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(a) (b)

(c) (d)

Figure 5.10: Isocontours of non-dimensional streamwise vorticity, ω∗x, in the plane
x/D = 1.2, 1.6, 2, and 2.5 (left to right and top to bottom) in d/H = 3.5. Red shades
indicate counter-clockwise rotation and blue shades indicate clockwise rotation.

Figure 5.10 shows the streamwise vorticity at x/D =1.2 to 2.5. As Figs. 5.10a

through 5.10d display, tip vortices are significantly sheared toward the base plane

in the wake of the sphere and the horseshoe lobes are no longer evident in the wake.

In these layers, the tip vortices merge with the legs of the horseshoe vortex, which

have the same sense of rotation, and finally end up in fairly large trailing vortices

as sketched in Pattenden et al (2005). The trailing vortices are quite axisymmetric

in these layers. Similar results were observed further downstream at x/D = 3 and

4. There is a striking resemblance to the streamwise vorticity field around the wall-

mounted sphere demonstrated in Papanicolaou et al. (2012b) despite significant

differences in approach flow and bed characteristics.

The dimensionless circulations Γ∗ = Γ/(UD) of each of the identified structures

at x/D = 0.4 to 0.7 in the wakes of the sphere were computed by integration of
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Figure 5.11: Average dimensionless circulations of structures identified for the
sphere in Fig. 5.9c to Fig. 5.9f and the left/right deviation.

the streamwise component of the vorticity field within an isocontour of ω∗ = 0.07

(at this value, the circulation was found to be insensitive to small changes in ω∗).

Further downstream, due to the ambiguity in the definition of the tip structure

boundaries when it descends to the base plane and combines with the horseshoe

lobes (Figs. 5.9g through 5.10d), no attempt has been made to measure circulation

and distinguish the tip structure from the connected like-signed vorticity. Eviden-

tially, this amalgamation contributes to the increase in circulation of the tip vortices

in the sphere wake. The results are given in Fig. 5.11. Differences in the circula-

tions of the left and right structures represent a larger error than that due to the

PIV measurements, and therefore, the sizes of the error bars are given by Equation

4.1.

The mean circulation magnitude of the upper vortices decreases monotonically

in the range 0.4 ≤ x/D ≤ 0.7, whereas the magnitude of the tip and lobes structures

increase such that both vortex pairs have similar magnitude at x/D =0.5 and 0.6.
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The circulation of the lobes is larger than the horseshoe (HS) vortex circulation of

a streamwise ellipsoid, but smaller than the HS vortex circulation of a transverse

ellipsoid at the same location. The circulation of well-known HS vortex (weak

vortex) has not been illustrated in Fig. 5.11. The streamwise decay of upwash

structures is expected, and may be attributed to enhanced turbulent diffusion and

cross-cancellation of the streamwise structures. However, since there is no source

of vorticity away from the boundaries, the strengthening of the tip structures in the

wake with streamwise distance must be explained by tilting of vorticity into the

upstream orientation by a similar mechanism as described in Sec. 4.1.3, which will

be described later in a discussion of the instantaneous structure and dynamics of

the wakes in Sec. 5.4.

5.3 Shedding Characteristics

Figure 5.12 illustrates the power spectral density function (PSD) of the stream-

wise velocity component measured for the sphere at relative submergence of

d/H = 3.5. The hot-film probe was placed at spanwise locations x/D = 1, 2 and 3,

and for z/D = 0.25, 0.5, 0.75, and 1. The z-axis of the power spectra is offset to allow

comparison between measurements at different locations. Due to symmetry, the

power spectra from either side are nearly identical and only the spectra from one

side of the obstacles are shown. In this case, the broad, weak peak is observed near

the bed at St = 0.21 ( fs = 1.47 Hz) which is only a marginally measurable difference

from that of the transverse ellipsoids. Taneda (1978) reported the Strouhal number

around 0.2 in the subcritical Reynolds number around the sphere which is consis-

tent with this study observation. Notably, this peak is essentially non-existent at

x/H = 1 for all streamwise positions. The peak continues up to z/H = 0.5 further

downstream at x/D = 2, suggesting that the shedding region in the wake grows

outward from the wall with increasing x. It is plausible that this is the shedding

frequency from the spanwise edges of the sphere since the structures shed would
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(a) (b) (c)

Figure 5.12: The power spectral density function of the of the streamwise velocity
component in d/H = 3.5 for sphere at y/D = 1: (a) x/D = 1, (b) x/D = 2, and (c)
x/D = 3. Each spectrum is the average of 20 individual spectra. Spectra are off-set
by constant factor for clarity.

have a highly three-dimensional vorticity field, and only the streamwise projection

of it is seen in the vorticity plots.

A more broad peak is centered around St = 0.025 ( fs = 0.175 Hz) at z/D = 0.5

to 1 for x/D = 1 to 3. Similar to the streamwise ellipsoid, the low-frequency

peaks persist at all three streamwise measurement locations. As illustrated in Sec.

4.2.5, similar peaks were observed for ellipsoidal geometry and low-taper-ratio

triangular plates observed by Castro and Watson (2004). The ratio of primary

(high) peak to low-frequency peak (broad peak) is 8.4 which is closer to this ratio in

the streamwise ellipsoid. The ratio of primary (high) peak to low-frequency peak

(broad peak) is 7.2 and 3.2 for streamwise and transverse ellipsoid, respectively.

Figure 5.13 shows cross-correlations of velocity fluctuations for measurements

at symmetric positions in the wake of the sphere at x/D = 1, y/D = ±1, and
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Figure 5.13: Cross-correlation of fluctuating velocity on opposite side for the sphere
at x/D = 1 and y/D = ±1 and z/H = 0.25 to 1.

equal, varied values of z/H. The auto-correlation function at x/D = 1, y/D = 1,

and z/H = 0.25 is also shown in the figure. The spatial cross-correlations, τ = 0

s, are positive for each wall-normal position, indicating approximately in-phase

shedding on opposite sides of the sphere. A positive spatial correlation is evident

at z/H = 0.75 and 1; however, the values are close to zero near the mid-span and

bed of the sphere. Similar to the streamwise ellipsoid the spatial cross correlation

values are considerably larger at z/H = 1 and 0.75, on the upper part of the sphere

they are possibly weaker near the base due to the interaction with the horseshoe

lobes.

The cross-correlation function is less periodic than for the transverse ellipsoid,

suggesting less organized shedding due to the nearly axisymmetric nature of the

spherical geometry.
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5.4 Proposed Model for the Sphere Wake

As suggested in Sec. 5.2, the model by Okamoto (1980) shown in Fig.2.18

describes some of the preliminary features observed in the wake of the sphere.

However, no explanation is provided for the physical mechanisms governing the

upwash or downwash in the wake. As noted in Sec. 4.2.4, for the ellipsoid wakes,

we propose a model, shown in Fig. 4.25, which does account for the upwash or

downwash in the wake. The dominant structures in the deeply-submerged sphere

wake are the horseshoe vortex (not shown in the Fig. 4.25) and the arch-shaped

shear-layer. As suggested for the streamwise ellipsoid, the dominant mechanism

governing the dynamics of the resulting arch structure to produce the observed

mean flow is Biot-Savart self-induction due to the curvature of the vortex which,

due to the vorticity orientation, would tend to drive the top of the arch upstream

as shown in Fig. 4.25a. However, Okamoto (1980) proposed a model for a wall-

mounted sphere, with inclined arch vortices in the downstream direction such that

their streamwise legs induce an upwash.

As noted in Sec. 5.2, near the base plane, two sets of strong (lobes) and weak

(horseshoe) vortices are observed in the wake. The weak horseshoe vortex, further

from the obstacle in transverse planes, is a well-known horseshoe vortex which

is shown in Okamoto (1980)’s model as shown in Fig. 2.18. The strong vortices

(lobes) are also observed in Okamoto (1980)’s investigation as shown in Fig. 5.14a;

however, he did not discuss the source of these lobes upstream of the obstacle, so

his wake structure is incomplete. Figure 5.14 shows the existence of lobes on the

side of the sphere in both investigations. These lobes have not been illustrated in

Okamoto’s model therefore it is not clear how they fit into a 3D model of the wake.

It is noteworthy that the horseshoe vortex upstream of sphere are weak (in this

study) compared with the approaching boundary layer, therefore they have not

been observed in Fig. 5.1a.
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(a) (b)

Figure 5.14: Existence of horseshoe lobes on the side of the sphere: (a) Horseshoe
vortex behind the sphere observed by the tuft-grid method (Okamoto, 1980), (b)
Isocontours of non-dimensional streamwise vorticity, ω∗x, in the plane x/D = 0.5
in d/H = 3.5. Red shades indicate counter-clockwise rotation and blue shades
indicate clockwise rotation.

A model of the arch vortex dynamics was proposed to explain the observed

streamwise vorticity distributions in the sphere wake as shown in Fig. 5.16. The

data presented in Fig. 5.15 offers insight into the origin of the lobes structures.

A wall jet is present as the flow approaches the obstacle, indicating that the ad-

verse pressure gradient upstream of the obstacle is weaker near the base plane than

it is at higher levels (up to z/D = 0.5). Such a strong vertical gradient of streamwise

velocity over the bottom half of the sphere would be expected to tilt vorticity shed

in that region into the streamwise direction. Thus, a plausible mechanism for the

origin of the lobes is ”arch” structures tilted in the streamwise direction. So from

the side, the arches would take on an ”S” shape as illustrated in Fig. 5.16.

The experimental study of Taneda (1978) around the sphere showed that the

orientation of the wake is determined by small perturbations on the surface of the

sphere (Fig. 2.24). For a wall-mounted sphere, there is a large perturbation due to

the pressure of the wake but the results are still in surprising agreement with his

study. This model of wake structure and dynamics correlates well with the obser-

vations of wakes as shown in Fig. 5.11, in which the dominant structures increase in
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Figure 5.15: Mean streamwise velocity profile, u, upstream of the sphere at y/D = 0
and x/D = −1.1 to -0.4

strength with increasing downstream distance. Also, the cross-correlation analysis

shown in Fig. 5.13 demonstrated that the shedding is relatively symmetric, similar

to the ellipsoids at high relative submergence.

Due to the existence of strong lobe vortices at x/D = 0.5 to 1, it will be expected

that the bed shear stress increases on these regions. It will be shown in Sec. 5.5 that

strong shear stress is found on the bed on those locations (z/D = 0.4) in agreement

with this observation as shown Figs. 5.35 and 5.36.

5.5 Shear Stress Distribution

As illustrated in Fig. 3.15 in Sec. 3.3.1, the shear stress distribution was mea-

sured around a wall-mounted sphere as a benchmark for future study. Streamwise

velocity profiles and vectors have been computed for each measurement location

around the sphere. The velocity profiles in the symmetry plane (y = 0) have been



145

Figure 5.16: Proposed evolution of the arch structures for the sphere (self-induction
dominated deformation). The arrows indicate the orientation of the vorticity vector.

illustrated in Fig. 5.17 and 5.18 .

The velocity profiles at y/D = −0.25 and -0.5 have been illustrated in Fig. 5.19

and 5.20 indicating the reverse flow zone. At y/D =-0.5 and at the side of the

obstacle (x/D =0) a strong reverse flow was observed which shows a complex 3D

flow field around the perimeter of the sphere near the mid-span.

The streamwise velocity profiles are similar at y/D = −0.75 and -1 as shown in

Figs. 5.21 and 5.22, which demonstrates that the effect of sphere is not apparent

in the profiles. A quantitative comparison of the boundary layer characteristics in

these profiles with the boundary layer characteristics measured on the plate at the

absence of the obstacle confirms similar findings for δ/D and the shape factor Hs f .

The boundary layer thickness, of δ/D= 0.15 is present at the location of obstacle

(x/D =0) and shape factor Hs f = 1.87. Therefore, the shear stress measurements

from y/D = 0 to -0.5 are of particular interest. In addition, the shear stress up to

y/D = −1 has been presented.
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Figure 5.17: Distribution of velocity vector at y = 0 and x/D = 0.5 to 3.

Figure 5.18: Time-averaged, streamwise velocity, u, profiles at y = 0 and x/D = 0.5
to 3.
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Figure 5.19: Time-averaged, streamwise velocity, u, profiles at y/D = −0.25

Figure 5.20: Time-averaged, streamwise velocity, u, profiles at y/D = −0.5
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Figure 5.21: Time-averaged, streamwise velocity, u, profiles at y/D = −0.75

Figure 5.22: Time-averaged, streamwise velocity, u, profiles at y/D = −1
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Figure 5.23: Time-averaged transverse velocity, v, profiles at x/D = 0.5 to 3 at y = 0

The time-averaged transverse velocity profiles, v, have been computed for each

measurement location around the sphere. As presented in Fig. 5.23, the mean v

profile, along the z-axis at y = 0 and x/D = 0.5 to 3 have values close to zero. The

results in y = 0 have been shown as an example.

Figures 5.24 to 5.27 illustrate the turbulent projected shear stress, τt,p, calculated

in different locations as noted in Sec. 3.2 and based on Eq. (3.5). As illustrated

in Fig. 3.15, the data are available from x/D =0.5 to x/D =3 along the centerline,

y = 0, and not in other x − z locations. At y = 0, the profile shows maximums at

the location of shear layer before the reattachment length (x/D = 2) as shown in

Fig. 5.24. At the trailing edge, x/D =0.5, the profile contains a maximum at the

crest of the sphere (z/D =1). With descent of the shear layer toward the ground,

the profile’s maximums fall to z/D =0.8. After the reattachment point, at x/D = 2

and 3, the maximum of τt,p occurs at z/D =0.2. The τt,p reduces near the bed at all
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Figure 5.24: Turbulent projected shear stress at y = 0 and x/D = 0.5 to 3

measurement locations.

At y/D = −0.25 and at the streamwise locations investigated here, the τt,p values

collapse along most of the depth except for when z/D =0.8 as shown in Fig. 5.25.

This location is the same as locations where maximum τt,p occurred at y = 0. At

y/D = −0.5, which is right on the sphere’s side, no maximum is observed at x/D =0.

At x/D =0.5 to 1.5, the maximum τt,p is visible at z/D =0.4 and the values of τt,p

increase in streamwise direction as shown in Fig. 5.26.

The occurrence of τt,p maximum values at z/D =0.4 is likely due to the presents

of the lobes at the side of the sphere as shown in Figs. 5.9d and 5.9e. As shown in

Fig. 5.27, the shear stress distribution has also been considered in y/D = −1 where

the profiles collapse in together and the values are close to zero.

The mean shear stress profiles at x − z planes have been computed for each

measurement location around the sphere as illustrated in Figs. 5.28 through 5.31.

Figure 5.28 presents the mean shear stress from the velocity profiles in (x−z) planes

as noted in Eq. 3.6.



151

Figure 5.25: Turbulent projected shear stress at y/D = −0.25 and x/D = 0.5 to 1.5

Figure 5.26: Turbulent projected shear stress at y/D = −0.5 and x/D = 0 to 1.5
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Figure 5.27: Turbulent projected shear stress at y/D = −1 and x/D = 0 to 1.5

Figure 5.28: Mean shear stress at y = 0 and x/D = 0.5 to 3
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Figure 5.29: Mean shear stress at y/D = −0.25 and x/D = 0.5 to 1.5

These plots demonstrate the gradient of the u velocity in the streamwise direc-

tion, du/dx, along the height of the sphere. At y = 0, the flow decelerates (du/dx < 0)

near the bed up to location x/D = 2 as shown in Fig. 5.28. After this location at

x/D = 2, the flow accelerates (du/dx > 0) as visible in Fig. 5.17. At y/D = −0.25, the

maximum value of mean shear was observed at z/D =0.9 and x/D =0.5 while at

other streamwise locations, as shown in Fig. 5.29 the maximums are slightly below

midspan in agreement with velocity profiles observed for this location as shown in

Fig. 5.19. At the sphere side in y/D = −0.5, the mean shear values at x/D =0 and

above the midspan, are varying between negative and positive values as shown

in Fig. 5.30. At other streamwise locations, τxz reaches the maximum value near

the bed as expected from the observation of velocity profiles in this location as

shown in Fig. 5.20. For comparison the mean shear stress was also measured at

y/D = −0.75 as shown in Fig. 5.31 in which the velocity profiles (Fig. 5.21) have

not been shown the reverse flow zone.
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Figure 5.30: Mean shear stress at y/D = −0.5 and x/D = 0 to 1.5

Figure 5.31: Mean shear stress at y/D = −0.75 and x/D = 0 to 1.5
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The mean shear stress profiles at y− z planes (τyz) have also been computed for

each measurement location around the sphere as an example illustrated in Figs.

5.32 for y = 0 . As expected from the velocity profiles (Fig. 5.23), the shear stress

values are small and their effect in total shear stress will be marginal.

Figure 5.32: Mean shear stress at y = 0 and x/D = 0.5 to 3

While the contour is coarse, the contour plot of mean shear stresses has been

illustrated in Fig. 5.33 in which mean shear stress have been superimposed indi-

cating the the direction of shear stress.

Figures 5.34 through 5.36 illustrate the total shear stress distribution resulting

from adding mean shear stress found in these locations as an example shown in

Fig. 5.28. The mean shear values have been added to their corresponding Reynolds

shear stress. Compared to τt,p in the streamwise symmetry plane, shown in Fig.

5.24, the effect of mean shear stress on total τ along the height and near the bed
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Figure 5.33: Contour plot of mean shear stress at y = 0 to -1 and x/D = 0 to 3

is trivial and no notable change is observed on the τ values. However, the total τ

values increase near the bed at y/D =-0.25 and -0.5, which can be seen by comparing

Fig. 5.35 with Fig. 5.29 and Fig. 5.36 with Fig. 5.30.

In summary, Figs. 5.37 through 5.39 illustrate the total shear stress distribution

in streamwise direction along the height around the sphere. In all the results here,

at z/D =1.2 and 1.4, the total shear does not vary in the streamwise direction

as expected for the area far from the obstacle. At the symmetry plane, y = 0,

except z/D = 1 which is right at the crest of sphere, the total shear increases

in streamwise direction up to reattachment length, x/D = 2, and reduces after

that. However, close to the bed at z/D = 0.035, the total shear stress increases in

agreement of higher stress location near the reattachment point. Similarly Fig. 5.38

and 5.39 demonstrates that close to bed at z/D = 0.035 the shear stress rises toward

x/D = 1.5. At y/D = −0.25, the highest shear stress observed at x/D =0.5 and

z/D =0.8 as shown in Fig. 5.38 which is the location of the free shear layer.
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Figure 5.34: Total shear stress at y = 0 and x/D = 0.5 to 3

Figure 5.35: Total shear stress at y/D = −0.25 and x/D = 0.5 to1.5

The total shear stress distribution is computed upstream of the sphere at y/D = 0

and x/D = −1.1 to -0.4 using the imaging configuration employed for Fig. 5.4. The

streamwise velocity profiles have been illustrated in Fig. 5.15. In agreement with

the other studies (Sadeque et al., 2008, 2009; Shamloo et al., 2001; Papanicolaou et
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Figure 5.36: Total shear stress at y/D = −0.5 and x/D = 0 to1.5

Figure 5.37: Total shear stress in streamwise direction at y = 0 and x/D = 0.5 to 3

al., 2011; Papanicolaou et al., 2012a), the stress on the bed near the sphere increases

in the streamwise direction, an observation that can be considered for erosion study

and sediment depositional pattern.
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Figure 5.38: Total shear stress in streamwise direction at y/D = −0.25 and x/D = 0.5
to1.5

Figure 5.39: Total shear stress in streamwise direction at y/D = −0.5 and x/D = 0
to1.5

From the measurement reviewed above, the bed shear stress, τ0, has been

computed in each measurement location. Determining the bed shear stress has
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Figure 5.40: Total shear stress in streamwise direction upstream of the sphere at
y/D = 0 and x/D = −1.1 to -0.4

been a challenge in sediment transport studies (Biron et al., 2004; Rowinski et al.,

2005). Biron et al. (2004) conducted a set of experiments on a simple boundary layer

over plexiglas using an acoustic Doppler velocimeter (ADV). The study showed

that Reynolds shear stress varies with height above the bed and reaches a maximum

value at z/d =0.1 (z = 6.2 mm) in open channel flow, where d is the flow depth.

The Reynolds shear stress decreases as the non-dimensional height falls below 0.1,

but as illustrated in Fig. 5.41, it occasionally rises after the initial decrease. It is

not clear whether the decrease in shear stress values in the findings of Biron et al.

(2004) below z/d =0.1 is related to the difference in the instrument measurement.

These observations raise the question of the most appropriate distance from the

bed to obtain a representative shear stress value.

Having more accurate velocimeters which can measure close to the bed, the

question that remains unanswered is the best location for measurements and the

proximity of the location to the bed. In the current study, based on the DPIV
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Figure 5.41: Average vertical profiles of shear stress estimated from Reynolds
method over plexiglas with ADV (from Biron et al. (2004))

spatial resolution of the velocity vector fields, z/D =0.035 (z = 1.75 mm) has been

determined as the representative height to obtain reliable bed shear stress estimates.

This is the height that the correlation windows used to determine the bottom row of

vectors in all the measurement locations do not include portions of the bed image.

The bed images are stationary and would thus skew the vector magnitude. It is

not clear whether the results would change much if we were able to look closer to

the bed.

The τ0 values in the centerline at x/D = 0.5 to 3 have been shown in Table 5.1.

Even though the data is coarse, the contour plot has also been illustrated as shown

in Fig. 5.42 in which bed shear stress vectors have been superimposed indicating

the direction of shear stress. Two area of higher shear stress are visible at the side

of the sphere and near the reattachment point. The higher shear stress at the side of

the sphere is probably related to existence and development of the lobe structures.
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τ0

y/D = 0 y/D = −0.25 y/D = −0.5 y/D = −0.75 y/D = −1

x/D =0 0.240 0.0204 0.0028
x/D =0.5 0.014 0.033 0.112 0.02 0.0048
x/D =1.0 0.031 0.039 0.090 0.028 0.0023
x/D =1.5 0.010 0.060 0.207 0.030 0.007
x/D =2.0 0.022
x/D =2.5 0.069
x/D =3.0 0.111

Table 5.1: Bed shear stress, τ0, in z/D =0.035 at x/D = 0.5 to 3 and y = 0

Figure 5.42: Contour plot of bed shear stress, τ0, in z/D =0.035 at x/D = 0.5 to 3
and y = 0
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CHAPTER 6
CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

Particle image velocimetry and thermal anemometry were used to investigate

the shedding characteristics and the wake structures generated by five different

low-aspect-ratio obstacles: ellipsoids of aspect ratio (H/D) 0.67 (transverse ellip-

soid) and 0.89 (streamwise ellipsoid), two cylindrical obstacles of the same aspect

ratios as the ellipsoids, and a sphere. Despite the relatively subtle difference be-

tween the two ellipsoid geometries, the time-averaged streamwise vorticity dis-

tribution in the wakes revealed striking disparities. Whereas the the dominant

structures in the wake of the streamwise ellipsoid consisted of a tip vortex pair

inducing downwash and the horseshoe vortices near the ground plane, the trans-

verse ellipsoid exhibited a dominant base vortex pair oriented such as to induce

an upwash in the wake. This latter observation is unique in that base vortices

have not been previously reported for low-aspect-ratio obstacles in thin bound-

ary layers with thickness significantly smaller than the obstacle dimensions. The

flow structures were shown to be qualitatively robust with significant variations in

free-stream turbulence intensity; however, the circulations of the mean streamwise

structures were significantly greater in the low-turbulence case. In contrast, both

cylinder wakes contained strong tip vortices with weaker base vortices also present.

Following a similar trend to the ellipsoids, the strength of the base structures in the

cylinder wakes was inversely related to aspect ratio. Streamwise features observed

in the mean wake of the sphere, included tip and horseshoe structures, and a weak

opposite- sign vortex pair near the top of the obstacle.

A model of the arch vortex dynamics was proposed to explain the observed

streamwise vorticity distributions in the ellipsoid wakes in which the evolution of

the arch structures is governed by two competing mechanisms: Biot-Savart self-
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induction and the deformation due to the external shear flow. It is proposed that

the balance between these mechanisms is governed by the curvature of the obstacle

profile. While the cylinder wake is more complex due to the separation of arch and

tip structures from the square corners at the free end, the general trend of base vortex

strength with variation in cylinder aspect ratio is consistent with that observed in

the case of the ellipsoids. The phase measurements verified downstream and

upstream tilting of structures shed by the transverse and streamwise ellipsoids,

respectively, as hypothesized by Hajimirzaie et al. (2012). The relative simplicity of

the ellipsoid wakes make them an archetypical model for understanding somewhat

more complex flows such as that of the sphere wake.

The dominant structures in the deeply-submerged sphere wake are the horse-

shoe vortex and the arch-shaped shear-layer. As suggested for the streamwise

ellipsoid, the dominant mechanism governing the dynamics of the resulting arch

structure to produce the observed mean flow is Biot-Savart self-induction due to

the curvature of the vortex which, due to the vorticity orientation, would tend to

drive the top of the arch upstream. Near the base plane, two pair of vortices are

observed in the wake of the sphere, which have the same sense of rotation: close to

the side of the sphere (lobes) and further from the obstacle in the transverse planes

(well-known horseshoe vortex). The origin of these was proposed to be streamwise

tilting of the base of the arch structures due to a wall jet that forms in the vicinity

of the junction.

Spectral measurements at high relative submergence of d/H = 3.9 revealed that

transverse and streamwise ellipsoids exhibited weak dominant shedding frequen-

cies at St = 0.188 and 0.183, respectively. Cross-correlation analysis demonstrated

that the shedding was symmetric in nature. Broad, lower-frequency peaks were

observed in many cases, which were also apparent in other studies. A previously-

proposed hypothesis, that these peaks are essentially beat frequencies, seems un-
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likely in this case since, in the present study, spectra have been observed which

contain only these peaks. Alternatively, we have observed an intermittent collapse

of the recirculation region which is consistent with these features. Much weaker

peaks were observed at St = 0.084 for the low-aspect-ratio cylinder (AR=0.67)

and 0.065 for the high-aspect-ratio cylinder (AR=0.89). In the wake of the sphere, a

weak dominant frequency is observed at St = 0.20 close to the obstacle junction and

the cross-correlation function for symmetric measurements in the wake indicates

symmetric shedding.

Relative submergence (d/H) was varied systematically for the two ellipsoids.

For the transverse ellipsoid, the base vortex circulation was found to vary approx-

imately with the inverse of the flow depth for d/H ≤ 4 while it was relatively

insensitive to flow depth for d/H ≥ 4, consistent with previous observations in free

surface flows. In contrast, for the streamwise ellipsoid, a strong base vortex was

observed at d/H = 1, and essentially no base vortex for d/H ≥ 2.5. While reducing

relative submergence to 2.5 had no effect on the dominant Strouhal numbers for

the transverse and streamwise ellipsoids, the peaks were found to broaden slightly,

indicating that the increased proximity of the top boundary has an effect on the

shedding behavior. Likewise, in the wake of the streamwise ellipsoid, Hajimirzaie

et al. (2012) did not find the circulations of vortex structures measured in stream-

wise planes to vary significantly; however, for the transverse ellipsoid, base vortex

circulation was found to vary inversely with relative submergence. At d/H = 1,

the dominant shedding Strouhal numbers increased to St = 0.345 and 0.357 for the

transverse and streamwise ellipsoids, respectively. This change was concomitant

with significantly-increased base vortex strengths for both ellipsoids, as shown by

Hajimirzaie et al. (2012). The shedding behavior also changed from a symmetric

mode to a antisymmetric mode with increased coherence for the transverse ellipsoid

and cylinders, likely due to the reduction in three-dimensionality and the change
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in topology of the domain as the obstacle now spans the entire height. Surprisingly,

the streamwise ellipsoid wake actually experienced decreased coherence.

Other studies of tapered obstacles (plates, cones, and pyramids) have defined a

taper ratio or aspect ratio (of which the definitions are equivalent for obstacles that

do not penetrate through the boundary) ARav, as defined in Sec. 4.2.5. Whereas the

values of the cylinder aspect ratios AR and ARav are identical by this definition, the

transverse and streamwise ellipsoids have equivalent aspect ratios of ARav = 0.794

and 1.031, respectively. For this range of ARav, the presence and nature of periodic

vortex shedding is highly varied as indicated in Sec. 4.2.5. Comparing similarly

tapered geometries, Castro and Watson (2004) observed St = 0.18 – nearly identical

to that observed for the ellipsoid geometries at d/H = 3.9 – for triangular plates

of ARav = 0.58. On the other hand, Martinuzzi and AbuOmar (2003) measured

St = 0.33 for a pyramid of ARav = 1. However, they also proposed a complex

multi-vortex wake structure that evidently relies on distinct separation points at

the pyramid edges as well as important afterbody effects, so it is not surprising

that the shedding frequency is quite distinct from the ellipsoids.

Local bed shear stress measurements, estimated from Reynolds stress, have

been computed in the wake of the sphere to provide insight into the sediment

depositional patterns surrounding the obstacle. The bed shear stress measurements

reveal that two areas at the side and close to reattachment length have the higher

values. The higher stress near the side of the sphere are probably related to lobe

structures observed at the side of the sphere.

The sensitivity of the mean wake vorticity distribution to obstacle shape and

relative submergence, quantified in this dissertation, provides controls with which

to further probe the dynamics of wake structures and the related transport mecha-

nisms. In addition, the fact that relatively subtle changes in geometry can provide

such dramatic changes in flow patterns has implications for the transport of mo-
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mentum and scalars in applications of flow around wall-mounted bodies.

The shear stress distribution measured around the sphere may help in the

prediction of sediment transport in mountain stream.

6.2 Future Work

In a general sense, the observations presented in Ch. 4 and the methods de-

veloped provide a framework that can be used to increase our understanding of

turbulent flow dynamics and structure. Therefore, this work provides insight into

the modeling and control of flow over wall-mounted bodies. These results can

also elucidate roles of shape and relative submergence which is not previously

discussed in the literature, and introduces new wake vorticity fields that cannot be

explained by existing models.

While the mean wake structure and shedding characteristics have been docu-

mented around the low-aspect-ratio obstacles of interest, and correlated with bed

shear stress in the case of the sphere, many details of the dynamics of these wakes

are still unresolved. As described in Fig. 6.1, conditional averaging of DPIV data

can be employed based on, for example the phase of a hot film signal determined

from FFT or wavelet analysis, to better understand the dynamics of large-scale

structures in the wake.

Also using the knowledge gained and methods developed in this boundary

layer experiment, we can consider the more complex problem of open-channel flow

over a submerged obstacle on a rough bed. This configuration has direct application

to sediment transport in mountain streams and is additionally complicated at

low relative submergence by an active free surface. In particular, the following

questions are of interest:

1. What is the time-averaged spatially resolved bed shear stress distribution

around the spherical obstacle with varying Reynolds number, Froude number,

Shields parameter, and relative submergence?
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Figure 6.1: Graphic chart of future work for dynamic shedding behavior

2. How do the mean flow structure and its dynamics govern these stresses?

Figures 6.2 and 6.3 illustrate an experimental setup, which will be facilitate

flow measurements around a sphere atop a rough bed under the high (d/D =3.5),

intermediate (d/D =1.2), and low (d/D = 0.8), relative submergence regimes.
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Figure 6.2: An experimental setup for upstream view at low relative submergence
for the open channel tests

Figure 6.3: An experimental setup for plan view measurement at low relative
submergence for the open channel tests
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APPENDIX A
UNCERTAINTY ANALYSIS-DPIV

Based on the literature and quality of the data, an uncertainty in the PIV data

was assumed and from the assumed values, a general uncertainty for each of the

terms was calculated, designated by σ.

A.1 Transverse Plane

Factors that influence PIV errors are large particle sizes, improper seeding of

particles, particle displacement, and out-of-plane motion (Adrian, 2005; Huang

et al., 1997; Raffel et al., 2007). Huang et al. (1997) proposed a representative

uncertainty in the displacement determined by DPIV analysis to be approximately

0.1 pixels. Obtaining accurate estimates of PIV uncertainty in situ is not possible

due to the widely-varying sources of error from vector to vector. With the influence

of these publications, advancements in technology, and the quality of the data

obtained, the assumed uncertainties for the change in pixel position for σ∆x, σ∆y,

σ∆z were 0.1 pixels.

Yg and Zg are spacing between vectors generated in the PIV vector files in

the spanwise direction, and spacing between vectors created in the PIV vector

files in the vertical direction (z-direction), respectively. For transverse (y-z) plane,

Yg= Zg=1.3699 mm. In this analysis, the uncertainties in the vector spacing (σXg ,

σYg , and σZg) are assumed to be negligible. For a transverse plane, the pixel shift

was approximately 2-3 pixels which resulted in an uncertainty in the z- and y-

component of the velocity to be approximately 3%.

A conservative estimate for the uncertainties in the spanwise velocity and

streamwise vorticities were calculated and are demonstrated in the subsequent

equations. The velocity vectors are calculated using PIV by first using a cross-

correlation analysis to determine a mean particle displacement within a sub-

window of the domain between the two images and dividing by the time interval
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separating the image pair (Raffel et al., 2007). The spanwise velocity, Uz, can be

defined in this manner and is shown in Eq. A.1.

Uz =
∆z

M∆t
(A.1)

Where M is the magnification ratio. The total uncertainty in the spanwise

velocity can be obtained by once again taking partial derivatives of Uz with respect

to the terms that will contribute error. The cameras were calibrated with the laser

plane using a ruler. Since the calibration was of high quality, the uncertainty in the

magnification ratio is assumed to not be a major component of uncertainty in the

spanwise velocity. The resulting uncertainty for the spanwise velocity is given in

Equation A.2.

σUZ
=













(

∂Uz

∂∆z
σ∆z

)2

+

(

∂Uz

∂∆t
σ∆t

)2










1
2

(A.2)

The uncertainty associated with ∆t is determined by the laser timing and and

assumed to be negligible. The resulting uncertainty used in the analysis for the

spanwise velocity is:

σUz =
σ∆z

M∆t
(A.3)

During the processing of the DPIV images, a window size of 32 × 32 was used.

This implied the magnification ratio was 0.0428 mm/pixel. Lastly, the ∆t used

between laser pulses for the data acquired was 2200 microseconds. Using these

values, the uncertainties can be obtained as seen below:

σUz = 1.9455
mm

s
(A.4)

In similar way, σUy can be calculated 1.9455 mm
s

. Out-of-plane vorticity components
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were calculated using the central difference scheme presented in Equation 3.7. To

determine the uncertainty in the vorticity values, the potential sources of errors

were added in quadrature as demonstrated below with simplifications:

σωx =















σ2
Uz

4Y2
g

+

σ2
Uy

4Z2
g















1
2

(A.5)

Then the uncertainty can be obtained σωx=1.0042mm
s

. The uncertainty in Γ cab

be determine from:

Γx = ωx∆y∆z (A.6)

And therefore:

σΓx = σωx∆y∆z (A.7)

Then the uncertainty can be obtainedσΓx=1.8845mm2

s
. Therefore, in the case of the

transverse planes, we looked at the transverse ellipsoid’s left tip and base vortices

to do the uncertainty analysis. The very weak left tip vortex yielded uncertainties

in the Γx and ωx to be 3.12% and 16.83%, respectively while the left base vortex had

relative uncertainty values of 0.13% and 1.67% for Γx and ωx, respectively. We then

approximated the overall uncertainties in Γx, σΓx/Γx, and ωx, σωx/ωx, to be 1.5% and

8%, respectively.

In summary for transverse planes, uncertainties in velocity and vorticity were

estimated to be 3% and 8%. The resulting measurement uncertainty in streamwise

vortex circulation (2%) does not include errors due to asymmetry in the wake or

ambiguity in the boundary of the vortex. More representative uncertainties in

circulation based on the data are given in Sec. 4.1.3.
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A.2 Symmetry Plane

In the streamwise direction, the boundary layer experiments yielded an approx-

imate particle shift of 9 pixels which resulted in an uncertainty of 1% for the x- and

z-component of the velocity. As far as the streamwise direction is concerned, the

transverse ellipsoid was used again which resulted in an approximate uncertainty

of Γx and ωy of 0.0066% and 0.315%, respectively.
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APPENDIX B
UNCERTAINTY ANALYSIS-THERMAL ANEMOMETRY

B.1 Strouhal Number

To determine the uncertainty in the Strouhal number, the potential sources of

errors were added in quadrature as demonstrated below. The Strouhal number

definition is:

fs =
fsd

U∞
(B.1)

The uncertainty in the diameter is assumed to be negligible.

σSt =













(

∂St

∂ f
σ f

)2

+

(

∂St

∂ U∞
σU∞

)2










1
2

(B.2)

The uncertainty on frequency can be calculated from the sample standard de-

viation, SD, and the degrees of freedom, N as:

fs = t
SD
√

N
(B.3)

For sample of N=10 and t=2.179 within a 95% confidence interval, SD was

measured 0.14 which yields the σ fs=0.096. For diameter of 75 mm and U∞=0.35

m/s, the uncertainty in the Strouhal number was measured σSt=2.5 %.
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