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Figure 2.3: Densities of Standardized Quantile Estimators for Pareto
(0.02, 5)

can be seen as the first extension of Theorem 3.1 to importance sampling. We note that

the techniques used in Brazauskas et al. (2008) are different from those employed in this

chapter. For Theorem 2, apart from Assumption S we will need the requirements listed

as part of Assumption C below, where LC(·) is defined as LC(x) = xL(x), for all x ∈ R.
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Sampler

95%-level VaR 99%-level VaR
Sample

Size Coverage Bias
Length ×10−2

Coverage Bias
Length ×10−2

(s.e.×105) (s.e.×105)

Ordinary

Sampling

40 2.61% (4.83) 1.56 1.43% (5.87) 4.90

200 0.80% (6.34) 0.70 2.58% (4.86) 2.19

1000 0.17% (6.78) 0.31 0.76% (6.37) 0.98

Optimal

Pareto IS

8 -0.58% (7.26) 1.56 -3.21% (8.68) 2.69

40 -0.12% (6.97) 0.70 -0.59% (7.26) 1.20

200 -0.01% (6.90) 0.31 -0.10% (6.96) 0.54

Table 2.1: 95% Nominal Confidence Interval for VaR Using Ordinary and Impor-
tance Sampling

Assumption C: F and F ? have the following properties:

C1. F has a point of increase at ξα in the sense that

F (u) < F (ξα) < F (v), ∀ u < ξα < v.

C2. F is such that

sup
s∈[0,1]\{α}

|F (F−1 (s))− s|
|s− α| <∞. (2.5)

C3. There exists a λ ∈ (0, 1/2] such that
∫

(y,∞)

(1− F ?(x−))1/2−λ d|LC |(x) <∞, ∀y ∈ R. (2.6)

We note that the first requirement above is expected from our earlier examples and

the proof of Theorem 3.1 of Brazauskas et al. (2008). The second condition is a mild

condition which is satisfied if F is continuous in a neighborhood of ξα, or F is differ-

entiable at ξα with a strictly positive derivative at ξα. For additional insight into this
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condition see Example 5 of Section 2.4. The final condition is a moment condition; in

Lemma 2 we show that this requirement is at most only slightly stronger than the second

moment condition (i.e., EF ?X2L2(X) < ∞). Unlike the case of the quantile estima-

tor, our moment condition no longer yields the best condition in the case of sampling

directly from F , even though it is arbitrarily close in the sense that it is weaker than

requiring EF ?X(2+δ)L(2+δ)(X) < ∞, for some δ > 0. We now state our main result for

Cα (n, F ?;F ):

Theorem 2

Suppose that F and F ? together satisfy Assumptions S and C. Then

√
n (Cα (n, F ?;F )− cα(F ))

d−→ N

(
0,

VarF ?
(
I(ξα,∞)(X)L(X)(X − ξα)

)

(1− α)2

)
,

as n→∞.

Example 4

We continue with the setup of Example 3, and again consider a liability distributed as

a Pareto(0.02,5). We restrict our choice for importance sampling distribution within the

subclass where the inverse scale parameter σ is held constant at 0.02 and the shape pa-

rameter β is allowed to take an arbitrary value in (0,∞). It is easy to check that the

moment condition for our Theorem 2, namely Assumption C3, is satisfied if and only if

β < 8, and for λ ∈ (0, 4/β − 1/2). Similar to the case of Qα (n, F ?;F ), in this example

the asymptotic variance of Cα (n, F ?;F ) given in Theorem 2 is finite if and only if β < 8,

and hence Theorem 2 attains the ideal moment condition of requiring only the finiteness

of asymptotic variance.

While the shape parameter for the importance sampling distribution that minimizes

the asymptotic variance of the α-level T-VaR estimator cannot be calculated in a closed

form, it is an easy numerical exercise to show that the optimal β value approximately

equals 1.0213 (resp., 0.7755) for α equal to 0.95 (resp., 0.99). For each α in {0.95, 0.99}

we simulated the empirical T-VaR (ordinary sampling) for sample sizes 200, 1000, and
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5000; we simulated the T-VaR estimator when sampling from the optimal Pareto impor-

tance sampler for sample sizes 10, 20, and 500. We simulated 100, 000 random samples

for each combination of α, sampling distribution, and sample size, and used the same

simulation environment as in Example 3.

Figure 2.4 plots the Gaussian kernel density estimator for each of the sampling

distribution, three sample sizes and the two α levels. The details of the kernel density

estimator used are given in Example 3. The plots overall show a good degree of closeness

to the standard normal density except in the case of ordinary sampling with sample size

of 200. As in Example 3, while the dependence of the plots on the sample size and the

α-level are as expected, it is remarkable that normality takes hold at significantly smaller

sample sizes when sampling from the above defined optimal Pareto distributions.

In Table 2.2 we have tabulated the bias in the coverage levels for the empirical T-

VaR under ordinary sampling, and the T-VaR estimator when sampling from the optimal

Pareto importance sampling distribution. Also tabulated are the lengths of these asymp-

totic confidence intervals. We simulated 10, 000, 000 random samples for each result in

Table 2.2. It is noteworthy that importance sampling gives a reduction in sample size by a

factor of 27.7 (resp., 93.4) for similar lengths of the asymptotic confidence intervals and

for α equal to 0.95 (resp., 0.99). But unlike the quantile case we do not get the added

benefit of reduced coverage bias. In fact, for similar levels of coverage bias the reduction

in the sample size is only by about a factor of 5 for α equal to 0.95.

2.2.4 Some Further Results

The use of functional delta method to establish Theorems 1 and 2 permits us

to derive some related results in a straightforward manner. First, the following corol-

lary extends both Theorems 1 and 2 by establishing the joint asymptotic normality of

Qα (n, F ?;F ) and Cα (n, F ?;F ).
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Sampler

95%-level T-VaR 99%-level T-VaR
Sample

Size Coverage Bias
Length

Coverage Bias
Length

(s.e.×105) (s.e.×105)

Ordinary Sampling

100 1.39% (5.90) 64.53 2.26% (5.16) 200.62

200 0.98% (6.21) 45.63 1.83% (5.54) 141.86

500 0.52% (6.54) 28.86 1.39% (5.90) 89.72

1000 0.29% (6.70) 20.41 0.97% (6.22) 63.44

5000 0.05% (6.86) 9.13 0.26% (6.72) 28.37

Optimal Pareto IS

20 -1.81% (7.97) 27.42 -3.39% (8.77) 46.42

40 -0.88% (7.44) 19.39 -1.59% (7.85) 32.82

100 -0.34% (7.11) 12.26 -0.62% (7.28) 20.76

200 -0.18% (7.01) 8.67 -0.32% (7.10) 14.68

1000 -0.03% (6.91) 3.88 -0.05% (6.92) 6.56

Table 2.2: 95% Nominal Confidence Interval for T-VaR Using Ordinary and
Importance Sampling
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Figure 2.4: Densities of the Standardized T-VaR Estimator for
Pareto (0.02, 5)

Corollary 1. Suppose that F and F ? together satisfy Assumptions S and V. Then

√
n (Qα (n, F ?;F )− qα(F ), Cα (n, F ?;F )− cα(F )) ,

converges in distribution to a bivariate normal with zero mean, asymptotic variances as

those given in Theorems 1 and 2, and asymptotic covariance given by

CovF ?
(
L(X)I(ξα,∞)(X), L(X)(X − ξα)I(ξα,∞)(X)

)

f(ξα)(1− α)
.
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Second, we note that Theorems 1 and 2 can be extended to the case of stratified im-

portance sampling. We note that such an extension of Theorem 1 is given in Glasserman

et al. (2000), but under the more stringent requirement of EF ? (L3) <∞.

Finally, we also note that Theorems 1 and 2 can be extended to the case where

in the alternate definitions of Qα (n, F ?;F ) and Cα (n, F ?;F ) as ηα(F ?
n) and χα(F ?

n),

respectively (see (2.14) and (2.20) below), F ?
n is replaced by versions that similarly con-

verge (see the proofs in the next section for a more precise statement) to an F ? Brownian

Bridge. Such results include extensions that allow replacing F ?
n by smoothed versions,

and to extensions that allow some dependence in the data, as done in the case of ordinary

sampling by Beutner and Zähle (2010).

2.3 Proofs of the Main Results

Let D(R) denote the space of all right continuous functions on R, the two point

compactification of R, with well defined left limits and taking values in R. We will

denote by κ the essential supremum of the distribution F ?, with κ possibly taking the

value +∞. Let the norm ‖·‖(F ?,λ) and W (F ?, λ) be defined as

‖H‖(F ?,λ) := sup
x∈[−∞,κ)

∣∣∣∣
H(x)

(1− F ?(x−))1/2−λ

∣∣∣∣ , ∀H ∈ D(R), (2.7)

and

W (F ?, λ) :=
{
H ∈ D(R) : ‖H‖(F ?,λ) <∞, and H(x) = 0, ∀x ≥ κ

}
. (2.8)

We endow W (F ?, λ) with the σ-field generated by the coordinate projections,

which is denoted by W (F ?, λ). It is easy to show that W (F ?, λ) is also the ball σ-

field corresponding to the norm ‖·‖(F ?,λ), i.e. the σ-field generated by the ‖·‖(F ?,λ) closed

balls (see Chapter 4, Problem 4 of Pollard (1984)).

For a function H ∈ D(R) let C(H) denote the continuity points of H . Now we

define Wξα (F ?, λ) as the subset of W (F ?, λ) containing functions H satisfying the fol-

lowing:
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1. C(F ?) ⊆ C(H).

2. limx→−∞H(x) = 0.

3. If F ?(κ−) = 1 then limx↑κH(x)(1− F ?(x−))−1/2+λ = 0.

2.3.1 Weak Convergence of the VaR Estimator

Let V be defined as
{
G(·) : G(·) a distribution function, with

∫

(y,∞)

(1−G(x−)) d|L|(x) <∞, ∀y ∈ R
}
,

(2.9)

where the integral is with respect to the total variation measure corresponding to L(·).

We define a real valued functional ψQ(·, ·) on R× V by

ψQ(y,G) :=

∫

(y,∞)

(1−G(x−)) dL(x) + (1−G(y))L(y), ∀y ∈ R, G ∈ V. (2.10)

Now for G ∈ V, we have
∫

(y,∞)

L(x)dG(x) = ψQ(y,G), ∀y ∈ R, (2.11)

which can be easily shown by the following equations
∫

(y,∞)

(1−G(x−)) dL(x) =

∫

(y,∞)

[
1−

∫

(−∞,x)

dG(x)

]
dL(x)

=

∫

(y,∞)

∫

[x,∞)

dG(t) dL(x)

=

∫

(y,∞)

∫

(y,t]

dL(x) dG(t)

=

∫

(y,∞)

L(t)− L(y+) dG(t)

=

∫

(y,∞)

L(t) dG(t)− L(y+)(1−G(y+)).

(2.12)

Note that F ?
n belongs to V as it has a finite support, and hence from the above we have

ψQ(y, F ?
n) =

∫

(y,∞)

L(x)dF ?
n(x) =

1

n

∑

Xi>y

L(Xi). (2.13)
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By ηα we denote the real value functional on V defined by

ηα(G) := inf {x : ψQ(x,G) ≤ (1− α)} , ∀G ∈ V. (2.14)

With this definition it is easy to see that Qα (n, F ?;F ) = ηα(F ?
n). We note that the

definition of ψQ and ηα depend on F and F ?, even though this dependence is not reflected

in the notation.

Let B0
F ? be an F ? Brownian bridge, i.e. a mean zero Gaussian process on R with

covariance function

F ?(s ∧ t) (1− F ?(s ∨ t)) , s, t ∈ R,

where for real numbers x and y, x∧y (resp., x∨y) denotes the minimum (resp., maximum)

of x and y.

Proof of Theorem 1. The proof using the representation of Qα (n, F ?;F ) as ηα(F ?
n), is

an application of the modified functional delta method as given in Theorem 4.1 of Beut-

ner and Zähle (2010) to the functional ηα(·) and the sequence of random distribution

functions {F ?
n}n≥1. Hence, the proof reduces to checking that the requirements of this

theorem on ηα(·) and the sequence and {F ?
n}n≥1 are satisfied.

First, we note that F ?
n belongs to the subset V of D(R) on which ηα(·) is defined.

Now we can easily show that F ?
n − F ? takes values in the subspace W (F ?, λ) of D(R).

Also, F ?
n − F ? is (F ,W (F ?, λ)) measurable asW (F ?, λ) is the projection σ-field, and

for each t ∈ R, F ?
n(t) − F ?(t) is clearly (F ,B(R)) measurable. Since F ?

n(t) − F ?(t) is

(F ,B(R)) measurable, we have ((F ?
n(t)− F ?(t)) (β))−1 ∈ F , where β ∈ B(R). Using

the fact that W (F ?, λ) is σ-field, and that (F ?)−1
[
π−1
t (β)

]
= [F ?(t)]−1 (β) ∈ F , we

can easily conclude that (F ?)−1(A) ∈ F , where A ∈ W (F ?, λ). Moreover, Lemma 6

implies that

√
n(F̂ ?

n − F ?)
d−→ B0

F ? , in
(
W(F ?, λ),W(F ?, λ), ‖ · ‖(F ?,λ)

)
,
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with B0
F ? ∈ Wξα(F ?, λ) with probability 1. For the modified functional delta method,

we need that for any measurable mapping, W , from (Ω̃, F̃) to (W(F ?, λ),W(F ?, λ))

satisfying W (ω̃, ·) + F ?(·) ∈ V for all ω̃ ∈ Ω̃, we have that ηα(W (ω̃, ·) + F ?(·)) is a

random variable. Since

{ω̃ : ηα(W (ω̃, ·) + F ?(·)) > a} = {ω̃ : ψQ(a,W (ω̃, ·) + F ?(·)) > 1− α}, ∀a ∈ R,

all we need to show is that ψQ(x,W (ω̃, ·) + F ?(·)), is a random variable for all x ∈ R.

This can be established using the fact that W (ω̃, ·) + F ?(·) ∈ V for all w̃ ∈ Ω̃, and

using the integral representation in (2.10) to write ψQ(x,W (ω̃, ·) + F ?(·)) as a limit of

approximating sums, with the approximating sums being random variables asW (ω̃, t) is a

random variable for all t ∈ R. Finally, Lemma 3 establishes that the mapping ηα : V→ R

is quasi-Hadamard differentiable at F ? tangentially to Wξα(F ?, λ) with quasi-Hadamard

derivative, η̇α,F ?(·) , given in (2.29). The above observations together with Theorem 4.1

of Beutner and Zähle (2010) then give us the following weak convergence:

√
n (ηα(F ?

n)− ηα(F ?))
d−→
∫

(ξα,∞)
B0
F ?(x−)dL(x) + B0

F ?(ξα)L(ξα)

f(ξα)
. (2.15)

The proof is now completed by using Lemma 7.

2.3.2 Weak Convergence of the T-VaR Estimator

Let VC be defined analogous to V as
{
G(·) : G(·) a distribution function with

∫

(y,∞)

(1−G(x−))d|LC |(x) <∞, ∀y ∈ R
}
,

(2.16)

where the integral is with respect to the total variation measure corresponding to LC(·).

Given Assumption S, it is easy to see that VC ⊆ V. We define a real valued functional

ψC(·, ·) on R× VC , analogous to ψQ(·, ·) on R× V, by

ψC(y,G) :=

∫

(y,∞)

(1−G(x−)) dLC(x) + (1−G(y))LC(y), ∀y ∈ R, G ∈ VC ,

(2.17)
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with Fubini’s Theorem implying
∫

(y,∞)

LC(x)dG(x) = ψQ(y,G), ∀y ∈ R, G ∈ VC . (2.18)

Note that as F ?
n has a finite support it belongs to VC , and hence from the above we have

ψC(y, F ?
n) =

∫

(y,∞)

LC(x)dF ?
n(x) =

1

n

∑

Xi>y

XiL(Xi). (2.19)

By χα we denote the real value functional on VC defined by

χα(G) :=
1

1− α [ψC (ηα(G), G) + ηα(G) ((1− α)− ψQ (ηα(G), G))] , ∀G ∈ VC .

(2.20)

With this definition it is easy to see that Cα (n, F ?;F ) = χα(F ?
n). While the definition of

ψC and χα depend on F and F ?, this dependence is not reflected in the notation.

In the proof of Theorem 2 while we borrow parts of the proof of Theorem 1, we

cannot use the Theorem 1 in full as Assumption C unlike Assumption V does not assume

that F is both differentiable and has a strictly positive density at qα(F ).

Proof of Theorem 2. The proof, analogous to the proof of Theorem 1, uses the modified

functional delta method of Theorem 4.1 by exploiting the representation of Cα (n, F ?;F )

as χα(F ?
n). As part of the proof of Theorem 1 we have already shown that the require-

ments of Theorem 4.1 of Beutner and Zähle (2010) on the sequence {F ?
n}n≥1 are satisfied.

Hence, we focus only on the requirements of the modified delta method on the functional

χα(·).

The modified functional delta method requires that for any measurable mapping W

from (Ω̃, F̃) to (W(F ?, λ),W(F ?, λ)) satisfying W (ω̃, ·) + F ?(·) ∈ VC for all ω̃ ∈ Ω̃

we have χα(W (ω̃, ·) + F ?(·)) is a random variable. Note that the measurability of

ψC(x,W (ω̃, ·) + F ?(·)) for each real number x follows from the argument establish-

ing the measurability of ψQ(x,W (ω̃, ·) + F ?(·)) (see proof of Theorem 1) by replac-

ing L by LC . Hence, we have the joint measurability of the map from R × Ω̃ which

takes (x, ω̃) to ψQ(x,W (ω̃, ·) + F ?(·)). Combining these with the measurability of
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ηα(W (ω̃, ·) +F ?(·)) (see proof of Theorem 1), and using (2.20) we have the measurabil-

ity of χα(W (ω̃, ·)+F ?(·)). Finally, Lemma 8 establishes that the mapping χα : VC → R

is quasi-Hadamard differentiable at F ? tangentially to Wξα(F ?, λ) with quasi-Hadamard

derivative, χ̇α,F ?(·) , given in (2.45). The above observations together with Theorem 4.1

of Beutner and Zähle (2010) then give us the following weak convergence:

√
n (χα(F ?

n)− cα(F ?))
d−→
∫

(ξα,∞)
B0
F ?(x−)dLC(x)− ξα

∫
(ξα,∞)

B0
F ?(x−)dL(x)

1− α .

(2.21)

The proof is now completed by using Lemma 7.

Below we provide a sketch of the proof for Corollary 1.

Proof of Corollary 1. The proof is based on Wald’s device which reduces the problem

to showing convergence to normality of all linear combinations of Qα (n, F ?;F ) and

Cα (n, F ?;F ). Now the proof is completed in a manner similar to those of Theorems 1

and 2, but also using the fact that linear combinations of modified Hadamard differen-

tiable functions are also similarly differentiable with the derivative being the appropriate

linear combination of the derivatives, and using arguments similar to those in Lemma 7

to derive the asymptotic variance of these linear combinations.

2.4 Auxiliary Results

Lemma 1. Let T-VaRn be the 50% level T-VaR from a random sample of size n from F1

as defined in Example 1. Then

√
n (T-VaRn − 5/2)

d−→ Z1√
6

+ 3I(Z2<0)

(
Z2

2

)
,

where Z1, Z2 are i.i.d. N(0, 1) random variables.

Proof. It is easy to show that it suffices to consider even sample sizes, say 2n for some

n ≥ 1. We note that drawing a 2n random sample from F1 can be done by first drawing

N from the Binomial distribution with parameters 2n and 1/2, and then drawing N i.i.d.

observations from U(2, 3) and the other 2n−N from U(1, 2). We will only consider the
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case when N ≥ n as the argument in the case when N < n is similar. In the case when

N ≥ n, the 50%-level empirical T-VaR is the mean of the highest n observations from

the N sample from U(2, 3). Hence we have

√
2n

(
T-VaR2n −

5

2

)
=
√

2n

(
1

n

n−1∑

i=0

UN−i:N −
5

2

)
, if N ≥ n,

where UN−i:N is the (N − i)-th highest observation in the N sample from U(2, 3). Using

basic properties of order statistic from U(0, 1)

n−1∑

i=0

UN−i:N |UN−n:N
d
=

n−1∑

i=0

[UN−n:N + (3− UN−n:N)U?
i ] |UN−n:N ,

it can be easily seen that

√
2n

(
T-VaR2n −

5

2

)
d
=
√

2n

(
UN−n:N + [3− UN−n:N ]

1

n

n−1∑

i=0

U?
i −

5

2

)
, if N ≥ n,

whereU?
i ’s with i = 1, . . . , n are n i.i.d observations from U(0, 1), which are independent

of UN−n:N , and N . The above can be rearranged to yield

√
2n

(
T-VaR2n −

5

2

)
d
=
√

2n

(
1

n

n−1∑

i=0

U?
i −

1

2

)
+

1

2

[
n

N + 1

]
N − n√

(n/2)

+ [2− UN−n:N ]
√

2n

(
1

n

n−1∑

i=0

U?
i −

1

2

)

+

√
n

2

(
UN−n:N − 2− N − n

N + 1

)
, if N ≥ n.

Note that conditioned on N ≥ n the first term is independent of the second and by the

ordinary central limit theorem converges to N(0, 1/6). The second term conditioned on

N ≥ n is seen to converge in distribution to the absolute value of a N(0, 1/4) variate

by using the ordinary central limit theorem, strong law of large numbers and Slutsky’s

theorem . The third and the last term, conditioned on N ≥ n are easily seen to be

O(n−1/2) and O(n−1/4), respectively, using moments of order statistics from U(0, 1) (for

example, see Reiss (1989)). Using Markov’s inequality and Chevychev’s inequality, we
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can easily show

P
(√

n|(2− UN−n:N)| ≥M
)
≤ E [n(2− UN−n:N)2]

M2

=
E
[
nU∗N−n

2
]

M2

=
E
[
n (N−n)(N−n+1)

(N+1)(N+2)

]

M2

=
E
[

(N(0, 1
2

)+o(1))(N(0, 1
2

)+o(1))

(1+o(1))2

]

M2
,

and

P

(
n

3
4 (UN−n:N − 2− N − n

N + 1
)

)
≤
E
[
n

3
2

(N−n)(2n−N+1)
(N+1)2(N+2)

]

M2

=
E
[
N(0, 1

2
+ o(1))

]

M2
.

Hence for any ε > 0, there exists M ∈ N such that

P
(√

n|(2− UN−n:N)| ≥M
)
< ε.

Combining the above observations, we see that conditioned on N ≥ n

√
2n

(
T-VaR2n −

5

2

)
,

is converging in distribution to

Z1√
6

+
|Z2|

2
,

where Z1, Z2 are i.i.d. N(0, 1) random variables. This completes the proof.

Lemma 2. The following hold true for F and F ? satisfying Assumption S:

1. If EF ?L2 <∞ then
∫

(y,∞)

(1− F ?(x−))1/2+ε dL(x) <∞,∀y ∈ R, ∀ε > 0. (2.22)

2. If EF ?L2+δ < ∞ for some δ > 0, then we have (2.3) for any choice of λ in

(0, δ/(4 + 2δ)).
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3. If Assumption V2 also holds, then EF ?L2(X)I(y,∞)(X) <∞, for all y ∈ R.

4. The above statements hold by replacing L(·) with LC(·) and Assumption V with

Assumption C, respectively.

Proof. Observe that

(1− F ?(x−))−1 ≤ (1− F ?(x−)− (F ?(x)− F ?(x−))u)−1 , u ∈ [0, 1].

Also, if X ∼ F ?, and U ∼ U(0, 1) are two independent random variables, then

(1− F ?(X−)− (F ?(X)− F ?(X−))U) ∼ U(0, 1).

We will prove the above relation when X ≥ 0 case only. Note that general case comes

easily from the following proof. Since there are at most countably many discontinuous

points of F ?(·), name it x1,x3, x5, · · · , with x1 < x3 < x5 < · · · . And name the interval

between xi and xi+2 as Ii+1.(You may call 0 as x−1 to define I0, if necessarily). Define

pi =





P (X = xi), If i is odd,

P (xi−1 < X < xi), If i is even.

Similarly, when i is odd number, we define

FXi(x) =





0, x < xi,

1, x ≥ xi,

if i is even number, we define

FXi(x) =





0, x ≤ xi,

1
pi
F ?(x), xi−1 ≤ x ≤ xi,

1, x ≥ xi.

If we have random variable X with distribution function, F ?(x) =
∞∑
i

piFxi(x), we can
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conclude that with probability pi

(1− F ?(X−)− (F ?(X)− F ?(X−))U) ∼ U(1−
m∑

i

pi, 1−
m−1∑

i

pi).

Using the above two observations and Cauchy-Schwartz inequality it is easy to show that

EF ?L2 <∞ implies
∫

(y,∞)

L(x)

(1− F ?(x−))1/2−εdF
?(x) <∞,∀y ∈ R, (2.23)

for all ε > 0. We note that (2.23) is implied by

∫

(y,∞)

1

(1− F ?(x−))1/2−εdF
?(x) = EF ?

[
1

(1− F ?(x−))1/2−ε

]

≤ EF ?

[
1

(1− F ?(x−)− (F ?(x)− F ?(x−))U)1/2−ε

]

= E
1

U1−2ε
<∞,

and
[∫

(y,∞)

L(x)

(1− F ?(x−))1/2−εdF
?(x)

]2

≤
∫

(y,∞)

L2(x−)dF ?(x)

∫

(y,∞)

1

(1− F ?(x−))1/2−εdF
?(x).

Moreover, since for ε > 0 (see pg. 42 of Protter (2005)), we have

−d (1− F ?(x))1/2+ε /dF ?(x) =





(1/2 + ε) (1− F ?(x−))−1/2+ε , F ?(x) = F ?(x−),

(1−F ?(x−))1/2+ε−(1−F ?(x))1/2+ε

F ?(x)−F ?(x−)
, F ?(x) > F ?(x−).

(2.24)

If we assume (2.23), we have
∫

(y,∞)

L(x)d
[
− (1− F ?(x))1/2+ε

]
=

∫

A

(1/2 + ε)L(x) (1− F ?(x))−1/2+ε dF ?(x)

+

∫

B

(1− F ?(x−))1/2+ε − (1− F ?(x))1/2+ε

F ?(x)− F ?(x−)
F ?(x)

<∞,
(2.25)



36

which can be proved using (2.24) and the following inequality
∫

B

L(x)
(1− F ?(x−))1/2+ε − (1− F ?(x))1/2+ε

F ?(x)− F ?(x−)
dF ?(x)

=

∫

B

L(x)

[
(1− F ?(x−))1/2+ε − (1− F ?(x))1/2+ε

F ?(x)− F ?(x−)

]
(1− F ?(x))1/2−ε

(1− F ?(x))1/2−εdF
?(x)

≤
∫

B

L(x)
1

(1− F ?(x))1/2−εdF
?(x) <∞,

where A = {x|x, s.t.F ?(x) = F ?(x−)}, B = {x|x, s.t.F ?(x) 6= F ?(x−)}.

We have shown that (2.23) implies
∫

(y,∞)

L(x)d
[
− (1− F ?(x))1/2+ε

]
<∞,∀y ∈ R, (2.26)

for all ε > 0. Now by our assumptions on L(·), and using Fubini’s theorem, we know

that (2.26) implies (2.22), which can be shown using below equations
∫

(y,∞)

(1− F ?(x−))1/2+ε dL(x) = c

∫

(y,∞)

∫

(x−,∞)

(1− F ?(x−))−1/2+ε dF ?(t)dL(x)

= c

∫

(y,∞)

(1− F ?(t))−1/2+ε

∫

y,t+

dL(x)dF ?(t)

= c

∫

(y,∞)

(1− F ?(t))−1/2+ε L(t)dF ?(t) + cL(y)

∫

(y,∞)

(1− F ?(t))−1/2+ε dF ?(t)

= c

∫

(y,∞)

L(t)d
(
− (1− F ?(t))−1/2+ε

)
+ cL(y)

∫

(y,∞)

(1− F ?(t))−1/2+ε dF ?(t).

Hence we complete the proof for the first statement.

For the proof of second part, we claim that EF ?L2+δ < ∞, with Assumptions S

and V together imply that

lim
x→∞

(1− F ?(x−))1/(2+δ)L(x) = 0.

For the proof of our claim, first, consider the case when L(·) is monotonely increasing

function. Then we can say

1− F ?(x−) = P (L(X) ≥ L(x)).
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Using this and E?FL2+δ <∞, we can show

lim
x↑∞

(1− F ?(x−))L(x)2+δ = lim
x↑∞

P (L(X) ≥ L(x))L(x)2+δ

≤ lim
x↑∞

∫

X≥x
L(x)2+δdF ?(x) = 0.

For general L(·), we have L(·) = L1(·) − L2(·), where L1(·) and L2(·) are monotonely

increasing functions. SinceL(·) has finite negative variation by assumption, this complete

the proof of the claim.

Condition EF ?L2+δ <∞ with Assumptions S and V together imply that

lim
x→∞

(1− F ?(x−))1/(2+δ)L(x) = 0,

which in turn implies that
∫

(y,∞)

L(x)

(1− F ?(x−))(1+δ)/(2+δ)−εdF
?(x) <∞,∀y ∈ R. (2.27)

Now, in a manner similar to the proof of the first statement, we can show that
∫

(y,∞)

(1− F ?(x−))1/(2+δ)+ε dL(x) <∞,∀y ∈ R, ∀ε > 0, (2.28)

completing the proof of the second statement. The third statement follows easily from

the observation that together Assumptions S and V imply that

lim
x→∞

(1− F ?(x−))(1/2−λ)L(x) = 0.

The last statement follows from the previous three statements, and this completes the

proof.

Lemma 3. (Quasi-Hadamard Differentiability of ηα) Suppose that F (·) and F ?(·) satisfy

Assumptions S and V. Then the mapping ηα : V → R is quasi-Hadamard differentiable

at F ? tangentially to Wξα(F ?, λ) with quasi-Hadamard derivative, denoted by η̇α,F (·),
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given by

η̇α,F ?(V ) :=

∫∞
ξα
V (x−)dL(x) + V (ξα)L(ξα)

f(ξα)
, V ∈Wξα(F ?, λ). (2.29)

Proof. Clearly, by definition, η̇α,F ?(·) is linear. Now to show that η̇α,F ?(·) is continuous

on W(F ?, λ) we only need to establish that it is bounded; this follows under Assumptions

S and V since

|η̇α,F ?(V )|
‖V ‖(F ?,λ)

≤
[
L(ξα) +

∫
(ξα,∞)

(1− F ?(x−))1/2−λ d|L|(x)

f(ξα)

]
<∞, V ∈Wξα(F ?, λ).

(2.30)

Let {hn}n≥1 be a sequence decreasing to 0. Also, let {Vn}n≥1 be a sequence in

W(F ?, λ) converging to V in Wξα(F ?, λ) under ‖ · ‖(F ?,λ) such that

F ? + hnVn ∈ V for all n ≥ 1.

All that remains now to be shown is that

lim
n→∞

∣∣∣∣
ηα(F ? + hnVn)− ηα(F ?)

hn
− η̇α,F ?(V )

∣∣∣∣ = 0. (2.31)

Assuming the contrary, we have for some ε > 0, a subsequence {nm}m≥1 such that

ηα(F ? + hnmVnm) ≶ ξα + hnm η̇α,F ?(V )∓ hnmε, ∀m ≥ 1.

We will assume in the following, without loss of generality, that for this subsequence

ηα(F ? + hnmVnm) < ξα + hnm η̇α,F ?(V )− hnmε, ∀m ≥ 1,

with the observation that argument for the alternate case is similar. Also, for m ≥ 1, let

ym := ηα(F ? + hnmVnm), and zm := hnm η̇α,F ?(V )− hnmε.
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Now using Lemma 4 and Lemma 5 we have

ψQ(ym, F
? + hnmVnm) ≥ ψQ(ξα + zm, F

? + hnmVnm)

= ψQ(ξα + zm, F
?)− hnm

[ ∫

(ξα+zm,∞)

(Vnm(x−)− V (x−))dL(x)

+ L(ξα + zm) (Vnm(ξα + zm)− V (ξα + zm))

]

− hnm
[ ∫

(ξα+zm,∞)

V (x−)dL(x) + L(ξα + zm)V (ξα + zm)

]

= (1− α) + hnmf(ξα)ε+ o(hnm) − hnm
[ ∫

(ξα+zm,∞)

(Vn(x−)− V (x−))dL(x)

+ L(ξα + zm) (Vn(ξα + zm)− V (ξα + zm))

]

− hnm
[ ∫

(ξα+zm,∞)

V (x−)dL(x) + V (ξα + zm)L(ξα + zm)

−
(∫

(ξα,∞)

V (x−)dL(x) + V (ξα)L(ξα)

)]

= (1− α) + hnmf(ξα)ε+ o(hnm).
(2.32)

Since f(ξα) > 0, we have ψQ(ym, F
? + hnmVnm) > 1−α, for large m, contradicting the

definition of ym. Hence we conclude that (2.31) is true, completing the proof.

Lemma 4. Let {Vn(·)}n≥1 be a sequence in W (F ?, λ) converging to V (·) ∈Wξα (F ?, λ)

in the ‖ · ‖(F ?,λ) norm. Then under Assumptions S and V, we have

∫

(ξα+o(1),∞)

(Vn(x−)− V (x−))dL(x) + [Vn(ξα + o(1))− V (ξα + o(1))]L(ξα + o(1))

= o(1).
(2.33)

Also, under Assumptions S and C, we have
∫

(ξα+o(1),∞)

(Vn(x−)− V (x−)) dLC(x) = o(1). (2.34)
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Proof. Let’s consider the first term in (2.33), which have
∣∣∣∣
∫

(ξα+o(1),∞)

(Vn(x−)− V (x−))dL(x)

∣∣∣∣

≤
∫ ∞

ξα+o(1)

|Vn(x−)− V (x−)|
(1− F ?(x−))1/2−λ (1− F ?(x−))1/2−λd|L|(x)

= ‖Vn − V ‖(F ?,λ)

∫ ∞

ξα+o(1)

(1− F ?(x−))1/2−λd|L|(x) = o(1).

Now in the second term of (2.33), we have

|[Vn(ξα + o(1))− V (ξα + o(1))] L(ξα + o(1))| ≤ ‖Vn − V ‖∞ lim sup
n→∞

|L(ξα + o(1))|

≤ ‖Vn − V ‖(F ?,λ) max {|L(ξα−)|, | L(ξα)|}

= o(1).

Now the triangle inequality along with above inequalities completes the proof of (2.33).

The proof of (2.34) follows along similar lines.

Lemma 5. For any V (·) ∈Wξα (F ?, λ), under Assumptions S and V

V (y)L(y) +

∫

(y,∞)

V (x−)dL(x), (2.35)

as a function in y on R is right continuous. Moreover, under Assumptions S and V we

have continuity at ξα. These conclusions hold true also for
∫

(y,∞)

V (x−)dLC(x)− y
∫

(y,∞)

V (x−)dL(x), (2.36)

under Assumptions S and C.

Proof. Let the function in (2.35) be denoted by γ(·). Clearly, by the right continuity of

V (·) and L(·), we have the right continuity of γ(·). Now, using continuity of V (·) at ξα

under Assumption S we have

lim
y↑ξα

γ(y) = V (ξα)L(ξα−) +

∫

[ξα,∞)

V (x−)dL(x)

= V (ξα)L(ξα−) + V (ξα) (L(ξα)− L(ξα−)) +

∫

(ξα,∞)

V (x−)dL(x) = γ(ξα).

(2.37)

This completes the proof of the continuity part. The conclusions for the function in (2.36)
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follow easily from the above.

Lemma 6. For all ε > 0

‖√n(F̂ ?
n − F ?)− B0

F ?‖(F ?,λ)
p−→ 0.

In particular

√
n(F̂ ?

n − F ?)
d−→ B0

F ? , in
(
W(F ?, λ),W(F ?, λ), ‖ · ‖(F ?,λ)

)
,

and B0
F ? belongs to Wξα(F ?, λ) with probability 1.

Proof. The above result follows in a straightforward manner from Theorem 6.2.1 of

Shorack and Wellner (1986) by observing that the weight function

1

(1− F ?(x−))1/2−ε , x ∈ R,

is square integrable with respect to F ? (see proof of Lemma 2), and is clearly bounded by

a u-shaped function (see pg. 273 of Shorack and Wellner (1986) for definition). The law

of iterated logarithms for the standard Brownian motion (see Durrett (2005)) implies that

B0
F ? belongs to Wξα(F ?, λ) with probability 1. As show in Shorack and Wellner (1986),

we have LIL for Brownian Motion and Brownian Bridge

lim sup
t↗∞

∣∣∣∣
S(t)

(2t log log t)1/2

∣∣∣∣ = 1, lim sup
t↘0

∣∣∣∣
S(t)

(21
t

log log 1
t
)1/2

∣∣∣∣ = 1

and lim sup
t↘0

∣∣∣∣
U(t)

(21
t

log log 1
t
)1/2

∣∣∣∣ = 1,

where S(t) is Brownian Motion and U(t) is Brownian Bridge. If we define

U1(t) ≡ S(t)− tS(1) and U2(t) ≡ S(1− t)− (1− t)S(1), 0 ≤ t ≤ 1,

we can easily show that these are Brownian Bridge. Now we claim that

sup
x∈(0,1)

∣∣∣∣∣∣
B(x)√

2(1− x) log log 1
(1−x)

∣∣∣∣∣∣
<∞,
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where B(t), 0 ≤ t ≤ 1, is Brownian Bridge. Since we know

lim
x↘0

∣∣∣∣∣∣
B(x)√

2(1− x) log log 1
(1−x)

∣∣∣∣∣∣
<∞,

it is enough to show that

lim
x↗1

∣∣∣∣∣∣
B(x)√

2(1− x) log log 1
(1−x)

∣∣∣∣∣∣
<∞. (2.38)

Furthermore (2.38) can be shown from

lim
x↗1

∣∣∣∣∣∣
B(x)√

2(1− x) log log 1
(1−x)

∣∣∣∣∣∣
= lim

x↗1

∣∣∣∣∣∣
U2(x)√

2(1− x) log log 1
(1−x)

∣∣∣∣∣∣

= lim
t↘0

∣∣∣∣∣∣
U1(t)√

2t log log 1
t

∣∣∣∣∣∣
<∞.

Now we can easily show sup
F ?∈[0,1)

∣∣∣∣
B0
F ?

(1− F ?)1/2−λ

∣∣∣∣ <∞, which in turn implies that

sup
x∈(0,1)

∣∣∣∣
B0
F ?

(1− F ?(x−))1/2λ

∣∣∣∣ <∞. This completes the proof.

Lemma 7. Let F and F ? satisfy Assumptions S. Then the following hold:

1. If F and F ? further satisfy Assumption V, then
∫

(ξα,∞)
B0
F ?(x−)dL(x) + B0

F ?(ξα)L(ξα)

f(ξα)

∼ N

(
0,

EF ?(L2(X)I(ξα,∞)(X))− (1− α)2

f 2(ξα)

)
.

(2.39)

2. If F and F ? further satisfy Assumption C, then

(1− α)−1

(∫

(ξα,∞)

B0
F ?(x−) dLC(x)− ξα

∫

(ξα,∞)

B0
F ?(x−)dL(x)

)

∼ N

(
0,

VarF ?
(
I(ξα,∞)(X)L(X)(X − ξα)

)

(1− α)2

)
.

(2.40)

Proof. LetW denote limit in (2.39). The limitW can be shown to be normally distributed
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by using (2.3), writing the integral as a limit of approximating sums, and appealing to the

fact that if a sequence of normal random variables converges in distribution then the limit

is normally distributed. Now, using Fubini’s theorem, and moments of a Brownian bridge,

it is easy to see that W has mean zero and variance given by

f−2(ξα)

[ ∫∫

(ξα,∞)×(ξα,∞)

F ?([x ∧ y]−)(1− F ?([x ∨ y]−))dL(x)dL(y)

+ 2L(ξα)F ?(ξα)

∫

(ξα,∞)

(1− F ?(x−))dL(x) + L2(ξα)F ?(ξα)(1− F ?(ξα))

]
.

(2.41)

Now using the fact that

F ?([x ∧ y]−)(1− F ?([x ∨ y]−)) = (1− F ?([x ∨ y]−))− (1− F ?(x−))(1− F ?(y−)),

the first integral in (2.41) can be written as
∫

(ξα,∞)

[L(x) + L(x−)](1− F ?(x−))dL(x)

− 2L(ξα)

∫

(ξα,∞)

(1− F ?(x−))dL(x)−



∫

(ξα,∞)

(1− F ?(x−))dL(x)




2

.

(2.42)

Now using the above, (2.41), the identity
∫

(ξα,∞)

(1− F ?(x−))dL(x) = (1− α)− (1− F ?(ξα))L(ξα), (2.43)

and
∫

(ξα,∞)

(1− F ?(x−)) [L(x−) + L(x)] dL(x) =

∫

(ξα,∞)

L2(x)dF ?(x)−(1−F ?(ξα))L2(ξα),

(2.44)

it can be shown that the variance of W is given by

f−2(ξα)
(
EF ?

(
L2(X)I(ξα,∞)(X)

)
− (1− α)2

)
.

This completes the proof of the first part. The proof of the second part follows easily by
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using (2.42), (2.43), and (2.44) with LC(·) − ξαL(·) instead of L(·), and observing that

LC(ξα)− ξαL(ξα) = 0. This completes the proof.

Lemma 8. (Quasi-Hadamard Differentiability of χα) Suppose that F (·) and F ?(·) satisfy

Assumptions S and C. Then the mapping χα : VC → R is quasi-Hadamard differentiable

at F ? tangentially to Wξα(F ?, λ) with quasi-Hadamard derivative, denoted by χ̇α,F (·),

given by

χ̇α,F ?(V ) :=
1

1− α



∫

(ξα,∞)

V (x−)dLC(x)− ξα
∫

(ξα,∞)

V (x−)dL(x)


 , (2.45)

with V ∈Wξα(F ?, λ).

Proof. Since χ̇α,F ?(·) is clearly linear, to show that χ̇α,F ?(·) is continuous on W(F ?, λ)

we only need to establish that it is bounded. This follows, under Assumptions S and C,

from

|χ̇α,F ?(V )|
‖V ‖(F ?,λ)

≤ 1

1− α

[∫

(ξα,∞)

(1− F ?(x−))1/2−λ d|LC |(x)

+ ξα

∫

(ξα,∞)

(1− F ?(x−))1/2−λ d|L|(x)

]
<∞, V ∈Wξα(F ?, λ).

(2.46)

Let {hn}n≥1 be a sequence decreasing to 0. Also, let {Vn}n≥1 be a sequence in

W(F ?, λ) converging to V in Wξα(F ?, λ) under ‖ · ‖(F ?,λ) such that F ? +hnVn ∈ VC for

all n ≥ 1. All that remains now to be shown is that

lim
n→∞

∣∣∣∣
χα(F ? + hnVn)− χα(F ?)

hn
− χ̇α,F ?(V )

∣∣∣∣ = 0. (2.47)

Let ηα;n denote ηα(F ? + hnVn), and let An be defined as (ξα ∧ ηα;n, ξα ∨ ηα;n] when

ξα 6= ηα;n and as the empty set otherwise. Now, some algebraic manipulations lead to

(1− α) (χα(F ? + hnVn)− χα(F ?)) = sgn(ξα − ηα;n)

∫

An

(x− ηα;n)dF (x)

− hn




∫

(ηα;n,∞)

Vn(x−)dLC(x)− ηα;n

∫

(ηα;n,∞)

Vn(x−)dL(x)


 .

(2.48)
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The absolute value of the first term in (2.48) is bounded above by

(ξα − ηα;n) (F (ξα)− F (ηα;n)) ,

and Lemma 9 implies that this is o(hn). The second term in (2.48), using Lemmas 4, 5

and 9, can be written as hn(1− α)χ̇α,F ?(V ) + o(hn). Hence the proof.

Lemma 9. Let {Vn}n≥1 be a sequence in W(F ?, λ) converging to V in Wξα(F ?, λ) under

‖·‖(F ?,λ) such that F ?+hnVn ∈ V for all n ≥ 1. Then for {hn}n≥1 a sequence converging

to 0, under Assumption C, we have

lim
n→∞

ηα(F ? + hnVn) = ξα and F (ηα(F ? + hnVn)) = α +O(hn). (2.49)

Proof. The first part can be shown easily using the fact that F has a point of increase at

ξα (part of Assumption C). For the second part, using the first part it is easy to see that

ηα(F ? + hnVn) = F−1(α−O(hn)). Hence by Assumption C

|F (ηα(F ? + hnVn))− α| =
∣∣F (F−1(α−O(hn)))− α

∣∣ = O(hn).

This completes the proof.

Example 5

Let F5(·) denote the distribution function of equal mixture of U(0,1) and the distribution

of random variable X defined by

Pr

(
X = 1 +

1

n

)
= pn − pn+1, ∀n ≥ 1,

where pn = 1/2(n!), for n ≥ 1. It is easily seen that

F5

(
1 +

1

n

)
=

1

2
+
∞∑

i=n

(pi − pi+1) =
1

2
+ pn, ∀n ≥ 1.

In particular, we observe that F5(·) is continuous at 1 (its median), but not continuous on

any neighborhood of 1. Let us define εn > 0, for n ≥ 1, to be such that

lim
n→∞

εn/pn = 0.
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For s = 1
2

+ pn + εn, and α = 1
2
, we have

∣∣F5[F−1
5 (s)]− s

∣∣
|s− α| =

|1
2

+ pn−1 − (1
2

+ pn + εn)|
|pn + εn|

=
n
[
1− 1

n
− o(1)

]

1 + o(1)
. (2.50)

This implies that F5(·) does not satisfy Assumption C2. On the other hand, if we define

F6(·) analogous to F5(·) but with pn = 2−n, for n ≥ 1, we get an example of a distribu-

tion function continuous at its median (equal to 1), not continuous on any neighborhood

around its median, but nevertheless satisfying Assumption C2. The plots of distributions

F5(·) and F6(·) are given in Figure 2.5.
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Figure 2.5: Distributions with Jumps : Understanding
Assumption C2
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CHAPTER 3
BOUNDS OF ORLICZ QUANTILES AND THEIR APPLICATION TO THE

COMPUTING ALGORITHM OF HAEZENDONCK-GOOVAERTS RISK
MEASURES

3.1 Introduction

In this and the following chapter our focus will be on the class of Haezendonck-

Goovaerts risk measures for reasons mentioned in Chapter 1. As noted in Bellini and

Rosazza Gianin (2008b), computational algorithms for the Haezendonck-Goovaerts risk

measure that are reasonably fast and that provide precise error bounds are of interest.

The design and analysis of such an algorithm is the main goal of this chapter. We begin

below by laying out the notation for our study of the class of Haezendonck-Goovaerts

risk measures.

For expositional ease we extend the normalized Young functions to the whole of R

by defining them to be zero on the negative half of the real line. We define an extension

of the Orlicz space, denoted by XΨ, by

XΨ :=

{
X

∣∣∣∣Pr (X ≤ 0) = 1 or ∃s∞ ≥ 0 such that E
[
Ψ

(
X

s

)]
<∞ for s > 0⇔ s > s∞

}
.

(3.1)

We refer to these extensions simply as Young functions and the Orlicz space, respectively.

In Bellini and Rosazza Gianin (2008a), for convenience, the random variables are

restricted to L∞ (the space of essentially bounded random variables) a subset of XΨ. We

allow s∞ to be greater than 0 in (3.1), unlike in Goovaerts et al. (2004), to accommodate,

for example, situations involving an exponential Young function and an exponential ran-

dom variable (as in Example 17 below). A useful property of XΨ is that for X ∈ XΨ,

c ∈ R and s > 0 we have

E
[
Ψ

(
X

s

)]
<∞⇔ E

[
Ψ

(
X − c
s

)]
<∞. (3.2)
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We will find it convenient to define s∞(·) as

s∞(X) := inf

{
s > 0

∣∣∣∣E
[
Ψ

(
X

s

)]
<∞

}
.

Note that (3.2) is equivalent to the statement that for X ∈ XΨ, s∞(X) = s∞(X − c), for

all c ∈ R.

For X ∈ XΨ, we define the Orlicz premium for X − x corresponding to Ψ(·) and

at level α ∈ [0, 1), denoted by HX (x), as the unique positive solution of the equation

E
[
Ψ

(
X − x
HX(x)

)]
= 1− α for Pr (X − x > 0) > 0,

with HX(x) := 0 for x satisfying Pr (X − x ≤ 0) = 1 (see Haezendonck and Goovaerts

(1982), Goovaerts et al. (2004), and Bellini and Rosazza Gianin (2008a)). For X ∈ XΨ,

we define the Haezendonck-Goovaerts risk measure corresponding to Ψ(·) and at level

α ∈ [0, 1) by

πX := inf
x∈R

(HX(x) + x) , (3.3)

and for convenience we define πX (·) as

πX (x) := HX(x) + x, x ∈ R. (3.4)

For X ∈ L∞, Proposition 16 of Bellini and Rosazza Gianin (2008a) shows that the

above infimum is attained for α ∈ (0, 1); their argument easily extends to XΨ. Moreover,

examples exist where this infimum is not attained when α = 0. Along the lines of

Example 15 of Bellini and Rosazza Gianin (2008a), for example, this occurs with the

following choice of Ψ(·) and F (·):

Ψ(x) =

{
0, x < 0,

x2k, otherwise,
where k ≥ 1, and F (x) =





0, x < −1,
1
2
, −1 ≤ x < 1,

1, otherwise.

For this reason, and also since α values close to one are those of interest in risk manage-

ment, in the following we will restrict our attention to α values in (0, 1).
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For X ∈ XΨ, we define the Orlicz quantile as

IX := arg min
x∈R

{x+HX (x)} .

In Bellini and Rosazza Gianin (2008a) it is shown that πX (·) is a convex function for

X ∈ L∞, and this result also easily extends to X ∈ XΨ. This, in particular, implies that

IX is a closed interval. We find it convenient to interchangeably use πF and IF for πX

and IX , respectively; note that the definition of the Haezendonck-Goovaerts risk measure

permits such a use.

We denote by Ψ−1(·), Ψ′+(·), and Ψ′−(·) the inverse, right side derivative, and left

side derivative of Ψ(·), respectively. For X ∈ XΨ, by H ′+X (·) and H ′−X (·) we denote the

right and left side derivatives of HX (·), respectively. Similarly, for X ∈ XΨ, by π′+X (·)

and π′−X (·) we denote the right and left side derivatives of πX (·), respectively.

We denote by En (g(Y )) the expectation of g(Y ) with Y ∼ Fn. As for such a Y we

have Y ∈ L∞ (⊆ XΨ), both HY (·) and πY (·) are well defined, and moreover are easily

seen to be random variables. Note that HFn(·) and πFn are natural (plug-in type) non-

parametric estimators for HF (·) and πF , respectively; we refer to them as the empirical

Orlicz premium and the empirical Haezendonck-Goovaerts risk, respectively. Also, in

the following for x, y ∈ R and ε > 0 by saying x
ε≈ y we mean |x− y| ≤ ε.

As noted earlier, the lack of a closed form expression for the Haezendonck-Goovaerts

risk measures creates the need for a computational algorithm. We begin by presenting an

example to demonstrate this inherent nature of these risk measures.

Example 6

A simple example of a Young function for which the Haezendonck-Goovaerts risk mea-

sure of the empirical distribution function is only implicitly defined is given by

Ψ(x) =

{
0, x < 0,
exp{βx}−1
exp{β}−1

, otherwise,
for β > 0. (3.5)
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This Young function is considered in Bellini and Rosazza Gianin (2008a), and from def-

inition it is easy to see that

HFn(y) =
β

M−1
y (1 + (1− α)(exp{β} − 1))

where My(·) is the moment generating function of (Y − y)+ for Y ∼ Fn. Hence, πFn

equals

inf
y∈R

{
y +

β

M−1
y (1 + (1− α)(exp{β} − 1))

}
,

an optimal value that clearly lacks a closed form expression.

Bellini and Rosazza Gianin (2008b) is the only pertinent article dealing with the sta-

tistical estimation of Haezendonck-Goovaerts risk measures. In their simulation study of

the empirical Haezendonck-Goovaerts risk they employ the fmincon function in Matlab®,

However, as noted there, the lack of error bounds impedes on the quality of their results.

Hence there is a need for a computational algorithm for the Haezendonck-Goovaerts risk

measures which by providing error bounds permits control of numerical errors. In this

chapter we design such an algorithm and analyze its run time complexity. We begin in

the next section by deriving bounds for IF which form a basis for our algorithm.

3.2 Bounds for Orlicz Quantiles

By definition, ess sup(X) is an upper bound of IF ; however, this is of little use

when ess sup(X) = ∞. In this section we derive tight upper and lower bounds for IF .

We begin with the following lemma which is useful to determine the location of IF .

Proposition 1

For X ∈ XΨ and α ∈ (0, 1), we have the following:

i. πX (·) and HX(·) are convex functions.

ii. lim
x→−∞

x
HX(x)

= −Ψ−1(1− α)
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iii. For x ∈ R, we have

1− 1

Ψ−1(1− α)
≤ π′−X (x) ≤ 1.

Furthermore, we have

lim
x→−∞

π′−X (x) = 1− 1

Ψ−1(1− α)
< 0, and lim

x→∞
π′−X (x) = 1.

iv. There exists x ∈ R such that πX (x) = πX .

Proof. Part i is easy to show, and the result in the case of x ∈ L∞ has been observed in

Bellini and Rosazza Gianin (2008a). For part ii, note that for x < a < b ≤ ess sup(X)

we have from part i that

HX(a)−HX(x)

a− x ≤ HX(b)−HX(a)

b− a < 0, (3.6)

which implies that

lim sup
x→−∞

−x
HX(x)

≤ b− a
HX(a)−HX(b)

.

The above along with the definition of HX(·) and the dominated convergence theorem

(DCT) implies part ii. Towards proving part iii we note that for x < a < b ≤ ess sup(X),

similar to (3.6), we have

H ′−X (x) ≤ HX(a)−HX(x)

a− x ≤ H ′−X (b) . (3.7)

Inequality (3.7) and part ii now implies part iii. Now part iv follows easily from part

iii.

To derive the bounds for IX we need an expression for H ′+X (·). In the following

proposition we show that the reciprocal of H ′+X (x) is an expectation of (X − x)/HX (x),

but with respect to a weighted distribution with weights depending on either the right

or left derivative of Ψ(·) - the choice of the derivative being implicitly determined. For

the proof of this result we find it convenient to define for X ∈ XΨ a function β(·) on



52

(−∞, ess sup(X)) given by

β(x) := x− HX (x)

H ′+X (x)
. (3.8)

Also, we define Ψ
′
B(·), for a Borel subset B of R, by

Ψ
′

B(x) =

{
Ψ
′+(x), x ∈ B,

Ψ
′−(x), otherwise.

Proposition 2

For X ∈ XΨ, α ∈ (0, 1) and x < ess sup(X), we have

H ′+X (x) = −
E
[
Ψ
′
B

(
X−x
HX(x)

)]

E
[(

X−x
HX(x)

)
Ψ
′
B

(
X−x
HX(x)

)] , (3.9)

where B = (−1/H ′+X (x) ,∞).

Proof. Defining Ax(y) := y−x
HX(x)

, and using convexity of Ψ(·) we have

lim
ε→0+

Ψ (Ax+ε(y))−Ψ (Ax(y))

ε
=





−Ψ′− (Ax(y))
(

1+Ax(y)H′+X (x)

HX(x)

)
, y < β(x),

0, y = β(x),

−Ψ′+ (Ax(y))
(

1+Ax(y)H′+X (x)

HX(x)

)
, y > β(x).

(3.10)

Then we have using convexity of Ψ(·), Lemma 12, and the dominated convergence theo-

rem that

0 = lim
ε→0+

1

ε

(
E
[
Ψ

(
X − (x+ ε)

HX (x+ ε)

)]
− E

[
Ψ

(
X − x
HX (x)

)])

= E
[

lim
ε→0+

Ψ (Ax+ε(X))−Ψ (Ax(X))

ε

]

=
−E

[
(1 + Ax(X)H ′+X (x))

(
Ψ′+ (Ax(X)) I[X>β(x)] + Ψ′− (Ax(X)) I[X≤β(x)]

)]

HX (x)
.

The proof is completed by rearranging the last expression.

The following example demonstrates the need for the generality of the expression

provided in (3.9).
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Example 7

Let F (·) and Ψ(·) be given by

F (x) =





0, x < 0,
26
30
, 0 ≤ x < 1,

29
30
, 1 ≤ x < 2,

1, x ≥ 2,

and Ψ(x) =





0, x < 0,

x, 0 ≤ x < 1,

2x− 1, 1 ≤ x < 2,

3x− 3, x ≥ 2.

For α = 4/5 it is easily checked that H ′+X (0) = −2/3 from the fact that,

HX (x) = −2x

3
+ 1, for x ∈ [0, 1).

We confirm that in this example we have

1

H ′+X (0)
= −2 · 1

30
Ψ′+(2) + 1 · 3

30
Ψ′−(1) + 0 · 26

30
Ψ′−(0)

1
30

Ψ′+(2) + 3
30

Ψ′−(1) + 26
30

Ψ′−(0)
,

which agrees with (3.9).

Now we provide a result, likely of independent interest, which we need to bound

H ′+X (·).

Proposition 3

Let X ∈ XΨ be such that s∞(X) < 1 and E [Ψ(X)] ≥ 1. Then for any Borel subset B of

R we have

E
[
XΨ

′

B(X)
]
≥ E

[
Ψ
′

B(X)
]
. (3.11)

Moreover, if we have E [Ψ(X)] > 1 then we have strict inequality in (3.11) as well.

Proof. Using that s∞(X) < 1, Lemma 12 and convexity of Ψ(·) we have

E
[
XΨ′+(X)I[X∈B]

]
− E

[
Ψ′+(X)I[X∈B]

]

= E
[
(X − 1)Ψ′+(X)I

[X≥1 and X∈B]

]
− E

[
(1−X)Ψ′+(X)I

[X<1 and X∈B]

]

≥ E
[
(Ψ(X)− 1)I

[X≥1 and X∈B]

]
− E

[
(1−X)Ψ′+(X)I

[X<1 and X∈B]

]
.

(3.12)
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Similarly, we have

E
[
XΨ′−(X)I[X∈Bc]

]
− E

[
Ψ′−(X)I[X∈Bc]

]

≥ E
[
(Ψ(X)− 1)I[X≥1 and X∈Bc]

]
− E

[
(1−X)Ψ′−(X)I[X≤1 and X∈Bc]

]
.

(3.13)

Now note that

E [Ψ(X)] ≥ 1⇔ E
[
(Ψ(X)− 1)I[X≥1]

]
≥ E

[
(1−Ψ(X))I[X<1]

]
. (3.14)

Combining (3.12), (3.13), (3.14) and convexity of Ψ(·) we have

E
[
XΨ′+(X)I[X∈B] +XΨ′−(X)I[X∈Bc]

]
− E

[
Ψ′+(X)I[X∈B] + Ψ′−(X)I[X∈Bc]

]

≥ E
[
(1−Ψ(X))I[X<1]

]

− E
[
(1−X)Ψ′+(X)I

[X<1 and X∈B]
+ (1−X)Ψ′−(X)I[X<1 and X∈Bc]

]

≥ E
[
(1−X)Ψ′+(X)I

[X<1 and X∈B]
+ (1−X)Ψ′−(X)I[X<1 and X∈Bc]

]

− E
[
(1−X)Ψ′+(X)I

[X<1 and X∈B]
+ (1−X)Ψ′−(X)I[X<1 and X∈Bc]

]
= 0.

In the case that E [Ψ(X)] > 1 we have strict inequalities in (3.14); this results in,

E
[
XΨ′+(X)I[X∈B] +XΨ′−(X)I[X∈Bc]

]
> E

[
Ψ′+(X)I[X∈B] + Ψ′−(X)I[X∈Bc]

]
.

Hence the proof.

The following theorem provides tight bounds for IX .

Theorem 3

For X ∈ XΨ and α ∈ (0, 1), we have the following:

i. sup {IX} ≤ q+
α (F ) and inf {IX} ≤ qα(F ).

ii. For ∀x ∈ R, we have

E [X]−Ψ−1(1− α)

(
πX (x)− E [X]

1−Ψ−1(1− α)

)
≤ inf {IX} (3.15)

Proof. Since by definition πX (x) = x for x ≥ ess sup(X), it follows that

sup {IX} ≤ ess sup(X).
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Hence in establishing the first (resp., second) inequality of part i we assume, with-

out loss of generality, that q+
α (F ) < ess sup(X) (resp., qα(F ) < ess sup(X)). Since

q+
α (F ) < ess sup(X), we can choose δ > 0 such that q+

α (F ) + δ < ess sup(X). Then for

x ∈ [qα(F ), q+
α (F ) + δ] we have,

E
[
Ψ

(
X − x
HX (x)

) ∣∣∣∣X > x

]
=

E
[
Ψ
(

X−x
HX(x)

)]

Pr (X > x)
=

1− α
Pr (X > x)

≥ 1, (3.16)

with strict inequality in the case that q+
α (F ) < x ≤ q+

α (F ) + δ. Now (3.16), along with

Propositions 3 and 2, implies that for x ∈ [qα(F ), q+
α (F ) + δ],

∂+

∂x
πX (x) = 1 +H ′+X (x)

= 1−
E
[
Ψ′+

(
X−x
HX(x)

)
I[X>β(x)] + Ψ′−

(
X−x
HX(x)

)
I[X≤β(x)]

]

E
[
X−x
HX(x)

Ψ′+
(

X−x
HX(x)

)
I[X>β(x)] − X−x

HX(x)
Ψ′−

(
X−x
HX(x)

)
I[X≤β(x)]

]

= 1−
E
[
Ψ′+

(
X−x
HX(x)

)
I[X>β(x)] + Ψ′−

(
X−x
HX(x)

)
I[X≤β(x)]

∣∣X > x
]

E
[
X−x
HX(x)

Ψ′+
(

X−x
HX(x)

)
I[X>β(x)] − X−x

HX(x)
Ψ′−

(
X−x
HX(x)

)
I[X≤β(x)]

∣∣X > x
]

≥ 0,

(3.17)

again with strict inequality in the case that q+
α (F ) < x ≤ q+

α (F ) + δ. Since πX (·)

is convex, this completes the proof of part i. Towards proving part ii we note that for

x < ess sup(X), using Jensen’s inequality, we have

Ψ

(
E [X]− x
πX (x)− x

)
≤ E

[
Ψ

(
X − x

πX (x)− x

)]
= 1− α.

This combined with the fact that Ψ(·) is non-decreasing, and that

E [X] ≤ ess sup(X) ≤ πX (x) , ∀x ≥ ess sup(X),

implies that

E [X]−Ψ−1(1− α)

(
πX (x)− E [X]

1−Ψ−1(1− α)

)
≤ x, ∀x ∈ R. (3.18)

Since

inf
x∈R

πX (x) = πX = πX (x∗) , ∀x∗ ∈ IX ,
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it follows from (3.18) that for all x ∈ R and x∗ ∈ IX we have

E [X]−Ψ−1(1− α)

(
πX (x)− E [X]

1−Ψ−1(1− α)

)
≤ E [X]−Ψ−1(1− α)

(
πX − E [X]

1−Ψ−1(1− α)

)

≤ x∗.

Hence the proof.

Remark 1

In the case of the T-VaR, i.e. when Ψ(x) = (x)+, it is known that IF = [qα(F ), q+
α (F )],

see Rockafellar and Uryasev (2002). Hence, the upper bounds in Theorem 3 are tight.

The best possible lower bound provided by Theorem 3 is clearly

LX := E [X]−Ψ−1(1− α)

(
πX − E [X]

1−Ψ−1(1− α)

)
. (3.19)

Continuing with the case of T-VaR we see that for an F (·) with

0 = F (qα(F )−) < F (qα(F )) = α,

LX equals qα(F ), thus demonstrating that the lower bound is tight as well. In the case of

Ψ(x) = (x)+ it is interesting to observe that

LX = q+
α (F )− 1

α
E
[
(q+
α (F )−X)+

]
.

This demonstrates that the quality of the lower bound is dependent on the heaviness of

the lower tail of X .

While sup{IX} ≤ ess sup(X), we end this section with an example that demon-

strates that inf{IX} can be less than ess inf(X).

Example 8

Let F (·) be a Bernoulli distribution with q := F (0) > α, and p := 1− q (< 1−α). Since

qα(F ) = q+
α (F ) = 0, it follows from Theorem 3 that sup {IF} ≤ 0. This is also easily

confirmed directly by observing that

HF (x) =
1− x

Ψ−1
(

1−α
p

) , 0 ≤ x ≤ 1,
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which in turn implies that

∂+

∂z
πF (z)

∣∣∣∣
z=x

= 1− 1

Ψ−1
(

1−α
p

) > 0, 0 ≤ x < 1. (3.20)

The choice Ψ(x) = x+ leads to, as shown in Figure 3.1 (a) (for p = 2.5% and α = 95%),

inf {IF} = 0; hence (3.20) does not imply sup {IF} < ess inf(F ). We note that if we

instead require Ψ(·) to be differentiable (which implies that Ψ′(0) = 0) then

∂

∂z
πF (z)

∣∣∣∣
z=0

= 1− 1

Ψ−1
(

1−α
p

) > 0,

implies that sup {IF} < ess inf(F ) = 0. An example of such an Young function is

Ψ(x) = (x+)2; Figure 3.1 (b) provides the graph of πF (·) for p = 2.5% and α = 95%.
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(a) Case i: Ψ(x) = x+

0.
70

5
0.

71
0

0.
71

5
0.

72
0

x

π α
(X

, x
)

−0.04 −0.03 −0.02 0.00 0.01 0.02−0.0107

(b) Case ii: Ψ(x) = (x+)2

Figure 3.1: πF (·), when X ∼ Ber(0.025) and α = 95%

3.3 Simplified Algorithm

For expository reasons we first describe a version of our algorithm that embodies its

key ideas; the actual algorithm is presented in the next section. To construct this version
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we will need two results; toward presenting these we begin by adding to our notation. For

a given X ∈ XΨ, by Λ(·, ·), we denote the function on R× R+ defined by

Λ(x, s) := E
[
Ψ

(
X − x
s

)]
− (1− α)

Also, let Λ1+(·, ·) and Λ2−(·, ·) be defined by

Λ1+ (x, s) :=
∂+

∂z
E
[
Ψ

(
X − z
s

)] ∣∣∣∣
z=x

and Λ2− (x, s) :=
∂−
∂z

E
[
Ψ

(
X − x
z

)] ∣∣∣∣
z=s

.

We summarize the properties of Λ(·, ·) in Lemma 13 of section 3.5. We note that for

x < ess sup(X), Lemma 13 implies that HX (x) is the unique non-negative solution of

Λ(x, ·) = 0. For x < ess sup(X) we define functions Nx(·) and N n
x (·) on (s∞(X),∞)

defined by

Nx(h) := h− Λ (x, h)

Λ2− (x, h)
, (3.21)

and

N n
x (h) := Nx

(
N n−1
x (h)

)
for n ∈ N, where N 0

x (h) := h,

respectively. By convention, we define Nx (0) := 0. The following proposition provides

the properties of Nx(·) needed for our algorithm. Note that Nx(·) defines the Newton-

Raphson steps towards computing HX (x).

Proposition 4

For X ∈ XΨ, α ∈ (0, 1) and x < ess sup(X). Then we have the following:

i. HX (x) ≥ E
[
(X − x)+

]
/Ψ−1(1− α) > 0.

ii. h < Nx(h) < Nx(h′) ≤ HX (x), for s∞(X) < h < h′ ≤ HX (x).

iii. Nx(·) is left continuous on (s∞(X),∞).

iv. lim
n→∞

N n
x (h′) = HX (x), for s∞(X) < h′ ≤ HX (x).
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Proof. Part i follows easily from Jensen’s inequality. In the following x, h and h′ denote

reals satisfying x < ess sup(X) and s∞(X) < h < h′ ≤ HX (x). Towards establishing

part ii we note that parts a and c of Lemma 13 imply that

Λ(x, h) > 0, Λ2−(x, h) < 0 and
Λ(x, h′)− Λ(x, h)

h′ − h ≥ Λ2−(x, h).

These imply that

h < Nx(h) = h′ − (h′ − h)− Λ(x, h)

Λ2−(x, h)

≤ h′ − Λ(x, h′)

Λ2−(x, h)

< h′ − Λ(x, h′)

Λ2−(x, h′)
= Nx(h′).

Part ii now follows by observing that HX (x) is a fixed point of Nx(·). Part iii follows

from parts a and c of Lemma 13. For the proof of part iv we note that part ii implies

N n
x (h′) is a monotone non-decreasing sequence bounded above by HX (x), and by part

iii lim
n→∞

N n
x (h) is a fixed point of Nx(·). The proof is now completed by observing that

Lemma 13 implies that HX (x) is the unique fixed point of Nx(·).

The following corollary provides a method that we use to compare πX (xi) and

πX (xi+1) for xi, xi+1 ∈ Gε. We skip its proof as it easily follows from the above propo-

sition.

Corollary 2. Let X ∈ XΨ, α ∈ (0, 1), x < ess sup(X) and s∞(X) < h ≤ HX (x). If we

assume πX (x) > πX (y), then there exists N ∈ N such that

x+N n
x (h) > πX (y) , (3.22)

for any n ≥ N . Furthermore (3.22) implies πX (x) > πX (y).

The simplified algorithm is a grid search algorithm starting from the right most grid

point and proceeding left in unit steps. In the following proposition we provide a method

for constructing a grid satisfying certain properties that are key for the well functioning

of our algorithm.
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Proposition 5

Let X ∈ XΨ and α ∈ (0, 1) be such that q+
α (F ) < ess sup(X). Then for any given ε > 0,

in finitely many calculation, one can construct an explicitly defined grid x1 < . . . < xJ

(with J > 3) satisfying the following:

i. IX ⊆ (x1, xJ), and xJ < ess sup(X).

ii. max
2≤j≤J

|xj − xj−1| ≤ ε.

iii. {πX (xj)}1≤j≤J is an U-shaped sequence.

iv. min
1≤j≤J

πX (xj)− ε ≤ πX ≤ min
1≤j≤J

πX (xj).

Proof. We choose ε′ in (0, ε) such that q+
α (F ) + ε′ < ess sup(X). In the case that

E
[(
X − (q+

α (F ) + ε′)
)

+

]
> s∞(X)Ψ−1(1− α),

we define

h :=
E
[
(X − (q+

α (F ) + ε′))+

]

Ψ−1(1− α)
;

else we choose a h in (s∞(X), HX (q+
α (F ) + ε′)) in finitely many steps by employing a

trial and error method. Since h ∈ (s∞(X), HX (q+
α (F ))), by Proposition 4

lim
m→∞

Nm
q+α (F )+ε′

(h) = HX

(
q+
α (F ) + ε′

)
,

which in turn, along with Theorem 3 i., implies that for some integer m > 0

E
[
Ψ

(
X − q+

α (F )

π̂ − q+
α (F )

)]
< 1− α, (3.23)

where π̂ := Nm
x (h)+q+

α (F )+ε′. Since (3.23) implies that πX (q+
α (F )) < π̂, by Theorem

3 ii. we have

L̂ := E [X]−Ψ−1(1− α)

(
π̂ − E [X]

1−Ψ−1(1− α)

)
≤ inf {IX}

Now let J be an integer such that q+
α (F )−L̂ ≤ (J−3)ε. Then the grid x1 < x2 < . . . < xJ
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defined below satisfies parts i and ii:

xj := L̂+
q+
α (F )− L̂
J − 3

(j − 2), 1 ≤ j ≤ J − 1; xJ := q+
α (F ) + ε′.

Part iii follows easily from Theorem 3 and Proposition 1. Finally we can easily prove that

any grid {x1, · · · , xJ} satisfies part i, ii and iii also satisfies part iv by Proposition 1.

The simplicity of the version of our algorithm described in this section primar-

ily derives from three assumptions that are usually satisfied in practice. First, we as-

sume that s∞(X) = 0. This mild assumption1 has been used before in the literature

(see Goovaerts et al. (2004)). Second, we assume that q+
α (F ) < ess sup(X) which is

clearly satisfied when ess sup(X) = ∞ - a common situation in practice. Also, in the

case that ess sup(X) =∞, for sufficiently large sample size n, q+
α (Fn) < ess sup(Fn).

This assumption implies that for any ε > 0 we can by Proposition 5 construct a grid

x1 < x2 < . . . < xJ−1 < xJ , for some J > 3, satisfying properties listed therein. We

assume that this grid further satisfies

πX (xj−1) 6= πX (xj) , for j = 2, · · · , J. (3.24)

In the case when IX is a singleton, the set of such grids that do not satisfy (3.24) is of

Lebesgue measure zero. It is worth emphasizing that the algorithm of the next section

will not need any of these assumptions. We summarize the first two assumptions for the

simplified algorithm below; also let Gε := {x1, · · · , xJ} be the grid in Proposition 5 that

satisfies (3.24). We refer to Gε as a standard grid.

Assumption SA:

SA1. s∞(X) = 0.

SA2. q+
α (F ) < ess sup(X).

1Example 17 in Chapter 4 is an example where this assumption fails to hold.
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S1. Assign π̂X (xJ); j = J

N1. Compute π̂X(xj)

C1. Is πX(xj−1) < π̂X(xj) ?

C2. Is π̂X(xj−1) > πX(xj) ?

S2. Stop: πX ∈ [π̂X(xj+1)− (xj+1 − xj−1), π̂X(xj+1)]

N2. Compute π̂X(xj−1)N3. Compute π̂X(xj)

No

Yes

No

Yes

j ← j − 1

Figure 3.2: Flowchart for the Simplified Algorithm

Now we explain the simplified algorithm which works under Assumption SA and

under the assumption of the existence of a standard grid, Gε. Flowchart of the simplified

algorithm is given in Figure 3.2. We first define the initial value, h0(·), of Newton-

Raphson steps at each grid point as

h0(xj) =
E [(X − xj)+]

Ψ−1(1− α)
, for xj ∈ Gε. (3.25)

Assumption SA and Proposition 4 imply that

0 < h0(xj) ≤ HX (xj) , for any xj ∈ Gε. (3.26)
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Now, we explain the manner by which the simplified algorithm determines whether

πX (xj) > πX (xj+1) or πX (xj) < πX (xj+1). Recall that we have

πX (xj) 6= πX (xj+1) for any xj, xj+1 ∈ Gε,

by the assumption on the grid. First consider the case, πX (xj) > πX (xj+1); inequalities

(3.26) and Corollary 2 guarantee the existence of N ∈ N0 such that

xj +N n
xj

(h0(xj)) > πX (xj+1) , (3.27)

for all n ≥ N . We note that the inequality (3.27) is equivalent to the two simultaneous

inequalities

E

[
ψ

(
X − xj+1

N n
xj

(h0(xj)) + (xj − xj+1)

)]
< 1−α and N n

xj
(h0(xj))+(xj − xj+1) > 0,

(3.28)

which are verified in Step C1 of the simplified algorithm. In the alternate case of

πX (xj) < πX (xj+1) ,

we use a procedure similar to the one described above using insteadN n
xj+1

(h0(xj+1)) for

n ∈ N0. By repeating these procedures on the grid, Gε, the algorithm can find an xj in

{x2, · · · , xJ−1} such that

πX (xj−1) > πX (xj) and πX (xj) < πX (xj+1) . (3.29)

Hence πX (xj) is the minimum of {πX (x1) , · · · , πX (xJ)}. Furthermore (3.29) and

Proposition 1 imply that IX ⊆ [xj−1, xj+1].

Finally, we explain the manner by which the simplified algorithm constructs an

approximation for πX . In the simplified algorithm, (3.29) is identified through the in-

equalities

xj−1 +N nj−1
xj−1

(h0(xj−1)) > πX (xj) and πX (xj) < xj+1 +N nj+1
xj+1

(h0(xj+1)) ,

(3.30)
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for some nj−1, nj+1 ∈ N. Using Newton-Raphson steps in (3.30), the simplified algo-

rithm constructs the following approximation for πX :

π̂sX := xj+1 +N xj+1
nj+1

(h0(xj+1))− xj+1 − xj−1

2
. (3.31)

Finally, (3.30), Proposition 1 and convexity of πX (·) imply that the output of the simpli-

fied algorithm, π̂sX , satisfies

π̂sX ∈ [πX − ε, πX + ε] . (3.32)

The following example demonstrates the performance of the simplified algorithm.

We note that the implementation of the simplified algorithm used for this example incor-

porates some techniques described under Implementation Detail 1 in the next section.

Example 9

Let F (·) denote the exponential distribution with mean 1 and let Fn(·) denote the empir-

ical distribution function corresponding to a random sample of size n. Also, let α = 0.95

and Ψ(·) be defined by

Ψ(x) =

{
0, x < 0,
x2+x

2
, otherwise.

Since Ψ(·) is a quadratic polynomial on the positive reals, we can easily calculate exact

values of the Orlicz quantile and the Haezendonck-Goovaerts risk; these are given below:

IF =
{
− log

(
0.05

(√
153− 11

))}
, where − log

((
0.05
√

153− 11
))
≈ 2.681420

(3.33)

and

πF = − log
(

0.05
(√

153− 11
))

+

√
153− 11

5−
√

17
≈ 4.242973. (3.34)

First, we use the the simplified algorithm with a grid containing 1, 000 points which re-

sults in the lower and upper bounds for IF given by x852 ≈ 2.6794 and x854 ≈ 2.6838,

respectively. Furthermore, the simplified algorithm also concludes that πF belongs to
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the interval [4.238642, 4.242975]. The exact values in (3.33) and (3.34) confirm the va-

lidity of these conclusions. Figure 3.3 plots the number of Newton-Raphson iterations

employed by the algorithm to compute πF (xj), for j = 853, . . . , 1000. From this figure

it is seen that most of the grid points require a single iteration with a few grid points at

both the ends being the only exceptions.
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Figure 3.3: No. of Newton-Raphson Itera-
tions at Grid Points xj , j = 853, . . . , 1000

Second, we employ the algorithm for Fn(·), with sample size n = 1, 000 with

1, 000 grid points, and this is repeated for 1, 000 runs. The number of Newton-Raphson

iterations for each of these 1, 000 runs is similar to that shown in Figure 3.3, i.e. most grid

points require a single iteration with a few of the grid points at both ends requiring more

iterations. We note that it is only the grid points x999 and x1000 that require more than two

Newton-Raphson iterations. Also, the number of iterations at x999 and x1,000 are always

the same. The mean number of iterations at a grid point is 1.024987, and the average

number of grid points visited by the algorithm approximately equals 147. We report a

summary of the number of iterations used by the algorithm in Tables 3.1 and 3.2.

In the above example we observe that for most values of j, except for a few grid

points at both the ends, a single Newton-Raphson step is sufficient for the comparison



66

of πFn (xj−1) and πFn (xj). While such a good performance of the simplified algorithm

is partly due to the fact that the comparison of πFn (xj−1) and πFn (xj) does not require

exact calculation of these values, we also emphasize that part of the reason is also that the

Newton-Raphson steps generally converge fast. In the next section we prove the exponen-

tial convergence rate of Newton-Raphson steps, and using this guaranteed convergence

rate we describe a generalized version of the simplified algorithm.

# of Grid Points 0 1 2 3 4 5 6 Total

# of Samples 408 0 359 0 231 0 2 1, 000

Table 3.1: Distribution of No. of Grid Points Excluding x999 and
x1000 that Require at Least 2 Newton-Raphson Steps

# of Newton-Raphson Steps 1 2 3 4 Total

# of Samples 0 989 11 0 1, 000

Table 3.2: Distribution of Newton-Raphson Steps at x1000

3.4 The Algorithm

In the previous section we described a simplified algorithm which computes πX

for X ∈ XΨ under the Assumption SA and by assuming the existence of a standard

grid, Gε. In this section we provide an algorithm which is a more generalized version of

the simplified algorithm in that it requires neither Assumption SA nor the existence of a

standard grid. Furthermore, this algorithm is faster than the simplified algorithm due to

it adopting a bisection algorithm in the grid search. This algorithm is structured with a

core part wrapped as a sub-algorithm, and the algorithm repeatedly employing the sub-

algorithm with varying inputs until an ε∗ approximation of πX is achieved. In this section

ε∗(> 0) denotes the required approximation error rate for πX . We also define an internal
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error rate, ε := 2
7
ε∗, which is used only in the sub-algorithm.

We treat s∞(X) as an input for our algorithm as it can usually be analytically

determined. By l(F ) and h∗(F ) we denote real numbers such that IX ⊆ (l(F ), q+
α (F )]

and h∗(F ) > HX (l(F )); Lemma 11 guarantees that these can be calculated in a finitely

many steps. We denote by η(·) a function from R2 to R7 defined by

η(a, b) := (x1, . . . , x7) where xi = a+ (b− a) ∗ (i− 1)

7
, i = 1, . . . , 7.

By HF we will denote a class of non-increasing functions on [l(F ), q+
α (F )] such that for

h(·) ∈ HF ,

s∞(X) < max

{
h(q+

α (F )), I
(
q+
α (F ) = ess sup(X)

) E
[
(X − x)+

]

Ψ−1(1− α)

}
≤ h(x) ≤ HX (x) ,

for x ∈ [l(F ), q+
α (F )] \ {ess sup(X)}, and h(q+

α (F )) = 0 if q+
α (F ) = ess sup(X).

Moreover, we will require the functions in HF to be such that they can be evaluated at

any point in a finitely many steps.

Lemma 11 implies that in a finitely many steps we can specify h0(q+
α (F )) such

that h0(q+
α (F )) ∈ (s∞(X), HX(q+

α (F ))]. Thus a simple definition of h0(·) ∈ HF on the

interval [l(F ), q+
α (F )) is given by

h0(x) := max

{
h0(q+

α (F )), I
(
q+
α (F ) = ess sup(X)

) E
[
(X − x)+

]

Ψ−1(1− α)

}
, ∀x ∈ [l(F ), q+

α (F )).

3.4.1 Sub-Algorithm

In this subsection, we describe the sub-algorithm. Similar to the simplified algo-

rithm, the sub-algorithm is a grid search algorithm which works on a given equidistant

grid, x1 < · · · < x7, under the assumption that IX ⊆ [x1, x7]. Goal of the sub-algorithm

is to provide a finer interval for IX . Unlike the standard grid, Gε, in the simplified al-

gorithm, now it is possible to have πX (xj) = πX (xj+1) for some xj ∈ {x1, · · · , x6}–

see Example 11 for instance. Since it is not possible to conclude πX (xi) = πX (xi+1)

within a finite number of Newton-Raphson steps, we introduce πX (xi)
ε≈ πX (xi+1) as a



68

third possible conclusion to the comparison exercise of πX (xi) to πX (xi+1). Proposition

7 explains how the sub-algorithm categorizes the relationship of πX (xi) with πX (xi+1)

into one of the following:

πX (xi) > πX (xi+1) ; πX (xi) < πX (xi+1) ; πX (xi)
ε≈ πX (xi+1) .

Based on these three conclusions, the sub-algorithm provides an interval for IX . Fig-

ure 3.4 contains the flowchart of the sub-algorithm, and the key properties of the sub-

algorithm are summarized below in Theorem 4. We begin by stating three propositions

that are used in the proof of Theorem 4; the proofs of the propositions are provided in the

final section of this chapter.

Proposition 6

Let X ∈ XΨ, α ∈ (0, 1) and h(·) ∈ HF . Also, let

l(F ) ≤ a < b ≤ q+
α (F ),

and u be an upper bound for HX (a). Then for all x ∈ [a, b] \ {ess sup(X)} we have

HX (x)−N n
x (h(x)) ≤ (C)n (u− h (b)) for any n ∈ N0, (3.35)

where C ∈ [0, 1), computable in finitely many steps, is given by

C := 1−
(
h(b)

u

) E
[
Ψ
′+
(
X−b
u

) (
X−b
u

)
+

]

E
[
Ψ′+

(
X−a
h(b)

)(
X−a
h(b)

)
+

] ,

for q+
α (F ) < ess sup(X), and otherwise is given by2

C := 1−max



(
h(b)

u

) E
[
Ψ
′+
(
X−b
u

) (
X−b
u

)
+

]

E
[
Ψ′+

(
X−a
h(b)

)(
X−a
h(b)

)
+

] , (1− α)3 Ψ
′+ (Ψ−1(1− α))

Ψ′+
(

Ψ−1(1−α)
1−α

)


 .

(3.36)

2In the case that h(b) = 0, we defines C in (3.36) equal to C∞ of (3.68).
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Proposition 7

Let X ∈ XΨ, α ∈ (0, 1) and h(·) ∈ HF . Also, let l(F ) ≤ a < b ≤ q+
α (F ), u be an upper

bound for HX (a), and for ε > 0 let N be given by

N := inf {n ≥ 1 : ε ≥ (C)n u} , (3.37)

where C is that of proposition 6. Then for x, y ∈ [a, b], the sequences

N n
x (h(x)) and N n

y (h(y)) , n ∈ N0, (3.38)

are well-defined and we have the following:

i. For n ≥ N we have

0 ≤ HX (x)−N n
x (h(x)) ≤ ε. (3.39)

ii. πX(x)
ε≈ πX(y) if, for some n1, n2 ≥ N , we have

x+N n1
x (h(x)) ≤ πX(y), and y +N n2

y (h(y)) ≤ πX(x). (3.40)

Proposition 8

Let X ∈ XΨ and α ∈ (0, 1). Then for a given internal error rate ε > 0, the sub-algorithm

working on input (←−xL,←−xH ,←−uL,
←−
h (·)) in R2 × R+ ×HF with

IX ⊆ [←−xL,←−xH ] ⊆ [l(F ), q+
α (F )], and←−uL ≥ HX (←−xL) , (3.41)

gives output,
(

tag,−→xL,−→xH ,−→xO,−→uL,
−→
h (·)

)
, with the following properties:

i. The output (−→xL,−→xH ,
−→
h (·)) in R2 × R+ ×HF satisfies

IX ⊆ [−→xL,−→xH ] ⊆ [←−xL,←−xH ] and (−→xH −−→xL) ≤ (←−xH −←−xL)/2, (3.42)

also

←−
h (·) ≤ −→h (·) and ←−uL ≥ −→uL ≥ HX (−→xL) .
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ii. The approximation error bounds of π̂X for each possible value of the output tag are

those given in Table 3.4.

Theorem 4

LetX ∈ XΨ and α ∈ (0, 1). Then, for a given internal error rate ε > 0, the sub-algorithm

working on input (←−xL,←−xH ,←−uL,
←−
h (·)) in R2 × R+ ×HF with

IX ⊆ [←−xL,←−xH ] ⊆ [l(F ), q+
α (F )], and←−uL ≥ HX (←−xL) , (3.43)

produces an output vector,
(

tag,−→xL,−→xH ,−→xO,−→uL,
−→
h (·)

)
with the following properties:

i. The sub-algorithm terminates within O(− log(ε)) number of evaluations of expecta-

tions under F .

ii. The output (−→xL,−→xH ,−→uL,
−→
h (·)) in R2 × R+ ×HF satisfies

IX ⊆ [−→xL,−→xH ] ⊆ [←−xL,←−xH ] with (−→xH −−→xL) ≤ (←−xH −←−xL)/2, (3.44)

along with

←−
h (·) ≤ −→h (·) and ←−uL ≥ −→uL ≥ HX (−→xL) .

iii. The sub-algorithm defines an approximation of πX , denoted by π̂X , given by

π̂X :=
−→
h (−→xO) +−→xO.

The approximation error bounds for π̂X for each possible value of the output tag are

given in Table 3.4.

Proof. Part i is easily derived using Propositions 6 and 7. Parts ii and iii immediately

follow from Proposition 8.
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3.4.2 Algorithm

The algorithm repeatedly employs the sub-algorithm until the approximation of πX

achieves the error rate, ε∗. The algorithm is pretty much self explanatory with Figure 3.5,

Tables 3.3 and 3.4. We summarize the properties of the algorithm below in Theorem 5.

Theorem 5

For X ∈ XΨ and α ∈ (0, 1), the algorithm working on input, (q+
α (F ), s∞(X), ε∗), satis-

fies the following properties:

i. The output (π̂∗X ,
←−xL,←−xH) satisfies

π̂∗X ∈ [πX − ε∗, πX + ε∗] and IX ⊆ [←−xL,←−xH ] ,

where π̂∗X := π̂X − ub+lb
2

. ub and lb are defined in Table 3.4.

ii. The algorithm terminates within O
(
(log(ε∗))2) number of evaluations of expecta-

tions under F (·), the distribution function of X .

Proof. When the final call to the sub-algorithm results in a tag other than T1, Part i fol-

lows easily from Theorem 4. When the final call to the sub-algorithm results in the tag T1,

Table 3.4 and Step vi in Figure 3.5 guarantee that ub− lb ≤ 7ε, which proves part i. For

part ii, we know that from Lemma 11, that the algorithm calculates (l(F ), h∗(F ), h(·))

such that

IX ⊆
[
l(F ), q+

α (F )
]
, h∗(F ) > HX (l(F )) , and h(·) ∈ HF (3.45)

within a finite number of evaluations of expectations under F (·). Note that (3.45) guar-

antees that (l(F ), q+
α (F ), h∗(F ), h(·)) satisfies the conditions in Theorem 4. Hence from

Theorem 4.ii and iii we know that O(− log(ε∗)) calls to the sub-algorithms guarantees

either −→xH − −→xL < ε or |π̂∗X − πX | ≤ 7
2
ε. Furthermore, each call to the sub-algorithm

is guaranteed to terminate within O(− log(ε)) = O(− log(ε∗)) number of evaluations of

expectations under F , which proves that the complexity is O
(
(log(ε∗))2). We end by
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observing that the complexity of Step vi in Figure 3.5 is O (log(ε)) = O(− log(ε∗)).

x̃← η (←−xL,←−xH); ĤX(·)←←−h (·); Compute N ; j ← 7

N1. Update π̂X(←−xj)

C1. Is πX(←−−xj−1) < π̂X(←−xj) ?

C2. Is π̂X(←−−xj−1) > πX(←−xj) ?

Generate output;
Stop

Is j = 2 ?

N2. Update π̂X(←−−xj−1)

N3. Update π̂X(←−xj)

E1. Is πX(←−−xj−1)
ε≈ πX(←−xj) ?

E2. Is j = 2 or

πX(←−xj)
ε≈ πX(←−−xj+1) ?

No

Yes

Yes

No

j ← j − 1

No

No

j ← j − 1

No

No

Yes

Yes

Yes

Figure 3.4: Flowchart of the Sub-Algorithm

3.4.3 Implementation Details

In this sub-section we provide some techniques used in the implementation of the

algorithm to improve its performance in practical situations. These are collected under

Implementation Details 1 and 2. Implementation Details 1 suggests an efficient way

of implementing Newton-Raphson steps in the algorithm. Lemma 10 shows that such

Newton-Raphson steps in the sub-algorithm are well-defined and converge faster than

previously defined Newton-Raphson steps in (3.38). We note that Implementation Detail

1 can be easily applied to the case of the simplified algorithm under the Assumption SA

and under the assumption of the existence of the standard grid, Gε.
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Stopping Rule
Output

Tag −→xL −→xH −→xO

πX (xj−1)
ε≈ πX (xj)

ε≈ πX (xj+1) T0 x1 x7 xj+1

πX (x6) > πX (x7) T1 x6 x7

−→xH

πX (x1) < πX (x2) T2 x1 x2

πX (xj−1) , πX (xj+1) > πX (xj) T3 xj−1 xj+1

πX (x5) > πX (x6)
ε≈ πX (x7) T4 x5 x7

πX (x1)
ε≈ πX (x2) < πX (x3) T5 x1 x3

πX (xj−1) > πX (xj)
ε≈ πX (xj+1)

T6 xj−1 xj+2

and πX (xj+1) < πX (xj+2)

Table 3.3: Sub-Algorithm: Stopping Rule and Output

Tag
lb ≤ π̂X − πX ≤ ub

lb ub

T0 −ε 6 · ε

T1 −(HX (−→xO)−−→h (−→xO)) (←−xH −←−xL)/6

T2 0 (←−xH −←−xL)/6

T3 0 (←−xH −←−xL)/3

T4 −ε (←−xH −←−xL)/3

T5 0 (←−xH −←−xL)/3

T6 0 (←−xH −←−xL)/2

Table 3.4: Sub-Algorithm: Error Bounds for π̂X
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i. ←−xL ← l(F ) and ←−xH ← q+α (F );

Compute ←−uL and
←−
h (·)

Sub-algorithm:

Input:
(←−xL,←−xH ,←−uL,

←−
h (·)

)

Output:
(
tag,−→xL,−→xH ,−→xO,−→uL,

−→
h (·)

)

ii. Is tag T0 ?iii. Is ←−xH −←−xL ≤ 6ε ?

iv.
(←−xL,←−xH ,←−uL,

←−
h (·)

)
←
(−→xL,−→xH ,−→uL,

−→
h (·)

)

v. Is tag T1 ?

vi. Update
−→
h (·) to satisfy−→

h (−→xO)
ε≈ HX {−→xO}

vii. Output π̂∗
X ; Stop

Yes

No

Yes

Yes

No

No

Figure 3.5: Flowchart of the Algorithm

Implementation Detail 1

Let X ∈ XΨ, α ∈ (0, 1),
←−
h (·) ∈ HF and ε > 0. For a given grid, {x1, · · · , xJ} , the

sub-algorithm (the simplified algorithm) defines new Newton-Raphson steps on the grid

as follows:

i. Define Ĥ0
X (x) :=

←−
h (x) on x ∈ {x1, · · · , xJ}.

ii. In Step N1, we define

Ĥ1
X (xJ) :=

{
NxJ

(
Ĥ0
X (xJ)

)
, xJ < ess sup(X),

0, xJ ≥ ess sup(X),
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and for xj ∈ {x1, · · · , xJ−1} and nj, nj+1 − 1 ≥ 0,

Ĥ
nj+1
X (xj) := Nxj

(
max

{
Ĥ
nj
X (xj) , Ĥ

nj+1

X (xj+1)
})

. (3.46)

iii. In Step N2, when xj ∈ {x2, · · · , xJ} and nj−1, nj − 1 ≥ 0

Ĥ
nj−1+1
X (xj−1) :=

Nxj−1

(
max

{
Ĥ
nj−1

X (xj−1) , Ĥ
nj
X (xj) + (xj − xj−1)

}) (3.47)

iv. In Step N3, when xj ∈ {x2, · · · , xJ} and nj−1, nj ≥ 1

Ĥ
nj+1
X (xj) :=
{
Nxj

(
max

{
Ĥ
nj
X (xj) , Ĥ

nj−1

X (xj−1) + (xj−1 − xj)
})

, xj < ess sup(X),

0, xj ≥ ess sup(X).

(3.48)

Though N defined in Proposition 6 and 7 for the given h(·) ∈ HF and grid,

x1 < · · · < x7, guarantees that

|HX (x)−N n
x (h(x))| < ε for any n ≥ N, x ∈ [x1, x7], (3.49)

often times N may be prohibitively large for the first few calls to the sub-algorithm, and

hence its practical use is questionable– see for instance Example 10 and Example 11.

However, we note that actual convergence of Newton-Raphson steps is much faster than

that guaranteed by (3.49). For instance in Example 11, calculated N in (3.49) for the first

sub-algorithm is 1, 377, 301, but in only 5 iterations it achieves

∣∣N 5
x5

(h(x5))−HX (x5)
∣∣ < ε and

∣∣N 5
x5

(h(x6))−HX (x6)
∣∣ < ε.

Convergence of Ĥn
X (x) defined in Implementation Detail 1 is so much faster that in a

single Newton-Raphson step it achieves

∣∣∣Ĥ1
X (x5)−HX (x5)

∣∣∣ < ε and
∣∣∣Ĥ1

X (x6)−HX (x6)
∣∣∣ < ε.

We provide details of actual convergence of N n
x (h(x)) and Ĥn

X (x) at the grid points, x5

and x6, in Figure 3.6 and Table 3.7.
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To avoid unnecessarily many Newton-Raphson steps, we explain a new method to

declare πX (xi)
ε≈ πX (xi+1) under Implementation Detail 2.

Implementation Detail 2

Let X ∈ XΨ and α ∈ (0, 1). For the given internal error rate ε > 0, consider the sub-

algorithm working on input (←−xL,←−xH ,←−uL,
←−
h (·)) in R2 × R+ ×HF with

IX ⊆ [←−xL,←−xH ] ⊆ [l(F ), q+
α (F )], and←−uL ≥ HX (←−xL) .

Define N as in Proposition 6 and 7, and let N ′ be a predetermined small positive integer

(For instance, N ′ := 5). If N > N ′, we adapt the following special implementation in

Step E1 of the sub-algorithm:

If nj, nj+1 ≥ N ′ and Ĥn
X (xj), Ĥn

X (xj+1) satisfy the following inequalities

HX (xj)− Ĥn
X (xj) ≤ ε and HX (xj+1)− Ĥn

X (xj+1) ≤ ε, (3.50)

we conclude

πX (xj−1)
ε≈ πX (xj) , (3.51)

and move to Step E2. Otherwise we cannot conclude (3.51) and move to Step N2.

We note that the inequalities in (3.50), by Proposition 7, imply (3.51).

3.4.4 Performance of the Algorithm

In the following two examples we use R-functions HaezC and HaezE, whose

source code is provided in the Appendix, for the calculation of the given Haezendonck-

Goovaerts risk measures. In both examples, we use the above algorithm with Implemen-

tation Details 1 and 2 with N ′ := 5.
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Example 10

Let F (·) denote the exponential distribution function with mean 1, α = 0.95, and let Ψ(·)

be given by

Ψ(x) =

{
0, x < 0,

x2, otherwise.

It is easily shown that πX (·) is a strictly convex function which implies that IF is a sin-

gleton. This rather simple Young function allows us to explicitly compute the following:

IF = {− log(2 · (1− α))} where − log(2 · (1− α)) ≈ 2.30259, (3.52)

and

πF = 2− log(2 · (1− α)) ≈ 4.30259. (3.53)

We use the above algorithm to calculate πF with ε∗ = 0.01. The following R commands

using HaezC function calculate

πF ∈ [π̂∗X − ε∗, π̂∗X + ε∗] = [4.285491, 4.305491] ,

which is consistent with (3.52) and (3.53). Furthermore the algorithm also provides an

interval for IF

[−→xL,−→xH ] = [2.279728, 2.316498] ,

and clearly IF ⊆ [−→xL,−→xH ]. We provide the details of each sub-algorithm call in Table

3.5. As you can see from this table, we note that the first four sub-algorithm calls finish

with Tag T3 while the final sub-algorithm call finishes with Tag T0.
> library(haezendonck)
> RC <- HaezC(alpha = 0.95, epsilon = 0.01, upquantile = NULL,
+ lowsupport = 0, upsupport = Inf, mybeta = (1 - 0.95)^0.5,
+ Haz = function(x) { x^2 }, Hazd = function(x) { 2 * x},
+ mydist = function(x) { exp(-x) })
> print(RC)

> print(RC)

Haezendonck-Goovaerts risk measure Orlicz Quantile
Estimation 4.295491 2.298113
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j 7 6 5 4 3 2 1

Grid #1: N = 1, 004, 402 and N ′ = 5

xj 2.99573 2.49953 2.00332 1.50711 1.01091 0.51470 0.01849

πX (xj) 4.40995 4.31197 4.32614 4.48402 4.82608 5.40420 6.28484

∆πX (xj−1) > 0 < 0

N-R Steps at xj 3 3 1

Grid #2: N = 67 and N ′ = 5

xj 2.99573 2.83033 2.66493 2.49953 2.33412 2.16872 2.00332

πX (xj) 4.40995 4.36647 4.33351 4.31197 4.30283 4.30717 4.32614

∆πX (xj−1) > 0 > 0 > 0 > 0 < 0

N-R Steps at xj 2 1 1 1 1 1

Grid #3: N = 9 and N ′ = 5

xj 2.49953 2.44439 2.38926 2.33412 2.27900 2.22386 2.16872

πX (xj) 4.31197 4.30750 4.30444 4.30283 4.30273 4.30416 4.30717

∆πX (xj−1) > 0 > 0 > 0 > 0 < 0

N-R Steps at xj 1 1 2 2 1 1

Grid #4: N = 3 and N ′ = 5

xj 2.33412 2.31575 2.29737 2.27899 2.26061 2.24223 2.22386

πX (xj) 4.30283 4.30263 4.30259 4.30273 4.30303 4.30351 4.30416

∆πX (xj−1) > 0 > 0 < 0

N-R Steps at xj 1 2 2 1

Grid #5: N = 2 and N ′ = 5

xj 2.31575 2.30962 2.30349 2.29737 2.29124 2.28512 2.27899

πX (xj) 4.30263 4.30260 4.30259 4.30259 4.30262 4.30266 4.30273

∆πX (xj−1) > 0
ε≈ 0

ε≈ 0

N-R Steps at xj 1 2 2 2

Table 3.5: Calculation of πF Using the Algorithm with Ψ(x) = x2 and an Expo-
nential F (·)

Lower Bound 4.285491 2.279728
Upper Bound 4.305491 2.316498

In the above example IF is a singleton; the following example exhibits the behavior

of the algorithm when this set of minimizers is not a singleton.
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Example 11

Let F (·) denote the distribution function defined as

F (x) =





1, x ≥ 20,

0.95, 10 ≤ x < 20,

0, x < 10,

and α = 0.95. Also, let Ψ(·) be defined as

Ψ(x) =

{
0, x < 0,

x2, otherwise.

Again, due to the simple form of the Young function we can explicitly compute the fol-

lowing:

IF = [10, 20] and πF = 20. (3.54)

Without employing the knowledge of either IF or πF we examine the performance

of the algorithm to find πF with error rate ε∗ = 0.01. The following R commands using

HaezE function calculate

[π̂∗X − ε∗, π̂∗X + ε∗] = [19.98286, 20.00286] and [−→xL,−→xH ] = [7.763932, 20] ,

which are consistent with (3.54). Table 3.6 shows the details of the sub-algorithm calls.

We emphasize that the Implementation Detail 2 with N ′ := 5 is implemented in this

example. Hence while N = 1, 377, 301 is prohibitively large in this example, it takes

only 5 Newton-Raphson steps to conclude πX (x7)
ε≈ πX (x6) and πX (x6)

ε≈ πX (x5).
> library(haezendonck)
> RE <- HaezE(alpha = 0.95, epsilon = 0.01, mybeta = (1 - 0.95)^0.5,
+ Haz = function(x) { x^2 }, Hazd = function(x) { 2 * x },
+ X = c(rep(10, 19), 20), NN = 5)

> print(RE)

Haezendonck-Goovaerts risk measure Orlicz Quantile
Estimation 19.99286 13.881966
Lower Bound 19.98286 7.763932
Upper Bound 20.00286 20.000000
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Figure 3.6: Convergence of Newton-Raphson Steps,
x+N n

x (h(x)), at x5 and x6 in Example 11
(πF (x6) = πF (x6) = 20)

j 7 6 5 4 3 2 1

Grid #1: N = 1, 377, 301 and N ′ = 5

Grid Pts, xj 20.0000 17.9607 15.9213 13.8820 11.8426 9.8033 7.7639

πX (xj) 20.0000 20.0000 20.0000 20.0000 20.0000 20.0360 23.4075

∆πX (xj−1)
ε≈ 0

ε≈ 0

N-R Steps at xj 5(0) 5 5

Table 3.6: Calculation of πF in Example 11 Using Implementation Detail 1
(HX (x7) = 0)

Iteration Number, i x5 + Ĥ i
X (h(x5)) x6 + Ĥ i

X (h(x6))

0 15.92131 = x5 17.96066 = x6

1 20 20

Table 3.7: Convergence of Newton-Raphson Steps,
x + Ĥn

X (h(x)), at x5 and x6 in Example 11
(πX (x5) = πX (x6) = 20)
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3.5 Proofs and Auxiliary Results

Proof of Proposition 6. When b = ess supX , the proof is immediate from Lemma 14 ii.

Hence we only consider the case when b < ess sup(X). In this case we have

u ≥ HX (x) and h(b) ≤ h(x) for any x ∈ [a, b]. (3.55)

Now (3.55) and Lemma 14 imply inequality (3.35), which completes the proof.

Proof of Proposition 7. Part i follows easily from Proposition 6. Towards establishing

part ii we note that from (3.40) and (3.39) we have

πX(y)− πX(x) ≥ x+NN
x (h(x))− πX(x) ≥ −ε.

The above along with symmetry completes the proof.

Proof of Proposition 8. In the following, for inputs←−xL and←−xH to the sub-algorithm sat-

isfying IX ⊆ [←−xL,←−xH ], let (x1, . . . , x7) := η(←−xL,←−xH). For part i we observe that it is

the convexity of πX (·) that guarantees IX ⊆ [−→xL,−→xH ] in the case that IX ⊆ [←−xL,←−xH ].

Before we provide details, we further note that in the case that the output tag is A1 the

conclusion is vacuous. Also, among the other cases it is only the case of output tags B3

and B6 that both −→xL and −→xH may differ from ←−xL and ←−xH , respectively. Since the modal

output tag is B3 and the arguments for the other tags are similar, we provide details only

for this output tag. Note that when the output tag is B3 for some j ∈ {2, . . . , 6} we have

πX (xj) < min {πX (xj−1) , πX (xj+1)} ,

which implies

πX < min {πX (xj−1) , πX (xj+1)} .

The last statement along with convexity of πX (·) implies that IX ⊆ [xj−1, xj+1]. The

rest of part i follows easily from Proposition 1 and Proposition 4.

For part ii we note that the proof for the case of tag B3 is similar to the case of all

of the other tags excluding tag A1. Hence, for reasons already stated, we provide details
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for the case of tag B3 and tag A1.

Under tag B3 we have x∗ ∈ IX ⊆ [xj−1, xj+1] with

πX (xj+1) ≥ xj+1 +
−→
h (xj+1) > πX (xj) . (3.56)

By proposition 1, we have

πX (xj+1)− πX (x∗)

xj+1 − x∗
≤ 1,

which along with (3.56) yields the following bounds for πX (x∗):

xj+1 +
−→
h (xj+1)− (xj+1 − xj−1) ≤ πX (xj+1)− (xj+1 − xj−1)

≤ πX (x∗) < xj+1 +
−→
h (xj+1).

This confirms the error bounds for π̂X under tag B3. We note that while the upper bound

for πX under tag B1 is of a different form, the argument behind it is similar to the one

used above.

Towards checking the bounds for tag A1 we note that under this tag we have

πX (xj−1)
ε≈ πX (xj)

ε≈ πX (xj+1) , for some j ∈ {2, . . . , 6}. (3.57)

For a lower bound for πX , for x∗ ∈ IX we separately argue for the two cases x∗ ≤ xj

and x∗ > xj . In the former case we have

πX (xj)− πX (x∗)

xj − x∗
≤ πX (xj+1)− πX (xj)

xj+1 − xj
≤ ε

xj+1 − xj
,

where the first inequality follows from the convexity of πX (·) and the second inequality

follows from (3.57). Hence we have

πX ≥ πX (xj)−
ε

xj+1 − xj
(xj − x∗) ≥ πX (xj)− 5ε ≥ xj+1 +

−→
h (xj+1)− 6ε, (3.58)

where the last inequality follows from (3.57). For the case when x∗ > xj , using convexity

of πX (·) in a similar manner, we can prove

πX ≥ xj+1 +
−→
h (xj+1)− 6ε.
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Now let C denote that of proposition 6 for a = xL, b = xH , and u = uL, and N be as

defined in (3.37). We note that in the algorithm when we conclude πX (xj)
ε≈ πX (xj+1)

for some n ≥ N

xj+1 +
−→
h (xj+1) = xj+1 +N n

xj+1
(h(xj+1)) ≥ πX (xj+1)− ε, (3.59)

where the last inequality follows from proposition 7 i. Hence the above implies that

πX ≤ xj+1 +
−→
h (xj+1) + ε, which completes the proof.

Lemma 10. Let X ∈ XΨ, α ∈ (0, 1) and ε > 0. Let input of the sub-algorithm

(←−xL,←−xH ,←−uL,
←−
h (·)) ∈ R2 × R+ ×HF ,

satisfy the conditions in (3.43) and define a grid, {x1, · · · , xJ} := η (←−xL,←−xH). Then new

Newton-Raphson steps, Ĥn
X (x), in Implementation Detail 1 on

(n, x) ∈ N0 × {x1, · · · , xJ} ,

are well defined in the sub-algorithm. Furthermore they satisfy the following:

i. In Step N2, for xj ∈ {x2, · · · , xJ} and nj−1 ≥ 1, we have

Ĥ
nj−1

X (xj−1) ≤ Ĥ
nj
X (xj) + (xj − xj−1). (3.60)

ii. In Step N3, for xj ∈ {x2, · · · , xJ} and nj ≥ 1, we also have

Ĥ
nj
X (xj) ≤ Ĥ

nj−1

X (xj−1) + (xj−1 − xj). (3.61)

Proof. First we show that Ĥn
X (x) on (n, x) ∈ N0×{x1, · · · , xJ} are well defined. If we

assume

0 ≤ Ĥ
mj
X (X, xj) ≤ HX (x, x) for any (mj, xj) ∈ {0, 1, · · · , nj} × {x1, · · · , xJ} ,

(3.62)
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with some given n1, · · · , nJ ∈ N0, it is enough to show

Ĥ
nj+1

X (xj+1) ≤ HX (xj) in (3.46), (3.63)

and

Ĥ
nj
X (xj) + (xj − xj−1) ≤ HX (xj−1) in (3.47),

and Ĥ
nj−1

X (xj−1) + (xj−1 − xj) ≤ HX (xj) in (3.48).
(3.64)

(3.63) is trivial from HX (xj) ≥ HX (xj+1) and assumption (3.62). The two inequalities

in (3.64) result from Steps C1 and C2, respectively. Finally, using inequalities (3.63) and

(3.64), tedious mathematical induction and Figure 3.4 yield

0 ≤ Ĥ
nj
X (xj) ≤ HX (x, x) on (nj, xj) ∈ N0 × {x1, · · · , xJ} ,

which prove the well-definedness of the new Newton-Raphson steps.

Since proof of parts i and ii are similar, we choose to only prove part ii. Condition,

nj ≥ 1 in Step N3 implies nj−1 ≥ 1. Furthermore Ĥnj−1

X (xj−1) in Step N2 is defined by

Ĥ
nj−1

X (xj−1) := Nxj−1

(
max

{
Ĥ
nj−1−1
X (xj−1) , Ĥ

nj
X (xj) + (xj − xj−1)

})
.

Hence we have Ĥnj−1

X (xj−1) ≥ Ĥ
nj
X (xj)+(xj−xj−1) by Proposition 4, which completes

the proof.

Lemma 11. For X ∈ XΨ and α ∈ (0, 1) we have the following:

i. For z < ess sup(X), an l satisfying s∞(X) < l < HX(z) can be computed in finitely

many steps.

ii. For any x, an u <∞ satisfying u > HX (x) can be computed in finitely many steps.

iii. An l > −∞ satisfying IX ⊆ (l, q+
α (F )] can be computed in finitely many steps.

Proof. We begin by proving part i. Let l be defined by

l := E [(X − z)+] /Ψ−1(1− α),
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if this leads to l > s∞(X); else define l by

l := max{s∞(X) + 2−n|Λ(z, s∞(X) + 2−n) > 0, n ≥ 1}.

Clearly l ∈ (s∞(X), HX (z)), and l can be computed in finitely many steps.

For the proof of part ii, we define u := 1 if x ≥ ess sup(X). In the case that

x < ess sup(X), let y be chosen such that y < x, and let l be the lower bound for HX(y)

suggested in part i above. Then that u defined as

u := min{N n
y (l)|Λ(x,N n

y (l)) < 0, n ≥ 0}

is well defined follows from proposition 4 and the fact that, on (−∞, ess sup(X)), HX(·)

is strictly increasing. Clearly the above defined u can be calculated in finitely many steps

and satisfies u > HX (x).

Towards establishing part iii we note that in view of theorem 3 ii it suffices to find

v such that v > πX . This is so as then

l := E [X]−Ψ−1(1− α)

(
v − E [X]

1−Ψ−1(1− α)

)
< inf {IX} ,

and part iii then follows from theorem 3 i. The proof is completed by observing that for

any x the upper bound u for HX (x) from part ii satisfies x+ u > πX .

Lemma 12. For X ∈ XΨ and s > s∞(X) we have

E
[
X

s
∂+Ψ

(
X

s

)]
<∞.

Proof. For any s′ such that s > s′ > s∞(X), we have using convexity of Ψ(·) that

0 ≤
(x
s

)
Ψ′+

(x
s

)
≤ s′

(
Ψ
(
x
s′

)
−Ψ

(
x
s

)

s− s′

)
,∀x ≥ 0.

The above and the fact that Ψ(x) = 0 for x < 0 completes the proof.
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Lemma 13. For X ∈ XΨ, x < ess sup(X), and s > s∞(X) we have the following:

a. Λ(x, ·) and Λ(·, s) are strictly decreasing continuous functions on (s∞(X),∞) and

(−∞, ess sup(X)), respectively. Moreover, for any x ∈ R, Λ(x, ·) is convex on

(s∞(X),∞), and for s > s∞(X), Λ(·, s) is convex on R.

b. Λ1+ (x, s) = −1
s
E
[
Ψ′−

(
X−x
s

)]
< 0. Moreover, Λ1+ (·, s) and Λ1+ (x, ·) are right

continuous functions on R and (s∞(X),∞), respectively.

c. Λ2− (x, s) = −1
s
E
[

(X−x)+
s

Ψ′+
(
X−x
s

)]
< 0. Moreover, Λ2− (·, s) and Λ2− (x, ·) are

left continuous functions on R and (s∞(X),∞), respectively.

Proof. The first assertion is straightforward. The other two parts follow easily as ap-

plications of DCT by using convexity of Ψ(·), (3.2), Lemma 12, and for the one-sided

continuity parts also using theorem 24.1 in Rockafellar (1997).

Lemma 14. For X ∈ XΨ, h(·) ∈ HF , and α ∈ (0, 1), we have the following:

i. For x < ess sup(X), we have

HX (x)−N n
x (h(x)) ≤ (C(h, x))n [HX (x)− h(x)] , for any n ∈ N0, (3.65)

where C(h, x) ∈ [0, 1) is given by

C(h, x) := 1−
(

h(x)

HX (x, x)

) E
[
Ψ
′+
(

X−x
HX(x)

)(
X−x
HX(x)

)
+

]

E
[
Ψ′+

(
X−x
h(x)

)(
X−x
h(x)

)
+

] . (3.66)

ii. Let q+
α (F ) = ess sup(X). Then for x ∈ [a, q+

α (F )) we have

HX (x)−N n
x (h(x)) ≤ (C∞)nHX (a) , for any n ∈ N0, (3.67)

where C∞ ∈ [0, 1) is given by

C∞ := 1− (1− α)3 Ψ
′+ (Ψ−1(1− α))

Ψ′+
(

Ψ−1(1−α)
1−α

) . (3.68)
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Proof. Let x < ess sup(X), and n ≥ 1. Towards establishing part i we note that we can

assume without loss of generality that N n
x (h(x)) < HX (x), and let 1 ≤ m ≤ n. From

Lemma 13 we have that

Λ2− (x,HX (x)) ≥ Λ (x,HX (x))− Λ (x,Nm
x (h(x)))

HX (x)−Nm
x (h(x))

= − Λ (x,Nm
x (h(x)))

HX (x)−Nm
x (h(x))

.

The above and (3.21) imply that
(
HX (x)−Nm−1

x (h(x))
)
Λ2− (x,HX (x))

≥ −Λ
(
x,Nm−1

x (h(x))
)

=
(
Nm
x (h(x))−Nm−1

x (h(x))
)

Λ2− (x,Nm−1
x (h(x))

)
.

(3.69)

The above along with proposition 4 and lemma 13 yields

(HX (x)−Nm
x (h(x))) ≤

(
1− Λ2− (x,HX (x))

Λ2− (x,Nm−1
x (h(x)))

)(
HX (x)−Nm−1

x (h(x))
)

≤ Cx
(
HX (x)−Nm−1

x (h(x))
)
,

completing the proof of part i. Towards establishing part ii we begin by observing that in

the case of q+
α (F ) = ess sup(x)

1− α = E
[
Ψ

(
X − x
HX (x)

)]
≤ Ψ

(
q+
α (F )− x
HX (x)

)
,

implying that

HX (x) ≤ q+
α (F )− x

Ψ−1(1− α)
. (3.70)

Also in this case Pr (X = q+
α (F )) ≥ 1− α, which implies that

hx ≥
E [(X − x)+]

Ψ−1(1− α)
≥ (q+

α (F )− x)P (X = q+
α (F ))

Ψ−1(1− α)
≥ (q+

α (F )− x)(1− α)

Ψ−1(1− α)
(3.71)

From (3.70) and (3.71) it is easy to show that

1− Cx ≥ (1− α)3 Ψ
′+ (Ψ−1(1− α))

Ψ′+
(

Ψ−1(1−α)
1−α

) = 1− C∞ > 0,

which concludes the proof of part ii.
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CHAPTER 4
ASYMPTOTIC THEORY FOR THE EMPIRICAL

HAEZENDONCK-GOOVAERTS RISK MEASURES

4.1 Introduction

In this chapter we study the statistical estimation of Haezendonck-Goovaerts risk

measures. Recall that the empirical Haezendonck-Goovaerts risk measure, πFn , is a nat-

ural non-parametric estimator for the Haezendonck-Goovaerts risk measure. In Bellini

and Rosazza Gianin (2008b) the authors conduct a simulation study of this estimator, and

also use it to estimate the efficient frontier when the risk is measured by a Haezendonck-

Goovaerts risk measure. While this study suggests, in some cases, a normal asymp-

totic limit for this estimator, neither consistency nor weak convergence of this estimator

was established. This then is the main goal of this chapter; we provide a strong con-

sistency and a weak convergence result for this non-parametric estimator with the latter

also covering situations with a non-normal limit. The difficulty in establishing asymp-

totic results arises in good part from the lack of a convenient closed form expression for

the Haezendonck-Goovaerts risk measure of the empirical distribution function – for in-

stance, as shown in Example 6. We provide the following example to demonstrate that a

non-normal asymptotic weak limit occurs even in non-pathological situations.

Example 12

In this rather simple example we demonstrate that non-normal limits for the empirical

Haezendonck-Goovaerts risk measure arise quite naturally. Let F be a Bernoulli distri-

bution, Ψ(·) be defined by

Ψ(x) =





0, x < 0,

x, 0 ≤ x ≤ 1,

2x− 1, otherwise,
(4.1)

and α = 50%. This piecewise linear Young function, non-differentiable at 1, is men-

tioned in Bellini and Rosazza Gianin (2008b) as an example of a non-differentiable Young
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function which fails to satisfy the conditions of their weak convergence result for the Or-

licz premium. For Fn, some straightforward calculations lead to the following form for

HFn(x) + x: For Fn(0) ≥ 1/2 we have

x+HFn(x) =





2(1− Fn(0))− x, x < (1− 2Fn(0)),
4(1−Fn(0))
3−2Fn(0)

−
(

1
3−2Fn(0)

)
x, (1− 2Fn(0)) ≤ x < 0,

4(1−Fn(0))
3−2Fn(0)

+
(

2Fn(0)−1
3−2Fn(0)

)
x, 0 ≤ x ≤ 1,

x, x > 1,

(4.2)

and for Fn(0) < 1/2 we have

x+HFn(x) =





2(1− Fn(0))− x, x < 0,

2(1− Fn(0)) + (2Fn(0)− 1)x, 0 ≤ x ≤ 1,

x, x > 1.

(4.3)

From (4.2) and (4.3) it follows that

πFn =

{
1, Fn(0) ≤ 1/2,

1−
(

2Fn(0)−1
3−2Fn(0)

)
, Fn(0) > 1/2.

(4.4)

From (4.4), and observing that both Fn(·) and F (·) are Bernoulli distributions, we have

using the strong law of large numbers that with probability one, for large n

√
n (πFn − πF ) =





0, F (0) < 1/2,

−√n
(
Fn(0)−1/2
3/2−Fn(0)

)
+
, F (0) = 1/2,

√
n(F (0)−Fn(0))

(3/2−F (0))(3/2−Fn(0))
, F (0) > 1/2.

This with Slutsky’s lemma, and the ordinary central limit theorem implies that

√
n (πFn − πF )

d−→





0, F (0) < 1/2,

−
[

1
2

]
(Z)+ , F (0) = 1/2,[√

F (0)(1−F (0))

(3/2−F (0))2

]
Z, F (0) > 1/2,

(4.5)

where Z is a standard normal random variable. Hence a non-normal limit results in a

simple Bernoulli example with a piecewise linear Young function whenever F (0) ≤ 1/2.

In fact, in Example 15 below we show that (4.5) follows as an application of our weak

convergence result for the empirical Haezendonck-Goovaerts risk measure.
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In the next section, we provide the strong consistency of the empirical Haezendonck-

Goovaerts risk measure. In the following section we prove a weak convergence result for

this estimator, and provide some examples to illustrate the asymptotic behavior of this

estimator both under and without our assumptions. Also, in a parametric example we

compare the performance of this non-parametric estimator with the parametric Maxi-

mum Likelihood Estimator (MLE). In Section 4.4 we report the results from a simulation

study to lend insight into the sample sizes required for the asymptotic limits to take hold.

Section 4.5 provides a brief discussion of our results.

4.2 Strong Consistency

The main goal of this section is to establish the consistency result of the empirical

Haezendonck-Goovaerts risk measure as an estimator for the Haezendonck-Goovaerts

risk measure. To motivate the formulation of our result we consider the case of the T-

VaR; Recall that T-VaR is the Haezendonck-Goovaerts risk measure with the identity as

the Young function. We recall that we have IF = [qα(F ), q+
α (F )] in the case of the α-

level T-VaR. Hence the consistency, with respect to a suitable distance, of IFn is also of

interest. A natural candidate is the asymmetric distance d(·, ·) defined by

d (A,B) := sup
a∈A

inf
b∈B
|a− b|, (4.6)

for any two subsets A and B of R. A symmetric version of this distance yields the

Hausdorff metric given by

dH (A,B) := max

(
sup
a∈A

inf
b∈B
|a− b|, sup

b∈B
inf
a∈A
|a− b|

)
(4.7)

The following example shows the convergence of IFn to IF may hold only for the asym-

metric distance d(·, ·) and not for the Hausdorff metric.

Example 13

In this example F (·) is taken to be the equal mixture of U(0, 1) and U(2, 3); Figure 4.1

contains a graph of this distribution. For α = 50% it is easily checked that qα(F ) = 1
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Figure 4.1: Distribution for which
dH (IFn , IF ) 9 0

and q+
α (F ) = 2. Hence for the case of the T-VaR risk measure at the 50%-level, i.e. with

Ψ(x) = x for x ≥ 0, IF = [1, 2]. For a random sample from F with sample size n it is

easily checked that

IFn =

{
{X(n+1)/2:n}, n odd,
[Xn/2:n, X(n/2+1):n], otherwise.

Hence it is clear that for this F

lim sup
n→∞

dH (IFn , IF ) = 1, a.s. P.

Nevertheless, it is also easy to show that

lim
n→∞

d (IFn , IF ) = 0, a.s. P.
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The above example demonstrates that while expecting convergence of IFn to IF in

the Hausdorff metric is unrealistic, the asymmetric distance d(·, ·) between IFn and IF
may converge to zero. The following theorem proves the consistency of the empirical

Haezendonck-Goovaerts risk measure and this latter statement.

Theorem 6

For F ∈ XΨ, and α ∈ (0, 1) we have with probability one,

lim
n→∞

d (IFn , IF ) = 0, and lim
n→∞

πFn = πF .

Proof. We start by observing that from the consistency of the Orlicz norm (see Bellini

and Rosazza Gianin (2008b)) we have the almost sure pointwise convergence of πFn (·)

to πF (·). Moreover, since πFn (·) is convex, Theorem 10.8 of Rockafellar (1997) implies

that πFn (·) converges to πF (·) uniformly on compacts with probability one.

As observed earlier in Chapter 4, IF is a closed interval. Moreover, using the fact

thatX ∈ XΨ and an argument similar to that of Proposition 16 of Bellini and Rosazza Gi-

anin (2008a) it is easily shown that IF is compact as well. Hence we denote IF by

[x∗l , x
∗
u], −∞ < x∗l ≤ x∗u <∞.

It suffices for the first assertion to show that with probability one,

x∗l ≤ lim inf
n→∞

(inf IFn) ≤ lim sup
n→∞

(sup IFn) ≤ x∗u. (4.8)

This follows from almost sure pointwise convergence of πFn (·) and the fact that for any

ε > 0 we have

πF (x∗l ) = πF (x∗u) < min (πF (x∗u + ε), πF (x∗l − ε)) .

The second assertion now follows from the first assertion and almost sure convergence

on compacts of πFn (·).
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When IF is a single point, the above theorem implies

lim
n→∞

dH (IFn , IF ) = 0. a.s. P.

4.3 Weak Convergence Results

Our approach to derive the weak convergence limits of the empirical Haezendonck-

Goovaerts risk measure involves viewing Haezendonck-Goovaerts risk measures as the

optimal value of certain convex programming problems, and then applying the functional

delta method. For details of such an approach we refer to Shapiro (1991), and Chapter 6

of Rubinstein and Shapiro (1993). Now we present an outline of this section. First, we

discuss the assumptions that we need for our weak convergence result for the empirical

Haezendonck-Goovaerts risk measure. Second, we present the details of our approach

before stating and proving this weak limit result. Third, we present some examples to

demonstrate the generality of our result, and present an example in which F (·) is embed-

ded in a parametric family of distributions which allows for comparison of the empirical

Haezendonck-Goovaerts risk measure with the efficient parametric MLE. We end this

section with a weak convergence result for the Orlicz premium using the approach men-

tioned above; we present this result as it is a more general version of the one stated in

Bellini and Rosazza Gianin (2008b).

For the weak convergence theorem for πFn , apart from requiring that F (·) belongs

to XΨ, we further require that F (·) satisfies the following conditions that will be referred

to as Assumption C.

Assumption C:

C1. πF is strictly less than ess sup(F ).

C2. F ∈ XΨ and furthermore satisfies

E

[[
Ψ

(
X

δl

)]2
]
<∞, (4.9)



94

where δl > 0 is such that

δl < inf {πF (x)− x|πF (x) = πF} .

When ess sup(F ) = ∞, which is usually the case in risk management applica-

tions, Assumption C1 essentially requires a finite πF . Hence, in this case Assumption

C1 is not restrictive. Later in this section we discuss Assumption C1 in the case when

πF = ess sup(F ) < ∞. Assumption C2 is analogous to the requirement of finite sec-

ond moment for the ordinary central limit theorem, and in this sense it is an appropriate

requirement for the
√
n rate of convergence. Moreover, in the case of T-VaR it is eas-

ily seen to be a necessary requirement as well. It is worth mention that while our weak

convergence result addresses situations where we have weak convergence at the
√
n rate,

there exist examples of F (·) with sufficiently fat tails such that πFn converges to πF at

much slower rates. The following example is one such.

Example 14

Let α = 0.5, and Ψ(·) be given by

Ψ(x) =

{
0, x < 0,

x, otherwise.

Recall that this definition corresponds to the T-VaR risk measure at the 50% level. Let F

be the symmetric (about zero) distribution such that

Pr (|X| > x) =

{
1− x

2
, 0 ≤ x < 1,

1
2xβ
, otherwise,

where 1 < β < 2. It is easy to check that for these specifications

MF =

{(
0,

3β − 1

4(β − 1)

)}
, and πF =

3β − 1

4(β − 1)
.

For the sake of expositional ease let the sample size be 2n+ 1, for some n ≥ 1. Then the



95

empirical T-VaR at the 50% level is given by
(

1

2n+ 1

)[
X(n+1):(2n+1) + 2

2n+1∑

i=n+2

Xi:(2n+1)

]

=

(
1

2n+ 1

)[
X(n+1):(2n+1) −

(
1

n

) 2n+1∑

i=n+2

Xi:(2n+1)

]
+

1

n

2n+1∑

i=n+2

Xi:(2n+1)

= O

(
1

n

)
+

1

n

2n+1∑

i=n+2

Xi:(2n+1),

where the last step follows from the ordinary strong law of large numbers. Let N denote

the random variable defined by

N :=
2n+1∑

i=1

IXi≥0,

which is clearly distributed as Bin(2n+ 1, 1/2). We note that

∣∣∣∣∣
2n+1∑

i=n+2

Xi:(2n+1) −
2n+1∑

i=1

XiIXi≥0

∣∣∣∣∣ ≤





∑2n+1−N
i=n+2 Xi:(2n+1), N < n,

0, N = n,∑n+1
i=2n+2−N Xi:(2n+1), otherwise.

Using this bound, the fact that N − n = O(
√
n), and lim

n→∞
Pr
(
|X(n+1):(2n+1)| > 1

)
= 0,

we have
∣∣∣∣∣

2n+1∑

i=n+2

Xi:(2n+1) −
2n+1∑

i=1

XiIXi≥0

∣∣∣∣∣ = O(
√
n) (4.10)

It is easy to show (for example using Theorem 7.7 of Durrett (2005)) that

n1− 1
β

(
1

n

2n+1∑

i=1

XiIXi≥0 −
3β − 1

4(β − 1)

)
d−→ Z, (4.11)

for some non-degenerate random variable Z. Combining (4.10) with (4.11) and using the

fact that 1 < β < 2 we have

n1− 1
β (πFn − πF ) = n1− 1

β

(
1

n

2n+1∑

i=n+2

Xi:(2n+1) −
3β − 1

4(β − 1)

)
d−→ Z.

In the rest of this section we will suppose that F (·) and Ψ(·) satisfy Assumption C,

unless mentioned otherwise. The key idea behind our approach to establishing the weak
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convergence of πFn is to formulate πF as the optimal value of a convex programming

problem. To this end note that HF (0) is easily seen to satisfy

HF (0) = inf

{
s

∣∣∣∣E
[
Ψ

(
X

s

)]
≤ 1− α

}
.

Using this observation we note that πF is the optimal value of the mathematical program-

ming problem given by

minimize θ1 + θ2, (θ1, θ2) ∈ R× (0,∞),

subject to E
[
Ψ

(
X − θ1

θ2

)]
− (1− α) ≤ 0.

For convenience we denote the coordinates of a vector θ̃ in R × R+ by θ1 and θ2, i.e.

θ̃ = (θ1, θ2). It is easy to see that

Λ(pθ̃ + (1− p)θ̃′) ≤ max{Λ(θ̃),Λ(θ̃′)}, θ̃, θ̃′ ∈ R× (0,∞), p ∈ [0, 1].

This implies that Λ(·, ·) is a quasi-convex function; we refer to Section 3.4 of Boyd and

Vandenberghe (2004) for a discussion of quasi-convexity. We note that examples exist

where Λ(·, ·) is not convex. Nevertheless, quasi-convexity preserves convexity of sub-

level sets, and hence

{
θ̃
∣∣Λ(θ̃) ≤ 0

}
,

is a convex set. This implies, trivially, the existence of a convex function η(·) with a sub-

level set coinciding with that of Λ(·, ·) given above. But we seek a nice such function,

and one such candidate is defined by

η(θ̃) := θ2

[
E
[
Ψ

(
X − θ1

θ2

)]
− (1− α)

]
, θ̃ ∈ R× (0,∞).

This candidate is motivated by the fact that the perspective function of a convex function

is convex (see for example Section 3.2.6 of Boyd and Vandenberghe (2004)). Hence, πF
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is the optimal value of the convex programming problem (P∞) given by

minimize θ1 + θ2, (θ1, θ2) ∈ R× (0,∞),

subject to θ2

[
E
[
Ψ

(
X − θ1

θ2

)]
− (1− α)

]
≤ 0.

(P∞)

Let MF denote the set of minimizers of the programming problem (P∞). Recall that

HF (z) as a function in z is convex; this is easily checked to imply that MF is a line

segment in R× (0,∞). We note that Assumption C further implies thatMF is a closed

set contained in an open rectangle (xl, xu) × (δl, δu), for some −∞ < xl < xu < ∞,

and 0 < δl < δu < ∞. In the case πF is finite and equals ess sup(F ), (ess sup(F ), 0) is

clearly an optimal solution, and in some cases (as in Example 15 below) it can moreover

be the unique optimal solution. This, in general, clearly creates problems for the above

representation for πF . Nevertheless, in specific cases (such as piecewise linear Ψ(·)) this

does not cause any issues; Example 15 below is one such example. But for expositional

ease, we state our weak convergence result by excluding this case, which as mentioned

before is unlikely to occur in risk management applications.

The above representation for πF implies that πFn is the optimal value of the convex

programming problem (P̂n) given by

minimize θ1 + θ2, (θ1, θ2) ∈ R× (0,∞),

subject to En
(
ψ
(
θ̃, Y

))
≤ 0.

(P̂n)

where

ψ(θ̃, x) := θ2

(
Ψ

(
x− θ1

θ2

)
− (1− α)

)
, θ̃ ∈ R× (0,∞).

The above representations for πF and πFn in turn allow us to use the functional delta

method as explained briefly below. Note that the convex programming problem (P∞) is

fully specified by the constraint function η(·), which is replaced in (P̂n) by its sample

analog. Hence if the optimal value is an appropriately differentiable functional of the

constraint function, and the constraint function in (P̂n), En (ψ (·, Y )), converges at the
√
n rate to η(·), then πFn converges to πF at the

√
n rate as well. Moreover, the weak
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limit of En (ψ (·, Y )) and the differential then determine the weak limit of πFn . This is

the approach that is used to prove the following theorem, our weak convergence result

for πFn .

Theorem 7

For α ∈ (0, 1), and Ψ(·) and F (·) satisfying Assumption C we have

√
n (πFn − πF )

d−→ min
θ̃∈MF

max
λ∈Λ

λZ
(
θ̃
)
, (4.12)

where Λ is the set of Lagrange multipliers for the convex programming problem (P∞),

and Z(·) is a mean zero Gaussian process on S(F ) with covariance given by

Cov
(
Z
(
θ̃
)
, Z
(
θ̃′
))

= Cov
(
ψ
(
θ̃, X

)
, ψ
(
θ̃′, X

))
, θ̃ ∈ S(F ), (4.13)

where S(F ) := [xl, xu]× [δl, δu].

Proof. Consistency ofMFn as stated in Theorem 6 implies that with probability one, for

large n,MFn ⊆ (xl, xu)× (δl, δu). This implies that with probability one, for large n, the

programming problem (P̂n) will yield the same optimal value as the convex programming

problem (P̂∗n) given by

minimize θ1 + θ2, (θ1, θ2) ∈ S(F ),

subject to θ2

[
En
(
ψ
(
θ̃, Y

))
− (1− α)

]
≤ 0.

(P̂∗n)

This implies that the weak convergence result for the optimal value of (P̂∗n) coin-

cides with that of (P̂n). Henceforth, for simplicity, we will denote the optimal value of

(P̂∗n) also by πFn .

We note that the objective function in
(
P̂∗n

)
is deterministic and, in particular,

coincides with that of (P∞). Also note that (4.9), Lemma 15, and Theorem A.3 of King

and Rockafellar (1990) together imply that

√
n

(
1

n

n∑

i=1

ψ (·, Xi)− E [ψ (·, X)]

)
d−→ Z(·), (4.14)

on the space C(S(F )) of bounded continuous real valued functions on S(F ), where Z(·)
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is a mean zero Gaussian process on S(F ) with covariance as given in (4.13).

The rest of the argument rests on the above discussed formulation of πFn and πF

as optimal values of convex programming problems
(
P̂∗n

)
and (P∞), respectively, and

the delta-method for convex programming problems as stated in Theorem 3.5 of Shapiro

(1991). All that remains to be checked then is that the Slater condition is satisfied for

(P∞), but that follows from (4.9) as a simple application of the dominated convergence

theorem.

Lemma 15. For θ̃, θ̃′ ∈ S(F ), and 0 < ε < 1 we have
∣∣∣ψ(θ̃, x)− ψ(θ̃′, x)

∣∣∣

≤
[

4δu
εδl

]
max

[
ε∂+Ψ(1),Ψ

( −xl
ε(1− ε)δl

)
,Ψ

(
x

δl(1− ε)2

)]∥∥∥θ̃ − θ̃′
∥∥∥ .

(4.15)

Proof. Without loss of generality let y1 ≤ y2, where

y1 :=
x− θ′1
θ′2

, and y2 :=
x− θ1

θ2

.

Note that the bound above is trivially satisfied for y2 ≤ 0; hence for the rest of this proof

we will assume without loss of generality that y2 > 0. As

|y1 − y2| ≤
(√

2 max(1, y2)

δl

)∥∥∥θ̃ − θ̃′
∥∥∥ ,

we have by convexity of Ψ(·) that

|Ψ(y2)−Ψ(y1)| ≤ (y2 − y1)∂+Ψ(y2)

≤
(√

2 max(∂+Ψ(1), y2∂+Ψ(y2))

δl

)∥∥∥θ̃ − θ̃′
∥∥∥

≤
[√

2

εδl

]
max

[
ε∂+Ψ(1),Ψ

(
y2

1− ε

)]∥∥∥θ̃ − θ̃′
∥∥∥ .

Also, some algebra yields

Ψ

(
y2

1− ε

)
≤ Ψ

(
max(x/(1− ε),−xl/ε)

δl(1− ε)

)

≤ max

[
Ψ

(
x

δl(1− ε)2

)
,Ψ

( −xl
ε(1− ε)δl

)]
,
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using which we have

|Ψ(y2)−Ψ(y1)| ≤
[√

2

εδl

]
max

[
ε∂+Ψ(1),Ψ

( −xl
ε(1− ε)δl

)
,Ψ

(
x

δl(1− ε)2

)]∥∥∥θ̃ − θ̃′
∥∥∥ .

Now using the fact that ∂+Ψ(1) ≥ 1, and that

∣∣∣ψ(θ̃, x)− ψ(θ̃′, x)
∣∣∣ ≤ [1− α + Ψ(y2)] |θ2 − θ′2|+ δu |Ψ(y2)−Ψ(y1)| .

we have (4.15).

We now provide examples to demonstrate the generality of Theorem 7. The follow-

ing example is a continuation of Example 12 of the introduction that involves a Young

function which is not differentiable at a point in (0,∞), and an F (·) such that neither

MF nor Λ are singletons; in particular this results in the limiting distribution being non-

normal. For this example we will find it convenient to define A ⊆ R2 as

A := {(u, t)|∃ θ̃ ∈ R× (0,∞), η(θ̃) ≤ u, θ1 + θ2 ≤ t}.

We note thatA is a variation of the epigraph (see Boyd and Vandenberghe (2004)) for the

convex programming problem P∞ with the property that

πF = inf{t|(0, t) ∈ A}.

Example 15

Let F (·) denote the Bernoulli distribution, α equal 50%, and Ψ(·) be defined in (4.1). For

this Young function it follows that

η(θ̃) = E [(X − θ1)+] + E [(X − θ1 − θ2)+]− (1− α)θ2. (4.16)

Figure 4.2 plots A (the shaded region) using the above and somewhat tedious calcula-

tions. From Figure 4.2 it follows that

πF =

{
1, F (0) ≤ 1/2,

1− ε
1−ε , F (0) = 1/2 + ε > 1/2,

and that,
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=
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+
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(b) F (0) = 1/2− ε, 0 ≤ ε ≤ 1/2

Figure 4.2: Epigraph of the Convex Programming Problem Associated with
the Computation of πF

Λ =





[
1

1+2ε
, 2
]
, F (0) = 1/2− ε < 1/2,

[1, 2], F (0) = 1/2,
1

1−ε , F (0) = 1/2 + ε > 1/2.

Moreover, from (4.16) it follows that

MF =





{(1, 0)}, F (0) = 1/2− ε < 1/2,

{θ̃| 0 ≤ θ1 ≤ 1; θ2 = 1− θ1}, F (0) = 1/2,{(
0, 1− ε

1−ε

)}
, F (0) = 1/2 + ε > 1/2.

Since F (·) and Fn(·) are both Bernoulli distributions, we note that we had essentially

derived in (4.4) an expression for πF directly from the definition of the Haezendonck-

Goovaerts risk measure.

Though Assumption C is violated here, due to πF being equal to ess sup(F ), the

representation of η(·) in (4.16) allows one to nevertheless easily establish a version of

Lemma 15 so that the proof of Theorem 7 goes through. It is straightforward to check

that the process Z(·) of Theorem 7 satisfies

Cov(Z(θ), Z(θ′)) = F (0)(1− F (0))(2− 2θ1 − θ2)(2− 2θ′1 − θ′2), ∀θ̃, θ̃′ ∈ R+ ×R+.
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In particular, this implies that

min
θ̃∈MF

max
λ∈Λ

λZ
(
θ̃
)

d
=
√
F (0)(1− F (0)) min

θ̃∈MF

max
λ∈Λ

λ(2− 2θ1 − θ2)Z (4.17)

d
=





0, F (0) < 1/2,

−
[

1
2

]
(Z)+, F (0) = 1/2,√

F (0)(1−F (0))

(3/2−F (0))2
Z, F (0) > 1/2.

(4.18)

where Z is a standard normal random variable, which agrees with (4.5) of the introduc-

tion, where it is derived using first principles.

We now present a corollary for the case of F (·) without mass points and a Young

function which is differentiable on (0,∞); in such situations it significantly simplifies

application of Theorem 7.

Corollary 3. For Ψ(·) differentiable on (0,∞), α ∈ (0, 1), F (·) a continuous function,

and both Ψ(·) and F (·) satisfying Assumption C we have

√
n (πFn − πF )

d−→
[
E
[
Ψ′
(
X − θ∗1
θ∗2

)]]−1

min
θ̃∈MF

Z
(
θ̃
)
, (4.19)

where θ̃∗ is any member ofMF , and Z(·) is as given in Theorem 7.

Proof. Clearly the objective function of the convex programming problem (P∞) is differ-

entiable; differentiability of the constraint η(·) follows from differentiability of Ψ(·) and

(4.9). As the Slater condition is satisfied for (P∞) (as observed in the proof of Theorem

7) we have the Karusch-Kuhn-Tucker conditions given by

η(θ̃) = 0,


1

1


 = λ




E
[
Ψ′
(
X−θ1
θ2

)]

E
[
Ψ′
(
X−θ1
θ2

) [
X−θ1
θ2

]]


 , (4.20)

are both necessary and sufficient conditions for optimality. The rest follows from observ-

ing that the set of Lagrange multipliers is invariant of the choice of optimal solution from

MF .

The following example demonstrates that a non-normal limit can arise even in situ-

ations covered by Corollary 3 where Λ is a singleton. This of course happens whenMF
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is not a singleton.

Example 16

In this example we continue to use the same definition of Ψ(·) and α as in Example 13

resulting in the 50%-level T-VaR as our choice of Haezendonck-Goovaerts risk measure.

The sampling distribution F (·) is the equal mixture of U(0, 1) and U(2, 3) as in Example

13, and is plotted in Figure 4.1. Observe that the median qα(F ) = 1, and that the T-VaR

at the 50%-level is 2.5. In fact the asymptotic distribution of the empirical T-VaR at the

50%-level for this choice of F (·) is derived in Example 1 (using first principles) to be that

of

Z1√
6

+ 3I(Z2<0)

(
Z2

2

)
, (4.21)

where Z1, Z2 are i.i.d. standard normal random variables. Moreover, in Example 1, it is

shown that the heuristics of influence function fails in this example. In the following we

will derive the limiting distribution of the empirical T-VaR estimator using Corollary 3.

We begin by observing that easy calculations yield

HF (θ1) =





3− 2θ1, θ1 < 0,
θ21
2
− 2θ1 + 3, 0 ≤ θ1 ≤ 1,

5
2
− θ1, 1 < θ1 ≤ 2,

(3−θ1)2

2
, 2 < θ1 ≤ 3,

0, otherwise,

which in turn implies that

MF = {(θ1, 5/2− θ1) : 1 ≤ θ1 ≤ 2}.

It is also easily checked that the Lagrange multiplier λ equals 2, and that the process Z(·)

of Corollary 3 satisfies,

Cov(Z(θ), Z(θ′)) =
(5/2− θ1)(5/2− θ′1)

4
+

1

24
, ∀θ̃, θ̃′ ∈MF .
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An equivalent representation of Z(·) onMF is the following:

Z(θ) =
(5/2− θ1)

2
Z1 +

1

2
√

6
Z2, ∀θ ∈MF .

Using this representation it is easy to see that

λ min
θ̃∈MF

Z
(
θ̃
)

d
=

{
3
2
Z1 + 1√

6
Z2, Z1 ≤ 0,

1
2
Z1 + 1√

6
Z2, otherwise.

The goal of the final example of this section is to compare the performance of

πFn , when F (·) is restricted to a parametric family of distributions, with the maximum

likelihood estimator (MLE) to develop some sense of the tradeoff made when using a

non-parametric estimator. Also, unlike in the previous examples both MF and Λ are

singletons. This implies a normal weak limit, thus facilitating a comparison in terms of

the asymptotic standard deviations.

Example 17

Let F (·) be the exponential distribution with hazard rate µ, Ψ(·) be as defined in (3.5),

and α ∈ (0, 1). For these choices it can be shown that HF (·) is given by

HF (θ1) =

[
β

µ

](
1 +

exp{−µθ1}
(exp{β} − 1)(1− α)

)
, θ1 ≥ 0.

Since HF (·) has a nice closed form we can directly minimize HF (θ1) + θ1. This mini-

mization yields the following expression for the optimal θ̃∗:

θ̃∗ =

(
1

µ
log

(
β

(exp{β} − 1)(1− α)

)
,
β + 1

µ

)
.

It is noteworthy that θ∗2 does not depend on α, and moreover its expression above implies

that δl of Assumption C is less than θ∗2. As

E

[[
Ψ

(
X

δl

)]2
]
<∞ ⇐⇒ 2β

δl
< µ

we have that Assumption C is satisfied only in the case that β < 1. In this case, applying
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Corollary 3 we have

√
n (πFn − πF )

d−→ N
(
0, σ2

)
.

where σ is given by

σ2 :=

(
2β

1−β − (exp{β} − 1)(1− α)
)

(exp{β} − 1)(1− α)µ2
.

Figure 4.3 plots the ratio of the asymptotic standard deviation of the parametric estimator

to that of the non-parametric estimator. While it is expected that this ratio would be non-

increasing as a function of α (as the non-parametric estimator essentially uses (1 − α)

part of the sample), it is noteworthy that the ratio in this example is significantly away

from zero even for α = 95%.

αα

σσ p
σσ n

p

ββ=0.25
ββ=0.5
ββ=0.75

0.25 0.50 0.75 0.90 0.95 1.00

0.
00
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0.
50

0.
75

1.
00

Figure 4.3: Ratio of Asymptotic Standard Deviations of
Parametric and Non-Parametric Estimators

We end this section by providing a more general version of a weak convergence

result for the empirical Orlicz premium than that provided in Bellini and Rosazza Gianin

(2008b). The idea is similar to that used above, and involves viewing HF (0) as the
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solution to the convex programming problem (PH∞) given by

minimize θ, θ ∈ (0,∞),

subject to θ

[
E
[
Ψ

(
X

θ

)]
− (1− α)

]
≤ 0.

(PH∞)

The above implies that HFn(0) is the optimal value of the convex programming problem

given by

minimize θ, θ ∈ (0,∞),

subject to En (γ (θ, Y )) ≤ 0.

where

γ(θ, x) := θ
(

Ψ
(x
θ

)
− (1− α)

)
, θ ∈ (0,∞).

Now we state the result without proof as the proof is similar to that of Theorem 7.

Theorem 8

Let X be a random variable in XΨ with Pr (X > 0) > 0, α ∈ [0, 1), and let δ∗ > 0 be

such that δ∗ < HF (0). Then for F (·) satisfying

E

[[
Ψ

(
X

δ∗

)]2
]
<∞,

we have

√
n (HFn(0)−HF (0))

d−→ max
λ∈Λ′

λV, (4.22)

where Λ′ is the set of Lagrange multipliers for the convex programming problem (PH∞),

and V is a mean zero Gaussian random variable with variance, Var (γ (HF (0), X)).

Moreover, under the further assumption that Ψ(·) is differentiable on (0,∞) we have

√
n (HFn(0)−HF (0))

d−→
[
E
[
Ψ

(
X

HF (0)

)[
X

HF (0)

]]]−1

V.
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4.4 Simulation Study

In this section we report on a simulation study conducted to lend insight into the

effect of the sampling distribution F (·), Young function Ψ(·), and the level α on the

sample sizes required for the above derived asymptotic limits to take hold. We use the

same simulation environment as in Section 4.4, except we run parallel on 40 processors

over 10 nodes of a 22 node Beowulf cluster. The algorithm that we use to compute the

empirical Haezendonck-Goovaerts risk measure πFn is presented in Chapter 3.

4.4.1 Effect of Sampling Distribution and Level

In this sub-section we will work with Ψ(·) defined given by

Ψ(x) =

{
0, x < 0,
x2+x

2
, otherwise,

and distributions Gi(·), i = 1, 2, 3 defined by

G1(x) =





0, x < 0,

x, 0 ≤ x ≤ 1,

1, otherwise,

G2(x) =

{
0, x < 0,

1− (1 + σx)−β, x ≥ 0,

and

G3(x) =

{
0, x < 0,

Φ
(

log(x)−µ
σ

)
, x ≥ 0,

where µ ∈ R, σ > 0, β > 0, and Φ(·) is the standard normal distribution function.

Note that G1(·), G2(·), and G3(·) are distribution functions corresponding to the uniform

distribution on (0, 1), the two-parameter Pareto family and the lognormal distribution,

respectively. We also note that we restrict β > 4 for the Pareto distribution function,

G2(·), so that it satisfies Assumption C2. Details of the two-parameter Pareto distribution

is described in Example 3 in Chapter 2.

For each of the stated three distributions we will show below that there is a unique
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optimal θ̃∗. For i = 1, 2, 3, we define Yi and λi by

Yi :=
1

θ∗2
max (Zi − θ∗1, 0) , and λi :=

[
E
[
Y 2
i +

Yi
2

]]−1

=

[
E
[
Yi +

I(Yi > 0)

2

]]−1

,

where Zi ∼ Gi. Also, we define σi by

σ2
i :=

[
λi
2

]2

Var
(
Y 2
i + Yi

)
, i = 1, 2, 3.

Now using Corollary 3 we have that the asymptotic limit of the empirical Haezendonck-

Goovaerts risk measure under Gi(·) is given by N (πGi , σ
2
i ), for i = 1, 2, 3. In the follow-

ing we will derive the unique optimal θ̃∗ for each of the three distributions. The unique-

ness part in all of the cases follows from θ∗1 belonging to the interior of the supports of

the distributions.

For G1(·), it can then be shown that for θ̃ ∈ (0, 1)× (0,∞) we have

E
[
Ψ′
(
Z1 − θ1

θ2

)]
=

(1− θ1)(1− θ1 + θ2)

2θ2

,

and

E
[
Ψ′
(
Z1 − θ1

θ2

)[
Z1 − θ1

θ2

]]
=

(1− θ1)3

3θ2
2

+
(1− θ1)2

4θ2

.

Now using the Karusch-Kuhn-Tucker conditions in (4.20) we have that any optimal θ̃∗

satisfies

1− θ∗1
θ∗2

=
12√

105− 3
.

Also, from (4.20) we have

E
[
Ψ

(
Z1 − θ∗1
θ∗2

)]
=

(1− θ∗1)3

6(θ∗2)2
+

(1− θ∗1)2

4θ∗2
= 1− α.

Using the above two equations we get the following closed form expression for θ̃∗ as a

function of α

θ̃∗ =

(
1− (

√
105− 3)2(1− α)

3(
√

105 + 5)
,
(
√

105− 3)3(1− α)

36(
√

105 + 5)

)
.
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In the case of G2(·) the procedure to find the unique optimal θ̃∗ is very similar to

that for G1(·); hence we directly provide an expression for it. The unique optimal θ̃∗ is

given by

θ̃∗ =

(
qpα(F2),

3(1− pα)(1 + σqpα(F2))

σ(β − 1) (4(1− α)− (1− pα))

)
,

where pα is given by

1− 32(β − 1)(1− α)

8(β − 1) + 3(β − 2)

(
1 +

√
1 + 16

(
β−1
β−2

)) .

In the case of G3(·), unlike the earlier two distributions, the optimal θ̃∗ does not
have a closed form expression. Nevertheless, the Karusch-Kuhn-Tucker conditions in
(4.20) imply that the optimal θ∗1 satisfies



E
[
(Z3 − θ∗1)2

+

]

9 [E [(Z3 − θ∗1)+]]2


 [4(1− α)− Pr (Z3 > θ∗1)]2 −

(
1

3

)
[2(1− α) + Pr (Z3 > θ∗1)] = 0,

(4.23)

where

Pr (Z3 > θ∗1) = Φ

(
log(θ∗1)− µ

σ

)
,

and

E
[
(Z3 − θ∗1)m+

]
=

m∑

i=0

(
m

i

)
exp

{
µi+

(σi)2

2

}
Φ

(
σi−

[
log(θ∗1)− µ

σ

])
(−θ∗1)m−i.

Now θ∗1 can be solved for using (4.23) and numerical algorithms like the Newton-Raphson

method (on R we used the function uniroot), and then θ∗2 can be found by using the

expression

θ∗2 =
3E [(Z3 − θ∗1)+]

4(1− α)− Pr (Z3 > θ∗1)
,

which is derived from (4.20) as well.

In the following, the parameters σ and β of the Pareto distribution G2(·) are chosen

to be 0.02 and 6, respectively; the parameters µ and σ of the lognormal distribution G3(·)

are chosen to be 0 and 1, respectively. Table 4.1 contains the values of the optimal θ∗1,
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α = 95% α = 99%
Sampling

Distribution
θ∗1 Pr (X > θ∗1) πF σ θ∗1 Pr (X > θ∗1) πF σ

Uniform 0.9426 5.741% 0.9773 0.116 0.9885 1.148% 0.996 0.053

Pareto 27.03 7.477% 54.63 197.4 50.73 1.495% 86.82 579.0

Lognormal 4.102 7.905% 9.978 53.64 8.641 1.552% 17.20 158.7

Table 4.1: Estimation of the Haezendonck-Goovaerts Risk Measure with Young
Function, Ψ(x) = x2+x

2
I(x > 0): Varying Sampling Distributions

Haezendonck-Goovaerts risk measure and asymptotic standard error for the empirical

Haezendonck-Goovaerts risk measure for each of the above sampling distributions and

for both the 95% and 99% levels. The table clearly exhibits the effect of heaviness of tails

on all of the reported values.

We simulated 100, 000 sets of random samples for each combination of sampling

distribution, level, and sample size. Figure 4.4 contains the plot of the Gaussian kernel

density estimator for each of the sampling distribution. The details of the kernel den-

sity estimator used are given in Section 2.2.2. As expected, Figure 4.4 confirms that a

higher α value requires a larger sample size for the asymptotic limit to take hold. In a

sense n ∗ Pr (X > θ∗1) is the effective sample size as it is essentially only the observa-

tions beyond θ∗1 that determine πFn . From this point of view, Figure 4.4 suggests that

in the case of the uniform distribution normality takes hold rather quickly, while in the

Pareto and lognormal cases a moderate sample size is required for normality to take hold.

On the other hand it is noteworthy that in Figure 4.4 normality seems to take hold in a

similar fashion for both the Pareto and the lognormal distributions, whereas the former

distribution has a much heavier tail than the latter.
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Figure 4.4: Estimated Densities of Empirical Haezendonck-Goovaerts
Risk Measures - Varying Levels and Sampling Distributions

4.4.2 Effect of Young Function

In this sub-section our sampling distribution is the exponential distribution with

unit mean, and we work with three Young functions Ψi(·), i = 1, 2, 3, defined by

Ψ1(x) =

{
0, x < 0,
(exp{x/2}−1)
exp{1/2}−1

, x ≥ 0,
Ψ2(x) =

{
0, x < 0,
x2+x

2
, x ≥ 0,

and,
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α = 95% α = 99%
Young

Function
θ∗1 Pr

(
X > θ∗1

)
πF σ θ∗1 Pr

(
X > θ∗1

)
πF σ

(exp{x/2}−1)I(x>0)
exp{1/2}−1

2.735 6.487% 4.235 7.788 4.345 1.297% 5.845 17.530

(x2+x)I(x>0)
2

2.681 6.847% 4.243 7.337 4.291 1.369% 5.852 16.527

xI(x > 0) 2.996 5% 3.996 6.245 4.605 1% 5.605 14.107

Table 4.2: Estimation of Haezendonck-Goovaerts Risk Measure for Exponential
Distribution: Different Young Functions

Ψ3(x) =

{
0, x < 0,

x, x ≥ 0.

Note that Ψ1(·) is more convex than Ψ2(·), and both of these are more convex than Ψ3(·).

Similar to the development in the previous sub-section we first identify the unique

optimal θ̃∗. This has been done for Ψ1(·) in Example 17; as Ψ3(·) corresponds to the case

of T-VaR, θ∗1 is the α-level quantile given by − log(1− α) and θ∗2 is 1 by the memoryless

property. It is worth mention that in the case of the T-VaR the asymptotic distribution

is given in Manistre and Hancock (2005) and Brazauskas et al. (2008). For Ψ2(·), the

procedure to find the optimal θ̃∗ is similar to that of the previous sub-section, and is given

by

θ̃∗ =

(
− log

[
(1− α)

(√
153− 11

)]
,

√
153− 11

5−
√

17

)
.

Table 4.2 contains the values of the optimal θ∗1, the Haezendonck-Goovaerts risk measure

and the asymptotic standard error for the empirical Haezendonck-Goovaerts risk measure

for each of the above Young functions and for both the 95% and 99% levels. It is note-

worthy that only the asymptotic standard error that shows a direct relationship with the

convexity of the Young function; in other words, the the more convex the Young function

the larger the asymptotic standard error.
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As earlier, we simulated 100, 000 sets of random samples for each sample size.

Figure 4.5 contains the plot of the estimated densities of the standardized (using πF and

the asymptotic standard deviation) empirical Haezendonck-Goovaerts risk measure at the

95%-level. Figure 4.5 suggests that a more convex Young function requires a larger

sample size for the asymptotic limit to take hold.
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Figure 4.5: Estimated Densities of Empirical Haezendonck-Goovaerts
Risk Measures - Varying Young Function

4.5 Concluding Remarks

We note that Krätschmer and Zähle (2011) also study the statistical estimation

of Haezendonck-Goovaerts risk measures, albeit in a different setup. Specifically, for

identically distributed risks, Z1, · · · , Zp, they are concerned with the estimation of the

Haezendonck-Goovaerts risk of the aggregated risk, Sp :=
p∑
i=1

Zi. Their central idea

is that under some suitable conditions Sp, for large values of p, is approximately nor-

mal, and hence a natural candidate for estimating its Haezendonck-Goovaerts risk is the

Haezendonck-Goovaerts risk of its estimated normal approximant. The statistical infer-

ence problem dealt with in this chapter is clearly different from that of Krätschmer and
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Zähle (2011), and so are the techniques used.

The importance of the weak convergence result in applications is accentuated by the

fact that even in non-pathological situations the empirical Haezendonck-Goovaerts risk

measure can have a non-normal limiting distribution. Also, even in the case where the

limiting distribution is normal, as reported in Bellini and Rosazza Gianin (2008b), simply

testing for normality using for example the Jarque-Bera statistic can be misleading. For

example, such testing resulted in rejecting normality, with a p-value less than 1%, for

both Example 17 (with β = 1) and the uniform example discussed in Section 4.4, where

as normality does indeed hold true in the latter case.

As mentioned above, in the case that there is a unique x∗ satisfying πF (x∗) = πF ,

this optimal solution can be viewed as an analog of the quantile. Due to this viewpoint

it is of interest to derive a weak convergence result for the sample analog of x∗. The

approach taken in this chapter, we believe, is a promising way towards establishing such

a result.

The weak convergence result is useful in practice as it paves a way for construc-

tion of confidence intervals. For interval estimation of the Haezendonck-Goovaerts risk

measure one would further need a consistent estimator of the asymptotic standard error.

While an obvious candidate exists in the case of a differentiable Ψ(·) and a continuous

F (·), investigation of the performance of the interval estimator resulting from its use

would be beneficial.
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APPENDIX

Here we provide source code for R-functions: HaezC and HaezE, that are used in
Chapter 3.

1 HaezEmp<-function(alpha=0.95, epsilon=0.0001, mybeta=(1-
alpha)^0.5, Haz=function(x){x^2}, Hazd=function(x){2*x},
X=rexp(1000), display=0,NN=5, fast=1)

2 {
3 error<-0.001;
4 if(is.real(mybeta)!=1) {print("mybeta needs to be a

numeric. i.e. \\Hazd^{-1}(1-alpha)");break}
5 if(is.vector(X)!=1) {print("XX needs to be a vector");

break}
6 if(is.function(Haz)!=1) {print("Haz needs to be a

function");break}
7 if(is.function(Hazd)!=1) {print("Hazd needs to be a

function");break}
8 Haz<<-Haz
9 Hazd<<-Hazd

10 alpha<<-alpha
11 Epsilon<<-epsilon/3.5
12 mybeta<<-mybeta
13 lowsupport<<--Inf;
14 upsupport<<-Inf;
15 XX<<-sort(X)
16 XH<<-XX[floor(length(XX)*alpha)+1]
17 # print(XH)
18 continuous<<-0;source("Aux.r")
19 outbreak=0; #If outbreak==1, then out-algorithm breaks.
20 #####################
21 #1 Get Lower bound of Minimizer
22 XH1=XH+Epsilon; #0.001 is fixed number
23 myMean<-mymean(lowsupport, 0)
24 HAtMyquantileH=up_Orlicz(XH1, (-Epsilon)) #Upper Bound of

H(myquantile),
25 XL=myMean-mybeta*(HAtMyquantileH+XH-myMean)/(1-mybeta); #

Lower Bound of Minimizer XH1-->XH
26 #####################
27 #####################
28 #2 Preliminary for Algorithm
29 orlicz=c(rep(mymean(XH, XH)/mybeta,7)) ;
30 num_iter=1;nu=0;j=7;
31 grid_pts=sort(XL+(XH-XL)/(6)*(0:6));

118
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32 HistN=c(0,0,0,0,0,0,0)
33 Activate=0;#Activate=1 if N<=5
34 L=1; H=7; #Index of x_1 and x_7
35 UBorliczAT_L=up_Orlicz(grid_pts[1]-error, error); #Upper

bound of H(X,x_1) #For calculation of N
36 #####################
37

38 repeat{
39 if(display==1){print("Begin Round***********************

******************")}
40 nu=0;
41 N=NN;
42 orlicz[7]=NRI_M(orlicz[7],grid_pts[7],num_iter); #Step 1
43 HistN[7]=HistN[7]+1; #Step 1
44 #Begin Calculation of N
45 if(L>1){UBorliczAT_L=min(up_Orlicz(grid_pts[1]-error,

error), UBorliczAT_L)} ##error is fixed 02/21
46 tempN=GetLocalN(grid_pts[7],UBorliczAT_L,grid_pts[1],

orlicz[7], Epsilon)
47 if(tempN<=NN){Activate=1; N=tempN};
48 #End Calculation of N
49 if(display==1){print(paste("Calculated N is",tempN,"But/

And we will use N=",N));}
50 if(fast==1){
51 repeat{
52 if(ExpHaz_M(orlicz[j]+ (grid_pts[j]-grid_pts[j-1])-

Epsilon/100,grid_pts[j-1])< 1-alpha) #Step 2a
53 {
54 if(j==2){ #Step 3a
55 L=j-1;H=j; nu=0; #nu=1 means epsilon equivalent.
56 XL=grid_pts[L];
57 XH=grid_pts[H];
58 break;
59 }
60 if(HistN[j-1] < N) {orlicz[j-1]=NRI_M(max(orlicz[j],orlicz

[j-1]),grid_pts[j-1],num_iter) #Step 1
61 ;HistN[j-1]=HistN[j-1]+1;}
62 j=j-1;nu=0;next;N=min(tempN,NN); ## 02/18/12
63 }
64 if(HistN[j-1] < N)
65 {
66 orlicz[j-1]=NRI_M(max(orlicz[j-1],orlicz[j],orlicz[j]

+ (grid_pts[j]-grid_pts[j-1])),grid_pts[j-1],num_
iter); #Step 2b

67 HistN[j-1]=HistN[j-1]+1;
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68 }
69 if(orlicz[j-1] - (grid_pts[j]-grid_pts[j-1])-Epsilon/

100 >0) ##Step 2c 02.15 modified
70 {
71 if(ExpHaz_M(orlicz[j-1] - (grid_pts[j]-grid_pts[j-1])

-Epsilon/100,grid_pts[j])< 1-alpha) #Step 2c
72 {
73 L=j-1;
74 H=min(7, j+1+nu);
75 XL=grid_pts[L];
76 XH=grid_pts[H];
77 break;
78 }
79 }
80 if(HistN[j-1]>=N & HistN[j]>=N) #step 2d and 3b
81 {
82 Equiv=1; #Equiv=1 indicates that it is epsilon

equivalent for this step, while nu=1 means epsilon
equivalent at previous step

83 if(Activate==0) #Inspect whether it is really epsilon
close or not, Activate=0 means calculated local N
>5

84 {
85 Equiv=0;
86 if(ExpHaz_M(orlicz[j]+Epsilon,grid_pts[j]) < 1-alpha &

ExpHaz_M(orlicz[j-1]+Epsilon,grid_pts[j-1]) < 1-alpha)
87 {Equiv=1;if(display==1){print(paste("Since n>5 do epsilon

Test and Then PASS at j=", j, j-1));}
88 N=min(tempN,NN); ## 02/18/12
89 } else {if(display==1){print("Since n>5, do epsilon Test,

but Failed: Keep testing until satisfied");}
90 N=N+1; ## 02.15 modified
91 }
92 }
93 if(nu==1 & Equiv==1) {H=7;L=1;XL=grid_pts[L]; XH=

grid_pts[H];outbreak=1;if(display==1){print("Tag
A1");};break;}; #Step 3b

94 if(nu==0 & j!=2 & Equiv==1) { nu=1;j=j-1;next; }; #
Step 3b

95 if(nu==0 & j==2 & Equiv==1) { H=min(7,j+1+nu);L=j-1;
XL=grid_pts[L]; XH=grid_pts[H]; nu=1; break; }; #
Step 3b #Ahn: I have added nu=0,H and L

96 } #End of step 2d and 3b
97 if(HistN[j] < N) #Step 2e
98 {
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99 orlicz[j]=NRI_M(max(orlicz[j],orlicz[j-1] - (grid_pts
[j]-grid_pts[j-1])),grid_pts[j],num_iter);

100 HistN[j]=HistN[j]+1;
101 }
102 #####################
103 } #End of inside Loop;
104 #####################
105 }
106 if(fast==0){
107 repeat{
108 if(ExpHaz_M(orlicz[j]+ (grid_pts[j]-grid_pts[j-1])-

Epsilon/100,grid_pts[j-1])< 1-alpha) #Step 2a
109 {
110 if(j==2){ #Step 3a
111 L=j-1;H=j; nu=0; #nu=1 means epsilon equivalent.
112 XL=grid_pts[L];
113 XH=grid_pts[H];
114 break;
115 }
116 if(HistN[j-1] < N) {orlicz[j-1]=NRI_M(max(orlicz[j],

orlicz[j-1]),grid_pts[j-1],num_iter) #Step 1
117 ;HistN[j-1]=HistN[j-1]+1;}
118 j=j-1;nu=0;next;N=min(tempN,NN); ## 02/18/12
119 }
120 if(HistN[j-1] < N)
121 {
122 orlicz[j-1]=NRI_M(max(orlicz[j-1],orlicz[j]),grid_pts

[j-1],num_iter); #Step 2b
123 HistN[j-1]=HistN[j-1]+1;
124 }
125 if(orlicz[j-1] - (grid_pts[j]-grid_pts[j-1])-Epsilon/

100 >0) ##Step 2c 02.15 modified
126 {
127 if(ExpHaz_M(orlicz[j-1] - (grid_pts[j]-grid_pts[j-1])-

Epsilon/100,grid_pts[j])< 1-alpha) #Step 2c
128 {
129 L=j-1;
130 H=min(7, j+1+nu);
131 XL=grid_pts[L];
132 XH=grid_pts[H];
133 break;
134 }
135 }
136 if(HistN[j-1]>=N & HistN[j]>=N) #step 2d and 3b
137 {
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138 Equiv=1; #Equiv=1 indicates that it is epsilon
equivalent for this step, while nu=1 means epsilon
equivalent at previous step

139 if(Activate==0) #Inspect whether it is really epsilon
close or not, Activate=0 means calculated local N
>5

140 {
141 Equiv=0;
142 if(ExpHaz_M(orlicz[j]+Epsilon,grid_pts[j]) < 1-alpha &

ExpHaz_M(orlicz[j-1]+Epsilon,grid_pts[j-1]) < 1-alpha)
143 {Equiv=1;if(display==1){print(paste("Since n>5 do epsilon

Test and Then PASS at j=", j, j-1));}
144 N=min(tempN,NN); ## 02/18/12
145 } else {if(display==1){print("Since n>5, do epsilon Test,

but Failed: Keep testing until satisfied");}
146 N=N+1; ## 02.15 modified
147 }
148 }
149 if(nu==1 & Equiv==1) {H=7;L=1;XL=grid_pts[L]; XH=

grid_pts[H];outbreak=1;if(display==1){print("Tag
A1");};break;}; #Step 3b

150 if(nu==0 & j!=2 & Equiv==1) { nu=1;j=j-1;next; }; #
Step 3b

151 if(nu==0 & j==2 & Equiv==1) { H=min(7,j+1+nu);L=j-1;
XL=grid_pts[L]; XH=grid_pts[H]; nu=1; break; }; #
Step 3b #Ahn: I have added nu=0,H and L

152 } #End of step 2d and 3b
153 if(HistN[j] < N) #Step 2e
154 {
155 orlicz[j]=NRI_M(orlicz[j],grid_pts[j],num_iter);
156 HistN[j]=HistN[j]+1;
157 }
158 #####################
159 } #End of inside Loop;
160 #####################
161 }
162 #Calculation of Real Orlicz Norm for Reference(Start)
163 if(display==1){
164 if(grid_pts[7]==upsupport) {temp7=0;} else {temp7<-NRI_

M(orlicz[7],grid_pts[7],100)} #Ahn: this is more
general

165 TempHaez=c(NRI_M(orlicz[1],grid_pts[1],100),NRI_M(
orlicz[2],grid_pts[2],100),NRI_M(orlicz[3],grid_pts
[3],100)
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166 ,NRI_M(orlicz[4],grid_pts[4],100),NRI_M(orlicz[5],grid_
pts[5],100),NRI_M(orlicz[6],grid_pts[6],100),temp7)

167 #Calculation of Real Orlicz Norm for Reference(End)
168 #######################################
169 #Printing of Auxilarly Information(Start)
170 #######################################
171 print("Grid_pts");
172 print(sort(grid_pts, decreasing=T));
173 print("pi[X,x]");
174 print(grid_pts[7:1]+TempHaez[7:1]); # Shyamal
175 print("hat{pi}[X,x]");
176 print(grid_pts[7:1]+orlicz[7:1]); # Shyamal
177 print("HistN")
178 print(HistN[7:1]); #Shyamal
179 print(paste("Lower point=", L, "Upper point=",H))
180 print("End Round***************************************

***")
181 print(" ")
182 print(" ")
183 print(" ")
184 print(" ")
185 }
186 #####################
187 #Printing of Auxilarly Information(End)
188 #####################
189 #Redefine the grids and h(); (Start)
190 if(outbreak==1){break}; #TagA1
191 if(grid_pts[2]-grid_pts[1] < Epsilon) { print("epsilon

small");break;}; #OutAlgo iii, Tag B1~B6
192 if((H-L)==1){
193 grid_pts= sort(XL+(XH-XL)/6*(0:6));
194 orlicz=c(orlicz[j-1],rep(orlicz[j],6))
195 }
196 if((H-L)==2){
197 grid_pts= sort(XL+(XH-XL)/6*(0:6));
198 orlicz=c(orlicz[j-1],rep(orlicz[j],3),rep(orlicz[j

+1],3))
199 }
200 if((H-L)==3){
201 grid_pts= sort(XL+(XH-XL)/6*(0:6));
202 orlicz=c(orlicz[j-1],rep(orlicz[j],2),rep(orlicz[j

+1],2),rep(orlicz[j+2],2))
203 }
204 HistN=c(0,0,0,0,0,0,0); j=7;
205 #Redefine the grids and h(); (end)
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206 #####################
207 }#End of out side loop;
208 #####################
209 #Find which Tag it has ended (start)
210 High=0;
211 Low=H-L;
212 if(HistN[5]==0) #TagB1
213 {
214 repeat{
215 if( ExpHaz_M(orlicz[7]+Epsilon,grid_pts[7])< 1-alpha )

{break;};
216 orlicz[7]<-NRI_M(orlicz[7]+Epsilon,grid_pts[7], 1)
217 }
218 est_haz=grid_pts[7]+orlicz[7];High=1;
219 } else { est_haz=grid_pts[H]+orlicz[H];} #TagB2~B6
220 if(nu==1 & HistN[4]==0){High=1;} #TagB4
221 if(outbreak==1){High=1;grid_pts[j+1]+orlicz[j+1];} #TagA1
222 #Find which Tag it has ended (end)
223 #Results (start)
224 HaezH=est_haz+High*Epsilon;
225 HaezL=est_haz-Low*Epsilon;
226 MiniL=XL #grid_pts[1];
227 MiniH=XH #grid_pts[5+2*nu];
228 HaezendonckRow=c((HaezH+HaezL)/2, HaezL, HaezH)
229 OrliczRow=c((MiniH+MiniL)/2, MiniL, MiniH)
230 DF <- data.frame( HaezendonckRow,OrliczRow)
231 row.names(DF)=c("Estimation","Lower Bound","Upper Bound")
232 names(DF)=c("Haezendonck-Goovaerts risk measure","

Orlicz Quantile")
233 return=DF
234 }

1 HaezConti<-function(alpha=0.95, epsilon=0.001, upquantile=
NULL, lowsupport=0, upsupport=Inf,mybeta=(1-0.95)^0.5,
Haz=function(x){x^2}, Hazd=function(x){2*x}, mydist=
function(x){exp(-x)}, display=0, NN=5, fast=1)

2 {
3 error<-0.001;
4 if(is.real(mybeta)!=1) {print("mybeta needs to be a

numeric. i.e. \\Hazd^{-1}(1-alpha)");break}
5 if(is.function(Haz)!=1) {print("Haz needs to be a function

");break}
6 if(is.function(Hazd)!=1) {print("Hazd needs to be a

function");break}
7 alpha<<-alpha
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8 Epsilon<<-epsilon/3.5
9 mybeta<<-mybeta

10 lowsupport<<-lowsupport
11 upsupport<<-upsupport
12 mydist<<-mydist
13 if(length(upquantile)==0)
14 {
15 approxquantile<-function(fff2)
16 {
17 abs(integrate(mydist, lower=fff2[1],upper=upsupport,

abs.tol=0.0000001*Epsilon)$value -(1-alpha))
18 }
19 tempXH=nlm(approxquantile, c(1,1))
20 XH<<-min(tempXH$estimate[1]+error, upsupport)
21 } else {XH<<-upquantile}
22 if(abs(integrate(mydist, lower=lowsupport,upper=upsupport,

abs.tol=0.0001)$value-1)>0.01) {
23 print("Either lowsupport or upsupport or mydist are wrong

!!!");
24 break;
25 }
26 Haz<<-Haz
27 Hazd<<-Hazd
28 continuous<<-1;source("Aux.r")
29 outbreak=0; #If outbreak==1, then out-algorithm breaks.
30 ########################
31 #1 Get Lower bound of Minimizer
32 XH1=XH+Epsilon; #0.001 is fixed number
33 myMean<-mymean(lowsupport, 0)
34 HAtMyquantileH=up_Orlicz(XH1, (-Epsilon)) #Upper Bound of

H(myquantile),
35 XL=myMean-mybeta*(HAtMyquantileH+XH-myMean)/(1-mybeta); #

Lower Bound of Minimizer XH1-->XH
36 ########################
37 ########################
38 #2 Preliminary for Algorithm
39 orlicz=c(rep(mymean(XH, XH)/mybeta,7)) ;
40 num_iter=1;nu=0;j=7;
41 grid_pts=sort(XL+(XH-XL)/(6)*(0:6));
42 HistN=c(0,0,0,0,0,0,0)
43 Activate=0;#Activate=1 if N<=5
44 L=1; H=7; #Index of x_1 and x_7
45 UBorliczAT_L=up_Orlicz(grid_pts[1]-error, error); #Upper

bound of H(X,x_1) #For calculation of N
46 ########################
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47

48 repeat{
49 if(display==1){print("Begin Round************************

***************************")}
50 nu=0;
51 N=NN;
52 orlicz[7]=NRI_M(orlicz[7],grid_pts[7],num_iter); #Step 1
53 HistN[7]=HistN[7]+1; #Step 1
54

55 #Begin Calculation of N
56 if(L>1){UBorliczAT_L=min(up_Orlicz(grid_pts[1]-error,

error), UBorliczAT_L)} ##error is fixed 02/21
57 tempN=GetLocalN(grid_pts[7],UBorliczAT_L,grid_pts[1],

orlicz[7], Epsilon)
58 if(tempN<=NN){Activate=1; N=tempN};
59 #End Calculation of N
60 if(display==1){print(paste("Calculated N is",tempN,"But/

And we will use N=",N));}
61 if(fast==1){
62 repeat{
63 if(ExpHaz_M(orlicz[j]+ (grid_pts[j]-grid_pts[j-1])-

Epsilon/100,grid_pts[j-1])< 1-alpha) #Step 2a
64 {
65 if(j==2){ #Step 3a
66 L=j-1;H=j; nu=0; #nu=1 means epsilon equivalent.
67 XL=grid_pts[L];
68 XH=grid_pts[H];
69 break;
70 }
71 if(HistN[j-1] < N) {orlicz[j-1]=NRI_M(max(orlicz[j],

orlicz[j-1]),grid_pts[j-1],num_iter) #Step 1
72 ;HistN[j-1]=HistN[j-1]+1;}
73 j=j-1;nu=0;next;N=min(tempN,NN); ## 02/18/12
74 }
75 if(HistN[j-1] < N)
76 {
77 orlicz[j-1]=NRI_M(max(orlicz[j-1],orlicz[j],orlicz[j

] + (grid_pts[j]-grid_pts[j-1])),grid_pts[j-1],
num_iter); #Step 2b

78 HistN[j-1]=HistN[j-1]+1;
79 }
80 if(orlicz[j-1] - (grid_pts[j]-grid_pts[j-1])-Epsilon/

100 >0) ##Step 2c 02.15 modified
81 {
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82 if(ExpHaz_M(orlicz[j-1] - (grid_pts[j]-grid_pts[j
-1])-Epsilon/100,grid_pts[j])< 1-alpha) #Step 2c

83 {
84 L=j-1;
85 H=min(7, j+1+nu);
86 XL=grid_pts[L];
87 XH=grid_pts[H];
88 break;
89 }
90 }
91 if(HistN[j-1]>=N & HistN[j]>=N) #step 2d and 3b
92 {
93 Equiv=1; #Equiv=1 indicates that it is epsilon

equivalent for this step, while nu=1 means
epsilon equivalent at previous step

94 if(Activate==0) #Inspect whether it is really
epsilon close or not, Activate=0 means calculated
local N>5

95 {
96 Equiv=0;
97 if(ExpHaz_M(orlicz[j]+Epsilon,grid_pts[j]) < 1-alpha &

ExpHaz_M(orlicz[j-1]+Epsilon,grid_pts[j-1]) < 1-alpha)
98 {Equiv=1;if(display==1){print(paste("Since n>5 do epsilon

Test and Then PASS at j=", j, j-1));}
99 N=min(tempN,NN); ## 02/18/12

100 } else {if(display==1){print("Since n>5, do epsilon Test
, but Failed: Keep testing until satisfied");}

101 N=N+1; ## 02.15 modified
102 }
103 }
104 if(nu==1 & Equiv==1) {H=7;L=1;XL=grid_pts[L]; XH=

grid_pts[H];outbreak=1;if(display==1){print("Tag
A1");};break;}; #Step 3b

105 if(nu==0 & j!=2 & Equiv==1) { nu=1;j=j-1;next; }; #
Step 3b

106 if(nu==0 & j==2 & Equiv==1) { H=min(7,j+1+nu);L=j-1;
XL=grid_pts[L]; XH=grid_pts[H]; nu=1; break; }; #
Step 3b #Ahn: I have added nu=0,H and L

107 } #End of step 2d and 3b
108 if(HistN[j] < N) #Step 2e
109 {
110 orlicz[j]=NRI_M(max(orlicz[j],orlicz[j-1] - (grid_pts

[j]-grid_pts[j-1])),grid_pts[j],num_iter);
111 HistN[j]=HistN[j]+1;
112 }
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113 #####################
114 } #End of inside Loop;
115 #####################
116 }
117 if(fast==0){
118 repeat{
119 if(ExpHaz_M(orlicz[j]+ (grid_pts[j]-grid_pts[j-1])-

Epsilon/100,grid_pts[j-1])< 1-alpha) #Step 2a
120 {
121 if(j==2){ #Step 3a
122 L=j-1;H=j; nu=0; #nu=1 means epsilon equivalent.
123 XL=grid_pts[L];
124 XH=grid_pts[H];
125 break;
126 }
127 if(HistN[j-1] < N) {orlicz[j-1]=NRI_M(max(orlicz[j],

orlicz[j-1]),grid_pts[j-1],num_iter) #Step 1
128 ;HistN[j-1]=HistN[j-1]+1;}
129 j=j-1;nu=0;next;N=min(tempN,NN); ## 02/18/12
130 }
131 if(HistN[j-1] < N)
132 {
133 orlicz[j-1]=NRI_M(max(orlicz[j-1],orlicz[j]),grid_pts[j

-1],num_iter); #Step 2b
134 HistN[j-1]=HistN[j-1]+1;
135 }
136 if(orlicz[j-1] - (grid_pts[j]-grid_pts[j-1])-Epsilon/

100 >0) ##Step 2c 02.15 modified
137 {
138 if(ExpHaz_M(orlicz[j-1] - (grid_pts[j]-grid_pts[j

-1])-Epsilon/100,grid_pts[j])< 1-alpha) #Step 2c
139 {
140 L=j-1;
141 H=min(7, j+1+nu);
142 XL=grid_pts[L];
143 XH=grid_pts[H];
144 break;
145 }
146 }
147 if(HistN[j-1]>=N & HistN[j]>=N) #step 2d and 3b
148 {
149 Equiv=1; #Equiv=1 indicates that it is epsilon equivalent

for this step, while nu=1 means epsilon equivalent at
previous step
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150 if(Activate==0) #Inspect whether it is really epsilon
close or not, Activate=0 means calculated local N>5

151 {
152 Equiv=0;
153 if(ExpHaz_M(orlicz[j]+Epsilon,grid_pts[j]) < 1-alpha &

ExpHaz_M(orlicz[j-1]+Epsilon,grid_pts[j-1]) < 1-alpha
)

154 {Equiv=1;if(display==1){print(paste("Since n>5 do
epsilon Test and Then PASS at j=", j, j-1));}

155 N=min(tempN,NN); ## 02/18/12
156 } else {if(display==1){print("Since n>5, do epsilon

Test, but Failed: Keep testing until satisfied");}
157 N=N+1; ## 02.15 modified
158 }
159 }
160 if(nu==1 & Equiv==1) {H=7;L=1;XL=grid_pts[L]; XH=grid_pts

[H];outbreak=1;if(display==1){print("Tag A1");};break
;}; #Step 3b

161 if(nu==0 & j!=2 & Equiv==1) { nu=1;j=j-1;next; }; #Step 3b
162 if(nu==0 & j==2 & Equiv==1) { H=min(7,j+1+nu);L=j-1;XL=

grid_pts[L]; XH=grid_pts[H]; nu=1; break; }; #Step 3b #
Ahn: I have added nu=0,H and L

163 } #End of step 2d and 3b
164 if(HistN[j] < N) #Step 2e
165 {
166 orlicz[j]=NRI_M(orlicz[j],grid_pts[j],num_iter);
167 HistN[j]=HistN[j]+1;
168 }
169 #####################
170 } #End of inside Loop;
171 #####################
172 }
173 #Calculation of Real Orlicz Norm for Reference(Start)
174 if(display==1){
175 if(grid_pts[7]==upsupport) {temp7=0;} else {temp7<-NRI_M(

orlicz[7],grid_pts[7],100)} #Ahn: this is more general
176 TempHaez=c(NRI_M(orlicz[1],grid_pts[1],100),NRI_M(orlicz

[2],grid_pts[2],100),NRI_M(orlicz[3],grid_pts[3],100)
177 ,NRI_M(orlicz[4],grid_pts[4],100),NRI_M(orlicz[5],grid_

pts[5],100),NRI_M(orlicz[6],grid_pts[6],100),temp7)
178 #Calculation of Real Orlicz Norm for Reference(End)
179 #######################################
180 #Printing of Auxilarly Information(Start)
181 #######################################
182 print("Grid_pts");
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183 print(sort(grid_pts, decreasing=T));
184 print("pi[X,x]");
185 print(grid_pts[7:1]+TempHaez[7:1]); # Shyamal
186 print("hat{pi}[X,x]");
187 print(grid_pts[7:1]+orlicz[7:1]); # Shyamal
188 print("HistN")
189 print(HistN[7:1]); #Shyamal
190 print(paste("Lower point=", L, "Upper point=",H))
191 print("End Round*****************************************

**********")
192 print(" ")
193 print(" ")
194 print(" ")
195 print(" ")
196 }
197 #######################################
198 #Printing of Auxilarly Information(End)
199 #######################################
200 #Redefine the grids and h(); (Start)
201 if(outbreak==1){break};

#TagA1
202 if(grid_pts[2]-grid_pts[1] < Epsilon) { print("epsilon

small");break;}; #OutAlgo iii, Tag B1~
B6

203 if((H-L)==1){
204 grid_pts= sort(XL+(XH-XL)/6*(0:6));
205 orlicz=c(orlicz[j-1],rep(orlicz[j],6))
206 }
207 if((H-L)==2){
208 grid_pts= sort(XL+(XH-XL)/6*(0:6));
209 orlicz=c(orlicz[j-1],rep(orlicz[j],3),rep(orlicz[j

+1],3))
210 }
211 if((H-L)==3){
212 grid_pts= sort(XL+(XH-XL)/6*(0:6));
213 orlicz=c(orlicz[j-1],rep(orlicz[j],2),rep(orlicz[j

+1],2),rep(orlicz[j+2],2))
214 }
215 HistN=c(0,0,0,0,0,0,0); j=7;
216 #Redefine the grids and h(); (end)
217 #########################
218 }#End of out side loop;
219 #########################
220
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221 #Find which Tag it has ended (start)
222 High=0;
223 Low=H-L;
224 if(HistN[5]==0) #TagB1
225 {
226 repeat{
227 if( ExpHaz_M(orlicz[7]+Epsilon,grid_pts[7])< 1-alpha

) {break;};
228 orlicz[7]<-NRI_M(orlicz[7]+Epsilon,grid_pts[7], 1)
229 }
230 est_haz=grid_pts[7]+orlicz[7];High=1;
231 } else { est_haz=grid_pts[H]+orlicz[H];} #TagB2~B6
232 if(nu==1 & HistN[4]==0){High=1;} #TagB4
233 if(outbreak==1){High=1;grid_pts[j+1]+orlicz[j+1];} #TagA1
234 #Find which Tag it has ended (end)
235 HaezH=est_haz+High*Epsilon;
236 HaezL=est_haz-Low*Epsilon;
237 MiniL=XL #grid_pts[1];
238 MiniH=XH #grid_pts[5+2*nu];
239 HaezendonckRow=c((HaezH+HaezL)/2, HaezL, HaezH)
240 OrliczRow=c((MiniH+MiniL)/2, MiniL, MiniH)
241 DF <- data.frame( HaezendonckRow,OrliczRow)
242 row.names(DF)=c("Estimation","Lower Bound","Upper Bound")
243 names(DF)=c("Haezendonck-Goovaerts risk measure","

Orlicz Quantile")
244 return=DF
245 }

1 NRI_M<-function(iter,theta1,n)
2 {
3 if(iter==0) {iter=mymean(theta1,theta1)}
4 if(iter==0) {iter=0} else {
5 if(continuous==1){
6 f1<-function(x)
7 {
8 Haz((x-theta1)/iter)*mydist(x)
9 }

10 f2<-function(x)
11 {
12 Hazd((x-theta1)/iter)*(x-theta1)/iter*mydist(x)
13 }
14 for (i in 1:n){
15 temp1=(integrate(f1, lower=theta1,upper=upsupport, abs

.tol=0.000001*Epsilon)$value - (1-alpha))
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16 temp2=integrate(f2, lower=theta1,upper=upsupport, abs.
tol=0.000001*Epsilon)$value

17 iter=iter + iter * temp1/temp2;
18 }
19 }
20 if(continuous==0){
21 for (i in 1:n){
22 temp1=mean( Haz(pmax(XX-theta1,0)/iter) ) - (1-alpha)
23 temp2=mean( Hazd(pmax(XX-theta1,0)/iter)*(XX-theta1)/

iter )
24 iter=iter + iter * temp1/temp2;
25 }
26 }
27 if(continuous==2){
28 iter=NRI_MM(iter,theta1,n)
29 }
30 }
31 return<-iter;
32 }
33

34

35

36

37 ExpHaz_M<-function(iter,theta1)
38 {
39 if(continuous==1){
40 f1<-function(x)
41 {
42 Haz((x-theta1)/iter)*mydist(x)
43 }
44 ret=integrate(f1, lower=theta1,upper=upsupport, abs.tol

=0.000001*Epsilon)$value
45 }
46 if(continuous==0){
47 ret=mean( Haz(pmax(XX-theta1,0)/iter) )
48 }
49 if(continuous==2){
50 ret=ExpHaz_MM(iter,theta1)
51 }
52 return<-ret;
53 }
54

55

56

57 mymean<-function(z,z1)
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58 {
59 if(continuous==1){
60 fmean<-function(x){(x-z1)*mydist(x)}
61 ret=integrate(fmean, lower=max(z,lowsupport), upper=

upsupport, abs.tol=0.000001*Epsilon)$value
62 }
63 if(continuous==0){
64 ret= mean((XX-z1)*(XX>=z))
65 }
66 if(continuous==2){
67 ret=mymeanM(z,z1)
68 }
69 return<-ret;
70 }
71

72

73 up_Orlicz<-function(XHH, error) ##Need to be GENERALIZED
74 {
75 temp=mymean(XHH, XHH)/mybeta
76 if(temp==0) {temporlicz=0} else{
77 temporlicz<-NRI_M(temp,XHH,1)
78 repeat{
79 if(temporlicz-error>0) {
80 if(ExpHaz_M(temporlicz-error ,(XHH+error))< 1-alpha)

{break; }
81 }
82 temporlicz=NRI_M(temporlicz,XHH,1);
83 }
84 }
85 ret=temporlicz
86 }
87

88

89

90 GetLocalN<-function(grid7, orlicz1, grid1, orlicz7, Epsilon
) ##Need to be generalized

91 {
92 if(orlicz7==0) {Chat=1-(1-alpha)^3*Hazd(mybeta)/Hazd(

mybeta/(1-alpha)); } else {
93 if(continuous==1){
94 FF<-function(x)
95 {
96 Hazd((x-FC1)/FC2)*((x-FC1)/FC2)*mydist(x)
97 }
98 FC1=grid7;
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99 FC2=orlicz1;
100 TEMPnumerator=integrate(FF, lower=FC1,upper=upsupport,

abs.tol=0.000001*Epsilon)$value
101 FC1=grid1;
102 FC2=orlicz7;
103 TEMPdenominator=integrate(FF, lower=FC1,upper=upsupport

, abs.tol=0.000001*Epsilon)$value
104 }
105 if(continuous==0){
106 FC1=grid7;
107 FC2=orlicz1;
108 print(paste(FC1,FC2))
109 TEMPnumerator=mean(Hazd(pmax(XX-FC1,0)/FC2)*((XX-FC1)/

FC2))
110 FC1=grid1;
111 FC2=orlicz7;
112 TEMPdenominator=mean(Hazd(pmax(XX-FC1,0)/FC2)*((XX-FC1)

/FC2))
113 }
114 if(continuous==2){
115 FC1=grid7;
116 FC2=orlicz1;
117 TEMPnumerator=meanPsiX.X(XX,FC1,FC2)
118 FC1=grid1;
119 FC2=orlicz7;
120 TEMPdenominator=meanPsiX.X(XX,FC1,FC2)
121 }
122 Chat=1-orlicz7/orlicz1*TEMPnumerator/TEMPdenominator;
123 }
124 NN=max(ceiling(log(Epsilon/(orlicz1-orlicz7))/log(Chat))

,1);
125 return=NN;
126 }


