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ABSTRACT

Knot theory and 3-manifold topology are closely intertwined, and few invari-

ants stand so firmly in the intersection of these two subjects as the tunnel number

of a knot, denoted t(K). We describe two very general constructions that result in

knot and link pairs which are subbaditive with respect to tunnel number under con-

nect sum. Our constructions encompass all previously known examples and introduce

many new ones. As an application we describe a class of knots K ⊂ S3 such that, for

every manifold M obtained from an integral Dehn filling of E(K), g(E(K)) > g(M).
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CHAPTER 1
INTRODUCTION

Knot theory and the theory of 3-manifolds are closely interrelated fields, and

today one cannot be an expert in one without having at least some knowledge of

the other. For the combinatorial 3-manifold topologist, knot and link complements

constitute an important and interesting class of objects to study, especially in light

of the classic Dehn-Lickorish-Wallace theorem which says that all closed 3-manifolds

can be obtained via Dehn fillings of link complements in S3 [38],[16]. Together with

triangulations and Heegaard diagrams, link surgery diagrams form one of the three

most common ways of constructing and describing 3-manifolds.

The study of Dehn fillings and link surgery diagrams has long been a major

area of research in 3-manifold topology, with many interesting and important re-

sults being acheived, perhaps most notably being Gabai’s proof of the “Property R”

conjecture[6], and Kronheimer and Mrowka’s proof of the “Property P” conjecture

[15]. Questions surrounding Dehn surgery continue to be a major driver of research

in the field today, most notably the Berge conjecture. The importance of surgery

diagrams also stems from the fact that they allow a gateway to 3-manifolds for pow-

erful algebraic and diagrammatic knot theoretic tools, since an invariant which can

be computed algorithmically from a link diagram can sometimes be modified to pro-

duce an invariant which is invariant under the moves of the Kirby calculus, and thus

become a 3-manifold invariant.

Heegaard diagrams, first defined by their namesake [9], have a history that goes
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back even further–Poincare’s famous first example of a homology sphere was described

by means of a Heegaard diagram, and they also play an important role in Lickorish’s

proof of the Dehn-Lickorish-Wallace theorem discussed above. Some classical results

on the Heegaard structure of 3-manifolds include Haken’s lemma [8] and Waldhausen’s

theorem that every positive genus Heegaard splitting of the 3-sphere is stabilized [37].

A particularly important advance occurs in Casson and Gordon’s paper [3], in which

the notion of weakly reducible and strongly irreducible splittings are introduced, and

it is shown that an irreducible manifold which admits a weakly reducible minimal

genus Heegaard splitting must contain an incompressible surface. Subsequently this

work was expanded upon by Scharlemann, Schultens, Thompson and many others,

who developed the theory of generalized Heegaard splittings and an associated notion

of “thin position” to accompany it. Excellent expositions of the theory can be found

in [31] and [29].

The above paragraphs of course only touch very briefly and incompletely on

what has been done with Dehn fillings and Heegaard splittings, but their importance

ought to be clear. Continuing in this vein, few knot invariants stand so firmly in

the intersection of knot theory proper and combinatorial 3-manifold topology as the

tunnel number of a knot K, typically denoted t(K). First defined in Clark’s 1980

paper [5], where it is used in what is today an obvious way to obtain upper bounds on

the Heegaard genus of manifolds obtained by Dehn fillings of K and cables of K, the

tunnel number of a knot K is now typically defined as the minimal number of arcs

one can attach to the knot so that the exterior of the resulting graph is a handlebody
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(one thinks of the arcs as tracing out tunnels drilled through the exterior of K). It

is not difficult to see that t(K) + 1 is just the Heegaard genus of the exterior of K,

and herein lies its significance. This invariant has since received substantial attention

from many researchers.

Because unknotting tunnels occur naturally when studying Heegaard splittings

of knot exteriors, many significant results relating to tunnel number were proved

before the concept was formally defined, such as Birman, Hilden [1] and Viro’s [36]

result on the existence, for any tunnel number one knot K ⊂ M , of an involution of

M that fixes K setwise. Likewise, after the invention of tunnel number but without

reference to it, Norwood proved that all tunnel number one knots are prime by proving

that all knots having a 2-generator fundamental group are prime [25]. Scharlemann,

in one of the earliest papers to use the term “tunnel number”[30], soon followed up

Norwood’s result by showing that tunnel number one knots are, moreover,“doubly

prime” and in fact satisfy property R (this was before Gabai gave the final word on

the subject of property R).

Since then there has been a small avalanche of research on the subject of

tunnel number. The majority of research achieved up to this point can be roughly

placed within three categories. First, there are theorems that classify isotopy classes of

tunnels for knots, which include Kobayashi’s classification of the unknotting tunnels of

two-bridge knots [13], the“leveling” theorem of Goda-Scharlemann-Thompson [7], and

most recently the work of Cho and McCullough [4]. Second, there are theorems that

relate the tunnel number of a knot to the Heegaard genus of 3-manifolds obtained by
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Dehn fillings of the knot; here Moriah-Rubinstein [19], Rieck [26], and Rieck-Sedgwick

[27] are especially important, and will be discussed in more detail below. Finally, the

subject of the behavior of tunnel number under the operation of connected sum has

been actively studied. Major contributers include Morimoto, Moriah-Rubinstein,

Rieck and Kobayashi (separately and as a pair), and Scharlemann and Schultens. It

is this last topic–the behavior of tunnel number under connect sum–that will be our

focus in this thesis.

It is known that tunnel number can be additive t(K1#K2) = t(K1) + t(K2),

subadditive t(K1#K2) < t(K1) + t(K2), or superadditive t(K1#K2) > t(K1) + t(K2).

It is not difficult to see that for superadditivity one has t(K1#K2) = t(K1)+t(K2)+1

at most. The first published proof of the existence of superadditive pairs of knots

appears in Morimoto, Sakuma, and Yokota’s paper [22], where they describe a class of

tunnel number 1 knots, any pair of which is superadditive. Their proof relied heavily

on results from earlier papers by Morimoto [21], in which a necessary and sufficient

condition for superadditivity is given in terms of the “one-bridge genus” of tunnel

number one knots, and Yokota [39], in which quantum SU(2) invariants are used to

place lower bounds on one-bridge genus. Morimoto’s result in [21] only applied to

tunnel number one knots, and has since been shown not to hold in general for knots

of higher tunnel number [14], although an extension of Morimoto’s result to prime

knots of higher tunnel number remains a possibility.

Another proof of the existence of superadditive pairs of knots appeared soon

after [22] in a paper by Moriah and Rubinstein [19], and used very different methods.
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The main result of [19] was, roughly speaking, that the Heegaard structure of Dehn

filled hyperbolic manifolds eventually stabilizes as the numerator and denominator of

the surgery grow large. As an application of this result, they prove that, for any pair

of integers n1, n2, there are knots K1, K2 with t(Ki) = ni and t(K1#K2) = n1+n2+1.

Rieck [26], and later Rieck-Sedgwick [27] generalized and sharpened the main result

of Moriah and Rubinstein using purely topological techniques, and later Kobayashi

and Rieck [14] considerably extended Moriah and Rubinstein’s result on superadditive

knot pairs.

Going the other direction, Morimoto was the first to find a subadditive pair

of knots in [23], and Kobayashi soon after found that the “degeneration” t(K1) +

t(K2)− t(K1#K2) can be arbitrarily large [12]. One essential ingredient that allowed

Kobayashi to extend Morimoto’s result was his invention and skilled use of free tangle

decompositions, which are fundamental to our own work below. Free tangle decom-

positions subsequently appear in several papers, such as [20], and [24]. To explain

the significance of these papers, however, we must discuss the notion of degeneration

ratio.

Scharlemann and Schultens used the machinery of generalized Heegaard split-

tings (and plenty of elbow grease) to find lower bounds on tunnel number subadditiv-

ity. The first major result of theirs in this area [33] states that t(K1# · · ·#Kn) ≥ n.

In a second paper [32] they defined the “degeneration ratio” d(K1, K2) = 1− t(K1#K2)
t(K1)+t(K2)

of a pair of knots K1, K2. There they proved, among other things, that for prime Ki,

d(K1, K2) ≤ 3
5
, and if a minimal genus Heegaard splitting of the exterior of K1#K2
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is strongly irreducible, d(K1, K2) ≤ 1
2
.

To this day the lower bounds found by Scharlemann and Schultens remain the

best known, although it is not known whether they are best possible over the class

of all prime pairs of knots. The first examples of tunnel number degeneration found

by Morimoto satisfied d(K1, K2) = 1
3
, and this was the best known example for knots

until Nogueira’s thesis appeared [24]. There Nogueira gives examples of knot pairs

achieving a degeneration ratio of 2
5
.

The present thesis is devoted to giving new examples of tunnel number subad-

ditivity and applications. Subsequent sections of the present chapter are devoted to

an exposition of the fundamental tools required for our later work. Chapter 2 is then

devoted to a construction of subadditive knot pairs using the theory of generalized

Heegaard splittings and the results of Kobayashi and Rieck [14]. The class of pairs

K1, K2 produced by this construction are of arbitrarily high tunnel number with the

property that the degeneration ratio asymptotically approaches 1/3 as t(Ki) grows

large. What sets these examples apart is that the resulting Heegaard surface for the

exterior of K1#K2 is always weakly reducible.

In Chapter 3 we adapt the machinery of Morimoto from [20] to a much broader

class of free decompositions than he worked with. This adaption requires new tech-

niques and results in the construction of a collection of links L which, in conjunction

with certain kinds of knots, asymptotically achieve a degeneration ratio of 3/7 as t(L)

grows large. Moreover, the links L can be modified in a straightforward manner to

produce knots K which we conjecture to achieve the same degeneration ratio (one
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worries only about a loss of tunnel number when the switch is made from L to K).

If our conjecture is correct, the resulting class of knots, which in the simplest case

correspond to Nogueira’s, would asymptotically achieve the highest known tunnel

number degeneration under connect sum.

We start Chapter 4 with a refinement of results in Chapter 3 that bound

tunnel number from above in terms of the complexity of free decompositions. As

an application we show that Nogueira’s knots from [24] have the property that the

Heegaard genus of any manifold obtained by an integral Dehn filling of K is one less

than the Heegaard genus of the exterior of K. This reveals yet another surprising

connection between the behavior of Heegaard genus under Dehn fillings of knots and

the behavior of tunnel number under connect sum. We conclude with a series of

general observations and conjectures.

1.1 Preliminaries

We assume a familiarity with the basic concepts and terminology of 3-manifold

topology and knot theory as presented in [10],[11],[2], and [28], but we review a bit

of it here. Throughout we will be working in the piecewise linear category, which by

a famous theorem of Moise [17] imposes no real restriction beyond the desirable one

of forcing our links and surfaces to be tame.

A closed regular neighborhood of a polyhedron Y embedded in a manifold X

is denoted N(Y,X), and if Y ⊂ X ⊂ Z it is to be understood that our choices of

N(Y,X) and N(Y, Z) will satisfy the equation N(Y,X) = N(Y, Z)∩X, unless stated
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otherwise. If X is the largest manifold involved in our discussion (with respect to

inclusion), we will write simply N(Y ) for N(Y,X). With analogous conventions let

E(Y,X) = X \N(Y,X) denote the exterior of Y in X, and define the scar set Sc(Y )

of Y in E(Y,X) to be N(Y,X) ∩ E(Y,X), which lies in the boundary of E(Y,X).

We assume that embedded polyhedra meet one another tranversely and that

all embeddings are proper unless described otherwise. For sets Y, Z ⊂ X, |Y ∩ Z|

denotes the number of connected components of Y ∩ Z. Also, the following abuse of

notation will occur frequently to ease the exposition: If X = {X1, · · · , Xn} is a set of

disjointly embedded submanifolds, we will often also use the same symbol X to refer

to X1 ∪ · · · ∪Xn when ambiguity cannot arise.

Finally, if X and Y are topological spaces, X ′ ⊂ X and f : X ′ → Y is any

function, X ∪f Y will denote the quotient space of the disjoint union of X and Y

modulo the smallest equivalence relation ∼ on X ∪ Y satisfying x ∼ f(x), and we

will refer to X ∪f Y as X glued to Y via f . If π : X ∪ Y → X ∪f Y is the quotient

map and Z ⊂ X ∪ Y , then π(Z) will be referred to as the image of Z after gluing.

A surface F of positive genus properly embedded in a 3-manifoldM is compressible

if there is a disk D embedded in M such that D ∩ F = ∂D and ∂D does not bound

a disk in F . In this case D is called a compression disk. If F is a sphere or disk then

it is said to be compressible if one component of E(F,M) is a ball. A surface which

is not compressible is said to be incompressible. Similarly, if a surface F satisfies

∂F 6= ∅ and χ(F ) < 1 then it is said to be ∂-compressible if there exists an embedded

disk D ⊂M such that ∂D = α∪β, ∂α = ∂β = α∩β, α = D∩F , β ⊂ ∂M , and such
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that the closure of neither component of F \α is a disk. In this case D is said to be a

boundary compression disk. If F is not boundary compressible, it is ∂-incompressible.

A 3-manifold M is said to be irreducible if it contains no incompressible 2-

spheres and it is said to be ∂-irreducible if ∂M is incompressible, otherwise it is said

to be reducible and ∂-reducible, respectively.

The connected sum M1#M2 of two oriented 3-manifolds M1,M2 is obtained by

removing any pair of 3-balls Bi ⊂ int(Mi) and attaching M1 \ int(B1) to M2 \ int(B2)

via an orientation reversing homeomorphism h : ∂B1 → ∂B2. It is known that this

operation does not depend on the choice of Bi or h.

1.2 Heegaard Splittings

In this sectionM andMi are always compact, connected, orientable 3-manifolds.

Definition 1.1. A compression body V is a connected manifold obtained by taking

a collection of 3-balls B and thickened orientable closed surfaces of positive genus

F1 × I, · · ·Fn × I and attaching orientable one handles along ∂B ∪ F1 × {1} ∪ · · · ∪

Fn × {1}. We let ∂−V = F1 × {0} ∪ · · · ∪ Fn × {0} denote the negatative boundary

of V , and ∂+V = ∂V \ ∂−V the positive boundary.

Note that V is a handlebody if ∂−V = ∅, and that our definition counts

the 3-ball and all connected orientable closed positive genus thickened surfaces as

compression bodies.

Definition 1.2. A connected separating closed surface F embedded in M is said

to be a Heegaard surface for M if the closure of each component V1, V2 of M \ F
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is a compression body and ∂+V1 = ∂+V2 = F . In this case, (M,V1, V2) is called a

Heegaard splitting of M whose genus is defined to be the genus of F .

For good proofs of the remaining propositions in this section, see [31] and [29].

Proposition 1.3. Every compact orientable manifold with no 2-sphere boundary com-

ponents admits a Heegaard splitting.

Definition 1.4. The Heegaard genus of M , denoted g(M), is the minimum genus of

a Heegaard splitting for M .

Definition 1.5. Let (M,V1, V2) be a Heegaard splitting of M with Heegaard surface

F . The splitting is said to be

• stabilized if there are compressing disks D1 ⊂ V1, D2 ⊂ V2 such that |D1∩D2| =

1.

• reducible if there are compressing disks D1 ⊂ V1, D2 ⊂ V2 such that ∂D1 = ∂D2.

• weakly reducible if there are compressing disks D1 ⊂ V1, D2 ⊂ V2 such that

D1 ∩D2 = ∅

• strongly irreducible if, for every pair of compressing disks D1 ⊂ V1, D2 ⊂ V2,

D1 ∩D2 6= ∅

With a bit of imagination it is easy to see that a stabilized splitting is reducible,

and a reducible splitting is weakly reducible, thus in fact for a strongly irreducible

splitting (M,V1, V2) and any pair of compressing disks Di ⊂ Vi, we have |D1∩D2| > 1.

The following proposition is Haken’s lemma.
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Proposition 1.6. [8] If M is reducible then every Heegaard splitting of M is reducible.

As a consequence we have the following.

Proposition 1.7. Heegaard genus behaves additively with respect to connect sum, i.e.

g(M1#M2) = g(M1) + g(M2) for all M1,M2.

For the purposes of this thesis, we need only the definition of a generalized

Heegaard splitting and a single proposition regarding them.

Definition 1.8. A generalized Heegaard splitting of M is a decomposition of M into

compression bodies V1, · · · , Vn such that M = V1 ∪ · · · ∪ Vn, ∂M ⊂ ∂−V1 ∪ · · · ∂−Vn,

and, for all 1 ≤ i, j ≤ n, i 6= j, either Vi∩Vj = ∂+Vi = ∂+Vj or Vi∩Vj = ∂−Vi∩ ∂−Vj.

The “or” in that definition is meant to be exclusive, and note that it will often

be the case that Vi ∩ Vj = ∂−Vi ∩ ∂−Vj = ∅. The following proposition is widely

known, but we include a brief sketch of the proof for the sake of descriptiveness.

Proposition 1.9. Suppose (M,V1, V2,W1,W2) is a generalized Heegaard splitting of

M with ∂+V1 = ∂+V2, ∂+W1 = ∂+W2, ∂−V1 ∪ ∂−W2 ⊂ ∂M , and ∂−V2 ∩ ∂−W1 = F ,

where F is a connected surface. Then one can obtain a Heegaard surface P for M

of genus g(∂+V1) + g(∂+V2) − g(F ) which induces a Heegaard splitting (M,Y1, Y2)

satisfying ∂−Yi = (∂−Vi ∪ ∂−Wi) \ F .

Proof. The generalized Heegaard splitting in question can be made to arise from a

Morse function f . The index i critical points of f will correspond to the 1-handles of

Vi and Wi which are attached to ∂−Vi and ∂−Wi, respectively, for i = 1, 2. So after
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an isotopy of f which amounts to sliding its index 1 critical points below its index 2

points, we obtain a new Morse function f ′ whose index 1 critical points all lie below

its index 2 critical points, and if s is any regular value between the index 1 and index

2 critical values, f−1(s) = P will be a surface of the kind we claimed to exist.

The splitting coming from the surface F in the proof is said to be obtained

via amalgamation of the original generalized splitting. In general, if M is a manifold

and F ⊂ M is an embedded surface, the connectivity graph Γ(F ) is defined to have

one vertex v(N) for each component N of M \F , and one edge connecting connecting

v(N) to v(N ′) for every component of F lying in N ∩N ′. The following proposition

is easily obtained from the previous one via induction.

Proposition 1.10. Let M = V1 ∪ · · · ∪ Vn be a generalized Heegaard splitting with

F− = ∂−V1∪· · ·∪∂−Vn. Then if Γ(F−) is a tree, M admits an amalgamated Heegaard

splitting.

1.3 Knot and Link Basics

We now set out our elementary notation and definitions regarding knots and

links.

Definition 1.11. An oriented link L of n components in an oriented 3-manifold M is

the oriented image of an embedding of n copies of S1 into M . A knot is a link of one

component. Two oriented links are equivalent if there is an orientation preserving

homeomorphism h : (M,L1)→ (M,L2).
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From now on we always assume that our links are oriented and that the 3-

manifolds M in which our links are embedded are compact and orientable with no

sphere boundary components. However, we will rarely refer to the orientations in

question because the invariants we work with below do not depend on the orientation

of the links involved. Indeed the only reason we have bothered with an oriented notion

of link equivalence is to ensure that the notion of connected sum is well defined with

respect to it.

Compressing disks for solid tori are called meridian disks, and the boundaries

of such disks are called meridians, which are unique up to isotopy. A regular neigh-

borhood of a component of a link in an orientable manifold is always a solid torus,

and a meridion disk D for this torus is also called a meridian disk for L, and likewise

∂D is known as a meridian of L.

An arc α properly embedded in a ball B is unknotted if it cobounds an em-

bedded disk D ⊂ M with an arc on ∂B. More generally, if α is properly embedded

in a manifold M it is said to be unknotted if, for every ball B ⊂M such that α ∩B

is a single properly embedded arc in B, α ∩ B is unknotted. We are now ready for

the following important definition.

Definition 1.12. Let L ⊂ M be a link of n components L1, · · ·Ln and let L′ ⊂ M ′

be a link of m components L′1, · · ·L′m. Let S ⊂ M , S ′ ⊂ M ′ be separating 2-spheres

bounding balls B, B′ respectively, such that L ∩ B = Li ∩ B and L′ ∩ B′ = L′j ∩ B′

are unknotted arcs in B and B′, respectively. Let h : (S, S ∩L)→ (S ′, S ′ ∩L′) be an

orientation reversing homeomorphism and let M̃ = M \ int(B), M̃ ′ = M ′ \ int(B′).
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Then the connect sum along (Li, Lj), denoted L#i,jL
′, is defined to be the link in

M#M ′ obtained by gluing M̃ to M̃ ′ via h.

In the case that one or both elements of the connected sum are knots we drop

the corresponding subscripts from our notation, so that the connect sum of a knot K

with a link L along its ith component will be denoted K#iL, and the connect sum

of two knots K and K ′ is written K#K ′ as usual. If K1, · · ·Kn are knots and L is

an n component link, we write L#(K1, · · · , Kn) for (· · · ((L#1K1)#2K2) · · · )#nKn.

The image S ⊂M1#M2 of the spheres Si ⊂Mi after gluing will be called the

decomposing sphere of the connected sum, and the corresponding annulus A = S ∩

E(L#i,jL
′) in E(L#i,jL

′) will be called the decomposing annulus. In fact, E(L#i,jL
′)

can be obtained by gluing E(L) to E(L′) along a pair of meridional annuli lying on

their respective boundaries, and the image of these annuli after the gluing is a single

annulus which is isotopic to the decomposing annulus. See, for example, [32] for a

more detailed account.

Yet another well known way of describing the connect sum of a pair of links can

be given via the “satellite” construction described, e.g. in [2]. Here, let L1, · · ·Ln =

L ⊂M , and L′1, · · ·L′m = L′ ⊂M ′, let µ be a meridion of Li, and let V = E(N(µ),M),

so that L ⊂ V , and, for some compressing disk D of ∂V , |D∩L| = |D∩Li| = 1. One

then glues V to E(L′j,M
′) via any homeomorphism h : ∂V → ∂E(L′j,M

′) \ ∂M ′ that

sends ∂D to a meridian curve on ∂N(L′j). The link L#i,jL
′ is then the image after

gluing of L′1 ∪ · · · ∪ L′j−1 ∪ h(L) ∪ L′j+1 ∪ · · · ∪ L′m in M#M ′. In this case we call the

image after gluing of ∂V a swallow-follow torus, which in this case “swallows” L and
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“follows” L′j.

Definition 1.13. A bridge surface F for a link L ⊂ M is a Heegaard surface for M

such that each arc of L ∩ E(F ) cobounds an embedded disk with an arc in ∂E(F ).

The pair (L, F ) is said to be a bridge presentation of L.

Given any Heegaard surface F for M , and any link L in M , it is possible to

perturb L so that (L, F ) becomes a bridge presentation.

Definition 1.14. The genus g bridge number of L ⊂M , denoted bg(L), is defined to

be min{|F ∩ L|/2}, where the minimum is taken over all genus g Heegaard surfaces

of M . If M is the 3-sphere, we denote b0(L) simply as b(L).

Of course b(L) is just the standard bridge number first defined by Schubert

[34] and proved by him to be additive with respect to connect sum in knots. We now

come to the formal definition of tunnel number.

Definition 1.15. An unknotting system for L is a collection of arcs T = {t1∪ · · · tn}

properly embedded in E(L) such that E(L∪ t1∪· · · tn) is a handlebody. The minimal

cardinality of an unknotting system for L shall be denoted t(L), the tunnel number

of L.

Here is the formal definition of the degeneration ratio.

Definition 1.16. Let L be a link of n components L1, · · · , Ln, let K1, · · · , Kn be

a collection of knots, and let L#(K1, · · · , Kn) be the connect sum taken so that Ki

connects along Li. The degeneration ratio is then given as follows:
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dL(K1, · · · , Kn) = t(L)+t(K1)+···+t(Kn)−t(L#(K1,··· ,Kn))
t(L)+t(K1)+···+t(Kn)

In the case that L = K is a knot, we use the notation d(K,K ′) for dK(K ′).

We conclude with a brief description of Dehn surgery, for the sake of simplicity

we restrict our attention to knots.

Definition 1.17. A manifold M ′ is said to be obtained via a Dehn surgery along a

knot K ⊂M if M ′ ∼= E(K)∪h V , where V is a solid torus and h : ∂V → ∂E(K) is a

homeomorphism.

We will also call M ′ a Dehn filling of E(K), and V the filling torus. If D is

a meridian disk of V , and if h(∂D) and h′(∂D) both represent the same element of

H1(∂E(K)), then E(K) ∪h V ∼= E(K) ∪h′ V . Moreover, if γ is any simple closed

curve embedded in a torus T , and [γ] = aµ + bλ ∈ H1(T ), where µ and λ are any

basis of H1(T ), then a and b are relatively prime. Thus after fixing a basis µ, λ for

H1(∂E(K)), we may index the manifolds obtained by Dehn surgeries along K by

elements of Q, as follows: If a
b

= q we let MK(q) denote the manifold obtained by a

Dehn surgery along K such that [h(∂D)] = aµ + bλ. We let K(q) ⊂ MK(q) denote

the core of V after gluing.

In this thesis, we always assume that the generator µ in our preferred basis

of H1(∂N(K)) is represented by a meridian of N(K). This means that the integral

Dehn fillings of E(K) are those obtained by attaching the meridian of V to a curve

on ∂N(K) that intersects some meridian of N(K) exactly once.

Of course, all of the definitions and terminology surrounding Dehn fillings of
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knot complements will also apply in the natural and obvious way to Dehn fillings of

link complements more generally.

1.4 Cutting and Pasting

In all of our work below the notion of a spine is crucial.

Definition 1.18. If V is a handlebody, an embedded graph X in V is said to be a

spine of V if E(X) is homeomorphic to (∂V )×I, where I = [0, 1] ⊂ R. A subgraph X ′

of a spine X in V will be called a subspine if it contains no contractible components,

and in the special case that X ′ is a collection of loops it will be called a core of V .

A compression body can be regarded as a handlebody with an open regular

neighborhood of a subspine removed.

Definition 1.19. A collection of simple closed curves C = {C1, · · · , Cn} embedded

in ∂V is called primitive if there exists a disjoint collection of compressing disks

D = {D1, · · · , Dn} for V such that |Ci ∩Dj| = δij (where δij is the Kronecker delta).

The disks D are said to be dual to C.

Proposition 1.20. A primitive collection C = {C1, · · · , Cn} of curves embedded in

the boundary of a handlebody V is isotopic to a core of V .

Proof. It suffices to show that C can be isotoped into V so that E(C) becomes a

compression body. Let D = {D1, · · · , Dn} be a collection of disks dual to C. Then

E = ∂N(C1 ∪ · · · ∪ Cn ∪D1 ∪ · · · ∪Dn) \ ∂V is a collection of compressing disks

which cut V into a handlebody Ṽ and a collection of solid tori Ti, each having a
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core isotopic to exactly one element Ci ∈ C. Thus, we see that E(C) is obtained

by attaching a collection of thickened tori Ti \N(Ci) to a handlebody Ṽ along disks,

and so must be a compression body.

The following proposition is well known and occurs, e.g., in [32]. We sketch

the proof here.

Proposition 1.21. If C is a primitive collection of simple closed curves on the bound-

ary of a collection of handlebodies V with dual disk collection D, and h : N(C)∩∂V →

∂V \ (C ∪D) is an orientation reversing embedding, then V/(x ∼ h(x)) is a handle-

body.

Proof. If H = N(C∪D), V ′ = H ∪h E(H,V ) is homeomorphic to E(D, V ) and thus

is a handlebody. But V/(x ∼ h(x)) is obtained from V ′ by attaching one-handles

along the image of the disks ∂H \ ∂V after gluing.

It follows from this proposition that the attachment of a 2-handle along a

primitive annulus on the positive boundary of a compression body always yields

another compression body of lower genus. This fact plays a role in our study of

stabilizing arcs.

Definition 1.22. An arc α properly embedded in a manifoldM is said to be stabilizing

if and only if there exists a disk D transversely embedded in M with ∂D = α ∪ β,

where β is an arc embedded in ∂M and ∂α = ∂β. In this case we say that α cobounds

D with the arc β.
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For the sake of descriptiveness, if α is any arc properly embedded in M , then

we will often call the scar set Sc(α) ⊂ ∂E(α,M) the annulus associated with α. An

arc α embedded in M is stabilizing if and only if its associated annulus is primitive in

E(α,M), in the sense that there exists a compressing disk D for E(α,M) satisfying

|D ∩ Sc(α)| = 1.

Proposition 1.23. Suppose α is a stabilizing arc in M . Then M is a handlebody if

and only if E(α,M) is.

Proof. First suppose that M is a handlebody. Then there is a collection of disks

D such that E(D,M) = B is a 3-ball. Then since α is stabilizing it cobounds a

disk D with an arc in ∂M . One can then easily construct an isotopy of α in M via

embeddings ht : (I, ∂I) → (D, β) so that h0(I) = α, h1(I) = α′ cobounds a small

disk D′ ⊂ D with a small subarc of β satisfying D′ ∩D = ∅.

It follows that E(α′, B) = V is a solid torus and, after choosing a meridian

disk D′′ for V that is disjoint from the scar set Sc(D) ⊂ ∂V , we obtain the collection

{D′′}∪D of compressing disks for E(α′,M) which cuts it into a 3-ball, thus showing

it to be a handlebody as well. Since E(α′,M) ∼= E(α,M) the first half of the proof

is done.

For the second half, simply note that M is obtained from E(α,M) via a

two-handle attachment along the annulus associated with α, which, as noted in the

remark preceding this proposition, is primitive. As observed in the remark following

Proposition 1.21, the result of this handle attachment must therefore be a handlebody,

thus completing the proof.
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If α1, · · · , αn is a disjoint collection of stabilizing arcs in M , then routine

innermost and outermost disk arguments similar to above allow us to choose disjoint

embedded disks D1, · · · , · · ·Dn, where each αi cobounds Di with an arc in ∂M . Thus

we can generalize Proposition 1.23 using the same argument.

Proposition 1.24. If α1, · · ·αn is a disjoint collection of stabilizing arcs embedded

in M , then M is a handlebody if and only if E(α1 ∪ · · · ∪ αn,M) is.
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CHAPTER 2
WEAKLY REDUCIBLE SUBADDITIVE PAIRS

In the following chapter we construct knots of arbitrarily high tunnel number

which experience proportionally high degeneration via weakly reducible Heegaard

splittings. Asymptotically, the knot pairs we construct will approach a degeneration

ratio of 1/3 as the tunnel number grows large.

2.1 µ Primitivity

We say that a Heegaard splitting V1 ∪ V2 of a knot exterior E(K) is µ(n)-

primitive, if there is a disjoint collection of n disks, each intersecting K once, and

whose boundary curves form a pair of cores C1, C2 of V1 and V2 respectively. For a

knot K then define µ(K) to be the largest n for which a minimal genus Heegaard

splitting is µ(n)-primitive. This can be seen as a slight generalization of the concept

of µ-primitivity [18]; if µ(K) > 0 then K is said to be µ-primitive.

Proposition 2.1. Suppose µ(K) = n, and let K1, · · · , Kn be any collection of n knots.

Then t(K#K1# · · ·#Kn) ≤ t(K)+t(K1)+· · ·+t(Kn) = m, and E(K#K1# · · ·#Kn)

admits a weakly reducible m+ 1 genus Heegaard splitting.

Proof. Let F be a minimal genus Heegaard splitting of E(K) with complementary

compression bodies V1, V2 in M such that ∂−V1 = ∂(N(K)), and let C1 ∪ C2 = C be

a primitive pair of cores realizing µ(K). Then the connect sum K#K1# · · ·#Kn can

be taken via the satellite construction along the collection of tori ∂(N(C)) in E(K)

(see the discussion following Definition 1.12). Given any minimal genus Heegaard
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splittings of the Ki, the connect sum taken along the cores C naturally induces a

generalized Heegaard splitting of E(K#K1# · · ·#Kn−1#Kn) which can be amalga-

mated to a splitting of genus t(K) + t(K1) + · · · + t(Kn) + 1, yielding the desired

result.

As a consequence we have the well known fact that, for any knot K whose

connect sum with another knot K ′ is superadditive with respect to tunnel number,

µ(K) = 0. The next proposition gives a useful criterion for a knot to satisfy µ(K) ≥

n+ 1.

Proposition 2.2. If K ⊂ S3 is an n+1 bridge knot with t(K) = n then µ(K) ≥ n+1.

Proof. If S is a sphere in S3 realizing b(K) = n + 1, then K intersects the two

complementary balls B1, B2 of E(S) trivially, that is, each arc of K ∩ Bi cobounds

a disk in B with an arc in ∂B, and all of these disks can be chosen disjoint. If

s1, · · · , sn+1 are the arcs of intersection of K with B1, then there is a collection

t1, · · · , tn of unknotted arcs embedded in B1 disjoint from the bridge disks in question,

such that the endpoints of ti lie in si and si+1, 1 ≤ i ≤ n.

Since E(s1 ∪ · · · ∪ sn+1 ∪ t1 ∪ · · · ∪ tn, B1) can be isotoped onto a small collar

neighborhood of E(K ∩ ∂B1, ∂B1), E(K ∪ t1 ∪ · · · ∪ tn) is homeomorphic to E(K ∩

B2, B2). Thus the ti form a minimal unknotting system forK and the disks cobounded

by the arcs of K ∩B2 in B2 correspond to a complete collection of compressing disks

for the handlebody E(K ∪ t1∪ · · ·∪ tn) which are dual to the core C consisting of one
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Figure 2.1: Bridge tunnels and core indicating µ(K) ≥ 3 for the tunnel number 2
knot K = 816

essential curve on each annulus associated with the arcs of the tangle (B2, K ∩ B2).

This proves our claim.

2.2 The First Construction

To construct our examples, we require some theorems from the literature. The

first result is a classic of Schubert’s.

Proposition 2.3. [34] If K1 and K2 are knots in S3, b(K1#K2) = b(K1)+b(K2)−1.

The second result is a more recent result of Scharlemann and Schultens.

Proposition 2.4. [33] Given any collection K1, · · · , Kn of knots in S3, t(K1# · · ·#Kn) ≥

n.

From these two propositions we deduce the existence of (n+ 1)-bridge, tunnel

number n knots for arbitrary n > 0:

Proposition 2.5. If K1, · · ·Kn is any collection of 2-bridge knots in S3 and K =

K1# · · ·#Kn, then b(K) = n+ 1 and t(K) = n
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Proof. The fact that b(K) = n+ 1 follows from Schubert’s theorem, and using bridge

tunnels as in Proposition 2.2 we see that t(K) ≤ b(K) − 1 = n. The theorem of

Scharlemann and Schultens now gives t(K) = n.

The knots K of this proposition will constitute one half of the superadditive

pairs we will construct. It seems likely that they can be chosen prime, and certainly

there are known examples of prime knots satisfying t(K) = n, b(K) = n+1 for n ≤ 3.

To construct the second kind of knot that occurs in our pairs, we require the following

(here somewhat abridged) theorem of Kobayashi and Rieck.

Proposition 2.6. [14] For any collection of positive integers {m1, · · · ,mn} there ex-

ists a collection of knots {K1, · · · , Kn} in S3 satisfying t(Ki) = mi and t(K1# · · ·#Kn) =

n− 1 +
∑
i

mi.

We are now ready to prove this chapter’s main result.

Proposition 2.7. For arbitrary n > 0 there exist knots K,K ′ ⊂ S3 with t(K) = n,

t(K ′) = 2n + 1, and t(K#K ′) ≤ 2n + 1. Moreover E(K#K ′) admits a weakly

reducible genus 2n+ 2 Heegaard splitting.

Proof. By Proposition 2.5 we can find an n + 1 bridge, tunnel number n knot K,

and by Proposition 2.6 we have a knot K ′ = K1# · · ·#Kn+1 where t(Ki) = 1 for all

1 ≤ i ≤ n+ 1 and t(K ′) = 2n+ 1. The result now follows from Proposition 2.1.

As an immediate corollary we obtain:
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Figure 2.2: Taking the connect sum of the Trefoil with a superadditive pair of knots
K1, K2 along a primitive core

Proposition 2.8. The knots K,K ′ of Proposition 2.7 satisfy n
3n+1

≤ d(K,K ′) ≤

2n−1
3n+1

.

Proof. The lower bound is Proposition 2.7, the upper bound comes from Proposition

2.4.
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CHAPTER 3
SUBADDITIVITY VIA FREE DECOMPOSITIONS

In this section we construct our second, more complex, family of subadditive

knot-link pairs which utilizes free tangle decompositions. This construction allows for

greater degeneration, and as we discuss in the next chapter, can be utilized to reveal

some interesting connections with Dehn surgery.

3.1 Free Tangle Decompositions

Free tangle decompositions were introduced into the literature by Kobayashi

[12] in order to prove the existence of knot pairs whose tunnel number experiences

arbitrarily large degeneration under connect sum. In this section we define a more

general notion of free decompositions and prove some useful propositions about them.

Definition 3.1. LetM be a compact orientable 3 manifold with non-empty boundary,

and let T = {t1, · · · , tn} be a collection of arcs properly embedded in M . The pair

(M,T ) is called a tangle in M , and it is free if E(T,M) is a handlebody.

Observe that an unknotting system for L is a free tangle in E(L,M). It is

useful to specialize this definition as follows.

Definition 3.2. A tangle (M,T ) is said to be trivial if (M,T ) is free and every arc

of T is stabilizing in M .

A tangle (M,T ′) is said to be a subtangle of (M,T ) if T ′ ⊂ T
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Definition 3.3. A subtangle (M,T ′) of a free tangle (M,T ) is said to be trivializing

if (E(T ′,M), T \ T ′) is trivial.

As an immediate consequence of Proposition 1.24 we then deduce

Proposition 3.4. If (M,T ′) is a trivializing subtangle of a free tangle (M,T ), then

(M,T ′) is also free.

If S ⊂ M is an embedded surface and N1 and N2 are two connected compo-

nents of E(S,M), we say that N1 is adjacent to N2 if and only if there is an edge

connecting v(N1) to v(N2) in the connectivity graph Γ(S) (see the discussion follow-

ing Proposition 1.9). In the next definition, the condition that the surface S ⊂M be

strongly separating means that each component of E(S,M) can be labeled with a +

or − in such a way that no adjacent pair of connected components shares a common

sign.

Definition 3.5. Let S be a strongly separating closed surface in a closed orientable

3-manifold M , and let L be a link in M transverse to S. If, for each component Vi of

E(S,M), the tangle (Vi, L ∩ V ) = (Vi, Ti) is free, S is said to be a free decomposing

surface for L, and (S, (V1, T1), · · · , (Vn, Tn)) is a free tangle decomposition of L.

The following somewhat technical lemma is of central importance to the work

that follows; it can be viewed as an extension of Proposition 3.5 of Kobayashi’s paper

[12] to our more general setting:

Proposition 3.6. Suppose L is a link in a closed orientable 3-manifold M with

components L1, · · · , Ln and a free decomposition (S, (V1, T1), · · · , (Vk, Tk)). Suppose
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further that there is a collection of arcs Y = {y1, · · · yn} in T1 ∪ · · · ∪Tk satisfying the

following conditions.

• For all 1 ≤ i ≤ n, yi is a subarc of Li.

• For all 1 ≤ j ≤ k, (Vj, Tj \ Y ) is trivializing in (Vj, Tj).

Further, let {Ki}ni=1 be a collection of knots in Mi with bridge surfaces {Fi}ni=1

satisfying |Ki ∩ Fi| = |Li ∩ S| for each 1 ≤ i ≤ n.

Then the connect sum L′ = L#(K1, · · · , Kn) can be taken in such a way

that the surface S ′ which is the image after gluing of S \N(L) ∪ F1 \N(K1) ∪ · · · ∪

Fn \N(Kn) becomes a closed connected Heegaard surface of E(L′).

Proof. For each Ki, let E(Fi) = W 1
i ∪W 2

i , and choose any component wi of Ki∩W 1
i .

Let R1
i be the sphere ∂N(Ki\wi), and R2

i be the sphere ∂N(Li\yi). Then the connect

sum in question can be obtained by attaching E(Ki) to E(Li) via an orientation

reversing map hi : (R1
i , Fi∩R1

i )→ (R2
i , S∩R2

i ), which ensures that all of the meridional

surfaces in question get glued into a single closed surface in E(L′).

We assumed in Definition 3.3 that S strongly separates M into non-adjacent

+ and − components. Without loss of generality suppose V+ = {V1, · · ·Vl} and

V− = {Vl+1, · · · , Vk} are the sets of + and − components, respectively. If, for a given

i, yi lies in a + component of E(S), then hi glues W 1
i only to + components, and

W 2
i only to − components. The situation is reversed if yi lies in a − component, but

in either case W 1
i and W 2

i can be labeled consistently with the components of E(S)

to which they are connected, and so the complementary components of the resulting
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Figure 3.1: Schematic diagram for the case n = 2. The ovals represent the free
decomposing surfaces. The knots and links are represented by the curves winding
through the surfaces, with the spheres Rj

i tubed along most of their length.

surface S ′ can be labeled with + and − as required for S ′ to be strongly separating

in M ′.

We will next show that each component of E(S ′) is a handlebody. This au-

tomatically implies that S ′ is connected, otherwise some component of E(S ′) would

have multiple boundary components, contrary to the fact that it is a handlebody.

By hypothesis, E(Tj \Y, Vj) is trivializing in the handlebody E(Tj, Vj), and so

by Proposition 3.4 E(Tj \Y, Vj) is itself a handlebody for all 1 ≤ j ≤ k. Likewise, for

all 1 ≤ i ≤ n, the tangles (W 1
i , T

1
i ) and (W 2

i , T
2
i ) are free and in fact trivial, where T 1

i

is the collection of arcs in (K ∩W 1
i ) \wi and T 2

i is the collection of arcs in (K ∩W 2
i ).

It follows that the scar sets Sc(T 1
i ), Sc(T 2

i ) form a primitive collection of annuli

on the boundaries of the handlebodies W 1
i ,W

2
i , respectively, for all 1 ≤ i ≤ n. Since

U1 and U2 are obtained by gluing these handlebodies to the handlebodies E(Tj\Y, Vj),

Proposition 1.21 implies that each of them is a handlebody, as required.

All that remains is to show that the collection of curves L′ ∩ Ui forms a core
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of Yi for i = 1, 2. We prove this for U1, the proof for U2 being identical. Without loss

of generality suppose that L′ ∩ U1 = L′1 ∪ · · · ∪ L′m, where L′i is the image in U1 of

yi ∪ wi after gluing for all 1 ≤ i ≤ m.

By hypothesis, for each i, wi cobounds a disk Di with an arc on Fi and yi

cobounds a disk D′i with an arc on ∂E(Tj \ Y, Vj) for some j, and in such a way

that the disks in the resulting collection {D′i} are pairwise disjoint. Moreover, after a

small isotopy of these disks we can ensure that α1
i = Di ∩R1

i and α2
i = D′i ∩R2

i each

consists of a pair of arcs, with hi(α
1
i ) = α2

i .

Furthermore, since the tangle (W 1
i , Ki ∩W 1

i ) is trivial, we can find a disjoint

collection of compressing disks D′′i
1∪· · ·∪D′′i

p(i) (some pairs of which may be parallel),

each of which intersects the collection of annuli Sc(Ki ∩W 1
i ) ⊂ ∂E(Ki ∩W 1

i ,W
1
i ) in

exactly one essential arc, and such that h−1i (∂D′i∩Sc(Tj \Y )) = (∂D′′i
1∪· · · ∂D′′i

p(i))∩

Sc(Ki ∩W 1
i ).

By our construction, then, the image of Di∪D′i∪D′′i
1∪· · ·∪D′′i

p(i) after gluing

along hi will be an annulus Ai in U1 having L′i as one boundary component, and a

simple closed curve in S ′ as the other component. Moreover, the annuli Ai, Aj are

disjoint for i 6= j, so it follows that L′ ∩ U1 can be isotoped along these annuli onto

∂U1.

Finally note that for each component L′i, the closure of either of the two open

disk components of R1
i \Fi will become a compressing disk Ei for U1 that intersects Ai

in exactly one essential arc. Thus in fact L′ ∩ U1 has been isotoped onto a primitive

collection of simple closed curves on ∂U1, which by Proposition 1.20 implies it is a
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core of U1 as required.

Free decompositions of links place upper bounds on their tunnel number, as

was shown by Morimoto in the case when the decomposing surface is a single sphere

in [20]. His methods do not extend to our more general case. However a bound does

exist in terms of arbitrary free decomposing surfaces.

Proposition 3.7. Let L ⊂ M be a link with a free decomposing surface S. Then

g(E(L)) ≤ 1 + |L ∩ S| − χ(S)
2

.

Proof. For each component Li, pick a single small subarc γi of some component of

Li \ S, and add the spheres Si = ∂N(γi)) to S to obtain a new free decomposing

surface S̃ satisfying the hypothesis of Proposition 3.6. Corresponding to each Li, let

Ki be the unknot in S3 together with an |Li ∩ S̃|/2 bridge sphere Fi.

Taking the connect sum of L with the Ki as in Proposition 3.6 yields back L

again, together with a Heegaard surface for S ′ for E(L). We now compute

χ(S ′) = χ(S̃ \ L) +
∑
i

χ(Fi \Ki)

and since

χ(S̃ \ L) = χ(S \ L), χ(Fi \Ki) = 2− |Ki ∩ Fi| = −|Li ∩ S|

we obtain

g(S ′) = 1− χ(S′)
2

= 1− χ(S\L)−|L∩S|
2
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and, since χ(S \ L) = χ(S)− |L ∩ S|, we deduce the desired inequality.

The small spheres added to S to obtain S̃ can always be chosen so that every

component of L lies on the same side of S ′. So we can in fact conclude t(L) ≤

|L ∩ S| − χ(S)
2

.

3.2 The Second Construction

The links we find below that admit high degeneration are of the following kind:

Definition 3.8. A free decomposing surface S for a link L is optimal if t(L) =

|L ∩ S| − χ(S)
2

.

Proposition 3.9. If an n-component link L admits an optimal free decomposing

surface S, then there exists a collection of knots K1, · · · , Kn such that

dL(K1, · · · , Kn) ≥ |S∩L|
3|S∩L|−χ(S)

Proof. Follow the proof of Proposition 3.7 exactly, except let your Ki be |Li ∩ S̃|/2

bridge, tunnel number |Li∩S̃|/2−1 knots in S3, where S̃ is the same modified surface

described there.

By hypothesis t(L) = |L ∩ S| − χ(S)
2

and t(Ki) = |Li ∩ S|/2, while the remark

following Proposition 3.7 shows that t(L#(K1, · · · , Kn) ≤ |L∩ S| − χ(S)
2

. This yields

the desired result.
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Figure 3.2: Schematic diagram depicting the links constructed in Propositions 3.10
and 3.11.

Proposition 3.10. For all integers n > 0, there exist n + 1 component links L and

knots K1, · · · , Kn+1 in S3 such that

dL(K1, · · · , Kn+1) ≥ 3n−1
7n−2

Proof. Let J1, · · · , J2n be a collection of knots in S3 satisfying t(Ji) = 1 for all i and

t(J1# · · ·#J2n) = 4n− 1, which exist by Proposition 2.6. Let S = S1∪ · · · ∪S2n−1 be

a collection of decomposing spheres for the connect sum J = J1# · · ·#J2n satisfying

the property that, for each i, Si bounds a ball B satisfying B ∩ S = S1 ∪ · · · ∪ Si−1,

i.e. let the Si be nested as in Figure 3.2. Let W1, · · · ,W2n be the closures of the

components of E(J) \ S, labeled so that E(Ji) ∼= Wi and Wi ∩Wi+1 = Si \N(J).

Since t(Ji) = 1, each Wi admits an arc ti such that (Wi, ti) is free. Moreover,

for each odd i the arcs ti and ti+1 can be properly isotoped in Wi and Wi+1 respectively

so that ∂ti = ∂ti+1. The result will be that the union ti∪ti+1 = L(i+1)/2, forms a closed

loop in S3 for each i ≡ 1 (mod 2), see Figure 3.2(a). Let L be the link J∪L1∪· · ·∪Ln.
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Clearly t(L) ≥ t(J), since any Heegaard splitting for L is also a Heegaard splitting for

K, and by Proposition 3.7, t(L) ≤ t(J) as well, since S is a free decomposing surface

for L, in fact an optimal one. The inequality now follows from Proposition 3.9.

Proposition 3.11. For all integers n > 0 there are two component links L ⊂ S3 with

t(L) = 3n and pairs of knots K1, K2 ⊂ S3 such that dL(K1, K2) ≥ 2/5.

Proof. The construction is nearly identical to that of Proposition 3.11, except we start

by taking the connect sum J = J1# · · ·#Jn+1 with t(J1) = t(Jn+1) = 1, t(Ji) = 2

for 1 < i < n + 1, and t(J) = 3n. The difference is that after decomposing the

connect sum along nested spheres as in Proposition 3.11, the tunnels in Wi can be

slid together to form a single loop instead of many, as in Figure 3.2(b).

3.3 Knots instead of Links

Let L be a link with free decomposing surface S. Then we may regard N(S)∩L

as a collection of trivial braids in N(S) ∼= S × I (one for each component of S × I).

Substituting an arbitrary collection of braids for N(S) ∩ L yields another link for

which S is also a free decomposing surface, see Figure 3.3 for an example.

Conjecture 3.12. There exist knots K obtained from the links of Propositions 3.10

and 3.11 by braid substitutions which are optimal.

Nogueira [24] has already given an affirmative answer to Conjecture 3.12 in

the case n = 1 of Propositions 3.10 and 3.11 (which coincide). If an optimal knot
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Figure 3.3: Braid Substitution

of the kind described existed for n > 1, then together with any knot K ′ satisfying

b(K ′) = t(K ′) + 1 = 3n, it would achieve the highest degeneration ratio of any pair

of knots found to date.

A somewhat surprising fact is that, as it stands, our constructions with links

allow us to rediscover the subadditive knot pairs of Chapter 2. The Heegaard surface

for E(L#(K1, · · · , Kn)) in Proposition 3.10 is also a Heegaard surface for the exterior

of each of its components, which includes the knot J#K1, where recall that t(J) =

4n − 1, and K1 is any 2n bridge, tunnel number 2n − 1 knot. Thus we can deduce

d(J,K) ≥ 2n−1
6n−2 , and though we constructed the Heegaard surfaces differently to prove

it, this is just the lower bound found in Proposition 2.8.
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CHAPTER 4
APPLICATIONS, OBSERVATIONS, AND CONJECTURES

In this final chapter we discuss the connection between certain classes of op-

timal knots and integral Dehn fillings. We then discuss the generality of the con-

structions described here, which encompass all known examples of tunnel number

subadditivity. We conclude with some conjectures.

4.1 Dehn Fillings

This section is devoted to showing that, if a link L is optimal with respect to

a connected free decomposing surface F , then every integral Dehn filling of any m

components of L results in a manifold M with the property that g(M) ≤ g(E(L))−m.

This proposition actually arises in the course of a proof that, with some refinements,

free decompositions can in fact be used to place even stronger upper bounds on tunnel

number that those derived in Chapter 3.

The following definition first occurs in [20].

Definition 4.1. A free tangle (M,T ) is a type (n, d) tangle if |T | = n and d is the

minimum cardinality of |T ′| among all trivializing subtangles T ′ of T .

We always consider T to trivialize itself so an (n, n) tangle is one which has

no proper trivializing subtangles. If T is already trivial then it is trivialized by the

empty set and is thus type (n, 0).

The following proposition is a substantial generalization of a proposition stated

by Morimoto in [20], and the proof required is fundamentally different from the one
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he sketched there. Recall that, by definition, we require all free decomposing surfaces

F ⊂ M to be strongly separating, so that the connected components of M \ F can

be labeled with a + or − in such a way that no two components with the same label

are adjacent.

Proposition 4.2. Let F be a free decomposing surface for a k-component link L =

L1∪· · ·∪Lk ⊂M , and let W be the closure of the union of the positively marked com-

ponents of M \F . Then if (W,W ∩L) = (W,T ) is a type (n, d) tangle, g(E(L,M)) ≤

1 + n+ d− χ(F )
2

.

Proof. First, let M ′ = E(L) ∪h (V1 ∪ · · · ∪ Vk) be any integral Dehn filling of E(L),

and let L′ = L′1 ∪ · · · ∪L′k be the image of the cores of the filling solid tori V1, · · · , Vk.

It suffices to bound the Heegaard genus of E(L′,M ′), since it is homeomorphic to

E(L,M). Our strategy will be to construct a surface F ′ = F ′1∪ · · ·∪F ′k, with F ′i ⊂ Vi

for 1 ≤ i ≤ k, so that the image F ′′ of (F \N(L))∪F ′ in M ′ after gluing is a Heegaard

surface for M ′ with L′ as a core.

Since the filling is an integral one and F is a meridional surface, we can pa-

rameterize Vi ∼= S1×D2 in such a way that h(F ∩∂N(Li)) is a collection of 2m curves

on S1 × ∂D2 of the form S1 × ∗, i.e. they will appear as longitudes. More precisely,

let Γ = γ1 ∪ · · · ∪ γ2m denote this collection of curves, where we can assume that

γj = S1 × {e j
m
π
√
−1} (here of course D2 is regarded as the unit disk in the complex

plane and S1 is the unit circle). The next four paragraphs will describe the surface

F ′i we need in detail.

Let αj denote the subarc of ∂D2 bounded by e
j
m
π
√
−1 and e

j+1
m
π
√
−1, and let
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Aj = S1×αj, 1 ≤ j ≤ 2m. Then we may assume h(Sc(T∩Li)) = A1∪A3∪· · ·∪A2m−1.

Let ωj denote the straight line segment in D2 joining e
2j
m
π
√
−1 and e

2j+1
m

π
√
−1,

1 ≤ j ≤ m, and let Yj denote the solid torus bounded by the annuli S1 × ωj and A2j

in Vi. Finally, for each ωj with midpoint mj, let aj denote a point on ωj between

e
2j
m
π
√
−1 and m, and let bj denote a point on ωj between m and e

2j+1
m

π
√
−1.

If (W,T ′) is a trivializing subtangle of (W,T ) with |T ′| = d, then h(Sc(T ′∩Li))

appears as a subcollection A′T of the annuli h(Sc(T ∩ Li)) = A1 ∪ A3 ∪ · · · ∪ A2m−1.

The boundary components of each annulus A in A′T will lie on an adjacent pair of

tori Yj and Yj+1 for some j; in this case let β(A) denote the straight line segment in

D2 joining bj to aj+1. Let B denote the union of the arcs {1}×β(A) ⊂ S1×D2 taken

over all A in A′T . Intuitively speaking, B can be described as a set of “tubing arcs”

for F ′i .

Set X ′i = N(B) ∪ Y1 ∪ · · · ∪ Ym, Xi = Vi \X ′i, and F ′i = ∂Xi ∩ ∂X ′i. I claim

that the image of F ∪ F ′1 ∪ · · ·F ′k after gluing is a Heegaard surface for M ′.

For each i, note first that both Xi and X ′i are handlebodies, with Xi and

X ′i being glued to the collections of handlebodies H = E(L ∩ W,W ) and H ′ =

E(L,M) \H, respectively. By construction, the annuli along which X ′i is glued to H ′

are all primitive, and thus by Proposition 1.21 H ′ ∪ (X ′1 ∪ · · · ∪X ′k) is a collection of

handlebodies (we will see later that it is in fact a single handlebody).

We prove that H ∪h (X1∪ · · ·∪Xk) is a collection of handlebodies by applying

Proposition 1.21 iteratively. If T ′ is the trivializing subtangle, then by our construc-

tion the annuli h(Sc(T ′)) are primitive in Xi, with a dual disk collection D that is
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disjoint from the annuli in h(Sc(T \T ′)) (this was the purpose of tubing F ′i along the

arcs B). Thus H ′′ = H ∪h|Sc(T ′) (X1 ∪ · · · ∪ Xk) is a collection of handlebodies by

Proposition 1.21.

I claim further that the image of Sc(T \ T ′) after gluing becomes a primitive

collection of annuli on ∂H ′′ with dual disk collection D′′ disjoing from h(Sc(T \ T ′)),

so that Proposition 1.21 can again be applied to show that H ′′/(x ∼ h|Sc(T\T ′)) ∼=

H ∪h (X1 ∪ · · · ∪Xk) is a collection of handlebodies.

Since T \ T ′ is trivial in E(T ′,W ), we can find a collection of compressing

disks D′ in E(T,W ) which intersect Sc(T ) only in essential arcs and are dual to

Sc(T \ T ′). Just as in the proof of Proposition 3.6, we can form a disjoint collection

E of compressing disks in Xi (consisting of disks from D defined above, possibly with

multiple parallel copies of some) and isotope them slightly to ensure that h(D′ ∩

Sc(T ′)) = E ∩ h(Sc(T ′)). The image in H ′′ of D′ ∪ E after gluing is then the dual

disk collection D′′ promised above.

It follows that both components of E(F ′′,M ′) are collections of handlebodies,

and it is easy to see that F ′′ is strongly separating, so just as in the proof of Proposition

3.6 we deduce that F ′′ is connected and thus in fact a Heegaard surface for M ′ as

required.

All that is left is to show that the core of each Vi (i.e. the component L′i of

L′) can be isotoped to a primitive curve on F ′′, thus proving F ′′ to be a Heegaard

splitting of E(L′,M ′). Using the same notation as in the first part of the proof,

note that the core S1 × {0} of Vi can be isotoped onto one of the punctured annuli
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(S1 × ωj) \ N(B). Notice now that ({1} × D2) ∩ Xi is a collection of disks, one of

them containing the point in the center of D2, call that one Dc. If Dc ∩ ∂D2 = ∅,

then Dc is already dual to L′i, and we are done. If not then we can extend Dc to a

compressing disk for F ′′ using the same extension technique as earlier in this proof

and in the proof of Proposition 3.6, in fact the disk we want is the image of Dc ∪D′′

after possibly isotoping Dc slightly.

To compute the genus of F ′′, note first that

χ(F ′′) = χ(F )− |F ∩ L|+ χ(F ′1 ∪ · · · ∪ F ′k)

However, since χ(F ′1 ∪ · · · ∪ F ′k) = −2m, |F ∩L| = 2n, and g(F ′′) = 1− χ(F ′′)
2

,

we obtain

g(F ′′) = 1 + n+m− χ(F )
2

We remark that, in the case that (W,T ) is a type (n, n) tangle, the bound

achieved here reduces to the same one found in Proposition 3.7, although here we have

to content ourselves with a bound on g(E(L)) instead of a bound on t(L), because we

no longer have control over which side of our Heegaard surface the various components

of L will fall into.

The proof of Proposition 4.2 has one more interesting upshot, however. In the

case that (W,T ) is a type (n, n) tangle, for each 1 ≤ i ≤ k we in fact use one more

tube to construct F ′i than we need to in order to ensure that the eventual surface F ′′

is a Heegaard surface for M ′ (in the notation of that proof, a surface with one fewer
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tube still suffices to make the annuli A1 ∪ A3 ∪ · · · ∪ A2m−1 primitive). The extra

tubes merely serve to ensure that F ′′ is a Heegaard surface for E(L′,M ′). Thus we

deduce the following:

Proposition 4.3. If L ⊂ M is a k-component link that admits a free decomposing

surface F , and M ′ is any manifold obtained via integral Dehn filling of each component

of L, then g(M ′) ≤ 1 + |L ∩ F | − k − χ(F )
2

.

Definition 4.4. A free decomposing surface F for a link L is called Heegaard optimal

if g(E(L)) = 1 + |L ∩ F | − χ(F )
2

This definition coincides with Definition 3.8 in the case that L is a knot.

Moreover, all of the links we constructed in Chapter 3 were Heegaard optimal, and

Nogueira has proved that the knots of Conjecture 3.12 are Heegaard optimal in the

simplest case. Using Proposition 4.3 we may conclude the following about these knots

and links.

Proposition 4.5. If L is a k component, Heegaard optimal link, then for every

manifold M ′ obtained by integral surgery on L, g(E(L)) ≥ g(M ′) + k.

4.2 Conclusions

Several remarks are in order to put the work done here into perspective. To

begin with, all known examples of knots and links which experience degneration are

constructed more or less as in Chapters 2 or 3.

As we saw in Chapter 2, degeneration can occur via weakly reducible split-

tings of E(K1#K2). This construction does not appear to have any connections to
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surgery. Moreover, with one exception, it does not achieve very good degeneration

when compared with the method of Chapter 3.

The exception involves Hopf links. Indeed, if K is a tunnel number n knot

with a minimal genus splitting F that admits a core of n components lying on the

same side of F as K, then just as in Proposition 2.1 we may take the connect sum of

K with n Hopf links L1, · · · , Ln along that core, and since the exterior of a Hopf link

admits a genus one Heegaard surface parallel to both of its boundary components,

amalgamation just yields back the surface F , and every component of the resulting

link K#L1# · · ·#Ln will lie on the same side of F . Thus t(K#L1# · · ·#Ln) =

t(K) = n, and since t(Li) = 1 for each 1 ≤ i ≤ n, we obtain a degeneration ratio of

1/2.

Thus it appears that the construction of Chapter 2 dwarfs that of Chapter 3

in terms of creating degeneration in links. However it is not difficult to see that, for

the hopf link L, t(L)+1 > g(E(L)), whereas typicaly t(L)+1 = g(E(L)), and so this

degeneration phenomenon is actually just due to the pathological behavior of tunnel

number with respect to Heegaard genus. If one switches over to the 3-dimensionally

more natural link invariants g(E(L)) or g(E(L))−1, this degeneration becomes much

less impressive or disappears entirely.

On the other hand the construction in Chapter 3 is very general. In addition to

recovering the subbaditive knot pairs found in Chapter 2, Morimoto’s original class

of examples in [23] can easily be recovered and expanded using Proposition 3.6 as

follows.
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Proposition 4.6. [20] Let K ⊂ S3 be a knot which admitting a free decomposition

(S, (B1, T1), (B2, T2)), where S is a sphere, (B1, T1) is type (1, 1), and (B2, T2) is

nontrivial. Then t(K) = 2 and, for any two bridge knot K ′, t(K#K ′) = 2.

Proof. The fact that t(K) = 2 follows from Proposition 4.2 and a result in Scharle-

mann’s paper [30] that tunnel number one knots are doubly prime, since the existence

of S implies that K is not doubly prime. The fact that t(K#K ′) ≤ 2 then follows

from Proposition 3.6, and equality follows from the fact that tunnel number one knots

are prime [25].

Indeed, the construction of Chapter 3 appears to be somewhat generic, as

Proposition 4.8 below will attest to. To prove it, we need some outside help from

Schultens.

Proposition 4.7. [35] Let F be an incompressible surface properly embedded in a

compression body H with ∂F ⊂ ∂+H. Then every component of E(F ) is a compres-

sion body.

An annulus A properly embedded in a compression body H is said to be

spanning if one component of ∂A lies on ∂+H and the other on ∂−H.

Proposition 4.8. Let K1 ⊂M1, K2 ⊂M2 be a pair of knots in the closed 3-manifolds

M1,M2 which contain no nonseparating spheres, and suppose F is a Heegaard sur-

face for E(K1#K2) ⊂ M1#M2 which intersects the decomposing annulus A only in

curves that are essential in A. Then every component of E(A ∪ F,E(K1#K2)) is a

handlebody.
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Proof. Let E(F,E(K1#K2)) = H1 ∪H2, where H1 is the compression body and H2

the handlebody. Then since neither of M1 or M2 contains a nonseparating sphere,

the collection of annuli A ∩Hi is incompressible in Hi for i = 1, 2. Moreover, every

component of E(A ∩ H2, H2) is a compression body by Proposition 4.7 and, having

connected boundary, is in fact a handlebody. On the other hand there are two span-

ning annuli A1, A2 in A∩H1, so we can only deduce that E((A∩H1) \ (A1∪A2), H1)

consists of compression bodies. All of them will have connected boundary except for

one special component V which has ∂−H1 = ∂N(K1#K2) in its boundary, and thus

all except V are handlebodies. Thus we will be done with our proof once we show

that the components of E(A1 ∪ A2, V ) are handlebodies.

Since E((A1 ∪ A2) ∩ ∂−H1, ∂−H1) consists of exactly two annuli components

A′1 and A′2, and since A ∩ H1 separates H1, it must be the case that E(A1 ∪ A2, V )

consists of exactly two components V1 and V2, which we label so that A′1 ⊂ ∂V1 and

A′2 ⊂ ∂V2.

Let T × I be small collar neighborhood of ∂−H1 with T × {0} = ∂−H1. Then

T×{1}\(A1∪A2) also consists of two (open) annuli components; label their respective

closures T1, T2 in such a way that Ti ∩ V3−i = ∅.

Let T ′i = Ti ∪ ((A1 ∪ A2) \ T × I). Then E(T ′i , V ) consists of two compo-

nents, one of them homeomorphic to Vi. Moroever, T ′i is an incompressible annulus

properly embedded in ∂+V (as above its compressibility would imply the existence

of a non-separating sphere in Mi, contrary to our assumption), thus Proposition 4.7

tells us that each complementary component is a compression body. Thus Vi, having
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connected boundary, is in fact a handlebody for i = 1, 2. The proof is finished.

What this proposition tells us is that, after identifying the two components of

E(A,E(K1#K2)) with E(K1) and E(K2) and attaching meridian disks of N(Ki) to

Fi = F ∩ E(Ki) ⊂ Mi along its boundary, we get a free decomposing surface for Ki,

i = 1, 2. Thus, for knots pairs K1, K2 which have minimal genus Heegaard splittings

that intersect the decomposing annulus essentially, something like the construction

of Chapter 3 must occur for there to be degeneration. Based on this we conjecture

the following.

Conjecture 4.9. If K1#K2 admits a minimal genus Heegaard splitting which inter-

sects the decomposing annulus only in essential circles, t(K1#K2) ≥ max(t(K1), t(K2)).

In particular, when E(K1#K2) admits a strongly irreducible splitting the Hee-

gaard surface can always be made to intersect the decomposing annulus essentially

(assuming neither of the manifolds in which the Ki are embedded contains non-

separating spheres, for in that case the decomposing annulus may not be incompress-

ible).

Throughout this thesis we have taken a geometric approach in order to bring to

light the connection between free decompositions, tunnel number, and Dehn surgery

at the end. However it is intriguing that many of the results in Chapter 3 could

have been obtained instead by group theoretic means alone. The rank of a knot or
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link L, denoted rk(L) is the minimal number of generators required to generate its

fundamental group. We allow ourselves to speculate wildly here without giving more

precise reasons:

Conjecture 4.10. For optimal links L, g(E(L)) > rk(L)
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[34] H. Schubert, Über eine numerische Knoteninvariante, Math. Z. 61 (1954), 245–
288.

[35] J. Schultens, Additivity of tunnel number for small knots, Comment. Math. Helv.
75 (2000), no. 3, 353–367

[36] O. Ja. Viro, Linkings, two-sheeted brached coverings, and braids, Mat. Sb. 87
(1972), 216–228

[37] F. Waldhausen, Heegaard-Zerlungen der 3-sphäre, Topology 7 (1968), 195–203
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