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Figure 1.3: Macroeconomic Conditions and the Effect of Voluntary Filing for Chapter
11 on Firm Value for Different Grace Periods (d).

The four subplots correspond to the case in which Chapter 11 and Chapter 7 bound-
aries are endogenously determined to maximize the firm’s equity value. The values for
the Y-axis in each panel are normalized by the firm values from the benchmark case,
which is different in each panel. Panel A plots the relative firm values from our model
(voluntary filing for Chapter 11) relative to the Leland (1994) model as a benchmark.
Panel B plots the firm values in a model that consider Chapter 11 voluntary filing
without macroeconomic consideration ( the BCS (2007) model) relative to the same
benchmark as in Panel A. Panel C plots the relative firm values from our model (with
voluntary filing for Chapter 11) when the benchmark is the firm-value-maximization
case with Chapter 11 and two states of the economy. Panel D plots the relative firm
values from our model (with voluntary filing for Chapter 11) when the benchmark is
the case without Chapter 11 and with two states of the economy (similar to the static
cases in BKS (2010) and Chen (2010)). The other parameter values are provided in
Table 1.
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Figure 1.4: Constraint on Debt Value, Distress Costs in Recession (w;), Recovery at
Liquidation in Recession (o) and Effect of Voluntary Filing for Chapter 11 on Firm
Value.

The values for Y-axis in each subplot are normalized by (or relative to) the corre-
sponding values from the firm-value-maximization case with Chapter 11. Panel A
plots the effect of voluntary filing for Chapter 11 on the firm value with the state of
the economy being fixed. The dashed curve illustrates the case when we constrain
the debt value at emergence time to be at least equal to the firm’s liquidation value.
The solid curve illustrates the case when we do not constrain that. Panel B plots the
effect of the distress cost in recession on the relative firm values for both states of the
economy. Panel C plots the effect of the recovery at liquidation in recession on the
relative firm values for both states of the economy. The other parameter values are
provided in Table 1.
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Figure 1.5: Optimal Capital Structure with and without the Conflict of Interests.
Panel A illustrates the firm’s optimal debt levels without the conflict of interests
due to the voluntary filing of Chapter 11. D7, corresponds to the optimal debt
level with liquidation cost only. D; . corresponds to the optimal debt level with
distress and liquidation costs. Panel B illustrates the firm’s optimal debt levels for
three cases: the two cases without the conflict of interests as in Panel A and the

case with the conflict of interests (D**).
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Figure 1.6: Illustration of the Debt-equity Swap Case.

Panel A shows the difference in firm value between the firm-value-maximization case
with Chapter 11 and the debt-equity swap case for different shareholders’ bargaining
power (¢). The Y-axis is the ratio of the firm value for the debt-equity swap case
over the firm value for the firm-value-maximization case with Chapter 11. Panel B
shows the effect of macroeconomic conditions and the shareholders’ bargaining power
on the yield spread for the debt-equity swap case. The Y-axis is the ratio of the yield
spread for the case with business cycles over the yield spread for the case without
business cycles (or when the state of the economy is fixed). Panel C shows the effect
of EIS on the yield spreads for the debt-equity swap case with business cycles. The
yield spreads in the Y-axis are normalized by (or relative to) the yield spread when
EIS is equal to 1.5. The other parameter values are provided in Table 1.
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CHAPTER 2
TIME-VARYING ASSET VOLATILITY AND THE CREDIT SPREAD
PUZZLE

2.1 Introduction

Structural credit risk models have met with significant resistance in academic
research. First, attempts to empirically implement models on individual corporate
bond prices have not been successful.! Second, subsequent efforts to calibrate models
to observable moments including historical default rates uncovered what has become
known as the credit spread puzzle - the models are unable to match average credit
spreads levels?. Finally, econometric specification tests further document the difficul-
ties that existing models encounter in explaining the dynamics of credit spreads and
equity volatilities®

In this paper, we develop a structural model with time-varying asset volatility
in order to address both the levels and dynamics of credit spreads. Our first con-
tribution is to show that the presence of a variance risk premium resolves the credit
spread puzzle in terms of levels. Second, we show that the modelling of stochastic
asset volatility allows the model to explain time series of equity volatilities while do-
ing a better job at fitting time series of credit spreads at the individual firm level.

Finally, we provide estimates of the size of variance risk premia required to explain

1See Jones Mason and Rosenfeld (1985) and Eom Helwege and Huang (2003).
2See Huang and Huang (2003)

3See Huang and Zhou (2008).
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credit spread levels and benchmark these to existing empirical evidence.

The credit spread puzzle is defined as the inability of structural models, when
calibrated to default probabilities, loss rates and Sharpe ratios, to predict spread
levels across rating categories consistent with historical market spreads. Huang and
Huang (2003), hereafter abbreviated HH, perform this calibration analysis for a broad
and representative selection of models and find that, as an example, the latter never
predict spreads in excess of a third of the observed levels for 4- and 10-year debt
issued by A-rated firms. The performance is typically worse for more highly rated
firms and somewhat better for low grade firms. 4

Huang and Zhou (2008) test a broad set of structural models by designing a
GMM-based specification test that confronts the models with panels of CDS term
structures and equity volatilities. In addition to ranking the models by rejection
frequency, their paper provides insights into the specific shortcomings of the models.
One important weakness that emerges from their study is the models’ inability to fit
the dynamics of CDS prices and equity volatilities. In particular, the models find it
difficult to generate time variation in the equity volatility of the same magnitude as is
actually observed, suggesting that an extension to allow for stochastic asset volatility

is desirable.

In addition to these two important findings, recent empirical work on default

4Chen Collin-Dufresne and Goldstein (2009) argue that if one accounts for time variation
in Sharpe ratios over the business cycle, then spreads are more closely aligned with histor-
ical averages. Other papers have followed and reinforced the point that macroeconomic
conditions can help explain spread levels.
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swap spreads provides evidence suggestive of an important role for stochastic and
priced asset volatility in credit risk modelling. Zhang Zhou and Zhu (2005) perform
an empirical study of the influence of volatility and jumps on default swap prices.
Although we abstract from jumps in this paper, their results point to the importance
of modelling time-varying volatility.® Further evidence is provided in Wang Zhou and
Zhou (2010) who show that in addition to volatility being important for the price of
default protection, the variance risk premium is a key determinant of firm-level credit
spreads. Both these studies provide evidence indicating that a structural credit model
with time-varying and priced asset risk may be better poised to explain spreads than
its constant volatility predecessors.

In addition to this recent work on credit markets, there is a significant body
of literature documenting time variation in equity volatilities. Given this evidence,
financial leverage would have to be the sole source of variation in stock return volatil-
ity in order for asset volatility to be constant, as it is assumed to be in the majority of
structural credit risk models. In fact, recent empirical work by Choi and Richardsson
(2009) clearly documents time variability in asset risk as well as a degree of asym-
metry at the asset level, which complements the leverage effect generated even in a
constant volatility model — equity volatility may increase when stock prices decline

mechanically because leverage increases as asset values drop or because asset volatility

>The authors include both intra-day realized volatility and historical volatility as mea-
sures of short term and long-term volatility, consistent with the notion that equity volatility
varies both because of changes in leverage and because of changes in asset volatility. Their
results suggest that disentangling the two sources of variation is important for explaining
default swap prices.
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increases as asset values drop, or both.

Overall, stochastic asset volatility would appear to be a compelling extension
to a class of models that has been around for more than thirty-five years. However,
likely for technical reasons, it is one that has not garnered much attention.® We
present, in closed form, solutions to debt and equity prices in stochastic asset volatility
model framework where default is triggered by a default boundary, as in Black & Cox
(1976), Longstaff & Schwartz (1995) and Collin-Dufresne Goldstein (2001). In doing
so, we are, to the best of our knowledge, the first to solve the first passage time
problem of stochastic volatility dynamics to a fixed boundary.

We first consider the comparative statics of our benchmark model, which can
be thought of as an extension of the Black & Cox (1976) model. This permits us to
study the channels through which stochastic asset volatility influences bond yields.
The three important determinants of spreads are the volatility of volatility itself, the
asymmetry of volatility, and the presence of a volatility risk premium. That the
volatility itself is made an idiosyncratic risk source, uncorrelated with the level of a
firm’s asset value, does impact credit spreads in a model with intermediate default.
While it does so in a modest way for longer-term credit spreads, it stands to make
a significant impact on spreads for up to ten years to maturity. The same is true

for the correlation between shocks to asset values and variances. A modest “leverage

SHuang (2005) describes the analytics of such a model, which in its simples form can be
thought of as a Heston (1993) model augmented with jumps. In contrast to our model, this
framework does not allow for a default threshold permitting default at any time; default
occurs only at the maturity of the (zero-coupon) debt.
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effect” at the unlevered firm value level leads to higher spreads with a pattern similar
to that of the volatility of asset risk: a non-trivial increase in long-term spreads, but
an important increase in relative spreads for maturities up to ten years. Finally, the
dominant effect stems from the market price of asset volatility risk, which can increase
spreads by an order of magnitude.

Of course, comparative statics are limited in that they do not reflect the con-
straints faced when taking a model to the data. To address this, we rely on the
Huang and Huang (2003) calibration setting as a benchmark. This involves requiring
the model to simultaneously fit four moment conditions: the historical probability of
default, recovery rates, equity risk premia and leverage. We first confirm that, in the
absence of stochastic asset risk, our model replicates the credit spread puzzle - that
is, it is unable to generate credit spreads in line with historical averages. However,
we find that for reasonable parameter values governing volatility dynamics and risk
premia, our model resolves or significantly mitigates the underestimation that forms
the basis for the credit spread puzzle. In other words, our framework is not subject
to an inherent inability to explain historical credit spread levels while matched to the
moments used in HH, where the puzzle was first documented.

One potential concern with this result is that several parameters remain free
in our exercise.” To address this, we conduct an analysis to identify which of the three
channels have the ability to significantly impact credit spreads. We find that the only

means by which a stochastic asset risk model can influence spreads, given the four

"Note that this issue is present also in the Huang and Huang (2003) study.
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chosen moments, is through the volatility risk premium. The other two channels -
volatility of asset risk and an asset level “leverage effect” - are counteracted by the
matching of empirical moments. Hence, it is the size of the volatility risk premium
parameter that determines how reasonable our spread estimates are. Since we do
not have rating-level data on the volatility risk parameters to use as inputs, we ask
instead what level of volatility risk-adjustment is necessary, within each rating group,
to match not only the previous four moments, but also the historical spread level. We
express our risk adjustment as a ratio that can intuitively be thought of as analogous
to the ratio between option-implied and historical equity volatilities. We find that
risk-adjusted 3-month volatilities need to be between 20% and 60% higher than their
physical measure counterparts to match credit spreads and the other four moments.

In addition, we find an interesting pattern across credit rating groups. Greater
proportional risk premia are necessary for higher grade firms. This is consistent with
recent findings by Coval Jurek and Stafford (2008) in structured credit markets. They
find that although default risk is less important in an absolute sense for senior CDO
tranches, systematic risk is extremely important as a proportion of total spreads for
these tranches.

Like Huang and Huang (2003) , we find that the implied levels of asset volatil-
ities are higher than historical estimates in the literature and are, in fact, more in
line with levered equity volatility levels. To address this, we match our model to
six moments: the four Huang and Huang moments, the spread level and the equity

volatility. We find that our model with priced systematic volatility risk is able to
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match these moments quite easily. Although this model implies higher levels of lung
run means for the risk-adjusted variances, the quantitative impact on risk-adjustment
for the 3 month horizon is limited.

Since the premia may be biased by the presence of non-default components, we
carry out one final calibration exercise. It has long been recognized that bond market
illiquidity may be an important determinant of spreads. Given the magnitude of
the credit spread puzzle documented in previous work, it is unlikely that illiquidity
by itself would resolve the puzzle. However, it may well be the case that placing
some of the burden of explaining total spread levels on liquidity will generate more
accurate implied volatility risk premium levels. When using the level of a AAA
short term spread index as a proxy for the level of illiquidity compensation, we find
that required risk-adjustments as measured by the ratios of 3 month risk-adjusted to
physical volatilities are reduced, in particular for higher grade firms, to a maximum
of about 40%.

We then refocus our analysis on the ability of our model to fit the time-series
of default swap spreads. We estimate our model firm by firm using GMM, relying on
moment conditions matching default swap spreads across five maturities and realized
equity volatility. For our sample of 49 firms, we document risk-adjusted mean rever-
sion, a correlation between asset value and volatility shocks of -0.58, and asset risk
volatility of 37% on average. The fit for CDS spreads is improved significantly as com-
pared the constant volatility model. In addition, the average pricing errors are overall

smaller than in four of the five models studied in Huang and Zhou (2008). While the
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constant volatility model generates a spread underestimation of 65%, stochastic asset
risk reduces this to an underestimation of 10%. Absolute percentage pricing errors
are smaller for 34 out of 35 rating / model combinations which they study and are
approximately halved in comparison. The model with stochastic volatility could be
rejected only for 3 firms out of 49 whereas for a constrained constant volatility version,
48 out of 49 firms lead to a rejection of the model.

This paper is organized as follows: Section 2 describes the model and explains
how we derive closed-form solutions for a stochastic volatility credit risk model with
fixed default boundary. Section 3 covers the comparative statics, while Section 4
discusses the various calibration exercises. Section 5 reports on our time-series spec-

ification tests, and finally Section 6 concludes.

2.2 The Model

We model the firm’s unlevered asset value X as the primitive variable. Asset

value dynamics can be described by the following two SDEs

dX,

- = (=)t + v/ Vidw, (2.1)
t
dV; = k(0 — V,)dt + o/ VidWs, (2.2)

where 0 is the firm’s payout ratio and E(dW1dWs) = pdt. Under the risk-neutral

measure ), X; follows

dx
Tt = (r — 8)dt + \/V,dWP, (2.3)

t

AV, = k*(0* — V;)dt + o/ V,dWE, (2.4)
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with k* = k + Ay and 6* = 0k /k*, where \y is the volatility risk premium.® As asset
variance V; follows Cox-Ingersoll-Ross (CIR) dynamics, the expected asset variance
at t under the objective probability measure is, conditional on an initial variance Vj,
given by

E(Vy) =Voe ™ +0(1—e ). (2.5)

Under the risk-neutral probability measure, it can be written

EQ(V;) = Voe "+ 0 (1 —e ") (2.6)

In what follows, we provide the solutions for the firm’s equity value and equity
volatility. To solve for the firm’s equity value, we assume that the firm issues consol
bonds.

Then the equity value can be written as the difference between the levered
firm value (F) and the debt value (D), i.e., E(X) = F(X)—D(X). The firm’s levered

asset value is given by

nc

F(X) :X+7(1—pD) — aXppp, (2.7)

where X, n, ¢, a, Xp and pp denote the initial unlevered asset value, the tax rate, the
coupon rate, the liquidation cost, the default boundary and the present value of $1 at
default respectively. In equation (D.2.4), the first term is the unlevered asset value,

the second term is the tax benefit and the third term is the bankruptcy cost. The

8Note we later assume that the market price of volatility risk, A\y/V, is proportional to
the volatility of asset variance, \yy = ko, where k is a constant.
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debt value is the present value of the coupon payments before default and recovered

firm value at default, which is given by
c c
D(X) =%+ (L= )Xo~ | o (23)
Thus, the equity value is given by

B0 =x - L T xp) (29)

Applying Ito’s lemma, we obtain the stochastic process for the equity value as

follows:

dEt Xt OE; 1 OF;
= —/ X dW, ———o/ V. dW- 2.10
Et = UE: T Et DX, 1t + E,V, o t 2t ( )

where pp, is the instantaneous equity return. Given the specification in equation

(2.10), we obtain the model-implied equity volatility as

1 (2.11)

Opt =

X OF, o OB\ | Xi0E; OF,
7, 0X, Eov,) TR X, o,

As is clear from equation (2.9), we can solve for the firm’s equity value once

pp is found. Under the risk-neutral measure @),
p=E®[e], (2.12)

with 7 = inf{s > 0, Xy < Xp}. To solve for pp, we need to compute the probability
density function of the stopping time 7 under measure ). We solve for the default
probability by applying Fortet’s lemma.

Recently, Longstaff and Schwartz (1995) introduce this approach into the fi-

nance literature to solve for the default probability in a stochastic interest rate setting.
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Collin-Dufresne and Goldstein (2001) extend Fortet’s equation to the case where the
state variables (leverage ratio and interest rate) follow a general two-dimensional
Gaussian Markov process. In both the Longstaff and Schwartz (1995) and Collin-
Dufresne and Goldstein (2001), the state variables are assumed not only to be Markov,
but also Gaussian. However this is not the case given our volatility dynamics. In or-
der to apply Fortet’s equation to our framework, we first have to solve for the joint
probability density of the asset value and asset variance. Next we briefly outline the
steps involved.

First, define z; = In (X;/Xp), a distance to default and p(z, V4, t|z0, V0, 0) the
transition density function conditional on log asset value being zy and asset variance
being V; at the outset. Further, denote H(z,,V,, 7|20, Vo,0) the probability density
that the first passage time of the log asset value to zp is 7 and the asset variance
takes value V; at 7. Since z; and V; follow a two-dimensional Markov process in the

stochastic volatility model, applying the Fortet’s lemma, we obtain for zy > zp > 2.°

p(2¢, Vi, t]20, Vo, 0) = /t dr /00 AV H(z, = zp, Vi, 7|20, Vo, 0)p(2¢, Vi, tl 2, Vi, 7).
0 0
(2.13)
The probability density H(z., V,, 7|20, Vo, 0) is implicit in equation (2.13), which we
first discretize and then use a recursive algorithm to solve for numerically. We dis-
cretize time 7" into ny equal subperiods and define t; = j% = jAt with je{l1,2,- -

nr}t. Let the maximum and minimum for the asset variance be V and V, re-

90ne main intuition behind the Fortets lemma is that given a continuous process, if it
starts at zop which is higher than a fixed boundary (zp), it has to cross the boundary to
reach a point below the boundary (zt).
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spectively. We discretize the variance V' into ny equal increments and denote V; =
V +iAV with ie{1,2,- - - ny} and AV = Vn;vz Furthermore, we define ¢(V;, ;) =
At - AV - H(zy,—2p, Vi, = Vi, tj]20, Vo, 0). Note that H(z,—.,, Vi, = Vi, tj]20, 0, 0) is
the probability density that the default time is ¢; and asset variance is V; at default.

Then, the discretized version of equation (2.13) is

p(tha‘/;)tj|207‘/07 Z Z Vu7t Zt]a‘/’wt |Vu7t ) Vi6{1727 te '77LV}. (214)

m=1 u=1

Given the joint transition density of z; and V;, we obtain ¢(V;, t;) recursively as follows:

q(‘/za tl) = AVP(%p ‘/ia tl‘Z(], ‘/E]a 0)7

Jj—1 ny

Q(Vut]) = AV p(ztj7%atj|20a‘/0a qu Vu7t Ztﬁ‘/ut |Vuat ) avj€{2737

m=1 u=1

The probability that the default (first passage) time is less than 7" is given by

nr ny

Q(20, Vo, T) = > > q(Vity). (2.15)

7j=1 =1

Therefore, given the joint transition density function of z; and V;, we can apply
Fortet’s lemma to solve for the default probability. In the next subsection, we detail
the procedure to solve for the joint transition density of z; and V;: first, by solving
for the joint characteristic function and then using inverse Fourier to back out the
transition density.

Define U(t) as the joint characteristic function of (zr, Vr) conditional on (z:, V;)
at t < T, ie., U(t) = E? [ei(‘plzTJr“’?VT)]zt, Vi] = U (@1, 02,2, Vi, h), where h =T —t.

Zhylyevskyy (2010) shows that VYo > 0, the solution for ¥(¢) is given by

(1, 02; 2, Vi, h) = eftlheretfalhioren)Vitiorz (2.16)
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where

fl(h;gpl,gpz):h(r—a—“i’)) z‘gpﬁﬁae {hm*+h@+2zn—+l],

2 HeVG +
(2.17a)
1|, . HehVe — 1
Ja (B 01, 02) = 52 [FG —popr — \/am ) (2.17b)
with
G(p1) = 0*(1 = )i + (0% = 2p0K")ipy + K,
Hig, ) = - 2001 — VO HiT e,
’ ipopr — k* + VG +io2p,
Let ai, as, by and by be “large” in absolute value. Further, define A; = l’l];—l‘“,

Ny = bzz;:ua ¢ = a1 + 7D and g, = az + j2lg, where j; = 0,1,-- -, Ny and

jo=0,1,---) Ny. Zhylyevskyy (2010) applies a kernel-smoothed bivariate fast Fourier

transformation and obtains the conditional joint density of (27, V) as follows:

No Np

1 . . .
f(ZTa VT; 2ty V;f? h) = mAlA?W(AIzT7 AQVT) Z Z eil(ZT%lJrVTQPn)\II(SOju ijé)v
Jj2=0j1=0
(2.19)
where
by b
W(Baer Bglin) = [ [ et i (o, oy
and
(A—|z)*(1-]y)? if || <1 and |y| < 1,

K(z,y) = { #2222 (=D +(—[2) 22+ (1= [=)2(1-[y])*’
0 elsewhere.

2.3 Comparative Statics
Introducing stochastic volatility into a credit risk model adds three new po-

tential channels for asset risk to influence credit spreads. First, the very fact that
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volatility is random may impact spreads directly. As we shall see, this is particularly
true for short-term credit spreads. Second, volatility may be correlated with shocks
to asset value. For example, there may be a “leverage effect” or asymmetry at the
unlevered volatility level - that is, the asset risk may increase as the value decreases.
This would work over and above the traditional financial leverage effect that is al-
ready present in Merton (1974) and subsequent models. Third, volatility risk may
be systematic and carry a risk premium that is eventually reflected in credit spreads.
In what follows, we address each of these channels. First, we study them in a com-
parative statics setting. We acknowledge up front the limitations of such an exercise,
which does not require the model to match empirical moments. However, it does help
crystallize the economic intuition for the different effects. Later, we reconsider the
impact of stochastic volatility in a calibration experiment akin to that designed by

Huang and Huang (2003).

2.3.1 Stochastic Volatility and Term Structure of Credit Spreads
The most obvious potential channel through which our model can influence
credit spreads relative to existing models is the randomness in the volatility itself.
Uncertainty about the volatility level generates fatter tails in the asset value distri-
bution, which, all else equal, increases the likelihood of distressed scenarios and thus
spreads. Figure 1 demonstrates this effect by retracing the yield spread curves for
different levels of the volatility of the asset variance, nesting the constant volatility

case, corresponding to the original Black and Cox (1976) model. Panel A plots the
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yield spread curves in basis points, whereas Panel B plots the ratios of the spread
curves relative to the constant volatility case. Note that the effect can be quite sig-
nificant but is more so for maturities less than 10 years. This is even more noticeable
in the lower panel of the figure that reproduces the same data in terms of ratios of
spreads to the Black and Cox (1976) case. For maturities less than 7 years, it is
quite straightforward for the model to more than double spreads. The relative effect
dissipates further out on the term structure and seems to reach stable levels after
the 10-year tenor - a spread increases in the range of 10% to 20% of the constant

volatility spread.

2.3.2  Asymmetric Asset Volatility and Credit Spreads

Since Black (1976) and Christie (1982), the question remains whether the ob-
served negative correlation between equity prices and equity volatilities is a purely
financial effect. More recently, Choi and Richardsson (2009) study firm-level returns
and document a degree of negative correlation between asset values and asset volatil-
ities. We now consider the comparative statics of the parameter that governs this
asymmetry in our setting, p the instantaneous correlation between shocks to asset
value and volatility.

Figure 2 visualizes the relationship between asset volatility asymmetry and
spreads. The second panel reports ratios of spreads for varying levels of p to the
spread in the constant volatility level. For this experiment, we make conservative

assumptions regarding the volatility of asset risk, setting ¢ = 0.3 and x = 4. The
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case where p = 0 corresponds to a Black & Cox model extended to allow for asset-
risk dynamics independent of asset value dynamics. The resulting spreads are barely
higher than in the constant volatility case.

Setting the asymmetry parameter to p = —0.3, which implies positive shocks
to asset risk on average when asset values suffer negative shocks, has a limited effect
on spreads, in the range of 2-10 basis points. For short term spreads (less than five
years), this amounts to a non-trivial relative increase - spreads are approximately
doubled. The absolute size of the increase is relatively stable so that for longer tenors
such as 15-20 years, the percentage stabilizes around 5%. Increasing the correlation
between asset volatility and value shocks to p = —0.6 provides a more significant
boost in spreads. With this level of correlation, 5-year spreads essentially triple as
compared to the zero correlation case. At 15 years, spreads increase by about a fifth
of the no-asymmetry spreads.

The pattern for the relative spread increases is quite similar to the one reported
for the volatility of volatility parameter o. It seems that the impact of asymmetry
might be quantitatively slightly more important than volatility risk itself, although
not dramatically. However, given that in a situation where a model is implemented
empirically it is faced with matching several moments of the data, this result is
limited to a ceteris paribus setting. We will return below to whether this holds in
a calibration setting below. In addition, we will estimate the amount of asymmetry
that best describes firm specific time series of equity volatilities and default swap

spreads.
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2.3.3 Asset Risk Premia

Finally, Figure 3 illustrates the impact of volatility risk premia on credit
spreads without any asymmetry effect (p = 0). As can be seen, the effect of the
risk premium parameter k is first-order. Spreads can be be increased dramatically by
allowing for systematic asset volatility risk. For example, when k£ = 3, spreads more
than triple for some maturity segments.

In a relative sense, it is clear from the lower panel of Figure 3 that, like in the
case of volatility risk (o) and asymmetry (p), the effect dominates the shorter part
of the term structure, up to about 10 years. However, the sheer magnitude of the
impact makes the effect significant for all maturities. While short-term spreads can
be inflated tenfold, long-term spreads can easily double, if not triple

Obviously, the difficulty at this stage will be to determine reasonable values
for the unlevered volatility risk premium. We address this below, and we will see that
this third effect of stochastic volatility on credit spreads is in fact the dominant one,
and will survive the calibrations to empirical moments.

In Panel A, the Y-axis illustrates the absolute value of the yield spread, which
is calculated as the difference between the bond yield and risk-free rate. The solid
curve corresponds to the Black-Cox (1976) setting, where the asset volatility is a
constant. In Panel B, the values in the Y-axis are normalized by (or relative to) the
corresponding values from the Black-Cox case. The initial asset value Xy = 100, the
default boundary Xpg = 35, the initial asset volatility is 21%, the yearly interest rate

is 8% and the asset payout ratio is 6%. The other parameter values for the stochastic
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volatility model are: k =4, o = 0.3, § = 0.212.

2.4 Stochastic Asset Volatility and the Credit Spread Puzzle

We have now documented that in a comparative static setting, three channels
exist that may have an important effect on credit spreads: the volatility of asset
risk itself, a “leverage” effect at the unlevered firm level and risk premia associated
with shocks to asset risk. All three effects have the potential to help structural
models achieve the levels of credit spreads necessary to address what has recently
become known as the credit spreads puzzle. Huang and Huang (2003) calibrate
a selection of different structural models to historical default rates, recovery rates,
equity risk premia and leverage ratios. They find that all models are consistently
incapable of simultaneously matching credit spreads while calibrated to these four
moments. Their results are striking since they compare models with quite different
features: stochastic interest rates, time-varying leverage, jump risk, counter-cyclical
risk premia, endogenous default and strategic debt service. None of these extensions
of the basic Merton (1974) framework is able to more than marginally bring market
and model spreads closer to each other. This finding forms the basis for the credit
spread puzzle.

We now ask whether the three channels through which stochastic asset volatil-
ity may influence spreads in our model, can help reconcile model with market spreads
on average. In order to do so, we perform a calibration experiment closely following

the methodology used in Huang and Huang (2003). In other words, we require our
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model to match, for different rating categories, the following observables

1. The historical default probability

2. The equity risk premium

3. The leverage ratio

4. The recovery rate

Table 1 reports on this exercise. We assume values for the additional param-
eters to be p = —0.1,0 = 0.3,k = 4, and k£ = 7. The asymmetry is chosen to be
modest as reported by Choi and Richardssson (2009). By means of comparison, in
equity markets, Heston (1993) uses p = —0.5, while Broadie Chernov and Johannes
(2009) use p = —0.52 and Eraker Johannes and Polson (2003) find values for p be-
tween -0.4 and -0.5. Pan (2002) uses a value for Ay = ko equal to 7.6, while Bates
(2006) uses a Ay equal to 4.7. Our choice of k implies a volatility risk premium
Ay = 2.1. Bates (2006) documents estimates of x in the range of 2.8 and 5.9 for a
selection of models, whereas Pan (2002) estimates values ranging between 5.3 and 7.
For the Aaa category we are able to explain about 96% of average historical

spread levels. For Aa to Baa we explain between 73% and 82% while for the two
lowest we actually overestimate spreads by 13% and 24% respectively. This compares
to 16% for Aaa, 29% for Baa and a maximum of 83% for B rated firms in Huang
and Huang (2003). It is clear from this table that for this set of parameters, we can
address the spread underestimation for high and low rating categories and reduce it

significantly for the intermediate ones.'® The exact numbers are sensitive to whether

1ONote that there is always some value for the variance risk premium that will fit the
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we consider 4 or 10 year spreads and we see that the hardest spreads to fit are high
grade and short term. Nonetheless, the overall impression remains. Our framework,
for reasonable and conservative inputs, does not suffer from the same systematic
underestimation problem that all the models studied in Huang and Huang (2003) are
subject to.

Unfortunately, we do not have rating-specific estimates of the new parameters
related to our stochastic volatility model. We cannot claim that our model is able to
match historical spreads given historical moment restrictions, only that it has little
difficulty in reaching the required spread levels. To highlight the marginal importance
of stochastic volatility in our model, the top panel in Table 2 repeats the calibration
exercise in Table 1 with all parameters related to time-varying volatility set to zero
(0 = p=+k=Fk=0). The model thus recovered, corresponding to Black and Cox
(1976), behaves very similarly to those studied in Huang and Huang (2003). For high
grade bonds, the model cannot explain any significant part of the spread and reaches
a maximum of 68% for the lowest grade bonds. This clearly highlights that various
aspects of time-varying volatility are at the heart of the improved performance of our
model in relation to historical spreads. This stands in sharp contrast to the previous
literature.

However, the lack of granularity of our volatility parameter estimates remains.
To address this, we carry out a “comparative statics” analysis of the calibration in

Table 1. The intent is to understand the relative contribution of each of the three

spread exactly. We return to that exercise below.
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parameters to the improved spread fitting ability of the model. As noted above, panel
A in Table 2 defines the benchmark, by shutting down stochastic asset volatility
altogether. This benchmark corresponds to the credit spread puzzle as presented
in Huang and Huang (2003). Panel B opens up for stochastic volatility by setting
o = 0.3 but without any asymmetry (or “leverage” effect at the asset level) or risk
premium for asset volatility risk. In this case, the predicted spreads remain very
similar to the constant volatility case and the credit spread puzzle remains.

Thus uncorrelated and fully idiosyncratic asset risk is not the channel that
allows our model to generate sufficient yield spreads. This may seem counterintuitive
given that the comparative statics discussed above and depicted in Figure 2 appear to
permit stochastic asset risk significant leeway in influencing credit spreads. The reason
for this perhaps surprising result can be traced back to the design of the calibration
experiment: the four moment conditions (default losses and rates, leverage and equity
risk premia) work to cancel out the effect of more pronounced tails in the asset value
distribution. For a given level of volatility risk, the increased spread that would result
in a ceteris paribus exercise is mitigated by the requirement to fit the moments in the
calibration. In particular, the model will tend to produce lower asset volatility levels
for the high grade scenarios where the underestimation of spreads is the most severe.

Panel C of Figure 2, adds a modest amount of asymmetry to the scenario
summarized in panel B. Again, the effect, which was significant in the comparative
statics above (see Figure 1), is cancelled out by the requirements to fit the moments in

the calibration. Thus a leverage effect at the asset value level with fully idiosyncratic
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asset risk does not help explain the puzzle documented in Huang and Huang (2003).
Finally, Panel D of Figure 2 adds a risk premium to asset volatility. This effect is
not constrained by the four moments used in the calibration. The spread explanation
percentages increase significantly to between 75% and 128%, which, while not fitting
spreads within each rating category accurately, does remove any systematic underes-
timation of spreads. In summary, it appears that the market price of asset volatility
risk is one channel through which a structural credit risk model’s ability to explain
market spreads can be significantly improved.

So far, we have based our analysis very closely on the HH calibration as it
forms the basis for the credit spread puzzle. However, although we have established
that our framework is not subject to the limitation of generating insufficient spreads,
we still face the problem of risk premium estimation. Although, at this stage, a
full-fledged firm level estimation of risk premia is beyond our paper’s scope, we will
attempt to better understand the required volatility risk premia. In a first step, we
simply ask what levels of asset volatility risk premia would be necessary to explain
market spreads in the HH calibration.

Table 3 reports our results for an exercise where we augment the moment
conditions used in HH by a requirement to also fit historical spreads (in addition to

default losses, probabilities, equity risk premia and leverage ratios).!’ Rather than

1Tt is important to note that the two types of risk premia present in this calibration
are not distinct. The level of the asset volatility premium impacts the asset return risk
premium which is matched to historical equity risk premia. Thus, we are not merely adding
a free parameter which trivially fits the new moment condition. All five moment conditions
are satisfied simultaneously.
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report the parameter £k directly, which has no obvious intuitive empirical counterpart,
we report Ay as well as the square root of the ratio of the three month expected
risk-adjusted and historical volatilities respectively. This ratio, %, is intended to
provide a quantity similar in spirit to observable ratios of option-implied and historical
equity volatilities.

We find that 3 month risk adjusted volatilities need to be need to be between
22% and 53% higher that their historical counterparts, in order to fit historical credit
spread data for ten year bonds across the rating categories. This wedge for 4 years
bonds lies between 7% and 54%. The risk premium parameter Ay ranges from -1.23
to -2.55 for the ten year spreads and between 0.45 and -2.55 for 4 year bonds. We
are not aware of any empirical estimates of this quantity for individual firms. As
mentionned above, for equity indices, Ay has been found to be greater in absolute
terms (-7.6 in Pan (2002) and -4.7 in Bates (2006)). Given that our estimates are for
an unlevered volatility, risk premia should be lower in absolute terms. In addition,
it has been shown that measures of implied volatilities tend to be lower relative to
historical volatility for individual stocks (see e.g. Carr (2008)).

Another interesting finding that emerges from Table 3 is the pattern of the risk
premia across ratings. The required risk premium is higher for the higher grade firms
than for speculative grade firms. The ratio of risk-adjusted to historical volatilities
is in fact monotonically increasing in credit quality. This implies that higher grade

firms are relatively more sensitive to systematic shocks to volatility. A similar point

has been made recently for the structured credit markets. Coval Jurek and Stafford
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(2009) show that prices in long dated index options markets imply proportionally
much higher risk premium components in senior than junior CDO tranches. For
single-name securities grouped into credit rating categories, Huang and Huang (2003)
document that it is harder to explain higher grade spreads with constant volatility
structural models. Berndt et al (2008) and Elkamhi and Ericsson (2008) show that
ratios of risk-adjusted to historical default probabilities are indeed increasing in credit
quality. In sum, these are consistent with the average economic state in which a highly
rated fixed income instrument defaults being worse than the average economic state
in which a lower rated security defaults. Along the same line of reasoning, the higher
the systematic risk of a firm, the greater the ratio of its risk-adjusted volatility over
its historical volatility.

We note that the model fits spreads with limited impact on the most significant
free parameter in the calibration we (like Huang and Huang (2003)) use - the asset
volatility level. In panel A of Table 2, which corresponds to our version of the HH
calibration with constant asset risk, implied asset volatilities range between 25% and
35%. This is comparable to the numbers reported in the base case by HH which
range between 25% and 40%. It should be noted that these estimates are in fact
quite high. Indeed, they are comparable to the estimates of equity volatilities across
rating categories reported by Schaefer and Strebulaev (2008) which range from 25%
for AAA firms to 42% (61%) for BB (B) firms respectively. In contrast, Schaefer and
Strebulaev (2008) report asset volatilites averaging 22% for most rating categories

and increasing to 28% for B firms. In other words, when confronted with the four
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moment conditions used so far, the model remains unable to produce reasonable asset
and equity volatilities.

To address this problem, we modify the calibration by requiring that our model
also fit historical equity volatilities, leaving the model with a total of six moments
to match. Table 4 provides evidence from this modified calibration exercise. Our

stochastic volatility model now simultaneously fits

—_

. default probabilities,
2. recovery rates,
3. leverage ratios,
4. equity risk premia,
5. equity volatilities,
6. and credit spreads.

The model is able to fit the four HH moments in addition to the historical
equity volatilities and spreads, while retaining the values previously assumed for p
and o, while letting & and x float. Again, instead of reporting the implied k values,
we present the ratio of expected three month volatilities under the risk-adjusted and
historical probability measures respectively.

The calibration produces quite reasonable implied asset volatility levels rang-
ing from 21% for rating categories Aaa to Baa and 25% for Ba and 37% for B. These
figures are much closer to those reported by Schaefer and Strebulaev although a little
higher for B firms. Thus it appears that our model does not need to systematically

suggest unrealistically high levels of asset volatility to fit the required moments, in con-
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trast to the constant volatility models studied in HH. Furthermore, the link between
ratings and risk-adjustment noted above survives. Ratios of expected volatilities and
the risk premium parameter Ay decrease as credit quality deteriorates. The levels
remain similar.

We have thus shown that a stochastic volatility model with priced volatility
risk is able to match all the moments in Huang and Huang (2003) in addition to credit
spreads and historical equity volatilities for some level of %, the ratio of long term
volatilities under the risk-adjusted and historical probability measures. However, we
have so far placed the full burden of explaining spreads beyond a simple structural
model on the presence of a variance risk premium. But corporate bond spreads
may contain compensation for other risks not captured by our model. A strong
candidate missing factor is the illiquidity of corporate bond markets. If illiquidity is
an important determinant of bond spreads then our estimates of required volatility
risk adjustments may be excessive. To understand how important such an effect
might be, we follow Almeida and Phillippon (2007) in their liquidity correction of
the Huang and Huang (2003) rating based scenario. We assume that the AAA rated
one year yield spread contains negligible compensation for default risk and can be
thought of mainly as compensating for illiquidity relative to a one-year government
bond. We then substract this yield spread from our previous spreads to obtain rough
estimates of default risk only spreads. Clearly this approach is simplistic as the
liquidity spread may well depend on the credit rating (see. e.g. Ericsson and Renault

(2006) and Xiong and He (2010)). However, the objective here is merely to gauge the
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quantitative impact on required variance risk premia of a reasonable level of liquidity
adjustment, not a precise estimation of risk premia per rating category.

Table 5 reports our findings. There is a negligible impact on the implied asset
volatilities. The significant, and expected, effect is to reduce the required variance
risk premia. For 10 year bonds, the required ratio of expected variances now ranges
from 1.22 to 1.39 (compared to the previous range of 1.23 to 1.56), while the range
of lambda is -1.21 to -1.76 (compared to -1.26 to -2.34). The effect is strongest for
higher rated bonds, which is intuitive since it is those spreads that are adjusted the
most in a relative sense.

Table 6 summarizes the variance risk premium adjustments across ratings,
calibration scenarios and risk adjustment metrics. The table reports on the ratio of

Ll
0

long term means (%), ratios of risk-adjusted to historical expected variances with 1
and 3 month horizons, as well as the risk premium parameter \y directly. One clear
pattern is that the risk-adjustment (as a ratio) depends critically on the horizon of the
metric. The ratio % has a perpetual horizon as it measures the wedge between the
long run mean levels for the variance dynamics under the risk-adjusted and historical
probability measures respectively. It tends to be higher than the ratio of expected
variances at 3 months, which in turn is higher than that for a one month horizon.
Han and Zhou (2010) find ratios of risk-adjusted variances (measured as one
month model-free option implied variances)in a large panel of individual firms to be on

average 38% higher than their physical counterparts. This is higher than our typical

risk adjustment which at the one month horizon lies between 10% and 20% for 10
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year bonds (6% to 15% for 4 year bonds with the liquidity correction). On the other
hand estimates of variance risk premia in Carr and Wu (2008), which are estimated
using variance swap returns, come in lower at about 4% on average. Although the
variance risk premia our model requires to explain the cross-section of historical credit
spreads do not appear unreasonable, we leave further empirical work in this direction
to future work.

All ratios decrease as credit quality deteriorates, as does Ay, reflecting, as
discussed above, that risk premia are proportionally more important to explain credit
spreads for higher grade firms. Requiring the model to fit equity volatility has a
positive effect on the required ratio % for higher rated firms, while it has little effect

on the other metrics.

2.5 Specification Tests - Constant vs. Stochastic Asset Volatility
2.5.1 Data
The CDS spread is the premium paid to insure the loss of value on the under-
lying realized at pre-defined credit events. This contrasts with the yield spread of a
corporate bond, which reflects not only default risk but also the risk-free benchmark
yield, the differential tax treatment and liquidity of corporate bonds vs. Treasury
bonds. Further, while bonds age over time, CDS spreads are quoted daily for a fixed
maturity. In addition, CDS contracts trade on standardized terms and while CDS
and bond spreads are quite in line with each other in the long run, in the short run

CDS spreads tend to respond more quickly to changes in credit conditions. For all
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these reasons, it is plausible that the CDS spread is a cleaner and more timely mea-
sure of the default risk of a firm than bond spreads. As a result, they may be better
suited for specification tests of a structural credit risk model.

We collect single-name CDS spreads from a comprehensive database compiled
by Markit. Daily CDS spreads reflect the average quotes contributed by major market
participants. This database has already been cleaned to remove outliers and stale
quotes. We require that two or more banks should have contributed spread quotes in
order to include an observation (Cao, Yu, and Zhong, 2010). The data sample that is
available to us include only the firms that constituted the CDX index from January
2002 to March 2008.

Our sample includes US dollar-denominated five-year CDS contracts written
on senior unsecured debt of US firms. While CDS contracts range between six months
and thirty years to maturity, we use the 1, 3, 5,7 and 10 years only because that are
relatively more liquid than other maturities (6 months, 2 years, 20 years)

The range of restructurings that qualify as credit events vary across CDS
contracts from no restructuring (XR) to unrestricted restructuring (CR). Modified
restructuring (MR) contracts that limit the range of maturities of deliverable instru-
ments in the case of a credit event are the most popular contracts in the United States.
We therefore include only US dollar-denominated contracts on senior unsecured obli-
gations with modified restructuring (MR), which also happen to be the most liquid
CDS contracts in the US market (Duarte, Young, and Yu, 2007).

Together with the pricing information, the dataset also reports average recov-
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ery rates used by data contributors in pricing each CDS contract. In addition, an
average rating of Moody’s and S&P ratings as well as recovery rates are also included.
Following Huang and Zhou (2008) we perform our test on monthly data. Their sam-
ple is restricted to 36 monthly intervals because their sample ends in 2004. Instead,
we require that the CDS time series has at least 62 consecutive monthly observations
to be included in the final sample. Another filter is that CDS data have to match eq-
uity price (CRSP), equity volatility computed from (TAQ) and accounting variables
(COMPUSTAT). We also exclude financial and utility sectors, following previous em-
pirical studies on structural models. After applying these filters, we are left with 49
entities in our study.

In testing structural models, the asset return volatility is unobserved and
is usually backed out from the observed equity return volatility. Traditionally, re-
searchers use a rolling window of daily returns volatility to proxy for equity volatility.
In order to benchmark our results to the specification tests of alternative models cov-
ered in Huang and Zhou (2008) we use a more accurate measure of equity volatility
from high-frequency data. Following Huang and Zhou( 2008) we use bi-power varia-
tion to compute volatility. As shown by Barndorff-Nielsen and Shephard (2003), such
an estimator of realized equity volatility is robust to the presence of rare and large
jumps. The data on high frequency prices are provided by the NYSE TAQ (Trade
and Quote) data base, which includes intra-day (tick-by-tick) transaction data for all
securities listed on NYSE, AMEX, and NASDAQ. The monthly realized variance is

the sum of daily realized variances, constructed from the squares of log intra-day 5-
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minute returns. Then, monthly realized volatility is the square-root of the annualized

monthly realized variance.

2.5.2 GMM Estimation of the Model
Let cds(t,t +T) and cds®(t,t +T) denote the model-implied and empirically
observed CDS spreads of a CDS contract at time ¢ for which the maturity date is
t+T respectively. Let o, and U?Ebj denote the model-implied and empirically observed
equity volatilities at time t respectively. Following the literature, the solution for the

model-implied CDS spread is given by

(L—R)>5, Bt t+ 1) [Q(t,t +T5) — Q(t,t +Tiy))
Sl Bt + T) [1 = Q(t,t +T7)] /4

cds(t,t +T) = , (2.20)

where R is the recovery, B(t,t+1T;) is the default-free discount function and Q(t, t+7;)
is the risk-neutral default probability. As shown in the model section, the model-

implied equity volatility is given by
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We define f;(©) as the overidentifying restrictions, which is given by

cds(t,t +T1) — cds®(t,t + T)

fi(©) = cds(t, t + 1) — cds"bs(t, t+71;) |’

obs
OBt — Opy

(2.22)

where © = (p, Xp,k,0,0) is the parameter vector to be estimated. 2 The term

structure of CDS spread includes five maturities:1, 2, 3, 5, 7 and 10 years. Thus

12There are two latent variables in the estimation: asset value and asset variance at each
observation date. Following Huang and Zhou (2008), we back out the asset value from the
observed leverage ratio, which is defined as the ratio of face value over the asset value. We
estimate the initial asset variance in the two steps to be discussed later in this section.
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we apply the seven moment conditions (from six CDS spreads and equity volatility)
to estimate five parameter values in the GMM test. Given that the model is cor-
rectly specified, we obtain that F [f;(©)] = 0. We define the sample mean of the
moment conditions as g7(©) = 1/T Zthl f:(©), where T is the number of time series

observations. Following Hansen (1982), the GMM estimator is given by

A —

© = argmin g5(0)W(T)g7(0), (2.23)

where W (T) is the asymptotic covariance matrix of g7(0).'> With some regularity
conditions, the GMM estimator © is v/T consistent and asymptotically normally
distributed given that the model is correctly specified (null hypothesis). The J-
statistics is given by

J =Tgz(0)W(T)g7(©). (2.24)

The J-statistics is asymptotically distributed as a Chi-square with the degree of free-
dom being equal to the difference between the number of moment conditions and the
length of ©, which is equal to one in our setup.

We estimate our model in two steps. First, we set the initial asset volatility
(v/V4) at each observation date ¢ to be (1 — leverage;)o; and then obtain one GMM
estimator ((:)) for ©. In the second step, we obtain the updated asset volatility
(y/ V;"%%) at each observation date ¢ such that the model implied equity volatility

to be equal to the observed one, i.e., o/o% (V;"P99% Q) = %5 Then use V"% to

obtain the updated GMM estimator (©"*%¢) for .

BFollowing Newey and West (1987), we use a heteroskedasticity robust estimator for
W(T).
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2.5.3 Results

Table 8 reports summary statistics for the 49 firms (4116 default swap quotes
in total) in our sample which spans the period 2002-2008 and contains firms that
are also part of the sample in the Huang and Zhou (2008) study we rely on as a
benchmark. This choice of data is intentional to permit a better comparison - so that
any differences in our results are more likely to indicate differences across models
rather than data sample.

Rating-based averages for equity volatilities range from 22% to 41% and lever-
age ratios from 26% to 77%. Asset payout rates are also quite similar to those in
Huang and Zhou (2008) typically just above 2%. CDS spreads are similar as well.
Panel C in Table 8 reports on the standard deviations of CDS spreads.

Table 9 contains the parameter estimates resulting from the GMM implemen-
tation. We note first that the degree of volatility asymmetry - that is, the correlation
between shocks to asset values and asset variances (p) is similar across firms and
ratings and averages -0.58. This is similar to values reported in the literature on
equity volatilities (see Eraker Johannes and Polson (2003) and the discussion in sec-
tion 4 above). This is higher than the value we assumed in the comparative statics
above (-0.1) and provides evidence of a “leverage” effect at the asset value level. In
other words, the asymmetry observed in equity markets stems both from mechanical
changes in financial leverage as stock prices fluctuate and the negative correlation
between the levels of asset values and volatility. Table 12 converts the asset value

asymmetry into an equity leverage effect (Appendix C provides the necessary deriva-
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tions). We find that for most rating categories, the instantaneous correliton between
asset value and variance shocks is lower than for equity and equity variance shocks.
However, the magnitude of this difference is small. This suggests that financial lever-
age only plays a minor role in the asymmetry observed at the equity return level.

The estimated speed of mean reversion under the risk-adjusted probability
measure (k*) ranges from 0.5 and 1.2 averaged within rating categories, lower than
the levels we used in the comparative statics. Given that higher mean reversion
speeds will tend to reduce variance volatility, our assumptions in the comparative
statics, like those make for the correlation parameter, also appear conservative. The
asset variance volatility parameter (o), is estimated to values in the range of 24%
to 45%, averaging 37%, somewhat higher than our choice of parameter value in the
comparative statics (30%).

We find that the default boundary is estimated to between 62% and 75% of
the book value of debt. This entails that a BBB firm, whose default boundary is
67% of debt, would default at an asset value level of about 32% of its current non-
distressed value. This is broadly consistent with estimates in Davydenko (2007) and
Warner (1977). Firms often operate at significantly negative net worth levels before
defaulting, reflecting the valuable optionality of equity when faced with financial
distress. Note that the ratio of the default point to liabilities is smaller (greater) for
the lower (higher) grade firms - a B (AA) firm defaults at 75% (62%) of book debt
where leverage is around 77% (26%). Thus they would default at an asset value level

42% (84%) lower than current value.



98

Long run risk-adjusted variance levels are estimated to lie between 3% and
9%, corresponding to volatility levels of 17% and 30% respectively.

The reported mean J-stats in Table 9 are well below the critical values at
conventional significance levels. This stands in stark contrast with the findings in
Huang and Zhou (2008) who find that almost all the models they study: the Merton
(1974), Black and Cox (1976), and Longstaff and Schwartz (1995) are consistently
rejected whereas the Collin-Dufresne and Goldstein (2001) model is rejected in half
of the cases. The last two columns of Table 9 report on the number of firms for which
our model can be rejected. At the 1% (5%) level only 1 (3) firm out of 49 leads to a
rejection of the model.

To provide a more specific benchmark by which to judge these results, Table
10 reports on the same exercise with the stochastic asset volatility channel turned
off. These results are similar to the findings of Huang and Zhou (2008) for the same
model. Here, the Black and Cox (1976) model can be rejected for 45 out of the 49
firms (compared to at best 87 out of 93, in HZ). Clearly, the addition of stochastic
volatility renders the rejection of the model significantly harder. Note that the number
of free parameters is greater when we introduce stochastic asset risk, and that this
will make a rejection harder. A fairer comparison in this regard is the Collin-Dufresne
Goldstein (2001) model (CDG) evaluated in Huang and Zhou (2008), which has the
same number of additional parameters with respect to the Black and Cox (1976)
model. In that case between and 67% and 75% of the firms lead to non rejections,

compared to between 94% and 98% in Table 9. The CDG model yields somewhat
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lower pricing errors on the defaults swaps but, not surprisingly, faces more resistance
in fitting the time series of equity volatilities.

The pricing errors are reported in Panels B and C of Table 9. The first finding
is that spreads are underestimated by between 3 (A rated firms) and 61 (B rated
firms) basis points with an average of 18. The direction of the bias is reminiscent of
the findings across 29 of 35 rating model combinations in Huang and Zhou (2009).
However, the level is significantly lower than for the Merton, Black and Cox, Longstaff
and Schwartz models as reported by HZ. For the Collin-Dufresne Goldstein model, we
have already noted a slightly better performance. For the BB (B) rating categories
we underestimate spreads by 43 (171) basis points while Huang and Zhou find -143 (-
518) basis points respectively. Moreover the dispersion of the errors is smaller. Huang
and Zhou report absolute pricing errors in the range 13 to 1381 basis points across
ratings (averaging 101 basis points) for the Black and Cox model. In contrast, we
find a range between 7 and 96 basis points with average of 26 basis points.

A better understanding of the findings can be had by comparing to the Black
& Cox (1976) model estimated on our sample (by shutting down stochastic asset
risk). Our overall average underestimation with stochastic volatility is by 18 basis
points (or 10 percent of the average total spread) as compared to 48 basis points
(or 65% of the average total spread) with constant volatility. The average absolute
pricing error is 26 basis points with stochastic volatility and 50 basis points without.
Not surprisingly, the model with stochastic asset volatility does a much better job at

fitting the time series of equity volatilities, generating average pricing errors (absolute
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pricing errors) of 15 (35) basis points as compared to -396 (1085) basis points.
Figure 4 summarizes average model implied and market spreads for the sample
by rating groupings. In comparison to Huang and Zhou (2009), these figures provide
a much more encouraging summary of the model’s performance. Note also that one of
the conclusions in Huang and Zhou is that their model finds it hard to fit both CDS
and equity volatility time series. Our model, of course, matches equity volatilities by
construction, but it appears that in doing so, it is also better able to fit the price of

default insurance.

2.6 Concluding Remarks

We have developed and studied a first-passage time structural credit risk model
with stochastic volatility as a means of addressing the credit spread puzzle docu-
mented in Huang and Huang (2003) and further studied in Collin Dufresne Goldstein
(2009). We find that, in a comparative static setting, such a model has various ways of
generating higher credit spreads than constant volatility models, but in a calibration
setting, the key driver of spreads ends up being the volatility risk premium.

Having found that our model is able to generate sufficiently high credit spreads
to not be subject to the credit spread puzzle, we consider the levels and patterns of
volatility risk premia that are necessary to resolve the puzzle. The levels are quite
plausible and the pattern is interesting. For high grade firms, the risk-adjustment
needs to be proportionally higher than for lower grade firms. An Aaa firm will

likely encounter financial difficulties only subsequent to a massive systematic shock to
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volatility echoing the findings of Coval Jurek and Stafford (2008). In the context of
default swaps and corporate bonds respectively, Berndt et al (2008) and Elkamhi and
Ericsson (2008) show that the risk adjustment ratios are indeed increasing in credit
quality. Their results indicate that the average economic state in which a highly rated
bond defaults is worse than the average economic state in which a lower rated security
is likely to default. Similarly, the higher the systematic risk a firm has, the greater
the ratio of its risk-adjusted volatility over its objective volatility. This translates to
a downward sloping curve which links the risk adjustment ratio to the credit quality.

We extend the calibration method of Huang and Huang (2003) and find that
our model, is able to fit their four moments as well as both spread levels and historical
equity volatility levels quite easily, something earlier models have been incapable of.

Having thus evaluated the cross sectional properties of spreads implied by our
model, we proceed to also study the ability of our model to explain jointly dynamics
of credit spreads and equity volatilities, a task which has been shown to be out of the
reach of constant volatility structural credit risk models. By construction, our model
fits equity volatilities well while the fit for CDS prices is much improved relative to
the findings for constant volatility models studied in Huang and Zhou (2009). In
addition, this exercise provides interesting empirical evidence on the dynamics of
firms’ unlevered assets. We find evidence of a significant non-financial leverage effect
- asset value and variances shocks are significantly negatively correlated.

The technical contribution of our paper, closed form analytics for a first pas-

sage time stochastic volatility model has many obvious applications in the credit risk
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literature. More generally, we believe there are numerous applications in the real

options literature, where investment and volatility are closely related.
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Table 2.8: Summary Statistics by Ratings.
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Panel A: Firm Characteristics

Credit Firms Equity Levera, Asset
Rating Volatility (%) Ratio (% Payout (%)
AAA? 1 24.29 63.67 2.83
AA 1 21.99 25.81 1.36

A 16 27.19 37.95 2.33
BBB 22 27.72 48.51 2.12
BB 7 35.18 51.01 2.50

B 2 41.24 77.10 2.66

Panel B: CDS Spreads (%)
Credit Rating 1-year 2-year 3-year D-year T-year 10-year
AAA 0.45 0.49 0.52 0.58 0.60 0.63
AA 0.12 0.14 0.17 0.22 0.25 0.30
A 0.28 0.33 0.37 0.45 0.51 0.57
BBB 0.40 0.47 0.54 0.67 0.75 0.85
BB 0.75 0.86 1.00 1.35 1.44 1.57
B 3.73 4.22 4.49 4.80 4.78 4.77
Panel C: CDS Spreads Std. Dev. (%)

Credit Rating I-year 2-year 3-year b-year T-year 10-year
AAA 1.16 1.12 1.08 0.98 0.90 0.85
AA 0.16 0.16 0.17 0.18 0.17 0.17
A 0.39 0.40 0.40 0.39 0.37 0.36
BBB 0.49 0.49 0.50 0.49 0.47 0.45
BB 0.86 0.89 0.88 0.88 0.83 0.85
B 7.78 7.02 6.40 5.70 5.17 4.70

! This table reports the summary statistics on the CDS spreads and the underlying
firms from January 2002 to December 2008. Equity volatility is estimated using
S5-minute intraday returns. Leverage ratio is calculated as the ratio of the total
liabilities over the total asset, which is the sum of the total liability and equity
market value. Asset payout ratio is the weighted average of dividend payout and
interest expense over the total asset.

2 Note that the only AAA-rated company in our sample is GE.
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A. Impact of Volatility of Asset Volatility ¢)

Black-Cox
— — —0=-03
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Time to maturity

B. Impact of Volatility of Asset Volatility ¢): Relative to Black-Cox Case

- — —0=03

Time to maturity

Figure 2.1: The impact of the volatility of volatility (o) on the yield spread.

In Panel A, the Y-axis illustrates the absolute value of the yield spread, which is
calculated as the difference between the bond yield and risk-free rate. The solid
curve corresponds to the Black-Cox (1976) setting, where the asset volatility is a
constant. In Panel B, the values in the Y-axis are normalized by (or relative to) the
corresponding values from the Black-Cox case. The initial asset value X, = 100, the
default boundary Xp = 35, the initial asset volatility is 21%, the yearly interest rate
is 8% and the asset payout ratio is 6%. The other parameter values for the stochastic
volatility model are: k =4, p=—0.1, § = 0.212.
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A. Impact of Leverage Effect ()
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Figure 2.2: The impact of the leverage effect (p) on the yield spread.

This figure shows the impact of the leverage effect on the yield spread when the
market price of volatility risk is zero. In Panel A, the Y-axis illustrates the absolute
value of the yield spread, which is calculated as the difference between the bond yield
and risk-free rate. The solid curve corresponds to the Black-Cox (1976) setting, where
the asset volatility is a constant. In Panel B, the values in the Y-axis are normalized
by (or relative to) the corresponding values from the Black-Cox case. The initial asset
value X, = 100, the default boundary Xp = 35, the initial asset volatility is 21%,
the yearly interest rate is 8% and the asset payout ratio is 6%. The other parameter
values for the stochastic volatility model are: k =4, 0 = 0.3, § = 0.212.
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A. Impact of Market Price of Volatility Risk (k)
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Figure 2.3: The impact of the market price of volatility risk (k) on the yield spread.
This figure shows the impact of the market price of volatility risk on the yield spread
in the absence of leverage effect (p = 0). In Panel A, the Y-axis illustrates the
absolute value of the yield spread, which is calculated as the difference between the
bond yield and risk-free rate. The solid curve corresponds to the Black-Cox (1976)
setting, where the asset volatility is a constant. In Panel B, the values in the Y-axis
are normalized by (or relative to) the corresponding values from the Black-Cox case.
The initial asset value Xy, = 100, the default boundary Xpg = 35, the initial asset
volatility is 21%, the yearly interest rate is 8% and the asset payout ratio is 6%.
The other parameter values for the stochastic volatility model are: x = 4, 0 = 0.3,
0 = 0.21%
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A. Rating A to AAA
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Figure 2.4: Observed and model-implied 5-year CDS spreads.
This figure shows the time series of observed 5-year CDS spreads and those estimated
from the stochastic volatility model and the Black-Cox (1976) model. One unit in
the Y axis corresponds to 100 basis points.
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A. Rating A to AAA
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Figure 2.5: Observed and model-implied equity volatility.
This figure shows the time series of the realized volatility, which is estimated from
5-minute intraday stock returns, and the model-implied equity volatility from the
stochastic volatility model and the Black-Cox (1976) model.
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CHAPTER 3
LEARNING AND AGGREGATE LIQUIDITY

3.1 Introduction

Aggregate credit supply or liquidity is of interest to many economists, pol-
icymakers and practitioners because of its close relationship with monetary policy
and asset returns in the financial market. In particular, after the recent financial
crisis, many studies point to the importance in understanding the nature of liquidity.
Some papers (Adrian and Shin (2008, 2009), Adrian, Moench and Shin (2010), etc.)
find that the aggregate liquidity helps forecast real economic activity and inflation
measured by the components of GDP such as durable consumption and housing in-
vestment. Furthermore, the aggregate liquidity contains strong predictive power for
future excess returns on a broad set of equity, corporate, and Treasury bond portfo-
lios.! However, few papers in the literature provide a theoretical framework helping
understand the interactions among aggregate liquidity, macroeconomic variables and
asset returns.?

This paper aims to develop a quantitative framework to investigate those inter-
actions. More specifically, this study focuses on quantifying the systematic liquidity

risk premium and its connection with time-varying macroeconomic conditions and

Longstaff and Wang (2008) also shows that aggregate credit supply helps forecast the
equity premium.

2 Acharya and Pedersen (2005) build a liquidity-adjusted capital asset pricing model to
study the effects of liquidity risk on asset prices. But the macroeconomic dynamics is
not present in their model. Longstaff and Wang (2008) use an equilibrium model with
heterogeneous agents to study the role of credit market.
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asset returns. Motivated by the information content (or high predictive power) of
aggregate liquidity on the future economic growth (as shown in Adrian and Shin
(2008, 2009), and Adrian, Moench and Shin (2010)), we develop a continuous-time
consumption-based learning model, where aggregate liquidity works as an informa-
tional channel helping economic agents infer the unobserved economic growth rate.

In sum, the model implies a positive liquidity risk price, which is important
to generate reasonable equity premium, risk-free rates and real yield curve. The pa-
per provides a unified framework to explain many empirical facts in the literature,
including procyclical risk-free rates and wealth consumption ratios as well as coun-
tercyclical equity premium and return volatility. Finally, we apply the model-implied
pricing kernel to price the contingent claims of an average firm in the economy. The
model generates reasonable levered equity premium and bond yield spread. More
importantly, the model suggests that liquidity risk premium contributes significantly
to the total yield spread of the corporate bonds. The magnitude and dynamics of the
bond liquidity premium are consistent with the empirical evidence.

The model’s working mechanism depends on two main ingredients. First, the
expected consumption and liquidity growth rates follow a hidden Markov regime-
switching model. The economic agents learn about the growth state from realized
consumption and liquidity data. The time-varying uncertainty about the growth
state depends on agents’ posterior belief. Second, the economic agents in the exchange
economy have recursive Epstein-Zin-Weil preferences and prefer to resolve uncertainty

sooner.
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With the recursive preferences, the agents are concerned about times of high
uncertainty and demand an uncertainty premium for holding assets which pay off
poorly in those times. In the learning model, the posterior expected consumption
growth rate inherits the slow-moving and mean-reverting property in the prior. As
explained by Bansal and Yaron (2004), with the recursive preferences, a small uncer-
tainty about current economic growth translates to a large uncertainty about future
consumption flows, hence amplifying the compensation for holding the assets with
low payoff in times of high uncertainty. Also, the economic agents tend to save more
in times of high uncertainty, leading to a lower risk-free rate in such times. A negative
economic shock reduces the posterior belief of the high-growth state, hence brings up
the uncertainty because the model-implied uncertainty is a hump-shaped function of
the posterior state belief. This property results in the pattern of procyclical risk-free
rates as well as countercyclical equity premium and return volatility.

As an informational channel, additional liquidity shocks make the posterior
state belief be more volatile, hence bringing up the uncertainty about the growth
state. This property helps generate a positive liquidity risk premium in the economy.
Furthermore, the liquidity risk premium increases with the precision of the fluctua-
tions of liquidity itself. In particular, at the long-run mean of the posterior belief, the
model-implied equity premium increases by 7 times and the return volatility increases
by 2 times when the liquidity growth volatility decreases 67%. With a high preci-
sion, a realized liquidity shock makes the economic agents adjust their belief of the

growth state more strongly, hence increasing the volatility of the posterior and the
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uncertainty about the state of economic growth. This higher uncertainty eventually
leads to larger return volatility and liquidity premium.

We find that the model-implied shape of real yield curve depends on magnitude
of the posterior belief. When the investor puts a high belief on the high-growth /low-
growth state, the model generates a downward /upward sloping real yield curve. With
a high posterior belief, a negative consumption or liquidity shock raises the investor’s
uncertainty about the economic growth rate. Hence, the investor favors more the long-
term real bonds to hedge the long run uncertainty in consumption. The relatively
higher price in the long-term real bonds translates to a relatively lower yield in the
long maturity.

Finally, the model implies a reasonable yield spread and bond liquidity risk
premium for an average firm in the economy. At the long-run mean of the posterior
belief, the model implies a total yield spread of around 185 basis points and a liquidity
premium of around 55 basis points. These numbers are consistent with the empirical
estimates for BAA-rated corporate bond. Furthermore, the model generates a coun-
tercyclical bond liquidity premium. This paper suggests that liquidity risk premium
constitutes a significant proportion in the total yield spread.?

In the literature, learning mechanism has been extensively used to study vari-

3Many empirical papers in the literature (Longstaff, Mithal and Neis (2005), Bao, Pan
and Wang (2011), Ericsson and Renault (2006), Friewald, Jankowitsch and Subrahmanyam
(2011), Acharya, Amihud and Bharath (2010), etc.) study the liquidity premium in corpo-
rate bonds. In general, the calibrated liquidity premium in this paper is consistent with the
related findings in the literature.
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ous topics in financial market.* The basic setup of the learning mechanism is similar
to Veronesi (2000). However, that paper suggests an opposite result (the higher the
uncertainty, the lower the equity premium). The use of CRRA utility function is the
main reason causing that seemingly surprising result. An increase in risk aversion
raises the agents’ hedging demand for the equity after bad news in dividends (or
consumption), which counterbalances the negative pressure on prices from the nega-
tive dividend (or consumption) shock. However, the inverse relationship between risk
aversion and elasticity of intertemporal substitution (EIS) in CRRA preferences leads
to a lower EIS, strengthening the hedging demand. The dominance of the hedging
demand results in a negative equity premium.

Recently, Ai (2010) study the effect of information quality on asset prices in a
production economy. That paper suggests a positive relationship between uncertainty
and equity premium. Weitzman (2007) and Lettau, Ludvigson and Wachter (2008)
assume consumption volatility is unobservable and introduce learning to study equity
premium from a different perspective. Bansal and Shaliastovich (2011) extends the
learning model to study asset price jumps.

This paper is organized as follows. Section 2 describes the economy and the
model. Section 3 calibrates the model and analyzes the implications of the model.

Finally, Section 4 concludes.

4See Pastor and Veronesi (2009) for an excellent summary.
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3.2 The Model

In this section, we develop a continuous-time equilibrium model with learning
to price the aggregate consumption claim and firms’ contingent claims. The model
characterizes the aggregate liquidity as an information channel for the investors to
learn about the true state. We first start by defining the economy and the preferences.

Then, we describe the pricing model for the financial assets in detail.

3.2.1 The Economy
The representative agent has continuous time Epstein-Zin-Weil preference (Duffie
and Epstein (1992a,b), Epstein and Zin (1989) and Weil (1990)). The utility index

at time t for a consumption process c is

U, - E, Vtoo Fles,UL) ds} | (3.1)

The function f(c,v) is the standard normalized Kreps-Porteus aggregator of con-

sumption and continuation value in each period and takes the form

1—

L i (D (52)

Y= -

with 3 defined as time preference, v defined as risk aversion and i defined as the

2 (&=

f(C> U) =

elasticity of intertemporal substitution.
We assume that the expected consumption growth depends on state s;, which

follows a continuous-time Markov chain with 2 states (s; = 1 or 2).> The generator

SWithout loss of generality, we define s; = 1 as the high-growth state.
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matrix of the Markov chain (A) is defined by Aj2 and A9y, where \;; (¢ # j) is the
probability of switching from state i to state j. We assume that the investors do not
observe the realizations of s; but learn about the current state of s; from observations
of aggregate consumption and credit supply (or aggregate liquidity).

The real aggregate consumption is given by

dC
—L = e, dt + ocdzy, (3.3)
Cy

where 2, is a standard Brownian motion. In equation (3.3), the expected con-
sumption growth rate (6¢,,) follows a regime-switching process and the consumption
volatility (o¢) is a constant.

The aggregate credit supply is given by

dL
L—t == 9L7stdt + JL,leLt + 0L,2d22,t> (34)
t

where 29, is a standard Brownian motion uncorrelated with z; ;. We assume that the
expected growth rate for the credit supply (01 s,) depends on the state s; and the
diffusion coeflicients (011 and oy, 5) are constants.

Let I(t) denote the vector of the aggregate consumption and the credit supply,

i.e., I(t) = (Cy, Ly)'. Then the dynamics of I; is given by

I
dT(t) = 0,,dt + Sdz,
t

where 65, = (0cs,,01.5.) s 2 = (214, 224)" and
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Note that in the model, the drifts of consumption growth and liquidity growth are
not equal. More importantly, the shocks to the aggregate consumption growth and
aggregate liquidity are correlated, which is consistent with the empirical evidence.

We define S, as the investors’ information set at time ¢ and m; as the posterior belief

that the state at ¢ is the high-growth, i.e.,

m = prob (s = 1|Sy) .

According to Lipster and Shiryayev (2001), the posterior probability m; follows

dm = [/\1171' + /\21(1 — 7T)] dt -+ 7T(1 — 7T)(¢91 — 82)/(2/>_1d:2§, (35)
where
~ —1 d[t -1
dzy =X - (T —mdt) =X (0s, —m)dt + dz, (3.6)
t

with m = w6, + (1 —m)f,. In what follows, we denote p, as the drift term in equation
(3.5), 0.1 as the diffusion coefficient for z;;, and o, as the diffusion coefficient for
29+. Conditional on the investor’s posterior belief, the expected consumption growth
fc is equal to m0c1 + (1 — m)fco and the expected liquidity growth 6, is equal to
w01 + (1 — m)fL2. The covariance matrix (3) of the vector 6 conditional on the

information set & is given by

(bc1 —0c2)®  (Bcq —Oc2)(Or — OL2) )
Yg =m(l— ’ ’ ’ 2k 2. 3.7
0 7T( 7T) ( (9071 _ 60,2)<9L,1 _ (9L,2) (HL,l _ 9L,2)2 ( )

The investor’s posterior uncertainty is proportional to 7(1 — 7). Equation (3.7) illus-

trates that the closer to the middle point of its range is the investor’s posterior belief

SFor simplicity, most models in the literature including Veronesi (2000) and Ai (2010)
assume away the difference in the drift and correlation between the two shocks.
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7, the higher the investor’s uncertainty.

To solve for the pricing kernel, first we solve the consumption portfolio choice
problem of the representative agent. Define ¢ as the fraction of the agent’s wealth
invested in the claim of the aggregate consumption. Then in the competitive equilib-
rium, the agent’s objective is to maximize the utility function subject to the budget
constraint. The value function J is a function of the aggregate wealth W and 7. More

specifically,
J(W,m) = Hé%XE [/ f(Cs,Js)d5|St]
, t

subject to
th = Wt [¢(HR — T) + T] dt + WtQS(UR,lel,t + O’R72d227t) — Ctdt, (38)

where g is the drift of the aggregate consumption claim. og; and ogo are the dif-
fusion coefficients of the aggregate consumption claim. Solving the optimal portfolio

problem gives the following proposition.

Proposition 5. (a) The real risk-free rate is given by
r(r) = 0o + e + 357 (02 +02,) + Hocor + 4
/ 2 / 2 _ / / ’
7| (o0 + Howa)’ + (o) | + EEH [(00 + Homs) o+ 502,].

(3.9)

where H s the equilibrium wealth-consumption ratio, which satisfies

!

0=—B+(1-1)fc -1y (1= 1) o2+ &+ (1= Nocom + ] %

1{ 1=y 2 2 H\?2 | 1/ 2 2 \H" (3.10)
+ 2 1_i -1 (aﬂ,l + Ufr,2) (F) + 5(0-71',1 + O-ﬂ,Q)F'
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(b) The pricing kernel M satisfies

dM

i —r(m)dt — & (m)dz, — &o(m)dz,. (3.11)

The market prices for diffusion risks Z1 4 (consumption shock) and Zs, (liquidity shock)

are respectively given by

1
Y5 H
& =yoo + = iﬁaﬂ,l, (3.12a)
P
Y=g H
52 = 1 —0'71-72. (312b)
1 3 H

(c) The equity premium for the aggregate consumption claim is given by

o Y= H Y= (H 2
Hw — T = (UC + ﬁaw,l) (IYO-C + 1— iﬁaw,l) + 1— i EUT(,Q . (313)

3.2.2  Valuation of the Firm’s Contingent Claims
To investigate the effect of aggregate liquidity on the yield spreads and levered
equity premium at firm level, we develop a structural model to price the contingent
claims for an average firm in the economy. More specifically, we consider a firm with
one publicly traded consol bond, that continuously pays coupon cdt. We choose our
primitive modeling variable to be the operating cash flows or earnings before interest

and taxes (EBIT). The firm’s operating cash flow is given by

dX ~ - ~ -

Tt = Qxdt + ijldzl,t + UX72d2’27t + UX73dZS,t7 (314)
t

where z1 4, 224 and z3; are mutually uncorrelated. éX is the firm’s expected earnings

growth rate under the investors’ posterior belief. ox; and oxy are the systematic

volatilities. ox 3 is the idiosyncratic volatility of the firm’s earnings growth. The total
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volatility for the firm’s earnings growth is given by

ox = \/O'g(,l +0%5+ 0% s (3.15)

Given the pricing kernel from the economy, we apply the Girsanov theorem to define
the risk-neutral or () measure, under which

d X,

7 = éxdt + JX,ldggt + ijgdggt + UX,3d2§?t7 (316)
t

where
éX,st = éx - UXJSI - O'X,zfz- (3-17)

In our model, when the firm’s operating cash flow is higher than the coupon
amount X; > ¢, the firm is in the liquid state. The amount X; — ¢ is distributed
to shareholders as dividends. When the total cash flow is less than the amount of
required debt servicing (X; < ¢), we say that the firm is in the illiquid state. The
shareholders may not necessarily default even if the firm is illiquid as suggested by
Leland (1994). Instead, the firm can issue more equity to cover the coupon payment.
The firm defaults at the stopping time 7 when the firm’s operating cash flow hits an
exogenously determined boundary Xg, i.e., 7 = min{s|X; < Xp}. At default, the
firm recovers a proportion of the unlevered asset value and the absolute priority rule
applies.

Given this setting, the firm’s unlevered asset value at time ¢ (V;) is equal to

the expected present value of future operating cash flows under the pricing measure

defined by our pricing kernel, i.e., V; = F ( too %t Xsds|%t>. The firm’s equity value

at time ¢ is defined as S; = (1 —n)E [ . Al\i (Xs — c)ds|%t}, where 7 is the effective
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tax rate. The debt value at time t is D, = F [ftT %cds\%f} + F <%§&VB|%>, where
a is the recovery rate of the firm value at default, and Vj is the unlevered asset value
at default. The solutions for the firm’s contingent claim prices are summarized in the

following proposition.

Proposition 6. (a) Under the investor’s posterior belief, the unlevered asset value
s given by

V(X,7) = XG(n), (3.18)

where G(7) is the solution for the following ordinary differential equation,

Q=

Ox + Spir + 35 (02 + 02,) + S (0x10m1 + Ox20q2) — 1(7) +
= & (m) (UX,l + %Uﬂ,l) + &(m) (UX,Q + %Uw,z) .

(3.19)
(b) Given the investor’s posterior belief and the firm’s cash flow level at time

t, the firm’s equity value is given by
S(X,m)=(1=n)[V —qVs —cF(1—q)], (3.20)

where V' is the firm’s unlevered asset value, q is the time-t Arrow-Debreu price of a
contingent claim that pays one unit at default, and F' is the present value at time t
of a perpetuity with a constant payment being one. The solution for q is given in the
appendiz. F satisfies

F’ 1F" 1 F’ F’
Tt 57(03,1 +02,)+ o r(m) = 51(”);%1 + ﬁz(ﬂ)fffﬂ,z- (3.21)

(c) The firm’s debt value is given by

D(X,7) =cF(1 —q)+ aqVs. (3.22)
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3.3 Model Implications
In this section, we start first by describing the state-dependent parameter
choices for the economy and the firm’s cash flow processes. We then study properties
of conditional real risk-free rates, wealth-consumption ratio, moments of returns for
the aggregate consumption claim, and the real yield curve in equilibrium. Finally,
we investigate the model-implied levered equity premium and yield spreads for an

average firm in the economy.

3.3.1 Parameter Calibration

Our quantitative analysis requires an identification of preference parameters,
the parameters defining the economy and the firm’s fundamentals.

We proxy the average firm’s expected earnings growth rates by the expected
aggregate earning growth rates and proxy its volatilities by the aggregate earnings
growth volatilities. To estimate both the process of aggregate earnings and consump-
tion, we rely on the maximum likelihood method in Hamilton (1989). We fit our pa-
rameters to the following aggregate US data from 1947-2007: real non-durables plus
service consumption expenditures from the Bureau of Economic Analysis and aggre-
gate earnings data for all nonfinancial firms from the Compustat database. Through
this, we estimate the expected consumption growth rates in both states, its volatili-
ties, expected aggregate earning growth rates, its volatilities and the probabilities of
switching between the states. We fit the idiosyncratic volatility of the firm’s cash flow

process to match the total volatility for an average firm in the economy (BAA-rated)
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(25%). Hu, Pan and Wang (2011) suggests that the noise in the Treasury market
measures well the liquidity in the financial market. We use the noise data in Hu, Pan
and Wang (2011) to calibrate the aggregate liquidity process. Table 1 reports our
parameter values used in the base model calibration. We find that the estimates are

consistent with those reported in the related literature.

Insert Table 1 About Here

We set time preference 5 = 0.02, and relative risk aversion v = 10. In the literature,
researchers have different estimates for the EIS. Some studies (see Hansen and Sin-
gleton (1982), Attanasio and Weber (1989), Vissing-Jorgensen (2002) and Guvenen
(2006)) suggest that the EIS is higher than one, while others (see Hall (1988) and
Campbell (1999)) find the opposite. We set the EIS ¢ = 2 for the base case. However,

we also provide our results for the case when EIS is smaller than one.

3.3.2  Equilibrium Asset Prices

This section discusses our model-implied equilibrium asset prices in the econ-
omy. We begin by analyzing the real risk-free rates. Then, we study the equity pre-
mium of the aggregate consumption claim. Finally, we investigate our model-implied
term structure of government bond yields.

Real risk-free rates

Figure 1 plots the conditional equilibrium risk-free rate as a function of the
posterior probability 7 of the high-growth state. To illustrate the effect of aggregate

liquidity shocks on the risk-free rates, we draw the risk-free rate curves for two cases:
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the case when both consumption and liquidity shocks are priced (solid curve) and the
one when only consumption shock is priced (dashed curve).

For both cases, the risk-free rate is an inverse-hump-shaped function of the
posterior probability (7). Note that the model implies that the investor’s uncertainty
is a hump-shaped function of the posterior (7).” As a result, the investor’s uncertainty
is higher as the posterior moves from either side of its range to the middle. With the
recursive preference (v > 1/1), the investor prefers to resolve the uncertainty sooner
rather than later. This property makes the investor to save more when the uncertainty
about the economic growth is high, leading to a lower risk-free rate. Comparing the
two curves in figure 1 suggests that adding liquidity shocks further decreases the
risk-free rate as m moves to the middle. The intuition is that adding liquidity shocks
makes the posterior m be more volatile, hence bringing up the uncertainty about the
growth state.

The inverse-hump-shaped curves in figure 1 seems to suggest that the corre-
lation between the economic shocks (consumption and liquidity) and the change in
risk-free rate may be positive or negative, depending on the position of m. However,
the fact that the economy spends most of the time in the high-growth state trans-
lates to a highly skewed distribution of the posterior. Figure 1 shows that when the
posterior is close to 1 (high-growth state), a negative consumption shock leads to a

lower risk-free rate.® Thus, our model-implied risk-free rates are procyclical, which

"See equation (3.7).

8The dynamics of the posterior () in equation (3.5) suggests a positive correlation
between economic shocks (consumption and liquidity) and the shock to the posterior. Hence,
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is consistent with the data. At the long-run posterior probability (7 = 0.68), the
risk-free rate is equal to 0.009, which is very close to the data.’

Ezxpected equity premium and return volatility (aggregate consump-
tion claim)

This subsection reports the model-implied equity premium and return volatil-
ity for the aggregate consumption claim in the economy. To pin down the driving
forces for the results, we investigate one special case of the model, where the eco-
nomic agents have CRRA (constant relative risk aversion) preferences. Furthermore,
we examine the effect of liquidity signal precision on the expected equity premium
and return volatility.

Figure 2 presents the results for the base model. The plots in the figure
show that both the conditional expected equity premium and the return volatility
are hump-shaped function of the posterior probability m. Since the economy stays
at the high-growth state in most of the time, those curves suggest that a negative
economic shock brings up the equity premium and the return volatility. Thus, the
model indicates countercylical equity premium and return volatility. Also calibrated
to the aggregate dividend’s data, the model generates reasonable equity premium and
return volatility for the stock market, which are close to the data in Bansal and Yaron
(2004) (See figure 9).

The posterior affects the equity premium through two channels. First, when

a negative consumption shock reduces the posterior.

9Bansal and Yaron (2004) documents that the mean risk-free rate is equal to 0.0086 in
their sample.
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the posterior shifts from either side of its range to the middle, the uncertainty about
the growth state rises. Given that the investor prefers an early resolution of un-
certainty, the increase in uncertainty translates to a higher risk price. Second, the
dynamics of the posterior (shown in equation (3.5)) shows that shifting the posterior
to the middle brings up its variance. The higher volatility in the expected consump-
tion growth indicates a more volatile return process for the aggregate consumption
claim.!® Panel B clearly illustrates this second effect. The combined effect of the two
channels is to increase the equity premium with the posterior shifting to the middle
of its range. The dashed curves in figure 2 give the proportions of the equity premium
and return volatility solely due to the priced liquidity shock. Comparing the solid and
dashed curves gives the fact that the liquidity shock contributes significantly to the
total equity premium and return volatility. Furthermore, the effect of the liquidity
strengthens with a higher uncertainty about the growth state.

In summary, the base model generates a positive risk premium for the in-
vestor’s uncertainty. Liquidity shocks introduce an additional volatility to the poste-
rior, raising the uncertainty about the growth state. This property helps generate a
positive liquidity risk premium in the economy.

Contrary to other well known learning models in the literature like Veronesi

(2000)," our base model generates a reasonable risk premium for the investor’s un-

107t is due to the fact that the payoff for aggregate consumption claim is the future
consumption flow.

UIn the Veronesi (2000) framework, the economic agents have CRRA utility function.
That paper generates a seemingly surprising result: the higher the investor’s uncertainty,
the lower the risk premium.
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certainty. In fact, when we set v = 1/¢ or v = 10,9 = 0.1, the general model
degenerates to a framework similar to that in Veronesi (2000). Figure 3 plots the
conditional equity premium and return volatility in that CRRA framework. Con-
sistent with Veronesi (2000), a CRRA utility function leads to a negative equity
premium and a negative correlation between the consumption shocks and the return
for the aggregate consumption claim. More importantly, the CRRA framework does
not price the liquidity shocks, as shown by the dashed curve in Panel A. The intuition
is that in the Veronesi (2000) framework, a high risk aversion () translates to a high
agents’ hedging demand for the equity after bad news in dividends (or consumption),
which counterbalances the negative pressure on prices from the negative dividend (or
consumption) shock. The dominance of the former effect results in a negative equity
premium. Our model solution clearly illustrates this effect. With CRRA preference
(7 = 1/4), equation (3.12a) suggests the risk price for consumption shock is equal to
o, which is a positive constant. Equation (3.12b) suggests that the liquidity shock
is not priced. Thus, the equity premium is largely proportional to the return volatility
(see equation (3.13)). The solutions for the return volatility are given by equations
(D.1.11b) and (D.1.11c) in the appendix. The solutions suggest that when the wealth-
consumption ratio is decreasing with the posterior 7 (or countercyclical), the return
for the aggregate consumption claim co-varies negatively with the consumption and
liquidity shocks. Furthermore, the increase in the variance of the posterior (or shift-
ing of m to the middle point of its range) make the consumption flow (or cash flow

of the claim) be more volatile, therefore raising the return variance. Thus, as shown
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in figure 3, when the posterior shifts from either side of its range to the middle, the
return volatility and equity premium get more negative.

Figure 4 illustrates the difference in the wealth-consumption ratio generated
by the base model (solid curve) and the CRRA framework (dashed curve). The base
model implies a procyclical wealth-consumption ratio (or the wealth-consumption
ratio is higher in the high-growth state), which is consistent with the empirical ev-
idence. However,the CRRA framework implies a countercylical wealth-consumption
ratio. Intuitively, the posterior () affects the wealth-consumption ratio through the
interaction between the income effect and the substitution effect. First, the higher
the posterior (), the higher the expected growth rate. This property makes the eco-
nomic agent be more wealthier and consume more, hence leading to a lower wealth-
consumption ratio. This is the income effect. Second, the substitution effect makes
the agent save today for consuming more tomorrow, indicating a higher wealth con-
sumption ratio. When ) > 1, the second effect dominates the first one, translating to
an increasing wealth consumption ratio. When 1 < 1, we obtain the opposite result.

So far, we have shown that the base model generates a positive liquidity risk
premium. The aggregate liquidity works as an informational channel which helps
investors learn about the state of growth in the economy. The liquidity premium
are positively related to the uncertainty about the growth rate. In the next, we
quantitatively gauge the effect of the liquidity signal precision on the equity premium
and return volatility. We calibrate the model with a high precision of the liquidity

signal. In the new calibration, the volatility of the liquidity growth is one third of
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the one used in the base model calibration. Figure 5 plots the model-implied results
with respect to different levels of the posterior.

Figure 5 shows that with a relatively high precision of the liquidity signal, the
model generates a much higher equity premium and return volatility than those in fig-
ure 2. In particular, at the long-run posterior (7 = 0.68), the equity premium and the
return volatility are respectively around 7 and 2 times the correspondents generated
in the base model calibration. The high precision helps amplify the positive effects of
the investor’s uncertainty on the equity premium and return volatility. Furthermore,
comparing the solid and dashed curves in both panels shows that the liquidity shocks
contribute to most of the total equity premium and the return volatility. Intuitively,
with a higher precision, a realized liquidity shock makes the economic agents adjust
their belief of the growth state more strongly, hence increasing the volatility of the
posterior (see equation (3.5)). As discussed earlier, the higher volatility of the pos-
terior translates to a higher uncertainty about the growth state, hence raising the
return volatility and the equity premium.

Real Yield Curve

Figure 6 plots the model-implied real yield curve for the government bonds
in the economy with respect to different levels of the posterior (7). The shape of
the yield curve depends on the posterior. When the investor puts a high belief on
the high-growth state (7 = 0.9), the model generates a downward sloping real yield
curve. When the investor believes more in the low-growth state (7 = 0.3), the model

generates an upward sloping yield curve.
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Intuitively, when the posterior is high (or 7 is at the right side of its range),
a negative consumption or liquidity shock raises the investor’s uncertainty about the
consumption growth rate. Hence, the investor favors more the long-term real bonds
to hedge the long run uncertainty in consumption. The relatively higher price in the
long-term real bonds translates to a relatively lower yield in the long maturity. When
the posterior is low (or 7 is at the left side of its range), a negative consumption or
liquidity shock brings down the investor’s uncertainty about the consumption growth

rate and the opposite reasoning follows.

3.3.3 Levered equity premium and yield spreads for an average firm

In this section, we study the model-implied levered equity premium and yield
spreads for an average firm in the economy.

Figure 7 plots the conditional levered equity premium as a function of the
posterior (7). The hump-shaped pattern is similar to that in figure 2. Along with
similar line of reasoning in the section of aggregate consumption claim, the posterior
affects the equity premium through two channels. First, shifting the posterior to the
middle increases the uncertainty about the growth and hence the risk prices. Second,
shifting the posterior to the middle brings up the return volatility for the firm’s equity.
The combined effect of the two channels is to increase the levered equity premium.

Figure 8 reports the model-implied yield spreads with respect to 7 for two
cases: with (solid curve) and without (dashed curve) liquidity shocks. First, the plot

suggests that in both cases, the yield spread is a hump-shaped function of the posterior
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(7). The intuition is that the bond risk premium increases with the uncertainty about
the state while the uncertainty rises with the posterior’s (7) shift to the middle of
its range. More importantly, the wide gap between the solid and dashed curve shows
that the liquidity risk premium constitutes a significant part of the yield spread. At
the long-run probability of high-growth (7 = 0.68), the model indicates a total yield
spread of around 185 basis points and a liquidity premium of around 55 basis points.
These numbers are consistent with the empirical estimates for BAA-rated corporate
bond.!? Furthermore, the liquidity premium seems to decrease with the posterior (7).
In the model, a low expected economic growth rate leads to a relatively high liquidity
premium. The plot suggests a countercyclical bond liquidity premium. This feature

is consistent with the empirical evidence in the literature.'3

3.4 Conclusions
This study proposes a consumption-based learning model to study the inter-
actions among aggregate liquidity, asset prices and macroeconomic variables in the
economy. By incorporating aggregate liquidity as an informational channel for the
economic agents to learn about hidden economic states, the model generates a pos-
itive market price for liquidity risk. This feature helps generate reasonable risk-free
rates, equity premium, real yield curve, and asset prices in equity and bond markets.
We find that the model helps explain many empirical facts in the literature,

including procyclical risk-free rates and wealth consumption ratios as well as counter-

12Gee Huang and Huang (2003) and Friewald, Jankowitsch and Subrahmanyam (2011).

13Gee Acharya, Amihud and Bharath (2010).
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cyclical equity premium and return volatility. The liquidity risk premium increases
with the precision of the fluctuations of liquidity itself. In particular, at the long-run
mean of the posterior belief, the model-implied equity premium increases by 7 times
and the return volatility increases by 2 times when the liquidity growth volatility
decreases 67%.

We apply the model-implied pricing kernel to price the contingent claims of
an average firm in the economy. The model generates reasonable levered equity
premium and bond yield spread. More importantly, the model suggests that liquidity
risk premium contributes significantly to the total yield spread of the corporate bonds.
The magnitude and dynamics of the bond liquidity premium is consistent with the
empirical evidence. At the long-run mean of the posterior belief, the model implies
a total yield spread of around 185 basis points and a liquidity premium of around 55

basis points. The model also generates a countercyclical bond liquidity premium.



Table 3.1: Parameter Values.!

Parameter Symbol State I State 2
Expected consumption growth Oc 0.0386 0.0071
Consumption growth volatility lofe, 0.0286  0.0286
Expecteg liquidity growth 0, 0.2046 -0.1683
Liquidity growth volatility 1 oL 0.0418  0.0418
Liquidity growth volatility 2 o2 0.1873  0.1873
Probability of switching A 0.0921  0.1843
Expected earnings growth Ox 0.0748 -0.0551
Earnings growth volatility 1 ox.1 0.0353  0.0353
Earnings growth volatility 2 ox2 0.1513  0.1513
Earnings growth volatility 3 ox3 0.1958  0.1958
Relative risk aversion 10 10
Time preference 0.02 0.02
Elasticity of intertemporal substitution P 2 2

! This table reports the parameter values used in the base model. We
use quarterly real non-durable goods plus service consumption ex-
penditure from the Bureau of Economic Analysis and the quarterly
nonfinancial firms’ earnings data from the Compustat database to
calibrate 0c 1, Ocz2, oc, Ox1, Ox2, 0x1 and oxo and A. We use
the noise data in Hu, Pan and Wang (2011) to calibrate 6y, 1, 07,2,
or,1 and or. The idiosyncratic volatility ox 3 is calibrated to fit
the total volatility for an average firm in the economy (BAA-rated)

(25%). State 1 denotes the state with high consumption growth.

149
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Risk-free rate
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Figure 3.1: Conditional risk-free rate.
This figure plots the risk-free rates with respect to different posterior belief (7) that
the state is good. The solid curve corresponds to the case with both consumption
and liquidity shocks in the model and the dashed curve corresponds to the case with
only consumption shocks. The other parameter values are provided in Table 1.
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A. Conditional expected equity premium
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Figure 3.2: Conditional equity premium and conditional return volatility of the ag-
gregate consumption claim in the base model.

This figure plots equity premium (Panel A) and volatility of aggregate consumption
claim (Panel B) with respect to different posterior belief (7) that the state is good. In
Panel A, the solid curve corresponds to the total equity premium with both consump-
tion and liquidity shocks priced in the model and the dashed curve corresponds to
the risk premium due to liquidity shocks. In Panel B, the solid curve corresponds to
the total volatility of the return for the aggregate consumption claim with both con-
sumption and liquidity shocks priced in the model and the dashed curve corresponds
to the volatility due to liquidity shocks. The other parameter values are provided in
Table 1.
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A. Conditional expected equity premium
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Figure 3.3: Conditional equity premium and conditional return volatility of the ag-
gregate consumption claim in the Veronesi (2000) framework.

This figure plots equity premium (Panel A) and volatility of aggregate consumption
claim (Panel B) with respect to different posterior belief (7) that the state is good.
In Panel A, the solid curve corresponds to the total equity premium and the dashed
curve corresponds to the risk premium due to liquidity shocks. In Panel B, the solid
curve corresponds to the total volatility of the return for the aggregate consumption
claim and the dashed curve corresponds to the volatility due to liquidity shocks.
v =10 and ¢ = 0.1. The other parameter values are provided in Table 1.
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Wealth—consumption ratio
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Figure 3.4: Conditional wealth-consumption ratio.
This figure plots the wealth-consumption ratios with respect to different posterior be-
lief () that the state is good. The solid curve corresponds to the wealth-consumption
ratios implied from the base model and the dashed curve corresponds to the Veronesi
(2000) framework (v = 10 and ¢» = 0.1). The other parameter values are provided in
Table 1.
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A. Conditional expected equity premium
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Figure 3.5: Conditional equity premium and conditional return volatility of the ag-
gregate consumption claim with high precision of liquidity signals.

This figure plots equity premium (Panel A) and volatility of aggregate consumption
claim (Panel B) with respect to different posterior belief (7) that the state is good.
In Panel A, the solid curve corresponds to the total equity premium with both con-
sumption and liquidity shocks priced in the model and the dashed curve corresponds
to the risk premium due to liquidity shocks. In Panel B, the solid curve corresponds
to the total volatility of the return for the aggregate consumption claim with both
consumption and liquidity shocks priced in the model and the dashed curve corre-
sponds to the volatility due to liquidity shocks. The liquidity growth volatilities are
one third of those in Table 1 (011 = 0.0125 and 0,5 = 0.0562). The other parameter
values are provided in Table 1.
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The Equilibrium Term Structure of Real Interest Rate
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Figure 3.6: Equilibrium term structure of real interest rate.
This figure plots the real yield curve with respect to two different levels of posterior
beliefs (7) that the state is good: m = 0.3 (solid) and 7 = 0.9 (dashed). The other

parameter values are provided in Table 1.
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Levered equity risk premium
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Figure 3.7: Levered equity premium for an average firm in the economy.
This figure plots the levered equity premium of an average firm in the economy with
respect to different posterior beliefs (7) that the state is good. The other parameter
values are provided in Table 1.
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Yield spreads (bps)
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Figure 3.8: Yield spreads for an average firm in the economy.
This figure plots the yield spreads of an average firm in the economy with respect to
different posterior beliefs () that the state is good. The solid curve corresponds to
the case with both consumption and liquidity shocks in the model and the dashed
curve corresponds to the case with only consumption shocks. The other parameter
values are provided in Table 1.
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Figure 3.9: Equity premium of the stock market.
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This figure plots the implied stock market equity premium and return volatility with
respect to different posterior beliefs (7) that the state is good. The solid curve
corresponds to the case with both consumption and liquidity shocks in the model
and the dashed curve corresponds to the case with only consumption shocks. The
other parameter values are provided in Table 1. Calibrated to the data, the dividend

growth process Y; follows F* = (POc. s,
w = 0.03 and oy = 0.11.

ayi

—w)dt + ¢pocdzy + oydz,, with ¢ = 2.5,
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APPENDIX A

ADDITIONAL TABLE AND FIGURE FOR CHAPTER 1

This appendix provides a table with a list of six bankruptcy cases involving

the judgement from the court on the filing intentions and a figure illustrating how

the Moody’s global corporate default rates change with business cycles.

Table A.1: Examples of Voluntary Filing of Chapter 11 Bankruptcy (in Bad/Good

Faith).

Company Name

Background

Little Creek Develop-
ment

Little Creek obtained a loan from Commonwealth for the purpose
of developing town homes on two tracts of land. In March 1984,
the parties signed promissory notes, deeds of trust, and other fi-
nancing documents that would commit Commonwealth to fund up
to $4.7 million for the project.In January 1985, Little Creek filed
a petition for reorganization under Chapter 11 of the Bankruptcy
Code. Commonwealth moved in the bankruptcy court for relief
from the automatic stay, seeking to foreclose the property. The
bankruptcy court lifted the automatic stay after concluding the
bankruptcy petition was filed in order to escape the necessity of
posting a substantial bond. The Fifth Circuit Court found that
more evidence was necessary to support the bankruptcy court’s
conclusions and remanded the case.

Carolin Corporation

In the summer of 1986, Carolin defaulted on a purchase money
promissory note. On December 3, 1986-fifty minutes before a
scheduled foreclosure sale under the deed of trust—the company
filed for Chapter 11 protection. The filing automatically stayed
foreclosure. The following day, Carolin’s secured creditor filed a
motion in the bankruptcy court seeking relief from the automatic
stay, adequate protection, conversion of the case to Chapter 7 or,
in the alternative, dismissal of Carolin’s Chapter 11 petition. On
April 24, 1987, the bankruptcy court entered an order dismissing
Carolin’s Chapter 11 case for “lack of good faith in filing the
petition.”
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Table A.1 continued

SGL Carbon

In 1997, the United States Department of Justice commenced an
investigation of alleged price-fixing by graphite electrode manu-
facturers including SGL Carbon. Shortly thereafter, various steel
producers filed class action antitrust lawsuits against SGL Car-
bon and other manufacturers. On December 16 of 1998, SGL
Carbon filed a voluntary Chapter 11 bankruptcy petition in the
U.S. District Court for Delaware. In January 1999, the Com-
mittee of Unsecured Creditors filed a motion to dismiss SGL Car-
bon’s bankruptcy petition on the grounds that it was a “litigation
tactic designed to frustrate the prosecution of the civil antitrust
claims pending against SGL and preserve SGL’s equity from these
claims”. The district court denied the motion to dismiss, but later
on, the U.S. Third Circuit Court reversed the order because SGL
Carbon’s Chapter 11 petition lacked the requisite good faith.

Fraternal Composite
Services, Inc.

On July 1, 1999, Karczewski filed a petition with the New York
State Supreme Court, seeking the judicial dissolution of the cor-
poration pursuant to New York Business Corporation Law. On
August 3, 1999, the corporation elected to purchase Appellee’s
one-third interest rather than having the corporation dissolved.
Before the court hearing on this issue, on April 29 of 2003, the
corporation filed a voluntary petition pursuant to Chapter 11 of
the Bankruptcy Code. On July 11 of 2003, Karczewski filed a
motion to dismiss the Chapter 11 petition. On October 16 of
2003, the Bankruptcy court issued a Letter Decision and Order
granting Karczewski’s motion. The corporation’s intent was to
use the bankruptcy process solely as a means to delay, frustrate
and relitigate the state-court issues.

Integrated Telecom,
Inc.

Early in 2001, Integrated negotiated a lease of real property with
NMSBPCSLDHB for a lease term of 10 years starting on Feb 23,
2001. Later on, the market for Integrated’s products deteriorated
and the firm faced a class action alleging claims in the amount
of $93.24 million for various violations of the Securities Act of
1934 relating to the company’s IPO. In Oct 2002, it filed a volun-
tary petition for relief under Chapter 11. Shortly thereafter, the
landlord filed a motion to dismiss the Chapter 11 case alleging
Integrated had not filed its voluntary petition in good faith and
that the case was filed to interfere with the Landlord’s claims and
to increase any distributions to Integrated’s shareholders. Both
the bankruptcy court and the district court denied the landlord’s
motion to dismiss. The landlord then appealed the Third Circuit,
who reversed the order of the district court and remanded the
bankruptcy court to dismiss Integrated’s bankruptcy petition.
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Table A.1 continued

General Growth Prop-
erties

Since the fall of 2008, many of the GGP group properties faced
covenant defaults. Some lenders began exercising cash control and
other remedies over properties that generated sufficient cash flow
to cover their own operating expenses. Certain other properties
faced loan maturity or “hyperamortization” in time-frames rang-
ing from the next few months to years. On April 16 of 2009, GGP
filed voluntary petitions under Chapter 11 of the Bankruptcy
code. Shortly thereafter, several secured creditors filed motions
to dismiss the Chapter 11 cases. Six motions were filed, with one
party subsequently withdrawing its motion. The primary ground
on which dismissal is sought is that the cases were filed in bad
faith in that there was no imminent threat to the financial viabil-
ity of the debtors. On August 11 of 2009, the bankruptcy court
at the south district of New York denied the motions to dismiss.
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Figure A.1: Annual Moody’s Global Corporate Default Rates.
This figure illustrates the time-series of the annual global corporate default rates.
Shaded areas are NBER-defined recession periods. Data source: Moody’s.
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APPENDIX B
OVERVIEW OF THE PROOFS OF PROPOSITIONS AND
CALIBRATION METHODOLOGY IN CHAPTER 1

In this appendix, we provide complete expressions of the terms that appear in
the propositions. We only give the steps of the derivation in order to save space. We
refer readers to Supplementary Appendix for details of the proofs, which is available
upon request. In what follows, sections B.1-4 give an overview of the proofs for the
propositions. Section B.5 provides the solution for the firm’s security values for the
case of debt-equity swap. Section B.6 gives the parameter choice for the representative
firm and the bankruptcy environment and illustrates an estimation methodology of

the strategic debt service, financial distress and liquidation costs.

B.1 Proof of Proposition 1
Given the shareholder’s payoft function, the equity value S;;, conditional on

current state being ¢ at time ¢, is

Sig = (1—=n)E; [/ T (X, —¢) ds|s; = z} +E, [ESTB |s; = z} ,ie{1,2} (B.1.1)
t Uy

T

where S;, is the equity value at the Chapter 11 boundary. The right side of equation

(B.1.1) is solved term by term. Specifically,

2
B 7_[_5 .
E, [/ — X ds|s = z] =Vi(X0) =) a) Vs, (B.1.2)
t t

j=1
T 2 D
B 1 D

E, [/ Ts e ds ls; = @] =c _ Z ijt 7 (B.1.3)
t Tt reyi | re;
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and
. 2
TB
Et |:7T_tSTB ‘St :| Z ng tSB] (B14)
7j=1
where qg’t denotes the time-t Arrow-Debreu price of a claim in state ¢ that pays 1 unit
of consumption conditional on the event that Chapter 11 will occur in state 5. The

solutions for r¢;, qi?-,t are given in Supplementary Appendix B. Plugging equations

(B.1.2)-(B.1.4) into equation (B.1.1), yields

2
Sy = Vi(Xy) — — % 4 qu [ - - VBJ} +> (¢},S8;)  (B.L5)
7 ‘]:1

where Sp; is the equity value at Chapter 11 boundary with the state of economy
being j.

The debt value at time ¢, conditional on the state being ¢, is
s 7TS . 7TTB . .
D, = E; —cds|sy=1| +Ey | =2 D, |sy =i |, ie{1,2} (B.1.6)
t Tt Ty

where D, is the debt value at the Chapter 11 boundary. The second term in equation
(B.1.6) is
2
T, ,
Et |:7T_fDTB |St = Z:| = Zl (qilg)‘,tDBJ) . (Bl?)
]:

Plugging equations (B.1.3) and (B.1.7) into equation (B.1.6) yields

2 2
1 q;
Di,t = C < Z ]t> Z ql] tDB] (Blg)
j=1

r
Ci =1

where Dp ; is the debt value at the Chapter 11 boundary with the state of economy
being j. The levered asset value or firm value v;; is equal to the sum of S;; and D; ;.
The details on the proof of equations (B.1.2)-(B.1.4) and equation (B.1.7) are

given in Supplementary Appendix B.
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B.2 Proof of Proposition 2
Given the Chapter 11 boundary Vp; and the Chapter 7 boundary Vz ;, with

the state of economy being ¢ at the Chapter 11 boundary, the firm value at default is

vp; = E¢ [/OT e it (61/; +nclysvy, — WWlVL,i<w<VB,¢) dt| + o, E® [e_mVW} ,
(B.2.1)
where the liquidation time 7 = 75 A 74 with 75 being the time of liquidation due to
spending more than the grace period in default and 74 being the time of liquidation

due to limited liability violation. We reorganize quation (B.2.1) as

UB;i = E° [fOT e it (5W1W>VB¢ + 7701‘/,5>VB71- + (5 - w)WlVL,i<Vt<VB,i) dﬂ
+O{1'EQ [6_”'7—‘/1'77-] .

(B.2.2)
We obtain the solution for each term in equation (B.2.2) as follows.
EQ (foT e_rit‘/t]“/t>VB,i dt)
_ 1 1 Y(=AWd)-F(\)
= Viixtor,m — Vi [somexm T wowa L2 <) (B.2.3)
22z
e P > )]
where
o0 22 $2
U(z) = / 25 dz = 1+ V2rre §(x), (B.2.4)
0
and

F(z)=e% [e(ZL2;I>2 — oV2rdo (ZL\;adx)] , (B.2.5)

with ¢(+) being the density function for standard normal distribution,

_(p _ 1.2 ) _ ) D) _ 1 Vi, o s2 id?
b= (91 20X7i> Joxis A=2r; + 0%, 2z = P In Ve and ox; = /0%, + 0%,



166

The solution for the second term in equation (B.2.2) is given by

TeTi — T(—AVd)—F(X
E? |y e el x s xp dt] =ne [A(Al—b) abverk : \II(A\)/&) X p(r, < 7)
P(TQ > 7'4)] R

62/\zL
YO
(B.2.6)

where () and F() are defined in equation (B.2.4) and equation (D.2.4), respectively.

The solution for the third term in equation (B.2.2) is given by
(6 - W)EQ (foT eirit‘/t]‘VL,i<Vt<VB,i)

- 1—eloitb+N)zg, 2 U(—(04+b)vVd)—F(0:4b)
= V(6 - w)m = V(0 —w) {(()\—l—ai—l—b)(ai-‘rb—)\) ’ T (A/d)
e(@i b+ 0) 2 W(AVd)—F(=)\) 1 U(=AVd)—F(\)
TR wowd) T Aoy W) ) P(my < 14)
62)\2 76(o'i+b+)\)z
];\(a¢+b7)\) =P(m > T4)|
(B.2.7)
The solution for the fourth term in equation (B.2.2) is given by
EQeV ) = Vi | HEHVE) Floitt)
OézE (6 %,T) - alVB,l |: \IJ(A\/&) P<7—2 < T4) (B28)

+ e(o’i+b+)\)ZLP(7—2 > 7.4)} )

Plugging equations (B.2.3), (B.2.6), (B.2.7) and (B.2.8) into equation (B.2.2)

gives

vBi = Vit = —P(1y < 1) {VB,iA(d) + B(d) + (J(d)] —P(m > ) [C(d) + D(d)],

(] rl
(B.2.9)
where
- —2(6—w) 1 ¥(=(oxi+b)vVd)—F(ox,itb)
A<d) T | OFoxatb)(oxitb-N) az} (A d)
e N OXit L g (W)~ F(=)) S—w s Y(=Md)-F())
(0 —w) oot wowa) T [A(UX,ierf)\) + A(Afax,rb)] (M)

_ A+ W(=AWA) - F())

B(d )
(@) = =55 T (A/d)
770 )\ _ b e(O'X,i+b+)‘)ZL w |:]_ — 6(”X,i+b+>‘)zllj|
d)=— - ——+0Vg; g ’
¢(d) T 2\ +oVe, AA+oxi+0b) G AA+ox,i+b)
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22z _lox i Tb+N)zp
Xox,i+b—X)

e2Az 2Mz
D(d) == VBJ' )\()\(S_ij_b) + 7;\0(8)\_{3 + VB,i(5 — UJ)

Extending the methodology proposed by Dassios and Wu (2008) yields
o0 2k+1)(—=
Zk:o & <( +\}é L))
%) 2k(—=z '
2 ( (x/EL)> T 2\/1%

A detailed proof of Proposition 2 is provided in Supplementary Appendix C.

P(ry > 1) = (B.2.10)

B.3 Proof of Proposition 3
When the state of economy is ¢ after filing for Chapter 11, given the sharehold-
ers’ strategic debt service ¢ under Chapter 11, the firm’s debt value at the Chapter

11 boundary is

DB,i = E9 [fOT e~ it (Cth>VB,i + 1901VL,1‘<V¥<VB,1') dt] —+ OéiEQ [6_”7—‘/@’7]
= JcEY [ [ e ysy, dt] + (1 = 9)cEQ [ [ ey, sy, dt] + ;B9 eV, ]

(B.3.1)

The first term in equation (B.3.1) is given by

E° [/ e_ritlvva,idt} = {/ e‘”tlvt>vL,idt} — E9 {/ e_ritlvt>VL,idt:| :
0 0 T

(B.3.2)
where
= —T; / * 2z _A2 1 €(b+)‘)zL
EQ {A e Ztht>VL,idt:| = EQ |:/0 eb te” 2 tth>ZL,idt:| = 7‘_2 — m
and
-7 _ 1 U(=bVd)—F(\)  ®+Nz,  T(AWd)—F(=\)
BT e von dt] = [_ VOVE) AN w(wWa) ]P (72 < 71)

+—)\()\1_b) etV P(1y > 7).
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Plugging equations (B.3.2), (B.2.6) and (B.2.8) into equation (B.3.1) gives

Dp,; =9cE(d) + (1 —9)cG(d) + oV, H(d), (B.3.3)
where
1 e(b+N)zr, 1 U(=bVd)—F(\)  e0+tNzrL T(Ad)—F(=)\)
Eld) = - Sgoy — [r_ N R R TN }Pﬁ? <)
_A(/\lib)e(b—i—)\)zL Py > 14),
1 U(=AVd) — F()\) o

G(d) = 1- P(ry <1y) — e P(m9 > 14) |,

and
U(— b)vd) — F b
H(d) _ ( (U + )\/_) (U + >P(T2 < 7_4) + e(a+b+)\)ZLP(7_2 > 7_4)'

(A\Vd)
Supplementary Appendix D provides a detailed proof of Proposition 3. The solution
for the strategic debt service ¥ is determined by the shareholders’ bargaining power
during the reorganization process. The procedure to solve for the equilibrium strategic

debt service ¥ is shown in Supplementary Appendix E.

B.4 Proof of Proposition 4
When the firm’s unlevered asset value is V;, < V' < Vg at time zero, we denote
d' as the remaining time to the allowed grace period, 75 as the time for the firm’s
unlevered asset value to hit Vg, 77 as the time for the firm’s unlevered asset value to
drop to Vi, and My and Cj as the accumulated cash flow position and accumulated

coupon after filing for Chapter 11. We define 7/ = d’ A 77. Then, the firm’s equity
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value at Vz, <V < Vg is

S(V,d', My, Co) = (Mo = 9Co) P(rhy < ') + B | [ €77 (8 = w)V; — 0e) dil <o
+SpE? (e7 51, ) .
(B.4.1)

We denote A; = P(7; < 7') and obtain that
Ay = P(rp </7‘£)/P(7’£ <d)+ P(tp < d)P(1;, > d')
Skt [ PNV = )+ N0V ]+ [N - )

e2VEN(—by/d — )} : [N(bﬁ+ﬁ) VN (W — ﬁ)].
(B.4.2)
We also obtain that
5 2V .2
E° YAl | = —— 2 A, — el B.4.3
/0‘ e t TB<T] )\2—(O'+b)2|:1 € Bf(27) 9 ( )
5 2 ;A2
E° / e—rtdtlﬂ_?q/] =T [Al _ o f(?,o)} : (B.4.4)
; _
and
EQ< a1, <T> = f(r,b), (B.4.5)

where the function f is defined as
floy) = |0 VERAEN(/ Q) - Jb) + etV
)% V! _ ’ \v
N(—/@e+2)d - )] - [NV + J) — e ViNva - )]
eVL’;y[e 2x+y2vi—e_wvi} V! V!
: [e‘QbVLN(b\/J — )+ N(=bVd - ﬁ)} .

Plugging equations (B.4.2), (B.4.3)-(B.4.5) into equation (B.4.1) yields

+

e\/2z+y2v’ _67\/21+y2V’

S(V, d', My, CO) _ (MO _ 1900)141 + % [Al _ €(U+b)Z;3f(%27 O)}
— 335 | Ay = B F(5,0)] + Sf(rb),

Supplementary Appendix F provides a detailed proof of Proposition 4. Also we
derive the solution for the debt value of a distressed firm in Supplementary Appendix

G.
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B.5 Debt-equity Swap

We use Vs, to denote the unlevered asset value at which the debt-equity swap
occurs when the state of the economy is 7. At the debt-equity swap boundary, the firm
becomes an all-equity firm and the firm value is equal to the unlevered asset value
since there are no tax benefits or bankruptcy costs afterwards. When the unlevered
asset value hits Vg, the shareholders and the creditors share the firm and determine
the sharing rule through a bargaining game. We denote the bargaining power of
shareholders by (, the bargaining power of creditors by 1 — (, and the proportion of
firm value shared by the shareholders in state ¢ by y;. Given that the state of the
economy is ¢ at the debt-equity swap, the incremental value for shareholders from the
debt-equity swap is x; Vs, and the incremental value for creditors is (1—x;)Vs;—a; Vs,
or (1 —a; — x;)Vs,. Following Fan and Sundaresan (2000), we use Nash equilibrium

to solve the sharing rule x;, which is given by
X; = argmaz (1 —a; — Xi)V&i]l_C (Xz‘VS,i)C . (B.5.1)

After taking the first order condition with respect to x; in equation (B.5.1), we obtain
xXi = (1 —a;)¢. Thus, at Vg, with the state of the economy being i, the equity and

debt values are given, respectively, by
Ssi = (1 = a;)(Vsy, (B.5.2a)

and

Dgi=[1—(1—a;)¢] Vs, (B.5.2b)
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Similar to derivation of equation (B.1.5), the equity value at time ¢, given that the

state of the economy at ¢ is i, is

Sz’,t:Vz‘,t— _77 +qu(

Similar to derivation of equation (B.1.8), the debt value at time ¢, given the state of

2
— VS,]> + Z qw tSSj . (B53)
7j=1

rc,j

the economy at ¢ is ¢, is

1 2
D( S
j=1

(NeX]

D 2
4;j ¢

24+ af Dsy) - (B.5.4)
e =
In our model, the debt-equity swap boundary Vg, is endogenously determined by
solving the following two standard smooth-pasting conditions:

851(‘/, VS,17 VS,2) ‘
oV V=Vs,

=0, (B.5.5a)

and

05:(V,Vs1,Vs2) |
oV V=Vs2

—0. (B.5.5b)

B.6 Parameters Choice for the Representative Firm and the
Bankruptcy Environment
B.6.1 Parameter Choice of the Firm
Our parameter choices concerning the firm’s fundamental and its bankruptcy
environment are reported in Panel B of Table 1 in the main content of this paper.
In this section we provide a detailed discussion of our parameter choices. Our aim
is to choose parameter values as close as to the previous findings in the literature
and to make our results easily understood. In what follows, we describe all the eight

parameters.
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Ezxpected growth rate of the firm’s cash flow (0): In the calibration for the rep-
resentative firm in the economy (BAA-rated), we set the expected growth rate to be
the same as that for the average nonfinancial firm in the economy. Our methodology
for the latter proxy is described above in the economy section and their values are
given in Panel A of Table 1.

Idiosyncratic earnings volatility for firm 1 (0;‘((1,1'): Panel A of Table 1 provides
our estimate for the systematic volatility in each state of the economy. We assume
that the idiosyncratic component of earnings volatility is state independent. The
reason for this is that there is contrasting evidence on the subject. On one hand, as
documented in Engle and Ng (1993) O’é?’i is high in recessionary times. On the other
hand, a series of papers (among others, Campbell et al (2001)) document an increase
in idiosyncratic volatility in the nineties, which was a period of unprecedented boom
in the economy. Thus, in order to calibrate idiosyncratic volatility, we fit the total
volatility to the average volatility for BAA-rated firm, 25%, as reported in Schaeffer
and Strebulaev (2008). We find that (0'¢") is about 20% percent.

The tax rate (n): For tax rates, we use only one number for both economies.
We have no reason to believe that effective tax rate is state dependent. We set
the value as 15 percent, the number used in previous studies. We also checked this
number with average forward-looking marginal effective tax rates from John Graham’s
website.

The liquidation cost (1 —a): There is a consensus that asset sales of distressed

firms suffer from large discounts if the entire industry (economy by analogy) experi-
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ences liquidity constraints (see Shleifer and Vishny (1992), Pulvino (1998, 1999)and
Maksimovic and Phillips (1998)). Thus, we choose to calibrate our model to a coun-
tercyclical liquidation costs. We use the numbers given in BKS (2010): 70% (90%) in
bad (good) economic times. For an optimally levered firm, these numbers correspond
to the recovery rates reported in Acharya et al (2007).

The cost of financial distress (w): These costs include payments to lawyers,
accountants, trustees, the loss of customers and strategic employees and important
reduction in credit facilities. As in the case of liquidation costs, we choose coun-
tercyclical distress costs (our estimation in Supplementary Appendix J also confirms
this assumption). One difficulty is that most previous studies do not report the total
distress loss. Instead, they measure only the direct costs of bankruptcy. The other
difficulty is that some researchers use market value as the denominator to compute
the proportional rate, while others use book value. Some use the value at liquidation
as the denominator, while others use the value at the onset (or one year prior) to
default as the denominator. In this calibration, we choose to consider the measures
as of the value at the onset of the distress and use the two numbers used in the BCS
(2007) study (w; = 0.03, we = 0.01).

The bargaining power (¢): The bargaining power of the shareholders in the
negotiation process is unobservable. Given the Nash equilibrium approach that we
implement in this study, there is a one-to-one mapping between this parameter and the
strategic debt service (see Supplementary Appendix E for detail). Instead of setting

an ad hoc number for ({), we assume a state-independent exogenous ¥ = 0.3. This
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translates to a countercyclical ¢ in our model. This assumption sounds reasonable
to us, because given a higher liquidation costs in recession, debtholders have much
to lose if they insist on opposing the reorganization plan offered by equityholders.
Holding everything else constant, this would implies a higher ( in this state of the
economy.

The grace period (d): Evidence suggests that Chapter 11 process may take
only a few months in some cases, but in other situations, the process can be long and
complex and may take several years. !. We choose the value of d as state independent
and set its value to d = 2 because it is not clear whether the time spent in Chapter
11 should be longer or shorter in recessions than in booms. On one hand, during
recessions, liquidity in the market is limited and firms may have hard time raising
DIP financing that is known to be strongly correlated to a prompt survival. On the
other hand, the cost of bankruptcy is much higher in recessions, which discourages
managers to spend longer time in bankruptcy. In addition, liquidation costs are severe
during economic downturns, which would induce a higher willingness of creditors to
accept the plan.

The optimal coupon (c*): This is not an exogenous parameter of the model.
However, in multiple applications of our model for the BAA-rated firm as well as for

the cross section analysis, we estimate the optimal coupon rate. The methodology

Historically, the average time from filing for the bankruptcy petition to resolution varies
from 2.2 to 2.8 years (Franks and Torous (1994) and Weiss (1990)). Using a recent sample
Bris, Welch, and Zhu (2006) report an average of 2.3 years. Bharath, Panchapegesan, and
Werner (2009) show that the time to resolution in Chapter 11 has declined to 16 months
on average in the period from 2000 to 2005.
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to solve for the parameter c* is as follows: given all the other parameters of the
economy and the firm, we first initialize the amount of debt. Second, we compute
debt and equity values for a fixed amount of debt outstanding and a fixed set of default
boundaries. Third, we determine the optimal default and liquidation boundaries (4
boundaries: 2 for each states) for a fixed amount of debt outstanding. Finally, we

determine the optimal amount of debt by maximizing the firm’s value at time 0.

B.6.2 Estimation of the Strategic Debt Service and Separating Financial Distress
from Liquidation Costs

For completeness we report in this subsection of the Supplementary Appendix
an estimation methodology that permits a separability of distress costs ( incurred
in Chapter 11) from liquidation costs. One reason for doing this is to feel confident
about our choices concerning the unobservable parameters. Our aim is to estimate
the parameter values for the strategic debt service (), the cost of financial distress
(w1, wo) and the firm’s recovery rate at liquidation (a4, as). To do so, we propose to
fit the model to the following observed (or at least empirically quantified) data: 1)
the average senior unsecured bond recovery rate, 2) the magnitude of APR violation,
and 3) the total default losses in both economies. In what follows, we detail our
motivation as well as the implied target equations.

(1) Bond recovery rate: The bond recovery rate is defined as the ratio of the
debt value at default over the debt value at time 0. According to Huang and Huang

(2003), the historical average recovery rate is 51.31%. We approximate the mean



176

bond recovery rate by

0.36 Z?:l (QBDBJ) i 0.64 Z?:l (quB,i)
Dy Z?:l qﬁ D, Z?:l qu)'

= 51.31%. (B.6.1)

(2) Magnitude of APR violation: We measure the magnitude of the absolute
priority rule (APR) violation by the ratio of the equity value over the firm value at
default. Empirical studies suggest that over the old sample period (before the 1990s),
the magnitude of APR deviation is approximately 8 to 10% of the reorganized firm’s
value. Over the relatively new sample period (after the 1990s), the magnitude of the
APR violation declines to less than 2% of the firm value. In Panels C and D of Table
2, the sensitivity analysis of the model shows that the APR violation is negatively
related to the cost of financial distress and positively related to the liquidation cost.
As discussed earlier, the higher the distress cost, the later the shareholders file for
Chapter 11, which leads to a smaller amount of APR violation. We assume that the
proportion of strategic debt service is the same in both states of the economy. We set
a higher target for the magnitude of the APR violation in bad states of the economy

than in good states. In particular,

= 3%, (B.6.2a)
UB,1
- D
VB2 = P82 _ 4 05%, (B.6.2b)
UB,2

where vg is given in equation (B.2.9), and Dg is given in equation (B.3.1).
(3) Default losses: The default losses are equal to the sum of the reorganization

and liquidation costs. Andrade and Kaplan (1998) suggest that the total net cost of



177

financial distress is around 10 to 23% of the firm value at the onset of distress. Since
the credit facilities from suppliers to clients shrink more significantly in recession than
in boom, the indirect cost of financial distress is higher in recession. Also, Shleifer
and Vishny (1992) suggest that the liquidation cost is higher when the entire industry
experiences liquidity constraints, which is what happens in recession. Thus, we set

total default losses higher in recession than in boom. In particular,

EQ [y eriVilv, , <vievg, dt] + (1 — an)V;
Vi

L= 23%, (B.6.3a)

B [fOT w2%1VL,2<Vt<V372dti| + (1 —an)V;

2
= = 10%. B.6.3b
7 % ( )

Table B.1 provides our estimates for (¢, wy, wa, oy, ag, o). We find that both
liquidation and distress costs are countercyclical. As discussed in Chen et al (2009),
BKS (2010), and Chen (2010), the countercyclical liquidation boundary and costs are
important to obtain reasonable optimal capital structure. We also show that distress
costs are countercyclical, which implies a downward trend in optimal leverage. Chen
(2010) reports estimates of liquidation costs for different states. Our estimates of
liquidation costs are close to his results. His model only accounts for liquidation,
and there is no room for any distress costs that are incurred prior to liquidation.
Then he matches the liquidation level with empirical estimates that measure distress
from a prior threshold. We argue that this setup biases his results slightly upward.
More importantly, our estimates of distress costs and their relative dispersion between
states are higher than those used in the study of BCS (2007), Francois and Morellec

(2004) and others. Our results closely relate to the numbers reported in Altman
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Table B.1: Estimating Absolute Priority Rule (APR) Violation and Default Losses.!

Panel A: Target Moments

Mean bond recovery rate 51.31%
Magnitude of APR violation in recession 3%
Magnitude of APR violation in boom 0.05%
Default loss in recession 23%
Default loss in boom 10%
Panel B: Parameter Estimates
U W1 %) (51 9
0.3 0.09 0.05 0.72 0.87
Panel C: APR Violation and Distress Cost
w1 0.03 0.05 0.07 0.09 0.11
APR violation 6.12% 5.36% 4.45% 4.04% 2.98%
Panel D: APR Violation and Liquidation Cost

T—a; 0.2 0.3 04 0.5
APR violation 2.24% 6.12% 12.5% 18.51%

! Panel A gives the five target moments used to estimate the following five param-
eters: the strategic debt service (¢), the distress costs (w;, ws) and the firm’s
recovery rates at liquidation (aq, o). Panel B gives the estimates of the five
parameters. Panel C gives the effect of distress cost on the magnitude of APR
violation. Panel D gives the effect of liquidation cost on the magnitude of APR
violation. All the other parameter values are listed in Table 1.

(1984) and when combined with the liquidation costs amounts to similar numbers as
in Korteweg (2010).

In Panels C and D of Table B.1, we also implement a sensitivity analysis on
these estimates. We document that the APR violation is negatively related to the
cost of financial distress and positively related to the liquidation cost. As discussed
earlier, the higher the distress cost, the later the shareholders file for Chapter 11,

which leads to a smaller amount of APR violation.
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APPENDIX C
CALIBRATION METHODOLOGY, ONE SPECIAL CASE AND
DERIVATION OF VOLATILITY ASYMMETRY

C.1 Details on the calibration procedure

In chapter 2, the model is calibrated in three different ways. In the first one,
we calibrate the initial asset value, long-run mean of asset volatility and asset risk
premium to match the target leverage ratio, equity premium and cumulative default
probability. In the second one, we calibrate the initial asset value, long-run mean of
asset volatility, market price of volatility risk and asset risk premium to match the
target leverage ratio, equity premium, cumulative default probability and historical
average yield spread. In the third one, we calibrate the initial asset value, long-run
mean of asset volatility, market price of volatility risk, asset risk premium and mean-
reversion parameter to match the target leverage ratio, equity premium, cumulative
default probability, historical average yield spread and equity volatility. For all the
three calibration, we assume that the firm recovers 51.31% of the face value given
default.

To calibrate our model, we need to specify the asset premium and the leverage

ratio. The asset premium is given by

nx = (1= L)mg + L7p, (C.1.1)

where 7g is the equity premium, 7p is the bond risk premium and L is the firm’s
leverage ratio. We use the yield spread of the corporate bond over a comparable

default-free bond as a proxy for the bond risk premium. The leverage ratio is given
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L=PJX, (C.1.2)

where P is the face value and X is the unlevered asset value.
Also to calibrate the model to the term structure of yield spreads, we need to
price a corporate bond with finite maturity. For a corporate bond with maturity 7’

and semi-annual coupon payment, the bond price is given by

2T-1

lhT:§§:u—mejm/u+mﬂ+(P+g)u—meJﬂm1+mi(oLa
i=1

where P is the face value of the bond, ¢ is the annual coupon payment, T; is the
ith coupon date, w is loss rate given default, and Q(0,7;) is the risk-neutral default
probability before time T;. We assume that the corporate bond is priced at par. Thus
we can back out the annual coupon payment from equation (C.1.3). Also the bond
yield is the same as the coupon rate.

Finally, when we perform the second and third calibrations as mentioned ear-

lier, we use equation (2.11) to calibrate the model to the historical average equity

volatility for different credit ratings.

C.2 A solution for the default probability: one special case

We denote S(z,V,h) as the risk-neutral probability that the log asset value z
has never crossed the default boundary zp = 0 before T' = t 4 h, given that z; = 2
and V; = V. Obviously, the default probability Q(z,V,h) = 1 — S(2,V,h). Below
we show the procedure to obtain the closed-form solution for S when S satisfies the

smooth pasting condition at z = 0.
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Define the default time as 7, = inf{s > t,z, < zp}. Then P (17, < T|z; = 2,V; =

1 —5(z,V,h). Since we can rewrite S(z,V,h) as a conditional expectation, it follows

a martingale and satisfies the following backward Kolmogorov equation.
1 1 2 1 * *
Sp = §VSzz + poVS.v + 5 VSyy + (r— §V)Sz +r5(07 = V) Sy, (C.2.1)

with the initial condition S(z,V,0) = 1 and the boundary condition S(0,V,h) = 0.
Define S(w,V,h) = J° e7%2S(2,V, h)dz with the real part of w being positive. Given

the solution for S, we obtain that S(z, V, h) fcﬂoo ¢*S(w, V, h)dw with C being

— 2m

a positive constant. To solve for S (w, V. h), we use the following equations:

S(w,V,0) = /000 ey = i (C.2.2a)
/0°° g_fdz = wS, (C.2.2b)
/O"" © azzi/dz - “%7 (C.2.2¢)
/0°° o %d’z = w?S. (C.2.2d)

When getting equation (C.2.2d), we assume that the “smooth pasting” (we need to
find the correct wording or the economic intuition here since it is the same as in
Leland (1994)) condition is satisfied by S at z = 0, i.e., af .—o = 0. Applying
the transform fooo e~“# . dz on both sides of equation (C.2.1) and plugging equations
(C.2.2a)-(C.2.2d), we obtain that

S 1, 0%S \ oo OS 1, 1 -
=37 VW + [k*0" + (pow — 6")V] Ea + {wr%— (§w — §w) V} S. (C.2.3)

Cuessing that the solution for S is S(w,V,h) = %e‘A(”’h)_B(w’h)V, we obtain

~A' - BV = %O’QVB2 — [£*0" + (pow — K*)V]| B + wr + (%wQ — %w) V. (C.2.4)

V)
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Thus A and B satisfy

—A'= —Kk"0*B + wr, (C.2.5a)

1 1
—B' = -0’B* - (pow — K*)B + 5002 - §UJ, (C.2.5b)

with A(w,0) = 0 and B(w,0) = 0. Note that we use ' to denote the first-order

derivative. For example, A’ = % and B’ = %. We first solve for B from equation

(C.2.5b) and then solve for A from equation (C.2.5a). Essentially, equation (C.2.5Db)

is a Riccati equation. Let B(h) = % - % and plug it into equation (C.2.5b), we

obtain

1 1 1
q" — (pow — k*)q' — 502 (—§w2 + iw) q=0.
Thus the general solution for ¢ is ¢(h) = CreMt + Che? | where C) and C, are

constants, and Ay and Ay solve

1
N — (pow — K* )\ — 102(—w2 +w) =0.

Thus A\ip = 2222 with d = /(pow — )2 + 02(—w? +w). The solution for

B(w, h) is

2 C’l)\lehh + CQ)\2€>\2h
B(W, h) - ; . Cle’\lh + 026)‘2h

(C.2.6)

Since B(w,0) = 0, we obtain that Cy = —C1A1/A2. Plugging equation the expression
for Cy into equation (C.2.6), we obtain

pow—rK*+d 1—e

B<w7 h) = o2 ’ 1 — ge_dha

(C.2.7)

with d = \/(pow — £*)2 + 02(—w? + w) and g = 22=*¢ Now we solve for A(w, h).

pPOW—K™ —
First, plugging equation (C.2.7) into equation (C.2.5a) yields

pow—Kk*+d 1—e ¥
o2 1— ge—d

A = r*0* wr. (C.2.8)
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Let u(h) = e™¥ then v’ = —du. Plugging A’ = A/ -/ into equation (C.2.8) yields

% _—dt
Aol = — Ay = g PO R 1 e

o2 1—gedt wr
Thus
— K" +d 1 1—g wr
Al =g PO T 2 “r 9
v B o2d u+1—gu +du (C.2.9)

The solution for equation (C.2.9) is

A = g Lot [—ln(u) + —(1*9)111;1*9“)} + <2 n(u) + C

] : (C.2.10)
= K0 - P A e td %ln (1 —ge) —wrh + Cs,
where C3 is a constant. Since A(0) = 0, we obtain C3 = —rx*0* - %’Zﬁd .

%ln (1 —g). Thus

ek d Lk d -1 1— —dh
Alw, h) = —wrh+/{*0*-M-h+ﬁ*9* powT Kt g In g€ :
o? o%d g 1—g

(C.2.11)

Since (pow — k* + d)gg%1 = (pow — K* + d) pngimd : Z%:::;Z = 2d, we rewrite the

solution for A as

—K*+d 26%0*  [1— gedh
Alw,h) = —wrh+ srgr L2 E 0 LR { Jc ] (C.2.12)
o o 1—g
Thus the solution for S(z,V, h) is given by
1 C+ioco 5
Sz Vi) = —— / 8w, V., h)duw, (C.2.13)
2m1 C—ioco

with S(w,V,h) = Le=AWh)=BhV “and the solutions for A(w,h) and B(w,h) are

given by equations (C.2.12) and (C.2.7).
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C.3 Volatility asymmetry at equity and asset value levels
In this appendix, we translate the correlation between asset value and variance
shocks to a correlation between equity and equity variance shocks. The stochastic

process that the unlevered asset value follows is given by

~ = (u—0)dt+ VVidWr, (C.3.1)
t
dV; = k(0 — V) dt + o/ V,dWs, (C.3.2)

where ¢ is the firm’s payout ratio and E(dW1dWs) = pdt. Applying It6’s lemma, we
obtain that

dE X, OF 1 OE
= g+ SN X d Wy + ——tm/vtdw% (C.3.3)
E, E, 0X,

where pp, is the instantaneous equity return. The equity variance is given by
Ve, =C -V, (C.3.4)

2
where C' = (%g—%) + (Et ?)5:) + pag—tg%g—%. Applying Ito’s lemma to Vg, given

by equation (C.3.4), we obtain that
dVet = pvgdt + oV dWa. (C.3.5)

Given the specification of the processes for equity and equity variance as in equations
(C.3.3) and (C.3.5), we obtain that the correlation between equity and equity variance

18

. Xt 8Et g 3Et
PEL = <Et 8ti+ E, (9Vt> /C, (C.3.6)

2
S & 8E1 i 8E1 Xt 8Et 8Ef
where C' = (Et aXt> + ( —) +p0—t Srriot,
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APPENDIX D
OVERVIEW OF PROOFS OF PROPOSITIONS IN CHAPTER 3

This appendix provides a detailed proof of the propositions in chapter 3 and
gives complete expressions of the terms that appear in the propositions. In what
follows, section A describes the proof of the solutions for pricing kernel, risk-free rate,
wealth-consumption ratio and the equity premium for the aggregate consumption

claim. Section B derives the firm’s contingent claim prices.

D.1 Proof of Proposition 1
In the competitive equilibrium, the agent’s objective is to maximize the utility
function subject to the budget constraint. The value function J is a function of the

aggregate wealth W and w. More specifically,
J(W,m) = rréja(be [/too f(Cs, Js)ds\%t]
subject to
AWy = Wy [p(ur — r) + ] dt + Wip(opa1dZ1+ + ogadZa,) — Chdt, (D.1.1)

where g is the drift of the aggregate consumption claim. og; and og 9 are the diffu-
sion coefficients of the aggregate consumption claim. The Hamilton-Jacobi-Bellman

(HJB) equation for the portfolio choice problem is given by

F(CT) + Jw [rW +Wo(ug —r) — Cl + 3 JwwW?2¢* (0%, + 0y

1 5 9 ) (D.1.2)
+ J7r,u7r + §J7r7r(0-ﬂ-71 + 0-71-,2) + JWWW(O-R,lo-T(,l + UR,QUW,2) = 07
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where we use i, 01 and 0,5 to denote the drift and diffusion coefficients of the

posterior probability 7. We guess that the solution for J is given by

1=y -y 1 1—y
J(W,m) = B % - H(m) b © . ?V | (D.13)
-
Thus we obtain
Ty = (1—~)-~ (D.1.4a)
w = 8 W’ ot
J
Jww = —y(1 - W)Wy (D.1.4b)
1—~v1H J
= —— 1 =7v)= D.14
JW7r _ iw H( 7)W7 ( C)
1—~1H
Jr = ——J, D.1.4d
— %1? H ( )
1—y1 |H  [1-71 H'\?
o= T | = ———1|-{= . D.1.4
J. 1_i¢[H+<1_i¢ 7 J ( e)
The first-order conditions of the HJB equation (D.1.2) are
fe = Jw, (D.1.5)

Jw(pr — 1)+ JwwWo (0%, + 0ho) + Jwr(0R10m1 + OR202) = 0. (D.1.6)

Plugging the first-order derivative of equation (3.2) and (D.1.4a) into equation (D.1.5)

gives

6] —— = (1—7v)=. (D.1.7)

H(r) = —. (D.1.8)

Thus

W = H(r)C. (D.1.9)
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Applying Ito’s lemma gives
G = -+ fom {2 + ,, ,
= bcdt + 0cdz ; + %(,uﬂdt + 0p1dZ + 0p0d2) + %%(0371 + 0372)dt + %Jcamldt
= 00 + %’/Lﬂ- + %HFH(O'%I + 072r,2) + %0‘00’7r71:| dt + (O'C + %/0-7'(',1) d271 + Hﬁ/O'ﬂ-QdZNQ.
(D.1.10)

Thus the expected return and diffusion coefficients for the aggregate wealth are given

by
_ / 1 H" / 1

Hw = QC + ﬁlljﬂ + 5?(0371 + 0'72]_72) + ﬁUC’Ow,l + ﬁ, (Dllla)

H'
Ow1=0c+ —=0n1, (D.1.11b)

H

H'

oWz = JrOr2 (D.1.11c)

In equilibrium, the market clearing condition implies that ¢* = 1, which indicates
that the aggregate wealth is the same as the claim to the aggregate consumption.

Thus, ur = pw, 0r1 = ow1, Or2 = ow,z and equation (D.1.6) becomes

Jw(pw — 1) + JWWW(OIQ/V,l + ‘712/1/,2) + Jwa(Ow10x1 + Ow202) = 0.

Thus,

Jww W
Jw

Jwr
(‘7124/,1 + ‘712/[/,2) - L(UW,IUw,l + oW 2). (D.1.12)

Hw — T = — Tor

Plugging equations (D.1.4a)-(D.1.4c) into equation (D.1.12) gives

_ 2 2 1—~v 1 H'
pw — 1 = (05, + Ojya) — =t ST (Ow10m1 + ow20r2)

b

> (D.1.13)

= owa (’YUW,l - 11_;;121%/%,1) + ow2 (’VUW,2 - %i%%,z
We denote the diffusion coefficients for the pricing kernel M to be & and &. More

specifically, L = —r(7)dt — & (m)dz — &(m)dZ>. Then we back out the solutions for
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&1 and & from the risk premium for the aggregate wealth, which is given by equation
(D.1.13). In equilibrium,

dM dW
Hw — T = —F ( MW |\St> = 0'W71§1 + O-W,Qfg. (D114)

Equations (D.1.13) and (D.1.14) indicate that

1—~1H

&1 = Y01 — 1__wf{ﬂh (D.1.15a)
-y 1H
§o = yow — = j ¢ T° (D.1.15b)

Plugging equations (D.1.11b) and (D.1.11c¢) into equations (D.1.15a) and (D.1.15b)

gives
1
— = Hl
& =100+ 7 fﬁﬂm, (D.1.16a)
¥
Y=g H
§o = 1 g (D.1.16b)

The equity premium is given by

H Y= H Y= (H
pw — T = <ac + ﬁaﬂ,l) (’YUC + 11— iﬁmﬂ) + 1 _i o) (D.1.17)

Now we solve for the risk-free rate. Plugging equation (D.1.11a) into equation (D.1.13)
gives

1—~1H
r =y — 7(0‘2,[,71 + OIQ/V,2) + = fj@ﬁ(awﬂfﬁ 1+ owa0r2). (D.1.18)

Plugging equations (D.1.11a), (D.1.11b) and (D.1.11c) into equation (D.1.18) gives

r(m) :§c+%uﬂ+%%( 7r1+cr7r2)—i-Hﬁlaoa,rl—l—L
— 7[00 + Hon)” + (Bona)| + EFLE [(00 + Fona) ora + Ho2,].
(D.1.19)
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Note that now the only thing we need to solve for is the wealth-consumption ratio
H(rm). First, plugging ¢* = 1, equation (D.1.6), (D.1.4a)-(D.1.4e) into equation

(D.1.2) gives

(D.1.20)

Plugging equation (D.1.19) into equation (D.1.20) and reorganizing the terms gives

!

0= B+ (1-1) 8-ty (1- 1) o2+ & + [0 = Nocom + ] &

1 1= 2 2 H\2 | 1 2 \H" (D.1.21)
+ 2 1_% —1 (0_7r,1+0-7r,2) (F) +§( 7r1+0—7r2) H

D.2 Proof of Proposition 2

We first solve for the firm’s before-tax unlevered asset value. We guess that

the solution for V' is given by
V(X,7) = XG(m). (D.2.1)

Applying Ito’s lemma gives

@ — X Gdr + 1L (dn)? + S dr

= Qth + O'X 1d21 —i— ox2dZe + ox3dZs + % (,uﬂdt + 0 1dZ 4 0 0dZs) + 3 GG:/ (02
+ o W Q)dt + = (9}(6# —+ 0x, 1d21 + 0x, QdZQ + ox 3d23)(,u7rdt + On, 1d21 + Or QdZQ)

= [9X+ G/LW‘F 1c” ( 1+0-7r2)+%(JX10W71+0X20-71',2)i| dt

+ (Ox1 + ¢ 07r 1) d21 + (UXQ + ¢ GOn 2) dzy + ox 3dzs.
(D.2.2)

The standard pricing rule indicates that the asset risk premium is equal to —F (dﬁM%)

Thus we obtain that
1G"

Ox + Gﬂﬂ"“ (0%, 402 )+CG;I(UX1Uw1+UX,20ﬂ,2)—r(7r)+é

= & (m) (ox + & a,r 1)+ &l ) (0x.2 4+ @ G rs) - (D.2.3)
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The above equation for G(7) is a 2nd order ODE, which is solved using two boundary
conditions at 7 =0 and © = 1.

Next, we solve for the present value at time ¢ of a perpetuity with a constant
payment being one, which we define as F(r) = E <ftoo %dsﬁt). Applying Ito’s

lemma gives

The risk premium for the perpetuity asset is given by

F’ 1F” 1 F’ F’
yal + 5?(07%71 + 072“2) + T r(m) = 51(71')?0'”71 + 52(71')?0'7“2. (D.2.4)
We use the two boundary conditions at 7 = 0 and m = 1 to solve the above 2nd order

ODE or equation (D.2.4). Next, we define ¢(X;, m;) as the time-t Arrow-Debreu price

of a contingent claim that pays one unit at default. No-arbitrage pricing rule implies
E9(dq|S) = r(m)qdt

Applying Ito’s lemma gives

dq 1 9%q 0%q
2X?24+ S+ = 2 - . X — .
X 2oz XXt ogihn T 5 gm0t Gxgy (Tr1ox 1t or20x2) X =1(1)g

(D.2.5)
In addition to the two boundary conditions at 7 = 0 and 7= = 1, the solution for ¢
also satisfies ¢(Xp,7) = 1 and limx_, q(X,7) = 0.
Given the solutions for unlevered asset value V (X, ), perpetuity asset value
F(7) and ¢(X,7), the firm’s equity value at time ¢ (S;) is given by

T MS

Ss=01—-nkE [ t M(XS —0)ds|Sy| - (D.2.6)
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In equation (D.2.6),

(1-nE [f[ M X, ds |%t]

My
— (L= B | [ X, ds || = (1= n)E | [ 3 X, ds |3 | (D27
= (L=n)V = (L=n)E | [ 3 ¥ X, ds |
=1 =)V —qVs)
We obtain the solution for the firm’s equity value as
Si=(1—n) [V —qVi — cF(1 - q)], (D.2.8)

where 7 is the effective tax rate, c is the rate of continuous coupon payment and Vg
is the unlevered asset value at default. The firm’s debt value at time ¢ (D) is given

by

My
=cF (1 —q)+ aqVs.

Dy = B[] Yecds|Si| + B (3raVil)) (D29)

where « is the recovery rate of the firm value at default.
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