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ABSTRACT

In this study we provide a new proof of C1,α boundary regularity for finite

perimeter sets with flat boundary which are local minimizers of a variational mean

curvature formula. Our proof is provided for curvature term H ∈ L∞(Ω). The proof

is a generalization of Caffarelli and Córdoba’s method [6], and combines techniques

from geometric measure theory and the theory of viscosity solutions which have been

developed in the last 50 years. We rely on the interplay between the local nature

of sets which are minimizers of a given functional, and the pointwise properties of

comparison surfaces which satisfy certain PDE. As a heuristic, in our proof we can

consider the curvature as an error term which is estimated and controlled at each

point of the calculation.

Abstract Approved:

Thesis Supervisor

Title and Department

Date



C1,α REGULARITY FOR BOUNDARIES WITH PRESCRIBED MEAN

CURVATURE

by

Stephen William Welch

A thesis submitted in partial fulfillment of the
requirements for the Doctor of Philosophy

degree in Mathematics
in the Graduate College of

The University of Iowa

December 2012

Thesis Supervisor: Professor Lihe Wang



Graduate College
The University of Iowa

Iowa City, Iowa

CERTIFICATE OF APPROVAL

PH.D. THESIS

This is to certify that the Ph.D. thesis of

Stephen William Welch

has been approved by the Examining Committee for the
thesis requirement for the Doctor of Philosophy degree
in Mathematics at the December 2012 graduation.

Thesis Committee:

Lihe Wang, Thesis Supervisor

Gerhard Ströhmer
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CHAPTER 1
INTRODUCTION

This study is intended to provide a new proof of C1,α regularity near non-

singular points for sets with a prescribed mean curvature on the boundary. This

approach to prescribed mean curvature surfaces has its origin with the work of Ennio

De Giorgi, who developed the theory minimal surfaces from the standpoint of sets of

finite perimeter. A deep result of his [9] shows that the sets of minimal perimeter, i.e.

those with zero mean curvature, enjoy C1,α regularity of the boundary except possibly

in a small singular set. Much effort has been made to provide analogous proofs of these

results in different measure theoretic settings, as instanced in works by Reifenberg

[27], Federer and Fleming [13], Almgren [2], and others. Also, much interest has been

placed on the dimension of the set of singular points. In [26] Miranda proved that if

the dimension of the surface is this singular set must have (n−1)−dimensional Haus-

dorff measure 0. After stronger results by Almgren [1] and Simons [30], the existence

of a singular cone was provided by Bombieri, De Giorgi and Giusi [3] in R8. Finally,

Federer [12] showed that the singular set could have at most (n − 8)−dimensional

Hausdorff measure.

Along a different line of study, Massari extended De Giorgi’s proof to bound-

aries satisfying a variational mean curvature formula with mean curvature term

H ∈ L∞(Ω) in [24] and later with H ∈ Lp(Ω) for p > n in [25]. More precisely,

he studied the boundary regularity of sets E which are local minimizers in Ω ⊂ Rn



2

of a functional

FH(E) = PΩ(E) +

ˆ
E∩Ω

H(x) dx. (1.1)

Here PΩ(E) denotes the perimeter of E in Ω. The motivation for (1.1) is seen by

calculating the first variation of FH in the case where ∂E is a C2 surface and H is a

continuous function. Then PΩ(E) is the surface area of ∂E, and for x ∈ ∂E, we have

that −H(x)/(n− 1) is the mean curvature of ∂E. For the details of this calculation,

see Appendix A.2.

In 1993 Caffarelli and Córdoba [6] presented a completely new proof of C1,α

boundary regularity for sets of minimal perimeter by reformulating the problem in

terms of viscosity solutions and using techniques from the theory of fully nonlinear

elliptic equations.

In this study we provide a new proof of C1,α boundary regularity for finite

perimeter sets with flat boundary having variational mean curvature as in (1.1),

where the curvature term is H ∈ L∞(Ω). The proof is a generalization of Caffarelli

and Córdoba’s paper, and is strongly influenced by their philosophy and methods. It

involves a combination of techniques from geometric measure theory and the theory

of viscosity soultions which have been developed over the last 50 years, and thus

represents a complete departure from the techniques used in [24, 25]. As such, it

relies on the interplay between the local nature of sets which are minimizers of a

given functional, and the pointwise properties of comparison surfaces which satisfy

certain PDE. As a heuristic, in our proof we can consider the curvature as an error

term which is estimated and controlled at each point of the calculation.
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CHAPTER 2
DEFINITIONS AND BACKGROUND

2.1 Sets of Finite Perimeter

and the Reduced Boundary

We refer to the standard references [17, 11] for the following definitions and

theorems.

Definition 2.1.1 ([17] p. 5, [11] p. 166). Let E be a Borel set and Ω ⊂ Rn+1 be an

open set. Define the perimeter of E in Ω as

PΩ(E) =

ˆ
Ω

|DχE| = sup

{ ˆ
E

div g dx

∣∣∣∣ g ∈ C1
0(Ω;Rn+1), |g| ≤ 1

}
.

If Ω = Rn+1 then we denote

P(E) = PRn+1(E).

We say that E has finite perimeter in Ω if PΩ(E) < ∞. Similarly, we say that

E has locally finite perimeter in Ω if PV (E) <∞ for each open set V ⊂⊂ Ω.

Remark 2.1.2. Note that if ∂E ∩Ω is smooth, then from the Gauss-Green theorem,

one can see that

PΩ(E) = Hn(∂E ∩ Ω).

Thus PΩ(E) measures the ”surface area” of E in Ω, and the term perimeter is justi-

fied. Here Ln denotes the n−dimensional Lebesgue measure.

Remark 2.1.3 ([17], p. 6). Assume E1 and E2 are sets with finite perimeter. Then

the following properties follow from Definition 2.1.1:
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1) If Ω1 ⊆ Ω2, then

PΩ1(E) ≤ PΩ2(E)

with equality holding when E ⊂⊂ Ω1.

2) PΩ(E) = PΩ(Ω \ E).

3) If |E| = 0 then P(E) = 0.

4) If |E1∆E2| = |(E1 \ E2) ∪ (E2 \ E1)| = 0, then PΩ(E1) = PΩ(E2).

Theorem 2.1.4 ([17], p. 172). If E1 and E2 are sets with finite perimeter, then

PΩ(E1 ∪ E2) + PΩ(E1 ∩ E2) ≤ PΩ(E1) + PΩ(E2),

with equality when dist(E1, E2) > 0.

The next theorem shows that for each set E with locally finite perimter in

Ω, there exists a measure µE that extends the definiton of perimeter to arbitrary

A ⊂⊂ Ω. It can be shown that for open sets U ,

PU(E) = µE(U).

Also, there is a ”normal vector” to ∂E, denoted νE which is defined µE a.e.. The

proof follows from the Reisz Representation theorem.

Theorem 2.1.5 (The Perimeter Measure [11], p. 168). Let E be a set with locally

finite perimeter in Ω. Then there exists a Radon measure µE and a µE-measurable

function

νE : Ω→ Rn+1
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such that

i) |νE| = 1 µE a.e., and

ii)
´
E

div g dx =
´

Ω
g · νE dµE for all g ∈ C1

0(Ω;Rn+1).

The next two theorems provide the means to prove the existence of minimal

perimeter sets.

Theorem 2.1.6 (Lower Semicontinuity of the Perimeter Measure [11], p. 172). Let

E and {Ek}∞k=1 be a sets with locally finite perimeter in Ω. If

χEk → χE in L1
loc(Ω)

then

µE(Ω) ≤ lim inf
k→∞

µEk(Ω).

Theorem 2.1.7 (Compactness of Sets of Finite Perimeter [11], p. 176). Let Ω be

open and bounded with ∂Ω Lipschitz. Suppose {Ek}∞k=1 is a sequence of sets with

finite perimeter in Ω. Then there exists a subsequence
{
Ekj
}∞
j=1

and a set E with

finite perimeter in Ω such that

χEk → χE in L1(Ω).

The last topics of this section are the reduced boundary ∂∗E and the gen-

eralized Gauss-Green Theorem for the reduced boundary. We will make use of this

version of the Gauss-Green theorem several times in the next chapter.

Definition 2.1.8 (The Reduced Boundary [11], p. 194). Let x ∈ Rn+1 We say

x ∈ ∂∗E, the reduced boundary of E if
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i) µE
(
Bn+1
r (x)

)
> 0 for all r > 0,

ii) the limit νE(x) = lim
r→0

´
Bn+1
r (x)

νE dµE

µE (Bn+1
r (x))

exists, and

iii) |νE(x)| = 1.

As we can see from the definition above, the reduced boundary consists of the

points of ∂E that have a normal vector defined with respect to µE. Furthermore, it

can be shown that the perimeter measure coincides with the Hausdorff measure on

the reduced boundary:

Theorem 2.1.9 ([11], p. 205). Assume E has locally finite perimeter in Rn+1. Then

for any A ⊂ ∂∗E,

µE(A) = Hn(A).

Finally, we can state the Gauss-Green Theorem. This is proved in an equiva-

lent, but slightly different form in [11].

Theorem 2.1.10 ([11], p. 209). Assume E has locally finite perimeter in Rn+1. Then

i) Hn(∂∗E ∩K) <∞ for each compact K ⊂ Rn+1, and

ii) for Hn a.e. x ∈ ∂∗E, we have

ˆ
E

div g dx =

ˆ
∂∗E

g · νE dHn

for all g ∈ C1
0(Ω;Rn+1).
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2.2 Minimizers of Perimeter

and Variational Mean Curvature

The space of finite perimeter sets enjoys sufficient compactness to guarantee

that a minimizer of P (E) exists, and so it is natural to study minimal surfaces from

the perspective of minimizers of the perimeter functional as follows [17]:

Definition 2.2.1. Let Ω ⊂ Rn+1 be open. Then a set E of finite perimeter has

minimal perimeter in Ω if

P(E) ≤ P(X)

for all X such that E∆X ⊂⊂ Ω.

Definition 2.2.2. Let Ω ⊂ Rn+1 be open, and let H ∈ L1(Ω). We say that a set E of

finite perimeter has variational mean curvature H in Ω if E is a local minimizer

of the functional

FH(E) = PΩ(E) +

ˆ
E∩Ω

H(x) dx. (2.1)

That is,

FH(E) ≤ FH(X)

for all X such that E∆X ⊂⊂ Ω.

When no confusion should arise, we will often drop the adjective ’variational’

simply refer to a set E satisfying Definition 2.2.2 as having mean curvature H.

Remark 2.2.3. The motivation for this definition is that if ∂E ∩Ω is smooth and H

is continuous, then by computing the first variation of FH(E), we find that − 1
n
H(x)

is the mean curvature of E at x ∈ ∂E ∩ Ω.
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Remark 2.2.4. Later, we will make use of the blowup sets

λE = { λx | x ∈ E } .

We note that

FH(E) = PΩ(E) +

ˆ
E∩Ω

H(x) dx

=
1

λn
PΩ(λE) +

1

λn+1

ˆ
λE∩λΩ

H(x/λ) dx

=
1

λn

(
PλΩ(λE) +

1

λ

ˆ
λE∩λΩ

H(x/λ) dx

)
.

(2.2)

Thus we see that if H is a mean curvature for E in Ω, then 1
λ
H(x/λ) is a mean

curvature for λE in λΩ.

We will now begin to prove volume and density estimates for sets E with mean

curvature H in Ω. To do this we will need the following classical theorems from real

analysis.

Theorem 2.2.5 (The Isoperimetric Inequalites, [11], pg. 190). Let E be a bounded

set with finite perimeter in Ω ⊂ Rn+1. Then

i) c|E|n/n+1 ≤ P(E), and

ii) Relative Isoperimetric Inequality: For any ball Br ⊂ Ω,

min {|Br ∩ E|, |Br \ E|}n/n+1 ≤ CPBr(E),

for universal constants c and C.
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Theorem 2.2.6 (The Vitali Covering Theorem, [11], pg. 27). Let G be a collection

of nondegenerate closed balls in Rn+1 with

sup { diam B | B ∈ G } <∞.

Then there exists a countable family A of disjoint balls in G such that

⋃
B∈G

B ⊂
⋃
B∈A

B̂,

where B̂ denotes the concentric ball with radius 5 times the radius of B.

It will be useful to have the following notation in the sequel:

Definition 2.2.7. We denote the volume which is δ−flat in Bn+1
r (0) as

Sr,δ = Bn+1
r (0) ∩ {|xn+1| ≤ δr} .

Lemma 2.2.8 (The Boundary Density Estimate for Flat Surfaces). Let E be a set

with finite perimeter in Ω ⊂ Rn+1, and let E have mean curvature H ∈ Ln+1(Ω).

Also, assume that 0 ∈ ∂E and ∂E satisfies

∂E ∩Bn+1
r (0) ⊂ {|xn+1| ≤ δr} .

Then

PBn+1
r

(E) ≤ ωn

(
1 + δn+ δn/n+1‖H‖Ln+1(Bn+1

r )

)
rn.

Proof. By comparison of E with E \ Sr,δ we see that

PBn+1
r

(E) +

ˆ
E∩Sr,δ

H(x) dx ≤
ˆ
∂Sr,δ

χE(x) dHn. (2.3)
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Similarly, by comparison of E with E ∪ Sr,δ we have

PBn+1
r

(E) +

ˆ
E∩Sr,δ

H(x) dx ≤
ˆ
∂Sr,δ

1− χE(x) dHn +

ˆ
Sr,δ

H(x) dx. (2.4)

Adding (2.3) and (2.4) and bounding the surface area of Sr,δ by the surface area of a

cylinder with radius r and height δr, we find

2

(
PBn+1

r
(E) +

ˆ
E∩Sr,δ

H(x) dx

)
≤
ˆ
∂Sr,δ

dHn +

ˆ
Sr,δ

H(x) dx.

= 2ωnr
n + 2δnωnr

n +

ˆ
Sr,δ

H(x) dx.

(2.5)

Thus from (2.5) and Hölder’s inequality we have

PBn+1
r

(E) ≤ ωnr
n + δnωnr

n + ‖H‖Ln+1(Bn+1
r )(δωnr

n+1)n/n+1

=
(
ωn(1 + δn) + ‖H‖Ln+1(Bn+1

r )(δωn)n/n+1
)
rn.

Lemma 2.2.9 (The Volume Density Estimate in Balls, [19]). Let E be a set with

finite perimeter in Ω ⊂ Rn+1, and let E have mean curvature H ∈ Ln+1(Ω). Assume

that z ∈ ∂E and, and suppose that for some r0 with Bn+1
r0

(z) ⊂ Ω,

‖H‖Ln+1(Bn+1
r0

(z)) ≤ c/2,

where c is the isoperimetric constant from lemma 2.2.5. Then there exist a universal

constant c0 > 0 such that

c0r
n+1 ≤

∣∣E ∩Bn+1
r (z)

∣∣ ≤ (ωn+1 − c0) rn+1

when

0 < r < r0.
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Proof. Without loss of generality, we assume that z = 0. By comparison of E with

E \Bn+1
r (0) we see that

PBn+1
r (0)(E) +

ˆ
E∩Bn+1

r (0)

H(x) dx ≤
ˆ
∂Bn+1

r (0)

χE(x) dHn. (2.6)

Then by Hölder’s inequality we have

PBn+1
r (0)(E)− ‖H‖Ln+1(Bn+1

r (0))

∣∣E ∩Bn+1
r (0)

∣∣n/n+1 ≤
ˆ
∂Bn+1

r (0)

χE(x) dHn. (2.7)

The isoperimetric inequality (lemma 2.2.5) states that

c
∣∣E ∩Bn+1

r (0)
∣∣n/n+1 ≤ P

(
E ∩Bn+1

r (0)
)
. (2.8)

But

P
(
E ∩Bn+1

r (0)
)

= PBn+1
r (0)(E) +

ˆ
∂Bn+1

r (0)

χE(x) dHn. (2.9)

Thus combining (2.7), (2.8) and (2.9) we find that

(
c− ‖H‖Ln+1(Bn+1

r (0))

) ∣∣E ∩Bn+1
r (0)

∣∣n/n+1 ≤ 2

ˆ
∂Bn+1

r (0)

χE(x) dHn,

and the lemma’s assumption on ‖H‖Ln+1(Bn+1
r0

(0)) gives

c
∣∣E ∩Bn+1

r (0)
∣∣n/n+1 ≤ 4

ˆ
∂Bn+1

r (0)

χE(x) dHn, (2.10)

for r < r0. Now define

g(r) :=
∣∣E ∩Bn+1

r (0)
∣∣ .

We can see that for almost every r < r0,

g′(r) =

ˆ
∂Bn+1

r (0)

χE(x) dHn,
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so that (2.10) can be written as

c

4
≤ g(r)−n/n+1g′(r) = (n+ 1)

(
g(r)1/n+1

)′
.

Then by integrating from 0 to r for any r < r0 we have

cr

4(n+ 1)
≤
∣∣E ∩Bn+1

r (0)
∣∣1/n+1

,

which completes one side of the inequality in the lemma.

To complete the other side, we claim that Ec is a minimizer of

G(F ) := PBn+1
r (0)(F )−

ˆ
F∩Bn+1

r (0)

H(x) dx. (2.11)

To see this, note that by definition of E, for any set A,

PBn+1
r (0)(E) +

ˆ
E∩Bn+1

r (0)

H(x) dx ≤ PBn+1
r (0)(A

c) +

ˆ
Ac∩Bn+1

r (0)

H(x) dx. (2.12)

But

PBn+1
r (0)(E) = PBn+1

r (0)(E
c) and PBn+1

r (0)(A) = PBn+1
r (0)(A

c),

so from (2.12) we see that

PBn+1
r (0)(E

c)−
ˆ
Ec∩Bn+1

r (0)

H(x) dx ≤ PBn+1
r (0)(A

c) +

ˆ
Ac∩Bn+1

r (0)

H(x) dx−
ˆ
Bn+1
r (0)

H(x) dx

≤ PBn+1
r (0)(A)−

ˆ
A∩Bn+1

r (0)

H(x) dx,

which proves (2.11). It follows from a similar argument to above that

∣∣Ec ∩Bn+1
r (0)

∣∣ ≥ c0r
n+1

for some universal c0 when

0 < r < r0,
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which implies ∣∣E ∩Bn+1
r (0)

∣∣ ≤ (ωn+1 − c0) rn+1

in the same regime.

Corollary 2.2.10 (The Lower Boundary Density Estimate in Balls). Let E be a set

with finite perimeter in Ω ⊂ Rn+1, and let E have mean curvature H ∈ Ln+1(Ω).

Assume that z ∈ ∂E and, and suppose that for some r0 with Bn+1
r0

(z) ⊂ Ω,

‖H‖Ln+1(Bn+1
r0

(z)) ≤ c/2,

where c is the isoperimetric constant from lemma 2.2.5. Then

PBn+1
r (z)(E) ≥ c0r

n

for some universal c0 when

0 < r < r0.

Proof. Without loss of generality, we assume that z = 0. The proof follows from an

application of the relative isoperimetric inequality (Lemma 2.2.5) and Lemma 2.2.9.

Indeed, given the conditions described in the lemma statement, we have

crn ≤ min
{
|Bn+1

r (0) ∩ E|, |Bn+1
r (0) \ E|

}n/n+1 ≤ CPBn+1
r (0)(E),

for some universal constants c and C.

The following proof unfortunately did not end up being used in this thesis,

but could be useful for later research.
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Lemma 2.2.11 (The Clean Ball Lemma). Let E be a set with finite perimeter in

Ω ⊂ Rn+1, and let E have mean curvature H ∈ Ln+1(Ω). Assume that 0 ∈ ∂E and,

and suppose that for some r with Bn+1
r (0) ⊂ Ω,

‖H‖Ln+1(Bn+1
r (0)) ≤ c/2,

where c is the isoperimetric constant from lemma 2.2.5. Then there exists a ball

Bn+1
cr (y) ⊂⊂ E ∩Bn+1

r (0),

for some small universal c > 0.

Proof. Consider an open covering of ∂E ∩ Bn+1
r (0) by balls Bn+1

γr (x), where x ∈

∂E ∩Bn+1
r (0) and

γ << 1.

Let Aγ be the disjoint Vitali subfamily of this cover, given by Lemma 2.2.6. We

denote by

A5γ :=
{
Bn+1

5γr (x)
∣∣ Bn+1

γr (x) ∈ Aγ
}

The Vitali cover of ∂E ∩ Bn+1
r (0). Let Nγ be the number of balls in Aγ. Our first

goal is to show that

Nγ ≤
C

γn
. (2.13)

This follows from the disjointess of Aγ and an application of the lower boundary

density estimate, Lemma 2.2.10:

cNγ(γr)
n ≤

∑
Bn+1∈Aγ

PBn+1 (E)

≤ PBn+1
r (0) (E) .

(2.14)
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And by comparison of E with E \Bn+1
r (0) we have

PBn+1
r (0)(E) ≤

ˆ
∂Bn+1

r (0)

χE(x) dHn −
ˆ
E∩Bn+1

r (0)

H(x) dx

≤ Crn + C‖H‖Ln+1(Bn+1
r (0))r

n

≤ Crn.

(2.15)

Thus (2.13) follows from (2.14) and (2.15).

Now consider a finitely overlapping cover B5γ of E ∩ Bn+1
r/2 (0) by balls of the

form Bn+1
5γr (y), where y ∈ E ∩ Bn+1

r/2 (0). Our next goal is to find an upper bound on

the number Mγ of balls Bn+1 ∈ B5γ such that

Bn+1 ∩ ∂E 6= ∅.

To this end, note that for each Bn+1
5γr ∈ A5γ, by finite overlapping there exists a

constant C such that Bn+1
5γr intersects at most C balls from B5γ. Since A5γ covers

∂E ∩Bn+1
r/2 (0), and

|A5γ| = |Aγ| ,

from (2.13) we see that

Mγ ≤ CNγ ≤
C

γn
. (2.16)

Finally we wish to find a lower bound on Kγ, then number of balls in B5γ.

This follows from the volume density estimate, Lemma 2.2.9:

CKγ(γr)
n+1 =

∑
Bn+1∈B5γ

|Bn+1| ≥

∣∣∣∣∣∣
⋃

Bn+1∈B5γ

Bn+1

∣∣∣∣∣∣ ≥
∣∣∣E ∩Bn+1

r/2 (0)
∣∣∣ ≥ crn+1. (2.17)

From (2.16) and (2.17) we can see that the number of balls in B5γ that do not

intersect ∂E is given by

Kγ −Mγ ≥ C

(
1

γn+1
− 1

γn

)
. (2.18)
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Clearly we can choose γ universally so that the right hand side of (2.18) is greater

than 1. Thus there will exist at least one ball in B5γ that does not intersect ∂E. This

ball satisfies the conclusion of the lemma.
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CHAPTER 3
BOUNDARY REGULARITY

3.1 The Flatness Improvement Lemma

Lemma 3.1.1. Suppose g ∈ C1,1(Ω) for some domain Ω. Then D2g(x) exists a.e.

and

D2g(x) = 0

almost everywhere in the set

{ x | g(x) = 0 } .

Proof. Because g ∈ C1,1(Ω), g is semi-convex. Thus Aleksandrov’s Theorem ([11], p.

242) states that g is twice differentiable Ln a.e in Ω.

Let A denote the set of density points of { x | g(x) = 0 }. Recall that

| { x | g(x) = 0 } \ A| = 0.

We first show that at any x0 ∈ A,

g(x) = o(|x− x0|),

which implies that

Dg(x0) = 0.

Suppose that this is not the case. Then we can find a sequence of points xi

such that xi → x0 as i→∞ and

g(xi)

|xi − x0|
≥ c > 0. (3.1)
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Because g is Lipschitz, there exists a constant K such that

g(xi)−K|x− xi| ≤ g(x) (3.2)

for each i. Let

ri =
c

2K
|xi − x0|.

Then from (3.1) and (3.2), we see that,

g(x) ≥ c

2
|xi − x0| > 0 in Bri(xi).

Since

|xi − x0|+ ri = 2

(
K + c

c

)
ri,

we can clearly choose a constant C such that

Bri(xi) ⊂ BCri(x0)

for all i. But then because

A ∩Bri(xi) = ∅,

we see that for all i

|BCri(x0) ∩ A|
|BCri(x0)|

≤ |BCri(x0) \Bri(xi)|
|BCri(x0)|

≤ c̃ < 1,

contradicting the fact that x0 is a density point of A.

The argument above shows that Dg(x) = 0 at every point in A. Using the

Lipschitz continuity of Dg(x) and an argument nearly identical to the one given

above, we see that that D2g(x) = 0 at every point in A. Thus D2g(x) = 0 almost

everywhere in { x | g(x) = 0 }.
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Lemma 3.1.2. Let f ∈ Lp(B1) for p > n/2, and g ∈ C(∂B1) with

g ≥ 0.

If u ∈ W 2,p
loc (B1) ∩ C(B1) is a strong solution of

∆u = f in B1

u = g on ∂B1,

(3.3)

then

‖u‖L∞(B1/2) ≤ C

( 
∂B1

g dS + ‖f‖Lp(B1)

)
.

Proof. Let h be a solution of 
∆h = 0 in B1

h = g on ∂B1.

Then h is a nonnegative classical solution and we can use the mean value property

and harnack inequality for harmonic functions to derive

‖h‖L∞(B1/2) ≤ C

 
∂B1

h dS.

Now let w be a strong solution of
∆w = f in B1

w = 0 on ∂B1.

(3.4)

By Corollary 9.18 of [15], a solution w ∈ W 2,p
loc (BR) ∩ C(BR) of (3.4) exists and is

unique. Then from W 2,p estimates,

‖w‖W 2,p(B1/2) ≤ C‖f‖Lp(B1).
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By the Sobolev embedding theorem, since p > n/2,

‖w‖L∞(B1/2) ≤ C‖f‖Lp(B1).

We see that u = h + w is the unique strong solution of (3.3), and the conclusion

follows.

The following lemma is a slight modification of the lemma from [6]. It provides

a means to improve the ”flatness” of a surface when restricted to a smaller ball. For

our purposes, f1 and f2 will be scaled upper and lower envelopes of ∂E. The idea of

the lemma is to approximate f1 and f2 by solutions u± of a Poisson equation with

f1 and f2 as boundary data. Then the goal will be to use the linear part of u+ to

estimate f1 and f2 in the L∞-norm.

Lemma 3.1.3 (The Flatness Improvement Lemma, [6]). Let f1 and f2 be functions

in B1(0) satisfying for i = 1, 2,

fi ∈ C1,1(B1−5δ1/2(0)), −1 ≤ f1 ≤ f2 ≤ 1.

∆f1 ≤ K and −K ≤ ∆f2 in B1−8δ1/2(0),

f1(0) ≤ 0 ≤ f2(0),

and

Ln (B1−8δ1/2(0) ∩ { f1 6= f2 }) ≤ Tδ1/2,

where K, T and δ are constants with δ small. Then there exists a linear function l

satisfying

l(0) = 0
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such that

‖fi − l‖L∞(Br) ≤ C
(
δ

1
n+2 + r1+α

)
,

where

r ≤ 1/4, C = C(n, α,K, T )

and α is any positive number satisfying 0 < α < 1. In particular ‖∇l‖ ≤ C̃.

Proof. Let

R < 1− 8δ1/2.

Define g± in BR(0) by

g±(x) =


∆f2 in { f1 = f2 }

∓K in { f1 < f2 } .

Note that if x ∈ BR is a density point of {f1 = f2}, then by Lemma 3.1.1,

∆f1(x) = ∆f2(x).

Thus, for almost every x ∈ BR,

−K ≤ g±(x) ≤ K. (3.5)

In particular, g± ∈ Lp (BR) for all p > 1.

We approximate f1 and f2 in by solutions u+ and u− of the following equations:
∆u± = g± in BR

u+ = f2 on ∂BR

u− = f1 on ∂BR.

(3.6)
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By Corollary 9.18 of [15], unique strong solutions u± of (3.6) exist, and u± ∈ W 2,p
loc (BR)∩

C(BR) for every p > n/2. Also, we see that in the strong sense,
−2Kχ{f1<f2} ≤ ∆(u+ − u−) ≤ 0 in BR

u+ − u− = f2 − f1 on ∂BR.

(3.7)

Then by Lemma 3.1.2 rescaled and applied to u+ − u− we have

‖u+ − u−‖L∞(BR/2) ≤ C

 
∂BR

(f2 − f1) dS + CR2

( 
BR

|2Kχ{f1<f2}|p dx
)1/p

≤ C

 
∂BR

(f2 − f1) dS + C(K,T )R2−n/pδ1/2p,

(3.8)

provided p > n/2.

Because

Ln (B1−3δ1/2 ∩ { f1 6= f2 }) ≤ Tδ1/2,

we find that

ˆ 1−8δ1/2

1/2

 
∂Bs

(f2 − f1) dS sn−1ds = C

ˆ
B

1−8δ1/2
\B1/2

(f2 − f1) dx ≤ CTδ1/2.

Then using the mean value inequality for integrals, it follows that there exists a t

such that

1/2 < t < 1− 8δ1/2

and  
∂Bt

(f2 − f1) dS ≤ CTδ1/2. (3.9)

If we set

R = t

and fix

p = n/2 + 1,
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then from (3.8),

‖u+ − u−‖L∞(B1/4) ≤ C(T,K)
(
δ

1
2 + δ

1
2p

)
≤ C(T,K)δ

1
n+2 .

Now in BR(0)

∆u− ≥ ∆f1 and ∆u+ ≤ ∆f2,

so by the weak maximum principle for strong solutions ([15] Theorem 9.1),

u− ≤ f1 ≤ f2 ≤ u+

in BR(0). Since

u−(0) ≤ f1(0) ≤ 0 ≤ f2(0) ≤ u+(0),

we see that in fact

u− − u+ ≤ f1 − (u+ − u+(0)) ≤ f2 − (u+ − u+(0)) ≤ u+(0)− u−(0)

in BR(0). Therefore, for x ∈ BR(0), we have

|fi(x)− (u+(x)− u+(0))| ≤ ‖u+ − u−‖L∞(BR).

From (3.5) and Theorem 9.9 of [15] , we know that u± ∈ W 2,p(B1/4(0)) for every

p > 1. Thus from the Sobolev embedding theorem u± ∈ C1,α(B1/4(0)) for every

0 < α < 1. Consider the linear function

l(x) = 〈∇u+(0), x〉.

Then

|(u+(x)− u+(0))− l(x)| ≤ C|x|1+α for x ∈ B1/4,
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and we conclude

|fi(x)− l(x)| ≤ C(δ
1

n+2 + |x|1+α) for x ∈ B1/4, (3.10)

where

C = C(n, α,K, T ).

Lastly, note that by (3.10),

‖∇l‖ = sup
∂B1/4

l(x)

|x|
≤ 4(1 + C)

.

3.2 Envelope Definition and Regularity

For the remainder of the text, we assume that ∂E satisfies

∂E ∩Bn+1
1 (0) ⊂ {|xn+1| ≤ δ} ,

where

δ ≤ δ(n)

is to be determined. We begin by defining the upper and lower envelopes of ∂E by

paraboloids of opening ε. Then we demonstrate that these envelopes are C1,1 graphs

with estimates.

Definition 3.2.1. We say that P : Rn → R is a paraboloid of opening ε whenever

P (x) = ±ε
2
|x|2 + l(x) + b,

where ε is a postitive constant, b is a constant, l is a linear function and

x = (x1, . . . , xn).
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Definition 3.2.2. We define the surface S− (resp. S+) as the lower (resp. upper)

envelope of the family of paraboloids of opening −1 (resp. 1). That is, the envelope

of all paraboloids of the form

xn+1 = −1

2
|x− c|2 + b

(
resp. xn+1 =

1

2
|x− c|2 + b

)
which are tangent to ∂E ∩B1 from below (resp. from above).

Note that in the discussion and proofs that follow, we often focus on the lower

envelope S−; the details for the upper envelope S+ are similar.

Proposition 3.2.3. Assume that ∂E satisfies

∂E ∩Bn+1
1 (0) ⊂ {|xn+1| ≤ δ} , (3.11)

for some δ ≤ δ(n) small. Then S± ∩ Bn+1
1 (0) are the graphs of continuous functions

ϕ±, which are Lipschitz on a subset of B1(0), satisfying the estimate

‖Dϕ±‖
L∞

(
B

1−3δ1/2
(0)

) ≤ 2δ1/2.

Proof. The continuity of ϕ± is clear from the definition. We focus on the second

assertion of the proposition. Let (x̃, x̃n+1) ∈ S− satisfy

x̃ ∈ B1−3δ1/2(0).

Then there exist constants cx̃ and bx̃, and a paraboloid

P (x) = −1

2
|x− cx̃|2 + bx̃,

such that

x̃n+1 = P (x̃).
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A simple geometric argument using condition (3.11) shows that

|x̃− cx̃| ≤ 2δ1/2.

It follows that

|DP (x̃)| ≤ |x̃− cx̃|

≤ 2δ1/2.

Since (x̃, x̃n+1) is arbitrary, we can consider S− to be the finite supremum of a family

of lipschitz functions with a fixed lipschitz constant 2δ1/2. Hence we can write S− as

the graph of a lipschitz function ϕ− with the same constant.

We would like to show that, after a certain scaling, the envelopes ϕ± satisfy

the conditions of Lemma 3.1.3, so that we can obtain the decay of flatness of ∂E

in dyadic balls. We do this in two steps. The first step is to show that ϕ± are

C1,1(B1−ε(0)). This is accomplished in Proposition 3.2.7. It will be useful to have the

following definition and lemma in the proof of Lemma 3.2.7.

Definition 3.2.4. We denote the contact set of the graph of ϕ− with ∂E in

B1−3δ1/2(0) by

C− = B1−3δ1/2(0) ∩
{
x
∣∣ (x, ϕ−(x)) ∈ ∂E

}
.

Similarly, the contact set of the graph of ϕ+ with ∂E in B1−3δ1/2(0) will be

denoted by

C+ = B1−3δ1/2(0) ∩
{
x
∣∣ (x, ϕ+(x)) ∈ ∂E

}
.
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Definition 3.2.5 (see [32]). For sets A,B ⊂ Rn+1 define

A⊕B = { (x, y) | y = y1 + y2 for some (x, y1) ∈ A and (x, y2) ∈ B } ,

which we refer to as addition in the en+1 direction.

Now consider

P1 =

{
(x, xn+1)

∣∣∣∣ xn+1 =
1

2
|x|2

}
,

and let

Γ(x) := Γ ((∂E ∩B1)⊕ P1) (x)

denote the convex envelope of (∂E ∩B1)⊕ P1. We claim that

Γ(x) = ϕ−(x) +
1

2
|x|2.

Indeed, it can be shown that this is the case using the following three facts:

1) ϕ−(x) is the pointwise supremum of paraboloids of opening −1.

2) The convex envelope is the pointwise supremum of affine functions.

3) Addition of P1 in the en+1 maps paraboloids of opening −1 to affine func-

tions.

Then we can see clearly that there is an equality of contact sets

C−Γ = { x | (x,Γ(x)) ∈ (∂E ∩B1)⊕ P1 } = C−.

This is of importance to us, because of the following heuristic: we find estimates

for the second derivatives of ϕ±(x) only at points in C−. We then see that similar
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estimates hold for the function Γ(x) = ϕ−(x)+ 1
2
|x|2. Using convexity, we will be able

infer the same estimates for the second derivatives of Γ(x) in all of B1−5δ1/2(0) (in

a manner described below). Thus, because the second derivatives of 1
2
|x|2 are easily

computable, we have second derivative estimates for ϕ±(x) in all of B1−5δ1/2(0).

To clarify the comments above, we note some facts about convex sets and

functions. It follows from Caratheodory’s theorem and the definition of the convex

envelope that any point x0 ∈ B1−5δ1/2(0) \ C− belongs to a simplex S with at most

n + 1 vertices x1, . . . , xn+1 (i.e. S is the convex hull of { x1, . . . , xn+1 }), where each

xi belongs in the ”contact set”, or set of extreme points of (∂E ∩B1)⊕ P1:

xi ∈ { x | (x,Γ(x)) ∈ (∂E ∩B1)⊕ P1 }

for each i. Thus there exist λ1, . . . λn+1 such that

n+1∑
i=1

λi = 1 and 0 ≤ λj ≤ 1

x0 =
n+1∑
i=1

λixi and Γ(x0) =
n+1∑
i=1

λiΓ(xi).

See [5], p. 25, for a proofs of the above facts. By an elementary geometric argument

using the flatness δ of ∂E and the opening 1 of the touching paraboloids, we can

furthermore ensure that each xi above satisfies

xi ∈ B2δ1/2(x0),

so that for each i,

xi ∈ B1−3δ1/2(0).
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Now consider the second order differential quotient

∆2
heΓ(x0) =

1

h2
[Γ(x0 + he) + Γ(x0 − he)− 2Γ(x0)] ,

where x0 ∈ B1−5δ1/2(0) \ C−. We can see that for xi as described above,

∆2
heΓ(x0) ≤

n+1∑
i=1

λi
1

h2
[Γ(xi + he) + Γ(xi − he)− 2Γ(xi)] .

Hence, the second order differential quotients of ϕ−(x) + 1
2
|x|2 at any point are a

convex combination of the differential quotients at points in C−. So it suffices to

prove the next two propositions at points in C−. We first need the following lemma.

Lemma 3.2.6. For a function ψ(x) : Rn → R, let

M(D2ψ,Dψ) =
(1 + |Dψ|2)∆ψ − (Dψ)tD2ψ(Dψ)

(1 + |Dψ|2)3/2

denote the mean curvature of ψ(x). If

∆ψ(x) ≥ 0

then

M(D2ψ,Dψ) ≥ ∆ψ − C|Dψ|2|D2ψ|

for a universal constant C.

Proof. We can use the inequality

1

(1 + |Dψ|2)1/2
= 1− (1 + |Dψ|2)1/2 − 1

(1 + |Dψ|2)1/2
≥ 1− |Dψ|2

(1 + |Dψ|2)1/2
≥ 1− |Dψ|2
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to find the lower bound for the mean curvature of ψ as follows:

M(D2ψ,Dψ) =
∆ψ

(1 + |Dψ|2)1/2
− (Dψ)tD2ψ(Dψ)

(1 + |Dψ|2)3/2

≥ ∆ψ − |Dψ|2∆ψ − |Dψ|2|D2ψ|

≥ ∆ψ − C|Dψ|2|D2ψ|.

Proposition 3.2.7. Let E be a set with finite perimeter in Ω ⊂ Rn+1, let E have

mean curvature H satisfying

‖H‖L∞(Bn+1
1 (0)) ≤

n

2
,

and let ϕ± be the envelopes of ∂E described above. Assume Bn+1
1 (0) ⊂ Ω, and 0 ∈ ∂E.

Then there exists δ(n) such that if ∂E satisfies

∂E ∩Bn+1
1 (0) ⊂ {|xn+1| ≤ δ} ,

for δ ≤ δ(n), then ϕ± ∈ C1,1 (B1−5δ1/2(0)) with the estimate

‖ϕ±‖
C1,1

(
B

1−5δ1/2
(0)

) ≤ C

for a universal constant C.

Proof. We focus on the lower envelope ϕ−, as the calculations for ϕ+ are similar.

Because ϕ− is an envelope of tangent paraboloids of opening −1 touching ∂E from

below, an elementary calculation shows that the second order differential quotient

∆2
heϕ

−(x) satisfies

∆2
heϕ

−(x) =
1

h2

[
ϕ−(x+ he) + ϕ−(x− he)− 2ϕ−(x)

]
≥ −1
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for any x ∈ B1(0) and unit vector e, so we easily have a lower bound a.e. on the

second order derivatives. Note that bcause

Γ(x) = ϕ−(x) +
1

2
|x|2,

is convex, Aleksandrov’s Theorem ([11], p. 242) states that Γ is second order differ-

entiable Ln a.e in B1(0), and hence ϕ− is also second order differentiable Ln a.e in

B1(0).

From the discussion above, it suffices to prove the proposition at contact points.

So let x ∈ C−. We choose coordinates so that

x = 0 ∈ C− and Γ(0) = 0,

with the supporting hyperplane to Γ at 0 as

l = 0.

We want to show that

α(ρ) = sup
Bρ(0)

Γ(x) ≤ Cρ2

for some universal C > 0 when ρ is small enough. Without loss of generality, assume

that

α(ρ) = Γ(ρen).

Then the supporting plane to Γ at ren has the form axn + b. So by the convexity of

Γ, for any x′ = (x1, . . . , xn−1),

Γ(x′, ρ) ≥ α(ρ).
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Now consider the auxiliary function

P (x) =
n(n+ 2)

2

(
(xn + ρ)2 − 1

n
|x′|2

)
− 1

2
|x|2

in the strip

R =
{
x
∣∣ |xn| ≤ ρ, |x′| ≤ 2

√
n ρ
}
.

We check that the following two items are true in R:

1) P (x) ≤ ϕ−(x) on ∂R \ { xn = ρ }.

2) P (0) > 0.

To see that 1) is true, note that when

xn = −ρ,

we have

P (x) +
1

2
|x|2 ≤ 0 ≤ Γ,

which implies

P (x) ≤ ϕ−(x).

On the other hand, when

|x′| = 2
√
n ρ,

we also have

P (x) +
1

2
|x|2 ≤ 0 ≤ Γ.

In order to compare the auxiliary function P (x) with ϕ−(x) we first show that

the mean curvature of P (x) is positive. To this end we we calculate the following
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equalities and inequalities in R for reference:

DP (x) = (− (n+ 3)x1, . . . ,− (n+ 3)xn−1, (n(n+ 2)− 1)xn + n(n+ 2)ρ) .

|DP (x)|2 = (n+ 3)2 |x′|2 + [(n(n+ 2)− 1)xn + n(n+ 2)ρ]2

≤ 4n (n+ 3)2 ρ2 + 4n2(n+ 2)2ρ2

< Cρ2.

D2P (x) =



− (n+ 3) 0 . . . 0

0 − (n+ 3) . . . 0

...
...

. . .
...

0 0 . . . n(n+ 2)− 1


.

and∣∣D2P (x)
∣∣ =

[
(n− 1) (n+ 3)2 + (n(n+ 2)− 1)2]1/2

≤ C.

Let

M(D2P,DP ) =
(1 + |DP |2)∆P − (DP )tD2P (DP )

(1 + |DP |2)3/2

denote the mean curvature of P . Since

∆P (x) = −(n− 1)(n+ 3) + (n(n+ 2)− 1) = 2 > 0,

we apply Lemma 3.2.6 to estimate the mean curvature of P in the strip R as follows:

M(D2P,DP ) ≥ ∆P − C|DP |2|D2P |

> 2− Cρ2.

We wish the last expression above to be larger than 1. To achieve this we require ρ
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to be small enough that

Cρ2 < 1. (3.12)

Now suppose

P (ρen) +
1

2
|ρen|2 < α(ρ)

for some ρ satisfying (3.12). We claim that this contradicts E being a set of variational

mean curvature H.

By the convexity of Γ, we see that

P (x) +
1

2
|x|2 ≤ Γ(x) on { xn = ρ } .

It follows from the work above that then

P (x) ≤ ϕ−(x) on ∂R.

Now we denote the epigraph of P by:

G =
{

(x, xn+1) ∈ Rn+1
∣∣ xn+1 > P (x)

}
Also denote

U = E \G = E ∩
{

(x, xn+1) ∈ Rn+1
∣∣ xn+1 < P (x)

}
See figure 3.1 below for the configuration.

By translating P (x) downwards in the xn+1 direction, we can assume that U

is small enough that

Projen+1
U ⊂⊂ R,
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where Projen+1
is the projection of Rn+1 onto e⊥n+1. Furthermore, if we let d∂G(x)

be the signed distance function defined in (A.1), then by translating P (x) downward

enough, we can ensure that

n∑
i=1

κi
1− κid∂G(x)

≥ n

2
M(y) >

n

2
,

where y ∈ ∂G such that

d∂G(x) = |x− y|,

κ1, . . . , κn are the principal curvatures of ∂G at y, and M(y) is the mean curvature

of of ∂G at y. In other words, we can ensure that U is small enough that

1

1− κid∂G(x)
≥ 1

2

for each i and x ∈ U . See Appendix A for the details on the relationship betweenM

and d∂G.

Then letting L ⊂ Ω such that U ⊂⊂ L, letting N denote the outward unit

normal to ∂∗U , and using Lemma A.1.2 and the Gauss Green Theorem (2.1.10), we

have

|U |n
2
<

ˆ
U

n∑
i=1

κi
1− κid∂G(x)

dx

= −
ˆ
U

∆d∂G(x) dx

= −
ˆ
∂∗U

Dd∂G(x) ·N dHn

= −
ˆ
∂∗E∩U

Dd∂G(x) ·N dHn −
ˆ
∂G∩U

Dd∂G(x) ·N dHn

< PGc(E)− PU(G)

= PL(E)− PL(G).

(3.13)
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Note that by minimality,

PL(E)− PL(G) ≤ ‖H‖L∞(B1)|U |. (3.14)

Combining (3.13) and (3.14), we see that

n

2
< ‖H‖L∞(B1),

contradicting the assumptions on ‖H‖L∞(B1). It follows that

α(ρ) ≤ P (ρen) +
1

2
|ρen|2 ≤ Cρ2,

and in general,

sup
Bρ(0)

Γ(x) ≤ Cρ2 (3.15)

for small enough ρ.

From (3.15) and the definiton of Γ, we have

−1

2
|x|2 ≤ ϕ−(x) ≤ C|x|2. (3.16)

This implies that there exists a universal r0 such that ϕ−(x) has tangent balls of

radius r0 from above (and below) at 0. Since 0 is arbitrary, and the tangent balls

do not depend on the choice of coordinates, we see that ϕ−(x) has tangent balls of

radius r0 from above at every x ∈ C−. We can then choose δ(n), depending only on

r0, so that the tangent balls contact the graph of ϕ−(x) only in a small cap. Finally,

we see that there exists a universal constant C̃ such that every point in the cap of

each tangent ball has a tangent paraboloid of the form

p(x) =
C̃

2
|x− c|2 + b
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Figure 3.1: Schematic diagram of barrier function and set E

for constants c and b. It follows from the discussion before the lemma that for every

x ∈ B1−5δ1/2(0), the second order difference quotient satisfies

∆2
heϕ

−(x) ≤ C̃.

Now we improve the result of the lemma above to obtain a slightly stronger

upper bound on ∆ϕ−(x) when restricted to the a subset of the contact set. Eventually

we will show that this upper bound holds in all of B1−8δ1/2(0). This estimate is proved

in the context of integral averages; we recall that for a second order differentiable

function f , there exists a universal constant C such that

lim
ρ→0

1

ρ2

( 
∂Bρ(x)

f(y) dS(y)− f(x)

)
= C∆f(x).

Proposition 3.2.8. Let E be a set with finite perimeter in Ω ⊂ Rn+1 with mean

curvature H. Let ϕ± be the envelopes of ∂E described above. Assume Bn+1
1 (0) ⊂ Ω,



38

and 0 ∈ ∂E. Then there exists δ(n) such that if ∂E satisfies

∂E ∩Bn+1
1 (0) ⊂ {|xn+1| ≤ δ} ,

for δ ≤ δ(n), and

‖H‖L∞(Bn+1
1 (0)) ≤ δ,

then for x ∈ C− ∩B1−6δ1/2(0)

1

ρ2

( 
∂Bρ(x)

ϕ−(y) dS(y)− ϕ−(x)

)
≤ Cδ,

where ρ ≤ ρ(n) and C is a universal constant.

Proof. Fix x0 ∈ C− ∩B1−6δ1/2(0). Without loss of generality, we assume

x0 = 0,

and

ϕ−(0) = 0 (3.17)

For a given ρ, consider the solution u of
∆u = 0 in Bρ(0)

u = ϕ− on ∂Bρ(0).

We will approximate the average integral of ϕ−(x) by the average of a small pertuba-

tion of u, so we first collect some derivative estimates for ϕ−(x) and u. From (3.17)

and Propositions 3.2.7 and 3.2.3, the following holds for ϕ:

‖ϕ−‖L∞(Bρ) ≤ 2δ1/2ρ+ Cρ2 (3.18)
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Thus if

ρ ≤ δ1/2,

we have the following interior estimates for u:

‖Du‖L∞(Bρ/2) ≤ C(δ1/2 + ρ) ≤ Cδ1/2

‖D2u‖L∞(Bρ/2) ≤ C.

(3.19)

The first estimate for u follows from interior schauder estimates for harmonic func-

tions, the maximum principle and (3.18). The second estimate follows by applying

interior schauder estimates to the function

w(x) = u(x)− l(x),

where l(x) = 〈Dϕ−(0), x〉, because then

∆w = 0 in Bρ(0)

and

‖w‖L∞(Bρ) ≤ ‖ϕ−(x)− l(x)‖L∞(∂Bρ) ≤ Cρ2.

Define v in Bρ(0) by

v(x) = u(x) +Mδ(|x|2 − ρ2).

Then v is a solution of 
∆v = 2nMδ in Bρ(0)

v = ϕ− on ∂Bρ(0).

We claim that we can choose δ and M > 0 universally such that

v(0) ≤ ϕ−(0) (3.20)
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for all

ρ < ρ(n).

To demonstrate this, assume by way of contradiction that

v(0) > ϕ−(0) (3.21)

Then from (3.19) we have the following estimates for v:

‖Dv‖L∞(Bρ/2) ≤ C(δ1/2 +Mδρ)

‖D2v‖L∞(Bρ/2) ≤ C(1 +Mδ).

(3.22)

Now let M(D2v,Dv) denote the mean curvature operator. By Lemma 3.2.6 and

(3.22) we see that in Bρ/2

M(D2v,Dv) ≥ ∆v − C|Dv|2|D2v|

≥ 2nMδ − C(δ1/2 +Mδρ)2(1 +Mδ)

≥ 2nMδ − C(δ +M2δ2ρ2)(1 +Mδ).

(3.23)

Now we employ an argument similar to Proposition 3.2.7 to get an upper

bound for

ε :=M(D2v,Dv)(0).

Define

Gη = E ∩
{

(x, xn+1) ∈ Rn+1
∣∣ xn+1 > v(x)− η

}
,

(the supergraph in E of a translate of v) and denote

Uη = E \Gη = E ∩
{

(x, xn+1) ∈ Rn+1
∣∣ xn+1 < v(x)− η

}
.
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By (3.21) we can choose

0 ≤ η < v(0)− u(0)

so that the following two conditions hold

1) Projen+1
Uη ⊂⊂ Br/2(0),

2) M(D2v,Dv)(x) ≥ ε

2
for x ∈ Projen+1

Uη,

where Projen+1
denotes projection in the en+1 direction. Then just as in Proposition

3.2.7, letting L ⊂ Ω such that U ⊂⊂ L, letting N denote the outward unit normal to

∂∗U , and using Lemma A.1.2, we have

|Uη|
ε

4
<

ˆ
U

n∑
i=1

κi
1− κid∂G(x)

dx

= −
ˆ
Uη

∆d∂G(x) dx

= −
ˆ
∂∗Uη

Dd∂G(x) ·N dHn

= −
ˆ
∂∗E∩Uη

Dd∂G(x) ·N dHn −
ˆ
∂G∩Uη

Dd∂G(x) ·N dHn

< PL(E)− PL(G) ≤ ‖H‖L∞(B1)|Uη|.

By the assumptions on ‖H‖L∞(B1), we see that

ε ≤ 2δ. (3.24)

Thus from (3.23) and (3.24),

2nMδ ≤ 2δ + C(δ +M2δ2ρ2)(1 +Mδ),

or

2nM ≤ 2 + C(1 +M2δρ2)(1 +Mδ). (3.25)
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Then if we fix

M =
2(2 + C)

n
,

and assume

δ ≤ 1

M
,

we find from (3.25)

4(2 + C) ≤ 2C +
4C(2 + C)

n
ρ2. (3.26)

Clearly we can find ρ(n) such that (3.26) does not hold for ρ ≤ ρ(n), a contradiction.

So assuming we have chosen ρ and δ so that (3.20) holds, we have

1

ρ2

( 
∂Bρ(0)

ϕ−(x) dS(x)

)
≤ 1

ρ2

( 
∂Bρ(0)

ϕ−(x) dS(x)− v(0)

)
. (3.27)

We find an upper bound for the right hand side of (3.27) using the representation

formula for the solution to the dirichlet problem (3.2) (see for example [23], p. 13).

We have

v(0) =

ˆ
∂Bρ(0)

ϕ−(y)
∂G

∂ν
(0, y) dS(y) + 2nMδ

ˆ
Bρ(0)

G(0, y) dy, (3.28)

where G(x, y) is the Green’s function for the ball, given at G(0, y) by

G(0, y) =
1

n(2− n)ωn

(
1

|y|n−2
− 1

ρn−2

)
.

It can be calculated that

∂G

∂ν
(0, y) =

ρ

nωn

1

|y|n
,

so that (3.28) reads

 
∂Bρ(0)

ϕ−(y) dS(y)− v(0) = − 2nMδ

n(2− n)ωn

ˆ
Bρ(0)

(
1

|y|n−2
− 1

ρn−2

)
dy.
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But then a simple calculation gives that

 
∂Bρ(0)

ϕ−(y) dS(y)− v(0) =
Mδ

(2− n)
ρ2. (3.29)

Combining (3.27) and (3.29) we have the desired estimate.

We are finally able to prove the upper bound on ∆ϕ−(x) in all of B1−8δ1/2(0).

This is accomplished in the next proposition.

Proposition 3.2.9. Let E be a set with finite perimeter in Ω ⊂ Rn+1 with mean

curvature H. Let ϕ± be the envelopes of ∂E described above. Assume Bn+1
1 (0) ⊂ Ω,

and 0 ∈ ∂E. Then there exists δ(n) such that if ∂E satisfies

∂E ∩Bn+1
1 (0) ⊂ {|xn+1| ≤ δ} ,

for δ ≤ δ(n), and

‖H‖L∞(Bn+1
1 (0)) ≤ δ,

then

∆ϕ−(x) ≤ Cδ a.e. x ∈ B1−8δ1/2(0)

for a universal constant C.

Proof. Recall from the previous proposition that for δ and ρ sufficiently small,

1

ρ2

( 
∂Bρ(x)

ϕ−(y) dS(y)− ϕ−(x)

)
≤ Cδ

for every x ∈ C− ∩ B1−6δ1/2(0). So fix x0 ∈ B1−8δ1/2(0) \ C−. Also by the discussion

preceding Proposition 3.2.7, we can find at most n + 1 points x1, . . . , xn+1 ∈ C− ∩
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B1−6δ1/2(0) and constants λ1, . . . , λn+1 such that

n+1∑
i=1

λi = 1 and 0 ≤ λj ≤ 1

x0 =
n+1∑
i=1

λixi and Γ(x0) =
n+1∑
i=1

λiΓ(xi).

Then by the convexity of Γ and the discrete Jensen’s Inequality,

1

ρ2

( 
∂Bρ(x0)

Γ(y) dS(y)− Γ(x0)

)
=

1

ρ2

( 
∂Bρ(0)

Γ(x0 + y) dS(y)− Γ(x0)

)

=
1

ρ2

( 
∂Bρ(0)

Γ(
n+1∑
i=1

λi(xi + y)) dS(y)−
n+1∑
i=1

λiΓ(xi)

)

≤
n+1∑
i=1

λi
ρ2

( 
∂Bρ(0)

Γ(xi + y) dS(y)− Γ(xi)

)

=
n+1∑
i=1

λi
ρ2

( 
∂Bρ(xi)

Γ(y) dS(y)− Γ(xi)

)

≤ Cδ +
n+1∑
i=1

λi
2ρ2

( 
∂Bρ(xi)

|y2 dS(y)− |xi|2
)
.

Thus,

1

ρ2

( 
∂Bρ(x0)

ϕ−(y) dS − ϕ−(x0)

)

≤ Cδ +
n+1∑
i=1

λi
2ρ2

( 
∂Bρ(xi)

|y|2 dS − |xi|2
)

− 1

2ρ2

( 
∂Bρ(x0)

|y|2 dS − |x0|2
)
.

(3.30)

If ϕ− is second order differentiable at x0, then the limit as ρ → 0 of the left side of

(3.30) exists and equals ∆ϕ−(x0). On the other hand, since ∆
(

1
2
|x|2
)

is constant,

after taking the limit as ρ→ 0, the integrals on the right side of (3.30) cancel. Thus

∆ϕ−(x0) ≤ Cδ.
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3.3 The Measure of the Contact Set

Our goal for this section will be to obtain an estimate on the measure of the

contact set C of the envelopes ϕ± with ∂E. To do this we will use a variant of the

Alexandrov Bakelman Pucci estimate, and the envelope regularity estimates from the

previous section.

Lemma 3.3.1 (The Measure of the Contact Set for Each Side). Let E be a set with

finite perimeter in Ω ⊂ Rn+1 with mean curvature H. Let ϕ± be the envelopes of ∂E

described in the previous section. Assume Bn+1
1 (0) ⊂ Ω, and 0 ∈ ∂E. Then there

exists δ(n) such that if

∂E ∩Bn+1
1 (0) ⊂ {|xn+1| ≤ δ} ,

for δ ≤ δ(n), and

‖H‖L∞(Bn+1
1 (0)) ≤ δ,

then the contact set C± satisfies

(1− Cδ) |B1−8δ1/2(0)| ≤ |C−|.

for a universal constant C.

Proof. Assume δ is at least as small as the δ(n) specified in Proposition (3.2.9). We

define the function

y(z) = z +Dϕ−(z),

which maps contact points z of ϕ−(z) to the center y(z) of the corresponding paraboloid.

Then the differential of y is

Dzy = I +D2ϕ−(z).
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Because ϕ− has a touching paraboloid of opening −1 from below,

D2ϕ−(z) ≥ −I,

so that

Dzy ≥ 0.

Note that y is surjective from C− onto B1−8δ1/2(0). To see this, take a

paraboloid with center

ỹ ∈ |B1−8δ1/2(0)|

and opening −1, and then lift the paraboloid from −∞ until it touches ∂E from

below. If (z̃, z̃n+1) ∈ ∂E is the point of contact of the paraboloid with ∂E, then by

the defintion of ϕ−, we must have

ϕ−(z̃) = z̃n+1.

A simple geometric argument using the opening of the paraboloid and the flatness of

∂E shows that z̃ ∈ B1−6δ1/2(0). Thus z̃ ∈ C− and

ỹ = y(z̃).

Since ϕ− is C1,1, y(z) is certainly Lipschitz. So by the area formula ([11], p.

96) ˆ
C−
|detDzy| dz =

ˆ
Rn

card
(
C− ∩ y−1(x)

)
dx ≥ |B1−8δ1/2(0)| .
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Then by the arithmetic-geometric mean inequality, and Lemma 3.2.9, we have

|B1−8δ1/2(0)| ≤
ˆ
C−
|detDzy| dz

≤
ˆ
C−

(
trDzy

n

)n
dz

=

ˆ
C−

(
1 +

1

n
∆ϕ−

)n
dz

≤
ˆ
C−

(1 + Cδ)n dz

≤ (1 + Cδ)|C−|.

Thus

|C−| ≥ |B1−8δ1/2(0)| /(1 + Cδ)

≥ (1− Cδ) |B1−8δ1/2(0)| ,

for δ < 1/C.

Using the previous lemma to we are now in a position to provide an upper

bound on the quantity

Hn
(
B1−8δ1/2(0) ∩

{
x
∣∣ ϕ−(x) 6= ϕ+(x)

})
,

which is accomplished in the next proposition.

Proposition 3.3.2 (The Measure of the Contact Set). Let E be a set with finite

perimeter in Ω ⊂ Rn+1 with mean curvature H. Let ϕ± be the envelopes of ∂E

described in the previous section. Assume Bn+1
1 (0) ⊂ Ω, and 0 ∈ ∂E. Then there

exists δ(n) such that if

∂E ∩Bn+1
1 (0) ⊂ {|xn+1| ≤ δ} ,
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for δ ≤ δ(n) and

‖H‖L∞(Bn+1
1 (0)) ≤ δ,

then

Hn
(
B1−8δ1/2(0) ∩

{
x
∣∣ ϕ−(x) 6= ϕ+(x)

})
≤ Cδ1/2.

Proof. We assume δ is at least small enough to satisfy Lemma 3.3.1. For simplicty of

notation, we set

r1 = 1− 6δ1/2,

and

r2 = 1− 8δ1/2.

Note that

Hn
(
B1−8δ1/2(0) ∩

{
x
∣∣ ϕ−(x) 6= ϕ+(x)

})
= Hn

(
B1−8δ1/2(0) \

(
C− ∩ C+

))
≤ ωnr

n
2 −Hn(C− ∩ C+).

(3.31)

Following (3.31), and using Lemma 3.3.1 and the obvious inequality

Hn(C− ∪ C+) ≤ PBn+1
r2

(E),

we calculate

ωnr
n
2 −Hn(C− ∩ C+) ≤ ωnr

n
2 −Hn(C−)−Hn(C+) +Hn(C− ∪ C+)

≤ ωnr
n
2 − 2ωnr

n
1 (1− Cδ) +Hn(C− ∪ C+)

≤ ωnr
n
2 − 2ωnr

n
1 (1− Cδ) + PBn+1

r2
(E).

(3.32)
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But by the density estimate, Lemma 2.2.8, for δ small enough depending on ωn+1,

PBn+1
r2

(E) ≤ ωn

(
1 + δn+ δn/n+1‖H‖Ln+1(Bn+1

r2 )

)
rn2

= ωn

(
1 + δn+ ω

1/n+1
n+1 δ2n+1/n+1r2

)
rn2

≤ ωn (1 + δn+ δr2) rn2 .

(3.33)

Combining (3.32) and (3.33), we see that

ωnr
n
2 −Hn(C− ∩ C+) ≤ ωnr

n
2 − 2ωnr

n
1 (1− Cδ) + ωn (1 + δn+ δr2) rn2

= 2ωn(rn2 − rn1 ) + 2Cδrn1 + δnωnr
n
2 + δωnr

n+1
2

≤ 2ωn(rn2 − rn1 ) + Cδ.

It only remains to show that

rn2 − rn1 ≤ Cδ1/2

for some universal C. But this follows easily, since

rn2 − rn1 = (r2 − r1)(rn−1
2 + rn−2

2 r1 + · · ·+ r2r
n−2
1 + rn−1

1 )

≤ Cδ1/2.

3.4 Flatness Implies C1,α

Theorem 3.4.1. Let E be a set with finite perimeter in Ω ⊂ Rn+1 with mean curva-

ture H. Assume Bn+1
1 (0) ⊂ Ω, and 0 ∈ ∂E. Then there exists δ(n) small such that

if

∂E ∩Bn+1
1 (0) ⊂ {|xn+1| ≤ δ} ,

for δ ≤ δ(n), and

‖H‖L∞(Bn+1
1 (0)) ≤ δ,
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then ∂E is C1,α at 0.

Proof. Fix

0 < α < 1,

and let

f1(x) =
ϕ−(x)

δ
and f2(x) =

ϕ+(x)

δ
.

Then by the flatness of ∂E we have

−1 ≤ f1 ≤ f2 ≤ 1,

and because 0 ∈ ∂E, we see that

f1(0) ≤ 0 ≤ f2(0).

From Proposition 3.2.8, it follows that

∆f1(x) ≤ K and −∆f2(x) ≥ K

for some universal K. Applying Proposition 3.3.2 to get a universal T such that

Hn
(
B1−8δ1/2(0) ∩

{
x
∣∣ ϕ−(x) 6= ϕ+(x)

})
≤ Tδ1/2,

we see that we are in the setting of Lemma 3.1.3. Thus there exists a linear function

l1 satisfying

l(0) = 0

such that for any 0 ≤ β ≤ 1,

‖fi − l1‖L∞(Br) ≤ C
(
δ

1
n+2 + r1+β

)
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for

r ≤ 1/2

where

C = C(n, β).

Note that C does not explicitly depend on T and K, because they are universal in

this context. We find

‖ϕ± − δl1‖L∞(Br0 ) ≤ C
(
δ
n+3
n+2 + δr1+β

0

)
≤ δr1+α

0 ,

where we have chosen r0 and α ≤ β such that

Cr1+β
0 <

1

2
r1+α

0 ,

and

δ = δ(n, α)

small enough so that

Cδ
1

n+2 ≤ 1

2
r1+α

0 .

Since ∂E lies between the graphs of ϕ±, we see that if ν1 is the normal to δl1, then

∂E ∩Bn+1
r0

(0) ⊂
{
|x · ν1| ≤ δr1+α

0

}
. (3.34)

Now we rotate coordinates so that δl1 is the horizon in the new coordinate

system. In general, we will define the blowup sets

Ek =
1

rk0
E,
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so that in this notation, after the rotation (3.34) becomes

∂E1 ∩Bn+1
1 (0) ⊂ {|xn| ≤ δrα0 } .

Recall from (2.2) that E1 is a set with prescribed mean curvature given in Bn+1
1 (0)

by

Hr0(x) = r0H(r0x).

We note that

‖Hr0‖L∞(Bn+1
1 (0)) ≤ r0δ.

Taking ϕ± as the envelopes of the rescaled surface ∂Ek, we can repeat the argument

above in general to find a linear function lk with normal νk to δr
(k−1)α
0 lk such that

∂Ek ∩Bn+1
1 (0) ⊂

{
|x · νk| ≤ δrkα0

}
. (3.35)

By the definition of νk, we see that

|νk+1 − νk| ≤
∣∣∣(δrkα0 Dlk+1, 1

)
−
(
δr

(k−1)α
0 Dlk, 1

)∣∣∣
≤ Cδr

(k−1)α
0 ,

(3.36)

where Dlk denotes the gradient of lk in the first coordinate system. Thus

νk → ν∞ as k →∞.

Also from (3.36), we see that

|νk − ν∞| ≤ Cδ

∞∑
n=k

r
(n−1)α
0 ≤ Cδr

α(k−1)
0

1− rα0
≤ C(α, r0)δrkα0 . (3.37)
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Note that for x ∈ Bn+1
1 (0) we have from (3.37)

|x · νk| ≥ |x · ν∞| − |x · ν∞ − x · νk|

≥ |x · ν∞| − |x||ν∞ − νk|

≥ |x · ν∞| − C(α, r0)δrkα0

(3.38)

Combining (3.35) and (3.38), we find

∂Ek ∩Bn+1
1 (0) ⊂

{
|x · νk| ≤ δrkα0

}
⊂
{
|x · ν∞| ≤ C(α, r0)δrkα0

}
.

(3.39)

Rescaling, we find

∂E ∩Bn+1
rk0

(0) ⊂
{
|x · ν∞| ≤ C(α, r0)δr

k(1+α)
0

}
,

which implies ∂E is C1,α at 0 with normal ν∞.
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APPENDIX A
THE SIGNED DISTANCE FUNCTION AND

FIRST VARIATION FORMULA

A.1 The Signed Distance Function

In this appendix, we collect some facts regarding the signed distance function,

following the exposition of [17] and [15].

For a bounded open set E ⊂ Rn+1 define the signed distance function

d∂E(x) =


dist(x, ∂E) if x ∈ E

−dist(x, ∂E) if x /∈ E.
(A.1)

Also, define the set

Γµ =
{
x ∈ Rn+1

∣∣ |d∂E(x)| < µ
}
,

which is the “tubular neigborhood” around ∂E of radius µ.

Lemma A.1.1. Assume that E ⊂ Rn+1 is bounded with Ck boundary for some k ≥ 2.

Then there exists an R0 > 0, depending on E, such that d∂E(x) is Ck in ΓR0.

Proof. Because E has a Ck boundary, at each point y ∈ ∂E there exists a ball B ⊂ E

with

B ∩ ∂E = { y } . (A.2)

Let R(y) denote the radius of the largest ball satisfying (A.2). Because ∂E is compact,

R0 = inf
y∈∂E

R(y) > 0.

We see that R−1
0 gives an upper bound for the principal curvatures of ∂E.
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Now let y0 ∈ ∂E and let T (y0) denote the tangent hyperplane to ∂E at y0.

By rotating coordinates, we assume without loss of generality that

y0 = 0 and T (y0) = { xn+1 = 0 } .

Then in a neighborhood U of 0 ∈ Rn, we can represent ∂E as the graph of a function

xn+1 = f(x1, . . . , xn),

with

Df(0) = 0.

By further rotation of E around the xn+1 direction we can assume that D2f(0) is

diagonal. If we assume that E lies above the graph of f in the xn+1 direction, then

D2f(0) = diag(κ1, . . . , κn),

where κ1, . . . , κn are the principal curvatures of ∂E at 0. Here, the signs of the

principal curvatures are chosen to assign positive curvatures to convex (upwards)

surfaces.

In general, let

y = (y′, yn+1)

denote a point of Rn+1. Given y′ ∈ U , if

y = (y′, f(y′)),
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then the inner normal ν(y) to ∂E at y will be given by

νi(y) =



−Dif(y′)√
1 + |Df(y′)|2

for i = 1, . . . , n

1√
1 + |Df(y′)|2

for i = n+ 1.

(A.3)

Define the map g : U × R→ E by

g(y′, d) = y + ν(y)d. (A.4)

Then g ∈ Ck−1(U × R). From (A.3) we calculate that for j = 1, . . . , n+ 1,

Djνi(0) =


−δijκi for i = 1, . . . , n

0 for i = n+ 1.

(A.5)

So then

Dg(0, d) = diag(1− κ1d, . . . , 1− κnd, 1). (A.6)

Now, if

−R0 < d < R0, (A.7)

then

det(Dg(0, d)) =
n∏
i=1

(1− κid) > 0.

From the inverse function theorem, we see that in a neighborhood V of

xd = (0, d) ∈ Rn+1,

y′ and d can be written as Ck−1 functions of x. Writing (A.4) as

x− y(x) = ν(y(x))d∂E(x),
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it is geometrically clear that

Dd∂E(x) = ν(y(x)) = ν(y′(x)). (A.8)

Since ν(y′(x)) is a Ck−1 function, we conclude that d∂E(x) is a Ck function, provided

(A.7) is satisfied.

Lemma A.1.2. Assume that E ⊂ Rn+1 is bounded with Ck boundary for some k ≥ 2.

Let R0 > 0 be the constant from Lemma A.1.1. If x ∈ ΓR0 and y ∈ ∂E such that

d∂E(x) = |x− y|,

then

∆d∂E(x) = −
n∑
i=1

κi
1− κid∂E(x)

, (A.9)

where κ1, . . . , κn are the principal curvatures of ∂E at y.

Proof. From (A.8),

DiDid∂E(x) = Di(νi(y(x))) =
n∑
k=1

Dkνi(y(x))Diyk(x) for i = 1, . . . , n.

Without loss of generality, assume

y(x) = 0 and T (y(x)) = { xn+1 = 0 } .

Using (A.5) implies

∆d∂E(x) = −
n∑
i=1

κiDiyi(x).

By the inverse function theorem and (A.6),

Diyi(x) =
1

1− κid∂E(x)
for i = 1, . . . , n,

and (A.9) follows.
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Corollary A.1.3. Assume that E ⊂ Rn+1 is bounded with Ck boundary for some

k ≥ 2. Let R0 > 0 be the constant from Lemma A.1.1. Let x ∈ ΓR0 and y ∈ ∂E such

that

d∂E(x) = |x− y|.

If κ1, . . . , κn are principal curvatures of ∂E at y, and

M(y) =
1

n

n∑
i=1

κi

denotes the mean curvature at y, then
∆d∂E(x) ≤ −nM(y) for x ∈ E

∆d∂E(x) ≥ −nM(y) for x /∈ E.

(A.10)

Proof. If x ∈ E, then

d∂E(x) > 0,

so

−κi
1− κid∂E(x)

≤ −κi for i = 1, . . . , n,

regardless of whether κi is positive or negative.

On the other hand if x /∈ E, then

d∂E(x) ≤ 0.

But then

−κi
1− κid∂E(x)

≥ −κi for i = 1, . . . , n,

and (A.10) follows.
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A.2 First Variation of Perimeter

and Variational Mean Curvature

In this section of the appendix, we prove the assertion of Remark (2.1.2).

Lemma A.2.1 ([17], p. 115). Assume Ω ⊂ Rn+1 and f ∈ BVloc(Ω). Let F : Rn+1 →

Rn+1 be a diffeomorphism. Then for every compact K ⊂ Ω,

ˆ
F (K)

|D
(
f(F−1(x))

)
| dx =

ˆ
K

|GF (x)ν(x)||Df(x)| dx

where

GF (x) = | detDF (x)|DF (x)−1,

and

ν(x) =
Df(x)

|Df(x)|
a.e.,

the Radon-Nikodym derivative of Df(x) with respect to |Df(x)|.

Lemma A.2.2 (First Variation of Perimeter for Regular Sets). Assume that E ⊂

Rn+1 has Ck boundary for some k ≥ 2. For R0 as in Lemma A.1.1, let

K ⊂⊂ ΓR0/2

and g ∈ C1
0(K). Define a normal variation of E by

Et = { x+ tg(x)Dd∂E(x) | x ∈ E } ,

where we require

tg(x) < R0/2
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for x ∈ E. Then

dPK(Et)

dt

∣∣∣∣
t=0

= −
ˆ
∂E∩K

nM(x)g(x) dHn(x),

where M(x) denotes the mean curvature of ∂E at x.

Proof. We define Ft : Rn+1 → Rn+1 by

Ft(x) = x+ tg(x)Dd∂E(x).

Note that

F (K) = K and χEt(x) = χE(F−1(x)).

Then from Lemma A.2.1,

PK(Et) =

ˆ
K

|DχEt(x)| dx =

ˆ
K

|D
(
χE(F−1

t (x))
)
| dx

=

ˆ
K

∣∣∣∣GFt(x)
DχE(x)

|DχE(x)|

∣∣∣∣ |DχE(x)| dx

=

ˆ
K∩∂E

|GFt(x)ν(x)| dHn(x),

since

ν(x) =
DχE(x)

|DχE(x)|
for a.e. x ∈ ∂E.

Taking derivatives of both sides gives

dPK(Et)

dt

∣∣∣∣
t=0

=

ˆ
K∩∂E

d |GFt(x)ν(x)|
dt

∣∣∣∣
t=0

dHn(x). (A.11)

Because

GFt(x) = I when t = 0,

it follows that

d |GFtν|
dt

∣∣∣∣
t=0

=

〈
dGFt

dt

∣∣∣∣
t=0

ν, ν

〉
. (A.12)
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Now we examine (A.12). Because

DFt = I + tD(gν),

we see that for small enough t,

(DFt)
−1 = I − tD(gν) +O(t2).

Also, for t sufficiently small,

det(DFt) = 1 + t T r(D(gν)) +O(t2) > 0. (A.13)

Hence

dGFt

dt

∣∣∣∣
t=0

=
d det(DFt)

dt
(DFt)

−1

∣∣∣∣
t=0

+
d (DFt)

−1

dt
det(DFt)

∣∣∣∣
t=0

= Tr(D(gν))−D(gν).

So from (A.12) we find

d |GFtν|
dt

∣∣∣∣
t=0

= Tr(D(gν))−
n+1∑
i,j=1

νiνjDi(gνj). (A.14)

The last expression is the tangential divergence of gν. To clarify the expression above,

consider the tangential gradient, defined for a function f : Rn+1 → R as follows:

DSf = Df − ν 〈Df, ν〉 .

We can see that DS is the projection of the gradient D onto the hyperplane perpen-

dicular to ν. Hence,

ν ·DSf = 0.
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We use the following notation for the tangential derivatives, which are components

of the tangential gradient:

DSf =
(
D1f, . . . , Dn+1f

)
.

Then the tangential divergence of gν may be written as

divS(gν) := Tr(D(gν))−
n+1∑
i,j=1

νiνjDi(gνj) =
n+1∑
j=1

Dj(gνj).

Note that the tangential derivatives satisfy the usual Leibniz rule. Thus we have

divS(gν) =
n+1∑
j=1

Dj(gνj)

=
n+1∑
j=1

νjDj(g) + gDj(νj)

= ν ·DSf + g divS(ν)

= g divS(ν).

(A.15)

Finally, recalling the signed distance function (A.1), we note that

ν = Dd∂E(x)

By differentiating

1 = |ν|2 =
n+1∑
i=1

(Did∂E)2

we obtain

0 =
1

2
Dj|ν|2 =

n+1∑
i=1

Did∂E Djid∂E.
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Using (A.5), it follows that for j = 1, . . . , n

Dj(νj) = Djνj − νj
n+1∑
i=1

νiDiνj

= Djjd∂E −Djd∂E

n+1∑
i=1

Did∂EDijd∂E

= Djjd∂E −Djd∂E

n+1∑
i=1

Did∂EDjid∂E

= Djjd∂E = Djνj = −κj,

(A.16)

and for j = n+ 1,

Dj(νj) = 0. (A.17)

Combining (A.11), (A.14), (A.15) (A.17)and (A.16) gives

dPK(Et)

dt

∣∣∣∣
t=0

= −
ˆ
K∩∂E

g(x)
n∑
j=1

κj dHn(x)

= −
ˆ
K∩∂E

nM(x)g(x) dHn(x)

(A.18)

Proposition A.2.3 (The Equivalence of Classical and Variational Curvatures). As-

sume that E ⊂ Rn+1 has variational mean curvature H in Ω, where H ∈ L1(Ω)∩C(Ω).

Suppose that E has Ck boundary for some k ≥ 2. Then for x ∈ ∂E,

− 1

n
H(x) =M(x),

where M(x) is the mean curvature of ∂E at x.

Proof. We first prove the proposition assuming H ∈ C1(Ω). For any open K ⊂⊂ Ω

and g ∈ C1
0(K) we can define Ft : Rn+1 → Rn+1 by

Ft(x) = x+ tg(x)ν(x),
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and

Et = { x+ tg(x)ν(x) | x ∈ E } = Ft(E),

as in Lemma A.2.2. Note that

Ft(E ∩K) = Et ∩K.

Then since

FH(Et) = PK(Et) +

ˆ
Et∩K

H(x) dx

has a minimum at t = 0, we see that

dFH(Et)

dt

∣∣∣∣
t=0

=
dPK(Et)

dt

∣∣∣∣
t=0

+
d

dt

{ˆ
Et∩K

H(x) dx

}
t=0

= 0. (A.19)

Changing variables, we see that

d

dt

{ˆ
Et∩K

H(x) dx

}
t=0

=
d

dt

{ˆ
Ft(E∩K)

H(x) dx

}
t=0

=
d

dt

{ˆ
E∩K

H(Ft(x))| detDFt(x)| dx
}
t=0

=

ˆ
E∩K

{
| detDFt(x)|

n+1∑
i=1

dH

dyi
(Ft(x))

d(Ft(x))i
dt

+ H(Ft(x))
d| detDFt(x)|

dt

}
t=0

dx.

We observe

F0(x) = x,

| detDFt(x)|t=0 = 1

d(Ft(x))i
dt

∣∣∣∣
t=0

= g(x)νi(x)

and using (A.13),
d| detDFt(x)|

dt

∣∣∣∣
t=0

= Tr(D(gν)).
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so the expression above simplifies to

ˆ
E∩K

g(x)DH(x) · ν(x) +H(x)Tr(D(gν)(x)) dx =

ˆ
E∩K

div(g(x)H(x)ν(x)) dx

=

ˆ
∂(E∩K)

gHν ·N dHn

= −
ˆ
∂E∩K

gH dHn,

where N is the outward pointing normal of E ∩K. By Lemma A.2.2 and (A.19),

−
ˆ
∂E∩K

ngM dHn =

ˆ
∂E∩K

gH dHn.

Since g is arbitrary, the result follows.

For H ∈ L1(Ω)∩C(Ω), the result can be demonstrated by approximation.
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