L
i Iowa Research Online University of Iowa
The University of lowa's Institutional Repository I()‘Va ResearCh Online

Theses and Dissertations

2013

An evolutional domain oriented approach to
problem solvmg based on web service composition

Cuong Kien Bui
University of Iowa

Copyright 2013 Cuong Kien Bui

This dissertation is available at Iowa Research Online: http://iruiowa.edu/etd/2448

Recommended Citation

Bui, Cuong Kien. "An evolutional domain oriented approach to problem solving based on web service composition." PhD (Doctor of
Philosophy) thesis, University of Iowa, 2013.
http://iruiowa.edu/etd/2448.

Follow this and additional works at: http://iruiowa.edu/etd

b Part of the Computer Sciences Commons

http://ir.uiowa.edu?utm_source=ir.uiowa.edu%2Fetd%2F2448&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F2448&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F2448&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=ir.uiowa.edu%2Fetd%2F2448&utm_medium=PDF&utm_campaign=PDFCoverPages

AN EVOLUTIONAL DOMAIN ORIENTED APPROACH TO PROBLEM SOLVING

BASED ON WEB SERVICE COMPOSITION

by

Cuong Kien Bui

An Abstract

Of a thesis submitted in partial fulfillment of the
requirements for the Doctor of Philosophy
degree in Computer Science
in the Graduate College of

The University of lowa

May 2013

Thesis Supervisor: Professor Emeritus Teodor Rus

ABSTRACT

Computers are around us and integrated deeply in almostaspect of human life.
Computers are used to solve more and more types of problemsgman lives. Software
tools are designed to ease the process of integrating censputo our problem solving
process.

To use computers to solve a problem with current softwarenglogy a computer
user can either buy a software designed specifically foqtiailem or she needs to learn a
general computer programming language to write computegrpms to solve the problem.
Even though, with computer software the user can solve thetiic problem; it is still
challenging to truly use that software as a tool to integitaéecomputer within the problem
solving process. On the other hand, learning a computeukaygyis not an easy task for
most domain experts such as chemists, biologists, etc. &us of skills required for a
domain expert to be able to translate a domain concept to putemlanguage concept is
also high.

As an alternative, we want to create tools that enable pnolsielvers to express
problem solving solutions in terms characteristic to tlesin domain and carry out prob-
lem solving processes in those terms. This thesis providemaibution to the domain
oriented software development and describes an impletn@mts this approach as a pro-
totype system called DALSystem. In this approach, a proldemain is first formalized
using a domain ontology, then the domain expert expressesohgion algorithm using

the terms of that ontology. The expression of her solutigo@thm is then translated to

the intermediate language of a domain dedicated virtuahmagDDVM) and is evaluated
by an interpreter using the domain ontology. The solutigoathm can later be imported
into the domain ontology thus expanding the problem domaih mew concepts (action
and data) in a process called Domain Ontology Evolution (ROE

With this methodology, the DALSystem can execute algorghvhose expressions
are conceptual, similar to the way the human brain would @ecthem. We illustrate this

methodology using DALSystem in the domain of arithmetic.

Abstract Approved:
Thesis Supervisor

Title and Department

Date

AN EVOLUTIONAL DOMAIN ORIENTED APPROACH TO PROBLEM SOLVING

BASED ON WEB SERVICE COMPOSITION

by

Cuong Kien Bui

A thesis submitted in partial fulfilment of the
requirements for the Doctor of Philosophy
degree in Computer Science
in the Graduate College of
The University of lowa

May 2013

Thesis Supervisor: Professor Emeritus Teodor Rus

Graduate College
The University of lowa
lowa City, lowa

CERTIFICATE OF APPROVAL

PH.D. THESIS

This is to certify that the Ph.D. thesis of

Cuong Kien Bui

has been approved by the Examining Committee for the the-
sis requirement for the Doctor of Philosophy degree in Com-
puter Science at the May 2013 graduation.

Thesis Committee:
Teodor Rus, Thesis Supervisor

James Cremer

Alice Davison

David Eichmann

Juan Pablo Hourcade

Gregg Oden

ACKNOWLEDGEMENTS

| would like to thank first the members of my thesis committdames Cremer,
David Eichmann, Alice Davison, Gregg Oden, Juan Pablo Halecand especially my
advisor, Teodor Rus, who suggested the topic for this wotk@atiently provided enor-
mous guidance throughout.

David Eichmann also deserves thanks for providing an intieesearch environ-
ment and stimulating ideas about the applications of ogiefband language processing
during his student meetings every week. | also would likenemk other students of Insti-
tute of Clinical and Translational Science: Todd PapkeCKi-Chin, Charisse Madlock-
Brown, Ray Hylock, Brandyn Kusenda and Jimmy (James Schipfgpeheir support, they
were interesting people to have around.

| would like to thank my parents, Quoc Kien Bui and The Thi Ngayfor giving
me the opportunities to do these things. | can’t thank theough, but at least | can say
“Con cam on bo me that nhieu!” The next two very important pedp me are my wife
Hang Nguyen and my son Bao Bui. | would like to thank them fairtfove, support and
encouragement me to finish this work. 1 am also pleased tocadkdge all the help of my
sister during the last 4 months of this work. Thanks, guys.

Finally, | would like to thank the Department of Computere&uae at the University
of lowa for their support, especially Sheryl Semler and €atte Till. | also would like to

thank Vietham Education Foundation (VEF) for granting meRhD fellowship.

ABSTRACT

Computers are around us and integrated deeply in almostaspect of human life.
Computers are used to solve more and more types of problemsgman lives. Software
tools are designed to ease the process of integrating censpuato our problem solving
process.

To use computers to solve a problem with current softwarenelogy a computer
user can either buy a software designed specifically foqtiailem or she needs to learn a
general computer programming language to write computegrams to solve the problem.
Even though, with computer software the user can solve thetiic problem; it is still
challenging to truly use that software as a tool to integita¢ecomputer within the problem
solving process. On the other hand, learning a computeukaygyis not an easy task for
most domain experts such as chemists, biologists, etc. &us of skills required for a
domain expert to be able to translate a domain concept to autemlanguage concept is
also high.

As an alternative, we want to create tools that enable pnolsielvers to express
problem solving solutions in terms characteristic to tlesin domain and carry out prob-
lem solving processes in those terms. This thesis providemaibution to the domain
oriented software development and describes an impletn@mts this approach as a pro-
totype system called DALSystem. In this approach, a proldemain is first formalized
using a domain ontology, then the domain expert expressesohgion algorithm using

the terms of that ontology. The expression of her solutigo@thm is then translated to

the intermediate language of a domain dedicated virtuahmagDDVM) and is evaluated
by an interpreter using the domain ontology. The solutigoathm can later be imported
into the domain ontology thus expanding the problem domaih mew concepts (action
and data) in a process called Domain Ontology Evolution (ROE

With this methodology, the DALSystem can execute algorghvhose expressions
are conceptual, similar to the way the human brain would @ecthem. We illustrate this

methodology using DALSystem in the domain of arithmetic.

TABLE OF CONTENTS

LISTOFTABLES e e e e e viii
LISTOFFIGURES e e e e e e e iX
LISTOFALGORITHMS e e e e e e X
LISTOFLISTINGS e e e e e e e Xi
CHAPTER
1 INTRODUCTION e e e e e e 1
1.1 Problem Solving Processon Computers. 1
1.2 Domain Modeling Using Ontologies 3
1.3 Domain Solution Algorithm and Web Execution 5
1.4 System e 6
2 RELATEDWORK. e e e e e e e 9
2.1 Computational Languages foraDomain 9
2.1.1 Natural Language Programming 10
2.1.1.1 Top-down Approach 10
2.1.1.2 Bottom-up Approach 12
2.1.2 Domain Specific Languages 15
2.2 Web Service Composition L0 18
2.2.1 Web Service Composition using Workflows 19
2.2.2 Web Service Composition using Al Planning 0 2
2.2.3 Web Service Composition using Hybrid Approach 22
3 PROCESS OF DEFINING DOMAIN ONTOLOGY 26
3.1 DomainOntology 27
3.2 CEADOntology e 30
3.3 Associating Domain Concepts with Web Services c . 34
3.4 DISCUSSION e 36
4 DOMAIN ALGORITHMIC LANGUAGE 39
4.1 Examplesof DALD) 41
4.1.1 ADAL for ArithmeticDomain 41

4.1.2 High SchoolAlgebra 42

41.3 LinearAlgebra 43
414 UserDictionary 43
4.2 DAL Specification for Arithmetic Domain 44
4.2.1 RuleRepresentation. 46
4211 Characters 46
42.2 Lexicalelements 46
423 Declarations 48
424 Terms (EXPressSions) v v v v i i e 52
425 Commands(statements). 54
4.3 DALUSE e 56

DOMAIN DEDICATED VIRTUAL MACHINE AND SADL LANGUAGE 58

5.1 Domain Dedicated Virtual Machine 58
5.2 Structureof SADLFile 61
5.3 DDVM Conceptual Instructions: 4 6
5.3.1 Declaration Intructions 65
5.3.2 \Virtual Register Traffic 66
5.3.3 ActionInstructions 0oL 67
5.3.4 Field Access Instructions 69
535 Branching 70
TRANSLATION FROMDALTOSADL 71
6.1 ConceptGeneratorVisitor 37
6.1.1 Literals 74
6.1.2 LocalReference 74
6.1.3 Computing Expressions 75
6.1.4 Assignment 77
6.1.5 PhraseNode 78
6.1.6 FieldReference 79
6.1.7 ArrayReference 79
6.1.8 Conditional Branching 80
6.1.9 LoOps 82
6.2 LHSVisitor. e 83
6.2.1 LocalReferences 83
6.2.2 FieldReference 83
6.2.3 ArrayReference 84
DOMAIN ONTOLOGY EVOLUTION 86
7.1 Creating new Action Concepts-add20nto 86
7.2 Creating new Data Concepts - addData20nto 95

Vi

7.2.1 Creating composed dataconcepts
7.2.2 Creating array dataconcepts 99
8 DALSYSTEM 102
8.1 DALSystem Deployment 102
8.2 SADLServlet 105
8.3 Implementationof DDVM 108
9 CONCLUSIONS e e e 110
APPENDIX . . . e 113
A DALSYSTEMUSER MANUAL 113
B CEAD ONTOLOGYOWLFILE, 126
C HOUSEHOLDER REDUCTION ALGORITHMS 131
D SADL CODE FOR EUCLIDEAN ALGORITHM 136
REFERENCES e 138

Vil

LIST OF TABLES

Table

3.1 Data propertiesfor CEAD concepts 34
3.2 addinstancel properties e 36
7.1 Patterns for generating WSDLfiles 89
7.2 Patterns for generating OWL individual 91
Al DAL oOperators e e 1N

viii

LIST OF FIGURES

Figure

1.1 Arithmetic modelingtree 4
1.2 DALSystem Architecture 7
3.1 Overviewof CEADOntology 31
3.2 Object properties among CEAD concepts for data modeling. 32
6.1 DAL Translator processing pipeline 72
8.1 DALSystem components deployment 103
8.2 Cloud Implementation of the DALSystem106

Algorithm

6.1 Generating literal load algorithm
6.2 Generating local reference algorithm
6.3 Generating computing expression algorithm
6.4 Generating assignmentalgorithm
6.5 Generating phrases algorithm
6.6 Generating field reference algorithm
6.7 Generating array reference algorithm
6.8 Generating conditional branching algorithm
6.9 Generating loops algorithm

LIST OF ALGORITHMS

6.10 Generating LHS local reference algorithm

6.11 Generating LHS field reference algorithm

6.12 Generating LHS array reference algorithm

7.1

7.2

Creating new action concept algorithm

Creating new action concept individual algorithm

84

84

85

90

LIST OF LISTINGS

Listing
2.1 A natural language program in NaturalJava. 11

2.2 Travel reservation procedure using Golog. O, D, D1, [@2Q@uigin, Destina-

tion, Departure time, Return Time respectively. 20
3.1 OWL file for arithmetic ontology inFigure 1.1 29
3.2 Reasoning rules abocdstableproperty L oL 33
3.3 Data concegdtnt eger definitioninOWL 35
3.4 Action concepadd definitioninOWL 37
4.1 Dictionary entries for Arithmetic Domain 45
4.2 Euclidean algorithm for finding GCD of two integers 57
5.1 Declaration sectionof SADLfile 62

5.2 Two push instructions for complex data types then aditiem together using

addComplexconcept 63
7.1 DAL algorithm for solving quadratic equations 92
7.2 The generated SADL file for Solver concept. 93
7.3 OWL entry forthe Solverconcept. 94
B.1 Action conceptidd definitoninOWL 126
C.1 Compute the scalar product oftwovectors131
C.2 HouseHolder eliminationconcept 0.a... 132
C.3 HouseHolder eliminationconcept 0.a... 133
C.4 HouseHolder transformationconcept 133

Xi

C.5 HouseHolder Linear Equation System Solverconcept

C.6 Atestfor HouseHolder Linear Equation System Solveceph

D.1 SADL code for Euclidean algorithm

Xil

CHAPTER 1
INTRODUCTION

The concept of “Liberating Computer User from Programmifigst appeared in
2008 (Rus 2008). This concept does not mean that programwonlyl disappear; rather,
it means that while computer programming will be performgabmputer programmers,
computer use in a domain of application will be performed kjoanain expert using a
domain algorithmic language (DAL) (Rus 2013). This implies development of software
tools that allow the computer user to use the computer teaestly during her problem
solving process. In other words, the user can use the comfpus®nlving problems without
worrying about the computer platform they are running ontlweccomputer language used
to program the solution algorithm. Therefore, in the r@sglsoftware methodology, the
computer is considered as a tool integrated into human@nobblving process. This thesis

provides an implementation of this idea for the domain ahanetic.

1.1 Problem Solving Process on Computers
Originally, computers have not been developed as probléwinggatools. Instead,
they were invented by mathematicians and engineers as munbehing tools. Within
the framework of original creators of computers, the corapuse during problem solving
process follows Polya’s (1945) problem solving methodglagd consists of the following
steps:
1. Formulate the problem;

2. Develop a solution algorithm;

3. Encode the algorithm and its data intpragramin the language of the computer;

4. Let the computer execute the programs;

5. Decode the result and extract the solution of your problem
Even though this approach of using the computer as a probidving tool serves the
original creators (physicists and mathematicians) weidme extent, it does require the
computer user to understand computer architecture andidunatity to be able to encode
the algorithm into a program. This requirement turns outdalhuge obstacle for other
domain experts such as chemists, biologists and engirtedss,able to use computers for
their computations. Computer experts then try to dimintgh tifficulty by developing
software tools like operating systems, programming laggaacompilers and interpreters.
The idea of these software tools is to raise machine langalbsggeaction level towards the
logical level of problem solving process. Therefore thedéasre tools abstract away the
thinking in terms of binary signal processing at the machével. But the machine com-
putation concepts which these tools use do not represecbticepts used by the domain
experts during the human problem solving process. Thegsenit concepts that belong to
the computer architecture and functionality. Therefarerider to use the computer during
the problem solving process, the computer user needs to ¢e@anputer architecture and
functionality as well as the new language provided by safwaols. Consequently, this
framework requires a higher level of professionalism friwe ¢omputer user. As the num-
ber and the complexity of problems domains increases, timplexity of the software tools
supporting the problem solving process by translation fppablem domain language into

software tools languages increases dramatically. As aecpuesce, this framework of fit-

ting the problem solving process within the computer insesghe complexity of computer
software to a level where it threatens to kill the computehtmlogy itself (Horn 2001).
This thesis proposes a solution for the problem of integgatbmputers in the prob-
lem solving process by making the steps (1) and (3-4) of thepeter-based problem solv-
ing process easier for computer users. In our approach,idaoacepts are first organized
in an ontology using domain characteristic terms. Thoseepts are then associated with
their computational meanings with some initial help fromngauter experts. Next, the solu-
tion algorithm in steps (3-4) can be written in these domaims, while the algorithm can
later be executed on a computer network by a virtual machimehwsearches the compu-
tational meanings of these domain terms in the domain ogyolbhis thesis also provides

a working system to demonstrate our approach, called DAlIe®ys

1.2 Domain Modeling Using Ontologies

The first step in our approach to the problem solving processarganize problem
domain concepts in an ontology. Domain experts performstigis by recognizing concepts
that characterize the problem domain. This step in probmdlization means that the
problem solver defines problem concepts and methods in tefmwell-understood con-
cepts and methods. Using a mathematical saying, “one caxpett to be able to solve a
problem one does not understand”. For example, in the doohanithmetic such concepts
arenunber, integer, real, add, nmultiply, subtract, divide, etc.
For the domain of computational linguistics, such concapaor d, phrase, sentence,

category, parse tree, parse, stenmer, etc. Those characteristic concepts

form thepure domain ontologyMethodologies and tools for constructing such ontologies
can be found in (Welty & Guarino 2001, Gasevic, Djuric & Dexed2009). Figure 1.1

shows an example of how arithmetic domain concepts can lzaxed.

Arithmetic modeling tree

\

AN
Q.

N
S R R

Rational

@.\
e/

Figure 1.1: Arithmetic modeling tree

Our conjecture here is that solvable problems of any prolllemain are express-
ible in terms of a finite number of well defined concepts. Thigrivially true for the
common sense problems raised by the usual real-life. A fopnoaf of this conjecture can

actually be sought using decidability theory (Sipser 2006)

1.3 Domain Solution Algorithm and Web Execution
The next step in our approach is the collaboration betweenadto expert and

computer expert to associate concepts in the pure domaatogytwith their computa-
tional meaning implemented by web services or XML data typeshoose to use web
services using industry standards such as SOAP (Box, EBkepKakivaya, Layman,
Mendelsohn, Nielsen, Thatte & Winer 2000), WSDL (ChriseansCurbera, Meredith &
Weerawarana 2001), UDDI (Clement, Hately, von Riegen & Re@®04) as the imple-
mentation of computational meanings of domain conceptsakerthe system have a better
impact on the community. In this step, the computer expess @Bsmeta-ontology called
CEADONntology, which will be discussed later in Section 3@ associate each domain
concept with its computational meaning as

» an execution agent if the domain concept is an action cdiscgh aadd, nmul ti ply,

subtract, divide, etc.

* an XSD data type if the domain concept is a data concept sscmbaeger ,
real, etc.
Each execution agent could be implemented by several semstances so that if one
service instance is not available another one can takeatepl
Finally, to support the domain expert in expressing her agatpn in domain

terms, a language specific to that domain is created with ¢l ¢f a computer expert.
However, unlike other domain specific languages (DSL) wiieeemeaning of each ex-
pression is fixed, this language only provides a general ama@si for logically composing

meanings of domain terms. The concrete meanings of domaustare specified by the

ontology. Therefore the meaning of each expression indimguage is inherently dynamic,
depending on the state of the ontology.

Problem solutions (algorithms) are then expressed in tefneencepts and oper-
ations characteristic to the domain. These expressionacually valid expressions in
the domain language of the problem solvers, which are utatetdy all domain experts
because these expressions use only concepts familiar ttothain experts.

Solution algorithms to the problem solved this way can beestan the domain
ontology by tuplegterm, solution algorithm). This way the knowledge obtained by
problem solving become new domain concepts that can bed¢os®lve other problems.
This is the domain evolution process that can be iterateefimitely. Thus, the user do-
main ontology will expand indefinitely during the processha domain expert solving her

problems.

1.4 System
To support our approach to the problem solving process, amtiig the following
software tools as needed:
1. Tools for domain specification using an ontology. Proteggean excellent off-the-
shelf tool for this purpose.
2. A virtual machine which operates on domain ontology tgppre data and make
appropriate calls to web services implementing action epts; called Domain Ded-

icated Virtual Machine (DDVM).

1Available at http://protege.stanford.edu/

~

use
Domajn Usex . > DAL Console
6. display result
1. DAL eV \esun
7. publish| concept DAL 2. SADL expr. Virtual
Translator Machine
\
) 4, XML result
query query
4 v v 3. executg,
Ontology (Ontologies) (\
add new
Manager implementedBy] Web Services
concept >
O O
- N —
_ Network

Figure 1.2: DALSystem Architecture

3. A translator to map the domain algorithmic language toRB®M execution lan-

guage, SADL (Rus & Curtis 2006), called DAL Translator.

4. Atool for the computer user to interact with her domairotogy and DDVM, called

DALConsole.

5. Atool to import solution algorithms into the domain ortgy to create new concepts

so that the domain ontology can evolve, called OntologyMana

The system architecture in Figure 1.2 shows how these coemp®are organized and work
together. In this system the user interacts with her cosceptthe DAL Console. The
DAL Console component receives a DAL expression from the, asel send it to the DAL
Translator to translate it to the intermediate languagled&ADL. The DAL Translator
gueries domain ontologies during the process of trangjatoncepts in the user’s DAL
expression into SADL instructions. This SADL output wilkti be sent to the DDVM for
execution. The result from DDVM component is displayed bexcke user on the DAL
Console. This thesis provides a crude implementation cfetls®ftware tools in a system
called DALSystem.

The rest of this thesis is laid out as follows. Chapter 2 iggiand compares im-
portant related work with our approach. Chapter 3 shows tbegss of defining domain
ontology and associating domain concepts with their coemuatplementations. Chapter 4
describes what a domain algorithmic language (DAL) is and tioconstruct one for the
arithmetic domain. The Domain Dedicated Virtual Machind{M) for web execution
is described in Chapter 5. In Chapter 6, algorithms for {edimg) a domain expression to
an intermediate language for DDVM, called SADL, are disedssS he process of domain
ontology evolution (DOE) is described in Chapter 7. Chagteliscusses some imple-
mentation details about DALSystem. Finally, conclusiond tuture work are sketched in

Chapter 9. A manual for using DALConsole is presented in AyipeA.

CHAPTER 2
RELATED WORK

Chapter 1 described the topic of this thesis: integratingmaters into the human
problem solving process by making problem formulation séégorithm development, and
algorithm execution steps easier for computer users, @dlysgpomain experts. This chap-

ter will review some of the relevant past research on thigtorhis will include:

» work on tools for creating languages for a particular domaispecially scientific

domains.

» work on computing by composing web services, since we amethly focusing on
using web services as execution platform.
Since these are two broad fields of research and there hashigdnprevious research
done, | will not attempt to cover every relevant effort. Rath will classify the efforts into

groups by typical techniques and present one or two repiasenworks in each group.

2.1 Computational Languages for a Domain
In the field of creating computational languages for a domaork can be divided
into two main camps. The first camp arises from the fact thit ot easy for domain
users to learn machine languages or even high level progmagnlisanguages in order to
communicate with computers. Thus the first camp tries to ncakeputational languages
as close as possible to natural language so that the langaageasy-to-use for domain
users. This camp is known &katural Language Programmin@NLP). The second camp,

calledDomain Specific Languag€BSL), doesn’t try to mimic natural language, but tries

10

to be efficient and dedicated to a particular problem domeiparticular problem repre-

sentation technique, and/or a particular solution teamigLanguages belonging to the
DSL camp are typically programming languages or specificdtinguages. DSLs are nor-
mally contrasted with general-purposed programming laggs. Both of these camps are

examined in the following sections in relation to our appina

2.1.1 Natural Language Programming

The need for natural language programming appeared sieoeetly beginning of
the computer era (Sammet 1966, Miller 1981). We want to comaoate with computers
using human languages. According to Sammet (1966), to nimekiertdge between natural
languages and programming languages, we can go from eitleerhe first one is to start
from full-scaled natural language and try to handle as mgctvecan. She called it the
top-down approach Another way to tackle the problem which she called blogtom-up
approachis to start from some artificial language and then make it cologer and closer
to natural language. Recently, the former is also caflpgdortunistic recognitior(Liu
& Lieberman 2006) and the latter is also known agaturalistic ProgrammingLopes,

Dourish, Lorenz & Lieberherr 2003, Kndll & Mezini 2006).

2.1.1.1 Top-down Approach

In the top-down approach, systems such as NaturalJava (Rilofff, Zachary &
Harvey 2000), Metafor (Liu & Lieberman 2085 Mathematica 8 (Wolfram 2010) allow
users to write programs in pure natural language then usiftgrhation Extraction (IE)

techniques to extract programmatic meaning out of the sisatural language input. Such

A b wN Bk

11

programmatic meaning constructs are then translated iptogrtam of a high leveled pro-

gramming language such as Java (NaturalJava) or Pythora{det

Create a public method called deq that returns a Comparable
Declare an int called iand initialize it to 1.

Declare a Comparable called minValuand initialize it to
elements’ firstElement cast to a Comparable.

Pleasereturn minValue.

Listing 2.1: A natural language program in NaturalJava.

Such systems are usually not only complicated in the ngpuoglessing component
such as scanner and parser, but also contain complex heumnsthanisms to reason on
semantic structure to yield a corresponding code modet dpproach is lossy in the sense
that there may be parts of input information dropped out efititerpretation process if the
code generator finds that they are irrelevant. Comparecdetbdttom-up approach, the top-
down approach provides more freedom to the user (Samme().196®is, these systems
created the initial impression to the user that they are piolvenough to handle arbitrary
natural language input from the user. However, when thediseovered that the systems
are not powerful enough to express complex computatioetsires, the user felt confused
about the boundary of the system capabilities (Myers, PaKe 004).

Our approach in this thesis is not pure naturalistic prognamg. We try to avoid
such confusion from domain users by limiting the user inpw tontrolled grammar and
a vocabulary provided by the domain ontology. In this seageapproach is closer to the

bottom-up approach presented in the following section.

12

2.1.1.2 Bottom-up Approach

In the bottom-up approach, systems use an artificial largaeagiving from pro-
gramming languages with some supplemented features ofahdéunguages. In other
words, their languages are basically programming langaubgeare coated with syntactic
sugar to look like natural languages. Such systems can fammgea natural language sup-
plemented programming language such as COBOL, AppleS$etipt to a more mature do-
main specific language such as one used by Natural Languagpu@er (NLC) (Biermann
& Ballard 1980) for array and matrix computation.

Natural Language Computer (NLC) (Biermann & Ballard 19803 computer pro-
gramming system developed at Duke University in the 1980sari also be considered as
a domain-specific language for array and matrix computatibC was one of the best
systems of its time. Within the domain of matrix computafithre system can understand

highly complicated commands such as:

‘“double the largestentry
in the first row
of the matrix
containing the column
that was doubled by the second to last command.’’

One of the reasons why NLC can handle such a complex commanthk above example
is because the system employed the augmented transitiwonkegrammar (Woods 1970).
However, controlling the ambiguity of natural language lisays a tough topic in any
system. An interesting approach used by NLC to reduce theplepqity of the user input
is to limit the types of input sentence to imperative senégsnanly. Biermann & Ballard

(1980) put it this way “Most of the sentences processed byyiseem can be thought of

13

as imperative verbs with their associated operands.” Aeratbstriction NLC put on the
user input is that the user may refer only to the data stracgaen on the terminal screen
and use only simple operations upon them. According to Baam& Ballard (1980) these
tricks help a lot. NLC, however, was made to be deeply integraith English only.
Pegasus (Knéll & Mezini 2006) was a recent effort in NLP, deped at the Darm-
stadt University of Technology. According to (Knéll & Mezi@006), Pegasus can read
natural language (source text) and create executablegofiles from the source text.
Similar to NLC system, Pegasus is also a domain-specificu@ge currently focusing on
matrix calculation; not a general purpose language. Psgaf$ered a remedy to NLC’s
short-coming of multilingual translation by introducinghaw important abstraction layer,
calledideas This is a semantic network of ideas with one or more ideasseave as the
context for another idea. So instead of translating diyebt AST to computer instructions
as in the NLC system, a natural language program in Pegapassied using a context free
grammar (CFG), then mapped into this semantic representasi a set of ideas. This set of
ideas could then be mapped into different output programgrf@nguages such as Java or
to another Pegasus program in another natural languagéhdnwords, the ideas network
serves as an interlingua between Pegasus’ natural langaaggrogramming languages.
Our approach in the DALSystem is very much like Pegasus syglrspective. We
believe that an intermediate semantic representatiorusairwith the benefits of being
multilingual. However, instead of developing a custom fatrior the semantic representa-
tion layer as in Pegasus, we use Description Logic (DL) (Raadorrocks & Sattler 2007)

with standardized OWL (McGuinness & van Harmelen 2004) fierfat for our semantic

14

representation. Using DL as our semantic representatitps s leverage the power of
automatic reasoning engines like Péllahd Jena Moreover, Pegasus requires the user
algorithm to be exported to Java to be executable, which Weveemakes the execution
process more complicated. Finally, there is no notion ofigian in both Pegasus and NLC
to allow domain users to build new concepts (ideas) fromtiegones and then reuse them
in new algorithms.

But, the major difference between DAL and NLP is that DAL isadgorithmic lan-
guage specific to the domain and it is used by the domain exp€dnsequently a DAL
is a domain specific algorithmic language which is simplede by domain experts (be-
cause it is their natural language) and it is easily disaodiied using domain knowledge.
In other words, DAL mimics the domain reasoning not the ratlanguage reasoning.
If the domain is the "natural language" then DAL of naturalgaage would probably be
mimicking the natural language reasoning. But it still witht be the natural language.
The price to be payed is the language generality. Since DAledicated to a domain it
is not a general purpose programming language. Only donxpieres are supposed to use
the DAL of the domain. This reflects the division in the scignivorld: domain experts
of a domainD; (say chemistry) use the languagelof in their problem solving process,
while domain experts of another domdin (say mathematics) use the languagedefin
their problem solving proces$); and D, may share concepts but language expressions of

D; problem solving algorithms are different from the languegpressions ob, problem

http://clarkparsia.com/pellet/

2http://jena.apache.org/

15

solving algorithms.

2.1.2 Domain Specific Languages
Even though having the the same goal as NLP systems of beirggfrmendly to do-

main users, Domain Specific Languages, unlike languagesind¢LP systems, don’t try
to mimic natural languages. They focus on efficient repriegiem and expressive power
for a particular domain. Deursen, Klint & Visser (2000) defina domain-specific lan-
guage (DSL) as “a programming language or executable spegaifn language that offers,
through appropriate notations and abstractions, expegsiwer focused on, and usually
restricted to, a particular problem domain”. As you can $leeuse of DSLs for problem
solving is not new. According to (Mernik, Heering & Sloan€d3), some of the first DSLs
can be found as early as 1957 and 1959, such as APT (Ross H#@)dped in 1957),
a DSL for programming numerically-controlled machine ggar BNF (Backus 1959), a
famous DSL for formal language specification. Since 2000dneds of DSLs have been
in existence (Deursen et al. 2000). Some of the well-knovanmgtes are LEX, YACC,
Make, SQL, BNF, and HTML. The areas of their domains are estten Among them,
Deursen et al. (2000) reported the following groups:

» Software Engineering: Financial products, behavior minsoftware architectures,

databases.

» System Software: Description and analysis of abstradiagyinees, data structures,

video device driver specification.

» Multimedia: Web Computing, image manipulation, 3D aniioat

16

» Telecommunications: String and tree languages for mdastlking, communication

protocols, etc.

» Others: Simulation, robot control, solving partial diéatial equations, digital hard-
ware design.

Mernik et al. (2005) showed the design patterns for DSLsyidiog guidelines on when
and how to develop DSLs. The need for DSL targeting a spegiti@ation domain for
specific platforms has resurfaced over the years. On that§aedomains, new domain
specific languages are still being developed such as Lis¥i(D, Joubert, Palacios, Oak-
ley, Medina, Barrientos, Elsen, Ham, Aiken, DuraisamyM@aAlonso & Hanrahan 2011)
for solving partial differential equations, or BIOLOGO @Rbvski 2004) for cellular and
tissue level morphogenenis modeling.

On the surface, according to Deursen et al. (2000)’s dedmitif DSL, each DAL
for a particular domain might look like a DSL. However, whideth DSL and DAL are
intention revealing, there are strong differences betw2ah and DSL. DSLs are de-
signed with the goal of focusing on a more efficient represtént of the problem domain
compared to general purposed programming language. Suesethey make DSLs look
difficult to understand for domain users. In other words, B3lelp computer experts
handle problem domain concepts rather than helping donsgrsthandle computer tech-
nology. On the other hand, the main goal of our approach igli dlomain experts handle
computer technology by bridging the semantic gap betweerdtimain concept and its

implementation.

17

This difference in the design goal leads to the following ki&éference in the se-
mantics of DSL and DAL. That is, the vocabulary and semamid3SLs are usually fixed
or rarely updated due to committee standardization anddioimgtion processes. After the
computer experts created the language, there is very dittleo direct collaboration be-
tween computer experts and domain users on updating théwiacg of the DSL. In our
approach, the vocabulary of the DAL continuously evolvesdove the needs of domain
users by adding new concepts to existing vocabulary. Whesreewew primitive domain
concept is added, since DAL is a personal language, it ojyires the collaboration be-
tween the domain user and computer expert to formalize aptement the concept. It is
also worth noting that in the current programming paradigoh as object oriented pro-
gramming, while it is harder to add primitive concepts thaour approach, it is relatively
easy to compose derivative concepts from the existing qiace

Another subtle difference between DALs and DSLs is the séicgof each expres-
sion. The meaning of each expression in DSL is strictly definghe language specifica-
tion. In our approach the meaning of each domain term is ditfim¢he ontology, so the
meaning of each expression depends not only on the langpag#isation but also largely
on the state of the domain ontology.

Finally, since we tend to seek universal, standalone angosable concepts and
store them in the ontology in machine readable format, tineepts identified and created
in our approach can be reused across domains. But prograaedrby other DSL tend
to be usable only within that language for that particulamdo. In other words, while

a DSL is a programming language, a DAL is an algorithmic latg) independent of the

18

computer which will execute the DAL algorithms.
These three characteristics also distinguish our apprmadbmain language from

other general purposed programming languages such asClava,

2.2 Web Service Composition

In this thesis, web services were chosen as the executitionpiebecause of their
interoperability across networks. Therefore it is wortlamning previous work on lan-
guages for web services composition. Recently as the nuofb@mganizations provid-
ing their services in the form of web services increases, pamition of web services
has received more and more interest to support busindsssioess integration. There-
fore it is not surprising that the literature on web servioeposition is extensive (Rao &
Su 2004, Srivastava & Koehler 2003).

In the literature, there are currently two independentlymagpproaches for com-
posing web services: composition using workflows and coftipagusing Al planning. In
the workflow approach, the composition process is mosthedgymtactically and manually
using XML standards such as WSDL, SOAP, UDDI, BPEL (Marg@®07). Whereas
in the Al planning approach, web services and their comgsajpre-conditions, post-
conditions) are specified in Semantic Web languages such®RH_E5S or OWL-S (Martin
& et al 2003). Then the user only has to specify the goal in tmnfof a template, the
composition process is done automatically via reasonicignigues by a planning engine.
The workflow approach is preferred in the business world|erthie Al planning approach

receives more interest from the academic community.

19

More recently a hybrid approach has appeared, which triegrtibine the strengths
from both worlds (Agarwal, Dasgupta, Karnik, Kumar, Kuntdital & Srivastava 2005).
In this hybrid approach, the composition process is dividéaol two phases: logical com-
position and physical composition. In the logical compositphase, users specify the
composition using workflows. Then during the physical cosifion phase, a composi-
tion engine applies Al planning techniques to find out the bembination of underlying
web services with respect to some objectives like cost,dspete. Our approach for the
DALSystem is closely related to the hybrid approach.

| will review these three approaches in the next sections@ally the hybrid ap-

proach in comparison to our approach.

2.2.1 Web Service Composition using Workflows
This approach is mainly employed in the business world, @/earefully planning
and strict security policies are required. A number of XMasbd standards such as WSDL,
SOAP, UDDI have been developed over the years to formalesplecification, execution
protocol and registry of web services. There are currereral web services workflow
specification languages, e.g. IBM’s BPEL4WS (Andrews & eR8@l03). Such languages
provide programming-language-like constructs (sequem@ch, loop) for IT experts to
compose web service workflows manually. However such lagegiare fairly complex,
intended to be used by IT experts (developers) not by domsgnsuike domain scien-
tists. In BPEL4WS programs, domain intention is often bdideeply among irrelevant IT

concepts such as port, signal, messages, etc.

O WO NOOIUDWNPE

20

The syntax of BPEL4AWS is so complex that there are even sftorinake that
syntax less difficult for IT experts such as SImBPEL (BoisvArkin & Riou 2008) and
BPELScript (Bischof, Kopp, van Lessen & Leymann 2009). BBEiipt converts the ver-
bose XML syntax of BPEL4WS to a Javascript style languageenBtiough BPEL Script
makes BPEL4WS programs easier to understand for IT exgerth, programs are still far
from understandable for domain users. This is because Bé&titSollows BPEL4AWS

closely to be fully compatible with it.

2.2.2 Web Service Composition using Al Planning

There are efforts from Al community to make the web servicegosition task
less painful to domain users by automating lower level witiasks among web services.
Mcllraith & Son (2002) presented a method to automaticatijnpose web services by
applying logical reasoning techniques on a user-predefaraglate. In this approach, web
service capabilities are annotated in DAML-S/RDF at finsgnt compiled into a situation
calculus representation (Narayanan & Mcllraith 2002) indgo a logical programming
language. The user then inputs her goal as a template intsyiem. For example, a

travel reservation procedure using Golog is shown in LisHrP.

proc(travel (D1, D2, O, D),
[
[bookRAirticket (O, D, D1, D2),
bookCar (D, D, D1, D2)
1 |
bookCar (O, O, D1, D2),
bookHotel (D, D1, D2),
sendEmail ,
updateExpenseClaim

D).

21

N J
Listing 2.2: Travel reservation procedure using Golog. Q,mM, D2 are Origin,
Destination, Departure time, Return Time respectively.

Given the user template, their Golog reasoner evaluateslataiministic choices and ex-
ecutes the plan on the network using annotated web sen&isslar work can be found
in (McDermott 2002). We agree with Mcllraith & Son (2002) tleetologies of web ser-
vices should be used to encourage reuse of vocabulary, anedsbemantic understanding.
However, there is a difference between our approach anddperoach on the philoso-
phy of how to conceptualize the domain ontology. Their apphoseems to group existing
web services into common concepts while in our approach;dheepts are formalized by
domain experts first and then IT experts implement thesesgiaeising web services.
Even though much of the burden on low level IT concepts wasrtaif of the do-
main user’s shoulders, there are still some problems wistegpproach. That is, the domain
users now have to use the declarative style of a logical progring language (Golog) to
express their computation. There is a problem alstaged world assumptionith Golog
from a web service composition perspective. That is witkhttilerals we cannot express
that new information has been acquired (Rao & Su 2004). Famge, one service re-
guester might want to say that a new identity number will beegated and returned from a
call to a web service; then will be used during later commaittion as an ID. Such require-

ments are very common in both business processes and fcialgorithms.

22

2.2.3 Web Service Composition using Hybrid Approach

Agarwal et al. (2005) proposed an integrated system usiggrcapproach to web
services composition, where the composition is divided iwb steps: logical composition
and physical composition. In this system, web services laedescribed formally using
domain-specific terminology in domain ontologyWhen the user wants to compose new
services, she writesservice specificatioand provides that tbogical Composemodule.
The Logical Composer will generate an abstract BPEL workfyased on the information
from the domain ontology. The abstract BPEL workflow will thie passed t&hysi-
cal Composeto generate aoncreteBPEL workflow based on sonmuantitativecriteria.
While the idea sounds similar to ours, there are some diftare between their approach
and our approach. First of all, their service specificateorguage is a general purposed lan-
guage for service composition instead of being domain fipditkie our approach. It also
seems that there is no data manipulation and data composititheir language. More-
over, their language only supports a limited set of contaw like sequences, branches,
but no loops, while our language is able to handle all typecaitrol flows including loops.
Finally, there is no clear framework for domain users to ee@utomatically the domain
ontology when new composite concepts are added.

Another line of work in the hybrid approach, which is very ptgr among the sci-
entific community, is implemented in the Grid systems sucRegasus (Deelman, Singh,
hui Su, Blythe, Gil, Kesselman, Mehta, Vahi, Berriman, Gdoaity, Jacob & Katz 2005),
Taverna (Oinn, Addis, Ferris, Marvin, Carver, Pocock & Wig@04), Kepler (Altintas,

Berkley, Jaeger, Jones, Ludascher & Mock 2004, Krishnan &il2007), Triana (Taylor,

23

Wang, Shields & Majithia 2005), WCT (Gubala, Bubak, Malan&iRycerz 2006),
ASKALON (Qin & Fahringer 2008), etc. In this group of systent®main ontologies
are used extensively not only to formalize domain knowlediye also to support cross-
domain interaction. The use of ontologies also enablesdheath users to compose work-
flows at the level of data meaning and action functions (cpts}e In some cases (Qin &
Fahringer 2008), ontologies also allow users to semi-aatmailly compose data flow and
perform automatic data conversion.

The common architecture of these systems consists of:

» a GUI workbench to allow domain scientists to compose wovkslin drag-and-drop
manner.

* an intermediate abstract representation language, tlgrmatten in the form of
XML such as Sculf (Taverna), AGWL (ASKALON), etc, for thesemkflows using
the domain concepts in the ontology.

» a workflow mapper will then map the abstract workflow into acete executable
representation using the information from the ontologyléaking up available web
services.

* anexecution engine, e.g. Freefluo (Taverna), ASKALONimatystem (ASKALON),
will receive the concrete executable representation oibrflow and run it on the
Grid.

The main difference between these systems and the approé&barwal et al. 2005) lies
in the use of the GUI workbench for designing workflows indteé using textual repre-

sentation, which is supposed to help domain scientista{&cd 989, Kiper, Auernheimer

24

& Ames 1997). Nonetheless, there is also research found/itzdl programming might
not always be more suitable than textual programming (G&eBetre 1992, Petre 1995).

Compared to our approach, these systems still offer a aeefigs-all solution
for all domains (Curcin & Ghanem 2008), while our approachpkasizes a domain-
specific solution for each domain or group of domains. Inwoty@rds, our approach brings
intention-revealing style to web service composition. Imare subtle comparison about
the ontology design, most of these workflow systems only $amu the processes (action
concepts) and don’t pay much attention to data conceptRim& Fahringer 2008), data
concepts receive more attention when the authors sepat@eahcept and data represen-
tation so that the domain users don’'t have to worry aboutidevel representation of their
concepts. However, their approach doesn’t provide meshanio compose new data con-
cepts from existing data concepts as in our approach. Mere@in & Fahringer (2008)
seems to mix the domain expert’s view with the IT expert'swabout domain concepts in
a single ontology level which leads to an inconsistent awwl In our approach, these two
different views are separated clearly into two ontologyelsy

Furthermore, only Taverna (Oinn et al. 2004) provides arategchanism and tools
for the user to share Sculf workflows among scientists as welices. However Tav-
erna doesn’t automatically import the concept associatitiythe workflow into the user’s
ontology like in our approach for ontology evolution.

Finally my research is part of a bigger theme of developiritys&oe for non-expert
computer users proposed by Rus (2008). This research ®ounste development of ab-

stractions that liberate computer users from programmifigs means that we advocate

25

the creation of languages dedicated to the problem solwioggss in the problem domain,
not necessarily to program development using conventigmugjramming languages. Pre-
vious experiments reported in (Rus & Curtis 2006, Rus & Gu2®07, Curtis, Rus &
Jensen 2008, Rus & Bui 2010) provided software tools basetistrbuted process execu-
tion under the Unix system. My PhD thesis contributes totésearch by

 using a domain ontology to formalize a subset of the ariticrtemain,

» implementing a DAL for the arithmetic domain,

implementing a stack-based domain dedicated virtual madqibDVM) (Rus 2013)
executing on web services,
* providing a mechanism for domain users to evolve their logig

in the DALSystem as a proof of concept.

26

CHAPTER 3
PROCESS OF DEFINING DOMAIN ONTOLOGY

Using ontologies to formalize domain concepts is by no mewve However,
much of the current work on ontologies focuses on developraes modeling (Welty &
Guarino 2001, Gasevic et al. 2009). This thesis, on the tidned, concentrates on structur-
ing domain ontologies to support the automation of concegt@tion using web services
and concept evolution including action concepts and dateejuts in a process called Com-
putational Emancipation of Application Domain (CEAD) (R2308). In addition, there is
also research on using ontologies for web services com@ositscientific workflows such
as (Qin & Fahringer 2008, Altintas et al. 2004). As discussechapter 2, their approach
seems to mix domain expert view and IT expert view of domaimcepts in a single on-
tology level, while we separate these two often differetms into two complementary
ontology levels, i.epure domain ontologfor domain expert’s view and CEAD-ed domain
ontology for IT expert’s view.

Therefore in this chapter | will briefly discuss the methodttive use to formalize
a domain vocabulary in a pure domain ontology. Then | focuslisoussing our meta-
ontology, called CEADOntology, which facilitates the agation of each concept in the
domain ontology with computational artifacts implemegtith The purpose of this process
is to increase the efficiency of executing DAL algorithms lyomnating the process of
searching for web services in the CEADOntology file named @WAL) and evaluating

them.

27

3.1 Domain Ontology

Ontology is a discipline of philosophy dealing with objecistence, structures,
properties and their relationships. The philosophicalkaaan be traced back to Aristo-
tle in the form of metaphysics. However, the teomtologywas believed to be coined by
Rudof Gockel in 1963 (Welty & Guarino 2001). Ontology founslway to computer sci-
ence in the early 1980s when Al researchers realized thertampme of work in ontology
for knowledge representation (McCarthy 1980). The termabrexa buzzword in knowl-
edge management and enterprise modeling, where “knowkddgeng” and interchange is
emphasized.

In this thesis, ontology is used to conceptualize the voeapof a problem domain
in the CEAD process. It is the first step of the CEAD processre/ffi®main ontology is
developed by domain experts by gathering domain terms, gphgperties and relationships.
We found that OntoClean (Welty & Guarino 2001) is an efficiegthodology for ontology
development. OntoClean helps domain experts build domaimlagies by analyzing tax-
onomies to formwell-foundedones, calledbackbone taxonomies\ backbone taxonomy
consists of only rigid concepts, which are divided into éhkénds: categoriestypesand
guasi-types This backbone taxonomy is specified by a collection of dnsjivees whose
nodes are primitive concepts of the domain and whose edgeaglationships interpreted
as logical subsumptions, i.e., if conce&pt subsumes concept, thenvz.Cy(x) — Cy(x).
After constructing the backbone taxonomy, domain expeatsadd other kinds of con-
cepts such aattributionsandformal roleswhich can be combined with primitive concepts

in the backbone taxonomy to form lower level concepts suahiasmsandmaterial roles

28

Such additional concepts transform the backbone tree teeatdd acyclic graph (DAG).
Figure 1.1 shows an example ontology for the arithmetic doma

We choose to use Description Logics (DL) (Baader et al. 2@8%he formal speci-
fication of ontologies via Web Ontology Language (OWL). In,[plcoblem domain termi-
nologies can be captured using the following important $ygleentities:conceptrole and
individual. For a given domain we have a collection of tetths- {¢;, o, . ..} representing
basicconceptof the domain, a set of relations (calledles) R = {R;, Rs, ...} represent-
ing fundamental properties of domain concepts, and a setdifiduals! = {i,is,...}
representing instances of concepts in the domain. Théneetdtic model of DL allows us
to reason about domain objects. The above example ontobodlié arithmetic domain in
Figure 1.1 is represented in DL using the OWL language as showisting 3.1.

In our approach, the domain ontology modeling the problelwirsg process con-
sists of two parts: a part that represents the user own @ydldOO) and a part that
represents the domain expert ontology (DEO). The domaieréxmtology is built by do-
main experts using a small taxonomy chosen from a textbobis dntology is the result
of the collaboration between the domain expert and the ctengupert as follows:

1. Domain expert defines terms, declares axioms and subdueraschy.

2. Computer expert constructs OWL files from the terms givwetthie domain expert.
Protege can be used to create and edit OWL files.

The User Own Ontology (UOO) is built by extending the DEOti#tly, the UOO is the

same as the DEO. Then, during the problem solving process,J@O is automatically

evolved with new concepts representing problems and solaigorithms developed by

O ~NOO D WNPE

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

29

43

<?xml version="1.0"?>
<rdf :RDF
xmilns:rdf="http ://www.w3.0rg/1999/02/22 rdf —syntax—ns#"
xmins:xsd="http ://www.w3.0rg/2001/XMLSchema#"
xmlns:rdfs="http ://www.w3.0rg/2000/01/ rdfschema#"
xmins :owl="http ://www.w3.0rg/2002/07/owl#"
xmlns="http :// bulal.cs.uiowa.edu/ontologies/arithtics .owl#"
xml:base="http :// bulal.cs.uiowa.edu/ontologies /tdmetics.owl"
>
<l— Numbers——>
<owl: Class rdf:ID="Number"/>
<owl: Class rdf:ID="Complex">
<rdfs:subClassOf rdf:resource="#Number" />
</owl:Class>
<owl: Class rdf:ID="Real">
<rdfs:subClassOf rdf:resource="#Complex" />
</owl: Class>
<owl:Class rdf:ID="Rational ">
<rdfs:subClassOf rdf:resource="#Real" />
</owl:Class>
<owl:Class rdf:ID="Irrational">
<rdfs:subClassOf rdf:resource="#Real" />
</owl:Class>
<owl: Class rdf:ID="Integer">
<rdfs:subClassOf rdf:resource="#Rational" />
</owl: Class>
<l— Operators —>
<owl: Class rdf:ID="Operator"/>
<owl: Class rdf:ID="Unary">
<rdfs:subClassOf rdf:resource="#Operator” />
</owl:Class>
<owl: Class rdf:ID="Binary">
<rdfs:subClassOf rdf:resource="#0Operator” />
</owl: Class>
<Unary rdf:ID="unarySubtract" />
<Unary rdf:ID="factorial" />
<Binary rdf:ID="addl" />
<Binary rdf:ID="subtractl" />
<Binary rdf:ID="multiplyl" />
<Binary rdf:ID="dividel" />
</rdf :RDF>

Listing 3.1: OWL file for arithmetic ontology in Figure 1.1

30

a particular computer user. Thus the user’s ontology spaaeyagiven time consists of
the core DEO-s, that is commonly available to all the useng, @ private part (UOO),

which is specific to a given user. The domain expert ontolagy also evolve by adding
new concepts and importing useful concepts from privatelogtes of domain users. The

domain evolving process will be discussed later in Chapter 7

3.2 CEAD Ontology

In this section, | will discuss our meta-ontology, calledAIEontology, which fa-
cilitates the process of associating a problem domain guveih its corresponding com-
putation artifacts. Figure 3.1 shows the overview of thitotogy. CEAD ontology can
be seen as the complementary view of computer experts tootin@id concepts. In other
words, this ontology serves as the bridge between the domoaicepts and computational
artifacts implementing them. There is an important obs@wmahere; that is, not all do-
main concepts have computational meaning. Moreover, treralso concepts in CEAD
ontology that are strictly for supporting implementatiarhich should not be of concern
to domain experts. In our approach, to capture the compuatatiessence of a domain
ontology, we have developed two main concepts in this metalagy: DataConceptand
ActionConceptvhich are described as follows.

DataConcepts the class of data concepts in a problem domain for example
ari:lnteger,ari:Real, ari: Conpl ex, etc. in the arithmetic domain. It provides
general description for domain data conceptataConceptlass has two subclass&sim-

itiveDataConcepand DefinedDataConceptPrimitiveDataConceptlass consists of data

hasAgent

ActionConcept
3

FilterConcept

implementedBy

> Serivcelnstance

haslinput hasType

DataConcept
b9

hasOutput hasType L N
/ 7) N N\
7/ N
7/ A
7/ N
DefinedDataConcept PrimitiveDataConcept

7 N

ConstrainedArray

ComposedDataConcept UnconstrainedArray
A
|
|

Figure 3.1: Overview of CEAD Ontology

T€

32

hasField
ComposedDataConcept
1

DV

hasType

hasBaseType ’

castable

UnconstrainedArray

Figure 3.2: Object properties among CEAD concepts for datdating

elements that have direct XML data types implementing tHemnexamplear i : | nt eger
andar i : Real can berepresented gd: i nt andxsd: doubl e, respectively. On the
other handDefinedDataConceptlass contains data concepts that have no direct represen-
tation and are defined via other data concepts. For instance,Conpl ex can be seen as

a data concept composed of taoi : Real numbers. One is the real component and the
other is the imaginary component of that complex numberr& hee two types dDefined-
DataConcepti.e. ComposedDataConcephdUnconstrainedArrayEachComposedDat-
aConcepthas a number dField-s, represented by the propehgsField EachField has

its type, aDataConceptrepresented by the propettasType The UnconstrainedArrays
used to model a data concept which is an array (or a list) ohetes of another data con-
cept. EachunconstrainedArrayhas a type for its elements &fataConceptrepresented

by the propertyhasBaseTypeThe relationships among these classes of concepts via thei

O U WN P

33

object properties$ are shown in Figure 3.2.

On the action sideActionConcepts used to model action concepts in a problem
domain. An action concept models an agent which performsesmmputation and trans-
forms its input (data concept) into an output (also a dataept). The relationships among
CEAD concepts that facilitate domain action concepts aosvehn Figure 3.1. EaclAc-
tionConcepthas a number dihput-s, represented by the propehgsinput The output of
an ActionConcepts represented by the propettgsOutput Both Input and Outputhave
their types aPDataConcepts, represented by the propettgsType EachActionConcept
has an agent to manage its computation artifacts whiclsareicelnstancs in this case.
These relationships are represented by the propdréisdgentimplementedByFinally,
FilterConceptis a subclass of thActionConceptvhich converts one data concept to an-
other. The following SPARQL (DuCharme 2011) reasoningguédlects the relationship

betweerFilter andDataConcept

[rulel: (?a rdfiype cead:FilterConcept) (?a cead:haslnput ?b)
(?b cead:inputType ?c) (?a cead:hasOutput ?d)
—> (?c cead:castable ?d)]

[rule2: (?a cead:castable ?b) (?b cead:castable ?c)
—> (?a cead:castable 7?c)]

Listing 3.2: Reasoning rules abotdstableproperty

These rules say that a typkis castable to a typ# if there exists a filter with the input of
type A and the output is typ&. This castable property is also transitive. This means that
if A is castable taB, B is castable t@, then A is castable t&’. These reasoning rules

are used by DALTranslator in section 6.1.5 and section @dlfidd out if one type of data

Ihttp://www.w3.0rg/TR/owl-features/

34

| Data Properties | XSD Type | Description |

DataConcept

dataType xs:anyURI the URI of XSD type representing this data
concept

ConstrainedArray

hasLowerBound xs:int lower bound for a constrained array

hasUpperBound xs:int upper bound for a constrained array

Input

inputName Xs:string name of the input parameter

order xs:int position of the input parameter in the input
list

Servincelnstance

serviceName Xs:string name of the web service

wsdlFile Xs:string URI of the WSDL file of the web service

operationName Xs:string name of the corresponding operation which
performs the action concept

portName Xs:string name of the port on the web service
mentioned in the WSDL file

Table 3.1: Data properties for CEAD concepts

concept can be castable to another type of data concepgdherprocess of disambiguat-
ing DAL concepts in DAL expressions. Finally, table 3.1 sksadata properties of CEAD

concepts. The whole OWL file defining CEAD Ontology is showippendix B.

3.3 Associating Domain Concepts with Web Services
Using the CEAD ontology, an IT expert can work with a domaipexto associate

domain concepts with their computational artifacts. Thexpert should start with helping

=

~N O O b

35

the domain expert identify data concepts and action coscdpéta concepts represent data
that can be used in a computational process such as the mpoudput of such a process.
Computational processes are represented as action cenBegta concepts are associated
with XML Schema data types via the propedgat aType. For example, thé nt eger

. . . . 3 . dataType r
concept is associated wikSD: i nt 3 type, i.e.l nt eger ““—="URI(xsd:int). An OWL

excerpt forl nt eger definition is shown in Listing 3.3.

<cead:DataConcept rdf:about="#Integer">

<rdf:type rdf:resource="http ://www.w3.0rg/2002/07/owl#Class"
/>

<cead:description > Integer concepdf arithmetics domain </
cead:description >

<cead:dataType>
xsd:int

</cead:dataType>

</cead:DataConcept>

Listing 3.3: Data conceptnt eger definition in OWL

The CEAD process associates action concepts suad@s subtract, multiply,
etc., with web services which implement them via a ConcegmgThere could be several
web services instances that implement the same concepafsib time instance is unavail-
able, other instances can take over its responsibility. ekample, the conceptdd may
have the ageraddAgent implemented by two web service instancaddl nst ancel,
addl nst ance2, whereaddl nst ancel’s properties are populated in Table 3.1. The
agent maintains a list of web services which it can execuiempementations of the ac-

tion it performs. The RDF triples that define an action comncgfollows the pattern:

2As discussed previously, there might be concepts in the dloardology which have no com-
putational meaning thus cannot be categorized as eitharcdatept or action concept.

Shttp://www.w3.0rg/2001/XMLSchema#int

36

| Data Properties | Value |
Servincelnstance
serviceName CalculatorimplService
wsdlFile http://bulal.cs.uiowa.edu:8282/
CalculatorimplService/Calculatorimpl?wsdl
operationName addNumbers
portName CalculatorimplPort

Table 3.2: addInstancel properties

hasAgent
—

X

implemented By

aAgent andaAgent """ gl nstancel; ... aAgent PRty

al nst anceN. For example, thadd concept is represented by the following RDF triples:

hasAgent implemented By
add — —

addAgent ,addAgent addl nst ancel. The input and out-

put relation between action concepts and data conceptepresented by the properties

hasInput

hasl nput, hasQut put. For exampleadd | nt eger,
add" 2| nt eger . The representation of these relations are expressed i@\itie

language as shown in Listing 3.4.

3.4 Discussion
Pure domain ontology reflects how domain experts see thaelwibrtould be very
different from IT experts’ view of that world. For example, the arithmetic domain, a
mathematician sees the relationship betw€enpl ex andReal as a subsumption. On
the other hand, a computer expert sees Qothipl ex andReal as instances of the meta-
classDat aConcept where an instance @onpl ex is a record of twdReal numbers,

while Real is a primitive concept. So obviously an instancdRefal is not a record, thus

g b w

22
23
24
25
26

27

28
29

30
31
32

33
34
35

36
37
38

37

<cead:ActionConcept rdf:about="#add">
<cead:description >Thisis the add operationin the
arithmetics domain.
It takes two integersand return the sum of them.
</cead:description >
<rdf:.type rdf:resource="http ://www.w3.0rg/2002/07/owl#Class"
/>
<cead:haslnput >
<cead:Input rdf:ID = "addIl">
<cead:inputType rdf:resource="#Integer"/>
<cead:order>1</cead:order>
</cead:Input>
</cead: haslnput>
<cead:haslnput>
<cead:Input rdf:ID = "addI2">
<cead:inputType rdf:resource="#Integer"/>
<cead:order >2</cead:order>
</cead:Input>
</cead:hasinput >
<cead:hasOutput rdf:resource="#Integer"/>
<cead:hasAgent>
<cead:Agent rdf:ID="addAgent">
<cead:implementedBy rdf:resource="#addServicelmgtal "
/>
</cead:Agent>
</cead:hasAgent>
</cead:ActionConcept>
<cead: Servicelnstance rdf:ID="addServicelnstancel"
<cead:wsdIlFile rdf:datatype="http ://www.w3.0rg/200
XMLSchema#string ">
http :// bulal.cs.uiowa.edu:8282/CalculatorimplSexe/
Calculatorimpl ?wsdl
</cead:wsdlFile >
<cead:serviceName rdf:datatype="http ://www.w3. 0201/
XMLSchema#string ">
CalculatorimplService
</cead:serviceName >
<cead:operationName rdf:datatype="http ://www.w3g62001/
XMLSchema#string ">
addNumbers
</cead:operationName >
<cead:portName rdf:datatype="http ://www.w3.o0rg /2000
XMLSchema#string ">
CalculatorimplPort
</cead :portName >
</cead:Servicelnstance >

Listing 3.4: Action concepadd definition in OWL

38

it cannot be an instance @onpl ex. ThusConpl ex does not subsumieal , which
contradicts the mathematician’s view about the relatignsbtweerConpl ex andReal .

How is importing ontologies different from importing pr@gnming libraries? First
of all, the user does not have to install the libraries on lystesn. The user also does
not have to care about where the program is running and thé&sgroviders don't have
to deploy their code to the user system. These two propesfigisis model encourage
sharing computation resources and knowledge in a comyeétivironment, which is very
important in scientific research communities. Of course,tthde-off for this simplicity
in deployment and sharing is the performance. Importingygnmming libraries into the
user’s local system offers much better performance sinod tle communication happens
in the system bus. However, as the speed of the Web beconersdad faster, this trade-off
might not be a problem for most domain users.

Finally, the use of ontology to formalize a domain allows @musers to perform
not only syntactic but also semantic searches for the cas¢kepy need. This is very im-
portant for the knowledge discovery process since it allawigher level of expressiveness

and gives the user more powerful tools to specify her intent.

39

CHAPTER 4
DOMAIN ALGORITHMIC LANGUAGE

Given the domain ontology with concepts associated withr teemputational arti-
facts, i.e. XML data types or web services, domain users sarthese concepts for their
computation or compose new concepts using the workflow agpras reported in (Qin &
Fahringer 2008, Altintas et al. 2004, Gubala et al. 260Byen though such logical compo-
sition approaches are better than low-level workflow cortrs like BPEL4AWS, they are
still general purposed tools for workflow composition. Téfere they provide inefficient
and unnatural manners to the domain users to express timeputation solutions.

In this chapter, | will discuss our approach to the compatsti language of a prob-
lem domain. This language allows domain users to expressdbmputations naturally
using terms of their domain without worrying about the repraations of these terms in
the underlying computer system. We call such language a idoahgorithmic language
(DAL), where its vocabulary and phrases are charactetistite domain and domain users
can understand it without much explanation. Although thests has no ambition of pro-
viding a methodology for synthesizing computational laexges for all the domains, | still
want to present some design guidelines for such languageediobn my experience from
working with the domain of arithmetic.

Before further discussion of the design guidelines of thasguages, | would like

to clarify our assumptions. The main assumption is thatedmé/problems of any problem

1These approaches are equivalent to our lower level languzajied SADL, executed by a
virtual machine discussed in Chapter 5

40

domain are expressible in terms of a finite number of well @efiooncepts. We assume
further that these well defined concepts are formalized ioraain ontology as discussed
in Chapter 3.

Given the above assumptions, the following guidelines camded to capture a
DAL specification:

1. identify characteristic concepts that are primitiveadadncepts in the domain ontol-
ogy and build the lexical rules for such concepts. Theseegiscare the building
blocks of the language. For example, in the arithmetic damait eger , Real are
primitive data concepts.

2. identify the rules that combine these basic building kéato form larger language
expressions such as phrases, sentences. These are the Isgebformation rules,
for example, expressions like+ 2, (a — b) x c.

3. identify rules that combine the phrases and sentencestoheaningful solutions to
problems, i.e. the discourse level formation rules. Sutgsraften involve sentences
concatenationchoice anditeration.

4. use a dictionary to provide the link between the domaims$eand their meanings
in the ontology. The dictionary also helps to reduce thellef@mbiguity in the
language.

The language should also exploit domain knowledge reptedem domain ontology in the
forms of subsumption and other kinds of relations for coteedpsambiguation.
From the fact that current computer language technologhées providing domain-

specific language solutions for hundreds of domains, | belibat most of the domain al-

N -

O ~NO OB~ W

10
11
12

41

gorithmic languages can also be handled by conventionglkage construction tools. As
a demonstration, | will show a specification for a DAL of thétlanetic domain in the

following sections.

4.1 Examples of DAL(D)
This section shows some examples of DAL for several relatadains such as
arithmetic, high school algebra, and linear algebra. Irhedmmain, DAL vocabulary,

some constructs and discourses are demonstrated.

4.1.1 A DAL for Arithmetic Domain

Vocabulary: The vocabulary for a simple arithmetic domain can congisnteger,
real, add, subtract, multiply, divide, mod, —, x, /, %.

Constructs: Some basic constructs are arithmetic expressions asvillo + 2,
3 x4, etc.

Discourse An interesting discourse (multiple statements) in theharetic domain

is the Euclidean algorithm to find the greatest common diiged) of two integers.

concept: "gcd";
description: "This function finds the greatest common §er (
gcd) of two integers using Euclidean algorithm.";
input: a: integer, b: integer;
output: c: integer;
local: t: integer;
while b !'= 0 do
t = b;
b =a%b,;
a=t;
endwhile ;
c = a;

N

O ~NO Ul W

10
11
12
13
14
15
16
17
18
19

42

4.1.2 High School Algebra
Vocabulary: The domain of high school algebra extends the arithmetinaio
with new vocabularies such as: pow (power), sqrt (squarg,réomplex number, equation,
etc.
Constructs: besides constructs from arithmetic domain, high schapglaia pro-
vides some other constructs such as: sQrifow(z, y), 3 + 4, etc.
Discourses The following algorithm for solving quadratic equationtwviComplex

solution is a typical example for high school algebra.

concept: "SolverC";
description: "This is a quadratic equation solver with quex
solution.";

input: a : real, b : real, ¢ : real;
output: result: ComplexPair;
local: t : real, u : real, x1 : Complex, x2 : Complex;

t=bx*b- 40+ a=x c;
print(t);
if t > 0.0 then
x1 = constructC({b + sqrt(t)) / (2.0x a), 0.0);
x2 = constructC({£b — sqrt(t)) / (2.0« a), 0.0);
else

u = sqrtect) / (2.0 = a);
x1 = constructC{b / (2.0 » a), u);
X2 = constructC{b / (2.0 = a), —u);
endif;
result. first = x1;

result.second = x2;

In the above listingconst ruct C() is a concept-constructor which creates a complex

number from two real numbers. The first input parametararist r uct C() is the real
part of the complex number it constructs, the second inpuarpater ofconst r uct C()

is the imaginary part of the complex number it construGsnpl exPai r is the concept-

©O~NO D WNPE

=
= o

43

constructor of a pair of two complex numbers.

4.1.3 Linear Algebra

Vocabulary: The linear algebra domain extends the arithmetic domaardifferent
direction than the high school algebra domain. In this dom@@w vocabularies are vector,
matrix, linear equation system, and solution.

Constructs: v[1] = 10, v[1] — v[2], v1 % v2, m[1][2]/m[1][1], wherev, v1,v2 are
vectors,m is a matrix. v[i{] means theé-th element of a vectorn[i][j] means the element
of i-th row atj-th column.

Discourse A typical algorithm in the domain of linear algebra is to qouite scalar

product of two vectors. It is shown in the following listing:

[uny
N

concept: "product”;

description: "Compute scalar product of two vectors.";
input: a: Vector, b: Vector, n: integer;

output: c: real;

local: k: integer;

c = 0.0;
for k = 1; if k <= n
begin
c =c + a[k] » b[k];
end

withNext k = k + 1;

4.1.4 User Dictionary
A user dictionary is where domain terms and their semantiegghied together.
Its purpose is very similar to a normal dictionary excepttfor fact that the meaning of

each term is defined by the URI of the corresponding ontodgioncept in the domain

44

ontology. The user dictionary is stored in a file which camsathe list of entries, one entry
for each primitive concept. Each entry has three comporssgarated by a comma *“,".
They are:

1. wordForm: the term that the domain expert used to denetedhcept.

2. category: it could be noun (N) for a data concept, verb @r)an action concept,

adjective (A) for an action concept with the returned valtig/pe boolean.

3. URI: the URI of the concept that the user refers to.
A sample dictionary for arithmetic domain is shown in Ligtih.1. The dictionary is used
by the DAL Translator during the semantic annotion procdt&s a DAL expression was
parsed. During the semantic annotation process each dderainis mapped to its cor-
responding domain concept based on the dictionary entAesiore detailed discussion

about this annotation process is provided in chapter 6.

4.2 DAL Specification for Arithmetic Domain

Formally a DAL can be specified using a pattern similar to thgon used to spec-
ify computer languages, which consists of a finite set of BNIES, specifying terms de-
noting domain characteristic concepts, and few simple BN&srfor statement formation.
Further, the DAL specification mechanism should allow b&glvocabulary and formation
rules to grow dynamically with the domain learning procedge call this the process of
DAL's evolution. This allows the domain experts to freelyse new concepts and solution
algorithms as components of the new concepts and solutymmitdms developed during

the problem solving process.

O©O~NOO D WNPE

=
= o

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

45

integer ,N, http ://bulal.cs.uiowa.edu/owl/arithmetiawl#Integer

real ,N, http :// bulal
sqrt ,V, http :// bulal

+,V, http
+,V, http
=, V, http
*,V, http
=V, http
-V, http
=V, http
-V, http
/,V, http
/,V, http
%,V, http
> A, http
> A, http
<,A, http
<,A, http

./l bulal.
:// bulal.
:// bulal
:// bulal
:// bulal
:// bulal
:// bulal
:// bulal
:// bulal.
:// bulal.
/! bulal
:// bulal
:// bulal
:// bulal
:// bulal

CS
CSs

.CS.
.CS
.CS.
.CS
.CS
.CS.
CSs.
CSs.
.CS
.CS
.CS.
.CS.
.CS.

.cs.uiowa.edu/owl/arithmetic .lédhReal
.cs.uiowa.edu/owl/arithmetic .lédsqrt

.uiowa

.uiowa
.uiowa

.edu/owl/arithmetic.
.uiowa .
uiowa.
.uiowa.
uiowa.
.uiowa
.uiowa

edu/owl/arithmetic.
edu/owl/arithmetic.
edu/owl/arithmetic.
edu/owl/arithmetic.

.edu/owl/arithmetic.
.edu/owl/arithmetic.
uiowa.
uiowa.
uiowa.

edu/owl/arithmetic.
edu/owl/arithmetic.
edu/owl/arithmetic.

.edu/owl/arithmetic.
.edu/owl/arithmetic.
uiowa.
uiowa.
uiowa.

edu/owl/arithmetic.
edu/owl/arithmetic.
edu/owl/arithmetic.

ow ldich

ow R

owl# ntuply
owl#ntidlyR
owl#sulact
owl#strbctR
owl#umyBubtract
owl#urmySubtractR
owd#vide
owdivideR

ovmi&dl
owgHeaterThan
owreaterThanR
owgssThan
owessThanR

<=,A, http :// bulal.cs.uiowa.edu/owl/arithmetic.aWkessThanOrEqual
==,A, http :// bulal.cs.uiowa.edu/owl/arithmetic.aindquall

I= A, http :// bulal.cs.uiowa.edu/owl/arithmetic.ofwotEquall

not ,A, http :// bulal.cs.uiowa.edu/owl/arithmetic.owl#m@x

and,A, http ://bulal.cs.uiowa.edu/owl/arithmetic.owl#aho

or ,A, http :// bulal.cs.uiowa.edu/owl/arithmetic.owl#gO
stringarray ,N, http :// bulal.cs.uiowa.edu/owl/ceawvl#StringArray
string ,N, http :// bulal.cs.uiowa.edu/owl/cead.owl#idg

Listing 4.1: Dictionary entries for Arithmetic Domain

46

4.2.1 Rule Representation
Grammar rules for DAL are written in Backus-Naur Form (BNBjrh (Backus
1959), except for some lexical rules which are written in Jféex? style for specifying

regular expressions.

42.1.1 Characters

DAL use ASCII charset with the following special charactiesses:

1) NONNEWLINE_WHITE_SPACE_CHAR=[\ \t\b\012]
2| NEWLINE=\r |[\n|\r\n
3 WHITE_SPACE_CHAR=[\n\r\ \t\b\012]

4.2.2 Lexical elements

Comments every line starts with “#” is considered a comment and igaafturing

the parsing process.

{31

Semicolons Every statement ends with a semicolon “;”".

Identifiers: Identifiers name algorithm entities such as variables andepts (types).
An identifier is a sequence of one or more letters and digite first character must be a

letter.
1[IDENTIFIER = [a—zA-Z]([a—2zA—Z0—9]+)]

Keywords: The following keywords are reserved and should not be usediesnti-

fiers.

2Available at http://jflex.de/

a7

array endconcept import message return
begin endif input not then
description endrecord is of vocabulary
do endwhile local ontology while

else for localURI output withNext
end if loop record

Operators and Delimiters. The following character sequences represent opera-

tors, delimiters, etc.

+:|:()
S <<=]
© > =)
/| == .
% |

Integer Literals: An integer literal is a sequence of digits representingréeger

constant.
1[DEC_INT_LITERAL =0 | [1-9][0—9]]

Floating-point Literals: A floating-point literal is a decimal representation of a

floating-point real constant.
1| FLOAT _LITERAL = ({FLit1}|{FLit2}) {Exponent} ?

2

3 FLitl = [0-9]+ \. [0-9]~
4 FLit2 = \. [0-9]+

5| Exponent = [eE] [+]? [0-9]+

String Literals : A string literal represents a string constant.
1[STRING_TEXT: AN [[ANN "]|\ {WHITE_SPACE_CHAR}+\) *]

48

4.2.3 Declarations
Variable Declarations: A variable declaration creates a variable, binds an iflenti

to it and gives it a type.
1[var_dec_cmd .= IDENTIFIER:name ":" IDENTIFIERype]

For example,

1

2ly: Vector,;

X: integer; ’

Array Declarations: An array declaration creates a variable, binds an identdie

it and gives it an anonymous array type.

1 dec_arr_cmd ::= IDENTIFIER:name ":" "array" "(" INT_VALE:v1l ".."
INT_VALUE:v2 ")" "of" IDENTIFIER: type
2l dec_arr_cmd ::= IDENTIFIER:name ":" "array" "of" IDENTIER:type
For example,
1 x: array (1 .. 3) of real;

2ly: array of integer;

Concept Declarations A concept declaration binds an identifier, the concept name

to a new concept type of either a record type or array type.

1 field_dec_cmd ::= IDENTIFIER:name ":" IDENTIFIERype ";"

2| field_list ::= field_dec_cmd: cmd | field_list:| field ec_cmd:
cmd

3| concept_dec_cmd ::= "concept" IDENTIFIER:name "is" "wad"
field list:l "endrecord" ";" "endconcept"

4 concept_dec_cmd ::= "concept" IDENTIFIER:name "is" "awyr" "("
INT_VALUE:v1 ".." INT_VALUE:v2 ")" "of" IDENTIFIER: type ";" "
endconcept”

5 concept_dec_cmd ::= "concept" IDENTIFIER:name "is" "ayr" "of"
IDENTIFIER :type ";" "endconcept"”

49

For example,

1 concept Complexis
2 record

3 RealPart: real;
4 ImgPart: real;
5 endrecord;
6| endconcept

7

8

concept Vector3Dis
9 array (1 .. 3) of real;
10| endconcept

12| concept Vectoris
13 array of real;
14 endconcept

Declaration List: A list of declarations on input, output or local scope.

1l dec_cmd ::= var_dec_cmd:vc | dec_arr_cmd: ac | concepi_cmd:
cc

2l dec_list ::= dec_cmd:cmd | dec_list:l "," dec_cmd:cmd

An example:

X: integer, y:. real, z:array of real,
concept ComplexPairis
record
first: Complex;
second: Complex;
endrecord;
endconcept

~NOoO b WN B

Input Declarations: A list of declarations on the input scope of the algorithm.

Variable declarations in this scope will take the value fittva caller.

1[input_dec|_opt 2:= "input" ":" dec_list:l ";"]

For example,

50

1[input: X: integer, y: real, z: Vector3D;]

Output Declarations: A list of declarations on the output scope of the algorithm.

Only one variable declaration should be in this scope. liserill be returned back to the

caller.
1[output_decl_opt ;= "output" ":" dec_list:l ";"]
For example,
1[output: X: integer;]

Local Declarations A list of declarations on the local scope of the algorithm.

Variable declarations in this scope will be initialized lvdefault values specified by their

types.

1[Ioca|_dec|_opt ;= "local"™ ":" dec_list:l ";"]
For example,

1[Ioca|: x: Vector, y: Vector, n: integer;]

Import Declarations: An import declaration states that the algorithm contains
some concepts or vocabularies from the imported ontolagiekctionary. There are two

kinds of imports: ontology or vocabulary, as follows:

=

D W

W

[e20)!

51

import_ontology_cmd ::= "import" "ontology" STR_VALUEIri ";"

import_ontology_cmd ::= "import" "ontology" STR VALUEIri "
localURI" STR_VALUE: luri ";"

import_vocab_cmd ::= "import" "vocabulary" STR _VALUE: ru ";"

import_vocab_cmd ::= "import" "vocabulary" STR VALUE: ru "
localURI" STR_VALUE: luri ";"

import_cmd ::= import_vocab_cmd: cmd | import_ontologynd: cmd

import_list ::= import_cmd: cmd | import_list: | importned: ¢

In these declarations, if hocal URI is specified, the resource hbcal URI will be
loaded instead of the resourceuati .

For example,

import ontology "http ://bulal.cs.uiowa.edu/owl/aramticCEAD .owl

n

import ontology "http://bulal.cs.uiowa.edu/owl/arémticCEAD .owl
localURI "file :../../owl/arithmeticCEAD .owl";

import vocabulary "http://bulal.cs.uiowa.edu/owl/Ahimetics .dic"

import vocabulary "http://bulal.cs.uiowa.edu/owl/Ahimetics .dic"
localURI "file :../../owl/Arithmetics .dic";

Description Declaration: This optional declaration describes what an algorithm is

doing or what type of concept is being created.

1[desc_0pt ;= "description” ":" STR_VALUE:d ";"

For example,

1[description: "This is a quadratic equation solver."

Algorithm Name Declaration: This is a required declaration for the name of the

algorithm or concept. This name will be used by OntologyMgeras the concept name in

52

case this algorithm is added to the ontology. This declamat always at the beginning of

the algorithm. For example,

1[concept: "ged";]

4.2.4 Terms (expressions)
Operands Operands denote the elementary values in an expressionpénand

may be a literal, variable, or a phrase.

literal ::= STR VALUE:v | INT_VALUE:v | FLOAT VALUE:v
term ::= literal:v | IDENTIFIER:id | phrase:p

1
2

Selectors For a primary expressian the selector expression

1[x.f]

denotes the field of the valuer. For example, given the declarations:

1 local: concept ComplexPains
2 record
3 first: Complex;
4 second: Complex;
5 endrecord;
6| endconcept ,
7l x: ComplexPair;
the user may write:
1 x.first

2| x.second

Grammar rule:

53

1[term = term:t "." IDENTIFIER:id

Indexes A primary expression of the form

1[a[i]

denotes the elemetth of the array. The valugis called the index.

Grammar definitions for indexes:

1[term = term:t "[" term:i "]"

Phrases Given an termf of action concept’,

1[f(a1, a2, ... an)

calls f with arguments1, a2, . .. an.

As defined in
1 term_list ::= term:p | term_list:| COMMA term:p
2| phrase = IDENTIFIER:id "(" term_list:vl ")"
3 phrase ::= IDENTIFIER:id "(" ")"

Operators: Operators combine operands into expressions.

lterm ::= term:|l bin_op term:r | =" term:l | "not" term:|
2 bin_op ::= "+" | =" Ukt Y| "R

3 | r==topoti=top e s

4 | re=t | =t

5 | "and" | "or"

54

For examples,

+ 1

x

-3

b
d
X >y) and (t <= v)

>
<

A b wN PP

a
c
(

Note that unlike programming languages, the semantics ci eperator is not

defined in DAL but in the ontology via the CEAD process.

4.2.5 Commands (statements)

Assignments

1[assign_cmd ;= term:lhs "=" term:t ";"]

After an assignment statement, the evaluated value of the'ten the left hand side (LHS)
will be stored in the location of this term.

If Command: The grammatical rules for If command is defined as:

1 if_cmd = "if" term:p "then" ocmd_list:cl "endif"™ ;"
2 if_cmd ::= "if" term:p "then" cmd_list:cl "else"” cmd_listcl2 "
endif" ";"
Or we can defined it as:
1 if expr then
2 statementl(s);
3 else
4 statement2(s);
5 endif;

Whereexpr is a boolean expression.dkpr is evaluated to true, thest at enent 1('s)

are executed. Otherwisgt at enent 2(s) are executed. Thelsebranch is optional.

55

For example,
1l if n < 3 then
2 Z = a,;
3 endif;

While Command:

1[While_cmd ::= "while" term:p "do" cmd_list:cl "endwhile™;"]

In thewhile-loop construct of

1 while expr do
2 statement (s);
3| endwhile;

if the boolean expressioexpr is evaluated td r ue, thest at enent (s) is executed
and the expression is re-evaluated. This cycle repeatisaxygr becomes al se.

For example, the Euclidean algorithm for finding gcd of tweegers a, b is ex-

pressed by thevhile-loop as follows:
1 while b = 0 do

2 t = b;

3 b =a%b;
4 a = t;

5 endwhile ;

For-loop Command:

1 forloop_cmd ::= "for" assign_cmd:ic "if" term:lc "begin'tmd_list
:cl "end" "withNext" assign_cmd:ac

56

Thefor-loop formal syntax can be written as:

1 for exprl; if expr2
2| begin

3 statement (s);
4 end

5 withNext expr3;

which is equivalent to

1 exprl;

2l while expr2 do

3 statement (s);
4 expr3;

5 endwhile ;

For example, the addition of two vectors can be written as

1 for i = 1; if i <= 3

2| begin

3 v[i] = vi[i] + v2[i];
4 end

5 withNext i =i + 1;

4.3 DAL Use
The DAL use is illustrated by two examples. The first examgline DAL expres-
sion of the Euclidean algorithm for finding the greatest camndivisor of two integers,
shown in Listing 4.2. The second example is the DAL expressibthe Householder
algorithm for finding the solution of a system of linear egoias, which is shown in Ap-
pendix C. For more detail on how to use this language with tiesh DALSystem please

refer to Appendix A.

N

O ~NO O b~ W

11
12

57

concept: "gcd";

description: "This is function for find greatest common vdsor
gcd) of two integers using Euclidean algorithm.";
input: a: integer, b: integer;
output: c: integer;
local: t: integer;
while b !'= 0 do
t = b;
b =a%b,;
a=t;
endwhile ;
c = a;

(

Listing 4.2: Euclidean algorithm for finding GCD of two intexg

58

CHAPTER 5
DOMAIN DEDICATED VIRTUAL MACHINE AND SADL LANGUAGE

After domain concepts were associated with their computatimeaning and the
computational language for the domain was developed, ttw@ration of user algorithm
execution is based on two main software components: (1) Wska#or that maps user al-
gorithm A into an intermediate language expressidni.A), called SADL, whose instruc-
tions are domain concepts associated with the URL of contiput artifacts implement-
ing them, and (2) An interpreter operating on the intermedeEnguage expressidr.(.A)
generated by the translator, executing computation&hatsi (web services) encountered at
each instruction. The translator can be implemented byarttienal compiler construction
tools as discussed in Chapter 6. The interpreter can be ingpieed as a virtual machine,
which | will discuss in this chapter in section 5.1. The imediate language of this virtual

machine will be discussed in sections 5.2 and 5.3.

5.1 Domain Dedicated Virtual Machine
The term Domain Dedicated Virtual Machine (DDVM) was coirdRus (2008)
to describe a virtual machine which performs domain useordalgns based on domain
concepts implemented by web services. This virtual macautemates the execution of
DAL algorithms, which can instead be performed manually byr@ablem solver using
computers as brain assistants, in order to increase thentfic
Formally, DDVM can be seen as a tuple DDVM(€'onceptC, Execute, Next)

where:

59

» ConceptC is a Concept Counter, that, for a given DAL algponit4, points to the
URI of the concept in the OWL(DAL) to be performed next durithg algorithm

execution;

» Execute() is the process that executes the computationingeaf the domain con-

cept assigned to ConceptC;

* Next() is a function which determines the next concept ef AL algorithm A to
be performed by Execute() during algorithm execution.
The DDVM performs similarly with the Program Execution Lo@pEL) ((Rus 1993), p.
129) and therefore the algorithm execution by DDVM can becdiesd by the following

Domain Algorithm Execution LoofpAEL) (Rus 2013):

1 ConceptC = getFirstDALConcept (DAL algorithm)

2l while (ConceptC is not End)

3 Execute (ConceptC);

4 ConceptC = Next(ConceptC, DALalgorithm)

5| Extract the resultand display the final output to the user

At the high level view, DDVM is very similar to a Virtual Morot (Popek & Goldberg
1974). The ConceptC is the counter part of the program couanel the domain action
concept that the ConceptC refers to is similar to the fumcéigecuted by the OS simu-
lating instructions of the machine implemented by the Vivhafly, Next() is similar to
the process that determines the next instruction of therprogun by the VM. However,
the difference between a DDVM and a Virtual Monitor is thag themory of the machine
implemented by DDVM is all the ontologies imported by the Dalgorithm OWL(DAL),

and the processor of the DDVM is the collection of all processvailable on the Web of

60

services participating in the OWL(DAL). Therefore, the DBINs a true domain dedicated
virtual machine.

There are a few key things to note. Firstly, all the concdptisiructions of DDVM
are abstract, performing the user’s solution logicallys ithe DDVM that interprets these
conceptual instructions and executes the computatiotiielcis associated with these con-
ceptual instructions at the runtime. This means that thesaation in the form of DDVM
conceptual instructions remains useful for a longer peoidtme; even when the underly-
ing computational artifacts change over time. Thus, thikigéecture encourages the reuse
of user solutions.

Secondly, due to the fact that DDVM makes remote proceduletoaveb services
implementing action concepts, it essentially executesstiluted algorithm. Since our
implementation of DDVM is inspired by the stack based virtoeachine, Java Virtual
Machine (JVM), we can think of DDVM as a JVM that conceptuallys on top of the
network across organization boundaries.

Finally, even though DDVM operates at the same abstractoel las other work-
flow engines in (Qin & Fahringer 2008, Gubala et al. 2006,A#s et al. 2004), there are
some differences between our work and theirs. These diifeeresult from the fact that
DDVM is designed to allow the domain user to manipulate dataw@ch more fine grain
level such as allowing access to fields of composed data ptsoeto array elements, and
declaring variables. Since DDVM is designed to facilitaterenlively interactions between
domain users and their concepts, we pay more attention fophé'output process of data

concepts to human readable form. On the other hand, curxesting workflow engines

61

are designed to facilitate a Grid based environment whemetis less interaction between
user and the computation process with mainly scheduled Jdiesse differences lead us to
more of a full-pledged virtual machine while existing wodkfl engines tend to be more of

a simple composing engine.

5.2 Structure of SADL File

The Software Architecture Description Language (SADL) $R013) was devel-
oped by us to represent problem domain solutions in theadidorm. Its goal is similar
to the goal of the Intermediate Language (IL) used by Micits&SP.NET Framework
for providing a common ground for several higher level pemgming languages. SADL
serves as an Intermediate Language for all the DAL langudggigned to run on DDVMs.

SADL language design was inspired mainly by JVM intermezllahguage while
its syntax is based on XML representation. We choose XML fADBE representation
because the XML tag set provides a rich and powerful langudmgeh is easily expandable
by adding new attributes to XML elements without breaking fdarmat. Moreover, there
are many existing tools to process XML files.

A SADL file is organized into two sectionsdeclarationandinstructions The
decl ar at i on section contains information about imported ontologiaput variables,
and output variables. Hence, it is divided into three sutises. imports inputs outputs
Inside theimportssubsections arenportOntologytags which specify ontologies that this
algorithm may use. Thaputsandoutputsubsections contairisput andoutputtags re-

spectively for the declarations of input and output vaeablThe general structure of the

O~NO A WN B

62

declarationsection is shown in Listing 5.1. We will discuss these tagdetail in Sec-

<declaration>
<imports>
<importOntology uri="URI(Ontologyl)" />
<importOntology uri="URI(OntologyN)" />
</imports>
<inputs>
<input type="URI(typel)" index="il" />
<input type="URI(typeN)" index="iN" />
</inputs>
<outputs>
<output type="URI(outputType)" index="0" />
</outputs>
</declaration>
Listing 5.1: Declaration section of SADL file
tion 5.3.

After the declaration section is the section for DDVM cortcg instructions.
At this lowest level of SADL is a dynamic collection of prinvié terms (instructions)
used to denote problem domain concepts suclCaspl ex, addConpl ex, etc, or
IT specific terms such agush, store, etc. All the instructions are sequential by
default. The branching and repetition constructs are implged by using unpi ng
i nstructions and labels to jump from one place to other in this sequencesbfuc-
tions. Listing 5.2 shows an example of a SADL file for compgtthe sum of two real

numbers.

63

1 <?xml version="1.0" encoding="UTF8"?>

2 <sadl xmins:xs="http://www.w3.0rg/2001/XMLSchema">

3] <declaration>

4 <imports>

5 <importOntology uri="http://bulal.cs.uiowa.edu/owdéad .owl
" local="file: ../ OntologyManager/src/main/webapp/
ontologies/cead.owl" />

6 <importOntology uri="http://bulal.cs.uiowa.edu/owl/
arithemticCEAD .owl" local="file: ../../owl/arithmetiCEAD
owl" />

7 </imports>

8 <inputs>

9 <input type="http://bulal.cs.uiowa.edu/owl/arithmetowl#
Real" index="1" />

10 <input type="http://bulal.cs.uiowa.edu/owl/arithime.owl#
Real" index="2" />

11 </inputs>

12 <outputs>

13 <output type="http://bulal.cs.uiowa.edu/owl/aritlemc .owl#
Real" index="3" />

14 </outputs>

15 </declaration>

160 <init type="http://bulal.cs.uiowa.edu/owl/arithmet owl#Real"

index="3" />

17 <load index="1" />

18§ <load index="2" />

19 <addR xmlns="http://bulal.cs.uiowa.edu/owl/arithme.owl#"

params="2" />
200 <store index="3" />
21 </sadl>

Listing 5.2: Two push instructions for complex data typestladding them together using
addComplex concept

64

5.3 DDVM Conceptual Instructions

In this section, | will provide detailed explanations abtiué semantics of each
instruction of our virtual machine, DDVM. For each instrioct, | show its syntax as XML
element and the corresponding attributes. Then | explamthe virtual machine should
behave for that instruction.

Before discussing the DDVM instructions set, | would likediscuss the internal
architecture of our virtual machine. The first component of wirtual machine is the
concept counter. At any time, this counter points to theemtrconcept to be executed.
After the execution of that concept finishes, the counteresde the next concept. Since
our virtual machine is a stack based one, the second mosttampcomponent is the stack.
This stack is initially empty, and during the virtual machgxecution, it holds intermediate
results of the computation process. Finally, we use vimtegisters to hold the contents of
the variables used in user algorithm, including input, atigmd local variables. The virtual
registers are stored in a dynamic array. To access the dooftenregister, we need to
provide the index of that register in the instruction sucloasl andstore When the virtual
machine is initialized, it loads all the contents of inputgraeters into input registers, the
output register and local registers are initialized to tefadlt values of their types. Finally,
the virtual machine maintains an ontology model which loaltithe imported ontologies
and provides the reasoning service for the virtual machurend the execution. Provided
these assumptions about the virtual machine architectig&€an move on to examine the

instruction set of this virtual machine.

65

5.3.1 Declaration Intructions
The first type of declaration instructions is the importQogy instruction. DDVM
will load the ontology O atir i attribute of the XML tag the URI(O). Iftheocal attribute

is present, then the content of the URI(O) will be loaded llgagith the content of the file

at URI(localFile.owl).

1[<importOntology uri="URI(O)" local="URI(localFile.oW" />]

After loading this instruction, all the classes, indivithkiand their properties of this ontol-
ogy are loaded into the DDVM ontology model for later queri@sconcrete example of

importing the arithmeticCEAD.owl ontology at the URI of

http://bul al. cs. ui owa. edu/ ow / ari t hent i cCEAD. ow is shown below.

1 <importOntology uri="http://bulal.cs.uiowa.edu/owl/
arithemticCEAD . owl"

2 local="file: ../../owl/arithmeticCEAD.owl" />

The second type of declaration instructions is the inputiée declaration instruc-

tion.

1[<input type="URI(varType)" index="r" />]

This instruction has two attributesype andi ndex. Thet ype attribute is the URI of

the type of the variable. Thendex attribute is the index of the DDVM register allocated

to this variable. For example, the instruction

1 <input type="http://bulal.cs.uiowa.edu/owl/arithmetowl#Real"
2 index="2" />

66

means that the DDVM register 2 is allocated for an input \@deaf type
http://bul al. cs. ui owa. edu/ ow /arithnetic. ow #Real .
Similarly, the output instruction describes thgpe and the DDVM register index

of the output variable.

1[<output type="URI(varType)" index="r" />]

Both attributes have the same meaning as those ofttipeit instruction.

5.3.2 Virtual Register Traffic
DDVM registers typically hold variable values. Registetléx starting from 1 are
set aside for the algorithm’s input variables. The nextstegs are for output variables.
Local variables are assigned to registers after the ougmisters. DDVM registers are
untyped so they can hold any kind of value.
Thel oad instruction pushes the content of a DDVM register on top efgtack

(TOS). The register value is unaffected by the instruction.
1[<load index="r" />]

Thei ndex attribute specifies the index of the DDVM register neededettoladed. Note
that the value of each register is a data item, so it contatis \mlue and the type of the
value.

The st or e instruction pops a value from the DDVM stack and stores ithie t

content of the specified DDVM register.

1[<store index="r" [>]

67

Thei ndex attribute specifies the index of the DDVM register receivihg value. The
whole data item content including both value and the typéhefualue are stored in the
register.

ThepushSt r instruction pushes a string value of typead: St ri ng on TOS.

1[<pushStr value="string" />]

Theval ue attribute holds the value of the string.
Thel oadConst instruction converts the constant value on TOS to the typeisp

fied by the instruction.

1[<loadConst conceptURI="URI(c)" />]

Theconcept URI attribute specifies the URI of the concept to be loaded. Th& D
makes a call to the input filter of concepto convert the value on TOS to the type of
conceptc. The received value will be pushed back to TOS.

Thei ni t instruction initializes the default value for a variable.
1[<init type="URI(c)" index="r" [>]

Thet ype attribute specifies the type of this default value. Timelex attribute specifies

the register which holds the value of the initialized valgab

5.3.3 Action Instructions

This is a special class of instructions of each DDVM. It camdaall the action

concepts of the application domain. The template of thesteuations is shown below.

68

1[<conceptURI params="p" />]

Thepar ans attribute specifies the number of input parameters that De€ND needs to
pass to the concept. The result of this call to the actionephwill be pushed back to TOS.

For example, the call to the concenil t i pl yRof the arithmetic domain looks like:

1 <multiplyR xmins="http://bulal.cs.uiowa.edu/owl/ahimetic.owl
#ll

2 params="2" />

That means the DDVM will pop 2 items from the stack and sendnthe the IT arti-
fact implementing the concept multiplyR for execution. Tiesult is a value of type
http://bul al. cs. ui owa. edu/ ow /arithnetic. owl #Real and will be pushed
on TOS.
The execution of this instruction using a web services astipé&mentation artifact
is shown in the following algorithm:
1. The DDVM makes a SOAP call to the remote web service impiging the seman-
tics of the corresponding domain concept.
2. The current execution thredd of the DDVM at machined is blocked and waits for
the result from the remote server at a machihe
3. The remote server at machifecreates a process executing the corresponding
web services.
4. After the proces$; finished, the remote server returns the result to the machine

5. The machined notifies the thread’ of the DDVM.

69

6. The thread; receives the result from machideand pushes it to the TOS (Top of
the Stack).

After that the concept counter points to the next instrurctio

5.3.4 Field Access Instructions
Theget fi el d instruction pushes the value of a particular field of a damion

TOS. The form of gget f i el d instruction follows:
1[<getfield field="fieldName" />]

When encountering this instruction, the DDVM will pop theéaldem on TOS, then DDVM
accesses the field specified by theel d attribute. The result will be pushed back on TOS.
For example, if TOS holds a value of a complex number with twtd§Real Part and

| ngPart .
1[<getfield field="RealPart" />]

The instruction pops the complex number out of TOS. The DD\&slds the value of the
Real Part field and pushes the value back to TOS.
Theput fi el d instruction pushes a value to a particular field of a data ibem

TOS. The syntax of aut f i el d instruction follows:

1[<putfie|d type=URI(c) field="fieldName" />]

This instruction pops two values from TOS. The first valugi¢ the value that should be
stored at the field (fieldName) specified by the attridutel d of theput fi el d instruc-

tion. The second value is a reference to the data itenwith the field to be stored. When

70

the instruction completes, the value fidldel dNane of x will be v and the stack will

have two fewer items.

5.3.5 Branching
There are two kinds of instructions that accommodate cimmdit branches, i.e.

j unpf al se andj unptrue. Thej unpf al se instruction expects that the TOS is a

boolean value of typeead: Bool ean.

1[<jumpfa|se label="labelName" />]

The branch is taken if the boolean value is true. Otherwtse XDVM concept counter
will jump to the position with the labdlabel Nane.

Thej unpt r ue instruction is similar to th¢ unpf al se instruction with the op-
posite action. That means, the branch is taken if the boolelr is false. Otherwise, the

DDVM concept counter will jump to the specified label positio

1[<jumptrue label="labelName" />]

71

CHAPTER 6
TRANSLATION FROM DAL TO SADL

The mapping of the DAL algorithms into SADL expressions candone by the
domain expert by hand. This is feasible for toy problems. fore sophisticated prob-
lems it is beneficial to automate this process. | have deeelegtranslator that maps DAL
algorithms into SADL instructions which are then interpaetoy a DDVM. This trans-
lator can be implemented using conventional compiler cangbn tools (Aho, Sethi &
Ulliman 1986, Fischer, Cytron & LeBlanc 2010) with some maifion to take advantage
of domain knowledge in the ontology for concept disambigueéand to tailor to DDVM
instructions as the target code.

Our translator follows the traditional processing pipelim compiler design as
shown in Figure 6.1. In this pipeline, the Lexical Analyzsrspecified by a set of reg-
ular expressions, generating a token stream from the DAkesgon. The token stream is
then passed to the Parser whose grammar is specified by ag gfe(@mar (Knuth 1965)
in the form of BNF rules. The Parser generates an AbstractaSyfree (AST) from the
token stream. The AST is then annotated by the Semantic Aealyith deeper semantic
information on each node such as type information. Fin#tly,Code Generator receives
the Annotated AST and generates the corresponding SADL code

Among the components of the processing pipeline, we useéatdrools for con-

structing Lexical Analyzer (JFleX)and Parser (JavaCt)p The most interesting com-

LAvailable at http://jflex.de/

2Available at http://www2.cs.tum.edu/projects/cup/

72

, Lexical Token stream
DAL expressiopA——> > Parser
Analyzer
AST
\4
Code Semantic Semantic
SADL expressiorR—— <
Generator Annotated AST Analyzer

Figure 6.1: DAL Translator processing pipeline

ponents are the Semantic Analyzer and the Code Generatth dBdhese components

employ domain knowledge to help disambiguate concepts. ekample, the Semantic

Analyzer uses the transitiveead: cast abl e ontological relation to resolve ambigui-

ties when processing overloaded concepts, e.g. operatdign concepts as presented in
sections 6.1.3 and 6.1.5.

The DALTranslator is designed using Visitor design pat{@amma, Helm, John-
son & Vlissides 1995) so that for each type of AST node, the D&abhslator has a cor-
responding method to process the code generation for thatmd8e. DALTranslator is
organized as three visitors:

TopDeclVisitor : is our Semantic Analyzer. Itis the top-level visitor foopessing AST's

declaration nodes, such as Variable Declaration Nodesin®uhis process, it is

73

assigned correct types (linked to conceptURI) for all detlavariables including
input, output and local variables. The information for thinking process is pro-
vided mostly by the user dictionary. This type informatioitl e used later by Con-
ceptGeneratorVisitor to generate DDVM instructions, esgy for selecting correct
overloaded operators like, —, x, /, etc.

ConceptGeneratorVisitor : implements our Code Generator. It is the main visitor which
is responsible for generating DDVM instructions from ASThefe are some cases
involving some LHS nodes of an assignment that need to belddiy another
visitor LHSVisitor.

LHSVisitor is responsible for generating code for LHS of an assignmé#®Visitor uses

ConceptGeneratorVisitor as its ValueVisitor as specifireslame of its methods.

6.1 ConceptGeneratorVisitor
The ConceptGeneratorVisitor starts with the first commandenin the body of a
DAL algorithm (ignoring top declaration nodes, which aregessed by the TopDeclVis-
itor). In this section, | discuss the process of handlingheamde in some detail with the
following pattern:
1. Present the BNF rules that creates the AST node.
2. List the properties of that AST node, such as list of itddrken, LHS term and LHS
term.

3. Show the algorithm to generate the DDVM instructions Fattparticular node.

74

6.1.1 Literals

The LiteralNode is generated by the following BNF rules:
1[Iitera| ::= STR_VALUE:v | INT_VALUE:.v | FLOAT_VALUE.v]

From this rule the LiteralNode is created with properiied ue=v, and the type is deter-
mined by the type of the literal. The algorithm for genergti?DVM instructions is shown

in Algorithm 6.1. TheEM TCONSTANTLOAD(v, t) procedure generates the following

Algorithm 6.1 Generating literal load algorithm
1: procedure VISIT(n: LiteralNode) > Visiting a literal node

2: EMITCONSTANTLOAD(n.value, n.type)

3: end procedure

DDVM instructions.

1 <pushStr value="v" />
2| <loadConst conceptURI="URI(t)" />

Note that the result of this loadConst will be stored on TOS.

6.1.2 Local Reference

The LocalReferenceNode is created by the following BNFsule

1[term .= IDENTIFIER:id]

75

From this rule, the LocalReferenceNode gets its propeatyi abl e=id. The algorithm

for generating DDVM instructions is shown in Algorithm 6.A8EM TLOAD(r) proce-

Algorithm 6.2 Generating local reference algorithm
1: procedure VISIT(n: LocalReferenceNode) > Visiting a local reference node

2: varAttr < currentSymbolT able. RETRIEVESYMBOL(n.variable)
3: n.SETRESULTLOCAL(Qar Attr.locallndex)
4: EMITLOAD(n.locallndex)

5: end procedure

dure generates the DDVM instructions for loading the cqoesling register which holds

the variable to TOS.
1[<load index="r" />]

6.1.3 Computing Expressions

Computing expressions are generated by the following BNésru

1 term ::= term:l bin_op term:r | =" term:l | "not" term:l|
2/ bin_op = "4 V" """] %"

3 IR B ER IS B

4 | r<=t] =t

5 | "and" | "or"

The algorithm for generating DDVM instructions is shown ifgérithm 6.3. The EMIT-

OPERATION(n) procedure generates the DDVM instructiomshe arithmetic operations.

76

Algorithm 6.3 Generating computing expression algorithm
1: procedure VISIT(n: Computing) © Visiting a computing node such as AddNode,

SubtractNode, etc.
2: VISITCHILDREN(R)
3: loc+ ALLOCLOCAL()
4: n.SETRESULTLOCAL(0c)
5. EMITOPERATION()

6: end procedure

The procedure finds the correct concept linked with the dmeravith a matching signa-
ture in the ontology. For example, the operatipigould be the addition for integers
http://bul al. cs. ui owa. edu/ ow /ari thneti c. ow #addl
or the addition of real numbers
http://bul al. cs. ui owa. edu/ ow /arithnetic. ow #addR
The instruction generator will find the first concept whogmature matches the input pa-
rameters type. An input parameter type is considered ashmgtthe concept signature’s
parameter type if the input parameter type is castable todheept signature’s parameter
type.

For example, in the expressiant+ 3.1, DDVM will generate+ asaddR. Because
3.1 is of type#Real , the concepttaddl doesn’t match. However, there exists a filter
#i nt ToDoubl e which converts al nt eger number to a #Real number. Thus, type

#Integer is castable to typereal . Therefore, the concepiaddR matches. So, we get

- A

77

1 <addR xmins="http: //bulal.cs.uiowa.edu/owl/arithmetowl#"
params="2" />

6.1.4 Assignment

The assignment node is generated by the following BNF rule:

1[assign_cmd c:= term:lhs "=" term:t ";"]

So, itsl hs andr hs properties are pointing to its childréns andt¢ respectively. The

algorithm for generating DDVM instructions is shown in Algam 6.4.

Algorithm 6.4 Generating assignment algorithm
1: procedure VISIT(n: AssignNode) > Visiting an assignment node.

2: lhsVisitor < new LHSVISITOR(this)

3: lhsVisitor VISIT(n.lhs)

e

VISIT(n.rhs)
5. lhsVisitor. EMITSTORE.rhs.GETRESULTLOCAL())

6: end procedure

ThelhsVisitor. EMITSTORE procedure will be discussed in Section 6.2.

78

6.1.5 Phrase Node

PhraseNodes are generated by the following grammar rules:

1 term_list ::= term:p | term_list:] COMMA term:p
2| phrase IDENTIFIER:iId "(" term_list:vl ")"
3 phrase IDENTIFIER:id "(" ")"

The algorithm for its code generation is shown in Algorithi®.6The FINDMATCHEDSIG-

Algorithm 6.5 Generating phrases algorithm
1: procedure VISIT(n: PhraseNode) > Visiting a phrase node.

2: conceptU RI < FINDMATCHEDSIGNATURE (».concept)
3: VISITCHILDREN(n)
4: EMITACTIONCONCEPT ¢onceptU RI)

5: end procedure

NATURE procedure is the same as that of Algorithm 6.3. EHwe TACTI ONCONCEPT

procedure emits DDVM instructions for domain action coric&pr example, with the ex-
pressiorsqrt (4. 0) , the concept generator will first look up a matched concephfuser
dictionary. Assumethatitfindst t p: // bul al. cs. ui owa. edu/ owl /arit hneti c.
ow \ #sqgr t R. The concept generator then finds the number of input pasm#tat the

conceptsgrt has and gets. So, the generator emits the following DDVM instruction:

1 <sqgrtR xmlns="http://bulal.cs.uiowa.edu/owl/arithte.owl#"
params="1" />

79

6.1.6 Field Reference

FieldReferenceNode is generated by the following BNF rule:
1[term .= term:t "." IDENTIFIER:id]

The properties are assigned as followsnstance = tp.fieldName = id. The algorithm for

generating DDVM instructions is shown in Algorithm 6.6. TE& TFI EL DREFERENCE(n)

Algorithm 6.6 Generating field reference algorithm
1: procedure VISIT(n: FieldReferenceNode) > Visiting a field reference node.

2: VISIT(n.instance)
3: EMITFIELDREFERENCE(®)

4: end procedure

procedure will generate the DDVIget fi el d instruction with the field name obtained

from the FieldReferenceNode
1[<getfield field="fieldName" />]

6.1.7 Array Reference

The ArrayReferenceNodeis created by the BNF rule:
1[term i= term:t “[" term:i "]"]

So, from this rule, we have.array = t,n.index = i. The corresponding algorithm is shown

in Algorithm 6.7. TheEM TARRAYREFERENCE(n) procedure generates the DDVM

80

Algorithm 6.7 Generating array reference algorithm
1: procedure VISIT(n: ArrayReferenceNode) > Visiting a array reference node.

2: VISIT(n.GETARRAY())
3: VISIT(n.GETINDEX())
4: EMITARRAYREFERENCE()

5: end procedure

al oad instruction. The ype attribute required by thal oad instruction is the base type
of this array. This base type is retrieved from the ontologythre propertyead: hasBaseType

of the clasgead: ArrayDat aConcept .
1[<aload type="BASETYPE(n.GETARRAY())" />]

6.1.8 Conditional Branching

The IfNoden is generated by the following grammar rules:

1 if_cmd = "if" term:p "then" c¢cmd_list:cl "endif" ";"
2if_cmd ::= "if" term:p "then" cmd_list:cl "else" cmd_listl2 "
endif" ";"

Properties forn are specified as followsi.boolExpr = p,n.action = cl,n.alternativeAction
= cl2. Thus, the algorithm for generating DDVM instructiaashown in Algorithm 6.8.
In this algorithm, the procedur@ENLABEL generates a new label fgiulse Label and

endLabel. EM TJUMPFAL SE will produce

1[<jumpfa|se label="falseLabel" />]

81

Algorithm 6.8 Generating conditional branching algorithm

1: procedure VISIT(n: IfNode)

2:

3:

10:

11:

12:

falseLabel + GENLABEL()

endLabel < GENLABEL()

VISIT(n.GETBOOLEXPRESSION())

EMITIUMPFALSE(falseLabel)

VISIT(n.GETACTION())

EMITIJUMP (end Label)

EMITLABEL(falseLabel)

if n.alternativeAction is not emptiyen
VISIT(n.GETALTERNATIVEACTION())

end if

EMITLABEL(endLabel)

13: end procedure

> Visiting an IF-THEN node.

82

while EM TJUMP generates
1[<jump label="endLabel" />]

So in total, this algorithm generates the following DDVMtingtions template:

<l— check boolExpr code—>
<jumpfalse label="falseLabel"” />
<l— action code—>

<jump label="endLabel" />
<label name="falselLabel" />
<l— alternativeAction code—>
<label name="endLabel" />

~NOoO O, WN B

6.1.9 Loops

The WhileNoden is generated by the BNF rule:

1[While_cmd ;.= "while" term:p "do" cmd_list:cl "endwhile™;"]

Its properties are set up ashoolExpr = p,n.action = cl. With these information, the code
generation algorithm is shown in Algorithm 6.9. Procedureshis algorithm are very

similar to those of Algorithm 6.8. However, the code templatdifferent, as seen below:

<label name="loopLabel" />
<l— check boolExpr code—>
<jumpfalse label="doneLabel" />
<l— action code—>

<jump label="loopLabel" />
<label name="doneLabel" />

OO b WNPE

An actual code sample for while-loop is shown in the SADL céatehe Euclidean algo-

rithm in Listing D.1.

83

Algorithm 6.9 Generating loops algorithm
1: procedure VISIT(n: WhileNode) > Visiting a WHILE node.

2: doneLabel +GENLABEL()

3: loopLabel < GENLABEL()

4: EMITLABEL(loopLabel)

5: VISIT(n.GETBOOLEXPRESSION())
6: EMITIJUMPFALSE@oneLabel)

7: VISIT(n.GETACTION())

8: EMITIUMP (loopLabel)

9: EMITLABEL(doneLabel)

10: end procedure

6.2 LHSVisitor
6.2.1 Local References
TheLocal St or e command, when executed by thB1 TSTORE procedure from
Section 6.1.4, will emit the DDVMst or e instruction. The information about the register

to be used is the locallndex of the variable.

1[<store index="locallndex" />]

6.2.2 Field Reference
TheFi el dSt or e command, when executed by tB®1 TSTORE procedure from

Section 6.1.4, will emit the DDVMut f i el d instruction. The information about the

84

Algorithm 6.10 Generating LHS local reference algorithm
1: procedure VISIT(n: LocalReferenceNode) > Visiting a local reference node

2: varAttr < currentSymbolT able. RETRIEVESYMBOL (u.variable)

3: n.SETTYPE(arAttr.variableType)

e

SETSTORE(ew LocalStore(n.GETTYPE(}ar Attr.locallindex)))

ol

: end procedure

Algorithm 6.11 Generating LHS field reference algorithm
1: procedure VISIT(n: FieldReferenceNode) > Visiting a field reference node

2: valueVisitor VISIT(n.instance)

w

SETSTORE((ew FieldStore(n.GETTYPE();.fieldName)))

N

: end procedure

field type (ft) and the field namef() is provided by the FieldStore object.
1[<putfield type="ft" field="fn" />]

6.2.3 Array Reference
TheAr r ay St or e command, when executed by tB®1 TSTORE procedure from
Section 6.1.4, will emit the DDVMast or e instruction. The information about the field

type (ft) is provided by the FieldStore object.

1[<astore type="ft" />]

85

Algorithm 6.12 Generating LHS array reference algorithm
1: procedure VISIT(n: ArrayReferenceNode) > Visiting a array reference node

2: valueVisitor VISIT(n.GETARRAY())
3: valueVisitor VISIT(n.GETINDEX())
4: SETSTORE(Gew ArrayStore(n.GETARRAY().GETTYPE())))

5: end procedure

86

CHAPTER 7
DOMAIN ONTOLOGY EVOLUTION

One of the key ideas in our approach is to provide a mechatatatiows domain
experts to create and extend their domain knowledge base.piidtess of expanding a
user’s knowledge base via DAL expressions is called Domaitology Evolution (DOE).
This process simulates and records the process of a don@ent éxarning about a domain
and keeps expanding her knowledge base during the problemgprocess. For example,
during a problem solving process, a domain expert can d&s@rew action concept which
is represented as a DAL algorithm such as the steps leaditig teolution of a quadratic
equation ¢z2+bxz+c = 0). Or, she might discover a new data concept such as the cemple
numbers when she tries to solve a quadratic equation whigm@aeal number solutions
(the case whem\ = b? — 4ac < 0). The approach of this thesis to addressing these two
cases is implemented by two proceduaeki2Ont 0 andaddDat a20Ont o presented in

the following sections.

7.1 Creating new Action Concepts - add20nto
The general idea for adding a new action concept to the udelogly consists of
the following steps:
1. generate a web service instance for that action concapttine SADL code of that
concept,
2. create a new individual of claget i onConcept in user own ontology (UOO),

3. automatically perform the process of associating thecwwept with the generated

87

service instance.
The most important design idea is step 1, i.e. to export tieraconcept as a web service
instead of exposing the SADL code or DAL solution directliytHe process of evolution
requires the SADL code or DAL solution to be exposed diredtlymplies a cascading
exposure of all other SADL codes of concepts that the origiesv concept imported.
Moreover, the execution of these SADL codes will take plac¢he user machine, which
will involve the problem of having no access to certain reses that these SADL codes
require. On the other hand, if we export the action concept\asb service, the concept
will be exposed as a standalone and composable conceptékg @her primitive concept
in the domain ontology.

This idea is formally expressed in Algorithm 7.1. TBENERATESADL procedure

Algorithm 7.1 Creating new action concept algorithm
1: procedure ADD2ONTO(DAL: DALEXxpression) > create new action concept.

2: GENERATESADL(DAL)

3: ast <+ PARSEQDAL)

4: GENERATEXSD(@st)

5: GENERATEWSDL@st)

6: CREATENEWACTIONCONCEPT4st)

7: end procedure

uses a DALTranslator discussed in chapter 6 to generateADd &xpression from the

88

DAL expression. This SADL expression is then stored in the useatp space for later
use as the service instance of thi)siL action concept. Next we obtain an AST of the
DAL expression from th®ARSE procedure.

The GENERATEXSD procedure walks through thest tree to generate the corre-
sponding XSD schema file for the AL service instance from the input and output decla-
rations of theD AL expression.

The GENERATEWSDL procedure also walks thest to generate the WSDL file
for the DAL service instance. The patterns for generating the WSDL féeshown in
Table 7.1.

Finally, the CREATEACTI ONNEWCONCEPT procedure, shown in Algorithm 7.2,
creates a new action concept individual nd in the user own ontology. In this procedure,
for each input node from thest, onel nput individual is created with corresponding order
and type, then assigned to the propdras| nput of ac/nv. Similar steps are repeated
for output parameter.

The above scenario is demonstrated further with the exampigh school algebra
that maps the algorithm solving quadratic equations intevaconcept calle&ol ver . We
assume that the DAL expression of the algorithm that solveslgatic equations is written
as follows and saved as the fé#el ver . dal shown in Listing 7.1.

Then using the DAL Console program, the user executes theneoma
1[add20nto solver . dal]

The generated SADL file is shown in Listing 7.2.

| WSDL file Properties | Value

| Comment

schemal.ocation

the URI of XSD file generated b@ENERATEXSD

input message

(conceptName)

XSD type is named as

conceptName

output message

(conceptName)Response

XSD type for output messag

of conceptadd is like

1%

addResponse

portType (conceptName)PortType for exampleaddPor t Type

operation (conceptName) for exampleadd

service (conceptName) name of the web service
instance is after the concept
name

location http://(server)/OntologyManager/services/(conceptp URI of the web service

instance

Table 7.1: Patterns for generating WSDL files

68

90

Algorithm 7.2 Creating new action concept individual algorithm

1:

10:

11:

12:

13:

14:

15:

16:

17:

procedure CREATEACTIONNEWCONCEPT{st: ProgramNode) > create new
action concept.
m < LOADONTOLOGYMODEL (user-CEAD.owl)
acInd < m.CREATEINDIVIDUAL(ast.ConceptName, “ActionConcept”)
for i = 1 to ast.InputList.SIZEdo
inputNode < ast.InputList. GET()
inputInd < m.CREATEINDIVIDUAL (ast.ConceptNamer “Input”)
inputInd. ADDPROPERTY (“inputType”input N ode. GETTYPE())
inputInd. ADDPROPERTY (“order”;)
acInd. ADDPROPERTY (“haslnput’jnInd)
end for
acInd. ADDPROPERTY (“hasOutput’yst. GETOUTPUTTYPE())
servicelnd <+ m.CREATEINDIVIDUAL(ast.ConceptName + “Serviceln-
stance”, “Servicelnstance”)
SETUPWSDLPROPERT ¥%¢rvicelInd) > Assign service information from
WSDL to this individual
agentInd < m.CREATEINDIVIDUAL(ast.ConceptName + “Agent”,
“Agent”)
acInd. ADDPROPERTY (“hasAgent’agent Ind)
agentInd. ADDPROPERTY (“implementedBy’servicelnd)

end procedure

| OWL Properties

| Value

| Comment

Input

schemal.ocation

the URI of XSD file generated b@ENERATEXSD

input message

(conceptName)

XSD type is named as

conceptName

output message

(conceptName)Response

XSD type for output messag

of conceptadd is like

addResponse

portType (conceptName)PortType for exampleaddPor t Type

operation (conceptName) for exampleadd

service (conceptName) name of the web service
instance is after the concept
name

location http://(server)/OntologyManager/services/(conceptsp URI of the web service

instance

Table 7.2: Patterns for generating OWL individual

T6

92

1 concept: "Solver";

2l description: "This is an equation solver.";

3l message input: "Provide the coeffs of your quadratic edoatax
"2+ bx + ¢ =0";

4 input: a : real, b : real, ¢ : real;

5 output: result: RealPair;

6/ local: t : real, x1: real, x2: real;

77t =bx b—-—4x* a=+* c;

8 if t > 0 then

9 x1 = (b — sqrt(t)) / (2 » a);

10 x2 = (b + sqrt(t)) / (2 a);

11 result. first = x1;

12 result.second = x2;

13 else

14 print("the equation has no real solution");
15 endif;

Listing 7.1: DAL algorithm for solving quadratic equations

The OWL entry for the generatesbl ver concept is shown in Lising 7.3. From
now on, the user can use the concept "Solver" as any otheitipgrooncepts by executing

the command

1 >Solver(1, 4, 3)
2| (first: —3.0, second=1.0,)

or she can use this concept in another DAL expression for pleam

x = Solver(a, b, c);

print ("First solution of the equation: ");
print (x.first);

print ("Second solution of the equation: ");
print (x.second);

a b WP

Notice that since all the code involved in tad20nt o procedure is automatically created
the student learning to solve quadratic equations usindgpfieSystem manipulates only

algebraic concepts.

O~NO b WN B

25
26
27
28

29
30
31

32
33
34
35

36
37

93

38

<?xml version="1.0" encoding="UTF8"?>
<sadl xmins:xs="http://www.w3.0rg/2001/XMLSchema">
<declaration>
<imports>
<importOntology uri="URI(arithmeticCEAD .owl)" />
<importOntology uri="URI(cead.owl)" />
<importOntology uri="URI(cuongbkCEAD.owl)" />
</imports>
<inputs>
<input type="ari:Real" index="4" />
<input type="ari:Real" index="5" />
<input type="ari:Real" index="6" />
</inputs>
<outputs>
<output type="ari:RealPair" index="7" />
</outputs>
</declaration>
<init type="ari:Real" index="1" />
<init type="ari:Real" index="2" />
<init type="ari:Real"” index="3" />
<init type="ari:RealPair" index="7" />
<load index="5" [>
<load index="5" />
<multiplyR xmlns="http://bulal.cs.uiowa.edu/owl/idhmetic.owl#
" params="2" [>

<load index="7" [>

<load index="2" [>

<putfield type="http://bulal.cs.uiowa.edu/owl/ahimetic.owl#
Real" field="first" />

<load index="7" [>

<load index="3" />

<putfield type="http://bulal.cs.uiowa.edu/owl/ahimetic.owl#
Real" field="second" />

<jump label="label2" />

<label name="labell" />

<pushStr value="the equation has no real solution" />

<loadConst conceptURI="http: //bulal.cs.uiowa.edwlbcead.owl#
String" />

<printTOS />

<label name="label2" />

</sadl>

Listing 7.2: The generated SADL file for Solver concept.

0

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

37

94

38

<cead:ActionConcept rdf:about="cuongbk:Solver">

<cead:hasAgent>
<cead:Agent rdf:about="cuongbk:SolverAgent">
<cead:implementedBy>
<cead:Servicelnstance rdf:about="
cuongbk:SolverServicelnstance ">
<cead:wsdlFile>http://localhost:8080/OntologyMarmad
resources/sadl/Solver.wsdl</cead:wsdlFile>
<cead:serviceName>Solver</cead:serviceName >
<cead:operationName>Solver</cead.operationName >
<cead:portName>SolverHttpSoapllEndpoint</
cead:portName>
</cead:Servicelnstance>
</cead:implementedBy>
</cead:Agent>
</cead:hasAgent>
<cead:hasOutput rdf:resource="ari:RealPair" />
<cead:haslnput>
<cead:lnput rdf:about="cuongbk:Solverinput3">
<cead:inputType rdf:resource="ari:Real"/>
<cead:inputName>c</cead:inputName >
<cead:order>3</cead:order>
</cead:Input>
</cead:haslnput>
<cead:haslnput>
<cead:Ilnput rdf:about="cuongbk:Solverlnput2">
<cead:inputType rdf:resource="ari:Real"/>
<cead:inputName>b</cead:inputName >
<cead:order>2</cead:order>
</cead:Input>
</cead:haslnput>
<cead:haslnput>
<cead:lnput rdf:about="cuongbk:Solverlnputl">
<cead:inputType rdf:.resource="ari:Real"/>
<cead:inputName>a</cead:inputName >
<cead:order>1</cead:order>
</cead:Input>
</cead:haslnput>
<cead:inputMessage>Provide the coeffs of your quadcati
equation ax”2 + bx + ¢ = 0O</cead:inputMessage>
<cead:description>This is an equation solver.</
cead:description>
</cead:ActionConcept>

Listing 7.3: OWL entry for the Solver concept.

95

7.2 Creating new Data Concepts - addData20nto

The general idea of the algorithm for creating data condepts DAL expression

1. create the correspondibgt aConcept individual for the domain concept declared
inthe DAL. For example, theecor d type in DAL is mapped to
ConmposedDat aConcept in CEAD Ontology, thear r ay type of DAL is mapped
to eithertUnconst r ai nedAr r ay orConst r ai nedAr r ay depending on whether
the range is specified in thR AL expression.

2. generate the corresponding XSD type for fla¢ aConcept . The generated XSD
type is a composition of all the XSD types of subcomponents.

3. link automatically the URI of the generated XSD with et aConcept individual
propertydat aType.

The following sections discusses in more details each cladata concepts supported by

the DALSystem.

7.2.1 Creating composed data concepts

The DAL syntax for creating a composed data concept is:

O WO NOOTTDWNPE

concept: "<concepthame>";
description: "<conceptdescription >";
local: concept <concepthame> is
record
fieldl : typel;
field2 : type2;

fieldN : typeN;
endrecord;
endconcept;

O ~NO D WNPE

96

Where <concept-name> is the name she assigns to the composeept, field and
typeX, X = 1...n are the name and the type of the fidldn this concept. The <concept-
description> part will be used to display to the domain uskeemvshe queries information
about this concept, for example, when the domain experbdess the new data concept
Complex after she cannot find the solution for her quadrajiagon with real numbers.
Each Complex number has two real number components reapaitnaginary part. She

can write a new data concept Complex in a file namedpl ex. dal as follows:

concept: "Complex";
description: "Complex concept in complex analysis.";
local: concept Complex is
record
ImgPart : real;
RealPart : real;
endrecord;
endconcept;

When a DAL expression for a composed data concept is sentet@®tiiology-
Manager from the DALConsole via the commaaddDat a20Ont o, the OntologyMan-
ager will create arConposedDat aConcept individual ¢ with the ID set to the name
of the concept. For each field in the concept descriptionCthinlogyManager generates
a Fi el d individual for it with the corresponding propertiéss Nane and hasType.
Thesdri el d individuals are then added to the individaalnder the propertilasFi el d.

For example, the Complex data concept is generated as &llow

97

1 <cead:ComposedDataConcept rdf:about="#Complex">

2 <rdf:type rdf:resource="http: //www.w3.0rg/2002/07wb#Class"/
>

3 <cead:description>This is the complex number concept het
arithmetics domain.

4 </cead:description>

5 <cead:hasField>

6 <cead:Field rdf:ID="ComplexFieldl">

7 <cead:hasType rdf:resource="http://bulal.cs.uiowdukowl

[arithmetic .owl#Real"/>

8 <cead:hasName>ImgPart</cead:hasName>

9 </cead:Field>

10 </cead:hasField>

11 <cead:hasField>

12 <cead:Field rdf:ID="ComplexField2">

13 <cead:hasType rdf:resource="http://bulal.cs.uiowdu/owl

[arithmetic .owl#Real"/>

14 <cead:hasName>RealPart</cead:hasName>

15 </cead:Field>

16 </cead:hasField>

17 <cead:dataType rdf:datatype="http: //ww.w3. org/208MLSchema
#string">

18 complex:Complex

19 </cead:dataType>

20 </cead:ComposedDataConcept>

where XSD typeconpl ex: Conpl ex is defined as follows:

1 <xs:schema attributeFormDefault="qualified"” elementmDefault="
qualified" targetNamespace="complex">
2 <xs:complexType name="Complex">

3 <Xs:seguence>

4 <xs:element minOccurs="0" name="RealPart" type="
xs:double"/>

5 <xs:element minOccurs="0" name="ImgPart" type="
xs:double"/>

6 </xs:sequence>

7 </xs:complexType>

0

</xs:schema>

N

O ~NO Ul W

10

12
13
14
15
16
17
18
19

98

After the concept is added to the ontology, it can be used ih BRpressions as
other primitive data concepts are used. Moreover, to acaegdield of a variabler of
a composed data concept type, the user uses the synfeetdName. For example, if
is a variable of type Complex, to access its RealPart fielel uger writesc.RealPart. A
more complex example is shown in the following listing withh\&rC that solves quadratic

equations that have complex solutions:

concept: "SolverC";
description: "This is an quadratic equation solver withngoex
solution.";

input: a : real, b : real, ¢ : real;
output: result: ComplexPair;
local: t : real, u : real, x1 : Complex, x2 : Complex;

t=bx*b- 40+ a=x c;
print(t);
if t > 0.0 then
x1 = constructC({b + sqrt(t)) /
x2 = constructC (b — sqrt(t)) /
else
u = sqrtet) / (2.0 = a);
x1 = constructC{b / (2.0 » a), u);
X2 = constructC{b / (2.0 = a), —u);
endif;
result. first = x1;
result.second = x2;

2.0x a), 0.0);
2.0+ a), 0.0);

N~

where (1) ComplexPair is also a composed data concept wathvwib Complex fields:
first andsecond; (2) constructC is an auxiliary action concept for conginga com-

plex number written as follows:

N -

~N O O W

A b wnNBE

99

concept: "constructC";

description: "construct a complex number from two
the first number is the real part, the second number is the

imaginary part.";
message input: "input message";
input: x: real, y: real;
output: c: Complex;
c.RealPart = x;
c.lmgPart = vy,

real roers,

Again, the XML code is automatically generated, mimickihg process of a student learn-

ing to solve quadratic equations.

7.2.2 Creating array data concepts

There are two types of arrays in DAL: Unconstrained array @aincept and con-

strained array data concept. A constrained array data poreceanted if there is a range

for lowerbound and upperbound of the array. Otherwise inisiaconstrained array data

concept. For examplé&t ri ng could be considered as an unconstrained array data con-

cepts ofChar act er. But, a vector of 3-dimensional space is a constrained ateag

concept.

The DAL syntax for creating a constrained array data conisept

concept: "<concepthame>";
description: "<conceptdescription >";
local: concept <concepthame> is
array (lowerbound
endconcept;

upperbound) of <basype>

100

The DAL syntax for creating unconstrained array data conisep

1l concept: "<concepthame>",;

2l description: "<conceptdescription >";
3| local: concept <concepiname> is

4 array of <basetype>;

5 endconcept;

In these definition schemes the <concept-name> is the usee & the array concept,
<base-type> is the type of each element in the array, andcepdrescription> is similar
to that ofConposedDat aConcept .

For example, when the domain expert wants to have the newcdatzept Vector
of 3-dimensional space to work with linear equations, shresgecify it in a file called

vector3d.dal as follows:

concept: "Vector3D";
description: "3dimensional space vector”;
local: concept Vector3D is
array (1 .. 3) of real;
endconcept;

A b WN P

After the user sends this file to the OntologyManager via tmaroandaddDat a20nt o,

the followingAr r ayDat aConcept individual is generated in her own ontology:

1l <cead:ConstrainedArray rdf:about="http://localho8980/cuongbk.

owl#Vector3D">

2 <cead:hasBaseType rdf:resource="http://bulal.cswaioedu/owl
[arithmetic .owl#Real"/>

<cead:hasUpperBound>3</cead:hasUpperBound >

<cead:hasLowerBound>1</cead:hasLowerBound>

5 <cead:description>3dimensional space vector</

cead:description>

<cead:dataType>ari:Vector3D</cead:dataType>

</cead:ConstrainedArray>

S~ W

(o))

\'

101

For an unconstrained version of the concept vector, shedverite:

concept: "Vector";
description: "Adimensional space vector”;
local: concept Vector is
array of real;
endconcept;

A b wWN P

and the generated individual should be:

li<cead:UnconstrainedArray rdf:about="http://localho&080/cuongbk
.owl#Vector">

2 <cead:hasBaseType rdf:resource="http://bulal.cswaioedu/owl
[arithmetic.owl#Real"/>
3 <cead:description>pdimensional space vector</

cead:description>
<cead:dataType>ari:Vector</cead:dataType>
5 </cead:UnconstrainedArray>

D

After adding these concept definitions to the ontology, tkadin expert can write
DAL algorithms which use these concepts as she would do ysingtive concepts. To
access the-th element of an array, the user writesz[i]. For example, the scalar product

of two Vector3D can be written as:

concept: "product3D";

description: "compute scalar product of two 3D vectors.";
input: v1: Vector3D, v2: Vector3D;

output: p: real;

p = (vl[1]) = (v2[1]) + (vi[2]) = (v2[2]) + (v1[3]) * (v2[3]);

a b WP

Finally, n-dimensional vectors can be used in solving linear equaystem using

HouseHolder reduction method as shown in Appendix C.

102

CHAPTER 8
DALSYSTEM

This chapter provides some implementation details abaiecdictual DALSystem.
First, | discuss the deployment details of the DALSystenhiéecture previously shown in
Figure 1.2, then SADLServlet is introduced, and finally thpiementation of DDVM is
sketched. The DALSystem is developed using Java and runslidld server (at the
serverbul al. cs. ui owa. edu) at the Department of Computer Science at University of

lowa. The library for ontology manipulation and reasonisighie Apache Jena 2.6.4

8.1 DALSystem Deployment
The components of a DALSystem for an application domain amva in Fig-
ure 8.1. The components of this diagram are deployed on tvioseerers.
DAL Console: allows the user to interact with logical concepts in her &gy space in-
cluding her private and shared ontologies.
DAL Translator: translates user DAL expressions into intermediate languatjed SADL.
DDVM: receives the SADL expression, executes it and returnstriestlie caller.
Ontology Manager: is responsible for managing user private ontology such asngd
new concepts and removing concepts from user’s privatdagyoIt also provides
the look up service for other components like DAL Translaod DDVM.

SADL Servlet: serves as a wrapper around DDVM component so that the outsidd

can interact with user concepts like normal web serviceS@QAP protocol.

1Available at http://jena.apache.org/

«\Web Servers
MLD System

User PC

2]

NLD Console

2]

NLD Translator

Ontology Manager

2]

DDVM

\\

L]

\

«\Web Servers

2]

SADL Servlet

DDVM

\

2]

Axis Servlet

«File systems»
WSDL, XSD Files

User |ocal OWL Files

«Shared Ontologies»
WSDL, XSD, OWL Files

Figure 8.1: DALSystem components deployment

€0t

104

The components contained in the web server on the left haled$ithe component
diagram form a complete DALSystem in the user private spdteratheir interactions
have already been discussed in section 1.4 The componguitsedkin the Web server
on the right hand side show how a user concept can be reused fikrmal web service.
When the user adds a new concept into her ontologies (prvatkared ones), the Ontol-
ogy Manager translates her DAL expression to SADL expressia stored in her private
space. The URI for accessing the SADL expression is thenghda as a web service via a
WSDL file. This SADL expression can then be accessed for d¢xachy another DDVM
via the SADL Servlet as presented in section 8.2.

Even though a DALSystem can be deployed to a local networkrgcommended
to be deployed to a cloud computing environment where higlkednternet connection and
on-demand computing resource scalability are providedsé&lare ideal conditions for vir-
tual machines operating on a network like our DDVM. We asstiraethe cloud computing
environment which hosts the DALSystem would have an aditnatisn system to manage
user accounts and use a subscription model for operatiomggested in (Rus 2013). The
user administration system allows various users to registethe DALSystem use on a
given problem domain. After registering for an accountheaser is granted access to do-
main expert ontologies (DEO) and all computational art§aassociated with concepts in
these ontologies. A private user space is also providedouser to store her own ontol-
ogy (UOQO). The user subscription for a domaiwill activate the DALSystem installation
procedure with the required domain ontology. After thatdker can use the domain con-

cepts from provided ontologies or can evolve the problemalorshe subscribed for with

105

new concepts she learned and/or created during her ownegpnadblving process as dis-
cussed in Chapter 7. The DALSystem manager could also afféuy the knowledge

developed by the user and update the domain ontology, thaigieg domain evolution

with new concepts developed by the respective user. Wheusttredecides to cancel her
subscription and leave the system, she can also offer ttheelioncepts to the DALSys-
tem manager in order to retain these concepts for later usis.eVolution model ensures
the domain knowledge expanded by knowledge gains from atlailo experts during their

problem solving processes.

The diagram in Figure 8.2, a slightly modified version of Fg@ in (Rus 2013),
illustrates clearly this cloud implementation of the DALsEsm. In this diagram, the Cloud
Administrator is represented as the smiling face on theTbpere are: domain users at the
bottom whose activities are numbered according to theuesecg, with the first activity is
subscribing to the DALSystem. The next activity is the ifiateon of the DALSystem onto
the user’s space. Then the user can use her concepts via th€@#sole. The fourth step
is to evolve the user own ontology. Finally, the user can ighliier concepts to the shared

domain expert ontology in the fifth activity.

8.2 SADL Servlet
SADL Servlet is a Java Servlet (Mordani 2009) which is a smrwrapper for
DDVM so that it helps the DDVM communicate with the outsiderldaia SOAP protocol
just like normal web services. The SADL Servlet was desigoeadlow one DDVM to in-

voke another DDVM without any special distinction with otf8AP-based web services.

1. Subscribe for

) |

@] (@]

DAL

Cloud

N’

1. Subscribe for

DAL

2. Instlall DAL System

/5. Publish

Domain Ontology

5. Publish\

ontology ontology
DAL Algorithm — DAL Translator ~<— DAL Specs
Execute
\ DDVM: SADL Network /
3. Use DAL 3. Use DAL
Usery Usery,
4. Evolve QWL(DAL) 4. Evolve QWL(DAL)

Usery’s own
ontology

Usery’'s own
ontology

Figure 8.2: Cloud Implementation of the DALSystem

106

107

This design also allows a DDVN; to execute remote SADL code without downloading
that SADL code to the local DDVM/. Thus, we achieve two goals:
1. Improve the security of the SADL code so that the user carfidently share their
services without worrying about losing their implemerdatideas.
2. The SADL code is executed where it is deployed. That melhtiseaconfiguration
settings and dependencies are in place.
The process of invoking an action concept as a normal welicgevia the SADL Servlet
starts when a DDVM makes a SOAP call to an URI where the SADWI8Eis listening.
Based on the request URI, the SADL Servlet retrieves theesponding SADL expression
for the requested service of the action concept. Then, a Di¥&pawned in a new thread
by the SADL Servlet and then the DDVM loads the SADL exprassido its memory.
SADL Servlet analyzes the SOAP request once again to rettimvinput data and transfers
it to the DDVM before executing the SADL code. After the exgan finishes, the SADL
Servlet retrieves the result and returns it back to theah®DVM as a SOAP response
message.

Since the time for creating a DDVM from a SADL file is signifitanhen the
ontology is large, it would be inefficient if SADLServlet hmsreconstruct a DDVM every
time a request comes and destroys the DDVM after that. Aisoludb make the system
more efficient would be to cache the DDVM for each invoked emic The cache value
will be refreshed if the content of the concept is updated the SADL code of the concept.

Using this technique, the DALSystem reduces the overattgxen time by about 3 times.

108

8.3 Implementation of DDVM

The rationale for virtual machines like DDVM is that they afigual processors
which can provide a common execution platform for one or niddé.s in a hardware-
independent way. There are several approaches to implevireudl machines (Craig
2006):

 Direct implementation;
 Translation;
» Threaded code.

In this thesis the author chooses to use the direct impleatientapproach. How-
ever, the platform which executes DDVM instructions is aalvtual Machine (JVM). We
choose JVM to maximize the capability of DDVM to execute omany hardware plat-
forms as possible without worrying about the variety of ek processors. In that light,
each “computational concept call” instruction (for exeéegta concept) will be directly ex-
ecuted by a JVM. JVM will make a SOAP call to the remote web iserimplementing
the semantics of the corresponding domain concept. Theruexecution thread of the
DDVM is blocked and waits for the result from the remote serddéne remote server will
create a process executing the corresponding domain cosxegutable code (semantics).
The result of the call will be pushed back to TOS (Top of Stawk)he local execution
scope. The execution thread of the DDVM is notified to cordinu

During the execution process, if adomain action conceptésentered, the DDVM
will dynamically download the WSDL file of the targeted welngee to extract informa-

tion about parameter names to compose the SOAP messagetiyorf@erefore, if it has

109

to download and parse the WSDL every time an action concepiaisuted, it will be very
inefficient. Since the WSDL file hardly changes during thetlihe of a web service de-
ployment, DDVM will only download and parse the WSDL file thesfitime; it will cache
the WSDL parse in its memory until it is destroyed. This caghinethod speeds up the

DDVM and reduce the execution time about 3 times.

110

CHAPTER 9
CONCLUSIONS

The DALSystem was set out to explore the concept identifiedilverating Com-
puter User from Programming” (Rus 2008) through a creaticanmrototype system. This
research has sought to answer two questions:

1. Can we develop a system to be used by a domain expert toatdegpmputers into
her problem solving process?
2. If so, can we demonstrate the system with a particular dota

This thesis provides affirmative answers to these two questy the implemen-
tation of the DALSystem as a demonstration of integratingngoters into the problem
solving process of the domain of arithmetic, high-schogébara and vector algebra.

The implementation of the DALSystem for the domain of arigtimallows domain
users to express their computations using domain spedifitstand phrases while provid-
ing seamless execution of the computation on the netwodsaarrganization boundaries
based on web services composition. The language can be agsedlly by domain users
because its vocabulary and phrases are characteristie tdaimain of arithmetic. The
language is also algorithmic because ambiguities of thguage arithmeticians use are
eliminated by the arithmetic context.

This thesis also proposed a mechanism for the domain useoteeethe domain
ontology with new action and data concepts. This mechanfsautomating the process

of associating computational artifacts with new domainasgts will help domain users

111

easily expand their ontologies during the problem solvirggpss from a small set of initial
primitive concepts.

In this thesis, we also experiemented with the idea of pgittata composition
information into ontological knowledge base. Such infotioais vital for the system to
provide better input/output handling experience in anraatBve mode with domain users.

All the accomplishments discussed above show the potenftidle DALSystem.
However, there are several problems to be addressed ireftasearch.

The DALSystem is a demonstration of our domain-orientedhaalogy for the
domain of arithmetic. Arithmetic is a well-defined domainiaeth has been studied for
thousand years, so it was relatively easy to implement theeqat. There are new emerg-
ing fields of study that are not very well-defined such as liaimatics or computational
linguistics. Therefore, a better experiment would be anl@mgntation of our methodol-
ogy for the domain of bioinformatics and/or computatiomadjliistics using Web systems.
The incremental nature of the domain ontology makes us\eetieat breaking the domain
thinking inertia is the major problem in front of such expeeints.

The DALSystem is currently implemented to work with web se#g using the
SOAP protocol. Even though the SOAP protocol is a well-deffisiandard, it results in
a large overhead for SOAP messages. On the other hand, REG Bésubramanian,
Carlyle & Pautasso 2012) is a light-weighted protocol withthe cost overhead. So im-
plementing a DALSystem to work with the REST protocol is athgresearch direction

for the future.

112

The system implementation suffers from lack of efficiencynpared to traditional
compiled programs running on local machines. This is méielyause most of the execu-
tion times of the experimented concepts are much smallepaosd to the communication
overhead time. Another reason for lack of efficiency is thgusatial implementation of
the process of composing web services. After the DDVM sendsadcSOAP request, it
waits for the response from the server. The execution psozaas be actually accelerated if
the DDVM executes concepts in parallel.

The current implementation of DDVM for web services comfiosiis very simple
without any execution optimization. In future research, weed to develop better algo-
rithms for web services execution planning with respech&following criteria: speed of
execution, speed of connection, and cost to run.

Despite of these problems, the DALSystem has shown thatpbssible to inte-
grate computers seamlessly into the human problem solvioceps so that the domain
users can perform their computation at the domain logieal vithout worrying about the

underlying computer systems.

113

APPENDIX A
DALSYSTEM USER MANUAL

A.1 Introduction
The DALSystem is a brain assistant which allows computersuseinteract with
their concepts in domain ontologies. These concepts aediwith their implementation
artifacts such as web services so that the users can peti@incomputation. A user can
interact with her Ontology Manager via a program called DAb€ole. This program can
look up concepts in user ontology and help the user execeis.th
After you have logged in to the system, you can use the tutorithe following

section to play with your concepts.

A.2 DALConsole Tutorial
A.2.1 Getting Started

The best way to learn a language is to write the Hello World.

In DALConsole, after the prompt, you type:
> print("Hello World!'");
It will print
Hell o Worl d!

To list all the concepts in your ontology, type:
>| i st

The user can query information about her concept by the codma

N

(2NN I~ 8]

114

>i nfo <concept nane>

For example, if the user wants to know more about the corgegt she can type:

>info gcd

Concept Description: This is the function to find greatesdammon
divisor (GCD)

of two integers. It is implemented using Euclidian algadrm .

Input information: NONE

Parameters Information: There are 2 parameter(s).

Parameter a of type http://bulal.cs.uiowa.edu/owl/ &amtetic.owl#
Integer

Parameter b of type http://bulal.cs.uiowa.edu/owl/ &mtetic.owl#
Integer

To call a concept, e.ggcd, you write the concept name followed by the list of
input parameters for that concept. For example, to call treeptgcd with two input

parameters28 and42, you type after the DALConsole prompt:

>gcd(28, 42)

14

You should get the answer 04.

A.2.2 Variables and Arithmetic Expressions

Variables are declared using the following syntax
var Nane: type;
For example,

> X: integer;

> vy: real;

115

In the domain of Arithmetic on Bulal, there are currently gag of primitive data concepts:

* integer
* real

* string

boolean: for logical values (true, false)

After you declared a variable, you can use it in your compaatArithmetic oper-

ators provided in DALConsole are:

+,—, %,/ arithmetic operators for integer, real values
and, or, not| logical operators for boolean
==,=, <, > | comparison operators for arithmetic expressi

DNS

Table A.1: DAL operators

So you can type after the prompt:

>1+1

2

> 4.5 9.0

40. 5

> 3.6/ 9.0

0.4

Notice that there is no semi colon after these expressions.

With variables, you can assign values to them by the opeftator

116
> z: integer;
>z =16 » 23 - 4| 2;
> print(z);

366

You can also print variable value just by typing the variaidene without a semi colon at

the end.

366

A.2.3 Arrays
DALConsole currently doesn't allow you to create a new atyge (you can create
one using the addData20nto command though). But you canxisteng array type such
as Vector (an array of 3 real numbers). To construct a ve@nable with three elements

1.5, 2.4, 3.6, you type in:

> t: Vector;

>t ={1.5 2.4, 3.6};

You can then print the content just like other variables Ipirty:

> print(t);

[1.5, 2.4, 3.6,]

Or simply

117

>t

[1.5, 2.4, 3.6,]

To access the i-th element of a vector (array), you use theperator. For exam-

ple, to get the second element of the vec¢igrou type

> t[2]

2.4

The system should print the value of the second elemenivbiich is 2.4.

Now let's compute the length of vectar

>sqort(t[1] » t[1] + t[2] t[2] + t[3] * t[3])

4.178516483155236

Now we can test the matrix with HouseHolderReduce algoritkor example, if

you want to solve the following linear equation system:

20 2.0 4.0 18.0

1.0 3.0 10 |z= 1.0

3.0 1.0 3.0 14.0
Ax =b

In HouseHolderReduce algorithm, vectors are columns ofrthgix. So in DALConsole,

you type:

> a: Matrix;
> b: Vector;

> X: Vector;

118

> a[1] = {2.0, 1.0, 3.0};

> a[2] ={2.0, 3.0, 1.0};

> a[3] ={4.0, -2.0, 3.0};

>b = {18.0, 1.0, 14.0};

> X = HouseHol der Reduce(a, b, 3);

A.3 DAL Language Tutorial
To go beyond the normal usage of DALConsole and create yoarammcept, you
need to learn the DAL Language for Arithmetic Domain. Theretavo common types of
concepts in one’s computation domain: data concepts afmhamincepts. Data concepts
such as integer, real, vector, etc. are concepts which hairl dAction concepts such as
gcd, add, multiply, etc. manipulate data concepts and m®dutput results. The following

sections will instruct you to create such concepts.

A.3.1 Creating action concepts
To create a action concept of your own, say addition of twdorsg there are two
steps you need to do:
1. Write the description of your algorithm in a text file usiag editor (such asi),
saysaddV. dal , then

2. From DALConsole prompt, you type the command,

>add20nt o addV. dal

O©O~NOO D WNPE

=
= o

119

For example, the content of the algorithm for adding two eectan be written as

follows:

12

concept: "addV";

description: "This is the concept of adding two vectors.";
message input: "Please enter two vectors.";

input: vl: Vector, v2: Vector;

output: v: Vector;

local: i: integer;
for 1 = 1; if i <= 3
begin
v[i] = v1[i] + v2][i];
end
withNext i = i + 1;

In this file, the first two lines are required to provide destion about your concept. The
third line is optional for displaying input information whea user requests information
about this concept.

The next three lines (4 — 6) are optional for declaring theuinputput and local
variables that you may want to use in the algorithm. In eawo, Wariable descriptions are
separated by a comma and the whole line ends with a semicetotie line 4 means, your
algorithm has two input parameters, v1, v2, of the tyeet or .

After that is the main body of your algorithm. In this caseréhis a for-loop which
compute the sum of two vectors v1 and v2. The details of thiddop will be discussed
later in section A.3.2.2.

You can then add this concept to your ontology using the DALZDde program

with the command

>add20nt o addV. dal

120

After that you should use thkei st command to check if the concepddV is

correctly added to your ontology. You can also query thermfation about this concept by

typing:

> nfo addV

Concept Description: This is the concept of adding two vectors.
| nput information: Please enter two vectors.

Paraneters Information: There are 2 paraneter(s).

Parameter v1 of type http://I|ocal host: 8080/ cuongbk. ow #Vect or

Paraneter v2 of type http://1ocal host: 8080/ cuongbk. ow #Vect or

Now let’s use this concept to add two vectors x = {1.0, 2.0} &1id y = {4.0, 5.0,

6.0}.

>x: Vector;

>x = {1.0, 2.0, 3.0};
>y: Vector;

>y = {4.0, 5.0, 6.0};
>z: \Vector;

>z = addV(x, Yy);
>print(z);

[5.0,7.0,9.0,]

121

A.3.2 Control-flow constructs
A.3.2.1 If-then

Formally, the syntax foif-then construct is

if expr then
statenent 1(s);
el se
st atenent 2(s);

endi f;

Whereexpr is a boolean expression.dkpr is evaluated to true, thest at enent 1(s)
are executed. Otherwisgt at enent 2('s) are executed. Thelsebranch is optional.

For example,

if n < 3 then

z = a;
el se

z = b;
endi f;

A.3.2.2 While and For

In thewhile-loop construct of

whi | e expr do
statenent (s);

endwhi | e;

122

if the boolean expressioaxpr is evaluated td r ue, thest at enent (s) is executed
and the expression is re-evaluated. This cycle repeatisaxygr becomes al se.
For example, the Euclidean algorithm for finding gcd of twtegers a, b are ex-

pressed byvhile-loop as follows:

while b I'= 0 do

t = b;
b =a %b;
a=t;
print(a);
endwhi | e;

Thefor-loop has the formal syntax as:

for exprl; if expr2
begi n
statenent (s);
end

w t hNext expr 3;

which is equivalent to

expr 1,
whil e expr2 do
statenent (s);

expr 3;

123

endwhi | e;
For example, the addition of two vectors can be written as

for i =1; if i <=3
begi n
vii] = vi[i] + v2[i];
end

withNext i =i + 1;

A.3.3 Creating data concepts
To create a new data concept, 3&ct or, similarly to action concepts, there are
also two steps you need to do:

1. Write the description of your data concept in a text filg, wact or . dal , then

2. From DALConsole prompt, you type the command,
>addDat a20nt o vect or. dal

Even though the two steps are very similar to those of actoncepts, the key dif-
ference is the commaratidDat a20nt o instead ofadd20Ont o (without keyword
Data).

There are two types of composed data concemts:ays andr ecor ds.

A.3.3.1 Data concepts of Array type
TheVect or concept is an array of real numbers. The formal syntax folatieg

an array type is

OO g b WNPE

concept <name> is
array (| owerbound .

endconcept ;

where<namne> is the concept naméower bound,

124

upper bound) of <base-type>;

upper bound are integer numbers

specifying the range of indexesbase-t ype> is the type of each element in the array.

For example th&ect or concept in 3D space is defined as

concept Vector is
array (1 .. 3) of real;

endconcept ;

The whole vector.dal file looks like

concept: "Vector";
description: "Vector type";
local:
concept Vectoris

array (1 3) of real;
endconcept;

The first two lines are required to describe the concept.

125

A.3.3.2 Data concepts of Record type
TheConpl ex concept is a record type with two fieldeal Part andi ngPart .

Let's examine the fileonpl ex. dal in detail.

O~NOO b WN B

concept: "Complex";
description: "Complex concept in complex analysis.";
local: concept Complexis
record
ImgPart : real;
RealPart : real;
endrecord;
endconcept;

The first two lines are required to describe the concept. T&s ifrom 3 to 8 declare the
concepiConpl ex is of the record type with two fields ImgPart and RealParthlawe real

numbersconcept, is, record, endrecord, endconcept are all keywords.

B OWON B

0 ~N O Ol

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

126

APPENDIX B
CEAD ONTOLOGY OWL FILE

Listing B.1: Action concepadd definition in OWL

37

<?xml version="1.0"?>

<rdf :RDF
xmins:rdf="http ://www.w3.0rg/1999/02/22 rdf —syntax—ns#"
xmlns: protege="http :// protege . stanford .edu/plugiosvl/

protege#"
xmlns :xsp="http ://www.owtontologies .com/2005/08/07/xsp . owl#
xmins="http :// bulal.cs.uiowa.edu/owl/cead.owl#"
xmlns :owl="http ://www.w3.0rg/2002/07/ owl#"
xmlns :pl="http ://ww.daml.org/services/ows/1.1/ Profile.owl#
xmlns :xsd="http ://www.w3.0rg/2001/XMLSchema#"
xmins:swrl="http ://www.w3.0rg/2003/11/ swrl#"
xmins:swrlb="http ://www.w3.0rg/2003/11/swrlb#"
xmins:rdfs="http ://wwww.w3.0rg/2000/01/ redfschema#"
xml:base="http :// bulal.cs.uiowa.edu/owl/cead.owl"

<owl: Class rdf:ID="ActionConcept"/>
<owl: Class rdf:ID="FilterConcept" >
<rdfs:subClassOf rdf:resource="#ActionConcept" />
</owl: Class>
<owl: Class rdf:ID="DataConcept"/>
<owl: Class rdf:ID="ComposedDataConcept">
<rdfs:subClassOf rdf:resource="#DataConcept"” />
</owl: Class>
<owl: Class rdf:ID="UnconstrainedArray">
<rdfs:subClassOf rdf:resource="#DataConcept" />
</owl:Class>
<owl: Class rdf:ID="ConstrainedArray">
<rdfs:subClassOf rdf:resource="#UnconstrainedArtal>
</owl: Class>
<owl: Class rdf:ID="PrimitiveDataConcept">
<rdfs:subClassOf rdf:resource="#DataConcept"” />
</owl: Class>
<owl:Class rdf:ID="Field"/>
<owl: Class rdf:ID="Concept">
<owl:unionOf rdf:parseType="Collection">
<owl: Class rdf:about="#DataConcept” />
<owl: Class rdf:about="#ActionConcept" />
</owl:unionOf>

127

Listing B.1 continued

38 </owl: Class>

39 <owl:ObjectProperty rdf:ID="inputFilter">

40 <rdfs:domain rdf:.resource="#DataConcept"/>
4] <rdfs:range rdf:resource="#ActionConcept"/>
42 </owl:ObjectProperty >

43 <owl:ObjectProperty rdf:ID="outputFilter">
44 <rdfs:domain rdf:.resource="#DataConcept"/>
45 <rdfs:range rdf:resource="#ActionConcept"/>
46 </owl:ObjectProperty >

47/ <owl:Class rdf:ID="Input"/>

48 <owl:Class rdf:ID="Servicelnstance" />

49 <owl:Class rdf:ID="Agent"/>

50 <owl:ObjectProperty rdf:ID="hasOutput">

51 <rdfs:domain rdf:.resource="#ActionConcept"/>
52 <rdfs:range rdf:resource="#DataConcept"/>

53 <owl:inverseOf>

54 <owl: ObjectProperty rdf:ID="output"/>

55 </owl:inverseOf>

56 </owl: ObjectProperty >

57 <owl:ObjectProperty rdf:ID="haslnput">

58 <rdfs:domain rdf:resource="#ActionConcept"/>
59 <rdfs:range rdf:resource="#Ilnput"/>

60 </owl: ObjectProperty >

61 <owl:ObjectProperty rdf:ID="inputType">

62 <rdfs:domain rdf:resource="#lnput"/>

63 <rdfs:range rdf:resource="#DataConcept"/>

64 </owl:ObjectProperty >

65 <owl:ObjectProperty rdf:ID="implementedBy">

66 <rdfs:domain rdf:resource="#Agent"/>

67 <rdfs:range rdf:resource="#Servincelnstance"/>
68 </owl:ObjectProperty >

69 <owl:DatatypeProperty rdf:ID="inputName">

70 <rdfs:domain rdf:resource="#lnput"/>
71 <rdfs:range rdf:resource="http ://www.w3.0rg/2001/XMLSchema#
string"/>

72 </owl: DatatypeProperty >
73 <owl:DatatypeProperty rdf:ID="order">

74 <rdfs:domain rdf:resource="#lnput"/>
75 <rdfs:range rdf:resource="http ://www.w3.0rg/2001/XMLSchema#
int"/>

76 </owl: DatatypeProperty >

77 <owl:ObjectProperty rdf:ID="hasAgent">

78 <rdfs:domain rdf:resource="#ActionConcept"/>
79 <rdfs:range rdf:resource="#Agent"/>

80
81
82
83

84
85
86
87

88
89
90
91

92
93
94
95

96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

116
117

128

Listing B.1 continued

</owl: ObjectProperty >
<owl: DatatypeProperty rdf:ID="description">
<rdfs:domain rdf:.resource="#Concept"/>
<rdfs:range rdf:resource="http ://www.w3.0rg/2001/XMLSchema#
string"/>
</owl: DatatypeProperty >
<owl: DatatypeProperty rdf:ID="inputMessage">
<rdfs:domain rdf:resource="#ActionConcept"/>
<rdfs:range rdf:resource="http ://www.w3. org/2001/XMLSchema#
string"/>
</owl: DatatypeProperty >
<owl: DatatypeProperty rdf:ID="outputMessage ">
<rdfs:domain rdf:.resource="#ActionConcept"/>
<rdfs:range rdf:resource="http ://www.w3. org/2001/XMLSchema#
string"/>
</owl: DatatypeProperty >
<owl: DatatypeProperty rdf:ID="dataType">
<rdfs:domain rdf:.resource="#DataConcept"/>
<rdfs:range rdf:resource="http ://www.w3.0rg/2001/XMLSchema#
string"/>
</owl: DatatypeProperty >
<owl: DatatypeProperty rdf:ID="hasName">
<rdfs:domain rdf:resource="#Field"/>
<rdfs:range rdf:resource="http ://www.w3. org/2001/XMLSchema#
string"/>
</owl: DatatypeProperty >
<owl: ObjectProperty rdf:ID="hasType">
<rdfs:domain rdf:resource="#Field"/>
<rdfs:range rdf:.resource="#DataConcept"/>
</owl: ObjectProperty >
<owl: ObjectProperty rdf:ID="hasField">
<rdfs:domain rdf:resource="#ComposedDataConcept"/
<rdfs:range rdf:.resource="#Field"/>
</owl: ObjectProperty >
<owl: ObjectProperty rdf:ID="hasBaseType">
<rdfs:domain rdf:resource="#UnconstrainedArray"/>
<rdfs :range rdf:resource="#DataConcept"/>
</owl:ObjectProperty >
<owl: DatatypeProperty rdf:ID="hasLowerBound">
<rdfs:domain rdf:resource="#ConstrainedArray"/>
<rdfs:range rdf:resource="http ://www.w3.0rg/2001/XMLSchema#
int"/>
</owl: DatatypeProperty >
<owl: DatatypeProperty rdf:ID="hasUpperBound ">

118
119

120
121
122

123
124

125
126
127

128§
129

130
131
132

133
134

135
136
137

138
139

140
1417
142

143
144

149
146
147

129

Listing B.1 continued

148

<rdfs:domain rdf:resource="#ConstrainedArray"/>
<rdfs:range rdf.resource="http ://www.w3.0rg/2001/XMLSchema#
int"/>
</owl: DatatypeProperty >
<owl: FunctionalProperty rdf:ID="serviceName ">
<rdf:type rdf:resource="http ://ww.w3.0rg/2002/07/owl#
DatatypeProperty"/>
<rdfs:domain rdf:resource="#Servicelnstance"/>
<rdfs:range rdf:.resource="http ://www.w3.0rg/2001/XMLSchema#
string"/>
</owl: FunctionalProperty >
<owl: FunctionalProperty rdf:ID="wsdIFile">
<rdfs:range rdf:.resource="http ://www.w3.0rg/2001/XMLSchema#
string"/>
<rdfs:domain rdf:resource="#Servicelnstance"/>
<rdf:type rdf:.resource="http ://www.w3.0rg/2002/07/owl#
DatatypeProperty"/>
</owl: FunctionalProperty >
<owl: FunctionalProperty rdf:ID="uri">
<rdfs:range rdf.resource="http ://www.w3.0rg/2001/XMLSchema#
string"/>
<rdfs:domain rdf:resource="#Servicelnstance"/>
<rdf:type rdf:resource="http ://ww.w3.0rg/2002/07/owl#
DatatypeProperty"/>
</owl: FunctionalProperty >
<owl: FunctionalProperty rdf:ID="operationName">
<rdfs:range rdf.resource="http ://www.w3.0rg/2001/XMLSchema#
string"/>
<rdfs:domain rdf:resource="#Servicelnstance"/>
<rdf:type rdf:resource="http ://ww.w3.0rg/2002/07/owl#
DatatypeProperty"/>
</owl: FunctionalProperty >
<owl: FunctionalProperty rdf:ID="portName">
<rdf:type rdf:resource="http ://ww.w3.0rg/2002/07/owl#
DatatypeProperty"/>
<rdfs:domain rdf:resource="#Servicelnstance"/>
<rdfs:range rdf:resource="http ://www.w3.0rg/2001/XMLSchema#
string"/>
</owl: FunctionalProperty >
<PrimitiveDataConcept rdf:ID="String">
<description >Thisis the primitive String conceptfor use
with input filter.
</description >

149

150
151
152
153
154

155
156
157
158
159
160

Listing B.1 continued

130

<dataType rdf:datatype="http ://www.w3.0rg/2001/X8thema#
string">
xsd:string
</dataType>
</PrimitiveDataConcept>
<UnconstrainedArray rdf:ID="StringArray">
<description >Thisis the primitive String array concept for
use with input filter.
</description >
<hasBaseType rdf:resource="#String" />
</UnconstrainedArray >
</rdf :RDF>

<l— Created with Protege (with OWL Plugin 3.3.1, Build 430)
http :// protege . stanford . edu—>

131

APPENDIX C
HOUSEHOLDER REDUCTION ALGORITHMS

The following files are supposed to be added to user ontologlge order of ap-
pearance.

File product.dal:

concept: "product”;
description: "compute the scalar product of two vectoronir a
position to the end.";
input: a: Vector, b: Vector, i: integer, n: integer;
output: c: real;
local: ab: real, k: integer;
ab = 0.0
for k = i; if k <= n
begin
ab = ab + (a[k])=* (b[k]);
end
withNext k = k + 1;
c = ab;

Listing C.1: Compute the scalar product of two vectors

132

File eliminate.dal:

1 concept: "eliminate";

2l description: "Compute HouseHolder elimination.";
3l input: ai: Vector, vi: Vector, i: integer, n: integer;
4 output: c: Vector;

5 local: anorm: real, dii: real, fi: real, wii: real, k: inteq;
6| anorm = sqrt(product(ai, ai, i, n));

7/if ai[i] > 0.0 then

8 dii = —anorm;

9 else

10 dii = anorm;

11 endif;

120 wii = ai[i] — dii;

13 fi = sqgrt(—2.0 » wii = dii);

14 vi[i] = wiil/fi;

15 ai[i] = dii;

16

17/ for k =i + 1; if k <= n

18 begin

19 vi[k] = ai[k]/ fi;

20 ai[k] = 0.0;

21} end

22 withNext k = k + 1;

23

24 ¢ = ai;

Listing C.2: HouseHolder elimination concept

O~NO TS WN -

NNNRPRRERRRERRR
NP OOONODUDWNEOC®

File eliminate2.dal:

133

N
w

O ~NO D WNPE

concept: "eliminate2";
description: "Compute HouseHolder elimination.";

input: ai: Vector, vi: Vector, i: integer, n: integer;
output: c: Vector;
local: anorm: real, dii: real, fi: real, wii: real, k:
anorm = sqrt(product(ai, ai, i, n));
if (ai[i]) > 0.0 then
dii = —anorm;
else
dii = anorm;
endif;

intey ;

wii = (ai[i]) — dii;
fi = sqrt(—2.0 = wii * dii);
vi[i] = wii/fi;
ai[i] = dii;
for k =i + 1; if k <= n
begin
vi[k] = ai[k]/fi;
ai[k] = 0.0;
end
withNext k = k + 1;
C = Vi;
Listing C.3: HouseHolder elimination concept
File transform.dal:
concept: "transform";
description: "HouseHolder transformation concept.";
input: aj: Vector, vi: Vector, i: integer, n: integer;
output: c: Vector;
local: fi:real, k: integer;
fi = 2.0 » product(vi, aj, i, n);
for k = i; if k <= n
begin
aj[k] = (aj[k]) = fi = (vi[k]);
end
withNext k = k + 1;
c = aj;

Listing C.4: HouseHolder transformation concept

N -

O b w

25
26
27
28
29
30
31
32
33
34
35
36
37
38

File houseHolderReduce.dal:

134

concept: "HouseHolderReduce";

description: "HouseHolder Linear Equation System Solveoncept."”

input: a: Matrix, b: Vector, n: integer;
output: x: Vector;

local: vi: Vector, i: integer, j: integer, tl: Vector, t2: é&ttor

, t: real, u: real;

for i = 1; if i <=n
begin
vi[i] = 0.0;
end
withNext i = i + 1;
for i = 1; if i <n
begin
tl = eliminate (ali], vi, i, n);
t2 = eliminate2(af[i], vi, i, n);
al[i] = t1;
Vi = t2;
for j =i + 1; if j <=n
begin
a[j] = transform(a[j], vi, i, n);
end
withNext j = | + 1;
b = transform (b, vi, i, n);
end
withNext i = i + 1;
for i =n; if 1 <=
begin
t = 0.0;
for j =1 + 1; if j <=n
begin
t=1t+x[j] ~ (al[iDI[i];
end

withNext j = | + 1;
x[i] = (b[i] = t) [a[i][il];
end
withNext i = i — 1;

Listing C.5: HouseHolder Linear Equation System Solveroeg

File linearEquationSolver.dal:

135

O~NO TS WN -

concept: "LinearEquationSolver";

description: "This is implemented by HouseHolder
output: t: Vector;

local: a: Matrix, b: Vector, x: Vector;

a[l1] = {2.0, 1.0, 3.0};

a[2] = {2.0, 3.0, 1.0};

a[3] = {4.0, —-2.0, 3.0};

b = {18.0, 1.0, 14.0};

X = HouseHolderReduce (a, b, 3);
t = X;

reduati. " ;

Listing C.6: A test for HouseHolder Linear Equation Systeniv8r concept

a b WP

10
11

12

13
14
15

16
17
18

19

20
21
22
23
24
25
26
27

136

APPENDIX D
SADL CODE FOR EUCLIDEAN ALGORITHM

Listing D.1: SADL code for Euclidean algorithm

<?xml version="1.0" encoding="UH8"?>
<sadl xmlns:xs="http ://www.w3.0rg/2001/XMLSchema">
<declaration >
<imports>
<importOntology uri="http://localhost:8080/0Ontoloyyanager/
ontologies /arithmeticCEAD .owl" />
<importOntology uri="http://localhost:8080/0Ontoloyyanager/
ontologies/cead.owl" />
<importOntology uri="http://localhost:8080/Ontoloyyanager/
resources/sadl/cuongbKEAD. owl" />
<importOntology uri="http ://bulal.cs.uiowa.edu/owl/
arithemticCEAD .owl" local="file :../../owl/arithmetiCEAD

.owl" />
</imports>
<inputs >

<input type="http ://bulal.cs.uiowa.edu/owl/arithmetic.owl#
Integer” index="2" />
<input type="http ://bulal.cs.uiowa.edu/owl/arithmetic.owl#
Integer” index="3" />
</inputs >
<outputs >
<output type="http :// bulal.cs.uiowa.edu/owl/arithmetic .owl4
Integer” index="4" />
</outputs >
</declaration >
<init type="http ://bulal.cs.uiowa.edu/owl/arithmetic.owl#
Integer” index="1" />
<init type="http ://bulal.cs.uiowa.edu/owl/arithmetic.owl#
Integer” index="4" />
<load index="2" />
<printTOS />
<load index="3" />
<printTOS />
<label name="label2" />
<load index="3" />
<pushStr value="0" />
<loadConst conceptURI="http ://bulal.cs.uiowa.edwlbarithmetic
.owl#Integer" />

28

29
30
31
32
33
34

35
36
37
38
39
40
41
42
43
44

137

Listing D.1 continued

<notEquall xmins="http ://bulal.cs.uiowa.edu/owl/igthhmetic .owl#
" params="2" />

<jumpfalse label="labell" />

<load index="3" />

<store index="1" />

<load index="2" />

<load index="3" />

<modl xmins="http ://bulal.cs.uiowa.edu/owl/arithine.owl#"
params="2" />

<store index="3" />

<load index="1" />

<store index="2" />

<load index="2" />

<printTOS />

<jump label="label2" />

<label name="labell" />

<load index="2" />

<store index="4" [>

</sadl >

138

REFERENCES

Agarwal, V., Dasgupta, K., Karnik, N., Kumar, A., Kundu, AMittal, S. & Srivastava,
B. (2005), A service creation environment based on end tocentposition of web
servicesjn ‘Proceedings of the 14th international conference on Wafide Web’,
WWW '05, ACM, New York, NY, USA, pp. 128-137.

URL: http://doi.acm org/10. 1145/ 1060745. 1060768

Aho, A. V., Sethi, R. & Ullman, J. D. (1986)Compilers: Principles, Techniques, and
Tools Addison Wesley.

Altintas, I., Berkley, C., Jaeger, E., Jones, M., LudasdBet Mock, S. (2004), Kepler: An
extensible system for design and execution of scientifickil@ws, in ‘IN SSDBM’,
pp. 21-23.

Andrews, T. & et al. (2003), ‘Business process executioglage for web services’.
URL: https://ww. oasi s-open. org/ conm ttees/downl oad. php/
2046/ BPELY20V1- 1920May%205%202003%0Fi nal . pdf

Baader, F., Horrocks, I. & Sattler, U. (2007), Chapter 3: @gsion Logics,in F. van
Harmelen, V. Lifschitz & B. Porter, eds, ‘Handbook of Knowige Representation’,
Elsevier.

Backus, J. W. (1959), The syntax and semantics of the prdposernational algebraic
language of the zurich acm-gamm conferemeelFIP Congress’, pp. 125-131.

Biermann, A. W. & Ballard, B. W. (1980), ‘Toward natural lasgge computationCom-
put. Linguist.6, 71-86.
URL: http://portal.acmorg/citation.cfni d=972439. 972440

Bischof, M., Kopp, O., van Lessen, T. & Leymann, F. (2009) HBBcript: A Simplified
Script Syntax for WS-BPEL 2.0n ‘2009 35th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA 2009), IEEEn@uter Society
Press, pp. 39-46.

URL.: http://ww2.informatik. uni-stuttgart. de/cgi-bin/
NCSTRL/ NCSTRL_vi ew. pl ?i d=I NPROC- 2009- 49&engl =0

Boisvert, A., Arkin, A. & Riou, M. (2008), ‘Bpel simplified sytax’.
URL: https://cw ki . apache. or g/ ODExSI TE/
bpel - si npl i fi ed- synt ax- si nbpel . ht n

Box, D., Ehnebuske, D., Kakivaya, G., Layman, A., Mendets®h, Nielsen, H. F., Thatte,

139

S. & Winer, D. (2000), ‘Simple Object Access Protocol (SOAF)'.
URL: htt p: //ww. W3. or g/ TR/ soap/

Christensen, E., Curbera, F., Meredith, G. & Weerawaran2®1), ‘Web Services De-
scription Language (WSDL) 1.1'.
URL: ht t p: / / www. W3. or g/ TR/ wsdl . ht m

Cickovski, T. M. (2004), Biologo, a domain-specific langadgr morphogenesis, Master’s
thesis, Computer Science and Engineering, University dféNDame.

Clement, L., Hately, A., von Riegen, C. & Rogers, T. (2008)di version 3.0.2 spec’.
URL: htt p: // uddi . or g/ pubs/ uddi _v3. htm

Craig, I. D. (2006)Virtual machinesSpringer-Verlag.

Curcin, V. & Ghanem, M. (2008), Scientific workflow systemsancone size fit all?,
in ‘Biomedical Engineering Conference, 2008. CIBEC 2008.r&€&nternational’,
pp. 1-9.

Curtis, D. E., Rus, T. & Jensen, J. (2008), Application dnigaftware for chemistryin
‘2008 IEEE International Conference on Electro/InforraatTechnology, EIT 2008,
held at lowa State University, Ames, lowa, USA, May 18-200&0IEEE, pp. 361—
366.

Deelman, E., Singh, G., hui Su, M., Blythe, J., Gil, Y., Kdssn, C., Mehta, G., Vahi,
K., Berriman, G. B., Good, J., Laity, A., Jacob, J. C. & Katz,® (2005), ‘Pegasus:
a framework for mapping complex scientific workflows ontotdimited systems’,
SCIENTIFIC PROGRAMMING JOURNAL3, 219-237.

Deursen, A. V., Klint, P. & Visser, J. (2000), ‘Domain-spiecianguages: An annotated
bibliography’,ACM SIGPLAN NOTICESS5, 26-36.

DeVito, Z., Joubert, N., Palacios, F., Oakley, S., Medina, Barrientos, M., Elsen, E.,
Ham, F., Aiken, A., Duraisamy, K., Darve, E., Alonso, J. & Halman, P. (2011),
Liszt: a domain specific language for building portable mieaked pde solvers
‘Proceedings of 2011 International Conference for Highféterance Computing,
Networking, Storage and Analysis’, SC '11, ACM, New York, NYSA, pp. 9:1-
9:12.

URL: http://doi.acm org/10. 1145/ 2063384. 2063396

DuCharme, B. (2011),earning SPARQLO’'Reilly Media.

Erl, T., Balasubramanian, R., Carlyle, B. & Pautasso, C1R220SOA with REST: Princi-

140

ples, Patterns and Constraints for Building Enterpriseusions with RESTPrentice
Hall.

Fischer, C. N., Cytron, R. K. & LeBlanc, R. J. (201@rafting a Compiler Addison-
Wesley.

Gamma, E., Helm, R., Johnson, R. & Vlissides, J. (198®sign patterns: elements of
reusable object-oriented softwar@ddison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA.

Gasevic, D., Djuric, D. & Devedzic, V. (2009Model Driven Engineering and Ontology
Development2nd edn, Springer Publishing Company, Incorporated.

Green, T. & Petre, M. (1992), When visual programs are haaeead than textual pro-
grams,in ‘Sixth European Conference on Cognitive Ergonomics’, [§¥-1180.

Gubala, T., Bubak, M., Malawski, M. & Rycerz, K. (2006), Sertie-based grid work-
flow compositionjn ‘Proceedings of the 6th international conference on Raiaho-
cessing and Applied Mathematics’, PPAM’05, Springer-&griBerlin, Heidelberg,
pp. 651-658.

URL: htt p: //dx. doi . org/ 10. 1007/ 11752578_78

Horn, P. (2001), AUTONOMIC COMPUTING: IBM’s Perspective ¢ime State of Infor-
mation, Technical report, IBM Corporation.

Kiper, J. D., Auernheimer, B. & Ames, C. K. (1997), ‘Visualgetion of decision state-
ments: What is best forprogrammers and non-programméts®jrical Softw. Engg.
2(4), 361-379.

URL: htt p://dx. doi.org/10. 1023/ A: 1009797801907

Kndll, R. & Mezini, M. (2006), Pegasus: first steps toward aunalistic programming
languagein ‘Companion to the 21st ACM SIGPLAN symposium on Object-ptesl
programming systems, languages, and applications’, O@PE, ACM, New York,
NY, USA, pp. 542-559.

URL: http://doi.acmorg/10. 1145/ 1176617. 1176628

Knuth, D. E. (1965), ‘On the translation of languages froffb e right’, Information and
Control 8(6), 607 — 639.

Krishnan, S. & Bhatia, K. (2007), Soas for scientific appiimas: Experiences and
challengesjn ‘e-Science and Grid Computing, IEEE International Conieszon’,
pp. 160-169.

141

Liu, H. & Lieberman, H. (2008&), Metafor: visualizing stories as coda,‘Proceedings of
the 10th international conference on Intelligent usenfates’, IUI '05, ACM, New
York, NY, USA, pp. 305-307.

URL: http://doi.acm org/ 10. 1145/ 1040830. 1040908

Liu, H. & Lieberman, H. (200B), Programmatic semantics for natural language interfaces
in ‘CHI '05 extended abstracts on Human factors in computirgesys’, CHI 05,
ACM, New York, NY, USA, pp. 1597-1600.

URL: http://doi.acm org/10. 1145/ 1056808. 1056975

Lopes, C. V., Dourish, P., Lorenz, D. H. & Lieberherr, K. (3)0‘Beyond AOP: Toward
Naturalistic Programming’ACM SIGPLAN Notice88(12), 34-43. OOPSLAOQ3
Special Track on Onward! Seeking New Paradigms & New Thigkin
URL: htt p: // ww. ccs. neu. edu/ hone/ | or enz/ paper s/ oopsl a03a/

Margolis, B. (2007),SOA for the Business Developer: Concepts, BPEL, and, S&ZA
Press.

Martin, D. & et al (2003), ‘Daml-s (and owl-s) 0.9 draft retea.
URL: htt p: // www. dam . or g/ servi ces/ dam - s/ 0. 9/

McCarthy, J. (1980), ‘Circumscription - a form of non-moowic reasoning’ Artificial
Intelligencel3(1-2), 27 — 39. Special Issue on Non-Monotonic Logic.
URL: http://ww. sci encedi rect.com science/articlel/piil
0004370280900119

McDermott, D. V. (2002), Estimated-regression planningifderactions with web ser-
vices,in M. Ghallab, J. Hertzberg & P. Traverso, eds, ‘AIPS’, AAAI,.[3D4-211.

McGuinness, D. L. & van Harmelen, F. (2004), ‘OWL Web Ontotldganguage’.
URL: htt p: // www. W3. or g/ TR/ ow - f eat ur es/

Mcllraith, S. A. & Son, T. C. (2002), Adapting golog for conmgtion of semantic web
services,in D. Fensel, F. Giunchiglia, D. L. McGuinness & M.-A. Williameds,
‘KR’, Morgan Kaufmann, pp. 482—-496.

Mernik, M., Heering, J. & Sloane, A. M. (2005), ‘When and howdevelop domain-
specific languagesACM Comput. Sun87(4), 316—344.
URL: http://doi.acm org/10.1145/1118890. 1118892

Miller, L. A. (1981), ‘Natural language programming: Stylestrategies, and contrasts’,
IBM Systems Journ&11(2), 184-215.

142

Mordani, R. (2009), Jsr 315: Javatm servlet 3.0 specifinati@chnical report, Oracle
Corporation.
URL: http://ww. jcp.org/en/jsr/detail ?i d=315

Myers, B. A., Pane, J. F. & Ko, A. (2004), ‘Natural programighianguages and environ-
ments’,Commun. ACM}7, 47-52.
URL: http://doi.acm org/10. 1145/ 1015864. 1015888

Narayanan, S. & Mcllraith, S. A. (2002), Simulation, verdimn and automated compo-
sition of web servicesn ‘Proceedings of the 11th international conference on World
Wide Web’, WWW '02, ACM, New York, NY, USA, pp. 77-88.

URL: http://doi.acm org/ 10. 1145/ 511446. 511457

Oinn, T., Addis, M., Ferris, J., Marvin, D., Carver, T., PckpM. R. & Wipat, A. (2004),
‘Taverna: A tool for the composition and enactment of biomfiatics workflows’,
Bioinformatics20, 2004.

Petre, M. (1995), ‘Why looking isn’'t always seeing: reatgpsskills and graphical pro-
gramming’,Commun. ACMB§(6), 33—44.
URL: http://doi.acm org/ 10. 1145/ 203241. 203251

Polya, G. (1945)How to Solve ItPrinceton University Press.

Popek, G. J. & Goldberg, R. P. (1974), ‘Formal requiremeotvirtualizable third gener-
ation architecturesCommun. ACM.7(7), 412—421.
URL: http://doi.acm org/10. 1145/ 361011. 361073

Price, D., Rilofff, E., Zachary, J. & Harvey, B. (2000), NetiJava: a natural language
interface for programming in Javia, ‘Proceedings of the 5th international conference
on Intelligent user interfaces’, Ul '00, ACM, New York, NYSA, pp. 207-211.
URL: http://doi.acm org/10. 1145/ 325737. 325845

Qin, J. & Fahringer, T. (2008), A novel domain oriented agmtofor scientific grid work-
flow compositionjn ‘Proceedings of the 2008 ACM/IEEE conference on Supercom-
puting’, SC '08, IEEE Press, Piscataway, NJ, USA, pp. 211112
URL: http://dl.acmorg/citation. cfnPi d=1413370. 1413392

Rao, J. & Su, X. (2004), A survey of automated web service asitjpn methodsin ‘In
Proceedings of the First International Workshop on Seroafiéb Services and Web
Process Composition, SWSWPC 2004, pp. 43-54.

Ross, D. T. (1978), ‘Origins of the apt language for autooadlty programmed tools’,
SIGPLAN Not13(8), 61-99.
URL: http://doi.acm org/10. 1145/ 960118. 808374

143

Rus, T. (1993)System Software and Software Systems: Systems Methottol&ygstem
Software Vol. 1, World Scientific Pub Co Inc.

Rus, T. (2008), Liberate computer user from programming]. Meseguer & G. Rosu,
eds, ‘Algebraic Methodology and Software Technology, 1liAtiernational Confer-
ence, AMAST 2008, Urbana, IL, USA, July 28-31, 2008, Progegsl, Vol. 5140 of
Lecture Notes in Computer Scien&pringer, pp. 16-35.

Rus, T. (2013), Computer integration within problem sodvprocessin ‘Proceedings of
RoEduNet 11th International Conference: Networking in &dion and Research’,
Sinaia, Romania.

Rus, T. & Bui, C. (2010), Software development for non-exgemputer usersn ‘Pro-
ceedings of the International Conference on Cloud Comguimd Virtualization’,
CCCV 2010, Singapore.

Rus, T. & Curtis, D. E. (2006), Application driven softwareveglopmentin ‘Proceedings
of the International Conference on Software Engineeringahdes (ICSEA 2006),
October 28 - November 2, 2006, Papeete, Tahiti, French Bsigh IEEE Computer
Society.

Rus, T. & Curtis, D. E. (2007), Toward application driventsafre technologyin H. R.
Arabnia & H. Reza, eds, ‘Proceedings of the 2007 InternatiQonference on Soft-
ware Engineering Research & Practice, SERP 2007, Volunumg 25-28, 2007, Las
Vegas Nevada, USA, CSREA Press, pp. 282—-288.

Sammet, J. E. (1966), ‘The use of english as a programmirgukge’,Commun. ACM
9, 228-230.
URL: http://doi.acm org/10. 1145/ 365230. 365274

Scanlan, D. A. (1989), ‘Structured flowcharts outperforreymbocode: An experimental
comparison’ JEEE Softw6(5), 28—36.
URL: htt p: //dx. doi.org/ 10. 1109/ 52. 35587

Sipser, M. (2006)introduction to Theory of Computatip@engage.

Srivastava, B. & Koehler, J. (2003), Web service compasitiourrent solutions and open
problemsjn ‘In: ICAPS 2003 Workshop on Planning for Web Services’, pf-25.

Taylor, I. J., Wang, I., Shields, M. S. & Majithia, S. (2005);stributed computing with
triana on the grid’Concurrency - Practice and Experient&(9), 1197-1214.

Welty, C. & Guarino, N. (2001), ‘Supporting ontological dyss of taxonomic relation-

144

ships’,Data and Knowledge Engineerir8)(1), 51 — 74. 19th International Confer-
ence on Conceptual Modeling (ER2000).

Wolfram, S. (2010), ‘Programming with natural languageadsially going to work’.
URL: http://bl og. wol fram conf 2010/ 11/ 16/
progranmm ng-w t h- nat ur al - | anguage- i s- act ual | y- goi ng-t o- wor k/

Woods, W. A. (1970), ‘Transition network grammars for natdanguage analysisGom-
mun. ACM13, 591-606.
URL: http://doi.acm org/10. 1145/ 355598. 362773

	University of Iowa
	Iowa Research Online
	2013

	An evolutional domain oriented approach to problem solving based on web service composition
	Cuong Kien Bui
	Recommended Citation

