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CHAPTER 1 

INTRODUCTION 

State of the Problem and Solution Approach 

 Accurate automated object recognition is a highly sought after machine 

task for many industries ranging from military intelligence to manufacturing. 

The ability to visually monitor an environment without human observation 

potentially leads to increased productivity and security. For instance, images 

sent from unmanned aerial vehicles could be scanned to detect threats early and 

allow for proper safety precaution. If a task is focused enough and domain 

knowledge exists, hard coded systems can be built for a specific task. However, 

the complexity of visual input makes a general, multiclass system require very 

high computational power.  

 Fortunately the advent of general purpose computing on Graphics 

Processer Units could potentially lead to better solutions. Intuitively the use of 

GPUs makes sense. The hardware is designed to rapidly render visual images so 

using the same structure to do visual detection seems logical. In reality, the 

process of classification involves a very different set of calculations. GPUs also 

have several disadvantages when compared to CPUs such as weak branching 

and strict memory limitations. Despite these downfalls, a GPU implementation 

of such a system can still be accomplished and will provide a fast and accurate 

solution to the problem. 

Overview of Machine Learning 

 Machine learning is a subset in the larger field of artificial intelligence 

that is focused on the ability of a system to recognize patterns contained in data. 

The applications of such systems vary greatly from simple polynomial curve 
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fitting to complex image or speech recognition. The implementation of such 

systems is equally variable with certain methods being more practical for certain 

tasks. 

Types of Learning 

 The learning process can be separated distinctly into two categories: 

supervised and unsupervised. Supervised learning uses a data set that has 

associated labels given to each input. That is, the “right answer” is given to the 

system during learning so the parameters defining the system are adjusted 

towards this solution. Unsupervised learning only needs the empirical data itself 

to extract some useful information. Since no labels are needed, no human input 

is required which allows unsupervised learning to use much larger data sets or a 

continuous stream of input data. 

Types of Problems 

 Supervised learning is used when a problem requires an output selection 

based on a given input vector. If the output is the selection of one of a finite 

number of categories the problem is called classification. If the output is a real 

number or continuous variables the problem is called regression. Unsupervised 

learning is used to find out less context specific information about data sets. For 

example the discovery of groups within data is called clustering. Density 

estimation is a determination of the distribution of data in input space. Lastly, 

projection of high-dimensional space can be used for compression or, if projected 

to two or three dimensional space, visualization. (Bishop, 2006) 

Neural Networks 

 Neural networks are a class of machine learning systems that were 

originally inspired by the architecture of the brain. Although none of the models 
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are true to the information processing mechanisms of nature, they all borrow the 

basic idea: a system of interconnected units that can become activated due to 

some combination of input stimulation. 

Artificial Neurons 

 The basic unit in a neural net is called the neuron. Mathematically the 

neuron can be thought of in two parts. The first is a linear combination of all the 

inputs: 

        
   

       
   

 

   
 

aj is known as the activation of a given neuron.xiis the value of input i  and is 

multiplied by a weight wji1. The second part involves taking the activation value 

and passing it through a differentiable, nonlinear activation function: 

         

Two of the more common choices for the activation function are hyperbolic 

tangent and logistic sigmoidal. (Bishop, 2006) 

 

 

 

 

 

 

 

 

 

 

                                            
1 The term wji refers to the weight to neuron j from neuron i.wj0 is not multiplied by any input 

and is known as the bias for node j. 

Figure 1: An Artificial Neuron 
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Multilayer Perceptron 

 The most general among these neural networks is a feed forward network 

called the multilayer perceptron. The multilayer perceptron is a supervised 

learning system used for classification and contains three layers2: input, hidden, 

and output. Units within a given layer have no connections to other units within 

the same layer but are fully connected to each unit in adjacent layers. The “feed 

forward” aspect of the network comes from the fact that the output from each 

previous layer is used as the input to the next. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                            
2 Some literature regards the weights themselves as a layer and would consider the basic 

multilayer perceptron a two-layer network. 

Figure 2: Multilayer Perceptron Network 
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The bottom layer is input, either direct or preprocessed, from the dataset and 

has a size determined by the data3. The middle layer is called the hidden layer, 

the size of which can be selected. The top layer is called the output layer with 

size determined by the number of classes. Given an input vector, each neuron in 

the hidden layer will calculate zj which will be used as input to each neuron in 

the output layer. Ideally, only 1 of K output values will be nonzero which, in the 

case of classification, identifies the correct class for the input data. Decision 

uncertainty given a particular input vector can be seen by output values that are 

not exactly 0 or 1.4 

Network Training 

 Before a network can accurately interpret data it must first go through a 

training phase. In this step the parameters, the weights and bias’, are adjusted 

to fit the data. Since the goal of the system is classification, an error function is 

used that reflects the accuracy of an output given an input. Specifically, given an 

N labeled input vectors: 

      
 

 
              

 

   
 

The systems resulting output is the vector y and t is the true value from the 

associated label. In order to minimize the error the weights are then adjusted to 

descend along the gradient. Using a technique called back propagation the 

difference in the output compared to the label is sent backwards through the 

network to calculate the change in weights that corresponds to the gradient 

descend of the error function. 

                                            
3 Or the result of the preprocessing 
4 Assuming the activation function for the final layer is sigmoidal or similar function. 
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In general, there are two ways that learning stops. Either training occurs over 

the maximum number of epochs5 or convergence is reached. Convergence is said 

to have occurred when the change in error over a subset from one weight update 

to the next is smaller than some set value θ. 

Basis Functions 

 The classification problem can be thought of as dividing a k-dimensional 

input space into regions belonging to a single class. The most basic machine 

learning algorithms are basic methods to move a decision line to best describe 

the data. This approach only works if the data is linearly separable. To classify 

data that is separable in some non-linear way basis functions, denoted φj(x), are 

used to transform the input. For most methods these are fixed nonlinear 

functions combined in a linear fashion. This means these basis functions must be 

selected ahead of time which is difficult and generally requires some intuition of 

knowledge of the data. The basic structure of a neural network acts a linear 

combination of basis functions each of which itself is a nonlinear combination of 

linear inputs. The weights represent the coefficients on these linear inputs and 

therefore are adjustable and constantly updated during learning. Neural 

networks can therefore transform input using adaptive basis functions that are 

initially unknown. (Bishop, 2006) 

Energy-Based Models 

 Consider the task of classification. The prediction from the model should 

give a probability for each class based on the input vector.  

       

                                            
5 An epoch is a complete pass over the entire training data set.  
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The general task of learning then becomes finding the set of model parameters 

that, given the data set, maximizes the conditional probability of all the 

answers. 

           
 

   
 

The parameters that maximize this product are equivalent to those that 

minimize the negative log6 of it. 

 

               
 

   
                  

 

   
 

The issue with using direct probabilities is that the calculation requires some 

normalization with respect to all configurations of a system. If a system large or 

complex this normalization task becomes intractable, especially when it the 

calculation is required after each parameter update. Instead, functions that can 

be calculated in a simpler fashion are used to define the system and comparison 

of states can give a learning gradient. 

 Energy functions are defined for a system with respect to that systems 

state variables and parameters. The essence of learning in such a model is to 

tune parameters to have low energy in configurations brought about by training 

data and to have high energy in other states. If classification is the end result 

the task becomes: given the configuration of input variables, find the 

configuration of output variables with the lowest energy. The specific learning 

algorithm is dependent on the model and classification is generally done by 

calculating probability from the energy distribution. (LeCun, et. al 2006) 

  

                                            
6 The logarithm function is monotonically increasing. 
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CHAPTER 2 

BOLTZMANN MACHINE 

General Boltzmann Machine 

 In the early 1980s Geoffrey Hinton and Terry Sejnowski developed the 

original concept of a Boltzmann machine. Borrowing from the field of 

thermodynamics, their research expanded upon learning systems of the day7to 

add a stochastic approach which allowed for an escape from local minima during 

the learning process.(Hinton and Sejnowski, 1983) 

Structure 

 The Boltzmann machine is “a network of symmetrically coupled stochastic 

binary units.” (Salakhutdinov and Hinton, 2009) The system has a layer of 

visible binary units and a layer of hidden binary units. Each unit has a 

bidirectional connection to each other unit in the system. The purpose of this 

machine is to be able to estimate the expectations that two connected units 

would both be on. This is done by allowing the machine to settle into near 

equilibrium distribution using both random initialization and data driven visible 

units. The general idea is to adjust the weights so that the random 

initializations settle into states similar to those which exist in the environment8. 

“The network will be said to have a perfect model of the environment if it 

achieves exactly the same probability distribution over these 2v states when it is 

running freely at thermal equilibrium with no environmental input.” (Hinton 

and Sejnowski, 1983)Although the system can never be a perfect model, 

regularities in the data can be captured to give a close estimation of the true 

probability. 

                                            
7Most notably the system was very similar to that described by Hopfield. 

 
8 As presented by the training data  
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Learning 

 Boltzmann machines fall into the category of unsupervised learning. 

Unlike supervised methods there is no correct answer to compare against and 

Figure 3: General Boltzmann Machine 



10 

 

 

adjust towards. Instead an energy function9 (Salakhutdinov and Hinton, 2009) of 

the current state is used: 

                                    

L, J, and Ware, respectively, the visible-to-visible, hidden-to-hidden, and visible-

to-hidden weights of the systems parameters θ. This energy function can then be 

used to calculate the probability the system assigns to a given set of visible 

units: 

        
 

    
           

 
 

 

Z(θ) is the partition function which normalizes the probability and is given by: 

                  

  
 

Note that the partition function involves calculating for all possible states of the 

system and changes if the parameters of the system are changed. The 

conditional probabilities do not require the partition function and are given as: 

                               
 

  
 

 

 

   
 

 

                               
 

     

 

   
 

The aim of learning with the system is to update the parameters of the system so 

that it models reality10 as accurately as possible. This would mean that it should 

be equally likely in the data and in the model that any two units are on at the 

same time. Essentially the goal is for the model’s expectation to be the same as 

the data-dependent expectation: 

       
       

 

                                            
9 Energy function given without bias terms 

 
10 More specifically, the representation of reality given by the data 



11 

 

 

 

      
, more specifically, is the expectation with respect to the empirical 

distribution(Salakhutdinov and Hinton, 2009): 

                              

Therefore, to update each parameter so that the system ascends along the 

gradient of log-likelihood the weight parameters are updated according 

differences in the units they connect (Hinton and Sejnowski, 1983): 

         
             

      

         
             

      

         
             

      

Issues 

 The exact computations of the aforementioned expectations grow 

exponentially with the number of hidden units. Fortunately there exist a 

number of techniques that can be used to estimate the expectations and thereby 

allow an approximate gradient ascent. These techniques require calculating 

towards stable states of the systems. Since the machine is fully connected the 

units takes a very long time to reach a stationary distribution. This 

interdependence makes learning impractical. Even if one of the layers is 

known11 the other layer still has free interdependent units so the state is not 

known in a single step. (Salakhutdinov and Hinton, 2009) 

Restricted Boltzmann Machine 

 In the mid 1980’s cognitive scientist Paul Smolensky developed a theory of 

information processing called Harmony Theory. It was similar to the idea of 

Boltzmann machine in that using statistical methods the system attempted to 

predict latent variables (environmental features) to become in harmony with the 

                                            
11 As is the case in the calculation of          
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true environment. In fact, in a paper published in 1986 Smolensky showed how a 

modified, parallelized Boltzmann machine could have exact inference with what 

is now referred to as a restricted Boltzmann machine. (Smolensky, 1986) 

Structure 

 The restricted Boltzmann machine is a Boltzmann machine in which both 

J and L are set to 0. Simply put, there are no connections between units of the 

same layer but each unit is still fully connected to the units of the other layer. 

The advantage of this configuration can be seen with the reduced conditional 

probabilities. 12 

                    
 

   
 

 

                    
 

   
 

 

 

 

 

 

 

 

 

 

 

 

 

                                            
12 The bias terms has been omitted from the conditional probabilities and the image of the 

restricted Boltzmann machine. 

Figure 4: Restricted Boltzmann Machine 
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The energy function for a given configuration is now simplified13 to: 

          
 

 
       

This simplification means the hidden state can be calculated in a single parallel, 

upwards pass given any visible vector. If the visible vectors are randomly 

sampled from the training data the data driven expectation becomes trivial to 

find. However, the models expectation does not have samples to draw from so 

some approximation method must be used. (Salakhutdinov and Hinton, 2009) 

Learning 

 The basis for learning with RBMs comes from a Markov Chain Monte 

Carlo method known as a Gibbs sampler. Markov chains are a sequence of 

random variable states that are transitioned through using known conditional 

probabilities. One requirement is that the outcome of each transition must solely 

depend on the previous state. To start a Markov chain, an initial state must be 

chosen. After a small number of transitions the state of the system is still highly 

influenced by the initial selection. After enough transitions, however, the state 

will be independent of the initial selection and will have reached a stationary 

distribution. Sampling from this stationary distribution is shown to be 

equivalent to sampling from the actual probabilities and a Monte Carlo approach 

can be used to approximate the model’s expectation. A Gibbs sampler is a special 

case where the transitions only involve one random variable. It can easily be 

seen from the conditional probabilities of the RBM that each upwards or 

downwards pass satisfies that criteria. Since the Markov chain must then be 

constructed in half steps this method is called alternating Gibbs sampling. 

(Walsh, 2004) 

                                            
13 Bias terms omitted for clarity  
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Contrastive Divergence 

 Standard maximum-likelihood learning of parameters would be done by 

gradient ascent along the average log-likelihood. 

    
       

  
 

Where 

       

  
     

       

  
    

       

  
   

The first part of the right hand side can easily be calculated using training data. 

As mentioned in the discussion of General Boltzmann machines, calculation of 

the second term involves use of the partition function14 and cannot be done 

efficiently. MCMC is a great way to sample from complex, unknown 

distributions. However, running the chain sufficiently long enough to get a good 

sample is very slow and equilibrium is hard to guarantee. 

 Contrastive divergence attempts to follow the gradient of an entirely 

different function. The Kullback-Leibler divergence is as follows: 

                     
     

       
 

It is possible, depending on the system15, to minimize this divergence itself, 

however, in order to leave the initial distribution, p0, unaltered it makes more 

sense to use difference between two divergences. If the calculation of p∞ is 

intractable using the difference also allows the expectations from the 

equilibrium distribution to cancel out. (Hinton, 2002) 

                           

The minimization of the contrastive divergence therefore becomes: 

     
       

  
    

       

  
        

                                            
14 The sum of an exponential number of terms 
15 Namely, if p(x|W) is tractable 
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The third term is gradient of the reconstruction distribution with respect to the 

parameters multiplied by the gradient of the KL divergence with respect to the 

reconstruction distribution. It is "problematic to compute, but extensive 

simulations show that it can safely be ignored because it is small and it seldom 

opposes the resultant of the other two terms." (Hinton, 2002) 

 It should be noted that the Kullback-Leibler divergence is not symmetric16 

and provides a biased estimate of the maximum likelihood learning. However, 

the bias has been shown to be small and a number of successful applications 

have proven it to be an effective and efficient learning signal. It should also be 

noted that since the third term of the difference is not used the learning 

algorithm isn't actually following any function. For a Restricted Boltzmann 

machine the parameter updates using contrastive divergence become: 

               

 Learning works even if the reconstruction used to estimate the models 

expectation is done in only a single step. This is denoted as CD1. The trade off for 

more steps (CDn) is an improvement of the models expectation estimate17 for the 

time required to another up-down pass. Much of the common literature using 

contrastive divergence as a learning method uses CD5. (Carreira-Perpinan and 

Hinton, 2005) 

Persistent CD 

 The cost of running more steps of Gibbs Sampling to get a better 

approximation of the likelihood gradient is large because all of those steps need 

to be performed for each data vector. This is because each time an update occurs 

all of the Markov chains are reset to the data. If the chains acted continuously 

                                            
16            ≠            
17 And therefore a better approximation of the gradient 
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across mini-batches they would be much reach a state much closer to 

equilibrium. This allows for something that approaches CD∞ for the calculation 

cost of CD1
18. 

 The key consideration with PCD is the weight updates. If a Markov Chain 

is started under one model and then that model's parameters are changed the 

current chain is not guaranteed to be any closer to equilibrium on the new model 

than a data vector. Fortunately, if the changes in the parameters are small 

enough, the persistent chain is generally closer to equilibrium than a single step 

from the data vector. In fact, for an infinitesimally small learning rate the 

updates become exactly equivalent to CDn. (Tielman, 2008) 

  

Training Considerations 

 To assist with training, a number of common machine learning techniques 

can be applied to the process. These tweaks generally effect the way the weight 

values are updated and are not related to the structure of the machine itself. 

Many of these techniques involve a meta-parameter that can cause a non-trivial 

change in both the speed of learning and the accuracy of the system. 

Learning Rate 

 A learning rate is standard with almost any learning system. Denoted by 

ε, the learning rate is used to scale the updates. 

         

The rate is needed since most gradient updates by themselves would have far too 

great an impact on the system. Since each update is only based upon a limited 

amount of information from the environment a radical shift in parameters would 

lead to a slightly unstable learning process where interdependent parameters 

                                            
18 Assuming that each chain is only updated one step per batch 
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often oscillate across correct values. If the learning rate is too small learning 

convergence will be slow and training will take longer than necessary. It is 

common practice to start with a larger learning rate that is decreased towards 0 

throughout training. (Bishop, 2006) 

Mini-Batches 

 Another common technique used in machine learning is the idea of 

splitting up the dataset into small subsets and updating parameters only after 

the gradient has been calculated from all samples in the subset. It is also 

common practice to divide the total gradient by the number of samples in the 

mini-batch so that the learning rate is not dependant on mini-batch size. 

Depending on the system, some literature suggest a mini-batch consisting of one 

example of each class whereas others use upwards of 100. If the examples of the 

batch can be learned in parallel then a larger mini-batch size can reduce 

training time. (Hinton, 2010) 

Fantasy Particles 

 Determining the number of fantasy particles to use is something specific 

to stochastic methods using sampling. In the RBM, when the calculation from 

visible to hidden takes place the calculation for an up-pass results in the 

probability of a hidden unit being active given the visible units. Since this 

hidden layer consists of binary units the probabilities are each compared against 

a random number 0.0-1.0. If the probability is greater than the randomly 

generated number the binary unit is activated. 

 Ideally, to accurately sample the subspace of the model a very large 

number of these possible hidden configurations should be sampled. Calculation 

time is the clear compromise as each fantasy particle needs to go through all the 
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steps required for the chosen alternating Gibbs steps. (Salakhutdinov and 

Hinton, 2009) 

Sparsity 

 "Discriminative performance is improved by using binary features that 

are only rarely active." (Nair and Hinton, 2009) This statement seems to hold 

true most of the time. Rarely active features tend to code for more specific 

patterns in the visible layer and are also easier to interpret as input into another 

RBM. 

 If an RBM is designed with a specific probability of each hidden unit being 

active, p, then the common error measure used is the cross entropy between the 

desired and actual probability. 

                      

Where q is an estimate of the current probability. With respect to the RBM 

training algorithm it makes the most sense to estimate q from the current mini-

batch19. The derivative if the error measure cleanly becomes: 

    

Also, to improve the quality of the estimate a running estimate can be used with 

a chosen decay factor. 

                                        

Ensuring sparsity also ensures that if a hidden unit's probability drops below 

the target it will be pulled back up. This prevents a hidden unit from becoming 

useless to the system. (Hinton, 2010) 

Momentum 

 Momentum is a technique used both to increase the speed of learning and 

to help dampen oscillations. Oscillations occur when parameters swing back and 

                                            
19 The quality of the estimate is therefore directly related to the size of the mini-batch 
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forth across the optimum value due to larger than ideal changes thereby leading 

to suboptimal solutions. The motivation comes from the fact that many objective 

functions contain long, narrow and fairly straight ravines. Ideally, once these 

ravines are roughly defined in weight space the learning should be fairly 

consistent along the floor. Normally this gradient is followed in a stepwise 

fashion and is limited by the learning rate. If instead the weight is updated by a 

velocity then the learning can happen more quickly with a smaller learning rate 

while still benefitting from smaller oscillations. Parameters are updated as 

follows: 

                         
  

   
    

good idea to keep this small20 for the initial learning and then increase the value 

afterwards. (Hinton, 2010) 

  

                                            
20 0.5 seems to work in most cases 
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Figure 5: Projections of the Weights from a Single Hidden Unit 

to the Visual Layer. This RBM was Trained Using the MNIST 

Dataset and a Sparsity Target of 0.1 
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Subcomponents 

Layer 

 The Layer class represents the states of groups of neurons. Each layer 

class contains an array of floats equal to the intended size of the layer. It also 

stores an additional utility array that can be used by different learning system. 

This allows, for example, a DBN to save the layer state calculated during the up 

pass to be used to calculate updates that also require the layer state generated 

by generative weights. Both these arrays are stored on the device and a single 

copy exists on the host to store calculated device values in order to view the 

Figure 6: Block Diagram of General System Architecture 
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layer. This display functionality is implemented using static functions in a 

namespace defined in the learnUtil.cpp class found in appendix B.  

Connection 

 The connection class contains all the relevant values used to transition 

between layers. At the core this involves weights and bias's but the class also 

contains some values that are only necessary during learning. Copies of the 

parameter values exist on both the device and host. Most of the values can be 

displayed using histograms which are drawn after the active values on the 

device are copied to the host. 

Trainer 

 The trainer is a reusable class that is used to disseminate training 

examples to the system. The data files are directly loaded by the trainer and 

stored in host memory. The entire data set is never store on the device due to 

limited memory.  The trainer has an array of examples, equal to the size of the 

mini batch, stored on the device and contains all the control logic to randomly 

select and load batches. The class also counts how many training examples have 

been seen during the epoch as well as the total number of epochs trainer over. 

Display functionality also exists to show training examples as well as to visually 

show which examples are loaded into a mini batch. This functionality and 

memory structure applies to labels as well for supervised training methods. 

Learning Systems 

 Currently, three learning systems are implemented. The restricted 

Boltzmann machine contains the simplest structure containing just two layers 

and the connection between them. The deep belief net contains 3 layers and the 
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corresponding connections. The neural network contains an additional top level 

with the k binary units where k is the number of classes in the data. 

 Each system contains, a number of pass through function to the 

subcomponents to get system facts and device memory location. The function 

calls act as a wrapper that give the utility layer  more meaning with respect to 

its use in the system. In addition, each system class allows the individual 

subcomponents to be loaded and saved with a single call.  

Algorithm Implantations 

 The *.cu files associated with a machine define the kernels and modes of 

the learning systems. The program makes used of #defines to etch out the 

system configuration to be used for training. This, of course, requires 

recompilation each time the system changes. It might seem this could be avoided 

by a configuration file that can be edited in plain text and read in by the 

compiled program. However, through testing this caused some issues with a 

slowdown in a number of the CUDA kernels.  The slowdown occurs when a loop 

condition is dependent on a variable that is passed in. Regardless of whether 

that variable is stored on the device or host this occurs. If the variable is stored 

in a #define the compiler knows the exact value during compilation and can 

optimize. Most likely this comes in the form of loop unrolling but it also could 

provide some guarantee of iterations that is needed to truly coalesce memory 

accesses. 

 In general, a good practice when working with CUDA is to have all data 

that needs to be accessed within a kernel stored on device memory. The transfer 

time between the host and device is the slowest of all memory accesses so it 

should be avoided at all costs.  However, in the case of the weight updates a few 
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variables31 are passed in by value without any measurable slowdown. Latency 

hiding, which is performed by allowing ready threads to run while waiting on 

slow memory access, accounts for the similar timing. This most likely would not 

be the case for faster calculations such as the up pass. 

 Aside from these considerations the rest of the implementation was fairly 

straight forwards and the object-oriented component structure allowed for clean, 

simple code. As is the case with all code, there is most likely room for 

improvement and most definitely an even more concise way to design portions of 

the system. Agile development techniques were used and the system was 

developed over several iterations.  

  

                                            
31 Momentum and learning rate 
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CHAPTER 5 

DATASETS AND RESULTS 

MNIST 

 The MNIST database is a large collection of handwritten digits 0 to 9. The 

dataset is a subset from the larger NIST database with some modifications to 

make it more standardized. The set contains 60,000 training examples and 

10,000 test images. All of the digits have been size-normalized and centered32. 

The images are an 8-bit grayscale, unlike the original binary data, as a result of 

the normalization. 

 The lowest error rate on the test set is 0.23% using a committee of 35 

convolutional nets and additional techniques. This result also used elastic 

distortion on the data to, in essence, allow for more training examples to be seen. 

A 3-layer NN with 500 and 150 hidden units using the strict33 MNIST data 

resulted in an error rate 2.95%. (LeCun, 1998) 

 This dataset was used for system verification and to see the benefits 

gained from different learning techniques. Only the original data was used and 

the systems were trained using a constant number of epochs and consistent 

learning rates across methods. The data was presented to the system as "pixel 

probability" meaning the grayscale value of each pixel was converted to between 

0-1. The system contained a 784 visual layer, 512 hidden layer, 512 hidden layer, 

and a top layer of 10 softmax units.  

 

 

 

                                            
32 Centered with respect to a calculated center of mass of pixels 

 
33 No distortions of the data allowed 
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Table 7: Classification Results Using CD5 

Data Source Misclassifications Misclassification Rate 

Training Set 1054 1.95% 

Validation Set 132 2.20% 

Test Set 259 2.59% 

 

 

Persistent Contrastive Divergence 

 The same system was trained using a continuous Markov chain across 

mini batches and epochs. This was the only change from the CDn training runs. 

The free energy of the validation data never seems to rise to drastically 

compared to the training data. The actual value of the free energy is arbitrary 

and the second level RBM has higher values. The neural net error improve 

rapidly to start due to the top level weights roughly aligning with correct 

penultimate layer configurations. The progress becomes much more gradual as 

the weights begin to fine tune for classification. 

 

 

 

 

 

Table 8: Training Parameters for Level 1 RBM (PCD) 

Epochs 50 

Mini Batch Size 100 

Gibbs Steps 1 (Persistent Chain) 

Learning Rate 0.001 

Learning Rate Decay 0 
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Table 9: Training Parameters for Level 2 RBM (PCD) 

Epochs 50 

Mini Batch Size 100 

Gibbs Steps 1 (Persistent Chain) 

Learning Rate 0.001 

Learning Rate Decay 0 

 

 

 

 

Table 10: Classification Results for PCD 

Data Source Misclassifications Misclassification Rate 

Training Set 1088 2.01% 

Validation Set 127 2.12% 

Test Set 257 2.57% 
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Figure 9: Free Energy over Training Data of Level 1 RBM 

During Learning Using PCD 
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Figure 11: Free Energy over Training Data of Level 2 RBM 

During Learning Using PCD 
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Global Fine-Tuning 

 The layers that were pre-trained using PCD were then fine tuned using 

the methods described in Chapter 3. The fine tuned layers were then used to 

initialize the neural network. Initial error rates were slightly higher most likely 

due to the random initialization of the top level weight. Steadily the globally 

tuned network outperformed the stacked RBMs across all data sets. 
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Table 11: Training Parameters for Global Fine-Tuning 

Epochs 100 

Mini Batch Size 100 

Gibbs Steps 1 

Learning Rate 0.001 

Learning Rate Decay 0.0001 

 

 

 

 

 

Table 12: Classification Results for Globally Fine-Tuned DBN 

Data Source Misclassifications Misclassification Rate 

Training Set 933 1.73% 

Validation Set 117 1.95% 

Test Set 242 2.42% 
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NORB 

 The NORB dataset was developed to provide a test for general 3D object 

recognition. 50 toys from 5 classification groups were photographed under 

various conditions. The categories are: four-legged animals, human figures, 

airplanes, trucks, and cars. Two cameras were used to provide stereo images 

under different lighting conditions, elevations and angles. The small NORB 

dataset contains fewer examples but each example is presented on a plain white 

background. 

 The data was presented to the system as floating point pixel 

"probabilities" between 0 and 1. To speed up training the second image of each 

stereo input was thrown out. This halves the size of the input and greatly speeds 

up training time.  The RBM pretraining seemed to be ineffective as the 
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validation error started relatively higher after the first epoch and gradually 

declined. It's possible that the data was too complex or that raw pixel input was 

an improper method. Success as been had using raw pixel data on a similar 

learning devince known as a Deep Boltzmaan Machine. A higher learning rate 

used in that study may also have accounted for the improved pre-training and 

better classification results. (Salakhutdinov, 2009) 

 

 

 

 

Figure 15: System Configuration for NORB 
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Table 13: Training Parameters for Level 1 RBM NORB 

Epochs 500 

Mini Batch Size 100 

Gibbs Steps 1 (Persistent) 

Learning Rate 0.001 

Learning Rate Decay 0.0001 (last 100 epochs only) 

 

 

 

Table 14: Training Parameters for Level 2 RBM NORB 

Epochs 500 

Mini Batch Size 100 

Gibbs Steps 1 (Persistent) 

Learning Rate 0.001 

Learning Rate Decay 0.0001 (last 100 epochs only) 

 

 

 

 

Table 15: Training Parameters for Global Fine-Tuning 

Epochs 100 

Mini Batch Size 100 

Gibbs Steps 1 

Learning Rate 0.001 

Learning Rate Decay 0.0001 
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Table 16: Training Parameters for Neural Net 

Epochs 200 

Mini Batch Size 20 

Learning Rate 0.0001 

Learning Rate Decay 0.00005 

 

 

 

 

 

Table 17: Classification Results on NORB Dataset 

Data Source Misclassifications Misclassification Rate 

Training Set 13683 23.6% 

Validation Set 1527 24.0% 

Test Set 15367 29.8% 
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Figure 16: Training Examples from NORB Dataset 
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CHAPTER 6 

CONCLUSIONS 

 

 The system has clearly learned how to distinguish between the 5 classes. 

A single desktop GPU is capable of finding distinctions between 5 fairly similar 

types of objects. A deeper analysis of the results gives some insight into the 

actual applications of such a system and the original problem statement. 

 The advantage of harnessing the parallel power of GPUs was clearly 

shown in chapter 4. The final neural network is capable of doing 50 

classifications in 192ms. This means, assuming a resolution of 96x96, the 

current system is capable of analyzing over 250 images a second. These images, 

of course, could also be image patches. This allows for much larger images to be 

analyzed if the system is trained on such data. For example, if the system was 

trained by slicing UAV images into equal sections it could analyze a single, large 

image by using slicing those same sized sections. Furthermore since a single 

desktop GPU is used it would be possible, and most likely cost effective, to have 

an array of such devices using the same pretrained parameters but analyzing 

different segments of the system. 

 The acquisition of training examples is another important consideration 

for a real life application. If a UAV needed to identify military vehicles, for 

example, data collection would be very straightforward. First, the initial RBM 

could be trained over image patches collected from a UAV, some containing such 

vehicles, with no manual input required. Subsequent layers and global fine-

tuning would occur in the same manner presented in this paper. When it came 

time to train the neural net, a user would have to select image patches with 

objects of interest. This, presumably, would be a small percentage of the total 

number of patches since most of the image would not contain military vehicles.  
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 It is also important to consider the causes of misclassification in the test 

sets. Domain specific difficulties account for a large portion of the error. Overall, 

animals had the highest miss rate. This, most likely is due to animals having the 

most variation in shape as the toys ranged from lions to elephants. As shown in 

the per class error, cars had a high miss rate when compared to trucks. Trucks 

had the lowest miss rate of all the classes, and a deeper looks reveals many of 

the misses for  cars are due to the system classifying it as a truck. The system 

has some bias towards trucks which is partially due to the random subspace of 

initialization and would most likely be slightly alleviated but training the neural 

net step for longer. 

 Non-domain specific bias's should also be explored. The NORB dataset 

provides additional information about each training and test example. Included 

in this information is camera angle used. Both degrees above horizon and 

azimuth are given. As can be seen in figures 18 and 19 the camera angle seems 

to have no noticeable effect on misclassification rate. The best elevation seems to 

be around 50 degrees above the horizon, but is not significantly better than the 

lowest or highest elevations used. Azimuth is especially irrelevant because it 

relies on the way the object is pointed. Light level is also given. As expected the 

mid range levels were the easiest to classified. The darkest setting performed 

the worst by about 30% over the other levels. This could potentially be alleviated 

in a real system by performing more unsupervised training under poor lighting 

conditions. Of course, humans would also perform worse under poor lighting 

conditions so this result is not entirely unexpected.  

 The results show that a GPU implementation of a deep net provides a fast 

solution to general object recognition. No innate properties of the system make it 

impractical for most industry uses. However, it should also be noted that no 

innate properties of the system make it particularly good at finding patterns in 
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images as opposed to other input spaces. Specifically, nothing in the system 

makes use of the structure of the input space that comes with using images. 

Possible improvements could be used by integrating other techniques used for 

image recognition into the restricted Boltzmann machine or deep net.  As is, the 

system performs fine on image tasks and may yet prove more useful in other 

domains. 
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APPENDIX A 

VISUAL SYSTEM DISPLAYS 

 

 The histograms are all centered around 0.0 which is denoted by the 

largest vertical dash. The second largest dashes represent 1.0's and the smallest 

dashes denote 0.1.  

 

 

  

Figure A1: Red Histogram of Weight Values 
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Figure A2: Green Histogram of Visual Bias 

Figure A3: Blue Histogram of Hidden Bias 
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Figure A5: Reconstruction of Training Examples 

Figure A4: Training Data Example 
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Figure A7: Histogram of Hidden Layer Probability Estimations 

Figure A6: Visual Representation of Hidden Layer. 
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APPENDIX B 

CODE 

utilLearn.h 

#ifndef UTIL_LEARN_H 

#define UTIL_LEARN_H 

 

#include <cuda.h> 

#include <cuda_runtime.h> 

#include "GL/gl.h" 

 

namespace utilLearn{ 

 

   /* --------------------------------------------------------------

- 

 *  SWAP 4 

 * Non-Intel -> Intel Byte formatting for 4 bytes 

 * c | char* | pointer to 4 char array 

 --------------------------------------------------------------

----*/ 

   static void swap4(char* c) 

   { 

 char tmp[4]; 

 tmp[0] = c[3]; 

 tmp[1] = c[2]; 

 c[3] = c[0]; 

 c[2] = c[1]; 

 c[1] = tmp[1]; 

 c[0] = tmp[0]; 

 return; 

   } 

 

   /* --------------------------------------------------------------

- 

    *  DEV ALLOC 

    * Helper function to allocate device memory. Helps keep code 

clean 

    * and keeps running count of allocated memory. 

    * 

    * d  | float**  | device location to allocate 

    * size | int  | total bytes to allocate 

    ----------------------------------------------------------------

--*/ 

   static void dev_alloc(float** d, int size) 

   { 

    cudaMalloc((void**)d,size); 

    //_total_gpu_mem += size; 

    printf("Allocating %f MBytes on GPU.\n",((float) size / 1024) 

/ 1024); 
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    return; 

   } 

   static void dev_alloc(int** d, int size) 

   { 

    cudaMalloc((void**)d,size); 

    //_total_gpu_mem += size; 

    printf("Allocating %f MBytes on GPU.\n",((float) size / 1024) 

/ 1024); 

    return; 

   } 

 

   /* --------------------------------------------------------------

- 

    *  SHOW 

    * Draws the layer passed to it 

    * lay  | float*| pointer to units to display 

    * x | int | width of layer 

    * y | int | height of layer 

    ----------------------------------------------------------------

--*/ 

   static void show(float* lay, int x, int y) 

   { 

 

        float px_size = 2.0/(float)x; 

     for(int i=0;i<y;i++) 

     { 

      for(int j=0;j<x;j++) 

      { 

       glColor3f(lay[i*x + j],lay[i*x + j],lay[i*x + 

j]); 

       float v_off = 1.0-(float)(i+1)*px_size; 

       float h_off = -1.0+(float)j*px_size; 

          glBegin(GL_POLYGON); 

               glVertex2f(h_off, v_off); 

               glVertex2f(h_off, v_off + px_size); 

               glVertex2f(h_off + px_size, v_off + 

px_size); 

               glVertex2f(h_off + px_size, v_off); 

           glEnd(); 

      } 

     } 

     return; 

   } 

 

   static void text(float* lay, int x, int y) 

   { 

 

     for(int i=0;i<y;i++) 

     { 

      for(int j=0;j<x;j++) 

      { 

       printf("[%f]",lay[i*x + j]); 
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      } 

      printf("\n"); 

     } 

     return; 

   } 

 

 

} 

 

#endif 

 

connection.h 

#ifndef CONNECTION_H 

#define CONNECTION_H 

 

#include <fstream> 

#include <iostream> 

#include <stdio.h> 

#include <string.h> 

#include <stdlib.h> 

#include <map> 

#include <cuda.h> 

#include <cuda_runtime.h> 

 

 

#include "../../../0.Utils/utilLearn.h" 

 

using namespace std; 

using namespace utilLearn; 

 

class Connection 

{ 

 

public: 

 Connection(int v_size, int h_size); 

 ~Connection(); 

 

 //Initialization and saving 

 void initParams(); 

 int save(ofstream *o_file, int loc); 

 int load(ifstream *o_file, int loc); 

 

 //Get 

 int getVSize(){return _v_size;}; 

 float* getWTRow(int hidden_unit){return &_weight_t[hidden_unit 

* _v_size];}; 

 

 //Set 

 void setA(int index, float value){_a[index] = value;}; 
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 void cpyA(){cudaMemcpy(d_a, _a, _v_size * sizeof(float), 

cudaMemcpyHostToDevice);}; 

 void setB(int index, float value){_b[index] = value;}; 

 void cpyB(){cudaMemcpy(d_b, _b, _h_size * sizeof(float), 

cudaMemcpyHostToDevice);}; 

 

 //Print 

 void printW(); 

 void printWT(); 

 

 //Display (connection_disp.cpp) 

 void histogramW(); 

 void histogramA(); 

 void histogramB(); 

 void histogramDw(); 

 

public: 

 float*  d_a; //bias to visible unit 

 float*  d_b; //bias to hidden unit 

 float*  d_weight; 

 float*  d_weight_t; //transposed weights 

 float*  d_vel_weight; //velocity of weight updates 

 float*  d_dw; 

 

private: 

 int  _v_size; 

 int  _h_size; 

 int  _w_size; 

 

 float*  _a; 

 float*  _b; 

 float*  _weight; 

 float*  _weight_t; 

 float*  _vel_weight;//velocity of weights 

 float*  _dw; 

}; 

 

#endif 

 

connection.cpp 

#include "../inc/connection.h" 

 

Connection::Connection(int v_size, int h_size) 

{ 

 _v_size = v_size; 

 _h_size = h_size; 

 _w_size = _v_size * _h_size; 

 

 //Host memory allocation 

 _weight = (float*) malloc(_w_size * sizeof(float)); 


