

ii

TABLE OF CONTENTS

LIST OF TABLES ... iv

LIST OF FIGURES ... vi

CHAPTER 1 INTRODUCTION ... 1

State of the Problem and Solution Approach .. 1

Overview of Machine Learning .. 1

Types of Learning .. 2

Types of Problems ... 2

Neural Networks ... 2

Artificial Neurons .. 3

Multilayer Perceptron ... 4

Network Training .. 5

Basis Functions ... 6

Energy-Based Models ... 6

CHAPTER 2 BOLTZMANN MACHINE ... 8

General Boltzmann Machine .. 8

Structure .. 8

Learning .. 9

Issues ... 11

Restricted Boltzmann Machine .. 11

Structure .. 12

Learning .. 13

Contrastive Divergence ... 14

Persistent CD .. 15

Training Considerations ... 16

Learning Rate .. 16

Mini-Batches ... 17

Fantasy Particles .. 17

Sparsity .. 18

Momentum ... 18

CHAPTER 3 DEEP BELIEF NETWORKS ... 21

Theory.. 21

Discriminative Fine-tuning .. 22

Generative Fine-tuning .. 22

Back-Fitting ... 23

iii

CHAPTER 4 IMPLEMENTATION ... 25

CUDA Overview .. 25

Kernels ... 25

Memory .. 26

RBM Calculations ... 27

Memory Storage and Access ... 27

Mini batch loading .. 28

Upward pass .. 28

Downward pass ... 30

Update ... 31

Training Specifics ... 32

Initial Values ... 32

Improvements .. 33

Monitoring Learning ... 33

Architecture .. 34

System Structure .. 35

Subcomponents .. 36

Trainer ... 37

Learning Systems .. 37

Algorithm Implantations .. 38

CHAPTER 5 DATASETS AND RESULTS ... 40

MNIST ... 40

Contrastive Divergence 1 .. 41

Contrastive Divergence 5 .. 44

Persistent Contrastive Divergence ... 45

Global Fine-Tuning ... 49

NORB .. 51

CHAPTER 6 CONCLUSIONS ... 56

REFERENCES ... 61

APPENDIX A VISUAL SYSTEM DISPLAYS .. 63

APPENDIX B CODE .. 67

iv

LIST OF TABLES

Table 1: Training Parameters for Level 1 RBM (CD1) ... 42

Table 2: Training Parameters for Level 2 RBM (CD1) ... 43

Table 3: Training Parameters for Neural Net (All) .. 43

Table 4: Classification Results Using CD1 .. 43

Table 5: Training Parameters for Level 1 RBM (CD5) ... 44

Table 6: Training Parameters for Level 2 RBM (CD5) ... 44

Table 7: Classification Results Using CD5 .. 45

Table 8: Training Parameters for Level 1 RBM (PCD)... 45

Table 9: Training Parameters for Level 2 RBM (PCD)... 46

Table 10: Classification Results for PCD .. 46

Table 11: Training Parameters for Global Fine-Tuning 50

Table 12: Classification Results for Globally Fine-Tuned DBN 50

Table 13: Training Parameters for Level 1 RBM NORB 53

Table 14: Training Parameters for Level 2 RBM NORB 53

Table 15: Training Parameters for Global Fine-Tuning 53

Table 16: Training Parameters for Neural Net... 54

v

Table 17: Classification Results on NORB Dataset .. 54

vi

LIST OF FIGURES

Figure 1: An Artificial Neuron ... 3

Figure 2: Multilayer Perceptron Network ... 4

Figure 3: General Boltzmann Machine ... 9

Figure 4: Restricted Boltzmann Machine .. 12

Figure 5: Projections of the Weights from a Single Hidden Unit to the Visual
Layer. This RBM was Trained Using the MNIST Dataset and a
Sparsity Target of 0.1 .. 20

Figure 6: Block Diagram of General System Architecture 36

Figure 7: Training Examples from MNIST Dataset ... 41

Figure 8: : System Configuration for MNIST .. 42

Figure 9: Free Energy over Training Data of Level 1 RBM During Learning
Using PCD ... 47

Figure 10: Percent Increase in Free Energy of Level 1 RBM on Validation
Data Compared to Training Data During Learning Using PCD 47

Figure 11: Free Energy over Training Data of Level 2 RBM During Learning
Using PCD ... 48

Figure 12: Percent Increase in Free Energy of Level 2 RBM on Validation
Data Compared to Training Data During Learning Using PCD 48

Figure 13: Sum of Squares Error on Validation Data During Neural Net
Training ... 49

Figure 14: Validation Error Percent Improvement After Using Global Fine-
Tuning .. 51

file:///C:/Users/Shark/Documents/Thesis/Thesis_v10.docx%23_Toc342247819
file:///C:/Users/Shark/Documents/Thesis/Thesis_v10.docx%23_Toc342247820
file:///C:/Users/Shark/Documents/Thesis/Thesis_v10.docx%23_Toc342247821
file:///C:/Users/Shark/Documents/Thesis/Thesis_v10.docx%23_Toc342247822
file:///C:/Users/Shark/Documents/Thesis/Thesis_v10.docx%23_Toc342247823
file:///C:/Users/Shark/Documents/Thesis/Thesis_v10.docx%23_Toc342247823
file:///C:/Users/Shark/Documents/Thesis/Thesis_v10.docx%23_Toc342247823
file:///C:/Users/Shark/Documents/Thesis/Thesis_v10.docx%23_Toc342247824
file:///C:/Users/Shark/Documents/Thesis/Thesis_v10.docx%23_Toc342247825
file:///C:/Users/Shark/Documents/Thesis/Thesis_v10.docx%23_Toc342247826
file:///C:/Users/Shark/Documents/Thesis/Thesis_v10.docx%23_Toc342247827
file:///C:/Users/Shark/Documents/Thesis/Thesis_v10.docx%23_Toc342247827
file:///C:/Users/Shark/Documents/Thesis/Thesis_v10.docx%23_Toc342247828
file:///C:/Users/Shark/Documents/Thesis/Thesis_v10.docx%23_Toc342247828
file:///C:/Users/Shark/Documents/Thesis/Thesis_v10.docx%23_Toc342247829
file:///C:/Users/Shark/Documents/Thesis/Thesis_v10.docx%23_Toc342247829
file:///C:/Users/Shark/Documents/Thesis/Thesis_v10.docx%23_Toc342247830
file:///C:/Users/Shark/Documents/Thesis/Thesis_v10.docx%23_Toc342247830
file:///C:/Users/Shark/Documents/Thesis/Thesis_v10.docx%23_Toc342247831
file:///C:/Users/Shark/Documents/Thesis/Thesis_v10.docx%23_Toc342247831
file:///C:/Users/Shark/Documents/Thesis/Thesis_v10.docx%23_Toc342247832
file:///C:/Users/Shark/Documents/Thesis/Thesis_v10.docx%23_Toc342247832

vii

Figure 15: System Configuration for NORB ... 52

Figure 16: Training Examples from NORB Dataset... 55

Figure 17: Miss Rate per Class .. 58

Figure 18: Miss Rate per Elevation ... 59

Figure 19: Miss Rate per Azimuth... 59

Figure 20: Miss Rate per Lighting Level ... 60

Figure A1: Red Histogram of Weight Values.. 63

Figure A2: Green Histogram of Visual Bias.. 64

Figure A3: Blue Histogram of Hidden Bias... 64

Figure A4: Training Data Example..65

Figure A5: Reconstruction of Training Examples..65

Figure A6: Visual Representation of Hidden ..66

Figure A7: Histogram of Hidden Layer Probability Estimations.........................66

file:///C:/Users/Shark/Documents/Thesis/Thesis_v10.docx%23_Toc342247833
file:///C:/Users/Shark/Documents/Thesis/Thesis_v10.docx%23_Toc342247834
file:///C:/Users/Shark/Documents/Thesis/Thesis_v10.docx%23_Toc342247835
file:///C:/Users/Shark/Documents/Thesis/Thesis_v10.docx%23_Toc342247836
file:///C:/Users/Shark/Documents/Thesis/Thesis_v10.docx%23_Toc342247837
file:///C:/Users/Shark/Documents/Thesis/Thesis_v10.docx%23_Toc342247838

1

CHAPTER 1

INTRODUCTION

State of the Problem and Solution Approach

 Accurate automated object recognition is a highly sought after machine

task for many industries ranging from military intelligence to manufacturing.

The ability to visually monitor an environment without human observation

potentially leads to increased productivity and security. For instance, images

sent from unmanned aerial vehicles could be scanned to detect threats early and

allow for proper safety precaution. If a task is focused enough and domain

knowledge exists, hard coded systems can be built for a specific task. However,

the complexity of visual input makes a general, multiclass system require very

high computational power.

 Fortunately the advent of general purpose computing on Graphics

Processer Units could potentially lead to better solutions. Intuitively the use of

GPUs makes sense. The hardware is designed to rapidly render visual images so

using the same structure to do visual detection seems logical. In reality, the

process of classification involves a very different set of calculations. GPUs also

have several disadvantages when compared to CPUs such as weak branching

and strict memory limitations. Despite these downfalls, a GPU implementation

of such a system can still be accomplished and will provide a fast and accurate

solution to the problem.

Overview of Machine Learning

 Machine learning is a subset in the larger field of artificial intelligence

that is focused on the ability of a system to recognize patterns contained in data.

The applications of such systems vary greatly from simple polynomial curve

2

fitting to complex image or speech recognition. The implementation of such

systems is equally variable with certain methods being more practical for certain

tasks.

Types of Learning

 The learning process can be separated distinctly into two categories:

supervised and unsupervised. Supervised learning uses a data set that has

associated labels given to each input. That is, the “right answer” is given to the

system during learning so the parameters defining the system are adjusted

towards this solution. Unsupervised learning only needs the empirical data itself

to extract some useful information. Since no labels are needed, no human input

is required which allows unsupervised learning to use much larger data sets or a

continuous stream of input data.

Types of Problems

 Supervised learning is used when a problem requires an output selection

based on a given input vector. If the output is the selection of one of a finite

number of categories the problem is called classification. If the output is a real

number or continuous variables the problem is called regression. Unsupervised

learning is used to find out less context specific information about data sets. For

example the discovery of groups within data is called clustering. Density

estimation is a determination of the distribution of data in input space. Lastly,

projection of high-dimensional space can be used for compression or, if projected

to two or three dimensional space, visualization. (Bishop, 2006)

Neural Networks

 Neural networks are a class of machine learning systems that were

originally inspired by the architecture of the brain. Although none of the models

3

are true to the information processing mechanisms of nature, they all borrow the

basic idea: a system of interconnected units that can become activated due to

some combination of input stimulation.

Artificial Neurons

 The basic unit in a neural net is called the neuron. Mathematically the

neuron can be thought of in two parts. The first is a linear combination of all the

inputs:

aj is known as the activation of a given neuron.xiis the value of input i and is

multiplied by a weight wji1. The second part involves taking the activation value

and passing it through a differentiable, nonlinear activation function:

Two of the more common choices for the activation function are hyperbolic

tangent and logistic sigmoidal. (Bishop, 2006)

1 The term wji refers to the weight to neuron j from neuron i.wj0 is not multiplied by any input

and is known as the bias for node j.

Figure 1: An Artificial Neuron

4

Multilayer Perceptron

 The most general among these neural networks is a feed forward network

called the multilayer perceptron. The multilayer perceptron is a supervised

learning system used for classification and contains three layers2: input, hidden,

and output. Units within a given layer have no connections to other units within

the same layer but are fully connected to each unit in adjacent layers. The “feed

forward” aspect of the network comes from the fact that the output from each

previous layer is used as the input to the next.

2 Some literature regards the weights themselves as a layer and would consider the basic

multilayer perceptron a two-layer network.

Figure 2: Multilayer Perceptron Network

5

The bottom layer is input, either direct or preprocessed, from the dataset and

has a size determined by the data3. The middle layer is called the hidden layer,

the size of which can be selected. The top layer is called the output layer with

size determined by the number of classes. Given an input vector, each neuron in

the hidden layer will calculate zj which will be used as input to each neuron in

the output layer. Ideally, only 1 of K output values will be nonzero which, in the

case of classification, identifies the correct class for the input data. Decision

uncertainty given a particular input vector can be seen by output values that are

not exactly 0 or 1.4

Network Training

 Before a network can accurately interpret data it must first go through a

training phase. In this step the parameters, the weights and bias’, are adjusted

to fit the data. Since the goal of the system is classification, an error function is

used that reflects the accuracy of an output given an input. Specifically, given an

N labeled input vectors:

The systems resulting output is the vector y and t is the true value from the

associated label. In order to minimize the error the weights are then adjusted to

descend along the gradient. Using a technique called back propagation the

difference in the output compared to the label is sent backwards through the

network to calculate the change in weights that corresponds to the gradient

descend of the error function.

3 Or the result of the preprocessing
4 Assuming the activation function for the final layer is sigmoidal or similar function.

6

In general, there are two ways that learning stops. Either training occurs over

the maximum number of epochs5 or convergence is reached. Convergence is said

to have occurred when the change in error over a subset from one weight update

to the next is smaller than some set value θ.

Basis Functions

 The classification problem can be thought of as dividing a k-dimensional

input space into regions belonging to a single class. The most basic machine

learning algorithms are basic methods to move a decision line to best describe

the data. This approach only works if the data is linearly separable. To classify

data that is separable in some non-linear way basis functions, denoted φj(x), are

used to transform the input. For most methods these are fixed nonlinear

functions combined in a linear fashion. This means these basis functions must be

selected ahead of time which is difficult and generally requires some intuition of

knowledge of the data. The basic structure of a neural network acts a linear

combination of basis functions each of which itself is a nonlinear combination of

linear inputs. The weights represent the coefficients on these linear inputs and

therefore are adjustable and constantly updated during learning. Neural

networks can therefore transform input using adaptive basis functions that are

initially unknown. (Bishop, 2006)

Energy-Based Models

 Consider the task of classification. The prediction from the model should

give a probability for each class based on the input vector.

5 An epoch is a complete pass over the entire training data set.

7

The general task of learning then becomes finding the set of model parameters

that, given the data set, maximizes the conditional probability of all the

answers.

The parameters that maximize this product are equivalent to those that

minimize the negative log6 of it.

The issue with using direct probabilities is that the calculation requires some

normalization with respect to all configurations of a system. If a system large or

complex this normalization task becomes intractable, especially when it the

calculation is required after each parameter update. Instead, functions that can

be calculated in a simpler fashion are used to define the system and comparison

of states can give a learning gradient.

 Energy functions are defined for a system with respect to that systems

state variables and parameters. The essence of learning in such a model is to

tune parameters to have low energy in configurations brought about by training

data and to have high energy in other states. If classification is the end result

the task becomes: given the configuration of input variables, find the

configuration of output variables with the lowest energy. The specific learning

algorithm is dependent on the model and classification is generally done by

calculating probability from the energy distribution. (LeCun, et. al 2006)

6 The logarithm function is monotonically increasing.

8

CHAPTER 2

BOLTZMANN MACHINE

General Boltzmann Machine

 In the early 1980s Geoffrey Hinton and Terry Sejnowski developed the

original concept of a Boltzmann machine. Borrowing from the field of

thermodynamics, their research expanded upon learning systems of the day7to

add a stochastic approach which allowed for an escape from local minima during

the learning process.(Hinton and Sejnowski, 1983)

Structure

 The Boltzmann machine is “a network of symmetrically coupled stochastic

binary units.” (Salakhutdinov and Hinton, 2009) The system has a layer of

visible binary units and a layer of hidden binary units. Each unit has a

bidirectional connection to each other unit in the system. The purpose of this

machine is to be able to estimate the expectations that two connected units

would both be on. This is done by allowing the machine to settle into near

equilibrium distribution using both random initialization and data driven visible

units. The general idea is to adjust the weights so that the random

initializations settle into states similar to those which exist in the environment8.

“The network will be said to have a perfect model of the environment if it

achieves exactly the same probability distribution over these 2v states when it is

running freely at thermal equilibrium with no environmental input.” (Hinton

and Sejnowski, 1983)Although the system can never be a perfect model,

regularities in the data can be captured to give a close estimation of the true

probability.

7Most notably the system was very similar to that described by Hopfield.

8 As presented by the training data

9

Learning

 Boltzmann machines fall into the category of unsupervised learning.

Unlike supervised methods there is no correct answer to compare against and

Figure 3: General Boltzmann Machine

10

adjust towards. Instead an energy function9 (Salakhutdinov and Hinton, 2009) of

the current state is used:

L, J, and Ware, respectively, the visible-to-visible, hidden-to-hidden, and visible-

to-hidden weights of the systems parameters θ. This energy function can then be

used to calculate the probability the system assigns to a given set of visible

units:

Z(θ) is the partition function which normalizes the probability and is given by:

Note that the partition function involves calculating for all possible states of the

system and changes if the parameters of the system are changed. The

conditional probabilities do not require the partition function and are given as:

The aim of learning with the system is to update the parameters of the system so

that it models reality10 as accurately as possible. This would mean that it should

be equally likely in the data and in the model that any two units are on at the

same time. Essentially the goal is for the model’s expectation to be the same as

the data-dependent expectation:

9 Energy function given without bias terms

10 More specifically, the representation of reality given by the data

11

, more specifically, is the expectation with respect to the empirical

distribution(Salakhutdinov and Hinton, 2009):

Therefore, to update each parameter so that the system ascends along the

gradient of log-likelihood the weight parameters are updated according

differences in the units they connect (Hinton and Sejnowski, 1983):

Issues

 The exact computations of the aforementioned expectations grow

exponentially with the number of hidden units. Fortunately there exist a

number of techniques that can be used to estimate the expectations and thereby

allow an approximate gradient ascent. These techniques require calculating

towards stable states of the systems. Since the machine is fully connected the

units takes a very long time to reach a stationary distribution. This

interdependence makes learning impractical. Even if one of the layers is

known11 the other layer still has free interdependent units so the state is not

known in a single step. (Salakhutdinov and Hinton, 2009)

Restricted Boltzmann Machine

 In the mid 1980’s cognitive scientist Paul Smolensky developed a theory of

information processing called Harmony Theory. It was similar to the idea of

Boltzmann machine in that using statistical methods the system attempted to

predict latent variables (environmental features) to become in harmony with the

11 As is the case in the calculation of

12

true environment. In fact, in a paper published in 1986 Smolensky showed how a

modified, parallelized Boltzmann machine could have exact inference with what

is now referred to as a restricted Boltzmann machine. (Smolensky, 1986)

Structure

 The restricted Boltzmann machine is a Boltzmann machine in which both

J and L are set to 0. Simply put, there are no connections between units of the

same layer but each unit is still fully connected to the units of the other layer.

The advantage of this configuration can be seen with the reduced conditional

probabilities. 12

12 The bias terms has been omitted from the conditional probabilities and the image of the

restricted Boltzmann machine.

Figure 4: Restricted Boltzmann Machine

13

The energy function for a given configuration is now simplified13 to:

This simplification means the hidden state can be calculated in a single parallel,

upwards pass given any visible vector. If the visible vectors are randomly

sampled from the training data the data driven expectation becomes trivial to

find. However, the models expectation does not have samples to draw from so

some approximation method must be used. (Salakhutdinov and Hinton, 2009)

Learning

 The basis for learning with RBMs comes from a Markov Chain Monte

Carlo method known as a Gibbs sampler. Markov chains are a sequence of

random variable states that are transitioned through using known conditional

probabilities. One requirement is that the outcome of each transition must solely

depend on the previous state. To start a Markov chain, an initial state must be

chosen. After a small number of transitions the state of the system is still highly

influenced by the initial selection. After enough transitions, however, the state

will be independent of the initial selection and will have reached a stationary

distribution. Sampling from this stationary distribution is shown to be

equivalent to sampling from the actual probabilities and a Monte Carlo approach

can be used to approximate the model’s expectation. A Gibbs sampler is a special

case where the transitions only involve one random variable. It can easily be

seen from the conditional probabilities of the RBM that each upwards or

downwards pass satisfies that criteria. Since the Markov chain must then be

constructed in half steps this method is called alternating Gibbs sampling.

(Walsh, 2004)

13 Bias terms omitted for clarity

14

Contrastive Divergence

 Standard maximum-likelihood learning of parameters would be done by

gradient ascent along the average log-likelihood.

Where

The first part of the right hand side can easily be calculated using training data.

As mentioned in the discussion of General Boltzmann machines, calculation of

the second term involves use of the partition function14 and cannot be done

efficiently. MCMC is a great way to sample from complex, unknown

distributions. However, running the chain sufficiently long enough to get a good

sample is very slow and equilibrium is hard to guarantee.

 Contrastive divergence attempts to follow the gradient of an entirely

different function. The Kullback-Leibler divergence is as follows:

It is possible, depending on the system15, to minimize this divergence itself,

however, in order to leave the initial distribution, p0, unaltered it makes more

sense to use difference between two divergences. If the calculation of p∞ is

intractable using the difference also allows the expectations from the

equilibrium distribution to cancel out. (Hinton, 2002)

The minimization of the contrastive divergence therefore becomes:

14 The sum of an exponential number of terms
15 Namely, if p(x|W) is tractable

15

The third term is gradient of the reconstruction distribution with respect to the

parameters multiplied by the gradient of the KL divergence with respect to the

reconstruction distribution. It is "problematic to compute, but extensive

simulations show that it can safely be ignored because it is small and it seldom

opposes the resultant of the other two terms." (Hinton, 2002)

 It should be noted that the Kullback-Leibler divergence is not symmetric16

and provides a biased estimate of the maximum likelihood learning. However,

the bias has been shown to be small and a number of successful applications

have proven it to be an effective and efficient learning signal. It should also be

noted that since the third term of the difference is not used the learning

algorithm isn't actually following any function. For a Restricted Boltzmann

machine the parameter updates using contrastive divergence become:

 Learning works even if the reconstruction used to estimate the models

expectation is done in only a single step. This is denoted as CD1. The trade off for

more steps (CDn) is an improvement of the models expectation estimate17 for the

time required to another up-down pass. Much of the common literature using

contrastive divergence as a learning method uses CD5. (Carreira-Perpinan and

Hinton, 2005)

Persistent CD

 The cost of running more steps of Gibbs Sampling to get a better

approximation of the likelihood gradient is large because all of those steps need

to be performed for each data vector. This is because each time an update occurs

all of the Markov chains are reset to the data. If the chains acted continuously

16 ≠
17 And therefore a better approximation of the gradient

16

across mini-batches they would be much reach a state much closer to

equilibrium. This allows for something that approaches CD∞ for the calculation

cost of CD1
18.

 The key consideration with PCD is the weight updates. If a Markov Chain

is started under one model and then that model's parameters are changed the

current chain is not guaranteed to be any closer to equilibrium on the new model

than a data vector. Fortunately, if the changes in the parameters are small

enough, the persistent chain is generally closer to equilibrium than a single step

from the data vector. In fact, for an infinitesimally small learning rate the

updates become exactly equivalent to CDn. (Tielman, 2008)

Training Considerations

 To assist with training, a number of common machine learning techniques

can be applied to the process. These tweaks generally effect the way the weight

values are updated and are not related to the structure of the machine itself.

Many of these techniques involve a meta-parameter that can cause a non-trivial

change in both the speed of learning and the accuracy of the system.

Learning Rate

 A learning rate is standard with almost any learning system. Denoted by

ε, the learning rate is used to scale the updates.

The rate is needed since most gradient updates by themselves would have far too

great an impact on the system. Since each update is only based upon a limited

amount of information from the environment a radical shift in parameters would

lead to a slightly unstable learning process where interdependent parameters

18 Assuming that each chain is only updated one step per batch

17

often oscillate across correct values. If the learning rate is too small learning

convergence will be slow and training will take longer than necessary. It is

common practice to start with a larger learning rate that is decreased towards 0

throughout training. (Bishop, 2006)

Mini-Batches

 Another common technique used in machine learning is the idea of

splitting up the dataset into small subsets and updating parameters only after

the gradient has been calculated from all samples in the subset. It is also

common practice to divide the total gradient by the number of samples in the

mini-batch so that the learning rate is not dependant on mini-batch size.

Depending on the system, some literature suggest a mini-batch consisting of one

example of each class whereas others use upwards of 100. If the examples of the

batch can be learned in parallel then a larger mini-batch size can reduce

training time. (Hinton, 2010)

Fantasy Particles

 Determining the number of fantasy particles to use is something specific

to stochastic methods using sampling. In the RBM, when the calculation from

visible to hidden takes place the calculation for an up-pass results in the

probability of a hidden unit being active given the visible units. Since this

hidden layer consists of binary units the probabilities are each compared against

a random number 0.0-1.0. If the probability is greater than the randomly

generated number the binary unit is activated.

 Ideally, to accurately sample the subspace of the model a very large

number of these possible hidden configurations should be sampled. Calculation

time is the clear compromise as each fantasy particle needs to go through all the

18

steps required for the chosen alternating Gibbs steps. (Salakhutdinov and

Hinton, 2009)

Sparsity

 "Discriminative performance is improved by using binary features that

are only rarely active." (Nair and Hinton, 2009) This statement seems to hold

true most of the time. Rarely active features tend to code for more specific

patterns in the visible layer and are also easier to interpret as input into another

RBM.

 If an RBM is designed with a specific probability of each hidden unit being

active, p, then the common error measure used is the cross entropy between the

desired and actual probability.

Where q is an estimate of the current probability. With respect to the RBM

training algorithm it makes the most sense to estimate q from the current mini-

batch19. The derivative if the error measure cleanly becomes:

Also, to improve the quality of the estimate a running estimate can be used with

a chosen decay factor.

Ensuring sparsity also ensures that if a hidden unit's probability drops below

the target it will be pulled back up. This prevents a hidden unit from becoming

useless to the system. (Hinton, 2010)

Momentum

 Momentum is a technique used both to increase the speed of learning and

to help dampen oscillations. Oscillations occur when parameters swing back and

19 The quality of the estimate is therefore directly related to the size of the mini-batch

19

forth across the optimum value due to larger than ideal changes thereby leading

to suboptimal solutions. The motivation comes from the fact that many objective

functions contain long, narrow and fairly straight ravines. Ideally, once these

ravines are roughly defined in weight space the learning should be fairly

consistent along the floor. Normally this gradient is followed in a stepwise

fashion and is limited by the learning rate. If instead the weight is updated by a

velocity then the learning can happen more quickly with a smaller learning rate

while still benefitting from smaller oscillations. Parameters are updated as

follows:

good idea to keep this small20 for the initial learning and then increase the value

afterwards. (Hinton, 2010)

20 0.5 seems to work in most cases

20

Figure 5: Projections of the Weights from a Single Hidden Unit

to the Visual Layer. This RBM was Trained Using the MNIST

Dataset and a Sparsity Target of 0.1

36

Subcomponents

Layer

 The Layer class represents the states of groups of neurons. Each layer

class contains an array of floats equal to the intended size of the layer. It also

stores an additional utility array that can be used by different learning system.

This allows, for example, a DBN to save the layer state calculated during the up

pass to be used to calculate updates that also require the layer state generated

by generative weights. Both these arrays are stored on the device and a single

copy exists on the host to store calculated device values in order to view the

Figure 6: Block Diagram of General System Architecture

37

layer. This display functionality is implemented using static functions in a

namespace defined in the learnUtil.cpp class found in appendix B.

Connection

 The connection class contains all the relevant values used to transition

between layers. At the core this involves weights and bias's but the class also

contains some values that are only necessary during learning. Copies of the

parameter values exist on both the device and host. Most of the values can be

displayed using histograms which are drawn after the active values on the

device are copied to the host.

Trainer

 The trainer is a reusable class that is used to disseminate training

examples to the system. The data files are directly loaded by the trainer and

stored in host memory. The entire data set is never store on the device due to

limited memory. The trainer has an array of examples, equal to the size of the

mini batch, stored on the device and contains all the control logic to randomly

select and load batches. The class also counts how many training examples have

been seen during the epoch as well as the total number of epochs trainer over.

Display functionality also exists to show training examples as well as to visually

show which examples are loaded into a mini batch. This functionality and

memory structure applies to labels as well for supervised training methods.

Learning Systems

 Currently, three learning systems are implemented. The restricted

Boltzmann machine contains the simplest structure containing just two layers

and the connection between them. The deep belief net contains 3 layers and the

38

corresponding connections. The neural network contains an additional top level

with the k binary units where k is the number of classes in the data.

 Each system contains, a number of pass through function to the

subcomponents to get system facts and device memory location. The function

calls act as a wrapper that give the utility layer more meaning with respect to

its use in the system. In addition, each system class allows the individual

subcomponents to be loaded and saved with a single call.

Algorithm Implantations

 The *.cu files associated with a machine define the kernels and modes of

the learning systems. The program makes used of #defines to etch out the

system configuration to be used for training. This, of course, requires

recompilation each time the system changes. It might seem this could be avoided

by a configuration file that can be edited in plain text and read in by the

compiled program. However, through testing this caused some issues with a

slowdown in a number of the CUDA kernels. The slowdown occurs when a loop

condition is dependent on a variable that is passed in. Regardless of whether

that variable is stored on the device or host this occurs. If the variable is stored

in a #define the compiler knows the exact value during compilation and can

optimize. Most likely this comes in the form of loop unrolling but it also could

provide some guarantee of iterations that is needed to truly coalesce memory

accesses.

 In general, a good practice when working with CUDA is to have all data

that needs to be accessed within a kernel stored on device memory. The transfer

time between the host and device is the slowest of all memory accesses so it

should be avoided at all costs. However, in the case of the weight updates a few

39

variables31 are passed in by value without any measurable slowdown. Latency

hiding, which is performed by allowing ready threads to run while waiting on

slow memory access, accounts for the similar timing. This most likely would not

be the case for faster calculations such as the up pass.

 Aside from these considerations the rest of the implementation was fairly

straight forwards and the object-oriented component structure allowed for clean,

simple code. As is the case with all code, there is most likely room for

improvement and most definitely an even more concise way to design portions of

the system. Agile development techniques were used and the system was

developed over several iterations.

31 Momentum and learning rate

40

CHAPTER 5

DATASETS AND RESULTS

MNIST

 The MNIST database is a large collection of handwritten digits 0 to 9. The

dataset is a subset from the larger NIST database with some modifications to

make it more standardized. The set contains 60,000 training examples and

10,000 test images. All of the digits have been size-normalized and centered32.

The images are an 8-bit grayscale, unlike the original binary data, as a result of

the normalization.

 The lowest error rate on the test set is 0.23% using a committee of 35

convolutional nets and additional techniques. This result also used elastic

distortion on the data to, in essence, allow for more training examples to be seen.

A 3-layer NN with 500 and 150 hidden units using the strict33 MNIST data

resulted in an error rate 2.95%. (LeCun, 1998)

 This dataset was used for system verification and to see the benefits

gained from different learning techniques. Only the original data was used and

the systems were trained using a constant number of epochs and consistent

learning rates across methods. The data was presented to the system as "pixel

probability" meaning the grayscale value of each pixel was converted to between

0-1. The system contained a 784 visual layer, 512 hidden layer, 512 hidden layer,

and a top layer of 10 softmax units.

32 Centered with respect to a calculated center of mass of pixels

33 No distortions of the data allowed

45

Table 7: Classification Results Using CD5

Data Source Misclassifications Misclassification Rate

Training Set 1054 1.95%

Validation Set 132 2.20%

Test Set 259 2.59%

Persistent Contrastive Divergence

 The same system was trained using a continuous Markov chain across

mini batches and epochs. This was the only change from the CDn training runs.

The free energy of the validation data never seems to rise to drastically

compared to the training data. The actual value of the free energy is arbitrary

and the second level RBM has higher values. The neural net error improve

rapidly to start due to the top level weights roughly aligning with correct

penultimate layer configurations. The progress becomes much more gradual as

the weights begin to fine tune for classification.

Table 8: Training Parameters for Level 1 RBM (PCD)

Epochs 50

Mini Batch Size 100

Gibbs Steps 1 (Persistent Chain)

Learning Rate 0.001

Learning Rate Decay 0

46

Table 9: Training Parameters for Level 2 RBM (PCD)

Epochs 50

Mini Batch Size 100

Gibbs Steps 1 (Persistent Chain)

Learning Rate 0.001

Learning Rate Decay 0

Table 10: Classification Results for PCD

Data Source Misclassifications Misclassification Rate

Training Set 1088 2.01%

Validation Set 127 2.12%

Test Set 257 2.57%

47

0

50

100

150

200

250

300

350

400

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 Epoch

Free Enery (Training Data)

Train

Figure 9: Free Energy over Training Data of Level 1 RBM

During Learning Using PCD

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Epoch

Free Energy % Difference
Training vs. Validation

% Difference

Figure 10: Percent Increase in Free Energy of Level 1 RBM

on Validation Data Compared to Training Data During

Learning Using PCD

48

0

200

400

600

800

1000

1200

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Epoch

Free Energy (Training Data)

Train

Figure 11: Free Energy over Training Data of Level 2 RBM

During Learning Using PCD

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Epoch

% Difference

% Difference

Figure 12: Percent Increase in Free Energy of Level 2 RBM on

Validation Data Compared to Training Data During Learning

Using PCD

49

Global Fine-Tuning

 The layers that were pre-trained using PCD were then fine tuned using

the methods described in Chapter 3. The fine tuned layers were then used to

initialize the neural network. Initial error rates were slightly higher most likely

due to the random initialization of the top level weight. Steadily the globally

tuned network outperformed the stacked RBMs across all data sets.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

1
0

1

1
1

1

1
2

1

1
3

1

1
4

1

1
5

1

1
6

1

1
7

1

1
8

1

1
9

1

Epoch

SoS Error (Validation Data)

PCD

Figure 13: Sum of Squares Error on Validation Data During

Neural Net Training

50

Table 11: Training Parameters for Global Fine-Tuning

Epochs 100

Mini Batch Size 100

Gibbs Steps 1

Learning Rate 0.001

Learning Rate Decay 0.0001

Table 12: Classification Results for Globally Fine-Tuned DBN

Data Source Misclassifications Misclassification Rate

Training Set 933 1.73%

Validation Set 117 1.95%

Test Set 242 2.42%

51

NORB

 The NORB dataset was developed to provide a test for general 3D object

recognition. 50 toys from 5 classification groups were photographed under

various conditions. The categories are: four-legged animals, human figures,

airplanes, trucks, and cars. Two cameras were used to provide stereo images

under different lighting conditions, elevations and angles. The small NORB

dataset contains fewer examples but each example is presented on a plain white

background.

 The data was presented to the system as floating point pixel

"probabilities" between 0 and 1. To speed up training the second image of each

stereo input was thrown out. This halves the size of the input and greatly speeds

up training time. The RBM pretraining seemed to be ineffective as the

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

1

9

1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
0

5

1
1

3

1
2

1

1
2

9

1
3

7

1
4

5

1
5

3

1
6

1

1
6

9

1
7

7

1
8

5

1
9

3

Epoch

% Improvement (w/Fine-Tuning)

Figure 14: Validation Error Percent Improvement After Using Global

Fine-Tuning

52

validation error started relatively higher after the first epoch and gradually

declined. It's possible that the data was too complex or that raw pixel input was

an improper method. Success as been had using raw pixel data on a similar

learning devince known as a Deep Boltzmaan Machine. A higher learning rate

used in that study may also have accounted for the improved pre-training and

better classification results. (Salakhutdinov, 2009)

Figure 15: System Configuration for NORB

53

Table 13: Training Parameters for Level 1 RBM NORB

Epochs 500

Mini Batch Size 100

Gibbs Steps 1 (Persistent)

Learning Rate 0.001

Learning Rate Decay 0.0001 (last 100 epochs only)

Table 14: Training Parameters for Level 2 RBM NORB

Epochs 500

Mini Batch Size 100

Gibbs Steps 1 (Persistent)

Learning Rate 0.001

Learning Rate Decay 0.0001 (last 100 epochs only)

Table 15: Training Parameters for Global Fine-Tuning

Epochs 100

Mini Batch Size 100

Gibbs Steps 1

Learning Rate 0.001

Learning Rate Decay 0.0001

54

Table 16: Training Parameters for Neural Net

Epochs 200

Mini Batch Size 20

Learning Rate 0.0001

Learning Rate Decay 0.00005

Table 17: Classification Results on NORB Dataset

Data Source Misclassifications Misclassification Rate

Training Set 13683 23.6%

Validation Set 1527 24.0%

Test Set 15367 29.8%

55

Figure 16: Training Examples from NORB Dataset

56

CHAPTER 6

CONCLUSIONS

 The system has clearly learned how to distinguish between the 5 classes.

A single desktop GPU is capable of finding distinctions between 5 fairly similar

types of objects. A deeper analysis of the results gives some insight into the

actual applications of such a system and the original problem statement.

 The advantage of harnessing the parallel power of GPUs was clearly

shown in chapter 4. The final neural network is capable of doing 50

classifications in 192ms. This means, assuming a resolution of 96x96, the

current system is capable of analyzing over 250 images a second. These images,

of course, could also be image patches. This allows for much larger images to be

analyzed if the system is trained on such data. For example, if the system was

trained by slicing UAV images into equal sections it could analyze a single, large

image by using slicing those same sized sections. Furthermore since a single

desktop GPU is used it would be possible, and most likely cost effective, to have

an array of such devices using the same pretrained parameters but analyzing

different segments of the system.

 The acquisition of training examples is another important consideration

for a real life application. If a UAV needed to identify military vehicles, for

example, data collection would be very straightforward. First, the initial RBM

could be trained over image patches collected from a UAV, some containing such

vehicles, with no manual input required. Subsequent layers and global fine-

tuning would occur in the same manner presented in this paper. When it came

time to train the neural net, a user would have to select image patches with

objects of interest. This, presumably, would be a small percentage of the total

number of patches since most of the image would not contain military vehicles.

57

 It is also important to consider the causes of misclassification in the test

sets. Domain specific difficulties account for a large portion of the error. Overall,

animals had the highest miss rate. This, most likely is due to animals having the

most variation in shape as the toys ranged from lions to elephants. As shown in

the per class error, cars had a high miss rate when compared to trucks. Trucks

had the lowest miss rate of all the classes, and a deeper looks reveals many of

the misses for cars are due to the system classifying it as a truck. The system

has some bias towards trucks which is partially due to the random subspace of

initialization and would most likely be slightly alleviated but training the neural

net step for longer.

 Non-domain specific bias's should also be explored. The NORB dataset

provides additional information about each training and test example. Included

in this information is camera angle used. Both degrees above horizon and

azimuth are given. As can be seen in figures 18 and 19 the camera angle seems

to have no noticeable effect on misclassification rate. The best elevation seems to

be around 50 degrees above the horizon, but is not significantly better than the

lowest or highest elevations used. Azimuth is especially irrelevant because it

relies on the way the object is pointed. Light level is also given. As expected the

mid range levels were the easiest to classified. The darkest setting performed

the worst by about 30% over the other levels. This could potentially be alleviated

in a real system by performing more unsupervised training under poor lighting

conditions. Of course, humans would also perform worse under poor lighting

conditions so this result is not entirely unexpected.

 The results show that a GPU implementation of a deep net provides a fast

solution to general object recognition. No innate properties of the system make it

impractical for most industry uses. However, it should also be noted that no

innate properties of the system make it particularly good at finding patterns in

58

images as opposed to other input spaces. Specifically, nothing in the system

makes use of the structure of the input space that comes with using images.

Possible improvements could be used by integrating other techniques used for

image recognition into the restricted Boltzmann machine or deep net. As is, the

system performs fine on image tasks and may yet prove more useful in other

domains.

0

500

1000

1500

2000

2500

Animal Person Plane Truck Car

M
is

cl
as

si
fi

ca
ti

o
n

s

Figure 17: Miss Rate per Class

59

0

100

200

300

400

500

600

700

800

900

30 35 40 45 50 55 60 65 70

M
is

cl
as

si
fi

ca
ti

o
n

s

Degrees from horizon

Figure 18: Miss Rate per Elevation

0

50

100

150

200

250

300

350

400

450

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340

M
is

cl
as

si
fi

ca
ti

o
n

s

Azimuth (degrees)

Figure 19: Miss Rate per Azimuth

60

0

200

400

600

800

1000

1200

1400

1600

bright 1 2 3 4 dark

M
is

cl
as

si
fi

ca
ti

o
n

s

Light Level

Figure 20: Miss Rate per Lighting Level

61

REFERENCES

Bishop, C. M. (2006). Pattern recognition and machine learning (Vol. 4, No. 4).

New York: springer.

Carreira-Perpinan, M. A., & Hinton, G. E. (2005, January). On contrastive

divergence learning. In Artificial Intelligence and Statistics (Vol. 2005, p. 17).

Hinton, G. (2010). A practical guide to training restricted Boltzmann

machines.Momentum, 9, 1.

Hinton, G. E. (2007). To recognize shapes, first learn to generate

images.Progress in brain research, 165, 535-547.

Hinton, G. E., Osindero, S., & Teh, Y. W. (2006). A fast learning algorithm for

deep belief nets. Neural computation, 18(7), 1527-1554.

Hinton, G. E. (2002). Training products of experts by minimizing contrastive

divergence. Neural computation, 14(8), 1771-1800.

Hinton, G. E., & Sejnowski, T. J. (1983, June). Optimal perceptual inference.

InProceedings of the IEEE conference on Computer Vision and Pattern
Recognition (pp. 448-453). Piscataway, NJ: IEEE.

LeCun, Y., Chopra, S., Hadsell, R., Ranzato, M., & Huang, F. (2006). A tutorial

on energy-based learning. Predicting Structured Data

LeCun, Y., Huang, F. J., & Bottou, L. (2004, June). Learning methods for generic

object recognition with invariance to pose and lighting. In Computer Vision and
Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer
Society Conference on (Vol. 2, pp. II-97). IEEE.

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning

applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324.

Ly, D. L., Paprotski, V., & Yen, D. (2008). Neural networks on gpus: Restricted
boltzmann machines. Technical Report, Department of Electrical and Computer

Engineering, University of Toronto.

Moody, J. E., Hanson, S. J., Krogh, A., & Hertz, J. A. (1995). A simple weight

decay can improve generalization. Advances in neural information processing
systems, 4, 950-957.

NVIDIA. (2011, November) CUDA C Programming Guide.(Version 4.1)

62

Salakhutdinov, R., & Hinton, G. E. (2009). Deep boltzmann machines. In

Proceedings of the international conference on artificial intelligence and
statistics (Vol. 5, No. 2, pp. 448-455). Cambridge, MA: MIT Press.

Smolensky, P. (1986). Information processing in dynamical systems:

Foundations of harmony theory.

Tieleman, T. (2008, July). Training restricted Boltzmann machines using

approximations to the likelihood gradient. In Proceedings of the 25th
international conference on Machine learning (pp. 1064-1071). ACM.

Walsh, B. (2004). Markov chain Monte Carlo and Gibbs Sampling.

63

APPENDIX A

VISUAL SYSTEM DISPLAYS

 The histograms are all centered around 0.0 which is denoted by the

largest vertical dash. The second largest dashes represent 1.0's and the smallest

dashes denote 0.1.

Figure A1: Red Histogram of Weight Values

64

Figure A2: Green Histogram of Visual Bias

Figure A3: Blue Histogram of Hidden Bias

65

Figure A5: Reconstruction of Training Examples

Figure A4: Training Data Example

66

Figure A7: Histogram of Hidden Layer Probability Estimations

Figure A6: Visual Representation of Hidden Layer.

67

APPENDIX B

CODE

utilLearn.h

#ifndef UTIL_LEARN_H

#define UTIL_LEARN_H

#include <cuda.h>

#include <cuda_runtime.h>

#include "GL/gl.h"

namespace utilLearn{

 /* --

-

 * SWAP 4

 * Non-Intel -> Intel Byte formatting for 4 bytes

 * c | char* | pointer to 4 char array

 --

----*/

 static void swap4(char* c)

 {

 char tmp[4];

 tmp[0] = c[3];

 tmp[1] = c[2];

 c[3] = c[0];

 c[2] = c[1];

 c[1] = tmp[1];

 c[0] = tmp[0];

 return;

 }

 /* --

-

 * DEV ALLOC

 * Helper function to allocate device memory. Helps keep code

clean

 * and keeps running count of allocated memory.

 *

 * d | float** | device location to allocate

 * size | int | total bytes to allocate

 --

--*/

 static void dev_alloc(float** d, int size)

 {

 cudaMalloc((void**)d,size);

 //_total_gpu_mem += size;

 printf("Allocating %f MBytes on GPU.\n",((float) size / 1024)

/ 1024);

68

 return;

 }

 static void dev_alloc(int** d, int size)

 {

 cudaMalloc((void**)d,size);

 //_total_gpu_mem += size;

 printf("Allocating %f MBytes on GPU.\n",((float) size / 1024)

/ 1024);

 return;

 }

 /* --

-

 * SHOW

 * Draws the layer passed to it

 * lay | float*| pointer to units to display

 * x | int | width of layer

 * y | int | height of layer

 --

--*/

 static void show(float* lay, int x, int y)

 {

 float px_size = 2.0/(float)x;

 for(int i=0;i<y;i++)

 {

 for(int j=0;j<x;j++)

 {

 glColor3f(lay[i*x + j],lay[i*x + j],lay[i*x +

j]);

 float v_off = 1.0-(float)(i+1)*px_size;

 float h_off = -1.0+(float)j*px_size;

 glBegin(GL_POLYGON);

 glVertex2f(h_off, v_off);

 glVertex2f(h_off, v_off + px_size);

 glVertex2f(h_off + px_size, v_off +

px_size);

 glVertex2f(h_off + px_size, v_off);

 glEnd();

 }

 }

 return;

 }

 static void text(float* lay, int x, int y)

 {

 for(int i=0;i<y;i++)

 {

 for(int j=0;j<x;j++)

 {

 printf("[%f]",lay[i*x + j]);

69

 }

 printf("\n");

 }

 return;

 }

}

#endif

connection.h

#ifndef CONNECTION_H

#define CONNECTION_H

#include <fstream>

#include <iostream>

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <map>

#include <cuda.h>

#include <cuda_runtime.h>

#include "../../../0.Utils/utilLearn.h"

using namespace std;

using namespace utilLearn;

class Connection

{

public:

 Connection(int v_size, int h_size);

 ~Connection();

 //Initialization and saving

 void initParams();

 int save(ofstream *o_file, int loc);

 int load(ifstream *o_file, int loc);

 //Get

 int getVSize(){return _v_size;};

 float* getWTRow(int hidden_unit){return &_weight_t[hidden_unit

* _v_size];};

 //Set

 void setA(int index, float value){_a[index] = value;};

70

 void cpyA(){cudaMemcpy(d_a, _a, _v_size * sizeof(float),

cudaMemcpyHostToDevice);};

 void setB(int index, float value){_b[index] = value;};

 void cpyB(){cudaMemcpy(d_b, _b, _h_size * sizeof(float),

cudaMemcpyHostToDevice);};

 //Print

 void printW();

 void printWT();

 //Display (connection_disp.cpp)

 void histogramW();

 void histogramA();

 void histogramB();

 void histogramDw();

public:

 float* d_a; //bias to visible unit

 float* d_b; //bias to hidden unit

 float* d_weight;

 float* d_weight_t; //transposed weights

 float* d_vel_weight; //velocity of weight updates

 float* d_dw;

private:

 int _v_size;

 int _h_size;

 int _w_size;

 float* _a;

 float* _b;

 float* _weight;

 float* _weight_t;

 float* _vel_weight;//velocity of weights

 float* _dw;

};

#endif

connection.cpp

#include "../inc/connection.h"

Connection::Connection(int v_size, int h_size)

{

 _v_size = v_size;

 _h_size = h_size;

 _w_size = _v_size * _h_size;

 //Host memory allocation

 _weight = (float*) malloc(_w_size * sizeof(float));

