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CHAPTER 1  

INTRODUCTION 

Chromosomal microarray (CMA) is a broad term often used to describe clinical 

testing for DNA copy number variation (CNV) utilizing either single nucleotide 

polymorphism (SNP) or comparative genomic hybridization microarrays (aCGH).  CMA 

has proven to have a much higher diagnostic yield than conventional chromosome 

analysis or sub-telomeric fluorescence in situ hybridization (FISH) for a range of 

developmental phenotypes (Hochstenback, et al. 2009; Shen, et al. 2010; Vissers, et al. 

2010).  This increase in diagnostic yield is facilitated in part by the much higher 

resolution of microarray strategies in comparison to conventional cytogenetic techniques.  

It has been recommended that chromosomal microarrays be a first-tier diagnostic test for 

individuals with non-syndromic intellectual disability/developmental delay, autism 

spectrum disorders, or multiple congenital anomalies (Miller, et al. 2010; Manning and 

Hudgins 2010). 

In this thesis, CGH-based microarray platforms were used for all CMA tests 

performed.  With the improvements in resolution that come from array-based CGH 

(aCGH) methods, discoveries of many polymorphic CNVs have been found in healthy 

individuals as well as novel pathogenic CNVs.  Polymorphic (common) CNVs are 

regions of DNA in which deletions and/or duplications normally occur in the population 

at a frequency higher than would be expected to occur at random.  Typically, 

polymorphic CNVs are benign or have no known clinical significance.  The presence of 

common, polymorphic CNVs found in the “normal” population makes detection of novel 

pathogenic CNVs difficult. 

A disadvantage of aCGH can be the test-to-test variability.  This can arise from a 

number of different factors including, variation in equipment used in the testing process, 
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the individuals performing the tests, different laboratory environments, or laboratory 

environmental factors over time and between tests (especially humidity, heat and ozone 

levels).  Other artifact sources include differential labeling efficiency of dyes for the test 

and reference sample, uneven spotting of DNA to the microarray, variations in washing 

efficiency, and variations in scanning efficiency of the microarray.  The resulting 

variability can be partially addressed using normalization techniques, but variability in 

data from laboratory to laboratory can still exist.  In comparisons between different array 

platforms, different laboratories performing tests, and different algorithms for CNV 

calling, it has been found that variation remains a vexing problem.  When taking into 

account both large and small CNVs, a comparison among algorithms using the same raw 

data typically yielded less than 50%.  It has also been demonstrated that the 

reproducibility of tests on many platforms was less than 70% (Pinto, et al. 2011). 

Many algorithms used for calling CNVs have parameters, such as an intensity 

threshold or minimum length, that can be calibrated to each laboratory setting in order to 

optimize the performance of the tools.  A software tool that can provide a general 

analytical calibration of parameters used in CNV calling algorithms can be of great use to 

clinical laboratories.  No such tool is currently known to exist and would greatly enhance 

the diagnostic accuracy of this important clinical test. 

Recently, the American College of Medical Genetics (ACMG) published new 

guidelines for the interpretation and reporting of constitutional CNVs as well as 

recommendations for the design and performance expectations of the microarrays used in 

clinical CMA testing (Kearney, South, et al. 2011; Kearney, Thorland, et al. 2011).  

Recommendations for microarray design and validation include the ability to detect 

genome-wide CNVs of at least 400Kb in size at 99% analytical sensitivity (with a lower 

limit of the 95% confidence interval >98%) and a false-positive rate of <1% (Kearney, 

South, et al. 2011).  The ACMG places the task of this analytical validation on the array 
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manufacturers; however, in the absence of a manufacturer providing this data, it is 

ultimately the clinical laboratories’ responsibility to validate the performance of these 

arrays, as there is still no FDA-approved, in-vitro diagnostic whole-genome chromosomal 

microarray platform or test kit. 

According to the ACMG, the validation of a clinical chromosomal microarray 

should be performed by testing a sufficiently large number (200-300) of well-

characterized cases that contain a collection of appropriately sized (majority being 

<1Mb), unique CNVs that are located throughout the genome.  This is a difficult standard 

to meet for many clinical laboratories.  Even with a diagnostic yield of ~15-20%, a 

clinical laboratory would have to test >1000 patients to naturally accumulate this many 

cases with diagnostic CNVs, and this does not account for factors such as recurrent 

CNVs or an uneven distribution across the genome. 

In the research for this thesis a computer-aided receiver operator characteristic 

(ROC) based method has been developed that clinical laboratories can use to determine 

their own CMA platform analytical sensitivity and false positive rate.  This method can 

utilize both novel and common/polymorphic CNVs with a per-probe approach (as 

opposed to per-CNV) to quantify outcome metrics such as true and false positive and 

negative results as well as sensitivity and specificity in general.  The method developed 

can also be used to perform calibration of parameters used in algorithms that detect 

CNVs in aCGH data.  Using two microarray designs that differ in their level of resolution 

it is shown that an analytical evaluation can be performed with as few as 20 cases in total. 

CMA testing influences management of patients in many ways including 

generation of medical referrals, and providing guidance for diagnostic imaging and 

specific laboratory testing (Coulter, et al. 2011).  Given the complexity of CMA testing 

and the implications it holds for future patient management, establishment of quality 

control and performance metrics is of utmost importance.  Even if manufacturers of 
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chromosomal microarrays have performed extensive quality controls, it is still necessary 

for individual laboratories to verify these performance characteristics in their own setting 

and with their distinct patient populations.  Thus, the establishment of a validation 

procedure for CMAs that is both comprehensive and low cost is of great significance to 

the clinical laboratory community. 
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CHAPTER 2  

BACKGROUND 

2.1 Array-Based Comparative Genomic Hybridization (aCGH) 

Although the methods presented here can be applied to data from any 

chromosomal microarray with oligonucleotide probes, in this project the type of 

chromosomal microarray used was a comparative genomic hybridization array (array 

CGH or aCGH). Array-based comparative genomic hybridization is a method used to 

detect chromosomal anomalies on a genome-wide, high-resolution scale.  An overview of 

the aCGH process is outlined in Figure 2.1 (Theisen 2008). 

 

 

Figure 2.1: A diagram outlining the process of array-based comparative genomic 

hybridization.  Used with permission 
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2.1.1 CGH Microarrays 

Array CGH achieves a high testing resolution by using a substrate (e.g., a glass 

slide) with many small strands of single-stranded target DNA (oligonucleotides) attached 

to the substrate.  These small amounts of DNA (commonly referred to as probes) are 

arranged into spots and immobilized onto a glass slide.  The probes vary in length from 

small oligonucleotides of less than 50 base pairs (also referred to as mer) to large regions 

hundreds of thousands of base pairs long (commonly referred to as BACs).  Probes are 

arranged in a way to prevent poor performance of a region of the microarray to affect the 

whole test.  This is done by attempting to prevent probes found close together on the 

genome from being placed close together on the array.  The length of the probes and the 

genomic distance between the probes determines the resolution of each array (Theisen 

2008).  It is not necessary that genomic locations of probes in a lower resolution 

microarray be a subset of probes in a higher resolution microarray.  The primary array 

platforms used in this project were from the manufacturer Roche NimbleGen and are 

described in Table 2.1 (Roche NimbleGen n.d.). 

 

Table 2.1: Details of Roche NimbleGen microarrays that were used for 
this project. 

  Array Description Probe Length Median Probe Spacing 

Human CGH 385K Whole-Genome Tiling v2.0 Array 60mer 7073bp 

Human CGH 720K Whole-Genome Tiling v3.0 Array 60mer 2509bp 

Human CGH 2.1M Whole-Genome Tiling v2.0D Array 60mer 1169bp 
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2.1.2 Probe Hybridization 

When a CMA test is performed, DNA is extracted from a sample of interest, or 

test sample, and labeled with a fluorescent dye with specific chromatic spectral 

characteristics (in most applications this is typically displayed as green as it is a reflection 

of the Cy3 dye used).  A sample of DNA that is considered normal is used as a 

control/reference sample and labeled with a fluorescent dye differing in color from the 

sample of interest, typically red (Cy5 dye).  The two samples are denatured into single-

stranded DNA, mixed together, and then applied to the microarray.  The single-stranded 

DNA from the test and reference samples will then be allowed to hybridize to probes 

matching their complementary sequence.  The result will be regions with different levels 

of intensities between the two fluorescent dyes (Theisen 2008). 

2.1.3 Probe Intensities 

These levels of intensity between the two dyes provide a means for estimating the 

copy number of the test genome compared to the reference genome.  For example, if a 

test sample was labeled with a green fluorescent dye and a reference sample was labeled 

with a red fluorescent dye, samples of equal copy number would appear yellow in color 

because spots on the microarray would have roughly equal amounts of each sample 

hybridizing to the probe for that region.  Spots appearing green would indicate a higher 

copy number for that region in the test genome because more DNA from the test DNA 

hybridized to the probe for the region than reference DNA.  Spots appearing red would 

indicate a lower copy number for that region in the test genome because less DNA from 

the test DNA hybridized to the probe for the region than reference DNA.  Finally probes 

that appear black would indicate that no hybridization occurred for either sample in that 

region.  Figure 2.2 illustrates a typical two-color microarray (Chen n.d.). 
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Figure 2.2: An example image of a microarray.  The spots on this image show a range of 
fluorescent intensities between the test and reference sample. 

 

2.1.4 Log2 Ratios 

A highly sensitive ultraviolet (UV) spectral scanner reads the intensities of each 

color on each spot on the microarray.  Regions that show an increase in copy number by a 

factor of two will have a test/control ratio of 2.  Genes that show a decrease in copy 

number by a factor of two will have a test/control ratio of 0.5.  Because there is a 

difference in how the experiment treats gained versus lost regions on the microarray, 

intensities of green to red dyes are normalized with a base two logarithmic transformation 

(known as log2 ratio).  This centers regions that have an equal test/control ratio of 1 to a 

log2 ratio of 0.  Regions gained by a factor of two will have a log2 ratio of 1 and regions 

with a loss equivalent to a factor of two will have a log2 ratio of -1.  In this thesis, when 

the value a log2 ratio threshold is mentioned, it is implied that it be negative for deletions 

and positive for duplications. 
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2.1.5 Normalization 

Other normalization adjustments are made to the microarray data as a whole so 

that meaningful information can be found (Quackenbush 2002).  In general normalization 

techniques consist of background correction, transformation (e.g. log2 ratio 

transformation described above), and rescaling.  Some normalization techniques used on 

microarrays are: scale normalization, locally weighted scatterplot smoothing (LOWESS), 

quantile normalization, and variance stabilization and normalization (VSN).  The 

LOWESS is a technique based on linear regression and is the most common type of 

normalization performed for two color microarrays (Beissbarth, et al. 2005).  The 

underlying normalization technique should not have any unexpected influence on the 

algorithms developed for this thesis. 

 

 

 

 Figure 2.3: A genome wide view of log2 data for a patient.  The y-axis shows the 
normalized log2 ratio data and the x-axis shows genomic position grouped by 

chromosome in increasing order.  From this image it can be determined that the test 
sample used was a male and the reference sample used was a female.  This can be seen in 
the X and Y chromosomes where the entire X chromosome appears to exhibit a decrease 

in copy number and the entire Y chromosome appears to exhibit a increase in copy 
number.  The green and red lines indicate low and high copy number variations.  This 
image was generated with Nexus Copy Number™ software licensed by Shivanand R. 

Patil Cytogenetics and Molecular Laboratory at the University of Iowa. 
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2.1.6 Copy Number Detection  

There are many CNV calling algorithms that can be used to detect copy number 

variations in aCGH data (Venkatraman and Olshen 2007; Marioni, Thorne and Tavaré 

2006; Zhang and Gerstein 2010).  Many of these algorithms are specific to a certain type 

of microarray.  The specific algorithm used for testing in this research was the FASST 

algorithm, which is part of the BioDiscovery Nexus Copy Number™ software.  The 

FASST algorithm uses a Hidden Markov Model (HMM) approach that estimates possible 

segment levels that may occur between expected states (BioDiscovery 2011).  The 

segments whose mean log2 ratios exceed a specified threshold are called as copy number 

variations. 

 

 

Figure 2.4: A diagram showing how the FASST algorithm could analyze aCGH data.  

The data are segmented and then segments classified as CNVs if they exceed a defined 

threshold.  In this diagram the red and green lines signify deletion and duplication 

threshold respectively.  Circled segments indicate segments that would be classified as 

deletions or duplications based on the shown threshold.  Segments shown here have been 

fabricated to provide a visual demonstration of the aCGH CNV calling process. 
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2.2 Previous Work 

This work builds upon a previously developed CNV-calling algorithm -- 

CGHTool.  Finding small novel CNVs in aCGH data is challenging.  The goal of 

CGHTool was to provide an algorithm that could detect small CNVs with high 

confidence.  The CGHTool program creates a background file consisting of aCGH data 

from many patients (several hundred).  From this it calculates an average and standard 

deviation of the data for each oligonucleotide probe on the CGH microarray.  In general, 

a region of the genome can be classified (i.e., called) a CNVs if the number in the region 

exceed a multiple of the standard deviation in the same direction (gain or loss).  While 

working on this algorithm, it was found that there was a need to calibrate several of the 

algorithms parameter.  Among these was one essential metric: the base two 

logarithmically transformed signaling intensity ratio; hereafter referred to simplay as the 

log2 ratio.  This ratio is taken between the measured intensity in a patient (unknown) 

sample and a control sample. 

There have been several publications that have sought to prove the effectiveness 

of chromosomal microarrays and provide a strategy for clinical validation.  Each 

publication has emphasized the need for validation of aCGH methods (Shaffer, et al. 

2007; Shen and Wu, 2009; Yu, et al. 2009).  It has been hypothesized that performance of 

specificity will increase when more consecutive probes are used when analyzing CNVs.  

There are a large number of benign and unknown CNVs that may contribute to poorer 

performance of microarrays.  It is hypothesized that the majority of unknown CNVs are 

benign and as more known benign CNVs are discovered, arrays may be redesigned to 

improve performance (Shen and Wu, 2009).  Currently, there has been no method 

provided that calculates true or false negatives using aCGH data.  Since the calculations 
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of sensitivity and specificity rely on true and false negatives, these metrics are required to 

adhere to the guidelines set out by the ACMG. 

2.2.1 Fluorescence in Situ Hybridization (FISH) Validation 

Fluorescence in situ hybridization (FISH) is a technique used to detect DNA 

sequences.  This technique first involves creating a fluorescent DNA probe compliment 

to a sequence of interest.  The probe and target DNA are denatured and then combined so 

the probe may hybridize to its complement on the target DNA.  This allows for 

visualization of the target sequence on the chromosome (O'Connor 2008).  FISH can be 

used as an alternative technology for finding CNVs.  Verification of aCGH can be done 

with FISH also, but it is a labor intensive and costly process as FISH can only interrogate 

one chromosomal region at a time (Balif, et al. 2007).  A computational-based method 

that could provide validation of aCGH data could be very useful. 

2.3 Receiver Operating Characteristic (ROC) 

Receiver operating characteristic (ROC) curves were developed in World War II 

to improve signal to noise detection in radar signals (Krzanowski and Hand 2009).  Since 

World War II, ROC analysis has become commonly used for evaluation of clinical 

diagnostic tests (Zou, O'Mally and Mauri 2007).  A ROC analysis measures the costs and 

benefits of the changing prediction parameters using sensitivity and specificity.  The 

approach taken in this research was to perform an analytical validation of aCGH data 

using a ROC-based method.  A receiver operating characteristic or ROC is the plot of 

true positive rate (sensitivity) versus false positive rate (1- specificity) for a changing 
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parameter.  The false positive rate (FPR) is plotted along the x-axis while sensitivity is 

plotted along the y-axis.  Each axis is on a scale of 0 to 1. 

2.3.1 Sensitivity and Specificity 

Sensitivity and specificity are statistical measures of a binary classifier’s 

performance.  To calculate the sensitivity and specificity the classifier must be compared 

to a gold standard set.  In a binary classifier, there are four outcomes possible.  True 

positives (TP) occur when a result classified as positive matches the gold standard set.  

False positives (FP) occur when a result classified as positive does not match the gold 

standard set.  True negatives (TN) occur when a result classified as negative matches the 

gold standard set.  False negatives (FN) occur when a result classified as negative does 

not match the gold standard set.  Even if a classifier is not binary (e.g. duplication, 

deletion, or no variation), the classifier can be made to emulate a binary classifier.  This 

can be done by combining results (e.g. deletions or duplications) and classifying them as 

being positive and combining all other results (e.g. no variation) and classifying them as 

being negative. 

The sensitivity is a measure from 0 to 1 of how well a classifier can identify 

positive results.  The optimal measure for this statistic would be 1, meaning that no 

results that are negative are classified as positive by the gold standard set.  The 

calculation of sensitivity using the outcome of classifier results compared to a gold 

standard set is shown below in Equation 2.1. 

 

Equation 2.1: Measure of sensitivity for a classifier 
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The specificity is also a measure from 0 to 1, but measures how well a classifier 

can identify negative results.  The optimal measure for this statistic would also be 1, 

meaning that no results that are positive are classified as negative by the gold standard 

set.  The false positive rate is a measure of 1- specificity giving it an optimal value of 0.  

The calculation of specificity using the outcome of classifier results compared to a gold 

standard set is shown below in Equation 2.2. 

 

Equation 2.2: Measure of specificity for a classifier 

             
              

                               
 

2.3.2 Confidence Intervals 

A confidence interval is used to determine the reliability of an estimate.  

Confidence intervals can be used with performance metrics such as sensitivity and 

specificity.  For this research the confidence intervals used were calculated according to 

the efficient-score method (Newcombe 1998).  When calculating a confidence interval, 

the efficient-score method accounts for the bounds of sensitivity (0 to 1) and FPR (0 to 

1). 

2.3.3 Receiver Operator Characteristic Plot 

A ROC plot is created by running several tests with a classifier while varying a 

parameter used in a classifier (e.g. log2 ratio threshold).  Each of the tests results in a 

point on the plot of FPR versus sensitivity.  The points form a curve that allows 

visualization of the trade-offs between FPR and sensitivity for the changing classifier 
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parameters.  For a ROC curve the optimal point would be (0, 1) with all results classified 

correctly.  This outcome is rarely the case so an optimal point can be chosen based on 

desired results of classifier sensitivity and specificity.  A general ROC plot is shown in 

Figure 2.5 (de Vet, et al. 2007). 

 

 

Figure 2.5: A plot of a receiver operating characteristic curve. 
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CHAPTER 3  

APPROACH 

 The goal of the research for this thesis was to use a computer-aided 

approach to appropriately validate the performance characteristics of a whole-genome 

chromosomal microarray.  To do this, two microarray platform designs were used that 

differed primarily in their level of resolution (i.e., number of unique probes), where the 

higher resolution CNVs were used as a “gold standard” set.  This is similar to using a 

higher resolution photograph to validate a lower resolution photograph.  With greater 

detail comes the ability to recognize patterns with more confidence.  The two main 

platforms used in the validation were the NimbleGen 720,000 (720K array) and the 

NimbleGen 385,000 (385K array) microarrays.  An additional validation was performed 

comparing the 385K array to a NimbleGen 2,100,000 (2.1M array) microarray in which 

similar results were found.  Results of the analyses can be found in Appendix A.  All 

analyses were performed using CNVs greater than 100Kb and CNVs greater than 400Kb.  

The minimum size of 100Kb was estimated to be the smallest CNV size that could be 

confidentially detected using a 385K array.  The 400Kb minimum CNV size cutoff was 

used to adhere to the guidelines of the ACMG. 

3.1  

3.2 Validation Samples 

Twenty samples were used for validation comparisons.  All cases were previously 

analyzed and interpreted by standard clinical criteria.  The set of samples included both 
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normal (no known pathogenic CNVs) and abnormal cases in which a known pathogenic 

lesion was identified (i.e. 17q12 or 22q11.2 deletion).  An appropriate mix of male and 

female patients, as well as small (100-400Kb) and large (>400Kb) duplications and 

deletions were present.  The CNVs present in these cases covered a significant portion of 

the genome (Table 3.1).  Additionally, each case contained between 10 and 40 common, 

polymorphic CNVs. 

 

Table 3.1: Genome wide aCGH probe coverage of CNV calls represented as probes, base 
pairs, percentage of probes, and percentage of genome covered. 

Type of CNV 

Total Number of Probes 

Contained in CNVs 

% of Total Probes on 

the Array Contained in 

CNVs 

Total 

Number of 

Base Pairs 

Covered by 

Probes 

Contained 

in CNVs 

% of Genome Covered 

by Probes Contained in 

CNVs 

Per Patient Total Per Patient Total Per Patient Total 

385K (Calls > 100Kb) 472 9,442 0.12236% 2.44729% 81,475,048 0.12730% 2.54610% 

385K (Calls > 400Kb) 210 4,209 0.05455% 1.09094% 37,969,898 0.05933% 1.18656% 

720K (All CNV Calls) 799 15,970 0.11095% 2.21901% 95,958,945 0.14994% 2.99872% 

Note: Numbers shown are for CNV calls for a combination of all 20 samples.  CNV calls 
used in the analysis were made using the FASST algorithm in Nexus Copy Number with 

a log2 ratio of 0.30 for both the 385K and 720K arrays. 
 

 

3.3 Manual CNV-Based Validation 

A manual CNV-based validation was performed using the FASST algorithm in 

Nexus Copy Number™ to call CNVs on two different array platforms, a higher 

resolution NimbleGen 720K array and a lower resolution NimbleGen 385K array.  A log2 

ratio threshold of 0.3 was used for calling CNVs for both platforms.  The higher 

resolution arrays were used as a gold standard set for the lower resolution arrays.  CNVs 

on the lower resolution arrays were compared to the higher resolution arrays to assess 
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false positives, true positives, false negatives, and true negatives.  When comparing 

arrays, true negatives were defined as those intervening regions between CNVs of greater 

than 100Kb on the higher resolution array that had no corresponding CNV regions on the 

lower resolution array.  Analyses were performed using a CNV size threshold of 100Kb 

and 400Kb as well as for both benign and clinically significant CNVs together and for 

clinically significant CNVs alone. 

Aside from the laborious nature of this type of manual analysis it is clear that with 

a per-CNV based analysis and this few cases there are not enough CNVs to truly 

establish precise and meaningful sensitivity and specificity measures.  When examining 

only clinically significant CNVs greater than 400Kb only18 CNVs were available for 

analysis.  Because of the extensive time and effort involved in performing this manual 

comparison only one log2 ratio threshold could be examined for each array type 

precluding any analysis that might identify a different log2 ratio threshold that would 

further increase sensitivity without a significant loss in specificity (or vice versa) via 

ROC analysis.  It was clear that a computer-aided approach was needed to appropriately 

validate the performance characteristics of a whole-genome chromosomal microarray for 

varying log2 ratios. 

3.4 Analysis of Array Metrics 

As part of our computer-aided validation, we sought to determine which array 

metric(s) would be most appropriate on which to base future ROC analysis.  We did this 

by creating a (Perl) software tool to compare the CNV calls from the lower resolution 

arrays to the CNV calls from the higher resolution arrays.  All CNV calls were produced 

by using the FASST algorithm from Nexus Copy Number™.  The higher resolution 

arrays were again treated as a “gold standard” to which the lower resolution array data 



 

 

 

19 

were then compared.  A previously FISH-validated threshold log2 ratio value of 0.3 was 

used for the FASST algorithm when calling the CNVs for both array platforms.  The 

analysis, like the manual validation, was performed twice for all CNV calls of 100Kb or 

greater and all CNV calls of 400Kb or greater.  For each experiment, every CNV called 

from the lower resolution arrays was checked for any overlapping CNV calls from the 

higher resolution arrays.  From this, two sets of lower resolution CNVs could be made for 

each size-cutoff experiment, one set that had one or more overlapping higher resolution 

CNVs (true positives) and one set that had no overlapping higher resolution CNVs (false 

positives). 

The CNVs within each set were examined by looking at the log2 ratios, CNV 

sizes in base pairs, and number of probes in each CNV.  The median and mean values of 

each of these CNV metrics were calculated.  By comparing these metrics in the two sets 

of CNVs for each experiment, we were able to perform an unpaired t-test for groups of 

unequal size and variance to determine if the metrics for the two sets differed 

significantly.  We could then choose metrics that were statistically significant for use in 

our validation techniques.  

3.5 Computer-Aided Probe-Based Validation 

Once a significant parameter was found, the next goal was to find the optimal log2 

ratio that could be used to call CNVs and maximize both sensitivity and specificity.  This 

optimal log2 ratio could be calculated from a ROC analysis, which plots the sensitivity vs. 

false positive rate as the threshold of an experimental metric is varied.  The log2 ratio 

threshold used to call CNVs in the aCGH data was found to be the most significant 

experimental metric.  The results section gives justification for this decision. 
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Whereas the analysis could be performed on a per-CNV basis, as with the manual 

analysis, the number of CNVs would be the same and still lacking in ability to calculate 

meaningful performance metrics.  This led to the use of a novel per-probe approach that 

compared probes in CNV calls from the lower resolution array to calls from the higher 

resolution array and assigned the probes of the lower resolution array “truth-values” 

based on corresponding locations in the higher resolution array.  The CNV calling 

algorithm was run with varying log2 ratio thresholds to create many different sets of CNV 

calls for both the lower resolution arrays and the higher resolution arrays. 

3.5.1 CNV Validation Sizes 

To make the validation applicable to the guidelines of the ACMG, all CNV calls 

used in the lower resolution arrays had to be greater than 400Kb.  Similarly, only CNVs 

in the higher resolution array greater than 400Kb could have probes counted as false 

positives if no corresponding CNVs in the lower resolution array existed.  As not to 

penalize the arrays for performing better than ACMG expectations, smaller CNVs called 

on both lower and higher resolution arrays could be used to validate corresponding larger 

(>400Kb) CNVs on the opposite array.  This approach allowed probes in larger (>400Kb) 

CNVs to be validated as true positives if smaller CNVs were called in the same region, 

but would not penalize the arrays with false positives and false negatives. 

3.5.2 Probe Validation Range 

Because it is not necessarily the case that the probes in the lower resolution array 

are a subset of the probes in the higher resolution array, each probe in the lower 

resolution array was validated by probes in the higher resolution array within a certain 
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genomic distance.  In tests performed on correlation between genomic locations of probes 

in the 385K array and 720K array, it was found that only 17% of the probes in the 385K 

array had a corresponding probe found in the exact same genomic location on the 720K 

array.  For all tests performed using the NimbleGen 385K array the genomic distance in 

which higher resolution array probes could validate a 385K array probe was 15Kb.  This 

distance was chosen because the median probe spacing for the 385K array was 7Kb to 

8Kb.  Because lower resolution array probes could be validated by a range of higher 

resolution array probes, all lower resolution array probes that did not have a higher 

resolution array probe with the genomic distance validation range were excluded from the 

analysis. 

3.5.3 ROC Analysis 

Because of the variability between CNV calls for different log2 ratio thresholds, in 

the ROC analysis a single higher resolution log2 ratio set of CNVs was used as a gold 

standard while each lower resolution log2 ratio set of CNVs was compared to the gold 

standard.  This analysis was run for every set of higher resolution log2 ratio set of CNVs.  

A ROC plot was generated for every higher resolution log2 ratio gold standard used.  

Each ROC plot contained a comparison of each of the lower resolution log2 ratios to a 

single higher resolution log2 ratio gold standard set. 

When performing each comparison in the ROC analysis all probes in the lower 

resolution arrays and higher resolution arrays were labeled as either a CNV (deletion or 

duplication) or normal (not a CNV) according to the log2 ratio thresholds being 

compared.  For each log2 ratio threshold tested against the gold standard, all lower 

resolution array probes for each sample were assigned a truth-value.  The truth-value for 

each lower resolution array probe was assigned as a true-positive or true-negative if one 



 

 

 

22 

of the higher resolution array probes in its coverage range (15Kb) had the same outcome 

(gain, loss, normal/no CNV), otherwise the lower resolution array probe was labeled as a 

false-positive or false-negative.  A flow diagram of the analysis pipeline is shown in 

Figure 3.1. 
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Figure 3.1: A Demonstration of a probe based ROC analysis performed using arrays of 

different resolution. 
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3.5.4 Variations of Analysis 

In addition to varying the gold standard log2 ratio threshold used for the ROC 

analyses, the types of CNVs used in the analyses was also varied.  There were three types 

of analyses performed: just for copy number gains, just for copy number losses, and for a 

combination of copy number gains and losses. 

Another variation of the analysis allowed for exclusion of probes found in 

common, polymorphic regions.  There were 158 of these common regions found where 

each region occurred in at least 5% of the patient population used in the dataset.  

Common CNVs were defined by their presence in HapMap samples as ascertained by 

Conrad and colleagues (Conrad, et al. 2010).  These common regions contain clinically 

benign CNVs, so these regions were excluded in the hope of improving the performance 

of the analysis. 

3.5.5 Optimal Experimental Metrics 

Once ROC curves were created, they were utilized to determine the optimal log2 

ratio threshold used for the experiment.  The optimal points on each curve should provide 

the best trade off between sensitivity and false positive rate.  Two methods for 

determining this metric were formed.  The first method calculated the optimal point by 

using linear distance.  A perfect classifier would perform with 100% specificity and a 0% 

false positive rate, or be a point at (0, 1) on the ROC plot.  Using a linear method, the 

optimal point would be the closest point to (0, 1) on the plot.  Because sensitivity and 

false positive rate did not always reach 1, the ROC plots were normalized to the 

maximum sensitivity and false positive rate before calculating the optimal log2 ratio 

(closest linear distance to (0, 1)).  The second approach to calculate the optimal point was 
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to take the derivative of the ROC curve to find the maximum change in slope.  This 

approach did not perform as consistently as our linear-distance approach because the rate 

of change for the curve was not consistent for all analyses.  A demonstration of how the 

optimal point is calculated using a linear-distance approach can be seen in Figure 3.2 and 

Table 3.2. 

 

 

Figure 3.2: A demonstration of how the optimal point is determined based on a 
normalized ROC plot. 
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Table 3.2: An example of a computer-aided single log2 ratio threshold 

comparison of two different array resolution designs. 

720K Log2 

Ratio 

385K Log2 

Ratio 
FPR Sensitivity Normalized Optimal Distance 

0.40 0.20 0.04982 0.99864 1.00000 

0.40 0.25 0.02321 0.99804 0.46592 

0.40 0.30 0.01090 0.98462 0.21927 

0.40 0.35 0.00414 0.95636 0.09321 

0.40 0.40 0.00354 0.93152 0.09775 

0.40 0.45 0.00265 0.76560 0.23933 

0.40 0.50 0.00157 0.64768 0.35285 

0.40 0.55 0.00082 0.53029 0.46928 

0.40 0.60 0.00071 0.44948 0.55009 

0.40 0.65 0.00042 0.39108 0.60845 

0.40 0.70 0.00023 0.17975 0.82001 

Note: Numbers correspond to the data points shown in Figure 3.2.  The 
bolded row indicates the optimal log2 ratio found based on the closest 

linear distance (greyed box). 

 

 

Whereas this analysis was capable of elucidating the optimal log2 ratio value to 

use to maximize sensitivity and specificity, the values obtained for specificity were 

clearly biased toward the very large number of true negative probes (non-CNV probes) 

present in the array comparisons.  This resulted in specificities that routinely exceeded 

99.999% across most 385K log2 ratios thresholds tested.  To better calculate the 

specificity, we took the number of TN probes and divided it by the average number of 

probes present in CNVs >400Kb.  This was deemed appropriate given that a requirement 

for any true or false positive probe was inclusion within a CNV that was >400Kb. 

3.5.6 Computational Analysis Design 

A Perl script was developed to accurately compute the results of a ROC analysis 

given a paired set of CNV calls from raw microarray data.  Using a duplicate set of 385K 
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array and 720K array data for 20 patients and 11 different log2 ratio thresholds, this could 

be performed on a typical desktop workstation in approximately 2 hours with an 

approximate memory footprint of 2GB.  The Perl script developed (shown in Appendix 

B.1) allows a general input of aCGH probes genomic locations as well as a call type 

(copy gain/copy loss) paired with a general genomic start and stop position for CNVs.  

Because of this general input format performance of many different array platforms may 

be assessed.  The Perl script also allows customizations described previously to be set 

using flags.  For example the buffer range and minimum CNV size may both be 

customized.  Other parameters such as inclusion or exclusion of common CNV regions 

may be set, as well as types of CNVs included in the analysis (duplications, deletions, or 

both). 

A second Perl script was developed to combine the results of many higher 

resolution gold standard log2 ratios into one Microsoft Excel workbook with many 

worksheets.  This script was created separately from the ROC analysis script because of 

it’s dependencies on a 3rd-party Perl module Excel::Writer::XLSX (McNamara 2011).  

The script will read the standard output directory from the previous ROC analysis script 

and compile all the results into one Microsoft Excel workbook.  Each analysis is shown 

in its own worksheet with optimal metrics calculated and a ROC plot generated.  The 

script has options to adjust the false positive rate in way described previously. 

3.6 Computer-Aided Region-Based Validation 

It was thought that the FPR may be better represented if the ROC analysis were 

done for regions instead of probes, however, conducting region-based analyses proved 

challenging due to the incomplete classification of non-CNV regions with a truth 

value.  The arrays could be quantified into CNV regions and non-CNV regions, but 
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precise classification of the regions proved difficult.  For example, it is possible to 

classify a lower resolution CNV region based on the corresponding higher resolution 

regions.  However, this was difficult due to the fact that not all regions were of a uniform 

size and regions from the different array types did not often correlate well with each 

other.  The most intuitive way to classify these regions was to determine if a defined 

percentage of a given lower resolution region overlapped a similar higher resolution 

region. 

One problem with this approach was that very large non-CNV (>> 400Kb) 

regions in a lower resolution array may have an overlapping higher resolution CNV 

region that is in total a small percentage of the lower resolution, non-CNV region.  If the 

majority of a lower resolution, non-CNV region is overlapped by higher resolution non-

CNV regions it would be classified as a true negative, despite the fact that there existed a 

clear false negative region. This is just one of the cases contributing to the difficulty of 

classifying CNV calls, especially true negatives, with truth-values as regions of the 

genome.  Using a probe-based analysis provided a roughly uniform spacing and coverage 

between differing array types, which made it easier to assign truth-values to the probes. 
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CHAPTER 4  

RESULTS 

4.1 Manual Validation Results 

Based on the results of the manual validation of twenty cases a sensitivity of 

79.8% (with a lower limit of the 95% confidence interval of 74.4%) was achievable when 

using data from all CNVs (benign and clinically significant) greater than 100Kb and a 

single log2 ratio threshold of 0.3.  For all CNVs greater than 400Kb a sensitivity of 80.9% 

(with a lower limit of the 95% confidence interval of 66.3%) and specificity of 99.2% 

(false positive rate of 0.8% with a higher limit of the 95% confidence interval of 2.2%) 

was achievable.  When examining only those CNVs >400Kb and clinically significant 

(known pathogenic lesions and novel CNVs of unclear clinical significance) a sensitivity 

of 100% and a specificity of 100% (false positive rate of 0%) were achieved. 

Even though the sensitivity and specificity were each 100%, the 95% confidence 

intervals were quite large (sensitivity with a lower limit of the 95% confidence interval of 

78.1% and specificity with a lower limit of the 95% confidence interval of 99.0%).  An 

example of the analysis performed for each case is represented in Table 4.1. 
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Table 4.1: Example case assessed by manual validation using two different array 
resolution designs. 

CNV 

Location 

Size (Kb) 

385K 

Size (Kb) 

720K 

Log2 Ratio 

385K 

Log2 Ratio 

720K 

Truth Value 

(>100Kb) 

Truth Value 

(>400Kb) 

CNV 

Interpretation 

1p36.33 615 [264] -0.37 [-0.28] False Positive False Positive Benign 

1p36.11 168 140 -0.552 -0.569 True Positive Size Exclusion Benign 

1p21.1 177 112 -0.437 -0.388 True Positive Size Exclusion Benign 

1p13.3 NA 73 NA 0.344 Size Exclusion Size Exclusion Benign 

1q23.3 176 [162] 0.303 [0.22] False Positive Size Exclusion Benign 

1q44 NA 43 NA 0.708 Size Exclusion Size Exclusion Benign 

2p11.2 517 214 0.337 0.346 True Positive True Positive Benign 

2p11.2 139 78 -0.527 -0.339 True Positive Size Exclusion Benign 

2q13 [640] 358 [0.28] 0.304 False Negative Size Exclusion Benign 

6p25.3 [145] 97 [0.29] 0.331 Size Exclusion Size Exclusion Benign 

6p22.1 NA 30 NA 0.442 Size Exclusion Size Exclusion VUCS 

7p14.1 NA 40 NA 0.334 Size Exclusion Size Exclusion VUCS 

7q35 153 NA -0.302 NA False Positive Size Exclusion Benign 

8p23.2p2

3.1 
517 520 0.466 0.497 True Positive True Positive VUCS 

8p23.1 76 53 0.609 0.906 Size Exclusion Size Exclusion Benign 

11p15.4 NA 95 NA 0.403 Size Exclusion Size Exclusion Benign 

14q11.2 324 166 0.363 0.35 True Positive Size Exclusion Benign 

14q11.2 120 NA 0.315 NA False Positive Size Exclusion Benign 

15q11.2 NA 439 NA -0.421 False Negative False Negative Benign 

16p13.3p

13.2 
545 546 -0.724 -0.84 True Positive True Positive VUCS 

17q21.31 148 110 0.493 0.456 True Positive Size Exclusion Benign 

17q21.31

q21.32 
124 139 -0.856 -1.015 True Positive Size Exclusion Benign 

17q21.32 129 131 -0.672 -1.018 True Positive Size Exclusion Benign 

19p13.3 216 NA -0.322 NA False Positive Size Exclusion Benign 

22q11.21 237 187 -0.397 -0.462 True Positive Size Exclusion Benign 

22q11.21 190 239 -0.419 -0.387 True Positive Size Exclusion Benign 

Xq21.1q

28 
70741 70690 -0.721 -0.864 True Positive True Positive Abnormal 

Note: Total True Negatives (>400Kb analysis) = 29.  Values in brackets indicate an 
absence of a Nexus Copy Number CNV call but a CNV could be inferred through visual 
analysis of the region in question.  The abnormality that was present in this array was the 
Xq21.1q28 deletion of approximately 70Mb in size.  NA = Not Applicable due to Size 

Exclusion or inability to make a CNV call either by Nexus Copy Number or visual 
inspection.  VUCS = Variant of Unclear Clinical Significance. 
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4.2 Significant CNV Metrics 

In the 385K CNV set, for 20 samples there were a total of 45 CNVs that were 

greater than 400Kb and a total of 283 CNVs greater than 100Kb (Shown in Table 4.2).  

In the 400Kb CNV size cutoff analysis, CNVs with overlapping 720K CNVs also had a 

higher log2 ratio than those that had no overlapping 720K CNVs.  In the 100Kb CNV size 

cutoff analysis, CNVs with overlapping 720K CNVs had a higher mean log2 ratio value 

(0.542 vs. 0.506) and a higher median log2 value (0.477 vs. 0.452) than the 385K CNVs 

with no overlapping 720K CNVs.  An unpaired t-test was performed on the differing 

groups of log2 ratio means and found that the difference in log2 ratio means between the 

sets was statistically significantly different for the 400Kb analysis (p = 6.43x10
-11

), but 

not significant for the 100Kb analysis (p = 0.275).  Subdividing these CNVs into 

deletions and duplications yielded statistically similar results for the 100Kb.  Statistical 

tests could not be performed for duplications and deletions separately in the 400Kb CNV 

size cutoff group because of small numbers of CNVs.  From these data we concluded the 

most appropriate threshold metric for future ROC analysis was the log2 ratio value and 

that our overall approach of using a higher resolution array to validate a lower resolution 

array was appropriate.  The conclusions were based on the observation that CNVs with 

overlap (true positives) were represented by a significant amount of probes (p = 0.0455) 

that was greater than those CNVs without overlap (false positives).  Thus, a CNV called 

with more probes had a higher probability of being confirmed with another array design 

 

Table 4.2: Computer-aided single log2 ratio threshold comparison of two different 
array resolution designs. 

Type of CNV 
Total Number of 

All CNVs 

Number of 

Common CNVs 

Number of 

Unique CNVs 

> 100Kb 385K CNVs with 720K Overlap 211 107 104 

> 100Kb 385K CNVs without 720K Overlap 72 32 40 

> 400Kb 385K CNVs with 720K Overlap 43 24 19 

> 400Kb 385K CNVs without 720K Overlap 2 0 2 
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4.3 ROC Analysis Results 

Before performing the ROC analysis, the Nexus Copy Number™ FASST 

algorithm was run with varying log2 ratio thresholds varying between 0.20 and 0.70 in 

increments of 0.05 to create 11 sets of CNV calls for both the 385K and 720K arrays.  As 

described in the Approach section, a single 720K log2 threshold was used as a gold 

standard for each ROC analysis, while 385K arrays for each log2 ratio threshold value 

were analyzed against it.  This analysis was re-run for every 720K log2 ratio threshold 

value.  There were 82 probes in the 385K array that had poor coverage (no 720K array 

probes within 15Kb) that were discarded from the experiment. 

From the ROC curves an optimal value for the log2 ratio threshold was determined 

using normalized curves with a low FPR.  The optimal log2 ratio thresholds for the 385K 

array fell between 0.30 and 0.50 across all 720K array log2 ratio threshold conditions.  

Optimal log2 ratio thresholds for deletions and duplications were similar but not exactly 

the same (Table 4.3). 
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Table 4.3: Optimal log2 ratio threshold determined for the 385K 

array at every 720K array log2 ratio threshold value including 

probes in common regions. 

720K Gold Standard Log2 Ratio All CNV Types Deletions Duplications 

0.20 0.30 0.30 0.25 

0.25 0.30 0.30 0.25 

0.30 0.30 0.35 0.30 

0.35 0.35 0.40 0.30 

0.40 0.35 0.40 0.35 

0.45 0.40 0.45 0.35 

0.50 0.45 0.50 0.40 

0.55 0.50 0.50 0.45 

0.60 0.50 0.50 0.50 

0.65 0.50 0.50 0.65 

0.70 0.50 0.50 0.65 

Note: The optimal log2 ratio was determined for deletions, 
duplications, and a combination of both deletions and 

duplications.  These optimal log2 ratios were calculated from 
analyses in which probes in common CNV regions were 
included.  Overall, larger log2 ratio thresholds are more 

appropriate for duplications than for deletions.  The larger range 
for duplications is due to smaller numbers of CNV duplications. 

 

 

Once the performance metrics were accurately calculated, the most appropriate 

log2 ratio threshold for the 385K array platform that would meet the ACMG’s guidelines 

of >99% sensitivity and <1% FPR was determined.  While performing this analysis two 

cases were looked at, one with all CNVs taken together as well as one where CNVs that 

were be presumed to have clinical significance in constitutional/congenital genetic 

disorders.  If all CNVs are included in the analysis the ACMG’s guidelines with the 385K 

array can not be met.  However, when only those probes from CNVs that are considered 

clinically significant are included, it was determined that the best log2 ratio threshold to 

call duplications is 0.35, which produces a sensitivity of 99.7% with a lower limit of the 

95% confidence interval of 99.2% and a specificity of 99.9% (false positive rate of 0.06% 

with a higher limit at the 95% confidence interval of 0.08%). Furthermore, it was 
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lower resolution array CNVs.  Finally the true negatives would be quantified as the total 

number of probes for all arrays minus the first three metrics calculated TP, FP, and FN.  

This is shown in equation 5.1. 

Equation 5.1: Equation showing the sum of all binary classifier outcomes. 

                                                                       

 

This type of approach would greatly reduce the system memory usage as well as 

improve the total run time.  Since computations performed could be exponentially 

reduced, it is possible that with this approach the run time could be reduced to minutes 

rather than hours. 
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Figure A.6: ROC plot of analysis comparing all 385K CNV deletions greater than 100Kb 

to a 720K gold standard log2 threshold of 0.40.  The solid line shows the analysis 

performed using all probes and the dotted line shows the analysis performed excluding 

probes from common CNV regions. 
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Table A.11: A table containing analysis results comparing all 385K CNVs deletions 

greater than 100Kb to a 720K gold standard log2 threshold of 0.40.  In this analysis, 

probes found in common CNV regions were included. 

720K Log2 Ratio 385K Log2 Ratio FPR Sensitivity Normalized Optimal Distance 

0.40 0.20 0.00080925 0.973801415 1 

0.40 0.25 0.000496312 0.948508054 0.613848659 

0.40 0.30 0.000295163 0.918117519 0.369192091 

0.40 0.35 0.0001516 0.878185382 0.211506284 

0.40 0.40 9.47975E-05 0.816800459 0.199288215 

0.40 0.45 6.52298E-05 0.750795948 0.24277669 

0.40 0.50 4.00714E-05 0.653722628 0.332398888 

0.40 0.55 3.04749E-05 0.572395527 0.413921692 

0.40 0.60 2.38611E-05 0.485154394 0.502658834 

0.40 0.65 1.85442E-05 0.425975573 0.563030747 

0.40 0.70 1.65989E-05 0.238282431 0.755585415 

Note: Numbers correspond to the data points shown in Figure A.6.  The bolded row 
indicates the optimal log2 ratio found based on the closest linear distance (greyed box). 

 

 

 

 

Table A.12: A table containing analysis results comparing all 385K deletions greater than 

100Kb to a 720K gold standard log2 threshold of 0.40.  In this analysis, probes found in 

common CNV regions were excluded. 

720K Log2 Ratio 385K Log2 Ratio FPR Sensitivity Normalized Optimal Distance 

0.40 0.20 0.000337325 0.991845056 0.417248357 

0.40 0.25 0.000191561 0.988769781 0.237212556 

0.40 0.30 9.98363E-05 0.975077882 0.123375828 

0.40 0.35 3.49361E-05 0.966004184 0.043907198 

0.40 0.40 2.14588E-05 0.951928156 0.034751631 

0.40 0.45 1.47856E-05 0.915605096 0.062492543 

0.40 0.50 8.505E-06 0.859275053 0.118076167 

0.40 0.55 6.80399E-06 0.756045137 0.223772673 

0.40 0.60 2.48606E-06 0.64235166 0.340380749 

0.40 0.65 1.17761E-06 0.570491803 0.414162574 

0.40 0.70 9.15911E-07 0.288526434 0.703712129 

Note: Numbers correspond to the data points shown in Figure A.6.  The bolded row 
indicates the optimal log2 ratio found based on the closest linear distance (greyed box). 



 

 

 

56 

A.3 Analysis of 385K Versus 2.1M (400Kb size cutoff) 

 

Figure A.7: ROC plot of analysis comparing all 385K CNVs (deletions and duplications) 

greater than 400Kb to a 2.1M gold standard log2 threshold of 0.40.  The solid line shows 

the analysis performed using all probes and the dotted line shows the analysis performed 

excluding probes from common CNV regions. 
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Table A.13: A table containing analysis results comparing all 385K CNVs (deletions and 

duplications), greater than 400Kb to a 720K gold standard log2 threshold of 0.40.  In this 

analysis, probes found in common CNV regions were included. 

2.1M Log2 Ratio 385K Log2 Ratio FPR Sensitivity Normalized Optimal Distance 

0.40 0.20 0.066232877 0.980582524 1 

0.40 0.25 0.030079197 0.97810219 0.454150038 

0.40 0.30 0.012695772 0.89073051 0.212459361 

0.40 0.35 0.005159974 0.767844268 0.230514899 

0.40 0.40 0.001608963 0.609715243 0.37899054 

0.40 0.45 0.000512486 0.522790698 0.466921128 

0.40 0.50 0.000153799 0.458891013 0.532027103 

0.40 0.55 0.000146476 0.329174664 0.664310707 

0.40 0.60 5.85956E-05 0.256689792 0.738227772 

0.40 0.65 3.66228E-05 0.159585492 0.837254582 

0.40 0.70 0 0.048245614 0.950799027 

Note: Numbers correspond to the data points shown in Figure A.7.  The bolded row 
indicates the optimal log2 ratio found based on the closest linear distance (greyed box). 

 

 

 

 

Table A.14: A table containing analysis results comparing all 385K CNVs (deletions and 

duplications), greater than 400Kb to a 720K gold standard log2 threshold of 0.40.  In this 

analysis, probes found in common CNV regions were excluded. 

2.1M Log2 Ratio 385K Log2 Ratio FPR Sensitivity Normalized Optimal Distance 

0.40 0.20 0.04483012 0.95359116 1 

0.40 0.25 0.016972437 0.946496815 0.37866759 

0.40 0.30 0.005513895 0.774151436 0.224803858 

0.40 0.35 0.001431988 0.571428571 0.402032432 

0.40 0.40 0.000495006 0.357963875 0.624712529 

0.40 0.45 0.000110864 0.296610169 0.688959011 

0.40 0.50 0.000110864 0.227118644 0.761832087 

0.40 0.55 0.000103474 0.227118644 0.76183157 

0.40 0.60 2.21746E-05 0.181328546 0.809846809 

0.40 0.65 2.21746E-05 0 1.000000122 

0.40 0.70 0 0 1 

Note: Numbers correspond to the data points shown in Figure A.7.  The bolded row 
indicates the optimal log2 ratio found based on the closest linear distance (greyed box). 
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Figure A.8: ROC plot of analysis comparing all 385K CNV duplications greater than 

400Kb to a 2.1M gold standard log2 threshold of 0.40.  The solid line shows the analysis 

performed using all probes and the dotted line shows the analysis performed excluding 

probes from common CNV regions. 


