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Figure 6.10: Fiber direction (N1) on Gauss points (red dots), CASE III. Red line:

identified fiber direction; Blue line: assumed fiber direction.
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Figure 6.11: Fiber direction (N1) on Gauss points (red dots), CASE V. Red line:

identified fiber direction; Blue line: assumed fiber direction.
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Figure 6.12: Percentage difference in nodal displacement, CASE III.

Figure 6.13: Percentage difference in nodal displacement, CASE V.
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Figure 6.14: Method to evaluate the stability of PWIM.

configurations contain geometric errors resulting from both the image and segmenta-

tion/reconstruction. To further evaluate the method, it is imperative to investigate

the robustness of the method under noise. In this section, numerical noise will be

added to the nodal positions prior to the inverse analysis.

6.3.1 Method

Random perturbations to the nodal positions in deformed configurations will

be added to simulate the errors generated during medical image reconstruction. The

perturbed configurations are used in the inverse phase of analysis (both stress/strain

analysis and regression). The accuracy of identified parameters are examined under

different noise levels.
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The procedure is showed in Figure 6.14. Random vectors ϑ = (δx, δy, δz) will

be generate through MATLAB, and the norm of vectors, ∆ (defined as ∆ = ‖ϑ‖)

will be scaled down to a small magnitude (e.g. 1% or 2%). On each deformed config-

uration, the nodal displacements u are perturbed to u′ = u +ϑ · ‖u‖, The perturbed

displacements are used in the inverse stress analysis and strain computation. Material

parameters are identified from these perturbed stress and strain data.

6.3.2 Identification results

We use the CASE II, discussed in last section, as a test case to investigate

the capability of shell PWIM when the noises exist in displacement data. We keep

all the information (e.g. assumed material heterogeneity, boundary condition, fiber

orientation and deformed states number) the same as we used in Chapter §6.1.2,

except that the geometry of each deformed configuration is polluted with noise.

Figure 6.15 and Figure 6.16 show the identification result when ∆ is 1% and

2%, respectively. From Figure 6.15 and Figure 6.16, we can find that the mate-

rial heterogeneity are recovered in most regions. With 1% perturbation error, the

mean identification error is 6.38%, 4.37%, 7.15% for E1, E2 and a, respectively; the

maximum identification error is less than 15.27%, 17.9%, 15.66% for E1, E2 and a, re-

spectively. In Figure 6.16, when the perturbation error is 2%, the mean identification

error is 13.9%, 14.1%, 8.6% for E1, E2 and a, respectively; the maximum identification

error is less than 37.8%, 71%, 66.1% for E1, E2 and a, respectively. It is evident the

higher the noise level, the lower the accuracy.
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(a) E1(N/mm), assumed (b) E1(N/mm), identified (c) E1, error (%)

(d) E2(N/mm), assumed (e) E2(N/mm), identified (f) E2, error (%)

(g) a, identified (h) a, error (%)

Figure 6.15: Identification result for CASE II under 1% of perturbation.
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(a) E1(N/mm), assumed (b) E1(N/mm), identified (c) E1, error (%)

(d) E2(N/mm), assumed (e) E2(N/mm), identified (f) E2, error (%)

(g) a, identified (h) a, error (%)

Figure 6.16: Identification result for CASE II under 2% of perturbation.



125

Figure 6.17: Percentage difference in displacement under 1% perturbation.

6.3.3 Predictability of the identified parameters

Since there is a moderately large error in the identified parameters, it is of

interest to investigate how the predictability of the parameters is affected. We con-

duct the forward analysis at 120 mm Hg pressure (not used in regression) with both

identified and assumed material parameters. Figure 6.17 and Figure 6.18 show the

percentage displacement differences when the perturbation errors are 1% and 2%,

respectively. In Figure 6.17, the displacement differences are less than 1% in most

regions; the maximum and mean displacement errors are 2.3% and 0.62%, respec-

tively. Clearly, the displacement results are accurate. For 2% perturbation, shown in

Figure 6.18, in most regions, the displacement differences are significantly elevated.

The maximum and mean displacement errors are 11.29% and 2.09%, respectively.

Although the mean error remains reasonably small, the maximum error of more than

10% (in displacement) clearly indicates a significant loss of accuracy in the identifi-

cation results.
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Figure 6.18: Percentage difference in displacement under 2% perturbation.

(a) Strain error (%) (b) Stress error (%)

Figure 6.19: Errors in strain and stress data.

To further understand the identification accuracy, for 1% perturbation exam-

ple, the strain and stress error caused by the noise in displacement data are shown

in Figure 6.19. In strain data, the maximum error and mean error is 5.1% and 1.3%.

respectively. In stress data, the maximum error and mean error is 18.1% and 2.1%.

respectively.
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6.4 Discussion

In this chapter, we use five more representative realistic cerebral aneurysms

to study the applicability of PWIM in cerebral aneurysms of realistic geometries.

By modeling aneurysms as thin shell structures, the PWIM can now be applied to

realistic cerebral aneurysms, without the limitation of convex geometry. For all five

cases, the shell PWIM provides good identification results. The four types of material

heterogeneities we assumed are all successfully recovered.

Although, there have been researchers studied the characterization of the het-

erogenous anisotropic material in the cerebral aneurysm geometries (Kroon et al.

[41]). Their method is used on an idelaize sphere, not realistic cerebral aneusysm.

Balocco et al. [4] present the identification of heterogenous material properties in re-

alistic cerebral aneurysm. Their studies still focus on the isotropic material, and the

material heterogeneity only contains two sets of material parameters. This work is

arguably the most complicated of studies of this type. We considered heterogeneous

distribution of anisotropic material properties in realistic cerebral aneurysm. The

strain/pressure range used in this work is close to physiological values. In addition,

there’s only 11 states in the regression.

We investigate the predictability of shell PWIM when the fiber direction is

unknown. By introducing the fiber direction into constitutive regression, the errors

of identification result are elevated. However, even at the elevated error the identi-

fied parameters can still predict the forward motion with a high accuracy (less than

1.8%). This indicates the fiber direction can be identified using shell PWIM and
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the identification results have the robustness to provide the stable forward analysis

results.

Numerical noise is shown to have a significant influence on the identification

method. From the identification results under 1% perturbation and 2% perturbation,

we can find that the higher the noise level, the lower the accuracy. Nevertheless, the

identified parameters at least at 1% perturbation can still yield a reasonable forward

analysis results. This is understandable, the displacement calculated through all the

material parameters; and different combinations of material parameters can provide

the similar stress response, leading to similar displacement results.

Some limitations of the study remain. The first limitation in this study is the

assumption on thickness. The uniform thickness we use in this work is an assumption

base on the reported values. Although the wall stress resultant is primarily deter-

mined by the deformed configuration and corresponding pressure. The wall thickness

still affect the computation of the stress couple. If the bending factors in a shell

structure are too large, the PWIM may can not be applied. So far, there is no avail-

able measurement which can provide the accurate information of the wall thickness.

Hopefully with the improvement of imaging technology, we can obtain the real wall

thickness and accurately assess the bending stress. Another limitation of this work is

the assumption of fiber direction. The material orthotropic and first principal fiber

direction are all assumed base on the report [40, 42]. The actual fiber orientation

could be more complicated. It should be worth to mention that the assumption of

fiber direction does not affect the method. In this work, we have demonstrated that
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the identification accuracy will decrease if the fiber direction is assumed as unknown

parameter in the constitutive regression. If the fiber structure features can be mea-

sured, e.g. [22, 60], the accuracy of the identification results will be improved.

The limitation of this method is that the shell PWIM can only be applied to

shin shell structures. So far, we use the broadly cases to evaluate the “thinness”, yet

we didn’t provide a criteria for “thinness”.

The ultimate extension of this work is to apply the shell PWIM in the living

tissue (e.g. cerebral aneurysms described in this work). The deformed configuration

usually will be extracted from medical images during the wall motion. In order to

capture the accurate inflated configurations, the advanced medical resolution and

registration strategy are higher required.
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CHAPTER 7
CONCLUSIONS

7.1 Summary

This thesis is motivated by (1) the demand of identifying the material proper-

ties in realistic soft-tissues and (2) the need to extend PWIM to realistic geometries.

The shell PWIM developed in this work is shown to be a viable method for at least

a family of thin membranes structures, the ones that are sac-like but not neces-

sary convex. We investigate the applicability of shell PWIM with different types of

cerebral aneurysms and showed that the method can effectively back out nonlinear

heterogeneous properties. The major contributions of this work are as follows.

• Investigated the stress insensitivity to material models in thin shell structures.

We have shown that the inverse stress in thin shell structure is, to a large

extent, insensitive to material properties (constitutive model and material pa-

rameters). This is important for our development, as static determinacy is the

premise of PWIM. Surface topologies (open versus closed, number of orifices)

and wall thickness have a strong influence on the stress property. It is found

that the cerebral aneurysms, which are of saccular geometries, are more suitable

to PWIM.

• Developed the finite element formulation of forward and inverse shell methods

for 8-fiber Holzpfel material model which is specifically proposed for cerebral

aneurysms tissues. This material model is used in aneurysms studies.
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• Extended the pointwise identification method to thin shell structures. The shell

PWIM resolves the limitation on convex geometry of the original PWIM. The

shell PWIM can be utilized to identify the anisotropic material properties in a

much broader family of thin soft tissue structures (in this work, the major ap-

plications are on cerebral aneurysms). Because of the constitutive regression is

conducted pointwisely, the shell PWIM can identify the arbitrary heterogeneous

property distributions. In this work, we utilize four types of material hetero-

geneities, and all of them are accurately recovered. The identification can also

include fiber directions and thus, anisotropic properties can be handled without

modification to the method.

• Evaluated the applicability of the shell PWIM in six cerebral aneurysm of differ-

ent surface geometries. The identification errors for the material parameters of

all cases stay in an acceptable range (the means of identification errors are less

than 6%). The selected aneurysms models all have saddle or concave surface

features, and some with relative large daughter aneurysms, forming a good rep-

resentative group for non-convex aneurysms. This population study indicates

that the method can be applied to cerebral aneurysms (assuming, of course, the

availability of segmented dynamic image data).

• Investigated numerically the influence of noise. Two ways are used to evaluate

the accuracy of identification. One is the identification error; the other one

is the predictability of the identified parameters. Although the identification

results are sensitive to the noise, the predictability of the model remains to be
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resilient.

7.2 Outlook

Although the shell PWIM developed in this work presents significant improve-

ment in characterizing the material properties in the living organs, there are a number

of limitations that call for future improvement and development.

• The requirement for high resolution dynamic image data. The method requires

high resolution images which could provide accurate information of the dy-

namic geometry. In fact, for cerebral aneurysms, the required precision exceeds

the resolution of current image modalities. There are active image registration

studies in tracking the deformation for e.g. lung and heart from medical images

[94, 95, 93, 55, 1]. However, the deformation tracking in cerebral aneurysms still

faces challenges due to the aneurysms size and the range of deformation. Also,

the method by design can predict only lumped stiffness parameters (elasticity

parameters times the wall thickness). If the 3D properties are to be determined,

the wall thickness is required. Current CT and MRI imaging can not accurately

resolve the wall thickness for cerebral aneurysms. Nevertheless, if the wall thick-

ness can be measured from point to point, the intrinsic 3-D stiffness parameters

can be easily backed out.

• Another challenge relates to the anisotropic material information in cerebral

aneurysm, e.g. the fibers’ orientations and fibers’ stiffness. In this work, type

of the symmetry is assumed, and therefore we need only to characterize the
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symmetry axis which requires only one parameter. In reality, the symmetry

type needs to the identified from the stress-strain characteristics. Due to the

local nature of the regression problem, if we can obtain symmetry information

(e.g., fiber orientation) through other means, we can easily incorporate the

information into the regression problem to improve the method.

• The last but not the least we need to improve the optimization algorithm. The

identification results are influenced by the objective function, initial value and

upper/lower boundary. We believe that there are rooms we can work to improve

the identification accuracy. For example, we can use more powerful optimization

program, or do more improvements on SNOPT to refine the formulation, such

as adjusting the objective function, etc. It needs lots practices to set up and

run the regression problem.
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