
University of Iowa
Iowa Research Online

Theses and Dissertations

Spring 2012

Statistical models for count time series with excess
zeros
Ming Yang
University of Iowa

Copyright 2012 Ming Yang

This dissertation is available at Iowa Research Online: http://ir.uiowa.edu/etd/3019

Follow this and additional works at: http://ir.uiowa.edu/etd

Part of the Biostatistics Commons

Recommended Citation
Yang, Ming. "Statistical models for count time series with excess zeros." PhD (Doctor of Philosophy) thesis, University of Iowa, 2012.
http://ir.uiowa.edu/etd/3019.

http://ir.uiowa.edu?utm_source=ir.uiowa.edu%2Fetd%2F3019&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F3019&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F3019&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/210?utm_source=ir.uiowa.edu%2Fetd%2F3019&utm_medium=PDF&utm_campaign=PDFCoverPages


STATISTICAL MODELS FOR COUNT TIME SERIES WITH EXCESS ZEROS

by

Ming Yang

An Abstract

Of a thesis submitted in partial fulfillment of the
requirements for the Doctor of Philosophy

degree in Biostatistics in the
Graduate College of The

University of Iowa

May 2012

Thesis Supervisors: Professor Joseph Cavanaugh
Assistant Professor Gideon Zamba



1

ABSTRACT

Time series data involving counts are frequently encountered in many biomed-

ical and public health applications. For example, in disease surveillance, the occur-

rence of rare infections over time is often monitored by public health officials, and

the time series collected can be used for the purpose of monitoring changes in disease

activity. For rare diseases with low infection rates, the observed counts typically

contain a high frequency of zeros (zero-inflation), but the counts can also be very

large during an outbreak period. Failure to account for zero-inflation in the data

may result in misleading inference and the detection of spurious associations.

In this thesis, we develop two classes of statistical models for zero-inflated time

series. The first part of the thesis introduces a class of observation-driven models

in a partial likelihood framework. Iterative algorithms (Newton-Raphson, Fisher

Scoring, EM) are developed to obtain the maximum partial likelihood estimator

(MPLE). We establish the asymptotic properties of the MPLE under certain regu-

larity conditions. The performances of different partial-likelihood based model se-

lection criteria are compared under model misspecification. In the second part of the

thesis, we introduce a class of parameter-driven models in a state-space framework.

To estimate the model parameters, we devise a Monte Carlo EM algorithm, where

particle filtering and particle smoothing methods are employed to approximate the

high-dimensional integrals in the E-step of the algorithm. Upon convergence, Louis’

formula is used to find the observed information matrix.

The proposed models are illustrated with simulated data and an application

based on public health surveillance for syphilis, a sexually transmitted disease (STD)

that remains a major public health challenge in the United States. An R package,

called ZIM (Zero-Inflated Models), has been developed to fit both observation-driven

models and parameter-driven models.
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ABSTRACT

Time series data involving counts are frequently encountered in many biomed-

ical and public health applications. For example, in disease surveillance, the occur-

rence of rare infections over time is often monitored by public health officials, and

the time series collected can be used for the purpose of monitoring changes in disease

activity. For rare diseases with low infection rates, the observed counts typically

contain a high frequency of zeros (zero-inflation), but the counts can also be very

large during an outbreak period. Failure to account for zero-inflation in the data

may result in misleading inference and the detection of spurious associations.
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Scoring, EM) are developed to obtain the maximum partial likelihood estimator
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larity conditions. The performances of different partial-likelihood based model se-

lection criteria are compared under model misspecification. In the second part of the

thesis, we introduce a class of parameter-driven models in a state-space framework.

To estimate the model parameters, we devise a Monte Carlo EM algorithm, where

particle filtering and particle smoothing methods are employed to approximate the

high-dimensional integrals in the E-step of the algorithm. Upon convergence, Louis’

formula is used to find the observed information matrix.

The proposed models are illustrated with simulated data and an application

based on public health surveillance for syphilis, a sexually transmitted disease (STD)

that remains a major public health challenge in the United States. An R package,

called ZIM (Zero-Inflated Models), has been developed to fit both observation-driven

models and parameter-driven models.
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CHAPTER 1

INTRODUCTION

1.1 Scientific Background

Time series data involving counts are frequently encountered in many biomed-

ical and public health applications. For example, in disease surveillance, the occur-

rence of rare infections over time is often monitored by public health officials, and

the time series collected can be used for the purpose of monitoring changes in disease

activity. For rare diseases with low infections rates, the observed counts typically

contain a high frequency of zeros (zero-inflation), but the counts can also be very

large during an outbreak period. Such zero-inflated time series also arise in hospital

epidemiology where the focus is on the number of hospital-acquired infections in

different intensive care units. Counts of rare infections typically contain an excess

of zeros, and cannot be well accommodated by the widely used Poisson or negative

binomial model. In addition, temporal correlation between adjacent observations is

often present in data collected over time. Failure to account for zero-inflation and/or

autocorrelation in the data may result in misleading inference and the detection of

the spurious associations.

1.2 Literature Review

Regression models based on the zero-inflated Poisson (ZIP) distribution have

been well developed for zero-inflated count data that are independently distributed

(Lambert, 1992; Lee et al. 2001). To analyze repeated measures count data with

a large number of zeros, Hall (2000) incorporated random effects in the classical

ZIP regression model to account for within-subject correlation and between-subject

heterogeneity. Marginal models (Hall & Zhang, 2004) and multi-level models (Lee et

al., 2006) have also been proposed to analyze clustered count data in the presence of
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zero-inflation. To test whether the ZIP distribution should be used as an alternative

to the ordinary Poisson distribution, a score test was first proposed by Van den

Broek (1995), and was later extended to the setting where count data are correlated

(Xiang et al., 2006). Despite the popularity of the ZIP models, the literature for

count time series with excess zeros is sparse.

In general, there are two types of time series models: observation-driven mod-

els and parameter-driven models (Cox, 1981). These two types of models differ

in the way they account for autocorrelation. In observation-driven models, the

temporal correlation between adjacent observations is directly modeled through a

function of past responses. In contrast, an unobserved latent process is employed in

parameter-driven models to account for the serial correlation. Conditioning on the

latent process, the observations are assumed to be independently distributed. Com-

pared to observation-driven models, the concept behind parameter-driven models

is more appealing. However, parameter estimation in parameter-driven models is

often computationally burdensome (Chan & Ledolter, 1995; Durbin & Koopman,

2000). A comprehensive comparison of different estimation methods for Poisson

parameter-driven models is presented by Nelson & Leroux (2006).

There is a large literature for count time series without zero-inflation, includ-

ing both observation-driven models (Davis et al., 2003; Li, 1994; Zeger & Qaqish,

1988) and parameter-driven models (Chan & Ledolter, 1995; Oh & Lim 2001; Zeger

1988). Unfortunately, very few papers have been published for count time series

with excess zeros. Yau et al. (2004) first presented a ZIP mixed autoregressive

model and applied the model to evaluate a participatory ergonomics intervention in

occupational health. The model they proposed belongs to the class of parameter-

driven models. However, the first-order autoregressive structure they consider is too

restrictive to accurately approximate the actual temporal correlation in many time

series data.



3

1.3 Overview of the Thesis

In this thesis, we develop both observation-driven models and parameter-

driven models for count time series with excess zeros. The zero-inflated models

proposed here can be viewed as natural extensions of the existing time series mod-

els following generalized linear models. In the case when there is no zero-inflation

in the data, our models will reduce to the traditional time series models based on

the Poisson and negative binomial distributions.

The thesis is organized as follows. In the partial likelihood framework, we

present a class of observation-driven models for zero-inflated time series in Chap-

ter 2. Chapter 3 introduces a class of parameter-driven models in the state-space

framework. In Chapter 4, we provide a general introduction to an R package that

has been developed to implement the proposed methodologies. Chapter 5 concludes

the thesis with a discussion of future directions.
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CHAPTER 2

OBSERVATION-DRIVEN MODELS

In this chapter, our focus is on observation-driven models for zero-inflated time se-

ries. We first review partial likelihood inference for time series following generalized

linear models (GLM). In the partial likelihood framework, we introduce a class of

zero-inflated models for count time series with a large proportion of zeros. Iter-

ative algorithms are derived to obtain the maximum partial likelihood estimator

(MPLE). Under certain regularity conditions, we establish the asymptotic proper-

ties of the MPLE. We also compare the performances of different partial-likelihood

based model selection criteria under model misspecification. Both simulated and

real examples are presented to illustrate the proposed methodologies.

2.1 Partial Likelihood Inference

The concept of partial likelihood was originally developed by Cox (1972 &

1975) for time-to-event data through the Cox’s proportional hazards model. How-

ever, the technique has also been used in a variety of other statistical frameworks

since its introduction. For example, Kedem & Fokianos (2002, Chapters 1-4) com-

bined partial likelihood theory with GLM methods to model time series data where

the conditional distribution of the response series belongs to the exponential fam-

ily. Such a modeling framework is very flexible and provides a unified approach for

describing non-Gaussian time series which cannot be analyzed by the well-known

autoregressive integrated moving average (ARIMA) models (Box & Jenkins, 1970).

The basic idea behind partial likelihood is to simplify complicated likelihood func-

tions by dropping certain unimportant components that have a minimal effect on the

large-sample properties of the estimated parameters (e.g., consistency and asymp-

totic normality).
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To illustrate the use of partial likelihood for temporally correlated data, we

consider a pair of jointly distributed time series (Xt, Yt) with t = 1, . . . , N , where

{Yt} is the response series and {Xt} is the explanatory series. To simplify the

notation, we let X1:N = (X1, . . . , XN) and Y1:N = (Y1, . . . , YN). Based on the rules

of conditional probability, the joint density of X1:N and Y1:N can be written as

fθ(x1:N , y1:N) = fθ(x1)
N∏
t=2

fθ(xt|x1:t−1, y1:t−1)
N∏
t=1

fθ(yt|x1:t, y1:t−1), (2.1)

where θ is a set of unknown parameters. In the special case when t = 1, we define

fθ(yt|x1:t, y1:t−1) = fθ(y1|x1). According to Cox (1975), the second product on the

right hand side of (2.1) constitutes a partial likelihood and can be employed for

statistical inference about θ. The vector θ̂ that maximizes the partial likelihood is

called the MPLE. Under mild regularity conditions, the loss of information due to

this simplification is negligible, and most of the large-sample properties still hold

for the MPLE. On the other hand, the computational effort required for parameter

estimation can be greatly reduced.

As mentioned earlier, the partial likelihood approach has already been em-

ployed by Kedem & Fokianos (2002) to model time series following GLMs. Specif-

ically, they assume the conditional distribution of the response series {Yt} belongs

to the following exponential family:

fYt(yt|Ft−1) = exp

{
ytθt − b(θt)
at(φ)

+ c(yt;φ)

}
, (2.2)

where θt and φ are the natural and dispersion parameters, respectively. Here Ft−1

is a filtration that represents all information that is known at time t − 1. Such a

filtration typically includes past values of the response series, and past and possibly

present values of the explanatory series. Similar to the GLM results for independent

data, the conditional mean and variance of (2.2) are given by

µt = E(Yt|Ft−1) = b′(θt)
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and

σ2
t = Var(Yt|Ft−1) = at(φ)b′′(θt).

Typically we model the conditional mean of the response series {Yt} through the

systematic component

g(µt) = ηt = x>t−1β,

where xt−1 = (xt−1,1, . . . , xt−1,p) is a set of deterministic or random covariates and

β = (β1, . . . , βp) is the vector of unknown parameters. Here, g(·) is a monotone link

function used to relate the conditional mean µt to the linear predictor ηt. Although

the exponential family is very general and includes many important distributions

as special cases (e.g., Gaussian, binomial, and Poisson), it is not suitable for count

data with a large number of zeros.

2.2 ZIP Autoregression

Based on the zero-inflated Poisson (ZIP) distribution, we introduce an au-

toregressive model for count time series with excess zeros. The proposed model is

an extension of the Poisson autoregression discussed by Kedem & Fokianos (2002,

Chapter 4). Let {Yt} denote the response series, composed of discrete count data.

We assume the count series is conditionally distributed as ZIP(λt, ωt), with proba-

bility mass function (p.m.f.) defined as follows:

fYt(yt|Ft−1) = ωtI(yt=0) + (1− ωt) exp(−λt)λytt /yt!, (2.3)

or equivalently

fYt(yt|Ft−1) =


ωt + (1− ωt) exp(−λt), if yt = 0,

(1− ωt) exp(−λt)λytt /yt!, if yt > 0.

(2.4)
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Here λt is the intensity parameter of the baseline Poisson distribution, and ωt is

often referred to as the zero-inflation parameter. To simplify the notation, we will

use y0,t to represent I(yt=0) for the remainder of the thesis.

In general, the ZIP distribution defined by (2.3) or (2.4) can be viewed as a

two-component mixture of the Poisson distribution with a degenerate distribution

having point mass at zero. Specifically, we assume there is a dichotomous variable

ut indicating whether the observed count yt comes from the degenerate distribution

(ut = 1) or the ordinary Poisson distribution (ut = 0). The latent variable ut is

often unobservable and thus can be treated as missing in practice. For s < t, the

variables ut and us are assumed to be conditionally independent of each other, given

Ft−1.

We consider a hierarchical model where

ut|Ft−1 ∼ Bernoulli(ωt) (2.5)

and

Yt|ut,Ft−1 ∼ Poisson((1− ut)λt). (2.6)

It can be easily verified that the distribution of Yt|Ft−1 implied by (2.5) and (2.6)

is identical to the ZIP distribution defined by (2.3) or (2.4). In the case when the

zero-inflation parameter ωt is equal to zero, the ZIP distribution simply reduces to

the ordinary Poisson distribution.

For any non-negative integer m, the cumulative distribution function (c.d.f.)

of Yt|Ft−1 is given by

FYt(m|Ft−1) = Pr(Yt ≤ m|Ft−1)

=
m∑

yt=0

fYt(yt|Ft−1)

= ωt + (1− ωt) exp(−λt)
m∑

yt=0

λytt /yt!.
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Based on equations (2.5) and (2.6), the mean of Yt|Ft−1 can be expressed as

E(Yt|Ft−1) = E{E(Yt|ut,Ft−1)}

= E{(1− ut)λt|Ft−1}

= λt(1− ωt),

and the variance of Yt|Ft−1 can be written as

Var(Yt|Ft−1) = E{Var(Yt|ut,Ft−1)}+ Var{E(Yt|ut,Ft−1)}

= E{(1− ut)λt|Ft−1}+ Var{(1− ut)λt|Ft−1}

= λt(1− ωt) + λ2tωt(1− ωt)

= λt(1− ωt)(1 + λtωt).

For the ZIP distribution, the variance-to-mean ratio or dispersion index

Var(Yt|Ft−1)/E(Yt|Ft−1) = 1 + λtωt

is greater than or equal to one. Thus, excess zeros in the data also result in overdis-

persion, which again cannot be accommodated by the ordinary Poisson distribution.

We now propose a ZIP autoregression in which the intensity parameter λt and

zero-inflation parameter ωt are modeled as follows:

ηt = log λt = x>t−1β (2.7)

and

ξt = logit(ωt) = z>t−1γ, (2.8)

where β = (β1, . . . , βp)
> and γ = (γ1, . . . , γq)

> are the regression coefficients for

the log-linear part (2.7) and logistic part (2.8), respectively. For convenience, we

let θ = (β>,γ>)> denote the (p + q)-dimensional vector of unknown parameters.

Here xt−1 = (xt−1,1, . . . , xt−1,p)
> and zt−1 = (zt−1,1, . . . , zt−1,q)

> denote vectors of
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past explanatory variables, into which functions of the lagged response series can

be incorporated to account for serial correlation.

According to Kedem & Fokianos (2002), the general definition of partial like-

lihood is given by

PL(θ) =
N∏
t=1

fYt(yt|Ft−1). (2.9)

Based on equations (2.3) and (2.9), we have the following log partial likelihood for

the ZIP autoregression:

log PL(θ) =
N∑
t=1

log fYt(yt|Ft−1)

=
N∑
t=1

log{ωty0,t + (1− ωt) exp(−λt)λytt /yt!}.

2.2.1 Parameter Estimation

To obtain the MPLE, we need to maximize log PL(θ). Equivalently, we must

solve the partial score equation SN(θ) = 0, where the partial score vector SN(θ) is

defined as follows:

SN(θ) =
∂

∂θ
log PL(θ) =

N∑
t=1

Ct−1vt(θ),

with Ct−1 and vt(θ) given by

Ct−1 =

 xt−1 0

0 zt−1


and

vt(θ) =

 v1,t(θ)

v2,t(θ)

 =

 yt − λt(1− ωty0,t/p0,t)

ωt(y0,t/p0,t − 1)

 .
Here p0,t = ωt + (1− ωt) exp(−λt) is the p.m.f. of Yt|Ft−1 at zero.
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Due to the nonlinear nature of the problem, there is no closed-form solu-

tion to the partial score equation. Thus, we use iterative algorithms for parameter

estimation. We will discuss three different approaches: Newton-Raphson (NR),

Fisher Scoring (FS), and Expectation-Maximization (EM) algorithms. Before de-

vising those algorithms, we first present the observed and conditional information

matrices. The observed information matrix (i.e., negative Hessian) of the ZIP au-

toregression is given by

HN(θ) = − ∂2

∂θ∂θ>
log PL(θ) =

N∑
t=1

Ct−1Dt(θ)C>t−1,

where Dt(θ) is a symmetric 2× 2 matrix with elements defined as follows:

d11,t(θ) = λt[1− y0,tωt{ωt + (1− ωt)(1 + λt) exp(−λt)}/p20,t],

d12,t(θ) = −y0,tωt(1− ωt)λt exp(−λt)/p20,t,

d22,t(θ) = ωt(1− ωt){1− y0,t exp(−λt)/p20,t}.

Similarly, the conditional information matrix (akin to the Fisher information) of the

ZIP autoregression is given by

GN(θ) =
N∑
t=1

Var{Ct−1vt(θ)|Ft−1} =
N∑
t=1

Ct−1Σt(θ)C>t−1,

where Σt(θ) = Var{vt(θ)|Ft−1} is a symmetric 2× 2 matrix with elements defined

as follows:

σ11,t(θ) = (1− ωt)λt[exp(−λt) + ωt{1− (1 + λt) exp(−λt)}]/p0,t,

σ12,t(θ) = −ωt(1− ωt)λt exp(−λt)/p0,t,

σ22,t(θ) = ω2
t (1− ωt){1− exp(−λt)}/p0,t.

It is clear that the elements σ11,t(θ) and σ22,t(θ) are both positive. Furthermore it

can be easily verified that

det{Σt(θ)} = σ11,t(θ)σ22,t(θ)− {σ12,t(θ)}2 > 0.
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Thus, Σt(θ) is positive definite for all λt ∈ (0,∞) and ωt ∈ (0, 1).

To proceed with the NR estimation, we update the estimator through

θ̂
(j+1)

= θ̂
(j)

+ H−1N (θ̂
(j)

)SN(θ̂
(j)

). (2.10)

A reasonable starting value θ̂
(0)

is needed to start the iteration. We stop the al-

gorithm after some pre-specified convergence criteria are satisfied. In fact, the NR

algorithm defined by (2.10) can be viewed as an iteratively reweighted least squares

(IRLS) method. To see this, we introduce two design matrices

X =



x>0

x>1
...

x>N−1


and Z =



z>0

z>1
...

z>N−1


.

Furthermore, we let

C =

 X 0

0 Z

 and v(θ) =

 v1(θ)

v2(θ)

 ,
where vi(θ) = (vi,1(θ), · · · , vi,N(θ))> for i = 1, 2. Then the partial score vector of

the ZIP autoregression can be written as

SN(θ) =
N∑
t=1

Ct−1vt(θ) = C>v(θ).

In addition, the negative Hessian matrix can be neatly expressed as

HN(θ) =
N∑
t=1

Ct−1Dt(θ)C>t−1 = C>D(θ)C,

where we have

D(θ) =

 Diag(d11(θ)) Diag(d12(θ))

Diag(d12(θ)) Diag(d22(θ))

 ,
with dij(θ) = (dij,1(θ), · · · , dij,N(θ))> for i, j = 1, 2. Note that the matrix D(θ)
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contains many zeros and is invertible as long as each individual Dt(θ) is positive

definite. Assuming the inverse of D(θ) exists, equation (2.10) in the NR algorithm

can be rewritten as follows:

θ̂
(j+1)

= H−1N (θ̂
(j)

)
{

HN(θ̂
(j)

)θ̂
(j)

+ SN(θ̂
(j)

)
}

=
{

C>D(θ̂
(j)

)C
}−1 {

C>D(θ̂
(j)

)Cθ̂
(j)

+ C>v(θ̂
(j)

)
}

=
{

C>D(θ̂
(j)

)C
}−1

C>D(θ̂
(j)

)
{

Cθ̂
(j)

+ D−1(θ̂
(j)

)v(θ̂
(j)

)
}

=
{

C>D(θ̂
(j)

)C
}−1

C>D(θ̂
(j)

)q(θ̂
(j)

), (2.11)

where we have q(θ) = Cθ + D−1(θ)v(θ). Thus, the updating rule in equation

(2.11) is actually a weighted least squares estimation method. By replacing HN(θ)

by GN(θ) in equations (2.10) and (2.11), we obtain the FS algorithm. Based on a

parallel development, we show that the FS algorithm may also be viewed as an IRLS

method. In practice, the NR and FS algorithms converge very quickly provided that

the starting values are close to the MPLE. The performances of these two gradient-

based algorithms are generally quite comparable.

Although the NR and FS algorithms can be applied to solve the partial score

equation, they are often sensitive to the starting parameter values. To ensure con-

vergence, we take advantage of the mixture structure for the ZIP distribution and

estimate the unknown parameters through the EM algorithm (Dempster et al.,

1977), an iterative method widely used to fit statistical models involving latent

variables. Applying the Bayes theorem to equations (2.5) and (2.6), we have

E(ut|yt,Ft−1) = Pr(ut = 1|Yt = yt,Ft−1)

=
Pr(ut = 1, Yt = yt|Ft−1)

Pr(Yt = yt|Ft−1)

=
Pr(ut = 1|Ft−1)Pr(Yt = yt|ut = 1,Ft−1)

Pr(Yt = yt|Ft−1)

=
ωty0,t

ωty0,t + (1− ωt) exp(−λt)λytt /yt!
,
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which constitutes the basis for the E-step. Up to an additive constant, the complete

data log-partial likelihood for y = (y1, . . . , yN)> and u = (u1, . . . , uN)> can be

orthogonally decomposed as follows:

log PLc(θ) =
N∑
t=1

(1− ut)(yt log λt − λt)

+
N∑
t=1

{ut logωt + (1− ut) log(1− ωt)}.

The following outline the basic steps of the EM algorithm.

• E-step: Compute the expectation of log PLc(θ) with respect to the conditional

distribution of u|y,θ(j). Specifically, we have

Q(θ|θ(j)) = E{log PLc(θ)|y,θ(j)}

=
N∑
t=1

(1− û(j)t )(yt log λt − λt)

+
N∑
t=1

{û(j)t logωt + (1− û(j)t ) log(1− ωt)},

where û
(j)
t denotes the conditional expectation of ut at j-th iteration.

• M-step: Find θ(j+1) that maximizes Q(θ|θ(j)). Due to the orthogonal parti-

tion, we can easily obtain β(j+1) and γ(j+1) by maximizing

N∑
t=1

(1− û(j)t )(yt log λt − λt)

and

N∑
t=1

{û(j)t logωt + (1− û(j)t ) log(1− ωt)}

separately. Therefore, the M-step is equivalent to fitting two generalized linear

models (i.e., Poisson and logistic regressions).

It is well-known that the EM algorithm tends to slow down when the estimator

is very close to the MPLE. To accelerate the convergence speed, we suggest using a
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hybrid algorithm (EM-NR or EM-FS) by combing the EM algorithm with the NR or

FS algorithm. Specifically, we first use the EM algorithm to find appropriate starting

values and then switch to the NR or FS algorithm after several EM iterations.

This hybrid algorithm has been proved efficient and reliable in many simulated and

real examples. Upon convergence, the observed information matrix HN(θ) or the

conditional information matrix GN(θ) can be employed to compute the standard

errors of the MPLE. The MPLE together with the standard errors can then be used

to form Wald-type tests in the partial likelihood setting.

2.2.2 Asymptotic Theory

In this section, we investigate the large sample behavior of the MPLE under

the following regularity conditions (i.e., C.1 - C.3). These conditions are slight

modifications of those presented by Kedem & Fokianos (2002, Chapter 3).

C.1 The true parameter θ belongs to an open set Θ ⊆ Rp+q.

C.2 The covariate matrix Ct−1 almost surely lies in a non-random compact subset

Γ of R(p+q)×2 such that P(
∑N

t=1 Ct−1C
>
t−1 is positive definite) = 1.

C.3 There is a probability measure ν on R(p+q)×2 such that
∫

CC>ν(dC) is positive

definite, and such that for Borel sets A ⊂ R(p+q)×2,

1

N

N∑
t=1

I(Ct−1∈A)
p→ ν(A),

at the true parameter θ.

Fokianos & Kedem (1998) and Kedem & Fokianos (2002, Chapter 3) provide

a rigorous treatment of the asymptotic theory for non-stationary categorical time

series. Their results are natural extensions of the work by Kaufmann (1987), and

their method of proof can be generally applied to any multivariate GLM. For the



15

ZIP autoregression, we have

E{Ct−1vt(θ)|Ft−1} = Ct−1E{vt(θ)|Ft−1} = 0,

as E(Yt|Ft−1) = λt(1 − ωt) and E(Y0,t|Ft−1) = p0,t. Therefore, the partial score

process {St(θ)}, defined by

St(θ) =
t∑

s=1

Cs−1vs(θ),

satisfies the property

E{St(θ)|Ft−1} = E{St−1(θ) + Ct−1vt(θ)|Ft−1}

= E{St−1(θ)|Ft−1}+ E{Ct−1vt(θ)|Ft−1} = St−1(θ),

indicating that the partial score process {St(θ)} is a discrete-time martingale. More-

over the martingale is square integrable since we have

E{||St(θ)||2} ≤
t∑

s=1

E{||Cs−1vs(θ)||2}

=
t∑

s=1

E[E{||Cs−1vs(θ)||2|Fs−1}] <∞.

These properties together with the martingale central limit theorem (CLT) ensure

the consistency and asymptotic normality of the MPLE. More details about the

CLT for martingales can be found in the text by Hall & Heyde (1980).

Theorem 1 Under the regularity conditions C.1 - C.3, the MPLE for the ZIP

autoregression is consistent, and

√
N(θ̂ − θ)

d→ Np+q

(
0,G−1(θ)

)
,

where G(θ) is the limiting information matrix per observation such that 1
N

GN(θ)
p→

G(θ) as N →∞.

The proof of Theorem 1 parallels that of Kedem & Fokianos (2002, pp. 130-

134), and thus is not reproduced here for the sake of brevity. Applying the delta
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method to Theorem 1, we can obtain the asymptotic distributions of E(Yt|Ft−1; θ̂)

and FYt(m|Ft−1; θ̂) as stated in the following theorem.

Theorem 2 Under the regularity conditions C.1 - C.3, we have

√
N{E(Yt|Ft−1; θ̂)− E(Yt|Ft−1;θ)} d→ N

(
0,bt(θ)>C>t−1G

−1(θ)Ct−1bt(θ)
)

and

√
N{FYt(m|Ft−1; θ̂)− FYt(m|Ft−1;θ)} d→ N

(
0,dt(θ)>C>t−1G

−1(θ)Ct−1dt(θ)
)
,

where bt(θ) and dt(θ) are defined as follows:

bt(θ) =

 λt(1− ωt)

−λtωt(1− ωt)


and

dt(θ) =

 (1− ωt) exp(−λt)
∑m

yt=0(yt − λt)λ
yt
t /yt!

ωt(1− ωt)
{

1− exp(−λt)
∑m

yt=0 λ
yt
t /yt!

}
 .

The proof of Theorem 2 is presented in the appendix. The results of the theorem

can be used to construct prediction intervals for E(Yt|Ft−1;θ) and FYt(m|Ft−1;θ),

given all the past information Ft−1.

2.2.3 Model Selection Criteria

Selecting an appropriate model among several competing candidates is a prob-

lem of great importance in many time series analyses. This task is often accom-

plished by using the Akaike (1974) information criterion (AIC). AIC is derived as

an estimator of the expected Kullback-Leibler discrepancy between the true model

and a fitted candidate model. By replacing the traditional likelihood in the inde-

pendent data setting by the partial likelihood, an analogue of AIC could be defined
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as follows (Kedem & Fokianos 2002, p. 25):

AIC = −2 log PL(θ̂) + 2 dim(θ), (2.12)

where θ̂ is the MPLE and dim(θ) is the number of free parameters in the model. De-

spite its popularity, the asymptotic justification of AIC relies on a strong assumption

that the true model is contained in the candidate class (Cavanaugh, 1997). Unfor-

tunately, this assumption is seldom satisfied since it is difficult, if possible, to have

access to the generating model in most practical applications.

To relax the preceding assumption, Takeuchi (1976) introduced the Takeuchi

information criterion (TIC) as an attractive alternative to AIC. In the partial like-

lihood context, TIC could be defined as

TIC = −2 log PL(θ̂) + 2tr
{

JN(θ̂)I−1N (θ̂)
}
, (2.13)

where IN(θ) is an information matrix and JN(θ) is defined as

JN(θ) =
N∑
t=1

{
∂ log fYt(yt|Ft−1)

∂θ

}{
∂ log fYt(yt|Ft−1)

∂θ

}>
.

It is worth noting that the term

tr
{

JN(θ̂)I−1N (θ̂)
}

= tr
[
IN(θ̂)

{
I−1N (θ̂)JN(θ̂)I−1N (θ̂)

}]
is a measure of discrepancy between the model-based and robust covariance matrices

(White, 1982) of the MPLE. For the ZIP autoregression, we have

JN(θ) =
N∑
t=1

Ct−1vt(θ)vt(θ)>C>t−1,

and the information matrix IN(θ) can be either HN(θ) or GN(θ).

It is clear that AIC and TIC share the same goodness-of-fit term. In gen-

eral, the penalty term 2tr
{

JN(θ̂)I−1N (θ̂)
}

in TIC is very close to the penalty term

2 dim(θ) in AIC when the true model is within the candidate collection. In such

a setting, the performances of AIC and TIC are quite comparable. However, TIC
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often outperforms AIC in the presence of model misspecification, when none of the

candidate models are correctly specified. When a candidate model is misspecified,

the penalty term of TIC will be much larger than that of AIC. This tendency pre-

vents the selection of a model that is too complicated for the data at hand. It is

worth noting that TIC is very similar in structure to the quasi-likelihood information

criterion (QIC), which was developed by Pan (2001) for generalized linear model

selection where the GLMs are fit using generalized estimating equations (GEEs).

2.3 ZINB Autoregression

In this section, we extend the ZIP autoregression to a more general zero-

inflated negative binomial (ZINB) autoregression which can be used to account for

simultaneous zero-inflation and overdispersion in many count time series. Con-

ditioning on the filtration Ft−1, we assume the response series {Yt} has a ZINB

distribution with p.m.f. given by

fYt(yt|Ft−1) =


ωt + (1− ωt)

(
kt

kt + λt

)kt

, if yt = 0,

(1− ωt)
Γ(kt + yt)

Γ(kt)yt!

(
kt

kt + λt

)kt ( λt
kt + λt

)yt

, if yt > 0,

where kt is the dispersion parameter of the baseline NB distribution.

Like the ZIP distribution, the ZINB distribution can be viewed as a two-

component mixture of the NB distribution with a degenerate distribution having

point mass at zero. Again, we assume there is a dichotomous variable ut indicating

whether the observed count yt comes from the degenerate distribution (ut = 1)

or the ordinary NB distribution (ut = 0). The ZINB distribution can then be

equivalently expressed in a hierarchical form where

ut|Ft−1 ∼ Bernoulli(ωt)



19

and

Yt|ut,Ft−1 ∼ NB(kt, (1− ut)λt).

Based on the hierarchical representation, the conditional mean can be written as

E(Yt|Ft−1) = E{E(Yt|ut,Ft−1)}

= E{(1− ut)λt|Ft−1}

= λt(1− ωt),

and the conditional variance can be expressed as

Var(Yt|Ft−1) = E{Var(Yt|ut,Ft−1)}+ Var{E(Yt|ut,Ft−1)}

= E{(1− ut)λt + (1− ut)2λ2t/kt|Ft−1}+ Var{(1− ut)λt|Ft−1}

= λt(1− ωt) + λ2t (1− ωt)/kt + λ2tωt(1− ωt)

= λt(1− ωt)(1 + λtωt + λt/kt).

The variance-to-mean ratio or dispersion index

Var(Yt|Ft−1)/E(Yt|Ft−1) = 1 + λtωt + λt/kt

is greater than or equal to one, and indicates that the overdispersion is attributed

to both the zero-inflation parameter ωt and the dispersion parameter kt.

In our proposed ZINB autoregression, we model the parameters kt, λt, and ωt

through the following three systematic components:

log kt = s>t−1α,

log λt = x>t−1β,

logit(ωt) = z>t−1γ,

where α = (α1, . . . , αl)
>, β = (β1, . . . , βp)

> and γ = (γ1, . . . , γq)
> are the regression

coefficients. Here st−1 = (st−1,1, . . . , st−1,l)
>, xt−1 = (xt−1,1, . . . , xt−1,p)

> and zt−1 =
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(zt−1,1, . . . , zt−1,q)
> are vectors of past explanatory variables. For convenience, we let

θ = (α>,β>,γ>)> denote the (l+p+q)-dimensional vector of unknown parameters.

Table 2.1: Observation-driven models for zero-inflated and overdispersed time
series.

Zero-Inflation Overdispersion Autocorrelation Model

No No No Poisson Regression

No No Yes Poisson Autoregression

No Yes No NB Regression

No Yes Yes NB Autoregression

Yes No No ZIP Regression

Yes No Yes ZIP Autoregression

Yes Yes No ZINB Regression

Yes Yes Yes ZINB Autoregression

As illustrated in Table 2.1, the ZINB autoregression is very general and in-

cludes many important models as special cases. Specifically, ZINB autoregression

reduces to

• NB autoregression when ωt = 0,

• ZIP autoregression when 1/kt → 0,

• Poisson autoregression when ωt = 0 and 1/kt → 0.

In the absence of autocorrelation, the Poisson, NB, ZIP, and ZINB autoregressions

simply reduce to the four ordinary regression models for independent data.

We now consider partial likelihood inference for the most general ZINB au-

toregression. To simplify the notation, we let pt = kt/(kt +λt). Then the log-partial
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likelihood of the ZINB autoregression is given by

log PL(θ) =
∑
yt=0

log{ωt + (1− ωt)p
kt
t }

+
∑
yt>0

{log(1− ωt) + log Γ(kt + yt)− log Γ(kt)

− log(yt!) + kt log pt + yt log(1− pt)} .

It can be easily verified that

∂pt/∂kt = pt(1− pt)/kt,

∂pt/∂λt = −p2t/kt,

∂pktt /∂kt = pktt (log pt + 1− pt),

∂pktt /∂λt = −pkt+1
t .

Then the partial score vector of the ZINB autoregression is given by

SN(θ) =
∂

∂θ
log PL(θ) =

N∑
t=1

Ct−1vt(θ),

where we have

Ct−1 =


st−1 0 0

0 xt−1 0

0 0 zt−1

 , vt(θ) =


v1,t(θ)

v2,t(θ)

v3,t(θ)

 .
Here the elements of vt(θ) are defined as follows:

v1,t(θ) = kt(1− ωty0,t/p0,t)(log pt + 1− pt)

+kt(1− y0,t){Ψ0(kt + yt)−Ψ0(kt)} − ytpt,

v2,t(θ) = ptyt − kt(1− pt)(1− ωty0,t/p0,t),

v3,t(θ) = ωt(y0,t/p0,t − 1),

where Ψ0(·) is the digamma function, and p0,t = ωt + (1 − ωt)p
kt
t is the p.m.f. of
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Yt|Ft−1 at zero. Since E(y0,t|Ft−1) = p0,t and E(yt|Ft−1) = (1− ωt)λt, we have

E{v1,t(θ)|Ft−1} = kt(1− ωtp0,t/p0,t)(log pt + 1− pt)

+ktE[(1− y0,t){Ψ0(kt + yt)−Ψ0(kt)}|Ft−1]− (1− ωt)λtpt

= kt(1− ωt) log pt + ktE[(1− y0,t){Ψ0(kt + yt)−Ψ0(kt)}|Ft−1]

+kt(1− ωt)
λt

kt + λt
− (1− ωt)λt

kt
kt + λt

= kt(1− ωt) log pt + ktE[(1− y0,t){Ψ0(kt + yt)−Ψ0(kt)}|Ft−1],

E{v2,t(θ)|Ft−1} = pt(1− ωt)λt − kt(1− pt)(1− ωtp0,t/p0,t)

=
kt

kt + λt
(1− ωt)λt − kt

λt
kt + λt

(1− ωt) = 0,

E{v3,t(θ)|Ft−1} = ωt(p0,t/p0,t − 1) = 0.

Thus, for the partial score process of the ZINB autoregression to be a zero-mean

martingale, we still need to show E{v1,t(θ)|Ft−1} = 0, or equivalently

E[(1− y0,t){Ψ0(kt)−Ψ0(kt + yt)}|Ft−1]

= −
∞∑
j=0

Pr(Yt > j|Fj−1)/(kt + j)

= (1− ωt) log pt. (2.14)

We have verified equation (2.14) for several important special cases when kt =

1, 2, 3. In addition, we have validated the general conjecture replying on computers.

However, a complete and rigorous proof of the conjecture has yet to be formulated.

The observed information matrix of the ZINB autoregression is given by

HN(θ) = − ∂2

∂θ∂θ>
log PL(θ) =

N∑
t=1

Ct−1Dt(θ)C>t−1,
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where Dt(θ) is a symmetric 3× 3 matrix with elements defined as follows:

d11,t(θ) = kt(1− pt){ytpt/kt − (1− pt)(1− ωty0,t/p0,t)}

−kt(1− y0,t){Ψ0(kt + yt)−Ψ0(kt) + ktΨ1(kt + yt)− ktΨ1(kt)}

−kt(log pt + 1− pt) {1− ωty0,t/p0,t

+ktωty0,t(log pt + 1− pt)(p0,t − ωt)/p
2
0,t

}
,

d12,t(θ) = kt(1− pt)
{
ktωty0,t(log pt + 1− pt)(p0,t − ωt)/p

2
0,t

+(1− pt)(1− ωty0,t/p0,t)− ytpt/kt} ,

d13,t(θ) = ktωty0,t(log pt + 1− pt)(p0,t − ωt)/p
2
0,t,

d22,t(θ) = kt(1− pt) {ptyt/kt + pt(1− ωty0,t/p0,t)

−ktωty0,t(1− pt)(p0,t − ωt)/p
2
0,t

}
,

d23,t(θ) = −ktωt(1− ωt)(1− pt)pktt y0,t/p20,t,

d33,t(θ) = ωt(1− ωt)(1− pktt y0,t/p20,t).

Here Ψ1(·) is the trigamma function. The conditional information matrix of the

ZINB autoregression is given by

GN(θ) =
N∑
t=1

Var{Ct−1vt(θ)|Ft−1} =
N∑
t=1

Ct−1Σt(θ)C>t−1,

where Σt(θ) is a symmetric 3× 3 matrix with elements defined as follows:

σ11,t(θ) = kt{ktct − (1− ωt)(1− pt)} − ωt(1− ωt)k
2
t (log pt + 1− pt)2pktt /p0,t,

σ12,t(θ) = ωt(1− ωt)k
2
t (1− pt)(log pt + 1− pt)pktt /p0,t,

σ13,t(θ) = ωt(1− ωt)kt(log pt + 1− pt)pktt /p0,t,

σ22,t(θ) = (1− ωt)kt(1− pt)[pktt + ωt{1− pktt − kt(1− pt)pktt }]/p0,t,

σ23,t(θ) = −ωt(1− ωt)kt(1− pt)pktt /p0,t,

σ33,t(θ) = ω2
t (1− ωt)(1− pktt )/p0,t.
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The term ct that appears in σ11,t(θ) is defined as follows:

ct = E{(1− y0,t)[Ψ1(kt)−Ψ1(kt + yt)|Fj−1]}

=
∞∑
j=0

Pr(Yt > j|Fj−1)/(kt + j)2.

Taking the derivative with respect to kt on both sides of (2.14), we should expect

ct to be equal to (1 − ωt)(1 − pt)/kt, provided that the differentiation and infinite

summation can be exchanged. However, this exchangeability assumption does not

always hold for (2.14). Fortunately, we can easily approximate ct by

c̃t =
M∑
j=0

Pr(Yt > j|Fj−1)/(kt + j)2,

where M a reasonably large integer (e.g., 100).

The results pertaining to parameter estimation, asymptotic theory, and model

selection for ZINB autoregression parallel those for ZIP autoregression. For the sake

of brevity, these results are not reproduced here.

2.4 Simulation Study

Two sets of simulation studies are featured in this section. We first investigate

the finite sample behavior of the MPLE. We then compare the performances of AIC

and TIC in the presence of model misspecification. For the remainder of this section,

we assume the time series data is generated by the ZIP autoregression with

ηt = β0 + β1I(yt−1>0) + σvt,

ξt = γ0 + γ1I(yt−1>0).

Here, vt is an unobservable realization from the standard normal distribution, in-

cluded in ηt to optionally induce extra overdispersion in the data. Other functions

of yt−1 (e.g., log(yt−1 + 1)) can also be employed in ηt and ξt to account for auto-

correlation. We assume θ = (1.2, 0.6, 0.4,−0.8)> is the true parameter vector.
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Table 2.2: Finite sample results of the
MPLE based on 1,000 replications simu-
lated independently from the true model
with σ = 0.

N θ Bias ASE ESD CP

100 β0 -0.012 0.133 0.135 0.958

β1 0.011 0.154 0.159 0.946

γ0 -0.016 0.303 0.297 0.961

γ1 0.028 0.426 0.417 0.959

200 β0 -0.008 0.093 0.091 0.956

β1 0.007 0.108 0.107 0.956

γ0 -0.018 0.212 0.219 0.945

γ1 0.026 0.297 0.309 0.944

500 β0 -0.004 0.058 0.059 0.957

β1 0.006 0.067 0.069 0.947

γ0 -0.011 0.133 0.130 0.956

γ1 0.022 0.187 0.179 0.963

The first set of simulation results are compiled under correct model specifi-

cation (i.e., σ = 0). Table 2.2 summarizes the finite sample results of the MPLE

based on three different sample sizes (N = 100, 200, 500). The observed information

matrix HN(θ) is employed for the computation of the large-sample covariance ma-

trix which is subsequently used to calculate the model-based asymptotic standard

errors (ASEs). From Table 2.2, we can see the absolute bias decreases as the sample

size increases. The means of the ASE and empirical standard deviation (ESD) are

very close for all different sample sizes, and they both decrease as the sample size

increases. In addition, the coverage probability (CP) of the 95% confidence interval

is fairly close to the nominal level. It is worth noting that the absoluate bias, ASE,
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and ESD tend to be larger for the logistic component (2.8) than for the log-linear

component (2.7). This agrees with the existing literature, which indicates that it

is advisable not to fit an overly complicated model for the zero-inflation parame-

ter when sample information is limited or only a short sequence of observations is

available (Yau et al., 2004). The Q-Q plots in Figure 2.1 confirm the asymptotic

normality of the MPLE.
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Figure 2.1: Q-Q plots for the estimated parameters based on 1,000 replications.

We next investigate the variable selection problem. We assume the data is

generated from the true model with σ = 0.5. Our goal here is to compare the per-

formances of AIC and TIC in the presence of model misspecification. To accomplish

this, we consider the following nine candidate models:

ηt = β0 +

k1∑
i=1

βiI(yt−i>0)
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and

ξt = γ0 +

k2∑
i=1

γiI(yt−i>0)

for k1, k2 = 0, 1, 2. Here, all the candidate models are misspecified due to the

omitted covariate vt.

Table 2.3 summarizes the model selection results based on 1,000 replications.

Note that the true AR orders are (k1, k2) = (1, 1). As the sample size increases from

100 to 500, the probability of jointly selecting the correct orders increases from 34.8%

to 51.7% for AIC, and from 43.2% to 69.9% for TIC (Table 2.3). Thus, TIC clearly

outperforms AIC in the presence of model misspecification, as it tends to offer

greater protection against unwarranted complexity. Under correct distributional

specification (i.e., σ = 0), the performances of AIC and TIC are quite comparable

(results not shown).

Table 2.3: Variable selection results of TIC and AIC (in
parentheses) based on 1,000 replications simulated inde-
pendently from the true model with σ = 0.5.

k2 = 0 k2 = 1 k2 = 2

N = 100 k1 = 0 18 (11) 38 (12) 7 (4)

k1 = 1 220 (185) 432 (348) 111 (95)

k1 = 2 57 (112) 91 (188) 26 (45)

N = 200 k1 = 0 0 (0) 4 (2) 0 (0)

k1 = 1 66 (50) 630 (478) 130 (92)

k1 = 2 13 (34) 126 (280) 31 (64)

N = 500 k1 = 0 0 (0) 0 (0) 0 (0)

k1 = 1 0 (0) 699 (517) 149 (106)

k1 = 2 0 (0) 127 (309) 25 (68)
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2.5 Application

To illustrate the proposed methodology, we consider an application based on

public health surveillance for syphilis, a sexually transmitted disease that remains

a major public health challenge in the United States. According to the CDC, the

rate of primary and secondary syphilis (the most infectious stages of the disease)

decreased throughout the 1990s, and reached an all-time low in 2000. However, the

syphilis rate has been increasing over the past decade, especially among men who

have sex with men. Syphilis is a localized infection and it is relatively common

in the South (Table 2.4). For states where syphilis is less common, the temporal

surveillance for the disease is complicated due to the small counts collected.

Table 2.4: Top ten states ranked
by syphilis rate (per 100,000) in
2009.

Rank State Rate

1 Louisiana 16.8

2 Georgia 9.8

3 Arkansas 9.6

4 Alabama 8.9

5 Mississippi 8.1

6 Texas 6.8

7 Tennessee 6.5

8 North Carolina 6.3

9 New York 6.1

10 Illinois 5.8
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Figure 2.2: Time series plot (top) and histogram (bottom) for weekly syphilis counts
in Maryland from 2007 to 2010 (http://www.cdc.gov/mmwr/).
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Figure 2.3: Goodness-of-fit for the syphilis data from Maryland.
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Our data consists of the weekly number of syphilis cases reported in Maryland.

The series is extracted from the CDC’s Morbidity and Mortality Weekly Report

(MMWR). Figure 2.2 displays the time series plot and histogram of the syphilis

incidence for the period of 2007-2010, during which a large number of zeros are

observed over a total of 209 weeks. The time series plot seems to suggest a gradual

decrease in the syphilis rate, but further investigation is needed to quantify the

decrease and to formally test whether the downward trend is statistically significant.

We first select an appropriate parametric distribution for the syphilis data.

Specifically, we compare the empirical distribution of the data to a fitted ZIP distri-

bution and its Poisson counterpart (see Figure 2.3). The fitted probabilities for the

ZIP distribution closely follow the observed probabilities for the syphilis data, while

the fitted probabilities for the Poisson distribution severely underestimate or over-

estimate the empirical probabilities, especially when the count is equal to zero. To

account for the serial correlation and the preponderance of zeros, we next consider

the following autoregressive models based on the ZIP distribution:

ηt = β0 +

k1∑
i=1

βiI(yt−i>0) + βk1+1xt

and

ξt = γ0 +

k2∑
i=1

γiI(yt−i>0) + γk2+1xt,

for k1, k2 = 0, . . . , 4. Here xt = t/1000 represents the deterministic linear trend,

which is always forced in the model since characterizing the trend is the primary

objective of the study.

Figure 2.4 displays the AIC and TIC values for all of the twenty-five candidate

models. For each (k1, k2) combination, the TIC is always observed to be larger

than the corresponding AIC. However, the most appropriate candidate model with

(k1, k2) = (1, 0) is favored by both AIC and TIC. Thus, our final model has the
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following structure:

ηt = β0 + β1I(yt−1>0) + β2xt

and

ξt = γ0 + γ1xt.
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Figure 2.4: AIC (bottom) and TIC (top) values for the 25 ZIP candidate models
fit to the 2007-2010 syphilis data, with k1, k2 = 0, . . . , 4. The penalties of TIC are
uniformly larger than those of AIC. The model with (k1, k2) = (1, 0) is favored by
both AIC and TIC.

Table 2.5 summarizes the output for final ZIP model and its Poisson counter-

part. Here the p-values for the regression coefficients are based on the Wald-type

tests. Both models suggest an AR(1) component for the log-linear part, but the

downward trend is found to be significant only in the Poisson autoregression. When

the zero-inflation part is included, we observe a huge reduction of AIC and TIC
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(more than 200), which indicates a pronounced lack-of-fit for the Poisson autore-

gression. Thus, the significant downward trend (p < 0.0001) obtained with this

model should not be trusted. On the other hand, the ZIP autoregression also de-

tects a downward but nonsignificant trend in the log-linear systematic component

(p = 0.1299). According to this model, we observe more zeros in the latter period of

the series (Figure 2.2) due to the significant increase of the zero-inflation parameter

in the logistic systematic component (p = 0.0022).

Table 2.5: Final ZIP autoregression and its Poisson counterpart for the Maryland
syphilis data (2007 to 2010).

ZIP Model Poisson Model

(TIC = 920.8, AIC = 918.8) (TIC = 1130.3, AIC = 1120.9)

θ Estimate SE P-Value Estimate SE P-Value

β0 (Intercept) 1.4894 0.1200 <0.0001 1.2822 0.1126 <0.0001

β1 (AR1) 0.2211 0.1007 0.0281 0.3544 0.0952 0.0002

β2 (Trend) -1.0100 0.6669 0.1299 -3.1174 0.6448 <0.0001

γ0 (Intercept) -1.9332 0.3720 <0.0001

γ1 (Trend) 8.6052 2.8083 0.0022

In practice, public health officials are often interested in forecasting future

disease trends. This task can be easily accomplished based on the final ZIP model.

As an illustration, we consider a one-step-ahead prediction where the model param-

eters are sequentially updated once a new observation accrues. Since the number

of syphilis cases in each week tends to be small, it is not very practical to use the

predicted mean as a surveillance tool. As an alternative, we recommend using a

predictive probability for the purpose of forecasting. Specifically, we sequentially

compute the probability that the next count will be greater than a predetermined
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cutoff (e.g., 90% quantile). Such a forecast can be viewed as the predictive chance

for a future outbreak. Figure 2.5 features the plot of predictive probabilities based

on a cutoff of 6 for the first 36 weeks of 2011 in Maryland. The ZIP autoregression

closely tracks the average outbreak probability, while the Poisson autoregression,

not surprisingly, underestimates the average probability. We note that the fore-

casts for peaks in the series are generally off by a lag of one, a consequence of the

autoregressive lag structure of the fitted model.
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Figure 2.5: Time series plot (top) and one-step-ahead predictive probabilities (bot-
tom) for the first 36 weeks of 2011. The ZIP autoregression (black solid line) closely
tracks the average outbreak probability (green dotted line), while the Poisson au-
toregression (red dashed line) underestimates the average probability.
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CHAPTER 3

PARAMETER-DRIVEN MODELS

In this chapter, we focus on parameter-driven models or dynamic models for

zero-inflated time series. We first review the state-space model (Kalman, 1960;

Kalman & Bucy, 1961) for normally distributed data. In time series literature, such

a model is often called the dynamic linear model (DLM) and is a natural extension

of the traditional linear model. After reviewing the DLM, we introduce a class of

dynamic models for count time series with a high frequency of zeros. To estimate

the model parameters, we devise a Monte Carlo EM (MCEM) algorithm, where

particle filtering and smoothing methods (Gordon et al., 1993; Godsill, et al., 2004)

are employed to approximate high-dimensional integrals. Both simulated and real

examples are presented to illustrate the proposed dynamic models.

3.1 Dynamic Linear Model

Although the DLM was originally introduced as a method for aerospace-related

research, it has been subsequently applied to a variety of other disciplines such as

economics, ecology, and medicine. The DLM is a very general and flexible modeling

framework. Many popular time series models, including the ARIMA models, belong

to the class of DLMs and thus can be fit through a state-space approach. Here, we

only attempt to give a brief overview of the DLM. A rigorous treatment of the topic

can be found in the texts by Durbin & Koopman (2001) and Shumway & Stoffer

(2006, Chapter 6).

Basically, the DLM assumes the existence of an unobservable state st that

evolves as a first-order vector autoregression

st|st−1 ∼ Np(Φst−1 + Υxt,Q), (3.1)

where xt is an r × 1 vector of inputs. Here Φ is p× p, Υ is p× r, and Q is p× p.
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In the DLM, we assume the initial state s0 is normally distributed with mean µ0

and covariance matrix Σ0. Conditioning on the current state st, the observation yt

is assumed to be independently distributed as follows:

yt|st ∼ Nq(Atst + Γxt,R), (3.2)

where At is q×p, Γ is q×r, and R is q×q. Here we let Θ = {µ0,Σ0,Φ,Υ,Q,Γ,R}

denote the set of unknown parameters. The time-varying matrix At in (3.2) is

assumed to be known. Figure 3.1 illustrates the state evolution and data generation

in the DLM that is defined by (3.1) and (3.2).

s0 s1 s2 . . . sn

y1 y2 yn

Figure 3.1: Graphical illustration of the state evolution and data generation in the
dynamic linear model.

Our goal here is to find the maximum likelihood estimator (MLE) of Θ through

the observable data y1:n. Since the marginal likelihood of y1:n cannot be expressed

analytically, Shumway and Stoffer (1982) introduced an EM algorithm to estimate

Θ based on the Kalman filtering and smoothing techniques. A comprehensive dis-

cussion of the Kalman methods can be found in the text by Shumway and Stoffer

(2006, Chapter 6). Here we extend the EM algorithm by Shumway and Stoffer

(1982) to the general setting where exogenous variables xt are included in the state

and observation equations. Assuming we were able to observe the latent state s0:n,
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the complete-data likelihood (i.e., the joint density of s0:n and y1:n) can be orthog-

onally decomposed as follows:

Lc(Θ) = f(s0:n,y1:n)

= f(s0:n)f(y1:n|s0:n)

= f(s0)
n∏

t=1

f(st|st−1)
n∏

t=1

f(yt|st).

Up to an additive constant, we have

−2 logLc(Θ) = log |Σ0|+ (s0 − µ0)
>Σ−10 (s0 − µ0)

+n log |Q|+
n∑

t=1

(st −Φst−1 −Υxt)
>Q−1(st −Φst−1 −Υxt)

+n log |R|+
n∑

t=1

(yt −Atst − Γxt)
>R−1(yt −Atst − Γxt).

To implement the EM algorithm, we need to calculate the following expecta-

tions given the observed data

snt = E(st|y0:n),

Pn
t = E{(st − snt )(st − snt )>|y0:n},

Pn
t,t−1 = E{(st − snt )(st−1 − snt−1)

>|y0:n}.

The recursive formulas for computing the above expectations are available in the

text by Shumway and Stoffer (2006, pp. 330-339). In the following EM algorithm,

snt , Pn
t , and Pn

t,t−1 are all evaluated at Θ(j).

• In the E-step, we compute

Q(Θ|Θ(j)) = E{−2 logLc(Θ)|y0:n,Θ
(j)}

= log |Σ0|+ tr
[
Σ−10

{
Pn

0 + (sn0 − µ0)(s
n
0 − µ0)

>}]
+n log |Q|+ tr

{
Q−1(S11 − S10Ψ

> −ΨS>10 + ΨS00Ψ
>)
}

+n log |R|+ tr
{
R−1(T11 −T10Γ

> − ΓT>10 + ΓT00Γ
>)
}
,
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where Ψ = [Φ Υ] is a p× (p+ r) matrix. In addition, we have

S11 =
n∑

t=1

(snt s
n
t
> + Pn

t ),

S10 =
n∑

t=1

[
snt s

n
t−1
> + Pn

t,t−1 snt x
>
t

]
,

S00 =
n∑

t=1

 snt−1s
n
t−1
> + Pn

t−1 snt−1x
>
t

xts
n
t−1
> xtx

>
t

 ,
T11 =

n∑
t=1

{(yt −Ats
n
t )(yt −Ats

n
t )> + AtP

n
t A
>
t },

T10 =
n∑

t=1

(yt −Ats
n
t )x>t ,

T00 =
n∑

t=1

xtx
>
t .

• In the M-step, we update the parameters as follows:

µ
(j+1)
0 = sn0 ,

Σ
(j+1)
0 = Pn

0 ,

Ψ(j+1) = S10S
−1
00 ,

Q(j+1) = n−1(S11 − S10S
−1
00 S>10),

Γ(j+1) = T10T
−1
00 ,

R(j+1) = n−1(T11 −T10T
−1
00 T>10).

We can obtain the MLE by iteratively applying the preceding E-step and

M-step. Harvey (1989, pp. 140-142) provides a formula to compute the observed

information matrix. Cavanaugh & Shumway (1996) present a general and recursive

algorithm to calculate the expected information matrix (i.e., Fisher information

matrix). In practice, either the observed or expected information matrix can be

used to compute the standard errors of the MLE.
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3.2 Dynamic ZIP Model

The DLM is a very useful tool that has been widely used in many different

disciplines. However, it cannot be applied to analyze time series with low counts,

especially for count series with a large proportion of zeros. In this section, we

propose a dynamic ZIP model to accommodate zero-inflation in count time series.

Specifically, we assume there is a stationary AR(p) process {zt} such that

zt = φ1zt−1 + · · ·+ φpzt−p + εt,

where εt is a white noise process with mean 0 and variance σ2. Conditioning on

the current state zt, we assume that the observation yt has a ZIP distribution with

p.m.f.

fYt(yt|zt;λt, ω) =


ω + (1− ω) exp(−λt), if yt = 0,

(1− ω) exp(−λt)λytt /yt!, if yt > 0.

We use the following log-linear model to characterize the intensity parameter λt:

log λt = logwt + x>t β + zt,

where xt is a set of explanatory variables and β is the vector of regression coefficients.

Here, logwt is referred to as the offset variable. Let θ = (ω,β>,φ>, σ)> denote the

vector of unknown parameters. For simplicity, the zero-inflation parameter ω is

treated as constant, although it can also be described by a separate logistic or

probit model.

The preceding dynamic ZIP model is very general. It includes as special cases

• the ZIP mixed autoregression (Yau et al., 2004) when p = 1;

• the Poisson state-space model (Chan & Ledolter, 1995) when p = 1 and ω = 0.
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3.2.1 State-Space Representation

The dynamic ZIP model can be written in the following state-space form:

st|st−1 ∼ Np(Φst−1,Σ), (3.3)

ut ∼ Bernoulli(ω), (3.4)

yt|st, ut ∼ Poisson((1− ut)λt), (3.5)

where st = (zt, . . . , zt−p+1)
> is a p-dimensional state vector and ut is an unobservable

membership indicator. Similar to the DLM, the initial state s0 is assumed to be

normally distributed with mean µ0 and covariance matrix Σ0. Here Φ and Σ are

p× p matrices defined as follows:

Φ =



φ1 φ2 · · · φp−1 φp

1 0 · · · 0 0

0 1 · · · 0 0

...
...

. . .
...

...

0 0 · · · 1 0


, Σ =



σ2 0 · · · 0 0

0 0 · · · 0 0

...
...

. . .
...

...

0 0 · · · 0 0

0 0 · · · 0 0


. (3.6)

Note that the covariance matrix Σ in (3.6) is not positive definite. This is legitimate

in the state-space modeling approach. Figure 3.2 illustrates the dynamic ZIP model

that is defined by (3.3)-(3.5).

s0 s1 s2 . . . sn

y1 y2 yn

u1 u2 un

Figure 3.2: Graphical illustration of the state evolution and data generation in the
dynamic ZIP model.
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Based on the state-space representation, we orthogonally decompose the complete-

data likelihood (i.e., the joint density of s0:n, u1:n, and y1:n) as follows:

Lc(θ) = f(s0:n, u1:n, y1:n)

= f(s0:n, u1:n)f(y1:n|s0:n, u1:n)

= f(s0:n)f(u1:n)f(y1:n|s0:n, u1:n)

= f(s0)
n∏

t=1

f(st|st−1)
n∏

t=1

f(ut)
n∏

t=1

f(yt|st, ut).

Since the marginal likelihood of y1:n cannot be expressed analytically, we employ

an EM algorithm to estimate θ. Up to an additive constant, the complete-data

log-likelihood is given by

lc(θ) = −n
2

log σ2 − 1

2σ2

n∑
t=1

(zt − φ>st−1)
2

+
n∑

t=1

{ut logω + (1− ut) log(1− ω)}

+
n∑

t=1

(1− ut){ytx>t β − wt exp(x>t β + zt)}.

To implement the EM algorithm, we need to compute the expectation of lc(θ)

given the observed data y1:n. Unlike the DLM, there is no analytical form for the

conditional expectation due to the non-normality of the data. To approximate the

conditional expectation in the E-step, we resort to particle filtering and smoothing

techniques (Gordon, 1993; Godsill et al., 2004), which are Monte Carlo extensions

of the well-known Kalman methods.

3.2.2 Particle Methods

Particle filtering and particle smoothing belong to the class of sequential Monte

Carlo (SMC) methods. The basic idea behind particle methods is to approximate

the conditional density of the latent states given the observed data using sequential

importance sampling (SIS) and resampling. SIS is the SMC method that forms the
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basis of the particle methods. However, sample degeneracy is typically a problem

associated with the SIS method. Specifically, sample degeneracy occurs when all

but one of the importance weights (as defined below) are close to zero. To avoid this

problem, a resampling technique (e.g., bootstrapping) is applied to remove particles

with small weights. The general concepts of particle filtering and smoothing for

state-space models can be found in Kim & Stoffer (2008, pp. 828-829).

For the dynamic ZIP model, we implement the particle filtering by first gen-

erating s
(i)
0|0 ∼ Np(µ0,Σ0). Then for t = 1, . . . , n:

(F.1) Generate s
(i)
t|t−1 ∼ Np(Φs

(i)
t−1|t−1,Σ) and u

(i)
t|t−1 ∼ Bernoulli(ω).

(F.2) Compute the filtering weights

q
(i)
t|t−1 = {(1− u(i)t|t−1)λ

(i)
t|t−1}

yt exp{−(1− u(i)t|t−1)λ
(i)
t|t−1}/yt!,

where log λ
(i)
t|t−1 = logwt + x>t β + z

(i)
t|t−1 and z

(i)
t|t−1 is the first element of s

(i)
t|t−1.

(F.3) Based on the above filtering weights, generate (s
(i)
t|t , u

(i)
t|t ) by resampling (s

(i)
t|t−1, u

(i)
t|t−1)

with replacement.

As a byproduct of the above particle filtering, the log-likelihood of the observed

data can be approximated by

n∑
t=1

log

(
1

N

N∑
i=1

q
(i)
t|t−1

)
,

where N is the number of particles in the filtering step.

Next we use the Monte Carlo smoothing by Godsill et al. (2004) to obtain an

approximate posterior sample of the latent variables given the observed data. In the

particle smoothing step, we first choose (s
(r)
n|n, u

(r)
n|n) = (s

(i)
n|n, u

(i)
n|n) with probability

q
(i)
n|n−1. Then for t = n− 1, . . . , 1:

(S.1) Calculate the smoothing weights

q
(i)
t|n ∝ q

(i)
t|t−1 exp

{
− 1

2σ2
(z

(i)
t+1|n − φ>s

(i)
t|t )

2

}
ωu

(i)
t+1|n(1− ω)1−u

(i)
t+1|n
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(S.2) Choose (s
(r)
t|n, u

(r)
t|n) = (s

(i)
t|t , u

(i)
t|t ) with probability q

(i)
t|n.

We obtain independent realizations by repeating the preceding processes for r =

1, . . . , R. The forward-filtering and backward-smoothing procedure is the non-linear

and non-Gaussian extension of the Kalman filtering and smoothing methods.

3.2.3 Monte Carlo EM Algorithm

To simplify the notation, we let A
(j)
t , b

(j)
t , c

(j)
t , d

(j)
t , and e

(j)
t denote the condi-

tional expectations of st−1s
>
t−1, ztst−1, z

2
t , ut, and (1− ut) exp(zt) evaluated at θ(j),

respectively. In the Monte Carlo EM (MCEM) algorithm, we first compute

Q(θ|θ(j)) = E{lc(θ)|y1:n,θ(j)}

= −n
2

log σ2 − 1

2σ2

n∑
t=1

(c
(j)
t − 2φ>b

(j)
t + φ>A

(j)
t φ)

+
n∑

t=1

{d(j)t logω + (1− d(j)t ) log(1− ω)}

+
n∑

t=1

{(1− d(j)t )ytx
>
t β − e

(j)
t wt exp(x>t β)},

where the particle filtering and smoothing techniques are used to approximate the

conditional expectations.

Given the state-space representation (3.3)-(3.5), the M-step of the MCEM

algorithm is much easier than the direct maximization of the marginal likelihood of

y1:n. The following derivatives can be applied to maximize Q(θ|θ(j)):

∂Q

∂ω
=

1

ω

n∑
t=1

d
(j)
t −

1

1− ω

n∑
t=1

(1− d(j)t ),

∂Q

∂β
=

n∑
t=1

{(1− d(j)t )yt − e(j)t wt exp(x>t β)}xt,

∂Q

∂φ
=

1

σ2

n∑
t=1

(b
(j)
t −A

(j)
t φ),

∂Q

∂σ
= −n

σ
+

1

σ3

n∑
t=1

(c
(j)
t − 2φ>b

(j)
t + φ>A

(j)
t φ).
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In the M-step, we update ω(j+1), φ(j+1), and σ(j+1) as follows:

ω(j+1) =
1

n

n∑
t=1

d
(j)
t ,

φ(j+1) =

(
n∑

t=1

A
(j)
t

)−1 n∑
t=1

b
(j)
t ,

σ(j+1) =

√√√√√ 1

n


n∑

t=1

a
(j)
t −

(
n∑

t=1

b
(j)
t

)>( n∑
t=1

A
(j)
t

)−1 n∑
t=1

b
(j)
t

.
In addition, we can obtain β(j+1) by fitting a weighted Poisson regression.

3.2.4 Observed Information Matrix

Once we obtain the MLE through the MCEM algorithm, we apply Louis’

formula (Louis, 1982) to compute the observed information matrix Io(θ). Based on

the missing information principle, we have

Io(θ) = Ic(θ)− Im(θ),

where Ic(θ) and Im(θ) are defined as follows:

Ic(θ) = E

(
− ∂2lc
∂θ∂θ>

∣∣∣y1:n) ,
Im(θ) = E

(
∂lc
∂θ

∂lc

∂θ>

∣∣∣y1:n)− E

(
∂lc
∂θ

∣∣∣y1:n)E

(
∂lc

∂θ>

∣∣∣y1:n) .
The first-order derivatives of lc(θ) are given by

∂lc
∂ω

=
1

ω

n∑
t=1

ut −
1

1− ω

n∑
t=1

(1− ut),

∂lc
∂β

=
n∑

t=1

(1− ut){yt − wt exp(zt) exp(x>t β)}xt,

∂lc
∂φ

=
1

σ2

n∑
t=1

(zt − φ>st−1)st−1,

∂lc
∂σ

= −n
σ

+
1

σ3

n∑
t=1

(zt − φ>st−1)
2.
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The second-order derivatives of lc(θ) are given by

∂2lc
∂ω∂ω

= − 1

ω2

n∑
t=1

ut −
1

(1− ω)2

n∑
t=1

(1− ut),

∂2lc

∂β∂β>
= −

n∑
t=1

(1− ut)wt exp(zt) exp(x>t β)xtx
>
t ,

∂2lc

∂φ∂φ>
= − 1

σ2

n∑
t=1

st−1s
>
t−1,

∂2lc
∂σ∂σ

=
n

σ2
− 3

σ4

n∑
t=1

(zt − φ>st−1)
2,

∂2lc
∂φ∂σ

= − 2

σ3

n∑
t=1

(zt − φ>st−1)st−1.

Again, the particle filtering and smoothing techniques are used to approximate the

conditional expectations in Ic(θ) and Im(θ).

3.3 Dynamic ZINB Model

In addition to zero-inflation, overdispersion could also be present for many

count time series. In this section, we introduce a dynamic ZINB model for zero-

inflated and overdispersed time series. Similar to the dynamic ZIP model, we write

the dynamic ZINB model in the following state-space form:

st|st−1 ∼ Np(Φst−1,Σ), (3.7)

ut ∼ Bernoulli(ω), (3.8)

vt ∼ Gamma(k, 1/k), (3.9)

yt|st, ut, vt ∼ Poisson((1− ut)vtλt), (3.10)

where k is the dispersion parameter of the NB distribution. Here, we let θ =

(ω, k,β>,φ>, σ)> denote the vector of unknown parameters. Figure 3.3 illustrates

the dynamic ZINB model that is defined by (3.7)-(3.10).
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s0 s1 s2 . . . sn

y1 y2 yn

(u1, v1) (u2, v2) (un, vn)

Figure 3.3: Graphical illustration of the state evolution and data generation in the
dynamic ZINB model.

The dynamic ZINB model is very general and it includes many important

models as special cases (see Table 3.1). Specifically, it reduces to

• dynamic NB regression when ω = 0,

• dynamic ZIP regression when 1/k → 0,

• dynamic Poisson regression when ω = 0 and 1/k → 0.

In the case where zt = 0, the dynamic Poisson, NB, ZIP, and ZINB regressions

simply reduce to the four ordinary regression models for independent data.

Table 3.1: Parameter-driven models for zero-inflated and overdispersed time series.

Zero-Inflation Overdispersion Autocorrelation Model

No No No Poisson Regression

No No Yes Dynamic Poisson Regression

No Yes No NB Regression

No Yes Yes Dynamic NB Regression

Yes No No ZIP Regression

Yes No Yes Dynamic ZIP Regression

Yes Yes No ZINB Regression

Yes Yes Yes Dynamic ZINB Regression
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Based on the state-space representation, we can orthogonally decompose the

complete-data likelihood (i.e., the joint density of s0:n, u1:n, v1:n, and y1:n) as follows:

Lc(θ) = f(s0:n, u1:n, v1:n, y1:n)

= f(s0:n, u1:n, v1:n)f(y1:n|s0:n, u1:n, v1:n)

= f(s0:n)f(u1:n)f(v1:n)f(y1:n|s0:n, u1:n, v1:n)

= f(s0)
n∏

t=1

f(st|st−1)
n∏

t=1

f(ut)
n∏

t=1

f(vt)
n∏

t=1

f(yt|st, ut, vt).

Up to an additive constant, the complete-data log-likelihood is given by

lc(θ) = −n
2

log σ2 − 1

2σ2

n∑
t=1

(zt − φ>st−1)
2

+
n∑

t=1

{ut logω + (1− ut) log(1− ω)}

+
n∑

t=1

{k log k − log Γ(k) + k(log vt − vt)}

+
n∑

t=1

(1− ut){ytx>t β − vtwt exp(zt) exp(x>t β)}.

In the MCEM algorithm, we first compute

Q(θ|θ(j)) = E{lc(θ)|y1:n,θ(j)}

= −n
2

log σ2 − 1

2σ2

n∑
t=1

(ct − 2φ>bt + φ>Atφ)

+
n∑

t=1

{dt logω + (1− dt) log(1− ω)}

+
n∑

t=1

{k log k − log Γ(k) + k(ft − et)}

+
n∑

t=1

{(1− dt)ytx>t β − gtwt exp(x>t β)},

where At, bt, ct, dt, et, ft and gt are the conditional expectations of st−1s
>
t−1, ztst−1,

z2t , ut, vt, log vt and (1 − ut)vt exp(zt), respectively. The following derivatives can
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be applied to maximize Q(θ|θ(j)):

∂Q

∂ω
=

1

ω

n∑
t=1

dt −
1

1− ω

n∑
t=1

(1− dt),

∂Q

∂k
= n{1 + log k −Ψ0(k)}+

n∑
t=1

(ft − et),

∂Q

∂β
=

n∑
t=1

{(1− dt)yt − gtwt exp(x>t β)}xt,

∂Q

∂φ
=

1

σ2

n∑
t=1

(bt −Atφ),

∂Q

∂σ
= −n

σ
+

1

σ3

n∑
t=1

(ct − 2φ>bt + φ>Atφ),

where Ψ0(·) is the digamma function. Similar to the dynamic ZIP model, we have

closed-form solutions for ω(j+1), φ(j+1), and σ(j+1). In addition, we obtain k(j+1)

and β(j+1) by iterative algorithms.

In general, identifiability problems could arise as a model becomes increas-

ingly complicated. For the dynamic ZINB model, identifiability could be an issue

since zt and vt can both account for overdispersion in the data. To investigate

the identifiability issue, we consider a simple dynamic ZINB model with ω = 0.2,

1/k = 0.5, β = 2, φ = 0, and σ = 0.5. Note that the generating model may

be viewed as a ZINB mixed model since there is no autocorrelation in the random

effects zt. We first simulate a dataset of length 100 from the ZINB mixed model

and then attempt to estimate the parameters 1/k and σ from the data. Figure 3.4

displays the likelihood surface of 1/k and σ in the ZINB mixed model. It is clear

that the likelihood function is log-concave, indicating the parameters 1/k and σ are

actually identifiable. However, the estimated parameters (identified by the red dot)

are quite different from the true parameters (identified by the green dot). Thus,

we do not recommend fitting a dynamic ZINB model when sample information is

limited or only a short sequence of observations is available.
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●
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Figure 3.4: Likelihood surface for the ZINB mixed model.

3.4 Simulated Examples

In this section, we consider time series data that are simulated from four

different dynamic models (Poisson, NB, ZIP, and ZINB). All these models belong

to the class of general dynamic ZINB models. For each of the four models, we

assume {zt} is an AR(2) process such that

zt = φ1zt−1 + φ2zt−2 + εt,

where εt is a white noise process with mean 0 and standard deviation σ = 0.5.

We choose φ1 = 0.8 and φ2 = −0.6 to ensure that the AR(2) process is stationary

(Cryer & Chan, 2008, pp. 71-72). Conditioning on the current state zt, we assume
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the observation yt has a ZINB distribution with p.m.f. given by

fYt(yt|zt;ω, k, λt) =


ω + (1− ω)

(
k

k + λt

)k

, if yt = 0,

(1− ω)
Γ(k + yt)

Γ(k)yt!

(
k

k + λt

)k (
λt

k + λt

)yt

, if yt > 0,

where we have log λt = β + zt and β is set to be 2 for all the models. The following

lists the true parameters in the four generating models.

• Dynamic Poisson Model

ω = 0, 1/k = 0, β = 2, φ1 = 0.8, φ2 = −0.6, and σ = 0.5.

• Dynamic NB Model

ω = 0, 1/k = 0.5, β = 2, φ1 = 0.8, φ2 = −0.6, and σ = 0.5.

• Dynamic ZIP Model

ω = 0.2, 1/k = 0, β = 2, φ1 = 0.8, φ2 = −0.6, and σ = 0.5.

• Dynamic ZINB Model

ω = 0.2, 1/k = 0.5, β = 2, φ1 = 0.8, φ2 = −0.6, and σ = 0.5.

The sample size (i.e., length of the series) is set to be 200. Table 3.2 presents the

dispersion indices (i.e., variance-to-mean ratios) and proportions of zeros for the

simulated time series.

Table 3.2: Dispersion indices and proportions of zeros for
the simulated examples.

Poisson NB ZIP ZINB

Dispersion Index 5.202 11.394 8.905 17.603

Proportion of Zeros 0.005 0.075 0.255 0.300
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Figure 3.5: Time series plots for the simulated examples.
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Figure 3.6: Histograms for the simulated examples.
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Figure 3.5 displays the time series plots for the four time series of counts.

All four series generated from the dynamic models are stationary over time. The

corresponding histograms of the simulated data are presented in Figure 3.6. A

bimodal shape of the density is observed for data generated from the dynamic ZIP

and ZINB models.

Based on Figure 3.7, the partial autocorrelation functions (ACFs) would sug-

gest an AR(1) structure for data generated from dynamic ZIP and ZINB models.

Since the true order of the AR structure is 2, the traditional model specification

tools (e.g., ACF and partial ACF) fail to work here and can be very misleading in

the presence of zero-inflation.
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Figure 3.7: Partial ACF plots for the simulated examples.

Table 3.3 presents the true and estimated parameters of the generating models.

In general, the absolute differences between the true and estimated parameters are

small. Smaller differences could be obtained by increasing the sample size.
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Table 3.3: True and estimated parameters for the simu-
lated examples.

ω 1/k β φ1 φ2 σ

True 0.200 0.500 2.000 0.800 -0.600 0.500

Poisson 2.065 0.772 -0.557 0.441

NB 0.476 2.064 0.833 -0.663 0.492

ZIP 0.243 2.032 0.882 -0.565 0.466

ZINB 0.257 0.425 2.098 0.622 -0.402 0.659

Figure 3.8 display the trace plots of the log-likelihood for the four dynamic

models. We can see that the log-likelihood increases dramatically at the very be-

ginning, and then stabilizes and fluctuates after a certain number of iterations.
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Figure 3.8: Trace plots of the log-likelihood for the simulated examples.
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Figure 3.9: Trace plots of the estimated parameters for the Poisson time series.
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Figure 3.10: Trace plots of the estimated parameters for the NB time series.
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Figure 3.11: Trace plots of the estimated parameters for the ZIP time series.
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Figure 3.12: Trace plots of the estimated parameters for the ZINB time series.
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The trace plots of the four dynamic models are presented in Figures 3.9-3.12.

We notice that some of the parameters are still changing substantially even when the

log-likelihood is stabilized. For the MCEM algorithm, a stopping rule solely based

on the log-likelihood change is unreliable. Thus, we strongly recommend checking

the trace plots of the parameters to ensure the model is truly stationary. For the

dynamic Poisson, NB, and ZIP models, all of the estimated parameters approach

the true parameters within a reasonable tolerance level. However, the estimated

parameters for φ1, φ2, and σ in the dynamic ZINB model are quite different from

the true values (Figure 3.12). This phenomenon agrees the identifiability issue that

has been discussed at the end of Section 3.3.

3.5 Application

We revisit the application pertaining to public health surveillance for syphilis

in this section. We fit four dynamic models (Poisson, NB, ZIP, and ZINB) to the

syphilis data from Maryland for 2007 to 2010. An AR(1) correlation structure is

employed in all models; higher order AR structures do not help improve the model

fit. The Monte Carlo EM algorithm is used to fit the models.

Table 3.4: Dynamic ZIP and Poisson models for the syphilis data
from Maryland.

ZIP (AIC = 932.9) Poisson (AIC = 1009.1)

Estimate SE P-Value Estimate SE P-Value

β0 1.6882 0.0763 <0.0001 1.4031 0.1306 <0.0001

β1 -1.6949 0.7050 0.0162 -4.3199 1.1655 0.0002

φ1 -0.1174 0.1326 0.3760 0.2051 0.0940 0.0292

σ 0.2540 0.7710

ω 0.2689
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Table 3.5: Dynamic ZINB and NB models for the syphilis data from
Maryland.

ZINB (AIC = 934.6) NB (AIC = 993.5)

Estimate SE P-Value Estimate SE P-Value

β0 1.6886 0.0764 <0.0001 1.6318 0.1201 <0.0001

β1 -1.4571 0.6966 0.0365 -3.8968 1.0394 0.0002

φ1 -0.0431 0.1321 0.7440 0.0705 0.1343 0.5998

σ 0.1473 0.1368

1/k 0.0332 0.7030

ω 0.2708
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Figure 3.13: Trace plots of the log-likelihood for models fit to the syphilis data from
Maryland.
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Figure 3.14: Trace plots of the estimated parameters for the dynamic Poisson model.
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Figure 3.15: Trace plots of the estimated parameters for the dynamic NB model.
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Figure 3.16: Trace plots of the estimated parameters for the dynamic ZIP model.
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Figure 3.17: Trace plots of the estimated parameters for the dynamic ZINB model.
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Unlike the exact EM algorithm, the log-likelihood in the MCEM algorithm is

not guaranteed to increase at each iteration. Instead, the log-likelihood will increase

dramatically in the first several iterations, and then stabilize as the estimated pa-

rameters become very close to the MLE (Figure 3.13). The trace plots of the four

dynamic models are presented in Figures 3.14-3.17. Table 3.4 displays the regression

output for the dynamic ZIP model and its Poisson counterpart. The regression out-

put for the dynamic ZINB model and its NB counterpart is presented in Table 3.5.

The p-values are not reported for σ, ω, and 1/k in Tables 3.4 and 3.5, as traditional

asymptotic theories fail to work when the hypothesis testing is conducted on the

boundary of the parameter space. Based on the AIC, the dynamic ZIP and ZINB

models significantly outperform their Poisson and NB counterparts, which fail to

account for zero-inflation in the data.
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CHAPTER 4

THE R PACKAGE ZIM

We have developed an R package, called ZIM (Zero-Inflated Models), to ana-

lyze count time series with excess zeros. The purpose of this chapter is to provide

a general introduction to the ZIM package. Throughout the chapter, the syphilis

data from Maryland will be repeatedly used as an example. The structure of this

chapter is as follows. Section 4.1 first introduces the R functions for time series

models based on the ZIP and ZINB distributions. The usage of those functions

to fit observation-driven models and parameter-driven models is then discussed in

Section 4.2 and Section 4.3, respectively.

4.1 Overview of the Package

In the ZIM package, the following are the main functions to implement the

ZIP and ZINB autoregressions that have been proposed in Chapter 2.

• zim

• zim.fit

• zim.control

The function zim is a user-friendly function to fit zero-inflated observation-driven

models. Its usage is very similar to that of the well-known function glm. Here,

zim.fit is the fitter function and it is called by zim to fit the models. The zim.fit

function should not be used directly unless by experienced users. The function

zim.control is an auxiliary function for zim fitting. It is typically only used in-

ternally by zim.fit, but may be used to construct a control argument to either

function.

Compared to observation-driven models, parameter estimation in parameter-

driven models is much more challenging. The following are the functions that can be
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used to fit the dynamic ZIP and ZINB models that have been proposed in Chapter 3.

In addition, the dynamic Poisson and NB models can also be fit since they are simply

special cases of the dynamic zero-inflated models.

• dzim

• dzim.fit

• dzim.filter

• dzim.smooth

• dzim.control

The function dzim is a user-friendly function to fit dynamic zero-inflated mod-

els. The default order for the autoregressive process is assumed to be one. Here,

dzim.fit is the fitter function and it is called by dzim to fit the models. The

function dzim.control is an auxiliary function for dzim fitting. The functions

dzim.filter and dzim.smooth are used to implement the particle filtering and

particle smoothing methods, respectively.

4.2 Observation-Driven Models

4.2.1 ZIP Autoregression

We first fit a ZIP autoregression with an AR(1) correlation structure. The

linear trend is included in both the log-linear and logistic parts of the model.

> library(ZIM)

> data(syph)

> count <- syph$a33

> ar1 <- bs(count > 0)

> trend <- 1:length(count) / 1000

> zim(count ~ ar1 + trend | trend)
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Call:

zim(formula = count ~ ar1 + trend | trend)

Coefficients (log-linear):

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.48942 0.11995 12.4175 < 2e-16 ***

ar1 0.22111 0.10072 2.1954 0.02813 *

trend -1.01004 0.66687 -1.5146 0.12987

Coefficients (logistic):

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.93321 0.37196 -5.1974 2.021e-07 ***

trend 8.60517 2.80827 3.0642 0.002182 **

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Test for overdispersion (H0: ZIP vs. H1: ZINB)

score.test: 2.6031

p.value: 0.0046196

Criteria for assessing goodness of fit

loglik: -454.3903

aic: 918.7806

bic: 935.4683

tic: 920.7761

Number of EM-NR iterations: 11
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Maximum absolute gradient: 1.021405e-14

The EM-NR algorithm is used as the default algorithm in the zim function. The

score test for overdispersion suggests that the ZINB model could provide a better

fit to the syphilis data (p = 0.0046).

4.2.2 ZINB Autoregression

As suggested by the score test, we next fit a ZINB autoregression, with all the

other components remaining the same as in the ZIP autoregression.

> zim(count ~ ar1 + trend | trend, dist = "zinb")

Call:

zim(formula = count ~ ar1 + trend | trend, dist = "zinb")

Coefficients (log-linear):

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.47240 0.13873 10.6132 < 2e-16 ***

ar1 0.23164 0.11522 2.0105 0.04438 *

trend -1.00364 0.77154 -1.3008 0.19332

Coefficients (logistic):

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.97940 0.38563 -5.1329 2.853e-07 ***

trend 8.71684 2.88697 3.0194 0.002533 **

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for negative binomial taken to be 15.4711)
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Criteria for assessing goodness of fit

loglik: -451.7464

aic: 915.4927

bic: 935.5179

tic: 915.974

Number of EM-NR iterations: 11

Maximum absolute gradient: 5.087796e-08

The AIC and TIC suggest a marginal improvement when the ZINB autoregression

is used. However, the BIC values for the ZIP and ZINB autoregressions are not

distinguishable. This should not be surprising as BIC tends to penalize more for

complexity.

4.3 Parameter-Driven Models

4.3.1 Dynamic ZIP Model

We now fit a dynamic ZIP model to the syphilis data. The trend is included

as a deterministic covariate in the log-linear model. The zero-inflation parameter is

assumed to be constant over time.

> dzim(count ~ trend, dist = "zip", minit = 300)

Call:

dzim(formula = count ~ trend, dist = "zip", minit = 300)

(Zero-inflation parameter taken to be 0.2689)

Coefficients (log-linear):
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Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.688213 0.076337 22.1152 < 2e-16 ***

trend -1.694876 0.704988 -2.4041 0.01621 *

Coefficients (autoregressive):

Estimate Std. Error z value Pr(>|z|)

ar1 -0.11739 0.13260 -0.8853 0.376

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Standard deviation parameter taken to be 0.254)

Criteria for assessing goodness of fit

loglik: -461.425

aic: 932.8501

bic: 949.5617

tic: 947.0466

4.3.2 Dynamic ZINB Model

We next fit a dynamic ZINB model to see whether a need remains for the NB

dispersion parameter.

> dzim(count ~ trend, dist = "zinb", minit = 300)

Call:

dzim(formula = count ~ trend, dist = "zinb", minit = 300)

(Zero-inflation parameter taken to be 0.2708)
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(Dispersion parameter for negative binomial taken to be 30.1071)

Coefficients (log-linear):

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.688631 0.076437 22.0919 < 2e-16 ***

trend -1.457090 0.696551 -2.0919 0.03645 *

Coefficients (autoregressive):

Estimate Std. Error z value Pr(>|z|)

ar1 -0.043149 0.132108 -0.3266 0.744

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Standard deviation parameter taken to be 0.1473)

Criteria for assessing goodness of fit

loglik: -461.2986

aic: 934.5971

bic: 954.6511

tic: 956.493

Since the inclusion of the correlated random effect zt can account for both autocor-

relation and overdispersion, fitting a more complicated ZINB model does not help

to further reduce AIC, BIC, or TIC.
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CHAPTER 5

CONCLUSIONS AND FUTURE DIRECTIONS

5.1 Conclusions

Count time series with excess zeros are often encountered in many biomedical

and public health applications. Although the Poisson and negative binomial distri-

butions have been widely used in practice for discrete count data, their forms are

too simplistic to accommodate zero-inflation. Failure to account for zero-inflation

while analyzing such data may result in misleading inferences and the detection of

spurious associations.

Regression models based on the ZIP and ZINB distributions have been well

established for data that are independently distributed. These zero-inflated re-

gression models have been extended to analyze longitudinal and multilevel data.

However, statistical models for zero-inflated time series are lacking in the litera-

ture. In this thesis we propose two classes of statistical models to analyze time

series of counts containing extra zeros. An R package has been developed to fit

both observation-driven and parameter-driven models. Both simulated and real

examples are presented to illustrate the proposed methodologies.

5.2 Future Directions

There are a number of extensions that can enhance our work in this thesis.

We outline several important future directions.

• We have developed models for zero-inflated time series and have applied them

to the temporal surveillance of syphilis. From a public health perspective,

it would also be of crucial importance to have models that can be used for

syphilis surveillance at different geographical locations. To accomplish this,

zero-inflated spatial or spatio-temporal models need to be developed.
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• In both observation-driven and parameter-driven models, we only consider

autoregressive terms to model the temporal correlation. In some cases, it may

be desirable to also include moving average components to account for more

complicated correlation structures in the data.

• The focus of this thesis is on univariate count time series with excess zeros.

In practice, the data could be zero-inflated and also multivariate in nature.

Thus, statistical models based on multivariate zero-inflated distributions could

be developed to accommodate simultaneous zero-inflation in such settings.

• In this thesis, we have applied different model selection criteria to determine

the autoregressive order in the count series. It would also be helpful to develop

some diagnostic tools to identify the correlation structure, analogous to the

ACF and PACF for traditional ARMA processes.
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APPENDIX

In this appendix we provide a proof for Theorem 2 presented in Chapter 2.

At any time t, we let

g1,t(θ) = E(Yt|Ft−1;θ) = λt(1− ωt)

and

g2,t(θ;m) = FYt(m|Ft−1;θ) = ωt + (1− ωt) exp(−λt)
m∑

yt=0

λytt /yt!.

We are interested in the large sample distributions of g1,t(θ̂) and g2,t(θ̂;m), where

θ̂ is the MPLE, shown to be asymptotically normal in Theorem 1. Similar to the

GLM setting, we have the following results:

∂λt
∂ηt

= λt,
∂ηt
∂β

= xt−1,
∂ωt

∂ξt
= ωt(1− ωt), and

∂ξt
∂γ

= zt−1.

The preceding will be repeatedly used in the subsequent derivations. Since ∂g1,t/∂λt =

1− ωt and ∂g1,t/∂ωt = −λt, a direct application of the chain rule shows

∂g1,t
∂β

=
∂g1,t
∂λt

∂λt
∂ηt

∂ηt
∂β

= {λt(1− ωt)}xt−1

and

∂g1,t
∂γ

=
∂g1,t
∂ωt

∂ωt

∂ξt

∂ξt
∂γ

= {−λtωt(1− ωt)} zt−1.

Moreover, it can be easily verified that

∂g2,t
∂λt

= (1− ωt) exp(−λt)
m∑

yt=0

(yt/λt − 1)λytt /yt!

and

∂g2,t
∂ωt

= 1− exp(−λt)
m∑

yt=0

λytt /yt!.
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Thus, we have

∂g2,t
∂β

=
∂g2,t
∂λt

∂λt
∂ηt

∂ηt
∂β

=

{
(1− ωt) exp(−λt)

m∑
yt=0

(yt − λt)λytt /yt!

}
xt−1

and

∂g2,t
∂γ

=
∂g2,t
∂ωt

∂ωt

∂ξt

∂ξt
∂γ

=

[
ωt(1− ωt)

{
1− exp(−λt)

m∑
yt=0

λytt /yt!

}]
zt−1.

Combining the preceding equations yields

∂g1,t
∂θ

=

 xt−1 0

0 zt−1

 λt(1− ωt)

−λtωt(1− ωt)

 = Ct−1bt(θ)

and

∂g2,t
∂θ

=

 xt−1 0

0 zt−1


 (1− ωt) exp(−λt)

∑m
yt=0 (yt − λt)λytt /yt!

ωt(1− ωt)
{

1− exp(−λt)
∑m

yt=0 λ
yt
t /yt!

}
 = Ct−1dt(θ).

Applying the delta method to Theorem 1, we have

√
N{g1,t(θ̂)− g1,t(θ)} d→ N

(
0,bt(θ)>C>t−1G

−1(θ)Ct−1bt(θ)
)

and

√
N{g2,t(θ̂;m)− g2,t(θ;m)} d→ N

(
0,dt(θ)>C>t−1G

−1(θ)Ct−1dt(θ)
)
.

This completes the proof of Theorem 2.
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