jth

covariate for the ith experimental unit. For convenience, xi1 = 1. The measurements

xij can be arranged in a design matrix as follows:

X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 x12 x13 · · · x1p

...
. . .

...
...

...

1 · · · xij · · · xip

...
...

...
. . .

...

1 xn2 xn3 · · · xnp

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.7)

GLMs are comprised of three fundamental elements: a random component, a

systematic component and a link function. The random component consists of a col-

lection of random variables yi and their postulated exponential family distribution.

The systematic component or mean structure is defined as a collection of linear

forms in the covariates: ηi = β1 + β2xi2 + . . . + βpxip, with x′i = (1, xi2, xi3, . . . , xip).

The systematic component is considered fixed. With β = (β1, β2, . . . , βp)
′, we can

write ηi = x′iβ =
∑p

j=1 xijβj.

Let μi = E(yi) and v(μi) = V ar(yi) denote the mean and variance of yi,

respectively. The link function provides a functional relation between μi and ηi

which maps the mean of yi to the linear form x′iβ; that is, g(μi) = ηi. The link

function is a strictly monotonic, differentiable function. When g(μi) = μi, g(·) is

called the identity link ; when g(μi) = γi, g(·) is the canonical link.

The introduction of the link function allows one to express the likelihood (and

hence, the log-likelihood) as a function of β, L(β|y). In this context the likelihood
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equations for β can be written as follows:

u(β|y) ≡ X ′DV −1(y− μ) = 0, where (2.8)

V =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

v(μ1) 0 · · · 0

0 v(μ2) · · · 0

...
...

. . .
...

0 0 · · · v(μn)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
≡ Diag(v(μi)) and

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∂μ1

∂η1
0 · · · 0

0 ∂μ2

∂η2
· · · 0

...
...

. . .
...

0 0 · · · ∂μn

∂ηn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
≡ Diag

(
∂μi

∂ηi

)
.

Solving (2.8), one can find β̂, the MLE of β. The Fisher information for β

can be expressed as

I(β) = X ′DV −1DX.

Thus, provided the model is correctly specified, the large-sample variance/covariance

matrix for β̂, V ar(β̂), may be estimated by I(β̂)−1.

With reference to (2.3), one can also define

J (β) = E{u(β|y)u(β|y)′}.

The natural estimate of this matrix is

J (β|y) =
n∑

i=1

ui(β|yi)ui(β|yi)
′ where

ui(β|yi) =
yi − μi

v(μi)

(
∂μi

∂ηi

)
xi.

If the canonical link is employed, it can be shown that I(β) = I(β|y). Also,

if the model is correctly specified, I(β) = J (β). When the distribution of the
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random component is misspecified, the large-sample variance/covariance matrix for

β̂, V ar(β̂), can be estimated using

Σ(β̂) = I(β̂|y)−1J (β̂|y)I(β̂|y)−1. (2.9)

Thus far, we have ignored φ. Before considering this parameter, it is helpful to

introduce the concept of overdispersion. Overdispersion arises when the empirical

variance in the data exceeds the variance under the fitted model. This problem does

not arise for members of the exponential dispersion family such as the normal dis-

tribution, where all of the residual dispersion is accommodated through a separate

dispersion parameter φ. (In the case of the normal distribution, this parameter is

simply the variance, σ2.) However, for members of the one-parameter exponential

family such as the Poisson and binomial distributions, the moments are completely

specified when the mean is determined. Thus, the dispersion is fixed by the mean.

If yi follows a distribution from the exponential dispersion family, φ is viewed

as an unknown parameter that must be estimated. If yi follows a distribution from

the one-parameter exponential family and overdispersion is not present, we assume

that a(φ) = φ = 1. If overdispersion is present, it is common to model the variance

as φv(μi) and to estimate φ. Here, v(μi) is the variance based on the one-parameter

distribution.

If overdispersion is ignored, the standard error of β̂ can be underestimated,

possibly leading to incorrect inferences. There are various approaches to correctly

estimate the standard error of β̂ in the presence of overdispersion. When the vari-

ance is modeled by introducing a dispersion parameter φ, an estimate of φ can

be computed based on the Pearson chi-square statistic or the deviance, and the

variances of the components of β̂ can be multiplied by this estimate. An alterna-

tive approach is to change the data distribution to one designed to accommodate
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overdispersion: e.g., use a negative binomial distribution as opposed to a Poisson

distribution. Yet another approach is estimate V ar(β̂) using (2.9).

2.1.3 Quasi-Likelihood-Based Estimation for Corre-
lated Responses

In the case of correlated responses, it is not always possible to formulate a

likelihood for parameter estimation. Wedderburn (1974) proposes a method for

estimating the parameters of interest by treating the responses as if they were

independent. This method preserves many of the appealing large-sample properties

of maximum likelihood estimators.

Suppose that we are interested in modeling the evolution of n patients over

time, and measure the response of each patient and the associated covariates t

times. Then, we have t correlated responses for each subject; that is, for subject i,

yi = (yi1, yi2, . . . , yit)
′. Let μil = E(yil) and v(μil) = V ar(yil) with l = 1, 2, . . . , t.

Then, μi = (μi1, μi2, . . . , μit)
′. Also, let xijl be the measurement for the jth covariate

(j = 1, 2, . . . , p) corresponding to the ith subject at time period l. For convenience,

xi1l = 1. In this case the mean structure becomes ηil = β1 + β2xi2l + . . . + βpxipl.

We can define a t× p subject-specific design matrix Xi with the same layout

as matrix (2.7). In Xi, the xijls for the ith subject take the place of the xijs in X.

One can define

Q(μ|y) =
n∑

i=1

Qi(μi|yi), where (2.10)

Qi(μi|yi) =
t∑

l=1

∫ μil

yil

yil − z

v(z)
dz.

The expression in (2.10) is the quasi-likelihood and plays a role analogous to �(μ|y).

Differentiating (2.10) with respect to β yields

q(β|y) ≡ ∂Q(μ|y)

∂β
=

n∑
i=1

X ′
iDiV

−1
i {yi − μi}, (2.11)
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where Di = Diag (∂μil/∂ηil) and Vi is the modeled variance/covariance matrix

for yi: i.e., Vi = Diag(v(μil)). Solving
∑n

i=1 X ′
iDiV

−1
i {yi − μi} = 0 yields the

quasi-likelihood-based estimator β̂. Assuming that the mean structure is correctly

specified, β̂ is consistent for β: β̂ → β as n →∞.

Note that expression (2.8) can be solved for any choice of link and variance

functions. For modeling overdispersed data, it suffices to replace v(μil) by φv(μil).

Let

I(β|y) = −∂2Q(μ|y)

∂β∂β′
.

The preceding functions as the observed information matrix in the quasi-likelihood

framework.

The sandwich variance estimator can be used to estimate V ar(β̂). Let

Σ(β) = I(β)−1J (β)I(β)−1, where

I(β) =
n∑

i=1

X ′
iDiV

−1
i DiXi,

J (β) = E{J (β|y)}, and

J (β|y) =
n∑

i=1

X ′
iDiV

−1
i (yi − μi)(yi − μi)

′V −1
i DiXi.

The large-sample variance/covariance matrix for β̂ is given by Σ(β). The sandwich

estimator which is of the form of (2.9) is given by

Σ(β̂) = I(β̂|y)−1J (β̂|y)I(β̂|y)−1. (2.12)

However, the conventional sandwich estimator is based on

Σ(β̂) = I(β̂)−1J (β̂|y)I(β̂)−1.

(See Liang and Zeger, 1986).

When responses are correlated, the true V ar(yi) has off-diagonal values that

are different from 0 and usually unknown. In quasi-likelihood-based estimation, a
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diagonal Vi is used as if the data were independent, although they are not. This

approach is known as the working independence model.

The simplicity of the working independence model carries the cost of a loss

of efficiency for the β estimates. Nevertheless, assuming a correctly specified mean

structure, the β estimates are consistent and asymptotically unbiased. The esti-

mates are also asymptotically normally distributed (Wedderburn, 1974).

Liang and Zeger (1986) extend the quasi-likelihood approach and suggest that

improved efficiency can be obtained by simultaneously estimating β and the pa-

rameters in V ar(yi). This corresponds to employing (2.11), yet instead of modeling

V ar(yi) using a diagonal Vi, using a more general structure:

Vi(α) = Δ
1/2
i Ri(α)Δ

1/2
i . (2.13)

Here, Δi = Diag(v(μil)) for l = 1, 2, . . . , t and Ri(α) is a t× t working correlation

matrix with parameter vector α. Liang and Zeger (1986) call equations (2.11) in

conjunction with (2.13) generalized estimating equations. In fact, if Ri(α) is the

identity matrix, Vi(α) is diagonal and this approach reduces to the aforementioned

working independence model.

Other common choices for Ri(α) are an exchangeable correlation matrix with

a single parameter (i.e., corr(yij, yil) = α for j �= l), an AR-1 correlation matrix

with a single parameter (i.e., corr(yij, yil) = α|l−j| for j �= l), and an unstructured

correlation matrix with t(t− 1)/2 parameters (i.e., corr(yij, yil) = αjl).

With a correctly specified mean structure, the β estimates resulting from

this extension of quasi-likelihood are consistent and asymptotically unbiased. The

estimates are also asymptotically normal. An appropriate specification of Vi(α)

improves asymptotic efficiency. If Vi(α) is assumed to be correct, V ar(β̂) can be

estimated by I(β̂)−1. Otherwise, V ar(β̂) can be estimated using (2.12).
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2.2 Model Selection Concepts

We now review model selection concepts relevant to the developments pre-

sented in chapters 3 through 5. We start by establishing the technical notions that

facilitate the development of estimators for KDD and KSD. We then illustrate the

performance of KDD and KSD using a simulation example. We also introduce Kull-

back discrepancies based on variants of KDD or KSD. Finally, we introduce relevant

likelihood-based and quasi-likelihood-based model selection criteria, against which

we compare the performance of the new criteria we propose in chapters 3 and 5.

2.2.1 Kullback’s Directed and Symmetric Divergences

Let the generating model be denoted by g(y|θ0). To determine which of the

proposed fitted models best resembles g(y|θ0), we need a measure that reflects the

disparity between g(y|θ0) and a candidate model f(y|θ). The oracles KDD and

KSD both fulfill this objective. KDD between g(y|θ0) and f(y|θ) with respect to

g(y|θ0) is defined as

KDD ≡ Igf (θ0, θ) = Eg

(
ln

g(y|θ0)

f(y|θ)

)
. (2.14)

Here, Eg denotes the expectation under g(y|θ0). Note that Igf (θ0, θ) is not symmet-

ric in terms of the densities that define the measure. Thus, an alternative directed

divergence, Ifg(θ, θ0), may be obtained by switching the roles of g(y|θ0) and f(y|θ)

in (2.14). The sum of the two directed divergences yields KSD:

KSD ≡ Jgf (θ0, θ) = Igf (θ0, θ) + Ifg(θ, θ0) (2.15)

= Eg

(
ln

g(y|θ0)

f(y|θ)

)
+ Ef

(
ln

f(y|θ)

g(y|θ0)

)
,

where Ef denotes the expectation under f(y|θ). It is well known that Igf (θ0, θ) ≥ 0

with equality if and only if f(y|θ) = g(y|θ0) (Kullback, 1968, p 14); the same

property follows for Ifg(θ, θ0) and Jgf (θ0, θ).
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To assess the proximity between a certain fitted candidate model f(y|θ̂) and

g(y|θ0), we consider the measures Jgf (θ0, θ̂) = Jgf (θ0, θ)|θ=θ̂ and Igf (θ0, θ̂) =

Igf (θ0, θ)|θ=θ̂. In practical settings Igf (θ0, θ̂) and Jgf (θ0, θ̂) are oracles; that is, they

can be estimated but neither can be directly employed for model selection purposes,

because both measures depend upon the unknown generating model g(y|θ0).

At this point, one might raise the following question: which of KSD or KDD is

a better measure of disparity between g(y|θ0) and f(y|θ̂)? We address this question

using an example taken from Cavanaugh (2004).

The objective of the example is to examine the performance of KSD and KDD

as oracles for finding a fitted linear model that provides a suitable approximation

to the normal linear model

y = X0β0 + ε, (2.16)

where ε ∼ Nn(0, σ2
0I) and X0 is n× p0 of rank p0, β0 is p0 × 1, and θ0 = (β0, σ

2
0).

As a candidate model, consider the normal linear model

y = Xβ + ε, (2.17)

where ε ∼ Nn(0, σ2I) and X is n × p of rank p, β is p × 1, and θ = (β, σ2). The

MLE of θ is denoted as θ̂ = (β̂, σ̂2), and f(y|θ̂) represents the resulting empirical

likelihood.

For models (2.16) and (2.17), one can show

Igf (θ0, θ) =
1

2
n

(
ln

(
σ2

σ2
0

)
+

σ2
0

σ2

)
+

1

2σ2
(X0β0 −Xβ)′(X0β0 −Xβ)− 1

2
n,

(2.18)

Ifg(θ, θ0) =
1

2
n

(
ln

(
σ2

0

σ2

)
+

σ2

σ2
0

)
+

1

2σ2
0

(X0β0 −Xβ)′(X0β0 −Xβ)− 1

2
n.

(2.19)

For the interpretations to follow, it is useful to recall that f(x) = ln(1/x) + x

is positive and increasing in x for x > 1. Considering Igf (θ0, θ̂) and Ifg(θ̂, θ0) as
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functions of θ̂ = (β̂, σ̂2), Igf (θ0, θ̂) is often large when (X0β0 −Xβ̂)′(X0β0 −Xβ̂)

is large and σ̂2 is small. For models that are correctly specified or overfitted, it

follows that

Eg{(X0β0 −Xβ̂)′(X0β0 −Xβ̂)} = pσ2
0 and Eg(σ̂

2) =
(
1− p

n

)
σ2

0.

Thus, the form of Igf (θ0, θ) implies that Igf (θ0, θ̂) is often sensitive towards over-

fitting, assuming large values when p is large and σ̂2 is substantially deflated.

On the other hand, Ifg(θ̂, θ0) is often large when (X0β0−Xβ̂)′(X0β0−Xβ̂)

and σ̂2 are both large. For models that are underfitted,

Eg{(X0β0 −Xβ̂)′(X0β0 −Xβ̂)} = pσ2
0 + (X0β0)

′(I −H)(X0β0) and

Eg(σ̂
2) =

(
1− p

n

)
σ2

0 +
1

n
(X0β0)

′(I −H)(X0β0),

where I is the identity matrix and H is the projection matrix onto the column

space of X. The size of the quadratic form (X0β0)
′(I − H)(X0β0) is dictated

by the extent to which X is underspecified. Thus, the form of Ifg(θ, θ0) implies

that Ifg(θ̂, θ0) is often sensitive towards underfitting, assuming large values when

(X0β0)
′(I −H)(X0β0) is large and σ̂2 is substantially inflated.

If X0β0, n, and σ2
0 are fixed, the two directed divergences in (2.18) and (2.19)

may be regarded as a function of the candidate model error variance (σ2 or Variance)

and the squared difference between the mean vectors under the true and candidate

models (Q). Figure 2.1 features three-dimensional plots of KDD and KSD as func-

tions of Q and the Variance. The minimum value of each function occurs at the

point (Q, V ariance) = (μ0, σ
2
0) = (0, 36). Moving in any direction from this point,

KSD increases more than KDD. The differences in curvature are particularly evident

in the back upper-left corners of the plots.

To further illustrate the effectiveness of KSD and KDD as measures for model

selection in the linear regression framework, one can simulate data using n = 26,
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Figure 2.1: Three-dimensional plots comparing KDD (light blue surface), KDD
counterpart (light purple surface) and KSD (green surface); the dot represents the
minimum of the surfaces, at (0,36).
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μ0 = 0, σ2
0 = 36 and the linear model

yi = 1 + xi2 + xi3 + xi4 + εi, (2.20)

where εi ∼ N(0, 36).

Consider using KSD and KDD to determine which of the following fitted

models best describes the data:

yi = β̂1 + β̂2xi2 + ε̂i, (2.21)

yi = β̂1 + β̂2xi2 + β̂3xi3 + β̂4xi4 + ε̂i, or (2.22)

yi = β̂1 + β̂2xi2 + β̂3xi3 + β̂5xi5 + β̂6xi6 + ε̂i. (2.23)

A total of 10, 000 samples are generated using model (2.20). For every sample,

the fitted models (2.21), (2.22) and (2.23) are obtained. KSD and KDD are then

evaluated for all three models, and the fitted model corresponding to the minimum

value of each measure is recorded. The regressors for all models are generated from

a U(0, 10) distribution. Table 2.1 shows the results, along with the average value of

σ̂2, Q̂, KDD and KSD for each candidate model.

KDD KSD

f(y|θ̂) Êg(Q̂) Êg(σ̂
2) Êg(KDD) Êg(KSD) Selections Selections

(2.23) 354.4 35.9 6.15 11.69 738 576

(2.22) 143.4 30.5 3.68 6.43 8408 9026

(2.21) 472.4 48.7 6.03 13.78 854 398

Table 2.1: Average values for σ̂2, Q̂, KDD and KSD, and KDD and KSD number
of model selections for 10,000 samples; results for the generating model are bolded.

The correctly specified model, (2.22), is chosen more frequently by KSD than
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by KDD. The reason for this can be seen in Figure 2.1 by comparing the plots in the

neighborhoods of the points (Êg(Q̂), Êg(σ̂
2)) corresponding to each of the candidate

models. For model (2.22), the point (Êg(Q̂), Êg(σ̂
2)) = (143.4, 30.5) lies to the back

right of the point at which the divergence surfaces attain their minimum, (0, 36).

Moving from the point (143.4, 30.5) towards either of the points (472.4, 48.7) (for

model (2.21)) or (354.4, 35.9) (for model (2.23)), the curvature of KSD is more

pronounced than that of KDD, especially in the direction of (472.4, 48.7). For a

particular sample, it is more likely for KSD than KDD to be minimized at the

coordinate (Q̂, σ̂2) corresponding to the correctly specified model.

A plausible explanation for the preceding results is that KSD combines the

information in Igf (θ0, θ̂) and Ifg(θ̂, θ0), two measures which are related and yet

distinct. Over the 10, 000 samples generated for this example, the correlations

between Igf (θ0, θ̂) and Ifg(θ̂, θ0) for models (2.21), (2.22) and (2.23) are 0.483, 0.909

and 0.716, respectively. This reinforces the notion that Igf (θ0, θ̂) and Ifg(θ̂, θ0)

are not redundant and advances the premise that KSD improves upon KDD by

incorporating the additional information in Ifg(θ̂, θ0).

In evaluating the adequacy of a fitted candidate model, Cavanaugh (2004)

notes that Igf (θ0, θ̂) may better reflect the error due to estimation variability,

whereas Ifg(θ̂, θ0) may better reflect the error due to estimation bias. This suggests

that when Igf (θ0, θ̂) and Ifg(θ̂, θ0) are combined, KSD might provide a more bal-

anced gauge of model disparity. In settings where the set of fitted candidate models

consists of both underfitted and overfitted models, KSD may better indicate those

models that are improperly specified than KDD. As a consequence, an estimator of

KSD may be preferable to an estimator of KDD as a model selection criterion.
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2.2.2 Kullback’s Discrepancies

Let M denote the collection of probability densities or mass functions for the

data vector y. Then, g(y|θ0) ∈M and f(y|θ) ∈M. A discrepancy, d, is a mapping

from M×M to R such that d(g(y|θ0), f(y|θ)) ≥ d(g(y|θ0), g(y|θ0)) (Linhart and

Zucchini, 1986, p 11).

A discrepancy is not a proper distance function, as it is not always the case

that d(a, a) = 0, d(a, b) = d(b, a), and d(a, c) ≤ d(a, b) + d(b, c) for all a, b, and

c. For example, KDD and KSD are discrepancies that satisfy d(a, a) = 0, but only

KSD satisfies d(a, b) = d(b, a). However, even though a discrepancy is not a formal

metric, it shares the same spirit as a distance, in that it is designed to measure

the separation between two entities. Thus, ideally, as the separation between the

generating and the candidate model increases, d(g(y|θ0), f(y|θ)) also increases. For

brevity of notation, we use dgf (θ0, θ) instead of d(g(y|θ0), f(y|θ)) for the remainder

of this manuscript.

In order to develop KDD and KSD estimators we consider discrepancies of

the following form:

dgf (θ0, θ) = Eg{−2 ln f(y|θ)} and (2.24)

dfg(θ, θ0) = Ef{−2 ln g(y|θ0)}. (2.25)

Evaluating the second argument of (2.24) at g(y|θ0) yields

dgg(θ0, θ0) = Eg{−2 ln g(y|θ0)}, (2.26)

the minimum of dgf (θ0, θ). Also, evaluating the second argument of dfg(θ, θ0) at

f(y|θ) yields

dff (θ, θ) = Ef{−2 ln f(y|θ)}, (2.27)
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the minimum of dfg(θ, θ0). Combining (2.14), (2.24) and (2.26), we can write

2Igf (θ0, θ) = dgf (θ0, θ)− dgg(θ0, θ0).

Since dgg(θ0, θ0) does not depend on θ, any ranking of candidate models based on

Igf (θ0, θ) would be identical to a ranking based on dgf (θ0, θ). Thus, for discrimi-

nating among various candidate models, the measure dgf (θ0, θ) is a valid substitute

for Igf (θ0, θ).

From (2.15) and (2.24) through (2.27), it follows that

2Jgf (θ0, θ) = dgf (θ0, θ)− dgg(θ0, θ0) + dfg(θ, θ0)− dff (θ, θ).

As with Igf (θ0, θ), dgg(θ0, θ0) can be discarded as it will not affect the ranking of

candidate models, and thus,

Kgf (θ0, θ) = dgf (θ0, θ) + dfg(θ, θ0)− dff (θ, θ) (2.28)

is a valid substitute for Jgf (θ0, θ).

2.2.3 Likelihood-Based Model Selection Criteria: AIC,
TIC and KIC

The overall discrepancy

dgf (θ0, θ̂) = Eg{−2 ln f(y|θ)}|θ=θ̂ (2.29)

reflects the separation between g(y|θ0) and f(y|θ̂). The expectation with respect

to g(y|θ0) of (2.29) is the expected discrepancy, Eg{dgf (θ0, θ̂)}. The evaluation of

both discrepancies requires knowledge of g(y|θ0). Akaike (1973) suggests that the

estimated discrepancy,

−2 ln f(y|θ̂),

serves as a biased estimator of Eg{dgf (θ0, θ̂)}.
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The expected discrepancy reflects how well, on average, the fitted candidate

model predicts new data generated under the true model. On the other hand, the

estimated discrepancy reflects how well the fitted model predicts the data at hand.

By evaluating the adequacy of the fitted model based on its ability to predict the

data used in its own construction, the estimated discrepancy yields an overly opti-

mistic assessment of how effectively the fitted model performs. Thus, the estimated

discrepancy serves as a negatively biased estimator of the expected discrepancy.

Correcting for this bias leads to the penalty term or bias correction term of a KDD-

based model selection criterion.

Let F(k) = {f(y|θ)|θ ∈ Θ(k)} denote a k-dimensional parametric candi-

date family of probability densities or mass functions; that is, a family in which

the parameter space Θ(k) consists of k-dimensional vectors whose components are

functionally independent. Akaike (1974) shows that if g(y|θ0) ∈ F(k), under a set

of regularity conditions ensuring the large-sample properties of θ̂, the statistic

AIC = −2 ln f(y|θ̂) + 2k

serves as an asymptotically unbiased estimator of Eg{dgf (θ0, θ̂)}. The first term of

AIC is usually referred to as the goodness-of-fit term and 2k is the penalty term.

AIC provides an approximately unbiased estimator of the expected discrep-

ancy in settings where n is large and k is comparatively small. In settings where n

is small and k is comparatively large (e.g., k ≈ n/2), 2k is often much smaller than

the bias adjustment, making AIC substantially negatively biased as an estimator of

the expected discrepancy. If AIC severely underestimates the expected discrepancy

for higher dimensional fitted models in the candidate set, the criterion may favor

the higher dimensional models even when the expected discrepancy between these

models and the generating model is rather large. Examples illustrating this phe-

nomenon appear in Linhart and Zucchini (1986, p 86), who comment (p 78) that “in
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some cases the criterion simply continues to decrease as the number of parameters

in the approximating model is increased.”

AIC is applicable in a broad array of modeling frameworks, since its justifica-

tion only requires conventional large-sample properties of MLEs. AIC can be used

to compare non-nested models and models based on different probability distribu-

tions. In a model selection application, the optimal fitted model is identified by the

minimum value of AIC.

Takeuchi (1976) shows that when g(y|θ0) is not necessarily included in F(k),

the statistic

TIC = −2 ln f(y|θ̂) + 2tr{J (θ̂|y)I(θ̂|y)−1}

functions as an asymptotically unbiased estimator of Eg{dgf (θ0, θ̂)}.
If g(y|θ0) ∈ F(k), I(θ) = J (θ); hence, I(θ̂|y) ≈ J (θ̂|y), and the bias

correction term of TIC is close to that of AIC. However, if g(y|θ0) is not well

approximated by f(y|θ̂), then tr{J (θ̂|y)I(θ̂|y)−1} could be considerably different

from k. The data-dependent estimator of the bias correction, 2tr{J (θ̂|y)I(θ̂|y)−1},
might be substantially less biased than 2k. However, a data-dependent estimator

might also be highly variable. This issue discourages some authors to recommend

the use of TIC (Burnham and Anderson, 2002).

Critics of model selection criteria with data-dependent penalty terms some-

times argue that such estimators of the bias adjustment are highly inaccurate in

settings conducive to underfitting. In simulation studies to evaluate the performance

of model selection criteria, two common conditions that tend to promote a high fre-

quency of underfitted selections are a small sample size and a low signal-to-noise

ratio (SNR).

SNR is usually defined as V ar(ηi) over V ar(yi). In traditional regression appli-

cations, the GLM systematic component is regarded as deterministic and thereby
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has a variance of zero. However, in simulation studies, the preceding SNR def-

inition is sensible since the systematic components are randomly generated. For

normal linear regression, the SNR definition is amenable to a familiar interpreta-

tion: if a correctly specified model is fitted to data generated under a true model

with a given SNR, the coefficient of determination for the fit will be approximately

SNR/(1+SNR).

In settings where SNR is low or the sample size is small, we have seen that TIC

tends to choose underfitted models more frequently than AIC. However, for a fixed

sample size, as SNR increases, the propensity of TIC to select underfitted models

is attenuated and TIC usually outperforms AIC. For a fixed SNR, as the sample

size grows, the probability of the criteria choosing an underfitted model converges

to zero, and TIC and AIC exhibit the same selection properties.

TIC may outperform AIC in settings where the data distribution is misspec-

ified. For instance, with a normal linear likelihood, if sample size is small (i.e., n

= 25 to 100) and the error is distributed with thicker tails than those of a normal

distribution (e.g., εi ∼ t(df) with df ≤ 6), Kitagawa (1987) shows that the penalty

term of TIC is markedly different from that in AIC.

The last likelihood-based criterion of relevance to the present work is based

on KSD. Cavanaugh (1999) shows that if g(y|θ0) ∈ F(k), under a set of regularity

conditions ensuring the large-sample properties of θ̂, the statistic

KIC = −2 ln f(y|θ̂) + 3k

serves as an asymptotically unbiased estimator of

Ωgf (θ0) ≡ Eg{Kgf (θ0, θ̂)} = Eg{dgf (θ0, θ̂) + dfg(θ̂, θ0)− dff (θ̂, θ̂)}. (2.30)

In the linear regression framework, various simulations presented in Cavanaugh

(2004) show that KIC outperforms AIC by obtaining more correct model selections
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than AIC. However, in small-sample applications where excessively overparameter-

ized families are entertained, KIC tends to underestimate Eg{Kgf (θ0, θ̂)} in the

same manner that AIC tends to underestimate Eg{dgf (θ0, θ̂)}. Thus, KIC may be

an improvement over AIC in terms of guarding against overfitting, but in small-

sample settings, where underfitting may be likely, there is room for criteria based

on more sophisticated estimators of Ωgf (θ0). Ideally, such estimators have the po-

tential to effectively guard against both underfitting and overfitting.

More extensive comparisons of AIC, TIC and KIC in the GLM framework are

included in the simulations presented in chapter 4.

2.2.4 Quasi-Likelihood-Based Model Selection Crite-
rion: QIC

We conclude this chapter by defining QIC. This criterion is widely used for the

selection of a GLM for correlated data, where the model parameters are estimated

using either a quasi-likelihood or GEEs. QIC is suitable for selecting the working

correlation structure and the covariates for the mean structure. QIC is introduced

by Pan (2001) as a modification of AIC that is developed by replacing f(β|y) in

dgf (β0, β) with the quasi-likelihood.

Let β̂
I

denote the estimator of β under the working independence model.

Then the overall discrepancy can be expressed as

dgq(β0, β̂
I
) = Eg{−2Q(β|y)}|

β=β̂
I ,

and the expected and estimated discrepancies become

Eg{dgq(β0, β̂
I
)} and (2.31)

−2Q(β̂
I |y), (2.32)

respectively. Correcting for the bias in (2.32) introduced by estimating (2.31) with
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(2.32) yields

QICI = −2Q(β̂
I |y) + 2tr{I(β̂

I |y)Σ(β̂
I
)}. (2.33)

Here, the sandwich variance estimator Σ(β̂
I
) is evaluated using the estimate of

V ar(yi) under the working independence model: i.e., using a diagonal V̂i. QICI is

an asymptotically unbiased estimator of Eg{dgq(β0, β̂
I
)} (Pan, 2001).

In the GEE framework, let β̂
R

be the estimator of β obtained using the

working correlation matrix Ri(α). A variant of QICI can be proposed that takes

into account this postulated correlation structure:

QICR = −2Q(β̂
R|y) + 2tr{I(β̂

R|y)Σ(β̂
R
)}. (2.34)

Here, the sandwich variance estimator Σ(β̂
R
) is evaluated using the estimate of

V ar(yi) based on the postulated variance/covariance structure: i.e., using V̂i(α̂).

The criterion in (2.34) differs from (2.33) in that it is calculated using β̂
R
.

QICR is a biased estimator of Eg{dgq(β0, β̂
I
)}. Although this does not seem to

appreciably affect its performance in terms of choosing a proper mean structure,

Pan (2001) recommends the use of QICI .

Note that φ may need to be estimated. According to Pan (2001), φ can be

estimated using any method of choice, but the estimate should be based on the

largest candidate model; that is, the one including all the available covariates.

When all modeling specifications are correct, I(β̂
R|y)−1 and Σ(β̂

R
) are asymp-

totically equivalent. Thus, tr{I(β̂
R|y)Σ(β̂

R
)} ≈ k. In that case, QICR reduces to

a form that is similar to that of AIC,

QICU = −2Q(β̂
R|y) + 2k.

QICU is an approximation to (2.34) and potentially useful in mean structure selec-

tion. However, QICU cannot be applied to select the working correlation structure
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because the postulated correlation structure is not sufficiently represented in either

the goodness-of-fit term or the penalty term.

As with AIC, the smaller the value of QICI or any of its variants, the better

the fitted model explains the data. Hardin and Hilbe (2002) propose using QICR

to choose among competing correlation structures that cannot be discerned using

scientific reasoning. Once the correlation structure is determined, the authors rec-

ommend estimating β using the chosen working correlation (i.e., computing β̂
R
),

and then utilizing QICU to determine the best subset of covariates. We compare

the performance of the different forms of QIC in chapter 5.
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CHAPTER 3

LIKELIHOOD-BASED MODEL SELECTION CRITERIA DERIVED
FROM KULLBACK’S SYMMETRIC DIVERGENCE

In this chapter we present KICo and KICu, two new model selection criteria

based on KSD. KICo and KICu are developed, in part, by relaxing the assumptions

under which AIC and KIC are derived.

In the large-sample justifications of AIC and KIC, it is assumed that g(y|θ0) ∈
F(k). This assumption implies that (1) the structure of the fitted model is either

correctly specified or overspecified (i.e., the mean and variance/covariance structures

of the candidate model include at least all the necessary parameters); and (2) the

distribution of y is correctly specified. We derive KICo and KICu under a set of

less stringent assumptions. We relax (1) in the development of KICu and (2) in

the development of KICo. Thus, in both developments, g(y|θ0) is not necessarily

included in the candidate family F(k). In this respect, KICo and KICu resemble

TIC. Not surprisingly, the penalty terms of KICo and KICu both include the trace

statistic that serves as the basis for the penalty term of TIC.

3.1 KICo Derivation

For deriving KICo, we assume that the fitted model is correctly specified or

overspecified, but that the distribution of y is potentially misspecified. Distribu-

tional misspecification can occur with the error distribution; for example, when a

linear model is fitted assuming normally distributed errors, yet the true errors arise

from a t distribution. Another form of distributional misspecification arises when

the outcomes are overdispersed but the fitted model does not accommodate overdis-

persion. For instance, when a Poisson random component is fitted but the outcomes

follow a negative binomial process, or when a binomial random component is fitted
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but the outcomes follow a beta-binomial process. Relaxing the assumption of a cor-

rectly specified distribution introduces the notion of the best approximating model,

f(y|θ0). In the candidate family F(k), the best approximating model is the model

parameterized by θ0; i.e., the model in F(k) where the parameters of interest are

fixed at values that are identical to those of the data generating model g(y|θ0).

However, since the form of the postulated distribution of y possibly differs from the

data generating distribution, f(y|θ0) �= g(y|θ0).

To further clarify the concept of the best approximating model, consider the

following scenarios. Suppose that g(y|θ0) represents a negative binomial distribu-

tion, but a Poisson distribution is chosen for f(y|θ), or that g(y|θ0) represents a

beta binomial distribution, but a binomial distribution is chosen for f(y|θ). In each

case, assume that the parameters of interest relate to the mean structure. Although

the data generating distribution features an additional parameter to model disper-

sion, this parameter would not be included among the parameters represented in θ0.

Rather, the vector θ0 only includes the regression parameters that characterize the

mean. Note that the MLE for θ0 should be consistent under the candidate model

f(y|θ) even though this model is misspecified in terms of the distribution. The best

approximating model f(y|θ0) is based on the true parameter vector (i.e., the true

mean structure) as applied to the postulated distribution.

In the development of KICo, we also assume a set of regularity conditions

to ensure that θ̂ satisfies the large-sample properties of MLEs under distributional

misspecification, as described in section 2.1.1. Recall that when L(θ|y) is misspec-

ified, the sandwich variance estimator should be used to calculate V ar(θ̂) because

I(θ) �= J (θ).
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For the purpose of the derivations that follow, we define the following infor-

mation matrices:

If (θ) = Ef (I(θ|y)) and

Ig(θ) = Eg(I(θ|y)).

In section 2.2.2, we present Kgf (θ0, θ) as a valid substitute for Jgf (θ0, θ). For

developing KICo, we will use yet another form of KSD. Let

2Jff (θ0, θ) = dff (θ0, θ)− dff (θ0, θ0) + dff (θ, θ0)− dff (θ, θ). (3.1)

The preceding expression is another possible KSD. It only differs from Jgf (θ0, θ)

in that the data generating model g(y|θ0) is replaced by the best approximating

model f(y|θ0).

Adding the constant dgf (θ0, θ0) to (3.1) does not alter the ranking of compet-

ing models. Thus,

Lgf (θ0, θ) = dff (θ0, θ)− dff (θ0, θ0) + dff (θ, θ0)− dff (θ, θ) + dgf (θ0, θ0) (3.2)

is also an appealing measure for creating KSD-based model selection criteria. This

measure will serve as the basis for the development of KICo.

If we evaluate (3.2) at θ̂ and take the expected value with respect to g(y|θ0),

we obtain

Φgf (θ0) ≡ Eg{Lgf (θ0, θ̂)}

= Eg{dff (θ0, θ̂)− dff (θ0, θ0) + dff (θ̂, θ0)− dff (θ̂, θ̂) + dgf (θ0, θ0)}.
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We may then decompose Φgf (θ0) as follows:

Φgf (θ0) = Eg{−2 ln f(y|θ̂)}

+ dgf (θ0, θ0)− Eg{−2 ln f(y|θ̂)} (3.3)

+ Eg{dff (θ0, θ̂)} − dff (θ0, θ0) (3.4)

+ Eg{dff (θ̂, θ0)− dff (θ̂, θ̂)}. (3.5)

The purpose of the preceding decomposition is to introduce −2 ln f(y|θ̂) as a plat-

form for estimating Φgf (θ0). According to the developments that follow, (3.3), (3.4),

and (3.5) are positive; hence, −2 ln f(y|θ̂) is negatively biased. If we can obtain

estimates of these terms, we can correct for the negative bias.

Consider taking a second-order Taylor series expansion of −2 ln f(y|θ0) about

θ̂. Since ln f(y|θ0) is maximized at θ̂, one can establish

−2 ln f(y|θ0) = −2 ln f(y|θ̂) + (θ̂ − θ0)
′I(θ̂|y)(θ̂ − θ0) + r1(θ0, θ̂).

Here, as n increases, r1(θ0, θ̂) is op(1); Eg{r1(θ0, θ̂)} is therefore o(1). Taking the

expectation of both sides of this expansion with respect to g(y|θ0) yields

dgf (θ0, θ0)− Eg{−2 ln f(y|θ̂)} = Eg{(θ̂ − θ0)
′I(θ̂|y)(θ̂ − θ0)}+ o(1). (3.6)

Next, consider taking a second-order Taylor series expansion in the second

argument of dff (θ0, θ̂) about θ0, and a second-order expansion in the second argu-

ment of dff (θ̂, θ0) about θ̂. By definition, dff (θ0, θ̂) is minimized when θ̂ = θ0 and

dff (θ̂, θ0) is minimized when θ0 = θ̂. Thus,

dff (θ0, θ̂) = dff (θ0, θ0) + (θ̂ − θ0)
′If (θ0)(θ̂ − θ0) + r2(θ0, θ̂) and

dff (θ̂, θ0) = dff (θ̂, θ̂) + (θ̂ − θ0)
′If (θ̂)(θ̂ − θ0) + r3(θ0, θ̂).

Here, r2(θ0, θ̂) and r3(θ0, θ̂) are both op(1); Eg{r2(θ0, θ̂)} and Eg{r3(θ0, θ̂)} are

therefore o(1). Taking the expectation of both sides of these two last expansions
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with respect to g(y|θ0) yields

Eg{dff (θ0, θ̂)} − dff (θ0, θ0) = Eg{(θ̂ − θ0)
′If (θ0)(θ̂ − θ0)}+ o(1) and (3.7)

Eg{dff (θ̂, θ0)− dff (θ̂, θ̂)} = Eg{(θ̂ − θ0)
′If (θ̂)(θ̂ − θ0)}+ o(1). (3.8)

Thus, replacing (3.3) by (3.6), (3.4) by (3.7), and (3.5) by (3.8), Φgf (θ0) can

be written as follows:

Φgf (θ0) = Eg{−2 ln f(y|θ̂)}

+ Eg{(θ̂ − θ0)
′I(θ̂|y)(θ̂ − θ0)}

+ Eg{(θ̂ − θ0)
′If (θ0)(θ̂ − θ0)}

+ Eg{(θ̂ − θ0)
′If (θ̂)(θ̂ − θ0)}+ o(1).

Since the structure of the fitted model is either correctly specified or overspec-

ified, θ̂ → θ0 as n → ∞. Thus, we can approximate the first quadratic form with

Eg{(θ̂ − θ0)
′Ig(θ0)(θ̂ − θ0)}. Also, we can approximate the third quadratic form

with Eg{(θ̂ − θ0)
′If (θ0)(θ̂ − θ0)}. Hence, Φgf (θ0) becomes

Φgf (θ0) = Eg{−2 ln f(y|θ̂)}

+ Eg{(θ̂ − θ0)
′Ig(θ0)(θ̂ − θ0)}

+ 2Eg{(θ̂ − θ0)
′If (θ0)(θ̂ − θ0)}+ o(1).

Given that Eg{(θ̂− θ0)
′Ig(θ0)(θ̂− θ0)} and Eg{(θ̂− θ0)

′If (θ0)(θ̂− θ0)} are

scalars, we have

Φgf (θ0) = Eg{−2 ln f(y|θ̂)}+ tr{Ig(θ0)Eg{(θ̂ − θ0)(θ̂ − θ0)
′}}

+ 2[tr{If (θ0)Eg{(θ̂ − θ0)(θ̂ − θ0)
′}}] + o(1)

= Eg{−2 ln f(y|θ̂)}+ tr{Ig(θ0)Σ(θ0)}

+ 2[tr{If (θ0)Σ(θ0)}] + o(1).
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Let Jg(θ0) = Eg(J (θ0|y)). Replacing Σ(θ0) by result (2.4), we obtain

Φgf (θ0) = Eg{−2 ln f(y|θ̂)}+ tr{Jg(θ0)Ig(θ0)
−1}

+ 2[tr{If (θ0)Ig(θ0)
−1Jg(θ0)Ig(θ0)

−1}] + o(1).

Now, define the statistic KICo as follows:

KICo = −2 ln f(y|θ̂) + tr{J (θ̂|y)I(θ̂|y)−1}

+ 2[tr{If (θ̂)I(θ̂|y)−1J (θ̂|y)I(θ̂|y)−1}]. (3.9)

Based on the preceding development, one can conclude that

Eg{KICo}+ o(1) = Φgf (θ0).

In the GLM framework, when the canonical link is used, the expected informa-

tion equals the observed information because the Hessian matrix does not depend

on the data. That is, If (θ0) = Ig(θ0) = I(θ|y). Hence, expression (3.9) becomes

KICo = −2 ln f(y|θ̂) + tr{J (θ̂|y)I(θ̂|y)−1}

+ 2[tr{J (θ̂|y)I(θ̂|y)−1}]

= −2 ln f(y|θ̂) + 3[tr{J (θ̂|y)I(θ̂|y)−1}].

In summary, KICo is an asymptotically unbiased estimator of Φgf (θ0) for

models with correctly or overspecified mean and variance/covariance structures.

Note that even though we are assuming that the fitted model is correctly specified

or overspecified, the trace terms in KICo do not reduce to k because we allow for

misspecification of the likelihood.

3.2 KICu Derivation

We propose KICu as another asymptotically unbiased estimator of KSD. Let

F = {F(k1),F(k2), ...,F(kL)} represent the collection of candidate families. We
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refer to F as the candidate set. Assume that the largest candidate family in F
is F(K): i.e., K = max{k1, k2, ..., kL}. The largest candidate model refers to the

model defined by the structure of the candidate family F(K). In a linear regression

setting, this model would include all available covariates that have been collected

to explain the outcome. In a linear mixed modeling framework, this model would

not only include all available covariates, but its variance/covariance structure would

subsume all other structures represented in the candidate set.

KICu is based on the assumption that g(y|θ0) ∈ F(K). This assumption

implies that (1) the data distribution is correctly specified, and (2) the generating

model is subsumed by the largest, K-dimensional, candidate model (i.e., the largest

candidate model is either correctly specified or overspecified). Thus, in terms of the

model structures, various models in the candidate set F may be either correctly

specified, underspecified or overspecified.

In the development of KICu, we also assume a set of regularity conditions to

ensure that θ̂ satisfies the large-sample properties of MLEs under structural mis-

specification, as described in section 2.1.1. Thus, the sandwich variance estimator

should be used to estimate V ar(θ̂).

Let θ0 represent the data generating model parameter. Let θ∗ be the K-

dimensional parameter for a candidate model in F(K) and let θ̂∗ be its MLE. For

the largest candidate model, θ̂∗ → θ0 as n → ∞. For other candidate models, we

may only assume that θ̂ → θ̄ as n → ∞, since the candidate family F(k) may

be underspecified. Underspecified candidate models will be based on mean and/or

variance/covariance structures that are insufficient to accommodate the data.

In section 2.2.3, we present Ωgf (θ0) as an appealing measure for creating
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KSD-based model selection criteria. For deriving KICu, we use the following de-

composition:

Ωgf (θ0) = Eg{−2 ln f(y|θ̂)}

+ dgf (θ0, θ̄)− Eg{−2 ln f(y|θ̂)} (3.10)

+ Eg{dgf (θ0, θ̂)} − dgf (θ0, θ̄) (3.11)

+ Eg{dgf (θ0, θ̄)− dff (θ̂, θ̂)} (3.12)

+ Eg{dfg(θ̂, θ0)− dgf (θ0, θ̄)}. (3.13)

Again, the preceding decomposition allows us to introduce −2 ln f(y|θ̂) as a plat-

form for estimating Ωgf (θ0). We can correct for the negative bias of −2 ln f(y|θ̂)

as an estimator for Ωgf (θ0) by obtaining estimators for (3.10), (3.11), (3.12), and

(3.13).

Consider taking a second-order Taylor series expansion of −2 ln f(y|θ̄) about

θ̂, and a second-order expansion in the second argument of dgf (θ0, θ̂) about θ̄. The

log likelihood ln f(y|θ̄) is maximized at θ̂. Also, dgf (θ0, θ̂) is minimized when θ̂ = θ̄

(as opposed to θ̂ = θ0), because g(y|θ0) is not necessarily included in the candidate

model family. Hence, one can establish

−2 ln f(y|θ̄) = −2 ln f(y|θ̂) + (θ̂ − θ̄)′I(θ̂|y)(θ̂ − θ̄) + r4(θ̄, θ̂) and

dgf (θ0, θ̂) = dgf (θ0, θ̄) + (θ̂ − θ̄)′Ig(θ̄)(θ̂ − θ̄) + r5(θ̄, θ̂).

Here, as n increases, r4(θ̄, θ̂) and r5(θ̄, θ̂) are op(1); Eg{r4(θ̄, θ̂)} and Eg{r5(θ̄, θ̂)}
are therefore o(1). Taking the expectation of both sides of these two last expansions

with respect to g(y|θ0) yields

dgf (θ0, θ̄)− Eg{−2 ln f(y|θ̂)} = Eg{(θ̂ − θ̄)′I(θ̂|y)(θ̂ − θ̄)}+ o(1) and (3.14)

Eg{dgf (θ0, θ̂)} − dgf (θ0, θ̄) = Eg{(θ̂ − θ̄)′Ig(θ̄)(θ̂ − θ̄)}+ o(1). (3.15)
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To obtain an approximation for (3.12), we use the following result:

dff (θ̂, θ̂) = −2 ln f(y|θ̂). (3.16)

For a normal linear model, it is straightforward to demonstrate (3.16). However,

it is not trivial to generalize (3.16) to other distributions in the exponential family.

We have found empirically that (3.16) holds for the Bernoulli and for the parameter-

dependent part of the Binomial and Poisson distributions: i.e., py(1 − p)n−y and

e−λλy, respectively. However, it remains to be shown theoretically that (3.16) is a

general result that holds for all distributions in the exponential family.

Using result (3.16), (3.12) can be expressed as

Eg{dgf (θ0, θ̄)− (−2 ln f(y|θ̂))} = dgf (θ0, θ̄)− Eg{−2 ln f(y|θ̂)}

= Eg{−2 ln f(y|θ̄)} − Eg{−2 ln f(y|θ̂)}. (3.17)

Note that the left-hand side of (3.17) is the same as the left-hand side of (3.14).

Next, we approximate (3.13) using a result that has been established empiri-

cally yet not theoretically. Given that θ̂∗ → θ0 and θ̂ → θ̄ as n →∞, and that the

data distribution is correctly specified, the statistic

dff (θ̂, θ̂∗)− dff (θ̂∗, θ̂) (3.18)

appears to be a reasonable approximation for (3.13). However, simulation results

show that (3.18) is negatively biased by a factor of K − k, where K and k are the

dimensions of θ∗ and θ, respectively. Hence, we propose

dff (θ̂, θ̂∗)− dff (θ̂∗, θ̂)−K + k (3.19)

to approximate (3.13). It remains to be shown theoretically that (3.19) is an asymp-

totically unbiased estimator of (3.13).
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Replacing (3.10) and (3.12) by (3.14), (3.11) by (3.15), and (3.13) by

Eg{dff (θ̂, θ̂∗)− dff (θ̂∗, θ̂)−K + k},

Ωgf (θ0) can be represented as follows:

Ωgf (θ0) = Eg{−2 ln f(y|θ̂)}

+ Eg{(θ̂ − θ̄)′I(θ̂|y)(θ̂ − θ̄)}

+ Eg{(θ̂ − θ̄)′Ig(θ̄)(θ̂ − θ̄)}

+ Eg{(θ̂ − θ̄)′I(θ̂|y)(θ̂ − θ̄)}

+ Eg{dff (θ̂, θ̂∗)− dff (θ̂∗, θ̂)−K + k}+ o(1).

Since θ̂ → θ̄ as n → ∞, the first and third quadratic forms in the preceding

expression can be approximated by Eg{(θ̂ − θ̄)′Ig(θ̄)(θ̂ − θ̄)}. Hence, Ωgf (θ0)

becomes

Ωgf (θ0) = Eg{−2 ln f(y|θ̂)}+ 3Eg{(θ̂ − θ̄)′Ig(θ̄)(θ̂ − θ̄)}

+ Eg{dff (θ̂, θ̂∗)− dff (θ̂∗, θ̂)−K + k}+ o(1).

Given that Eg{(θ̂ − θ̄)′Ig(θ̄)(θ̂ − θ̄)} is a scalar, we have

Ωgf (θ0) = Eg{−2 ln f(y|θ̂)}+ 3[tr{Ig(θ̄)Eg{(θ̂ − θ̄)′(θ̂ − θ̄)}}]

+ Eg{dff (θ̂, θ̂∗)− dff (θ̂∗, θ̂)−K + k}+ o(1)

= Eg{−2 ln f(y|θ̂)}+ 3[tr{Ig(θ̄)Σ(θ̄)}]

+ Eg{dff (θ̂, θ̂∗)− dff (θ̂∗, θ̂)−K + k}+ o(1).

Replacing Σ(θ̄) by result (2.5), we obtain

Ωgf (θ0) = Eg{−2 ln f(y|θ̂)}+ 3[tr{Jg(θ̄)Ig(θ̄)−1}]

+ Eg{dff (θ̂, θ̂∗)− dff (θ̂∗, θ̂)−K + k}+ o(1).
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Now, define the statistic KICu as follows:

KICu = −2 ln f(y|θ̂) + 3tr{J (θ̂|y)I(θ̂|y)−1}+ dff (θ̂, θ̂∗)− dff (θ̂∗, θ̂)−K + k.

In light of the preceding development, one can conclude that

Eg{KICu}+ o(1) = Ωgf (θ0).

Thus, KICu is an asymptotically unbiased estimator of Ωgf (θ0) for models with

correctly specified, overspecified or underspecified mean and variance/covariance

structures.

Note that KICu has the following form:

KICu = KICo + underfitting penalty term.

For correctly specified or overspecified models, the expectation of the underfitting

penalty term is approximately zero. For underfitted models, the size of the term

reflects the degree of underspecification.
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CHAPTER 4

SIMULATION STUDIES FOR KICO AND KICU

The assumptions employed in the development of KICo and KICu allow us to

apply these criteria in the selection of a wide range of models. Importantly, this

includes models grouped under the umbrella of GLMs for uncorrelated responses.

The goal of the simulation studies presented in this chapter is to characterize the

performances of KICo and KICu, illustrating their behaviors in scenarios where,

given the assumptions used in their development, each criterion is expected to ex-

cel. Our simulation studies are based on factorial designs. We consider settings

based on two modeling objectives (i.e., selection of models with a correctly specified

mean structure and of models with optimal predictive properties), two types of can-

didate sets (i.e., nested models and all possible models), and three types of GLMs

(i.e., linear, logistic and Poisson regressions) both without misspecification and with

ignored misspecification. We also explore the effect of regressor collinearity on the

performance of the criteria.

The two modeling objectives considered are to select models with a correctly

specified mean structure and to choose a model with optimal predictive properties.

Selecting a model with a correctly specified mean structure is reflective of the usual

situation that arises in the practice of clinical health sciences, where the researcher

has various candidate covariates that could explain an outcome, but he or she is

unsure of which covariates should be included in the model. Simulation experiments

can imitate this problem by including in the set of candidate models the data

generating model, together with other candidate models including fewer or more of

the candidate covariates. In this scenario, the model selection criterion that chooses

the generating model most often is considered best.

Selecting a model with optimal predictive properties is directly related to a
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typical situation in the basic sciences where the model explaining a natural phe-

nomenon is well characterized by different effects of various magnitudes, but the

sample size is limited and will not allow all of the effects to be accurately estimated.

In this situation, the goal is to decide which of the explanatory variables should

be included in the final model to optimize prediction of the outcome given a new

sample. To simulate this type of setting, the highest order model in the candidate

set is the generating model, and this model contains strong, moderate, and weak

effects. Thus, all candidate models, except for the one with the highest order, are

underspecified. The best model selection criterion in this type of modeling problem

is one that chooses models which minimize some measure of prediction error. This

modeling objective is more aligned with the assumptions made in the development

of KICu.

Each simulation experiment presented is based on 1,000 replications. In these

experiments, order refers to the number of parameters in the linear predictor, re-

ferred to as p in chapter 2. When the candidate set F contains nested candidate

families or nested models (NM), the model selection problem is reduced to choosing

an appropriate order. Even though NM simulations settings do not mirror the man-

ner in which regression models are selected in practice, simulation experiments with

NM allow a better conceptualization of underfitting and overfitting than when the

candidate set contains all possible models (APM). A candidate model is underfitted

unless the generating model is subsumed by the candidate model. In the APM set-

ting, models of the same order as the generating model but with a different mean

structure are underfitted. In fact, candidate models can have a higher order than

the generating model but be underfitted. Thus, in APM settings, the number of

underfitted candidate models grows quickly with the number of covariates consid-

ered. APM candidate sets are more reflective of real life model selection situations

than NM sets.
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We illustrate the performances of KICo and KICu using simulations based on

linear, logistic and Poisson regression frameworks. We compare their performances

to three other criteria that can be used in the GLM framework: AIC, TIC, and KIC.

We also compare the criteria to suitable oracles. Oracles serve as gold standards for

the selection criteria and allow us to evaluate the best possible criterion performance

in each experiment.

For computational tractability, the two oracles we use in the simulation ex-

periments are

dff (θ0, θ̂) = Ef{−2 ln f(y|θ̂)} and (4.1)

Kff (θ0, θ̂) = dff (θ0, θ̂) + dff (θ̂, θ0)− dff (θ̂, θ̂). (4.2)

Expression (4.1) can be used as an oracle for KDD-based criteria and (4.2) can

be used as an oracle for KSD-based criteria. For brevity of notation, we will use

d(θ0, θ̂) and K(θ0, θ̂) instead of dff (θ0, θ̂) and Kff (θ0, θ̂), respectively.

4.1 Selection of a Model with Correctly Speci-
fied Mean Structure

All of the simulation studies in this section are structured as factorial ex-

periments with two levels of sample size and different types of misspecification.

Different levels of distributional misspecification are introduced in order to reflect

settings that follow the assumptions used in the development of KICo. In settings

where distributional misspecification is present, the models are fitted ignoring such

misspecification.

Data are generated following the configurations detailed in each section. For

each replication, AIC, TIC, KIC, KICo, KICu, d(θ0, θ̂), and K(θ0, θ̂) are evaluated

for each fitted candidate model. The fitted model with the minimum value for each

statistic or oracle is recorded. The results are then summarized in tables and figures.
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4.1.1 Linear Regression with Correctly Specified Error
Distribution and with Incorrectly Specified Error
Distribution

For continuous outcomes, one can often assume yi ∼ N(μi, σ2) for i =

1, 2, ..., n, with E(yi) = μi. If the goal is to explain a sample y with effects repre-

sented by a linear combination of explanatory variables (a.k.a, covariates or regres-

sors), then the GLM of choice is linear regression. The canonical link function for

linear regression is the identity link:

μi =

p∑
j=1

xijβj,

where the βjs are the parameters we seek to estimate.

For this framework, we configure a simulation experiment based on six settings

with the characteristics that follow. The latter four of these six settings represent

a 2x2 factorial design. Data are generated using the third-order model

yi = 1 + xi2 + xi3 + εi,

where εi ∼ N(0, 3) and n = 30 (setting 1) or n = 60 (setting 2), εi ∼ t(2) and

n = 60 (setting 3) or n = 120 (setting 4), and εi ∼ I ∗N(0, 1) + (1− I) ∗N(0, 10)

(I ∼ Bernoulli(0.95)) and n = 60 (setting 5) or n = 120 (setting 6). Settings 1 and

2 do not present error misspecification, since the normal distribution is assumed

in fitting candidate models to the data. Settings 3 to 6 present two forms of er-

ror misspecification, with error distributions having thicker tails than the normal

distribution.

For the simulations featuring NM, the model selection criteria choose from the
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following candidate set:

yi = β1 + εi,

yi = β1 + β2xi2 + εi,

...

yi = β1 + β2xi2 + β3xi3 + β4xi4 + β5xi5 + εi,

where xij (j = 2, ..., 5) are independent and identically distributed (iid) as N(0, 1),

and εi are iid N(0, σ2).

For APM simulations, a total of 15 models are included in the candidate set

(i.e., all combinations of the covariates, except for xi1, excluding the intercept-only

model). We choose to exclude the intercept-only model from the APM selections

with the intent of making this simulation experiment as close as possible to a real-

world setting. However, the intercept-only model is included in the NM simulations.

The results for the six settings are summarized in Tables 4.1 to 4.6. In all

cases, K(θ0, θ̂) chooses the data generating model at least as often as d(θ0, θ̂). The

only instances where the two oracles exhibit a very similar number of correct model

selections are those where the correct selection rate for d(θ0, θ̂) is 97% or higher,

leaving almost no room for improvement.

For NM order selections (Tables 4.1 to 4.3), although all criteria perform well,

KICo is the criterion that chooses the data generating model most often. The most

remarkable difference between KICo and the rest of the criteria is that KICo chooses

overspecified models less often. However, KICo selects underspecified models more

often than any of the other criteria. Note that KICu protects against underfitting,

as does AIC; however, KICu chooses overfitted models less often than AIC.
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n order AIC TIC KIC KICo KICu d(θ0, θ̂) K(θ0, θ̂)

30 5 117 77 49 20 88 0 0

30 4 154 138 94 61 150 0 0

30 3 677 721 753 781 708 952 973

30 2 49 59 85 113 51 43 27

30 1 3 5 19 25 3 5 0

60 5 89 77 46 28 81 0 0

60 4 130 111 78 68 116 0 0

60 3 779 810 870 897 801 997 999

60 2 2 2 6 7 2 3 1

60 1 0 0 0 0 0 0 0

Table 4.1: Settings 1 and 2: NM order selections for AIC, TIC, KIC, KICo, KICu,
d(θ0, θ̂) and K(θ0, θ̂) in the linear regression framework; results for the generating
model are bolded.
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n order AIC TIC KIC KICo KICu d(θ0, θ̂) K(θ0, θ̂)

60 5 84 65 24 12 70 0 0

60 4 141 134 77 59 138 0 0

60 3 690 710 757 773 707 983 986

60 2 55 58 88 98 55 15 13

60 1 30 33 54 58 30 2 1

120 5 71 65 18 12 67 0 0

120 4 130 121 74 69 126 0 0

120 3 771 784 857 866 780 996 996

120 2 15 17 28 30 15 3 3

120 1 13 13 23 23 12 1 1

Table 4.2: Settings 3 and 4: NM order selections for AIC, TIC, KIC, KICo, KICu,
d(θ0, θ̂) and K(θ0, θ̂) in the linear regression framework; results for the generating
model are bolded.
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n order AIC TIC KIC KICo KICu d(θ0, θ̂) K(θ0, θ̂)

60 5 80 63 20 9 71 0 0

60 4 140 124 74 63 129 0 0

60 3 707 736 775 789 730 838 860

60 2 55 59 81 87 55 114 132

60 1 18 18 50 52 15 48 8

120 5 77 65 33 26 65 0 0

120 4 143 135 81 71 139 0 0

120 3 773 793 874 891 789 979 983

120 2 6 6 10 10 6 18 17

120 1 1 1 2 2 1 3 0

Table 4.3: Settings 5 and 6: NM order selections for AIC, TIC, KIC, KICo, KICu,
d(θ0, θ̂) and K(θ0, θ̂) in the linear regression framework; results for the generating
model are bolded.
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n order AIC TIC KIC KICo KICu d(θ0, θ̂) K(θ0, θ̂)

30 overfitted 925 815 996 941 723 78 47

30 correct 51 141 4 51 213 922 953

30 underfitted 24 44 0 8 64 0 0

60 overfitted 115 127 29 39 154 0 0

60 correct 413 520 153 325 569 996 999

60 underfitted 472 353 818 636 277 4 1

Table 4.4: Settings 1 and 2: APM order selections for AIC, TIC, KIC, KICo, KICu,
d(θ0, θ̂) and K(θ0, θ̂) in the linear regression framework.

n order AIC TIC KIC KICo KICu d(θ0, θ̂) K(θ0, θ̂)

60 overfitted 56 60 17 21 69 0 0

60 correct 227 304 88 172 334 973 978

60 underfitted 717 636 895 807 597 27 22

120 overfitted 116 125 33 35 127 0 0

120 correct 494 530 336 405 552 992 992

120 underfitted 390 345 631 560 321 8 8

Table 4.5: Settings 3 and 4: APM order selections for AIC, TIC, KIC, KICo, KICu,
d(θ0, θ̂) and K(θ0, θ̂) in the linear regression framework.

The tables featuring results for APM simulations (Tables 4.4 to 4.6) show that

none of the criteria exceed a 60% rate of selection for the correct model. In these

scenarios, KICu selects the correct model more often than the rest of the criteria,
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n order AIC TIC KIC KICo KICu d(θ0, θ̂) K(θ0, θ̂)

60 overfitted 83 97 29 29 99 0 0

60 correct 330 382 221 308 414 821 841

60 underfitted 587 521 750 663 487 179 159

120 overfitted 128 133 48 48 144 0 0

120 correct 519 554 368 438 569 975 980

120 underfitted 353 313 584 514 287 25 20

Table 4.6: Settings 5 and 6: APM order selections for AIC, TIC, KIC, KICo, KICu,
d(θ0, θ̂) and K(θ0, θ̂) in the linear regression framework.

and it is the criterion that exhibits the best protection against underfitting when

n ≥ 60. KICu and TIC are the only criteria that sometimes exceed a 55% rate of

correct selections.

As mentioned in the introduction to this chapter, in APM settings, the num-

ber of underfitted candidate models grows quickly with the number of covariates

considered. Thus, not only is the candidate model set larger than in the NM simula-

tions (i.e., 15 versus 5 candidate models), but the number of underspecified models

is much larger (i.e., 11 underspecified candidate models in the APM setting versus

2 in the NM setting). Given the assumptions under which KICu was developed, the

prevalence of underspecified models is a plausible explanation of why KICu works

better in APM than in NM simulations.

Fitting a model that ignores error misspecification appears to slightly affect

the performance of all criteria and their oracles (Tables 4.2, 4.3, 4.5, and 4.6). The

two forms of error misspecification considered yield similar results. Even in the

presence of ignored error misspecification, KICo outperforms the rest of the criteria
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in NM selections (Tables 4.2 and 4.3), while KICu does so in APM selections (Tables

4.5 and 4.6).

4.1.2 Linear Regression with Collinear Regressors

We also compile simulation experiments for linear regression based on collinear

regressors. In this setting, we configure a 2x2x4x11 factorial experiment with two

levels of sample size (i.e., n = 30 and n = 60), two levels of error misspecification,

four types of collinearity among the candidate covariates, and 11 levels of covariate

correlation. We generate data using the third-order model

yi = 1 + xi2 + 2xi3 + εi,

where εi ∼ N(0, 3) (no error misspecification) or εi ∼ t(2) (ignored error misspeci-

fication). The rationale for settings with εi ∼ t(2) is as described for settings 3 and

4 in the previous section.

We report only NM selections, where the model selection criteria choose from

the following candidate set:

yi = β1 + εi,

yi = β1 + β2xi2 + εi,

...

yi = β1 + β2xi2 + β3xi3 + β4xi4 + β5xi5 + εi,

where (xi2, xi3, xi4, xi5)
′ ∼ N4(0, Σ) and εi ∼ N(0, σ2). Σ corresponds to one of the

following structures:
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Σ1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 ρ ρ ρ

ρ 1 ρ ρ

ρ ρ 1 ρ

ρ ρ ρ 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, Σ2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 ρ 0 0

ρ 1 0 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

Σ3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 ρ 0

0 1 0 0

ρ 0 1 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, or Σ4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0 1 ρ 0

0 ρ 1 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Here, ρ is chosen among the following values: 0, 0.10, 0.25, 0.40, 0.55, 0.70, 0.75,

0.80, 0.85, 0.90, or 0.95. Σ1 (henceforth referred to as Type 1) corresponds to all

pairwise correlations among xi2 to xi5, Σ2 (Type 2) corresponds to xi2 correlated

with xi3, Σ3 (Type 3) corresponds to xi2 correlated with xi4, and Σ4 (Type 4)

corresponds to xi3 correlated with xi4.

We are interested in evaluating how the different degrees of correlation affect

the performance of the model selection criteria, and how the performance varies

depending on whether the correlation is among the regressors in the data generating

model or not. This interest provides the rationale for the four preceding correlation

structures. We also seek to determine if the results depend on whether a spurious

regressor (xi4) is correlated with a regressor corresponding to a weaker effect (xi2) or

a stronger effect (xi3) in the data generating model. This issue is investigated using

the Type 3 and 4 correlation structures. The results are summarized in Figures 4.1

to 4.4.

Figure 4.1 shows the effect of the four different regressor correlation types on

the performance of the five criteria and their oracles. The performance ranking for

the criteria is the same as that observed for the NM selections in setting 1 in the
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previous section. Based on correct model selections, KICo outperforms the rest of

the criteria, except when the covariates in the data generating model are highly

correlated (i.e., ρ > 0.80). When the regressors in the data generating model are

correlated (Type 1 and Type 2 plots), the performance of the criteria falls abruptly

when ρ is 0.8 or higher. The performance is not affected by regressor correlation

if the collinearity is between a data generating model covariate and a spurious

covariate (Type 3 and Type 4 plots). This holds true even if the correlation occurs

between a data generating model covariate corresponding to a stronger effect (Type

3 versus Type 4 plots).

Figure 4.2 shows that the presence of ignored error misspecification degrades

the performance of all the criteria and their oracles. KICo exhibits the best per-

formance, as is the case with the results in Table 4.2. In Figure 4.2, the effect of

collinearity between the regressors is evident only with Type 1 and Type 2 correla-

tion structures, as in Figure 4.1. For Type 1 and Type 2 correlation structures, the

performance of the criteria and oracles starts decreasing abruptly at ρ = 0.6.

Increasing the sample size from n = 30 to n = 60 (Figures 4.3 and 4.4) improves

the performance of all criteria and alleviates the negative effect of the correlation

between the regressors on the proportion of correct selections. This is evident in

the Type 1 and Type 2 plots with no error misspecification (Figure 4.3). The

performance of the criteria begins to decline at ρ = 0.95 compared to ρ = 0.80

for n = 30 in Figure 4.1. This shift is, however, less marked when ignored error

misspecification is present (Figures 4.4 versus 4.2).



65

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Type 1

Correlation

%
 c

or
re

ct

n=30

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Type 2

Correlation

%
 c

or
re

ct

n=30

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Type 3

Correlation

%
 c

or
re

ct

n=30

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Type 4

Correlation

%
 c

or
re

ct

n=30

AIC TIC KIC KICo KICu d K

Figure 4.1: Model selection criteria comparison with correlated regressors, n = 30,
no misspecified errors.
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Figure 4.2: Model selection criteria comparison with correlated regressors, n = 30,
with ignored misspecified errors.
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Figure 4.3: Model selection criteria comparison with correlated regressors, n = 60,
no misspecified errors.
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Figure 4.4: Model selection criteria comparison with correlated regressors, n = 60,
with ignored misspecified errors.
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Overall, we found that correlation among regressors affects the performance

of the criteria when the correlation between data generating model regressors is

high (i.e., ρ ≥ 0.60). For moderate and low correlations among data generating

regressors, the criteria perform in the same manner as when the regressors are

independent. Interestingly, as the correlation between regressors increases, KICo

chooses second-order models more often than the rest of the criteria (data not

shown). In this particular setting, choosing models featuring xi2 only is a desirable

alternative, given that a high collinearity between xi2 and xi3 indicates that there is

little information that is unique to either one of the two covariates. Thus, one can

argue that models including either covariate but not both would a better choice. In

general, avoiding highly collinear regressors is good practice in any GLM framework.

Even if a high degree of collinearity does not affect the goodness of fit of the model,

it interferes with the model interpretation and induces higher variability in the

parameter estimates, ultimately affecting inference.

These experiments indicate that the criteria are robust to the presence of low

to moderate collinearity. Given the robustness of the criteria to regressor collinear-

ity, we limit our simulation experiment to the linear regression framework and the

NM setting. In subsequent simulation experiments, we revert to the use of indepen-

dent regressors.

4.1.3 Logistic Regression without Overdispersion and
with Ignored Overdispersion

For dichotomous outcomes, one often can assume yi ∼ Bernoulli(πi) for i =

1, 2, ..., n, with E(yi) = πi. If the objective is to explain a sample y with effects

represented by a linear combination of explanatory variables, then the GLM of

choice is logistic regression. The canonical link function for logistic regression is the
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logit link :

logit(πi) = ln

(
πi

1− πi

)
=

p∑
j=1

xijβj,

where the βjs are the parameters we seek to estimate.

For logistic regression, we present a simulation study based on six settings.

The latter four of these six settings represent a 2x2 factorial design. Data are

generated as yi ∼ Bernoulli(πi), where πi is determined using the third-order model

logit(πi) = 1 + xi2 − xi3, (4.3)

with i = 1, 2, ..., n. Settings 7 (n = 95) and 8 (n = 145) do not present overdis-

persion, as πi is solely based on the systematic component, defined by the xijs and

β = (1, 1,−1)′.

Settings for experiments 9 to 12 introduce overdispersion in the data gener-

ating model. For these settings, the model is the same as (4.3); however, yi ∼
Bernoulli(π∗i ) with π∗i ∼ Beta(α, β = (α−απi)/πi). Note that E(π∗i ) = α/(α+β) =

πi; hence, it is straightforward to obtain β by assigning a value to α.

Settings 9 to 12 feature two levels of sample size and two levels of overdis-

persion: n = 95 and π∗i ∼ Beta(2, (2 − 2πi)/πi) (setting 9), n = 145 and π∗i ∼
Beta(2, (2 − 2πi)/πi) (setting 10), n = 95 and π∗i ∼ Beta(10, β = (10 − 10πi)/πi)

(setting 11), and n = 145 and π∗i ∼ Beta(10, β = (10− 10πi)/πi) (setting 12).

For the simulations featuring NM, the model selection criteria choose from the

following candidate set:

logit(πi) = β1,

logit(πi) = β1 + β2xi2,

...

logit(πi) = β1 + β2xi2 + β3xi3 + β4xi4 + β5xi5,
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where xi2 ∼ N(0, 0.5), xi3 ∼ Bernoulli(0.4), xi4 ∼ Poisson(2), and xi5 ∼ N(5, 5). In

fitting the models, we assume the data follow a Bernoulli distribution even if the data

are generated from an overdispersed Bernoulli distribution (i.e., beta-Bernoulli).

For the APM simulations, the candidate set includes a total of 15 models

(i.e., all combinations of the covariates, except for xi1, excluding the intercept-only

model).

In the logistic and Poisson frameworks, we include simulation sets where the

data are generated using overdispersed models but the candidate models are fitted

using a distribution that does not accommodate this overdispersion, so as to simulate

a setting that reflects the assumptions under which KICo was developed.

The results for the six settings are summarized in Tables 4.7 to 4.12. Again,

K(θ0, θ̂) consistently outperforms d(θ0, θ̂), albeit marginally in instances where

both oracles obtain a very high rate of correct model selections.

In the NM framework (Tables 4.7 to 4.9) with a moderate sample size (i.e.,

settings 7, 9, and 11), all criteria choose the correct model barely over 55% of the

time. In spite of the superiority of K(θ0, θ̂) over d(θ0, θ̂), it is difficult to advocate

the superiority of any of the model selection criteria presented. For settings with

a larger sample size (i.e., settings 8, 10 and 12), all criteria perform better than in

the moderate sample size settings, with KIC and KICo performing best.

Note that KICo (together with KIC) chooses overfitted models less often than

the rest of the criteria, again demonstrating its advantage in protecting against

overfitting. Also, note that KICu exhibits less protection against overfitting in the

NM order selections, yet together with AIC and TIC, selects underfitted models less

frequently and outperforms KICo in this respect. These behaviors are consistent

with the assumptions under which KICo and KICu were developed.
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n order AIC TIC KIC KICo KICu d(θ0, θ̂) K(θ0, θ̂)

95 5 81 85 31 28 90 0 0

95 4 124 127 62 66 129 7 2

95 3 598 591 573 569 588 939 953

95 2 136 136 196 195 138 42 38

95 1 61 61 138 142 55 12 7

145 5 98 94 27 30 99 0 0

145 4 138 140 78 79 144 3 2

145 3 685 685 738 727 679 985 988

145 2 66 68 115 122 65 10 10

145 1 13 13 42 42 13 2 0

Table 4.7: Settings 7 and 8: NM order selections for AIC, TIC, KIC, KICo, KICu,
d(θ0, θ̂) and K(θ0, θ̂) in the logistic regression framework; results for the generating
model are bolded.
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n order AIC TIC KIC KICo KICu d(θ0, θ̂) K(θ0, θ̂)

95 5 67 73 25 24 79 0 0

95 4 120 128 67 64 132 6 4

95 3 619 603 563 566 601 941 952

95 2 142 142 206 205 137 40 38

95 1 52 54 139 141 51 13 6

145 5 88 87 24 26 89 0 0

145 4 138 143 74 80 147 4 2

145 3 685 683 726 723 678 983 989

145 2 74 74 134 129 73 11 7

145 1 15 13 42 42 13 2 2

Table 4.8: Settings 9 and 10: NM order selections for AIC, TIC, KIC, KICo, KICu,
d(θ0, θ̂) and K(θ0, θ̂) in the logistic regression framework; results for the generating
model are bolded.

Tables 4.10 to 4.12 feature results for the APM simulations. Underfitting is a

serious problem for most of the criteria in these settings, especially for AIC and KIC.

Only with a larger sample size (n = 145) do criteria with data-dependent penalty

terms (i.e., TIC, KICo and KICu) exhibit success at selecting the data generating

model the majority of the time. Among the criteria that perform adequately for

APM selections, KICo chooses overfitted models less often, while KICu exhibits

better protection against underfitting.

The presence of ignored overdispersion does not appear to appreciably modify

the results for any of the NM or APM settings.
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n order AIC TIC KIC KICo KICu d(θ0, θ̂) K(θ0, θ̂)

95 5 79 85 27 32 88 0 0

95 4 125 128 68 73 134 6 3

95 3 584 579 556 551 574 949 958

95 2 132 132 191 190 132 36 32

95 1 80 76 158 154 72 9 7

145 5 78 82 28 27 84 0 0

145 4 151 155 87 89 156 1 0

145 3 692 684 728 724 682 990 994

145 2 67 67 118 122 66 9 6

145 1 12 12 39 38 12 0 0

Table 4.9: Settings 11 and 12: NM order selections for AIC, TIC, KIC, KICo, KICu,
d(θ0, θ̂) and K(θ0, θ̂) in the logistic regression framework; results for the generating
model are bolded.

n order AIC TIC KIC KICo KICu d(θ0, θ̂) K(θ0, θ̂)

95 overfitted 1 183 0 74 188 12 3

95 correct 10 433 0 394 435 898 917

95 underfitted 989 384 1000 532 377 90 80

145 overfitted 16 258 1 140 262 8 5

145 correct 29 561 1 569 560 973 979

145 underfitted 955 181 998 291 178 19 16

Table 4.10: Settings 7 and 8: APM order selections for AIC, TIC, KIC, KICo, KICu,
d(θ0, θ̂) and K(θ0, θ̂) in the logistic regression framework.
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n order AIC TIC KIC KICo KICu d(θ0, θ̂) K(θ0, θ̂)

95 overfitted 2 191 0 90 195 12 6

95 correct 7 421 0 384 423 904 917

95 underfitted 991 388 1000 526 382 84 77

145 overfitted 11 247 0 114 250 9 5

145 correct 25 564 2 585 561 970 981

145 underfitted 964 189 998 301 189 21 14

Table 4.11: Settings 9 and 10: APM order selections for AIC, TIC, KIC, KICo,
KICu, d(θ0, θ̂) and K(θ0, θ̂) in the logistic regression framework.
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n order AIC TIC KIC KICo KICu d(θ0, θ̂) K(θ0, θ̂)

95 overfitted 0 197 0 87 202 13 6

95 correct 7 411 0 357 408 912 927

95 underfitted 993 392 1000 556 390 75 67

145 overfitted 12 270 0 133 273 5 2

145 correct 31 562 1 596 563 975 983

145 underfitted 957 168 999 271 164 20 15

Table 4.12: Settings 11 and 12: APM order selections for AIC, TIC, KIC, KICo,
KICu, d(θ0, θ̂) and K(θ0, θ̂) in the logistic regression framework.

4.1.4 Poisson Regression without Overdispersion and
with Ignored Overdispersion

When the outcome of interest is a discrete count variable, one can often assume

yi ∼ Poisson(λi) for i = 1, 2, ..., n, with E(yi) = λi. If the objective is to explain a

sample y with effects represented by a linear combination of explanatory variables,

then the GLM of choice is Poisson regression. The canonical link function for

Poisson regression is the log link :

log(λi) =

p∑
j=1

xijβj,

where the βjs are the parameters we seek to estimate.

For Poisson regression, we present a 2x3 factorial simulation study. Data are

generated as yi ∼ Poisson(λi), where λi is determined using the third-order model

log(λi) = 1 + xi2 + xi3 (4.4)
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with i = 1, 2, ..., n. Settings 13 (n = 60) and 14 (n = 120) do not present overdis-

persion, as λi is solely based on the systematic component, defined by the xijs and

β = (1, 1, 1)′.

Settings for experiments 15 to 18 introduce overdispersion in the data gen-

erating model. For these settings, the model is the same as (4.4); however, yi ∼
Poisson(λ∗i ) with λ∗i ∼ Gamma(α = λi/β, β). Note that E(λ∗i ) = αβ = λi; hence,

it is straightforward to obtain α by assigning a value to β.

Settings 15 to 18 feature two levels of sample size and two levels of overdis-

persion: n = 60 and λ∗i ∼ Gamma(λi/50, 50) (setting 15), n = 120 and λ∗i ∼
Gamma(λi/50, 50) (setting 16), n = 60 and λ∗i ∼ Gamma(λi/100, 100) (setting 17),

n = 120 and λ∗i ∼ Gamma(λi/100, 100) (setting 18).

For the simulations featuring NM, the model selection criteria choose from the

following candidate set:

log(λi) = β1,

log(λi) = β1 + β2xi2,

...

log(λi) = β1 + β2xi2 + β3xi3 + β4xi4 + β5xi5 + β6xi6,

where xi2 ∼ N(0, 0.5), xi3 ∼ Binomial(2, 0.5), xi4 ∼ Poisson(10), xi5 ∼ N(5, 1),

and xi6 ∼ Binomial(3, 0.5). In fitting the models, we assume the data follow a

Poisson distribution even if the data are generated from an overdispersed Poisson

distribution (i.e., gamma-Poisson).

For the APM simulations, the candidate set includes a total of 31 models

(i.e., all combinations of the covariates, except for xi1, excluding the intercept-only

model).

The results for the six settings are summarized in Tables 4.13 to 4.18. Once

more, K(θ0, θ̂) performs at least as well as d(θ0, θ̂) in all settings.
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For the NM simulations in settings 13 and 14, Table 4.13 shows that all cri-

teria perform well. KIC is the criterion that chooses the data generating model

most often. This table illustrates a phenomenon that is not evident in previous

simulation sets: as sample size increases, the performance of AIC and KIC appears

to degrade. This is seemingly at odds with what is expected for asymptotic statis-

tics. However, this behavior may be reflecting that all criteria used in these studies

are asymptotically efficient but are not consistent. With an asymptotically efficient

criterion, as sample size increases, the criterion chooses models prone to minimizing

prediction error. With a consistent criterion, as sample size increases, the probabil-

ity of choosing the data generating model converges to one. For an asymptotically

efficient criterion, the asymptotic probability of selecting an overfitted model is al-

ways positive. Thus, in settings 13 and 14, the performance of AIC and KIC might

be at a plateau for choosing the correct model. Table 4.13 shows, once more, the

enhanced overfitting protection of KICo when compared to KICu.

The introduction of ignored overdispersion (Tables 4.14 and 4.15) affects the

performance of all criteria, in particular that of AIC and KIC. In these settings,

the enhanced protection of KICo against overfitting is a clear advantage, and the

criterion exhibits the highest rate of correct model selections. The different protec-

tion patterns of KICo and KICu are again noticeable in these tables. KICu chooses

underfitted models less often than KICo while KICo selects overfitted models less

often than KICu.

In the APM settings (Tables 4.16 to 4.18), the criteria behave in the same

manner as in the NM settings. It is evident that the rate of correct model selections

markedly degrades when overdispersion is present in the generating model but is

ignored in the candidate set.
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n order AIC TIC KIC KICo KICu d(θ0, θ̂) K(θ0, θ̂)

60 6 34 113 9 56 113 0 0

60 5 60 122 17 72 121 0 0

60 4 123 157 67 130 157 8 5

60 3 783 608 907 742 609 992 995

60 2 0 0 0 0 0 0 0

60 1 0 0 0 0 0 0 0

120 6 52 88 16 34 87 0 0

120 5 59 93 21 49 93 0 0

120 4 135 154 87 108 153 0 0

120 3 754 665 876 809 667 1000 1000

120 2 0 0 0 0 0 0 0

120 1 0 0 0 0 0 0 0

Table 4.13: Settings 13 and 14: NM order selections for AIC, TIC, KIC, KICo,
KICu, d(θ0, θ̂) and K(θ0, θ̂) in the Poisson regression framework; results for the
generating model are bolded.
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n order AIC TIC KIC KICo KICu d(θ0, θ̂) K(θ0, θ̂)

60 6 818 203 772 125 205 0 0

60 5 141 166 162 118 166 2 0

60 4 28 152 43 137 155 35 14

60 3 13 398 23 471 396 909 943

60 2 0 40 0 65 42 28 19

60 1 0 41 0 84 36 26 24

120 6 838 140 804 74 140 0 0

120 5 120 97 141 58 97 2 1

120 4 28 144 33 109 145 13 4

120 3 14 582 22 688 581 977 989

120 2 0 31 0 48 31 6 4

120 1 0 6 0 23 6 2 2

Table 4.14: Settings 15 and 16: NM order selections for AIC, TIC, KIC, KICo,
KICu, d(θ0, θ̂) and K(θ0, θ̂) in the Poisson regression framework; results for the
generating model are bolded.

Overall, the comparison of the criteria in the Poisson regression framework

confirms the selection patterns of KICo and KICu exhibited for the linear and logistic

regression settings. However, in the Poisson setting, the effect of the presence of

ignored misspecification in the form of overdispersion is more evident.
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n order AIC TIC KIC KICo KICu d(θ0, θ̂) K(θ0, θ̂)

60 6 849 253 819 157 264 0 0

60 5 133 139 148 102 143 1 0

60 4 11 141 21 120 136 27 19

60 3 7 298 12 318 299 821 855

60 2 0 75 0 109 78 80 64

60 1 0 94 0 194 80 71 62

120 6 856 148 831 95 151 0 0

120 5 125 108 141 73 108 0 0

120 4 17 147 23 117 150 22 11

120 3 2 488 5 528 489 942 959

120 2 0 63 0 89 59 21 15

120 1 0 46 0 98 43 15 15

Table 4.15: Settings 17 and 18: NM order selections for AIC, TIC, KIC, KICo,
KICu, d(θ0, θ̂) and K(θ0, θ̂) in the Poisson regression framework; results for the
generating model are bolded.
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n order AIC TIC KIC KICo KICu d(θ0, θ̂) K(θ0, θ̂)

60 overfitted 183 547 90 414 548 15 9

60 correct 817 453 905 586 452 985 991

60 underfitted 0 0 5 0 0 0 0

120 overfitted 204 501 91 344 501 9 4

120 correct 796 499 909 656 499 991 996

120 underfitted 0 0 0 0 0 0 0

Table 4.16: Settings 13 and 14: APM order selections for AIC, TIC, KIC, KICo,
KICu, d(θ0, θ̂) and K(θ0, θ̂) in the Poisson regression framework.

n order AIC TIC KIC KICo KICu d(θ0, θ̂) K(θ0, θ̂)

60 overfitted 784 471 696 351 477 64 29

60 correct 13 207 23 250 205 812 859

60 underfitted 203 322 281 399 318 124 112

120 overfitted 917 452 875 314 455 34 17

120 correct 17 387 31 461 387 932 951

120 underfitted 66 161 94 225 158 34 32

Table 4.17: Settings 15 and 16: APM order selections for AIC, TIC, KIC, KICo,
KICu, d(θ0, θ̂) and K(θ0, θ̂) in the Poisson regression framework.
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n order AIC TIC KIC KICo KICu d(θ0, θ̂) K(θ0, θ̂)

60 overfitted 682 381 609 265 379 51 32

60 correct 7 127 11 134 128 671 709

60 underfitted 311 492 380 601 493 278 259

120 overfitted 874 407 837 288 412 50 25

120 correct 4 267 9 296 266 855 888

120 underfitted 122 326 154 416 322 95 87

Table 4.18: Settings 17 and 18: APM order selections for AIC, TIC, KIC, KICo,
KICu, d(θ0, θ̂) and K(θ0, θ̂) in the Poisson regression framework; results for the
generating model are bolded.

4.2 Selection of a Model with Optimal Predic-
tive Properties

Simulating the problem of choosing a model with optimal predictive properties

requires modifications to the simulation settings presented in section 4.1. In this

situation, the data generating model is the highest order model. Hence, all candidate

models except for the model of the highest order model are underspecified. In an

application where the data generating model contains strong, moderate, and weak

effects, the researcher might not be able to accurately estimate all the effects given

the sample size at hand, yet might search for a good model to predict new outcomes.

Such a model would invariably dismiss some of the weaker effects, based on the

notion that the bias incurred by omitting such effects is less damaging that the

variability induced by including them.

For simulating this problem, all candidate models are fitted using a training

data set produced via the generating model. All the fitted models are then evaluated
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using some measure of prediction error based on a new data set: i.e., a testing data

set. We present simulation studies in the linear regression framework, and consider

the mean squared error of prediction,

MSEP =

∑n+n∗
i=n+1(yi − ŷi)

2

n∗
,

as a suitable prediction error measure for this framework. In the MSEP definition,

n∗ represents the sample size of the testing data set, and ŷi denotes the predicted

value under the fitted model for each observation. In these experiments, the criteria

that choose models which yield a small average MSEP are considered optimal.

Each simulation set is based on 1,000 replications. For every sample, AIC,

TIC, KIC, KICo, KICu, d(θ0, θ̂), and K(θ0, θ̂) are evaluated for each fitted candi-

date model. For each criterion, the MSEP value is recorded for the selected model;

the average MSEP is then computed over the 1,000 replications. For this simulation

study, we present results in the APM setting.

4.2.1 Linear Regression

We present a 2x2 factorial simulation study based on two levels of sample

size and two levels of error variance. Both the training and testing data sets are

generated using the sixth-order model

yi = 5 + 2.5xi2 + xi3 + 0.75xi4 + 0.5xi5 + 0.25xi6 + εi,

where xij (j = 2, . . . , 6) are iid N(0,10). Following the notation used in chapter 3,

K = 7 (after counting one parameter for σ2). All training sets have a sample size

of n = 30. We consider four settings: εi ∼ N(0, 10) and n∗ = 15 (setting 19) or

n∗ = 30 (setting 20), and εi ∼ N(0, 30) and n∗ = 15 (setting 21) or n∗ = 30 (setting

22). Note that the model is comprised of effects of different strengths, corresponding

to the magnitudes of the components of β.
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The candidate model set includes 31 models (i.e., all combinations of the

covariates, except for xi1, excluding the intercept-only model).

n∗ Var(εi) AIC TIC KIC KICo KICu d(θ0, θ̂) K(θ0, θ̂)

15 10 102.56 29.17 109.10 32.92 25.21 20.17 17.90

30 10 26.55 16.79 82.59 20.32 15.52 13.08 12.79

15 30 134.77 77.27 132.85 83.33 70.90 49.94 46.80

30 30 96.21 51.08 117.51 55.79 48.69 37.59 37.15

Table 4.19: Settings 19 to 22: Average MSEP for models selected by AIC, TIC,
KIC, KICo, KICu and their oracles.

Based on the results in Table 4.19, K(θ0, θ̂) is the oracle that tends to choose

models with the smallest MSEP. Among the criteria, KICu clearly performs best in

this scenario. This is as expected, since this simulation study reflects the assump-

tions under which KICu was developed. TIC also performs well, followed by KICo.

As the testing sample size increases, the average MSEP is lower. Also, a higher

error variance increases the average prediction error.

4.3 General Conclusions

Probably the most common question posed by practitioners to researchers in

the field of model selection criteria is “What criterion should I use?” Tailored to this

chapter, an analogous question would be “What criterion do you recommend, KICo

or KICu?” Unfortunately, as is evident from the results of the featured simulation

studies, the answer is not straightforward. The use of KICo or KICu depends on

what modeling objective is pursued, and whether the practitioner anticipates a

modeling setting where overfitting or underfitting prevails.
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The simulation results show that there is no optimal criterion for all modeling

situations. There are instances in the preceding experiments where any of the

considered criteria succeed at selecting the best model. Yet there are also instances

where none of the criteria perform well. Among model selection criteria, the perfect

balance between underfitting and overfitting is elusive, and we know of no criterion

that performs uniformly best throughout all possible settings. At most, one criterion

can be tailored to succeed in a particular framework.

Our general advice is to base model selection decisions on scientific guidance,

to the greatest extent that the science will allow. In principle, this should constrain

the candidate model set to the smallest feasible size. If at this point, the modeling

objective is to predict new data, KICu is particularly tailored to this setting and

performs well in selecting a model with optimal predictive properties (section 4.2.1).

Based on the form of the candidate set, if the practitioner expects underspecification

to be a problem, then KICu can be also be recommended. In applications where

overfitting is expected, or where model misspecification is suspected, KICo should

be the criterion of choice.
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CHAPTER 5

QUASI-LIKELIHOOD-BASED MODEL SELECTION CRITERIA
FOR CORRELATED RESPONSE DATA DERIVED FROM

KULLBACK’S SYMMETRIC DIVERGENCE

In this chapter we present three forms of QKIC, a quasi-likelihood-based model

selection criterion for correlated response data. QKIC is developed using a variant of

KSD similar to that used for deriving KICo. We also characterize the performance

of QKIC in simulation studies, and illustrate the use of QKIC with a real-world

data example.

5.1 QKIC Derivation

Let β0 denote the parameter in the data generating model g(y|β0), and let

β̂ represent its estimator. For deriving the different forms of QKIC, we employ

a similar set of assumptions to that used for KICo. As mentioned in chapter 2,

in the GLM framework with correlated data, we do not always have access to the

distribution of the response. In such settings, we often use the quasi-likelihood or

GEEs for estimation, which only require the specification of the first and second

moments of the response. Thus, for the development of the different variants of

QKIC, we cannot assume that g(y|β0) ∈ F(k). In this setting, misspecification

is present in the distribution of the response. However, we assume that the mean

structure is correctly specified or overspecified. This assumption is also imposed in

the theoretical development of quasi-likelihood and GEE estimation.

For deriving QKIC, we assume a set of regularity conditions required to en-

sure that β̂ satisfies the large-sample properties described in section 2.1.3. In the

quasi-likelihood and GEE frameworks, regardless of the working correlation used to

estimate β̂, β̂ is consistent for β0: β̂ → β0 as n →∞.

We denote β̂ obtained under the working independence model as β̂
I
, and β̂

obtained using the working correlation matrix R(α) as β̂
R
.
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For the purpose of the derivation that follows, we implicitly assume the work-

ing independence model. We define the following information matrices:

Iq(β) = Eq{I(β|y)} and

Ig(β) = Eg{I(β|y)}.

Here, Eq{·} denotes the expected value under the quasi-likelihood model Q(β|y)

(i.e., the working independence model). For our purposes, this expected value is

only applied to obtain expressions involving the first and second moments of the

response, which are well defined under the postulated model.

Consider the discrepancy

dqq(β, β∗) = Eq{−2Q(β∗|y)},

where β refers to the parameters of the quasi-likelihood model Q(β|y) under which

the expectation Eq{·} is calculated, and where β∗ refers to the term −2Q(β∗|y) in

the expectation. We define the following variant of KSD based on this measure:

2Jqq(β0, β) = dqq(β0, β)− dqq(β0, β0) + dqq(β, β0)− dqq(β, β). (5.1)

The expression (5.1) is similar to the expression (3.1) used in the development

of KICo. Here, Q(β|y) and Q(β0|y) function as replacements for ln f(y|β) and

ln f(y|β0), respectively. When the quasi-likelihood is viewed as the equivalent of a

log-likelihood in the exponential family of distributions, the Kullback discrepancies

in this section are of the traditional form. Establishing the general properties of

Kullback discrepancies for quasi-likelihoods is a potentially worthwhile problem, yet

one that is outside the scope of this dissertation.

Now consider the discrepancy

dgq(β0, β) = Eg{−2Q(β|y)},

where the first argument refers to the parameters of the data generating model
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g(y|β0) under which the expectation Eg{·} is calculated, and where the second

argument refers to the term −2Q(β|y) in the expectation. We add the constant

dgq(β0, β0) to (5.1), which does not alter the ranking of competing models. With

this change, we have

Lgq(β0, β) = dqq(β0, β)− dqq(β0, β0) + dqq(β, β0)− dqq(β, β) + dgq(β0, β0). (5.2)

The preceding is an appealing measure for creating KSD-based model selection

criteria when a quasi-likelihood or GEEs are used for parameter estimation. This

measure will serve as the basis for the development of QKIC.

If we evaluate (5.2) at β̂
I

and take the expected value with respect to g(y|β0),

we obtain

Ψgq(β0) ≡ Eg{Lgq(β0, β̂
I
)}

= Eg{dqq(β0, β̂
I
)− dqq(β0, β0) + dqq(β̂

I
, β0)− dqq(β̂

I
, β̂

I
) + dgq(β0, β0)}.

(5.3)

We may then decompose Ψgq(β0) as follows:

Ψgq(β0) = Eg{−2Q(β̂
I |y)}

+ dgq(β0, β0)− Eg{−2Q(β̂
I |y)} (5.4)

+ Eg{dqq(β0, β̂
I
)} − dqq(β0, β0) (5.5)

+ Eg{dqq(β̂
I
, β0)− dqq(β̂

I
, β̂

I
)}. (5.6)

The purpose of the preceding decomposition is to introduce−2Q(β̂
I |y) as a platform

for estimating Ψgq(β0). Since (5.4), (5.5) and (5.6) are positive, −2Q(β̂
I |y) is

negatively biased. If we can obtain estimates of these terms, we can correct for the

negative bias.

Consider taking a second-order Taylor series expansion of −2Q(β0|y) about
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β̂
I
. Since −2Q(β0|y) is maximized at β̂

I
, one can establish

−2Q(β0|y) = −2Q(β̂
I |y) + (β̂

I − β0)
′I(β̂

I |y)(β̂
I − β0) + r1(β0, β̂

I
).

Here, as n increases, r1(β0, β̂
I
) is op(1); Eg{r1(β0, β̂

I
)} is therefore o(1). Taking

the expectation of both sides of this expansion with respect to g(y|β0) yields

Eg{−2Q(β0|y)} − Eg{−2Q(β̂
I |y)} = Eg{(β̂I − β0)

′I(β̂
I |y)(β̂

I − β0)}+ o(1).
(5.7)

Next, consider taking second-order expansions in the second argument of

dqq(β0, β̂
I
) about β0 and in the second argument of dqq(β̂

I
, β0) about β̂

I
. By

definition, dqq(β0, β̂
I
) is minimized when β̂

I
= β0 and dqq(β̂

I
, β0) is minimized

when β0 = β̂
I
. We have

dqq(β0, β̂
I
) = dqq(β0, β0) + (β̂

I − β0)
′Iq(β0)(β̂

I − β0) + r2(β0, β̂
I
) and (5.8)

dqq(β̂
I
, β0) = dqq(β̂

I
, β̂

I
) + (β̂

I − β0)
′Iq(β̂

I
)(β̂

I − β0) + r3(β0, β̂
I
). (5.9)

Here, r2(β0, β̂
I
) and r3(β0, β̂

I
) are both op(1); Eg{r2(β0, β̂

I
)} and Eg{r3(β0, β̂

I
)}

are therefore o(1). Taking the expectation of both sides of (5.8) and (5.9) with

respect to g(y|β0) yields

Eg{dqq(β0, β̂
I
)− dqq(β0, β0)} = Eg{(β̂I − β0)

′Iq(β0)(β̂
I − β0)}+ o(1) and

(5.10)

Eg{dqq(β̂
I
, β0)− dqq(β̂

I
, β̂

I
)} = Eg{(β̂I − β0)

′Iq(β̂
I
)(β̂

I − β0)}+ o(1). (5.11)

Thus, replacing (5.4) by (5.7), (5.5) by (5.10) and (5.6) by (5.11), Ψgq(β0) can

be represented as follows:
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Ψgq(β0) = Eg{−2Q(β̂
I |y)}

+ Eg{(β̂I − β0)
′I(β̂

I |y)(β̂
I − β0)}

+ Eg{(β̂I − β0)
′Iq(β0)(β̂

I − β0)}

+ Eg{(β̂I − β0)
′Iq(β̂

I
)(β̂

I − β0)}+ o(1).

Since β̂
I → β0 as n → ∞, we can approximate the first quadratic form with

Eg{(β̂I−β0)
′Ig(β0)(β̂

I−β0)}. Also, we can approximate the third quadratic form

with Eg{(β̂I − β0)
′Iq(β0)(β̂

I − β0)}. Hence, Ψgq(β0) becomes

Ψgq(β0) = Eg{−2Q(β̂
I |y)}

+ Eg{(β̂I − β0)
′Ig(β0)(β̂

I − β0)}

+ 2Eg{(β̂I − β0)
′Iq(β0)(β̂

I − β0)}+ o(1).

Given that Eg{(β̂I−β0)
′Ig(β0)(β̂

I−β0)} and Eg{(β̂I−β0)
′Iq(β0)(β̂

I−β0)}
are scalars, we have

Ψgq(β0) = Eg{−2Q(β̂
I |y)}+ tr{Eg{Ig(β0)(β̂

I − β0)(β̂
I − β0)

′}}

+ 2[tr{Eg{Iq(β0)(β̂
I − β0)(β̂

I − β0)
′}}] + o(1)

= Eg{−2Q(β̂
I |y)}+ tr{Ig(β0)Σ(β0)}

+ 2[tr{Iq(β0)Σ(β0)}] + o(1).

Let Jg(β0) = Eg(J (β0|y)). Replacing Σ(β0) by result (2.12), we obtain

Ψgq(β0) = Eg{−2Q(β̂
I |y)}+ tr{Jg(β0)Ig(β0)

−1}

+ 2[tr{Iq(β0)Ig(β0)
−1Jg(β0)Ig(β0)

−1}] + o(1).
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Now, define the statistic QKICI as follows:

QKICI = −2Q(β̂
I |y) + tr{J (β̂

I |y)I(β̂
I |y)−1}

+ 2[tr{Iq(β̂
I
)I(β̂

I |y)−1J (β̂
I |y)I(β̂

I |y)−1}]. (5.12)

Based on the preceding development, one can conclude that

Eg{QKICI}+ o(1) = Ψgq(β0).

In the GLM framework, when the canonical link is used, the expected in-

formation equals the observed information because the Hessian matrix based on

Q(β|y) does not depend on the data. That is, Iq(β0) = Ig(β0) = I(β|y). Hence,

expression (5.12) becomes

QKICI = −2Q(β̂
I |y) + tr{J (β̂

I |y)I(β̂
I |y)−1}

+ 2[tr{J (β̂
I |y)I(β̂

I |y)−1}]

= −2Q(β̂
I |y) + 3[tr{J (β̂

I |y)I(β̂
I |y)−1}]. (5.13)

In summary, QKICI is an asymptotically unbiased estimator of Ψgq(β0) for

models with correctly specified or overspecified mean structures.

If β̂
I

is replaced by β̂
R

in (5.13), the following variant of QKIC arises:

QKICR = −2Q(β̂
R|y) + 3[tr{J (β̂

R|y)I(β̂
R|y)−1}]. (5.14)

This replacement is not based on solid theoretical principles. In fact, QKICR is not

an asymptotically unbiased estimator of Ψgq(β0), because the first-order terms in

the Taylor series expansions used in the derivation of QKICI are not zero and do

not converge to zero as n increases. We present this criterion merely as a parallel

to the criterion QICR, introduced by Pan (2001) without theoretical justification.

Both QKICR and QICR warrant a rigorous theoretical development; however, such

developments are outside of the scope of this dissertation.
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Using KSD as the target oracle, another criterion is suggested based on the

work of Pan (2001). When all modeling specifications are correct, J (β̂
R|y) and

I(β̂
R|y) are asymptotically equivalent. Thus, tr{J (β̂

R|y)I(β̂
R|y)−1} ≈ k. In that

case, QKICR reduces to a form that is similar to that of KIC:

QKICU = −2Q(β̂
R|y) + 3k.

QKICU is an approximation of (5.14) and potentially useful in mean structure

selection. However, QKICU cannot be applied to select the working correlation

structure, because the postulated correlation structure is not sufficiently represented

in either the goodness-of-fit term or the penalty term.

5.2 Simulation Studies for QKIC

The assumptions employed in the development of QKIC allow us to apply these

criteria for selecting models grouped under the umbrella of GLMs for correlated

responses, provided the parameters are estimated using a quasi-likelihood or GEEs.

The goal of the simulation studies presented in this chapter is to characterize the

performance of QKIC. We compare the performance of QKIC and QIC in these

experiments.

We first illustrate the selection of the working correlation structure and then

the selection of covariates for the mean structure. For the latter, we consider corre-

lated binary and count response data, using experiments with different sample sizes,

different generating models, and different candidate model sets. Each simulation

experiment presented is based on 1,000 replications.
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5.2.1 Selection of Working Correlation Structure for
Correlated Binary Response Data

We begin our simulation studies by evaluating the performance of QKIC in the

setting of simulation experiments that are already published. Specifically, we illus-

trate the selection of a working correlation structure for correlated binary response

data by reproducing the simulation study presented in Pan (2001).

Correlated binary data are generated using the methods suggested by Leisch

et al. (1998). In these experiments, any two measurements in the same cluster

have the same correlation ρ; that is, repeated measures within clusters follow an

exchangeable correlation structure. For each of the 1,000 replications, QICR and

QKICR are evaluated for each candidate model. The fitted model with the minimum

value for each statistic is recorded. The results are then summarized in Table 5.1.

Data for settings 23 and 24 are generated using the following generating model:

logit(πit) = 0.25− 0.25xi2t − 0.25t,

where xi2t ∼ iid Bernoulli(0.5), t = 0, 1, 2 (i.e., three measurements per cluster),

ρ = 0.5 (exchangeable correlation structure), n = 50 (setting 23) and n = 100

(setting 24). For these two settings, following the simulation experiment in Pan

(2001), we limit the candidate model set to the data generating model and two

other candidate models: one assuming the responses are independent and the other

assuming an AR-1 correlation structure.

Table 5.1 shows that for both n = 50 and n = 100, QKICR chooses the

generating model more often than QICR. Also, in agreement with the asymptotic

characteristics of the criteria, as the sample size increases, the performance of the

criteria improves.
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n model QICR QKICR

50 AR-1 172 183

50 Exchangeable 668 712

50 Independence 160 105

100 AR-1 123 128

100 Exchangeable 727 795

100 Independence 150 77

Table 5.1: Settings 23 and 24: Working correlation structure selections for QICR and
QKICR in the binary correlated response data framework; results for the generating
model are bolded.

5.2.2 Selection of Mean Structure

To investigate the performance of the criteria for mean structure selection,

data are generated following the configurations detailed in the two following sub-

sections. For each of the 1,000 replications, QICI , QKICI , QICR, QKICR, QICU ,

and QKICU are evaluated for each fitted model. The fitted model with the mini-

mum value for each statistic is recorded. The results are then summarized in tables.

The term order again refers to the number of parameters in the linear predictor.

We present results in the NM setting, where the model selection problem is reduced

to choosing an appropriate order.

5.2.2.1 Correlated Binary Response Data

For selecting the mean structure, when the response data are correlated and

binary, we generate the data using the methods suggested by Leisch et al. (1998).

Any two measurements in the same cluster have the same correlation ρ; that is,

repeated measures within clusters follow an exchangeable correlation structure. We
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configure a simulation experiment based on two data generating models and two

sample sizes.

Data for settings 25 and 26 are generated using the following third-order

model:

logit(πit) = 0.25− 0.25xi2t − 0.25t

where xi2t ∼ iid Bernoulli(0.5), t = 0, 1, 2 (i.e., three measurements per cluster),

ρ = 0.5 (exchangeable correlation structure), n = 50 (setting 25) and n = 100

(setting 26).

In settings 25 and 26, we apply the model selection criteria to the following

candidate set:

logit(πit) = β1 + β2xi2t (5.15)

logit(πit) = β1 + β2xi2t + β3t (5.16)

logit(πit) = β1 + β2xi2t + β4xi4t (5.17)

logit(πit) = β1 + β2xi2t + β3t + β4xi4t (5.18)

logit(πit) = β1 + β2xi2t + β3t + β4xi4t + β5xi5t, (5.19)

where xi2t and t are as in the previous paragraph, and xi4t and xi5t ∼ iid U(−1, 1).

Settings 25 and 26 recreate the simulation experiment for mean structure selection

presented in Pan (2001).

Data for settings 27 and 28 are generated using the following fifth-order model:

logit(πit) = 0.25 + 0.25xi2t − 0.25t + 0.25xi4t − 0.25xi5t,

where xi2t, xi4t and xi5t ∼ iid Binomial(7, 0.5), t = 0, 1, 2 (i.e., three measurements

per cluster), ρ = 0.1 (exchangeable correlation structure), n = 100 (setting 27) and

n = 150 (setting 28).
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The candidate model set for settings 27 and 28 is as follows:

logit(πit) = β1 + β2xi2t

logit(πit) = β1 + β2xi2t + β3t

logit(πit) = β1 + β2xi2t + β3t + β4xi4t

...

logit(πit) = β1 + β2xi2t + β3t + β4xi4t + . . . + β11xi11t,

where xi2t, xi3t, t and xi5t are as in the previous paragraph, and xi6t to xi11t ∼ iid

N(0, 1).

n model QICI QKICI QICR QKICR QICU QKICU

50 (5.19) 50 45 122 51 43 9

50 (5.18) 85 29 108 68 52 19

50 (5.17) 101 49 60 61 60 42

50 (5.16) 492 445 458 415 323 209

50 (5.15) 272 432 252 405 522 721

100 (5.19) 18 19 135 59 12 48

100 (5.18) 92 38 123 82 33 66

100 (5.17) 115 66 21 30 43 21

100 (5.16) 671 665 619 633 606 426

100 (5.15) 104 212 102 196 306 439

Table 5.2: Settings 25 and 26: NM order selections for QICI , QKICI , QICR, QKICR,
QICU , and QKICU in the binary correlated response data framework; results for the
generating model are bolded.
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Table 5.2 shows that in settings 25 and 26, the variants of QIC outperform

their QKIC counterparts by choosing more often the data generating model. This

pattern holds except for QICR when n = 100. QICI is the criterion that performs

best. Note that the variants of QIC tend to choose overfitted models more often

than the variants of QKIC. The latter tend to choose underfitted models more often

than the former.

n order QICI QKICI QICR QKICR QICU QKICU

100 11 22 2 24 2 21 1

100 10 21 6 21 6 22 5

100 9 25 4 25 4 19 2

100 8 37 12 37 12 31 11

100 7 63 27 64 31 65 25

100 6 116 63 118 61 111 59

100 5 579 610 581 614 595 619

100 4 103 169 99 166 101 166

100 3 15 29 13 27 13 24

100 2 19 78 18 77 22 88

Table 5.3: Setting 27: NM order selections for QICI , QKICI , QICR, QKICR, QICU ,
and QKICU in the binary correlated response data framework; results for the gen-
erating model are bolded.

For settings 27 and 28 (Tables 5.3 and 5.4), the variants of QKIC exhibit a

better performance than the variants of QIC. In these cases, QKICU chooses the

generating model most often; however, it is difficult to argue that any of the variants

of QKIC is best, because the number of correct selections for each of the variants
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n order QICI QKICI QICR QKICR QICU QKICU

150 11 21 1 21 1 16 1

150 10 18 1 20 1 18 1

150 9 24 3 25 3 23 2

150 8 46 15 44 15 41 13

150 7 57 26 56 26 53 24

150 6 131 82 133 81 129 77

150 5 663 771 665 774 681 776

150 4 33 75 31 74 32 76

150 3 2 7 1 6 1 9

150 2 5 19 4 19 6 21

Table 5.4: Setting 28: NM order selections for QICI , QKICI , QICR, QKICR, QICU ,
and QKICU in the binary correlated response data framework; results for the gen-
erating model are bolded.

is similar. The tendencies of QIC to select overfitted models and QKIC to select

underfitted models are quite evident.

5.2.2.2 Correlated Count Response Data

For correlated count response data, we present a 2x2 factorial simulation study

based on two data generating models and two samples sizes. Correlated count

response data are generated using the methodology suggested by Yahav and Shmueli

(2008) for multivariate Poisson random variables. For these experiments, any two

measurements in the same cluster have the same correlation ρ; that is, repeated

measures within clusters follow an exchangeable correlation structure.
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Data for settings 29 and 30 are generated using the following third-order

model:

log(λit) = 0.35 + 0.35xi2t + 0.35t,

where xi2t ∼ iid Bernoulli(0.5), t = 0, 1, 2 (i.e., three measurements per cluster),

ρ = 0.5 (exchangeable correlation structure), n = 50 (setting 29) and n = 100

(setting 30).

In settings 29 and 30, model selection criteria choose from the following can-

didate set:

log(λit) = β1 + β2xi2t

log(λit) = β1 + β2xi2t + β3t

log(λit) = β1 + β2xi2t + β3t + β4xi4t

...

log(λit) = β1 + β2xi2t + β3t + β4xi4t + β5xi5t + β6xi6t + β7xi7t + β8xi8t,

where xi2t and t are as in the preceding paragraph, and xi4t to xi8t ∼ iid N(0, 1).

Data for settings 31 and 32 are generated using the following fifth-order gen-

erating model:

log(λit) = 0.30 + 0.30xi2t + 0.30t + 0.30xi4t + 0.30xi5t,

where xi2t ∼ iid Bernoulli(0.5), xi4t ∼ iid N(0, 1), xi5t ∼ iid N(0, 1), t = 0, 1, 2

(i.e., three measurements per cluster), ρ = 0.5 (exchangeable correlation structure),

n = 50 (setting 31) and n = 150 (setting 32). The candidate set for settings 31 and

32 is the same as that for settings 29 and 30.

Tables 5.5 and 5.6 illustrate a similar pattern of results as the pattern observed

for settings 29 and 30 in the previous section: the variants of QKIC select the correct

model more often than the corresponding variants of QIC. When the variants of
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n order QICI QKICI QICR QKICR QICU QKICU

50 7 48 8 81 22 19 3

50 6 71 27 85 44 34 11

50 5 68 38 83 53 43 20

50 4 123 87 131 104 97 65

50 3 683 830 613 768 798 890

50 2 7 10 7 9 9 11

100 7 33 12 64 18 16 3

100 6 48 15 55 25 21 4

100 5 73 30 93 49 48 13

100 4 132 81 140 108 99 57

100 3 714 862 648 800 816 923

100 2 0 0 0 0 0 0

Table 5.5: Settings 29 and 30: NM order selections for QICI , QKICI , QICR, QKICR,
QICU , and QKICU in the Poisson correlated response data framework; results for
the generating model are bolded.

QKIC and QIC are compared, it can be observed that the variants of QIC are more

prone to overfitting than those of QKIC. On the other hand, the latter are more

prone to underfitting than the former. These experiments also reflect the asymptotic

nature of the criteria: as sample size increases, the criteria choose the correct model

more often.

In all the settings in this section, QKICU performs better than the rest of the

criteria. QKICU is usually followed by QKICI .
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n order QICI QKICI QICR QKICR QICU QKICU

50 7 165 103 152 106 102 55

50 6 172 137 167 137 123 88

50 5 641 716 644 707 717 773

50 4 21 38 33 44 51 68

50 3 1 6 4 6 7 16

50 2 0 0 0 0 0 0

150 7 144 90 134 99 101 67

150 6 179 143 175 143 145 105

150 5 677 767 690 757 753 827

150 4 0 0 1 1 1 1

150 3 0 0 0 0 0 0

150 2 0 0 0 0 0 0

Table 5.6: Settings 31 and 32. NM order selections for QICI , QKICI , QICR, QKICR,
QICU , and QKICU in the Poisson correlated response data framework; results for
the generating model are bolded.

5.3 Application

We illustrate the use of QIC and QKIC by analyzing part of the data recently

published by Mikami et al. (2011). These authors study the effect of antidepressants

on the temporal course of disability in stroke patients.
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5.3.1 Study Description

A total of 83 patients entered a double-blind randomized clinical trial to in-

vestigate the efficacy of antidepressants to treat depressive disorders and reduce dis-

ability after stroke. Patients were assigned to either active antidepressant treatment

(i.e., 32 participants received fluoxetine and 22 nortriptyline) or placebo (n = 29).

The modified Rankin Scale (mRS) (van Swieten et al., 1988) was used to evaluate

the temporal course of disability following stroke. The mRS is a scale that ranges

from 0 to 6. Lower scores mean the patient is less disabled. Patients within 6

months of sustaining a stroke were examined at the time of entry to the study and

at three-month follow-up visits throughout one year, for a total of 5 evenly-spaced

times (i.e., t = 1, 2, ..., 5). In addition to the effect of the antidepressant treatment,

the effects of age and the intensity of rehabilitation care are variables of interest

in predicting the longitudinal course of mRS scores. The intensity of rehabilitation

care is assessed by the total hours of physical rehabilitation received during the

study.

We consider the data for the 56 patients that completed all evaluations during

one year. Their age and total rehabilitation hours were also available. In this group

with complete data, a total of 21 participants received placebo and 35 participants

received antidepressants. Given the correlated and count-like nature of the data, we

use a candidate set based on the Poisson distribution, similar to the set presented

in section 5.2.2.2.

5.3.2 Comparison of Model Selection Criteria

We first use QICR and QKICR to choose the best working correlation structure

among independent, exchangeable or AR-1. We include the following effects of

interest in the mean structure: age (henceforth referred to as xi2), total of physical

rehabilitation hours (xi3), antidepressant treatment (xi4), evaluation time (t), and
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the interaction between evaluation time and antidepressant treatment (txi4). After

choosing a working correlation structure, we compare all variants of QIC and QKIC

to choose a suitable model from the following candidate set:

log(λit) = β1 + β5t (5.20)

log(λit) = β1 + β2xi2 + β5t (5.21)

log(λit) = β1 + β3xi3 + β5t (5.22)

log(λit) = β1 + β2xi2 + β3xi3 + β5t (5.23)

log(λit) = β1 + β4xi4 + β5t + β6txi4 (5.24)

log(λit) = β1 + β3xi3 + β4xi4 + β5t + β6txi4 (5.25)

log(λit) = β1 + β2xi2 + β4xi4 + β5t + β6txi4 (5.26)

log(λit) = β1 + β2xi2 + β3xi3 + β4xi4 + β5t + β6txi4. (5.27)

Tables 5.7 and 5.8 show how the model selection criteria ranked the different can-

didate models.

model QICR QKICR

AR-1 1 1

Exchangeable 2 2

Independence 3 3

Table 5.7: QICR and QKICR rankings for working correlation structure candidate
models.

As can be seen in Table 5.7, both QICR and QKICR indicate that an AR-1

working correlation structure is better than working independence or an exchange-

able working correlation structure. Both criteria rank candidate models in the same

way.
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model QICI QKICI QICR QKICR QICU QKICU

(5.27) 2 3 2 3 1 1

(5.26) 5 7 5 6 5 5

(5.25) 1 1 1 1 2 2

(5.23) 4 4 3 4 3 3

(5.24) 7 6 7 7 7 7

(5.22) 3 2 4 2 4 4

(5.21) 6 5 6 5 6 6

(5.20) 8 8 8 8 8 8

Table 5.8: QICI , QKICI , QICR, QKICR, QICU , and QKICU rankings for mean
structure candidate models.

Table 5.8 shows that the model including age, antidepressant treatment, eval-

uation time and the interaction between antidepressant treatment and evaluation

time is the choice of QICI , QKICI , QICR and QKICR. This model is the second

choice for QICU and QKICU , both of which select the largest model in the candidate

set. The smallest model in the set, which includes only evaluation time, is ranked

last by all of the model selection criteria. Also, for this application, QICU and

QKICU agree in all the model rankings. With the exception of two models, QICI

and QICR also agree on their rankings. The same is true for QKICI and QKICR.

Except for those models where the rankings of QKICI and QKICR agree with those

of their QIC analogues, QKICI and QKICR rank models with fewer parameters

higher than their QIC analogues.

If researchers cannot discern based on scientific reasoning between models

(5.25) and (5.27), most of the simulations in the previous section indicate that
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model (5.27), the choice of QKICU , should be adopted for these data. As a side

note, all the effects included in model (5.27) are statistically significant, meaning

that model (5.25) lacks what appears to be an important covariate.
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CHAPTER 6

CONCLUSIONS AND FUTURE DIRECTIONS

We close this manuscript with general conclusions based on the work presented

in chapters 3 to 5. We also mention the limitations of our work and propose some

important future directions.

6.1 Conclusions

We have developed and investigated three asymptotically unbiased estimators

of different variants of KSD that serve as selection criteria in different modeling

frameworks and under different sets of assumptions.

We have characterized the performance of our proposed criteria in an exten-

sive collection of simulation studies. Our simulation experiments provide prelimi-

nary indications that KICo is a selection criterion well suited for traditional GLM

frameworks where the candidate model set is prone to overfitting. The experiments

also suggest that KICu performs best in traditional GLM frameworks where the

candidate set is prone to underfitting, or where the objective is to choose a model

for predicting new data. QKICI appears to be a suitable model selection criterion

for correlated data in the GLM framework, when estimation is performed using

either a quasi-likelihood or GEEs. We illustrate the use of QKIC variants with a

real-world data example.

A noteworthy conclusion of the simulation studies for KICo and KICu is that

KSD performs systematically at least as well as KDD. The only instances where the

two oracles exhibit a similar performance are those where there is almost no room

for improvement (e.g., where the oracle success rates at choosing the data generating

model are over 95%). To our knowledge, this is the most extensive comparison of

both oracles published to date.
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6.2 Limitations and Future Directions

Our work has some limitations, both in the theoretical development of the

proposed criteria, and in the scope of coverage of some of the topics developed in

this dissertation.

The derivation of KICu has two steps that were derived heuristically. Specifi-

cally, the relations (3.16) and (3.19) were used in the derivation of KICu even though

they were not rigorously justified. QKICR and QKICU are also presented without a

solid theoretical foundation. In addition, KICo and QKICI could be further explored

in the case where the canonical link is not used.

The characterization of the behaviors of the proposed criteria through simu-

lation is somewhat limited. We present more extensive simulation studies for KICo

and KICu than for the QKIC variants. However, these experiments are insufficient

to uncover all of the settings where each of these criteria might perform optimally. In

particular, the study in the prediction setting is very limited. In order to conduct

further experiments, prediction measures more suitable for the GLM framework

than the MSEP should be explored for binary and count outcomes (e.g., area under

the ROC curve for binary data).

In the case of QKICI , the literature shows that criteria developed using only

the bias correction term of QIC are better than QIC at identifying suitable work-

ing correlation structures. Our simulation studies for choosing working correlation

structures are very restricted. We anticipate that further experiments comparing

QKIC to other alternatives proposed in the literature (e.g., CIC) would show that

QKIC is better suited for mean structure selection than for the selection of a working

correlation structure. For all the criteria presented in this work, a more complete

behaviorial characterization through simulation studies would enrich their scope of

usage.

Shibata (1997) shows that the bootstrap estimates of KDD proposed by Efron
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(1983, 1986) and Cavanaugh and Shumway (1997) are asymptotically equivalent to

AIC when g(y|θ0) ∈ F(k) and asymptotically equivalent to TIC when g(y|θ0) is

not necessarily included in F(k). This indicates that bootstrap estimates of KSD

could also be pursued, possibly leading to the development of bootstrap analogues

of KIC, KICo, and KICu.

All the aforementioned limitations and avenues warrant further work and in-

vestigation, and provide possible future directions based on the results presented in

this dissertation.
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