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ABSTRACT

Anderson and Frazier [6] defined a generalization of factorization in integral

domains called τ -factorization. If D is an integral domain and τ is a symmetric

relation on the nonzero nonunits of D, then a τ -factorization of a nonzero nonunit

a ∈ D is an expression a = λa1 · · · an, where λ is a unit in D, each ai is a nonzero

nonunit in D, and aiτaj for i 6= j. If τ = D# ×D#, where D# denotes the nonzero

nonunits of D, then the τ -factorizations are just the usual factorizations, and with

other choices of τ we get interesting variants on standard factorization. For exam-

ple, if we define aτdb ⇔ (a, b) = D, then the τd-factorizations are the comaximal

factorizations introduced by McAdam and Swan [19]. Anderson and Frazier defined

τ -factorization analogues of many different factorization concepts and properties, and

proved a number of theorems either generalizing standard factorization results or the

comaximal factorization results of McAdam and Swan. Some of these concepts include

τ -UFD’s, τ -atomic domains, the τ -ACCP property, τ -BFD’s, τ -FFD’s, and τ -HFD’s.

They showed the implications between these concepts and showed how each of the

standard variations implied their τ -factorization counterparts (sometimes assuming

certain natural constraints on τ). Later, Ortiz-Albino [21] introduced a new con-

cept called Γ-factorization that generalized τ -factorization. We will summarize the

known theory of τ -factorization and Γ-factorization as well as introduce several new

or improved results.
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They showed the implications between these concepts and showed how each of the

standard variations implied their τ -factorization counterparts (sometimes assuming
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CHAPTER 1
INTRODUCTION

In [6], the authors define and study a generalization of factorization in integral

domains called τ -factorization. If D is an integral domain and τ is a symmetric rela-

tion on the nonzero nonunits of D, then a τ -factorization of a nonzero nonunit a ∈ D

is an expression a = λa1 · · · an, where λ is a unit in D, each ai is a nonzero nonunit in

D, and aiτaj for i 6= j. If τ = D# ×D#, where D# denotes the nonzero nonunits of

D, then the τ -factorizations are just the usual factorizations, and with other choices

of τ we get interesting variants on standard factorization. For example, if we de-

fine aτdb ⇔ (a, b) = D, then the τd-factorizations are the comaximal factorizations

introduced in [19]. In [6], the authors defined τ -factorization analogues of many dif-

ferent factorization concepts and properties, and proved a number of theorems either

generalizing standard factorization results or the comaximal factorization results of

[19]. Some of these concepts include τ -UFD’s, τ -atomic domains, the τ -ACCP prop-

erty, τ -BFD’s, τ -FFD’s, and τ -HFD’s. (See [3] for a study of the analogous standard

factorization concepts.) They showed the implications between these concepts and

showed how each of the standard variations implied their τ -factorization counterparts

(sometimes assuming certain natural constraints on τ). Later, in [21], a new concept

called Γ-factorization was introduced that generalized τ -factorization. We will sum-

marize the known theory of τ -factorization and Γ-factorization as well as introduce

several new or improved results.

While one usually has an integral domain in mind when thinking of factoriza-
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tion, we will find it useful to work in full generality as much as possible, not assuming

the presence of any additive structure or cancellative property, especially when formu-

lating definitions. A careful reading of the previous work on “abstract factorization”

theories such as τ -factorization or Γ-factorization reveals that virtually none of the

general theory is lost by removing the additive structure, and large portions of the

theory do not require the cancellative property. We will see several interesting ex-

amples of factorization occurring with no additive structure, thus showing that our

extra generality is far from frivolous and allows some interesting special cases to be

subsumed by the theory. One such special case of particular interest is the comaxi-

mal factorization of ring ideals studied in [19][Section 5] and later generalized in [17].

Some aspects of the theory of abstract factorization are considerably simplified by

restricting to the cancellative monoid setup, while others are developed in absolutely

identical fashion whether one assumes the cancellative property or not. This thesis

will have a cancellative focus in the sense that the cancellative property will always

be assumed in the first situation, while in the second situation we will often (but not

always) state results and definitions in their full generality. We mention the upcoming

thesis [20] as an important resource for the non-cancellative focus.

1.1 Basic Definitions

Throughout this thesis, a monoid will refer to a commutative multiplicative

semigroup with 1 6= 0 unless stated otherwise. Similarly, all rings will be commutative

with 1 6= 0.
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Let H be a monoid. We will use use H× to denote the group of units of H,

and set H∗ = H \ {0}, H# = H∗ \ H×, and H#
0 = H \ H×. Elements a, b ∈ H are

called:

(1) associates, denoted a ∼ b, if a | b and b | a, or, equivalently, if aH = bH;

(2) strong associates, denoted a ≈ b, if a = λb for some λ ∈ H×; and

(3) very strong associates, denoted a ∼= b, if a ∼ b (equivalently, a ≈ b) and either

a = b = 0 or a 6= 0 and a = rb⇒ r ∈ H×.

The relation ∼= is symmetric and transitive, the relations ∼ and ≈ are congruence

relations, and ∼=≤≈≤∼. If ≈=∼, then H is called a strongly associate monoid.

We say H is présimplifiable if one of the following equivalent statements holds: (1)

a = ab implies a = 0 or b ∈ H×, (2) ∼= =∼, (3) ∼= is reflexive, or (4) ∼= is a congruence

relation. The monoid H is called cancellative if ac = bc implies a = b or c = 0. It

is easily seen that cancellative ⇒ présimplifiable ⇒ strongly associate. The papers

[9] and [4] are our primary references on associate relations and the présimplifiable

property. Those papers work in the context of rings, but the results from them that

we will use generalize to monoids with essentially the same proofs.

The most rigorous way to define factorizations was first laid out in [7]. That

paper worked in the context of integral domains, but this and many other definitions

lead to obvious extensions to the full generality of monoids. A (reduced) factoriza-

tion in a monoid H is a formal word (λ, a1, . . . , an, 1, 1, . . .), where λ ∈ H× (λ = 1),

n ≥ 1, and each ai ∈ H#. We will also regard (λ, 0, 1, 1, . . .) as a factorization for

each λ ∈ H×, and call it reduced if λ = 1. For a nonunit a, the set of (reduced)
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factorizations (λ, a1, . . . , an, 1, 1, . . .) with a = λa1 · · · an are the (reduced) factoriza-

tions of a. For the sake of convenience, we will take the usual approach of identifying

a factorization (λ, a1, . . . , an, 1, 1, . . .) with the expression λa1 · · · an, and in the case

λ = 1 we will write simply a1 · · · an. In a factorization λa1 · · · an, the leading unit is λ,

the factors are the ai’s, and the length of the factorization is n. A trivial factorization

is a factorization of length 1. The set of factorizations (resp., trivial factorizations, re-

duced factorizations, trivial reduced factorizations) will be denoted by fact(H) (resp.,

tfact(H), rfact(H), trfact(H)), and the set of factorizations (resp., trivial factoriza-

tions, reduced factorizations, trivial reduced factorizations) of a nonunit a by fact(a)

(resp., tfact(a), rfact(a), trfact(a)).

Historically, the vast majority of work done with factorization has been in the

integral domain context, where the factorizations of 0 are hopelessly boring, so in

such a setup it would make good sense to not allow 0’s to appear in factorizations.

However, in the presence of zero divisors it makes sense to consider the factorizations

of 0, and to formulate definitions for when 0 is irreducible, prime, and so on. It is

beneficial to translate definitions such as these so that they are wholly in terms of

factorizations, so that they can be readily generalized to the abstract factorization

systems we will introduce shortly. For example, a nonunit p is prime if whenever it

divides a factorization λa1 · · · an, it divides some ai, and the notion of divides itself

is easily translated as being a factor in a factorization. In order to be able to extend

this approach to 0 in a way consistent with how it is done with all the other nonunits,

there is no way around allowing 0 to appear in some factorizations, which is our
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motivation for allowing the factorizations 0 = λ · 0. However, allowing 0 to appear in

nontrivial factorizations causes inconveniences in formulating some definitions, which

has led us to restrict it to being a factor in these trivial factorizations. For example,

we want the definitions to work out so that H has no zero divisors if and only if 0

has no nontrivial factorizations, and clearly this desired theorem holds if and only if

0 is not allowed as a factor in any nontrivial factorizations.

We call a subset Γ of fact(H) a factorization system on H. Often we will

shorten “factorization system on H” to “factorization system” or simply “system” if

what we mean is clear from context. For a nonunit a, we define Γ(a) = Γ ∩ fact(a).

A Γ-factorization (of a nonunit a) is an element of Γ (Γ(a)). We call a nonunit a

Γ-expressible if Γ(a) 6= ∅. If a = λa1 · · · an is a Γ-factorization, then we call a a

Γ-product of a1, . . . , an. We call the factors of the Γ-factorizations of a nonunit b the

Γ-factors or Γ-divisors of b; if a is a Γ-factor of b, then we say a Γ-divides b and write

a |Γ b. The set of reduced (resp., trivial, trivial reduced) Γ-factorizations is denoted

by Γr (resp., Γt, Γtr).

We introduce a new concept of ψ-factorization lying somewhere between τ -

factorization and Γ-factorization. For a relation ψ on H, we define a factorization

system Γψ that consists of the factorizations λa1 · · · an with aiψaj for i < j and

each λψai. (Note that a1 · · · an ∈ Γψ ⇔ aiψaj for i < j and each 1ψai.) A ψ-

factorization is a Γψ-factorization. We similarly abbreviate all other “Γψ” phrases

where the abbreviation will not cause confusion, even abbreviating “Γψ” itself with

“ψ” when it does not cause difficulties. (One thing to avoid is writing a factorization
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system of the form
⋃
i∈I ψi, as the two possible interpretations

⋃
i∈I Γψi and Γ⋃

i∈I ψi

are in general not the same thing. However, writing factorization systems in the form⋂
i∈I ψi is all right, since

⋂
i∈I Γψi = Γ⋂

i∈I ψi
.) We will write ψH or τH for the relation

H × H and ψ∅ for the empty relation on H. Note that the factorization system ψ∅

is simply the empty factorization system, which we will sometimes prefer to denote

with Γ∅.

Finally, we are ready to define the τ -factorizations. For a relation τ on H#,

we define a factorization system Γτ by defining λa1 · · · an ∈ Γτ ⇔ aiτaj for i < j. A

τ -factorization is an element of Γτ , and we abbreviate all the Γτ phrases like we did for

ψ-factorization. If we think of τ as a relation on H by defining λτa for every λ ∈ H×

and a ∈ H#
0 , then this definition is consistent with the one above for ψ-factorizations.

We will write τ∅ for the empty relation on H#; expanding τ∅ to a relation on H in

the above way gives τ∅ = H× × H#
0 . Note that the factorization system τ∅ is not

Γ∅, but rather tfact(H). If τ is symmetric, then we can equivalently replace the

“i < j” in the definition with “i 6= j”. Most of the literature only considers the

case where τ is symmetric and would use the phrase ordered τ -factorizations to refer

to τ -factorizations with τ possibly non-symmetric, but we will carry things out for

non-symmetric relations as far as possible. Historically, the progression of ideas went:

τ -factorization, reduced τ -factorization, Γ-factorization, and then the ψ-factorization

introduced here. However, in the following chapter, we will find it most efficient

and illuminating to develop the theory going from most general to most specific:

Γ-factorization, ψ-factorization, and then τ -factorization.
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For a thorough introduction to τ -factorization along with the original proofs of

several key results, see [6]; for a brief summary, see the introductory sections of [18].

For a survey of the three major theories (τ -factorization, reduced τ -factorization, and

Γ-factorization) and the relationship between them, see [7]. Those papers work within

the context of integral domains, but a fair portion of it carries over with essentially

no change to rings with zero divisors or even non-cancellative monoids. For those

more subtle parts of the theory that do not trivially carry over, one should consult

[20].

We end this introductory chapter with a few examples of interesting factoriza-

tion systems that motivate our study of abstract factorization.

Example 1.1.1.

(1) For any monoid H, the τH-factorizations are simply the usual factorizations.

(2) Let R be a ring. In analogy with [6], we define a symmetric relation τd on R#

by aτdb ⇔ (a, b) = R. The τd-factorizations are the comaximal factorizations

studied in [19]. More generally, if ? is a weak ideal system on a monoid H,

then we have a symmetric relation τ? on H# given by aτ?b ⇔ {a, b}? = H,

which give rise to the ?-comaximal factorizations introduced in [6]. (A very

thorough reference for weak ideal systems is [15], while the reader may refer to

[17][Section 3] for a quicker survey. The comaximal factorizations correspond

to the special case where ? is the d-operation that takes a subset of a ring to

the ideal that it generates.)

(3) Similarly, we can study comaximal factorizations of ideals, by letting I(R) be
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the monoid of ideals of a ring R and defining IτdJ ⇔ I+J = R. More generally,

if ? is a weak ideal system on a monoid H, then its ?-ideals form a monoid I?(H)

under the ?-multiplication I ? J = (IJ)? = {ab | a ∈ I, b ∈ J}?, and we define

Iτ?J ⇔ (I ∪ J)? = H, giving rise to the ?-comaximal factorizations of ideals

that are the subject of [17].

(4) Let H be a monoid. Analogously to [6], we define a symmetric relation τ[ ] on

H# by aτ[ ]b ⇔ a and b are relatively prime. Then τ[ ] ≤ τd. This relation and

the factorizations associated with it are further studied in [22] and [8].

(5) Let X be a set. Then (P(X),∪) is a monoid. Define a relation τt on P(X)# =

P(X) \ {∅} by Y τtZ ⇔ Y ∩ Z = ∅. So the τt-factorizations of a subset of X

are the different ways of writing it as a disjoint union of nonempty subsets. If

X is a topological space and we replace P(X) with the closed subspaces of X,

then the irreducible closed subspaces of X are precisely those with no nontrivial

τt-factorization.

(6) Let R be a ring and J be an ideal of R. Define a relation τJ on R# by aτJb⇔

a − b ∈ J . An important special case is the τ(n)-relation on Z#, where n ∈ Z.

The (reduced) τ(n)-factorizations have been extensively studied in [6], [14], and

[16].

(7) While a lot of the most natural examples of factorization systems correspond

to some sort of τ -factorization, there are many that cannot be written this way.

For instance, the factorization system on Z consisting of factorizations with at

most two even factors is one such system.
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CHAPTER 2
FROM Γ-FACTORIZATION TO τ-FACTORIZATION

The purpose of this chapter is to redevelop the elementary theory of τ -

factorization starting from the more general theory of Γ-factorization. As we do

this, we will get an appreciation for what results about τ -factorization are actually

true in a much greater generality, and which things about τ -factorization are truly

special.

2.1 Γ-factorization

Before introducing the basic Γ-factorization properties, we need to give a pre-

cise definition of “Γ-refinement”. Let Γ, Γ1, and Γ2 be factorization systems on a

monoid H. A Γ1-Γ2-refinement of a factorization λa1 · · · an is a Γ2-factorization of the

form λb1,1 · · · b1,m1 · · · bn,1 · · · bn,mn , where each ai = bi,1 · · · bi,mi is a ((Γ1)r∪trfact(H))-

factorization; in this case we call the first factorization a Γ1-Γ2-partition of the second,

and, if some mi > 1, then we call the Γ1-Γ2-refinement and Γ1-Γ2-partition proper.

A Γ-refinement is a Γ-Γ-refinement and a Γ-partition is a Γ-Γ-partition. A refine-

ment is a fact(H)-refinement and a partition is a fact(H)-partition. Some care should

be taken with this terminology, since a partition of a factorization λb1 · · · bm only

corresponds to a specific kind of partition of the set {1, . . . ,m}.

We are now ready to introduce the main Γ-factorization properties that we

will study. Let Γ and Γ′ be factorization systems on a monoid H, and let ρ be a

relation on H#. We call Γ:
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(1) symmetric if permuting the factors of a Γ-factorization results in a Γ-factorization;

(2) reflexive if 0 = 0 is a Γ-factorization and a · · · a︸ ︷︷ ︸
n times

is a Γ-factorization for each

a ∈ H# and n ≥ 1;

(3) transitive if for every two Γ-factorizations λa1 · · · am and µam · · · an, the factor-

ization λa1 · · · an is a Γ-factorization;

(4) (weakly) pseudo-transitive if wheneverm ≥ 0 (and n = m+2) and λa1 · · · amam+1,

λa1 · · · amam+2, . . . , λa1 · · · aman, and µam+1 · · · an are Γ-factorizations, then

λa1 · · · an is a Γ-factorization;

(5) unital if changing the leading unit of a Γ-factorization results in a Γ-factorization;

(6) ρ-preserving if whenever λa1 · · · an is a Γ-factorization and some bρai, then

λa1 · · · ai−1bai+1 · · · an is a Γ-factorization;

(7) associate-preserving (resp., strong associate-preserving, Γ′-divisive, divisive) if

it is ∼-preserving (resp., ≈-preserving, |Γ′-preserving, |-preserving);

(8) Γ′-refinable if any Γ′-fact(H)-refinement of a Γ-factorization is a Γ-factorization,

(9) refinable if it is Γ-refinable;

(10) combinable if every partition of a Γ-factorization is a Γ-factorization;

(11) (weakly) multiplicative if whenever λa1 · · · am and λb1 · · · bn are Γ-factorizations

with m ≤ n (m = n) and ai = bi for each i ≤ m except possibly i = j, then

λa1 · · · aj−1(ajbj)aj+1 · · · am is a Γ-factorization;

(12) (weakly) divisible if for any Γ-factorization λa1 · · · an, k ≤ n (k ≤ 2), and

1 ≤ i1 < · · · < ik ≤ n, the factorization λai1 · · · aik is a Γ-factorization;
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(13) (weakly) reduced divisible if for any Γ-factorization λa1 · · · an, k ≤ n (k ≤ 2),

and 1 ≤ i1 < · · · < ik ≤ n, the factorization ai1 · · · aik is a Γ-factorization;

(14) (reduced) expressive if every nonunit has a (reduced) Γ-factorization; and

(15) (reduced) normal if it contains every (reduced) trivial factorization.

Note that for “refinable” we broke with our standard of dropping the “Γ” from names

if Γ = fact(H). It made the most sense to use “refinable” to mean “Γ-refinable”

because the property of being fact(H)-refinable is too strong to be of any use in

practice. When making some general discussion of the ρ-preserving property, nothing

is lost by assuming ρ to be reflexive, since the ρ-preserving property is equivalent to

the (ρ∪ =)-preserving property.

Most of the above definitions are from [7] and [21], where we give the newer

[7] preference in the event of a conflict of definitions. Some of the definitions above

are generalizations of or slight variants on the corresponding ones in those papers.

The properties (reduced) expressive and (weakly) pseudo-transitive are stated for the

first time here. One conflict of definitions is “multiplicative”, which is defined to

mean something entirely different in [21] (it is not included in the newer [7]), but we

have modified it so that it is consistent with the prior definition of “multiplicative”

for τ -factorization given in [6]. A more subtle conflict of definitions is that “(strong)

associate-preserving” is defined to include the unital property in [7]. We have chosen

not to go in this direction in order to be more consistent with prior work on reduced

τ -factorization, and also because several theorems require only our weaker version,

and we can obtain more powerful results in this way. (Perhaps the most important



12

application is the aforementioned reduced τ -factorization.)

We pause to illustrate some of the above properties by returning to our exam-

ples from Chapter 1.

Example 2.1.1.

(1) The system consisting of all factorizations satisfies all of the above properties.

(2) We will later see that a factorization system Γ is of the form Γ = Γψ for some

relation ψ on H if and only if it is (weakly) divisible and (weakly) pseudo-

transitive. Similarly, it turns out Γ is of the form Γ = Γτ for some relation τ

on H# if and only if it is (weakly) divisible, (weakly) pseudo-transitive, and

normal. The latter systems also possess the unital property. We will see that

it is easy to characterize when the system τ is symmetric, reflexive, transitive,

ρ-preserving, combinable, or multiplicative in terms of the relation τ . (A similar

comment applies for the system ψ, though some things work out slightly less

cleanly.) On the other hand, a variety of interesting facts previously shown for τ -

factorization are still true for Γ-factorization with these assumptions weakened

or even removed entirely, and it is for this reason that the generalization of

Γ-factorization has value.

(3) The system τd (or more generally τ?) is symmetric, divisive, and multiplicative.

(This is true whether we are talking about the factorization of elements or ide-

als.) In the case of τ -factorization, divisive implies refinable, and multiplicative

implies combinable. So this system has quite a few nice properties.

(4) The system τ[ ] is symmetric and divisive. It is multiplicative in a GCD domain,
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but in general it need not even be combinable. (For an example of a domain

where τ[ ] is not combinable, see [18, Example 2.3] or [6, Example 2.1(6)].)

(5) The system τt is symmetric, divisive, and multiplicative.

(6) The relation τJ extends to a congruence relation in an obvious way, so the

system τJ is clearly symmetric, transitive, and reflexive. However, it is very

rarely associate-preserving, refinable, or combinable. In the usual case where

we are working in a domain, conditions for when τJ is associate-preserving,

divisive, or multiplicative are known – see [16, Theorem 3.13]. Examining the

proof reveals that the multiplicative and combinable properties are equivalent

for τJ when working in a domain.

(7) The factorization system on Z consisting of factorizations with at most two

even factors is symmetric, unital, normal, divisive, divisible, combinable, and

multiplicative, but not refinable.

Often, when we state some result with a strong associate-preserving assump-

tion, all we really need is the weakly strong associate-preserving property, where H

is weakly strong associate-preserving if for any Γ-factorization λa1 · · · an and µ ∈ H×,

some λa1 · · · ai−1(µai)ai+1 · · · an is a Γ-factorization. Similarly, when we state some

result with a (reduced) divisible assumption, it can very often be weakened to assum-

ing the (reduced) truncatable property, where Γ is (reduced) truncatable if for any

Γ-factorization λa1 · · · an and 1 ≤ i ≤ j ≤ an, the factorization λai · · · aj (ai · · · aj)

is a Γ-factorization. We leave it to the reader who feels so inclined to examine the

proofs and determine when these slight improvements of results can be achieved. Of
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course, these weaker properties are equivalent to their stronger counterparts in the

usual case where Γ is symmetric.

Let H be a monoid. If P is one of the above properties other than expressive,

reduced expressive, and weakly strong associate-preserving, and if {Γi}i∈I is any fam-

ily of factorization systems satisfying property P , then
⋂
i∈I Γi satisfies property P .

Because fact(H) satisfies all of the above properties, this enables us to define for any

such P the P closure of a factorization system Γ to be the unique smallest factoriza-

tion system containing Γ and satisfying property P . We will use Γu, Γap, Γsap, Γs, Γnl,

Γrnl, and Γc to denote the unital, associate-preserving, strong associate-preserving,

symmetric, normal, reduced normal, and combinable closures of Γ, respectively. More

explicitly,

Γu = {λa1 · · · an | λ ∈ H×, µa1 · · · an ∈ Γ},

Γap = {λa′1 · · · a′n | λa1 · · · an ∈ Γ, a′i ∼ ai},

Γsap = {λ(µ1a1) · · · (µnan) | µ1, . . . , µn ∈ H×, λa1 · · · an ∈ Γ},

Γs = {λaσ(1) · · · aσ(n) | λa1 · · · an ∈ Γ, σ ∈ Sn},

Γnl = Γ ∪ tfact(H),

Γrnl = Γ ∪ trfact(H),

and

Γc = {λ(a1,1 · · · a1,m1) · · · (an,1 · · · an,mn) | λa1,1 · · · an,mn ∈ Γ}.

Similarly, if P1, . . . , Pn are some of these properties, then we can define the P1, . . .,

Pn−1, and Pn closure of a factorization system Γ to be the smallest factorization
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system containing Γ that satisfies P1, . . . , Pn. If these are some of the above properties

whose closure operations have been assigned symbols, then we form the symbol for

this combination by separating the symbols with commas. For example, the unital,

associate-preserving, and symmetric closure of a factorization system Γ is denoted

Γu,ap,s. The form of the (strong) associate-preserving closure can be generalized to

the ρ-preserving property, with ρ any reflexive relation on H#. We set Γρ,0 = Γ

and recursively define Γρ,k+1 = {λa′1 · · · a′n | λa1 · · · an ∈ Γρ,k, a
′
iρai} for k ≥ 0, and

then the ρ-preserving closure is given by Γρ =
⋃∞
k=0 Γρ,k. When ρ is transitive, as

it is in the (strong) associate-preserving and divisive closures, then we have simply

Γρ = Γρ,1. Closures will prove an important tool later on, as proving that certain

properties are preserved by taking certain closures will allow us to know when certain

simplifying assumptions are harmless. For instance, it is clear that |Γ = |Γs , and that

the Γ-expressible and Γs-expressible nonunits coincide, so in proving any theorem

about Γ-factorization that is only dependent on the |Γ relation and the Γ-expressible

nonunits, it suffices to consider the case where Γ is symmetric.

We will now prove some equivalent ways to define the combinable, (weakly)

multiplicative, refinable, ρ-preserving, and divisible properties. It is useful to have

all the different possible definitions at our disposal. For the most part, we will use

whichever is most convenient without an explicit reference to the following lemma.

Lemma 2.1.2. Let Γ be a factorization system on a monoid H.

(1) The following are equivalent.

(a) The system Γ is combinable.
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(b) For any Γ-factorization λa1 · · · an and 1 ≤ i ≤ n − 1, the factorization

λa1 · · · ai−1(aiai+1)ai+2 · · · an is a Γ-factorization.

(2) Consider the following statements.

(a) The system Γ is multiplicative.

(b) Whenever λa1,1 · · · a1,n1, . . . , λam,1 · · · am,nm are Γ-factorizations with n1 ≤

· · · ≤ nm and a1,i = · · · = am,i for each i ≤ n1 except possibly i = j, then

λa1,1 · · · a1,j−1(a1,j · · · am,j)a1,j+1 · · · a1,n1 is a Γ-factorization.

(c) The system Γ is weakly multiplicative.

(d) Whenever λa1,1 · · · a1,n, . . . , λam,1 · · · am,n are Γ-factorizations with

each a1,i = · · · = am,i except possibly for i = j, then

λa1,1 · · · a1,j−1(a1,j · · · am,j)a1,j+1 · · · a1,n is a Γ-factorization.

Then (a) ⇔ (b) ⇒ (c) ⇔ (d). If Γ is divisible, then all four statements are

equivalent.

(3) The following are equivalent.

(a) The system Γ is (reduced) divisible.

(b) For any nontrivial Γ-factorization λa1 · · · an and 1 ≤ i ≤ n, the factoriza-

tion λa1 · · · âi · · · an (a1 · · · âi · · · an) is a Γ-factorization.

(4) The following are equivalent.

(a) The system Γ is refinable.

(b) Whenever λa1 · · · an and some ai = b1 · · · bm are Γ-factorizations, then so

is λa1 · · · ai−1b1 · · · bmai+1 · · · an.
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(5) The following are equivalent for a reflexive relation ρ on H#.

(a) The system Γ is ρ-preserving.

(b) Whenever λa1 · · · an is a Γ-factorization and each a′iρai, the factorization

λa′1 · · · a′n is a Γ-factorization.

Proof. We prove only (1), as (2) − (5) are very simple. (a) ⇒ (b): Clear. (b) ⇒

(a): Assume (b) and let λb1 · · · bm be a Γ-factorization with a partition λa1 · · · an.

We need to show that λa1 · · · an is a Γ-factorization. For each i = 1, . . . , n write

ai = bki · · · bki+1−1, where 1 = k1 < · · · < kn+1 = n + 1. If each ki+1 = ki + 1, then

each bi = ai, so let us assume that m ≥ 2 and some ki+1 ≥ ki + 2. By assumption,

λb1 · · · bki−1(bkibki+1)bki+2 · · · bm is a Γ-factorization, and the fact that ki+1 ≥ ki + 2

ensures that λa1 · · · an is a partition of it. Thus λa1 · · · an is a Γ-factorization by

induction.

Now we are ready to prove several implications between the Γ-factorization

properties. Admittedly, a great many of these implications are obvious from the defi-

nitions, and there are several additional trivial implications that we could have added

to the list but opted not to. Additionally, some of the results in this theorem and

others can be strengthened if we define yet more properties of factorization systems,

but the process has to end somewhere. The conditions for when Γ = fact(H) were

done for the τ -factorization case in [21, Lemma 4.3].

Theorem 2.1.3. Let Γ be a factorization system on a monoid H.

(1) All of the above properties are satisfied by fact(H).
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(2) Reduced normal and unital ⇒ normal ⇒ reduced normal ⇒ reduced expressive

⇒ expressive.

(3) Transitive ⇒ pseudo-transitive ⇒ weakly pseudo-transitive.

(4) Divisive ⇒ associate-preserving ⇒ strong associate-preserving.

(5) The system Γr is reflexive and divisive if and only if Γr = rfact(H). Hence

Γ = fact(H) if and only if Γ is unital, reflexive, and divisive.

(6) Divisible and multiplicative ⇒ combinable.

(7) If Γr is refinable and weakly multiplicative, then it is pseudo-transitive. Hence,

if Γ is unital, refinable, and weakly multiplicative, then it is pseudo-transitive.

(8) If Γ is divisible and refinable, then it is Γr-divisive.

(9) Pseudo-transitive and normal ⇒ unital.

(10) Combinable and divisive ⇒ divisible.

Proof. Parts (1)-(4) are clear. We now prove the remainder.

(5) (⇒): Assume Γr is reflexive and divisive. Then 0 = 0 is a Γr-factorization. Now

let a1 · · · an be any other reduced factorization. By reflexivity, the factorization

(a1 · · · an)n is a Γr-factorization, and so is a1 · · · an by divisiveness. (⇐): Clear.

(6) Assume Γ is multiplicative and divisible. Then for any Γ-factorization

λa1 · · · an and 1 ≤ i ≤ n − 1, by divisibility λa1 · · · âi+1 · · · an and

λa1 · · · âi · · · an are Γ-factorizations, and by the weak multiplicative property

λa1 · · · ai−1(aiai+1)ai+2 · · · an is a Γ-factorization. Therefore Γ is combinable.

(7) Assume Γr is refinable and weakly multiplicative. Let a1 · · · amam+1,
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a1 · · · amam+2, . . . , λa1 · · · aman, and am+1 · · · an be Γr-factorizations. By

the weak multiplicative property, we know a1 · · · am(am+1 · · · an) is a Γr-

factorization, and by refinability a1 · · · an is a Γr-factorization.

(8) Assume Γ is divisible and refinable. Let λa1 · · · an be any Γ-factorization

and a′i be a Γr-divisor of some ai, say ai = b1 · · · bka′ibk+1 · · · bm

is a reduced Γ-factorization. Because Γ is refinable, we know

λa1 · · · ai−1b1 · · · bka′ibk+1 · · · bmai+1 · · · an is a Γ-factorization, and hence so is

λa1 · · · ai−1a
′
iai+1 · · · an by divisibility.

(9) Assume Γ is pseudo-transitive and normal. Take any µ ∈ H× and Γ-factorization

λa1 · · · an. By normality, each µai is a Γ-factorization. Therefore by pseudo-

transitivity µa1 · · · an is a Γ-factorization.

(10) Assume Γ is combinable and divisive. Let λa1 · · · an be any nontrivial Γ-

factorization. Then for any 1 ≤ i ≤ n − 1, we know λa1 · · · an−2(an−1an) and

λa1 · · · ai−1(aiai+1)ai+2 · · · an are Γ-factorizations by the combinable property,

so λa1 · · · an−1 and λa1 · · · âi · · · an are Γ-factorizations by divisiveness.

The following proposition lists some simple observations about the |Γ and |Γr

operators.

Proposition 2.1.4. Let Γ be a factorization system on a monoid H.

(1) |Γr ≤ |Γ ≤ |.

(2) If H is cancellative, then Γ is normal if and only if ≈ ≤ |Γ.
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(3) If H is cancellative, then Γ is reduced normal if and only if = ≤ |Γ.

(4) If tfact(H) ∪ rfact(H) ⊆ Γ, then the notions of |Γ, |Γr , and | coincide.

For any monoid H, we have |fact(H) = | as relations on H#, but there is a

subtle difference when the zero element is involved. More specifically, for a nonzero

nonunit a, we always have a | 0, but a |fact(H) 0 if and only if a is a zero divisor.

Let Γ1 and Γ2 be factorization systems on a monoid H. We call a finite

sequence of factorizations a Γ1-Γ2-sequence if each is a Γ1-Γ2-refinement of the last;

the number of terms in such a sequence is its length. A term in a Γ1-Γ2-sequence is

called a sequential Γ1-Γ2-refinement of the first term in the sequence. In the case Γ1 =

Γ2 = Γ, we write simply “Γ” in place of “Γ1-Γ2” in the above. When speaking of Γ-

sequences, a natural question comes up: Is a sequential Γ-refinement a Γ-refinement?

Unfortunately, in general the answer is no.

Example 2.1.5. An example of a length 3 Γ-sequence whose last term is not a Γ-

refinement of the first. Let H = Z and obtain a factorization system Γ by taking the

normal, associate-preserving, unital, and symmetric closure of the set of factorizations

of the forms (2n1)(2n2), and (3m)(2n1) · · · (2nk), where m ≥ 1, k ≥ 0, and each ni ≥ 1.

We now form a length 3 Γ-sequence 3 · 8, 3 · 4 · 2, 3 · 2 · 2 · 2, and we note that the last

term is not a Γ-refinement of the first since 2 · 2 · 2 is not a Γ-factorization.

It turns out that we avoid such pathologies if Γ is either refinable or reduced

divisible.

Theorem 2.1.6. Let Γ be a factorization system on a monoid H. Assume refining
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the factorization λ
∏

i ai twice yields a factorization λ
∏

i ci. Assume further that one

of these conditions is met:

(1) The refinements are Γ-fact(H)-refinements, the system Γ is refinable, and λ
∏

i ai

is a Γ-factorization.

(2) The system Γ is reduced divisible (resp., divisible and λ = 1), and λ
∏

i ci is a

Γ-factorization.

Then λ
∏

i ci is a Γ-fact(H)-refinement of λ
∏

i ai.

Proof. Aside from the inevitable notation issues, this is simple. Rewriting the no-

tation, we have factorizations λ
∏

i ai, ai =
∏

j bi,j, bi,j =
∏

k ci,j,k, λ
∏

i,j bi,j, and

λ
∏

i,j,k ci,j,k. We need to show that λ
∏

i,j,k ci,j,k is a Γ-fact(H)-refinement of
∏

i ai,

which means we need to show that each ai =
∏

j,k ci,j,k is a (Γ∪trfact(H))-factorization.

We will go through each condition in turn.

(1) Assume that Γ is refinable, each ai =
∏

j bi,j and bi,j =
∏

k ci,j,k are (Γ ∪

trfact(H))-factorizations, and λ
∏

i ai is a Γ-factorization. Let ai be any Γ-

factor in this last Γ-factorization. If ai =
∏

j bi,j is a Γ-factorization, then by

refinability we see that ai =
∏

j,k ci,j,k is a Γ-factorization. On the other hand,

if ai =
∏

j bi,j is a reduced trivial factorization, then ai =
∏

j,k ci,j,k is simply

the (Γ ∪ trfact(H))-factorization ai = bi,1 =
∏

k ci,1,k.

(2) If Γ is reduced divisible (resp., divisible and λ = 1) and λ
∏

i,j,k ci,j,k is a Γ-

factorization, then ai =
∏

j,k ci,j,k is a Γ-factorization.
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Theorem 2.1.6 tells us that if Γ is refinable or reduced divisible, then any Γ-

sequence can be shortened to a Γ-sequence of length at most 2 with the same initial

and terminal Γ-factorizations. We add the additional observation that the λ = 1 case

in the theorem tells us that if Γ is divisible, then any Γ-sequence can be shortened to

a Γ-sequence of length at most 3 with the same initial and terminal Γ-factorizations.

One can adjust the leading units in Example 2.1.5 to show that the bound of 3 cannot

be improved.

2.2 ψ-factorization

Perhaps the first question that comes up when thinking of ψ-factorization is

what properties characterize the factorization systems of the form Γψ. The following

theorem provides the answer.

Theorem 2.2.1. Let Γ be a factorization system on a monoid H. The following are

equivalent.

(1) There is a relation ψ on H with Γ = Γψ.

(2) The system Γ is (weakly) divisible and (weakly) pseudo-transitive.

If Γ is reduced normal, then the relation ψ in (1) is unique in the sense that if

Γ = Γψ = Γψ′, then ψ and ψ′ have the same intersection with (H××H#
0 )∪(H#×H#).

For this reason, we call a (weakly) divisible and (weakly) pseudo-transitive

factorization system relational.

Proof. (1)⇒ (2): Clear. (2)⇒ (1): Assume Γ is weakly divisible and weakly pseudo-

transitive. Let ψ be the set of (x, y) ∈ H × H such that there is a Γ-factorization
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λa1 · · · an with x = λ and y = ai for some i or with x = ai and y = aj for some

i < j. Observe that Γ ⊆ Γψ. Now take any ψ-factorization λa1 · · · an. For each

i = 1, . . . , n, by weak divisibility and the fact that λψai, the factorization λai is a Γ-

factorization. So let us assume n ≥ 2. Note that λa1 · · · an−2an−1 and λa1 · · · an−2an

are ψ-factorizations, so they are Γ-factorizations by induction. By weak divisibility

and the fact that an−1ψan, there is a µ ∈ H× such that µan−1an is a Γ-factorization.

Thus λa1 · · · an is a Γ-factorization by weak pseudo-transitivity.

The uniqueness statement is easily seen from the definitions.

Let Γ be a factorization system on a monoid H. We will denote the relational

closure of Γ by Γrel. More explicitly, we have Γrel = Γψ, where ψ is a relation on H

defined as in the proof of “(3)⇒ (1)” above.

Of course, reduced normal and unital implies normal, but in general the con-

verse is false. However, it is true for ψ-factorization. We record this fact and some

other obvious observations about the (reduced) normal and unital properties in the

following theorem.

Theorem 2.2.2.

(1) The following are equivalent.

(a) The system ψ is unital.

(b) For every λ, λ′ ∈ H× and a ∈ H#
0 , we have λψa⇔ λ′ψa.

(2) The factorization system ψ is reduced normal if and only if {1} ×H#
0 ⊆ ψ.

(3) The following are equivalent.
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(a) The system ψ is normal.

(b) The system ψ is unital and reduced normal.

(c) H× ×H#
0 ⊆ ψ.

As we will soon see, many of the basic ψ-factorization properties can be related

to fairly simple properties of the relation ψ. When we get to τ -factorization, we will

see that the relationship is much nicer still. One argument that applies to several

different properties is worth abstracting as a lemma.

Lemma 2.2.3. Let H be a monoid, ρ be a reflexive relation on H#, and ψ be a

relation on H. The following are equivalent.

(1) The factorization system ψ is ρ-preserving.

(2) Whenever λ ∈ H×, a, b, a′ ∈ H#, and a′ρa:

(a) λψa⇒ λψa′,

(b) λψa, λψb, and aψb ⇒ a′ψb, and

(c) λψa, λψb, and bψa ⇒ bψa′.

(3) Whenever λ ∈ H×, a, b, a′, b′ ∈ H#, a′ρa, and b′ρb:

(a) λψa⇒ λψa′, and

(b) λψa, λψb, and aψb ⇒ a′ψb′.

Proof. (1) ⇒ (3): Assume that the factorization system ψ is ρ-preserving and that

λ ∈ H×, a, b, a′, b′ ∈ H#, a′ρa, and b′ρb. If λψa, then λa is a ψ-factorization, so

λa′ is a ψ-factorization by the ρ-preserving property, and hence λψa′. If λψa, λψb,

and aψb, then λab is a ψ-factorization, so by the ρ-preserving property we see that
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λa′b′ is a ψ-factorization, and hence a′ψb′. (3)⇒ (2): Follows from the fact that ρ is

reflexive. (2) ⇒ (1): Assume (2). Let λa1 · · · an be any ψ-factorization and assume

that some bρai. Then λψai, so λψb. Also, for each j < i (resp., j > i) we have λψaj

and ajψai (resp., aiψaj), so ajψb (resp., bψaj). Therefore λa1 · · · ai−1bai+1 · · · an is a

ψ-factorization.

Theorem 2.2.4. Let H be a monoid and ψ be a relation on H.

(1) The following are equivalent.

(a) The system ψ is associate-preserving (resp., strong associate-preserving,

divisive).

(b) For every λ ∈ H× and a1, a2, a
′
1, a
′
2 ∈ H# with each a′i ∼ ai (resp., a′i ≈ ai,

a′i | ai):

(1) λψa1 ⇒ λψa′1, and

(2) λψa1, λψa2, and a1ψa2 ⇒ a′1ψa
′
2.

(2) The following are equivalent.

(a) The system ψ is combinable.

(b) Whenever λ ∈ H×, a, b, c ∈ H#, λψa, λψb, λψc, aψb, aψc, and bψc, we

have λψbc, λψab, aψbc, and abψc.

(3) The following are equivalent.

(a) The system ψ is (weakly) multiplicative.

(b) For every λ ∈ H× and a, b, c ∈ H# with λψa, λψb, and λψc:

(1) aψb and aψc ⇒ λψbc and aψbc, and
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(2) aψc and bψc ⇒ λψab and abψc.

(4) The system ψ satisfies:

(a) the symmetric property ⇔ it is a symmetric relation on H#,

(b) the transitive property ⇔ a ∈ H∗, b, c ∈ H#, aψb, and bψc implies aψc,

and

(c) the reflexive property ⇔ it is reduced normal and is a reflexive relation on

H#.

Proof. Part (4) is clear, while (1) follows from Lemma 2.2.3.

(2) (a) ⇒ (b): Assume ψ is combinable. Take any a, b, c ∈ H# and λ ∈ H× with

λψa, λψb, λψc, aψb, aψc, and bψc. Then λabc is a ψ-factorization, so by the

combinable property λa(bc) and λ(ab)c are ψ-factorizations. Therefore λψab,

λψbc, aψbc, and abψc. (b)⇒ (a): Assume (b), let λa1 · · · an be a ψ-factorization,

and assume 1 ≤ i ≤ n−1. For each j < i (resp., j > i+ 1) we have λψaj, λψai,

λψai+1, ajψai (resp., aiψaj), ajψai+1 (resp., ai+1ψaj), and aiψai+1. So for j < i

(resp., j > i+ 1) we have λψaiai+1 and ajψaiai+1 (resp., aiai+1ψaj). Therefore

λa1 · · · ai−1(aiai+1)ai+2 · · · an is a ψ-factorization.

(3) (a) ⇒ (b): Assume ψ is weakly multiplicative, λ ∈ H×, a, b, c ∈ H#, and

λψa, λψb, and λψc. If aψb and aψc, then λab and λac are ψ-factorizations,

so by the weakly multiplicative property λa(bc) is a ψ-factorization, and hence

λψbc and aψbc. Similarly, if aψc and bψc, then λψab and abψc. (b) ⇒ (a):

Assume (b). Let λa1 · · · an and λb1 · · · bn be ψ-factorizations with ai = bi for
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each i except possibly i = j. Then for each i < j (resp., i > j) we have λψai,

λψaj, λψbj, aiψaj (resp., ajψai), and aiψbj (resp., bjψai), so λψajbj and aiψajbj

(resp., ajbjψai). Therefore λa1 · · · ai−1(ajbj)ai+1 · · · an is a ψ-factorization. So

we have shown that ψ is weakly multiplicative, which is equivalent to it being

multiplicative by Lemma 2.1.2 part (2).

We can observe that comparing parts (2) and (3) of the above theorem im-

mediately shows that (weakly) multiplicative implies combinable in the case of ψ-

factorization. This is basically the course that the authors of [6] took when proving

that multiplicative implies combinable for τ -factorization, but we already have the

more general fact that a multiplicative and divisible factorization system is combin-

able from Theorem 2.1.3 part (6).

For general factorization systems, the properties of refinable and divisive have

little to do with each other. It is an interesting fact that the two properties become

intricately related when we specialize to ψ-factorization.

Theorem 2.2.5. Let ψ be a relation on a monoid H. Then the factorization system

ψ is refinable if and only if it is ψr-divisive.

Proof. (⇒): Theorem 2.1.3 part (8). (⇐): Assume ψ is ψr-divisive. Let λa1 · · · an be

any ψ-factorization and ai = b1 · · · bm be a reduced ψ-factorization of some ai. Then

biψbj for i < j. By the fact that ψ is ψr-divisive, each λa1 · · · ai−1bjai+1 · · · am is a ψ-

factorization, so λψbj, akψbj for k ≤ i−1, and bjψak for k ≥ i+1. Putting everything
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together, we see that λa1 · · · ai−1b1 · · · bmai+1 · · · an is a ψ-factorization.

2.3 τ-factorization

With our previous work on ψ-factorization, most of the work on τ -factorizations

is easy. We again start with a characterization of which factorization systems fall un-

der the category of τ -factorization.

Theorem 2.3.1. The following are equivalent for a factorization system Γ on a

monoid H.

(1) There is a unique relation τ on H# with Γ = Γτ .

(2) The system Γ is normal and there is a relation ψ on H with Γ = Γψ.

(3) The system Γ is weakly divisible, weakly pseudo-transitive, and normal.

(4) The system Γ is unital, (reduced) divisible, pseudo-transitive, and normal.

(5) The system Γ is normal and relational.

Proof. (1)⇒ (2): Clear. (2)⇔ (3)⇔ (4): Theorem 2.2.1. Recall from Theorem 2.1.3

that a normal pseudo-transitive factorization system is automatically unital, and note

that the divisible and reduced divisible properties are equivalent in the presence of the

unital property. (4)⇒ (1): By Theorem 2.2.1 there is a relation ψ on H with Γ = Γψ.

Because ψ is normal we have λψa for each λ ∈ H× and a ∈ H#
0 . Therefore Γψ = Γτ ,

where τ = ψ ∩ (H# ×H#). Theorem 2.2.1 also gives us uniqueness. (3)⇔ (5): This

is just the definition of “relational”.

It is worthwhile to go through a few theorems again for the τ -factorization

case. Some of the messiness is lost because we do not need to worry so much about
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the leading units. Many of the formulations improve further in an obvious way if we

further assume symmetry, which is usually the case in practice.

Theorem 2.3.2 ([21, Lemma 4.3]). Let H be a monoid and τ be a relation on H#.

The following are equivalent.

(1) The equality τ = τH holds.

(2) The equality Γτ = fact(H) holds.

(3) The system τ is reflexive and divisive.

Theorem 2.3.3. Let H be a monoid and τ be a relation on H#.

(1) The system Γτ is symmetric (resp., transitive, reflexive) if and only if τ is a

symmetric (resp., transitive, reflexive) relation.

(2) Let ρ be a reflexive relation on H#. The following are equivalent.

(a) The factorization system τ is ρ-preserving.

(b) a′ρa, b′ρb, and aτb ⇒ a′τb′.

(3) The factorization system τ is associate-preserving (resp., strong associate-

preserving, divisive) if and only if for every a1, a2, a
′
1, a
′
2 ∈ H# with each a′i ∼ ai

(resp., a′i ≈ ai, a
′
i | ai), we have a1τa2 ⇒ a′1τa

′
2.

(4) The system τ is combinable if and only if aτb, aτc, and bτc implies aτbc and

abτc.

(5) The following are equivalent.

(a) The system τ is (weakly) multiplicative.

(b) (1) aτb and aτc ⇒ aτbc, and
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(2) aτc and bτc ⇒ abτc.

Proof. Part (1) is clear, part (2) follows from Lemma 2.2.3, and parts (3)-(5) are

immediate from Theorem 2.2.4.

We remark that the above equivalent characterizations of associate-preserving,

divisive, and multiplicative are the original definitions for the τ -factorization case

given in [6]. This shows that our Γ-factorization versions of these definitions are

appropriate generalizations.

2.4 Factorization and Closures, I

In this section we will begin to study how certain properties are changed

when we replace a factorization system with one of its closures. We will revisit

this topic multiple times during the remainder of the thesis, studying how newly

introduced concepts are affected by taking closures. These sections will generalize

many results given in [21] and [7] for reduced τ -factorization. Sometimes the easiest

path to prove some general result is to prove it for reduced Γ-factorization and then

apply results about closures to get the general Γ-factorization version after adding

suitable hypotheses like unital and so on. This approach is also arguably more general

than simply proving theorems for general factorization systems with the necessary

extra hypotheses.

Theorem 2.4.1. Let P and Q be factorization system properties that have closures.

For a factorization system Γ, let ΓP (resp., ΓQ) denote the P closure (resp., Q closure)

of Γ. The following are equivalent.
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(1) The containment (ΓP )Q ⊇ (ΓQ)P holds for every factorization system Γ.

(2) The property P is always preserved by the Q closure.

Proof. (1) ⇒ (2): If (1) holds and Γ is any factorization system with property P ,

then (ΓQ)P ⊇ ΓQ = (ΓP )Q ⊇ (ΓQ)P , so ΓQ = (ΓQ)P possesses property P . (2)⇒ (1):

If (2) holds and Γ is any factorization system, then (ΓP )Q = ((ΓP )Q)P ⊇ (ΓQ)P .

Corollary 2.4.2. In the notation of Theorem 2.4.1, the following are equivalent.

(1) The equality (ΓP )Q = (ΓQ)P (= ΓP,Q) holds for every factorization system Γ.

(2) The property P is always preserved by the Q closure, and vice versa.

If the above conditions hold, we say that the P and Q closures commute. The

next theorem gives several of the most important cases of commuting closures.

Theorem 2.4.3. Let H be a monoid and ρ be a reflexive relation on H#.

(1) Every closure preserves the (reduced) normal property.

(2) The unital, ρ-preserving, symmetric, divisible, and normal closures all commute

with each other.

(3) The reduced normal closure commutes with the ρ-preserving, symmetric, (re-

duced) divisible, relational, and normal closures.

(4) The relational closure commutes with the unital, symmetric, divisible, and (re-

duced) normal closures. The relational closure preserves the ρ-preserving and

combinable properties.

(5) The combinable closure commutes with the unital, strong associate-preserving,

and (reduced) normal closures. The combinable closure preserves the symmetric
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and divisible properties, and, if aρb and cρd implies acρbd, then the ρ-preserving

closure preserves the combinable property. In particular, the (strong) associate-

preserving and divisive closures preserve the combinable property.

Proof. We prove (4) and the last half of (5). Part (1) is obvious, and the verification

of the rest is left to the reader. It can be done by a routine calculation from the def-

initions and some of the previously mentioned forms of the closures, using whichever

characterization of commuting closures in Corollary 2.4.2 is most convenient.

(4) The fact that the relational and divisible closures commute is clear. If Γ = Γψ

for some relation ψ on H, then Γu = Γψu , Γs = Γψs , Γrnl = Γψrnl , and Γnl = Γψnl ,

where

ψu = ψ ∪ {(λ, a) | λ ∈ H×, a ∈ H#
0 , (H

× × {a}) ∩ ψ 6= ∅},

ψs = ψ ∪ {(b, a) | (a, b) ∈ ψ},

ψrnl = ψ ∪ ({1} ×H#
0 ),

and

ψnl = ψ ∪ (H× ×H#
0 ).

Using the previously given form of the relational closure, one can use Theorem

2.2.2 (resp., Theorem 2.2.4 part (4a), Lemma 2.2.3, Theorem 2.2.4 part (2)) to

show that the unital (resp., symmetric, ρ-preserving, combinable) property is

preserved by the relational closure. The fact that the (reduced) normal property

is preserved by the relational closure is a special case of part (1).
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(5) Assume aρb and cρd implies acρbd. Let Γ be a combinable factorization system

on H. To show that Γρ is combinable, it will suffice to show that Γρ,k is combin-

able for each k ≥ 1. So assume k ≥ 1 and λa1 · · · an is a Γρ,k-factorization. Then

there is a Γρ,k−1-factorization λb1 · · · bn with each aiρbi. For any i ∈ {1, . . . , n−

1}, induction shows that λb1 · · · bi−1(bibi+1)bi+2 · · · bn is a Γρ,k−1-factorization,

and aiai+1ρbibi+1 by hypothesis, and hence λa1 · · · ai−1(aiai+1)ai+2 · · · an is a

Γρ,k-factorization, as desired.

We call the relation ψu (resp., ψs, ψc, ψrnl, ψnl) constructed in the proof to part

(4) above the unital (resp., symmetric, combinable, reduced normal, normal) closure

of the relation ψ, because it is the smallest relation bounded below by ψ whose

factorization system has that property. Here there is no ambiguity caused by our

convention of using the relation as a shorthand for the factorization system associated

with it, since the above proof shows that this factorization system is the appropriate

closure of Γψ. Similar constructions can be made with other closures of relations, but

with these closures we must refrain from the aforementioned convention. For instance,

in Example 2.4.4 below we will see a case where (Γψ)ap 6= Γψap . Generalizing these

comments, if P is one of the properties with a closure, then ΓψP = (Γψ)rel,P ⊇

(Γψ)P . The containment can be strict, but we have equality if the P closure preserves

the relational property. These same comments translate directly to (reduced) τ -

factorization, since any closure preserves the (reduced) normal property.

We give examples showing that none of the cases where we stated that one
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closure preserves a certain property can be improved to a statement about commuting

closures.

Example 2.4.4. The (strong) associate-preserving closure need not preserve the

relational property. Let H be any cancellative monoid satisfying {1} ( H× ( H∗.

Pick a ∈ H# and 1 6= µ ∈ H×, and let τ be the symmetric relation on H# determined

by aτµa. Then Γτ = {a(µa)}u,nl,s, and (Γτ )ap = {a2}u,ap,nl,s, which is not pseudo-

transitive (hence not relational) since it contains a2 but not a3.

Example 2.4.5. The divisive closure need not preserve the relational property. Let

H be any monoid with a non-idempotent nonzero nonunit a. Let τ be the symmetric

relation on H# determined by aτa2. Then the divisive closure of Γτ is not pseudo-

transitive (hence not relational), since it contains a2 but not a3.

Example 2.4.6. The combinable closure need not preserve the relational property.

Let H be any cancellative monoid that is not a groupoid, and pick a ∈ H#. Let

τ be the symmetric relation on H# determined by aτa2, aτa3, and a2τa3. Then

Γτ = {a(a2), a(a3), (a2)(a3), a(a2)(a3)}u,nl,s and (Γτ )c = Γτ ∪ {(a3)2, a(a5)}u,nl,s. The

latter factorization system is not pseudo-transitive (hence not relational) since it

contains (a3)2 but not (a3)3.

Example 2.4.7. The symmetric closure need not preserve the combinable property.

Let τ be the relation on Z# given by 2τ3, 2τ4, 3τ4, 6τ4, and 2τ12. Then Γτ =

{2 ·3, 2 ·4, 3 ·4, 2 ·3 ·4, 6 ·4, 2 ·12}u,nl, and we can note that τ is combinable. However,

the factorization 2 · 4 · 3 is a τs-factorization but 8 · 3 is not, so τs is not combinable.
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Example 2.4.8. The divisible closure need not preserve the combinable property.

Obtain a factorization system Γ on Z by taking the combinable closure of {2 ·3 ·4 ·5}.

Then the divisible closure of Γ is not combinable, since it contains 2 · 4 · 5 but not

8 · 5. We note that it would be impossible to construct such an example if we started

with a symmetric factorization system. Since the divisible and truncatable closures

coincide for symmetric factorization systems, this observation follows from the fact

that the combinable and truncatable closures commute. We leave the simple proof

to the reader.

Example 2.4.9. The combinable closure need not preserve the associate-preserving

property. In order to create this example, we first need to find an example of a ring

with elements a and b so that ab has an associate c that cannot be written in the

form c = a′b′, where a′ ∼ a and b′ ∼ b. Once we achieve this, the rest is fairly simple.

Let D be an integral domain and R = D[X, Y, Z]/I, where I = (X2 −X2Y Z). For

f ∈ D[X, Y, Z], let f̄ = f + I. It is readily seen that f̄ ∼ ḡ ⇔ (f,X2 − X2Y Z) =

(g,X2 − X2Y Z). Because X̄2 = X2Y Z̄, we have X̄2 ∼ X2Y . However, we claim

that X2Y cannot be written in the form X2Y = f̄ ḡ with f̄ ∼ ḡ ∼ X̄. Suppose to

the contrary that it can be written so. Then (f,X2 −X2Y Z) = (g,X2 −X2Y Z) =

(X,X2 − X2Y Z) = (X), so we may write f = Xf0 and g = Xg0, where (f0, X −

XY Z) = (g0, X − XY Z) = D[X, Y, Z]. Now, since (X2 − X2Y Z) | (X2Y − fg),

we can cancel the X2 to obtain (1 − Y Z) | (Y − f0g0), say f0g0 = Y + (1 − Y Z)h.

Thus (Y + (1 − Y Z)h,X(1 − Y Z)) = (f0g0, X − XY Z) = D[X, Y, Z], so there

are p, q ∈ D[X, Y, Z] with (Y + (1 − Y Z)h)p + X(1 − Y Z)q = 1. Evaluating at
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X = 0, we obtain (Y + (1 − Y Z)h(0, Y, Z))p(0, Y, Z) = 1. If h(0, Y, Z) = 0, then

Y = Y + (1 − Y Z)h(0, Y, Z) is a unit, a contradiction. Therefore h(0, Y, Z) 6= 0,

so Y + (1 − Y Z)h(0, Y, Z) is a unit whose degree in Z is at least 1, achieving the

desired contradiction. Now, let τ be the associate-preserving symmetric relation on

R# given by FτG⇔ F ∼ G ∼ X̄. Then (Γτ )c is the union of tfact(R) with the set of

factorizations λF1 · · ·Fn, where each Fi is a product of associates of X̄. (Interestingly,

this is one case where we do have (Γτ )c = Γτc , where the combinable closure τc of the

relation τ is given by FτcG⇔ F and G are products of associates of X̄.) Thus X2X̄

is a τc-factorization and X2 ∼ X2Y , but by our earlier claim we see that X2Y X̄ is

not a τc-factorization.

Example 2.4.10. The combinable closure need not preserve the divisive property.

Let R be a ring and D = R[X2, X3]. Let τ be the divisive symmetric relation on D#

determined by X2τX2 and X3τX3. Then the combinable closure of Γτ is not divisive

since it contains the factorization (X2)(X6) but not (X2)(X3).

In order to get an example like Example 2.4.10 where we started with a divisive

and divisible factorization system, we needed to start with a monoid whose factoriza-

tions were not too well-behaved. More precisely, in monoids with the property that

a | bc implies a = b′c′ for some b′ | b and c′ | c, the combinable closure preserves

the property of being divisive and divisible. Integral domains with this property are

called pre-Schreier domains, and Schreier domains are integrally closed pre-Schreier

domains. The (pre-)Schreier domains have become an important part of standard

factorization theory. In general, UFD ⇒ GCD domain ⇒ Schreier ⇒ pre-Schreier,
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but none of the implications reverse. One possible starting point for further reading

is [11]. We analogously extend the definition of pre-Schreier to monoids. We will

return to this topic in Chapter 5.

Theorem 2.4.11. In a pre-Schreier monoid, the combinable closure preserves the

property of being divisive and divisible.

Proof. Let Γ be any divisive and divisible factorization system on a pre-Schreier

monoid H. By Theorem 2.4.3 part (5) it will suffice to show that Γc is divisive. Let

λa1 · · · an be any Γ-factorization, and let λb1 · · · bm be ay partition of it, where each

bi is of the form bi = akiaki+1 · · · aki+1−1. Let c be any nonzero nonunit divisor of

some bi. We can write c = a′ki · · · a
′
ki+1−1, where each a′j | aj, and we can arrange for

the units in the product to be 1. Using the divisive and divisible properties, we see

that λa1 · · · aki−1a
′
ki
· · · a′ki+1−1aki+1

· · · an is a Γ-factorization (omitting any 1’s from

the product), and thus λb1 · · · bi−1cbi+1 · · · cn is a Γc-factorization, as desired.
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CHAPTER 3
COMPLETENESS

The notion of an atomic factorization plays a central role in standard fac-

torization theory, and in abstract factorization its analogue is just as important. A

nonzero nonunit a of a cancellative monoid is called irreducible or an atom if it has no

nontrivial factorizations, or, equivalently, if a = bc implies that a is a (strong) asso-

ciate of b or c, or, equivalently, if (a) is maximal among the proper principal ideals. In

possibly non-cancellative monoids (more specifically, in non-présimplifiable monoids),

those four statements are no longer equivalent in general, giving rise to four distinct

notions of “atomicity”, and when one generalizes further to abstract factorization the

situation gets more intricate still. The paper [9] gives a survey of these topics in the

ring context, and, as usual, much of the basic theory translates to the more general

monoid setup with identical proofs. In a cancellative monoid, an atomic factoriza-

tion is a factorization whose factors are atoms, or, equivalently, a factorization with

no proper refinements, and a cancellative monoid is called atomic if every (nonzero)

nonunit has an atomic factorization. (As expected, in a possibly non-cancellative

setup the situation gets more complicated, and again [9] is our reference for this.) We

will study abstract factorization generalizations of atomic factorization only in the

simplified cancellative monoid case. The thesis [20] has carried out the generalization

to the non-cancellative case in the context of τ -factorization in commutative rings,

and we refer the interested reader there for an idea of how the topics we will discuss

could be extended further to (not necessarily cancellative) monoids.



39

The two different ways we stated the definition of an atomic factorization

lead to different approaches to generalizing atomic factorization: we could study Γ-

factorizations whose factors are Γ-atoms (in our cancellative monoid setup, a Γ-atom

or Γ-irreducible is a nonunit with no nontrivial Γ-factorizations), or we could study

Γ-factorizations that have no proper Γ-refinements. A factorization of the former

type is called a Γ-atomic factorization, while one of the latter type is called a Γ-

complete factorization. Clearly, a Γ-atomic factorization is Γ-complete, and we show

in the next chapter that the converse is true for Γ refinable, unital, and associate-

preserving. This chapter will be concerned with Γ-complete factorization, while the

next one will discuss Γ-atomic factorization. For the reader interested in generalizing

by removing the cancellative assumption, we again mention [20] and generalizing the

work here in analogy with how the author generalized τ -factorization. We make

a couple remarks about this process of generalization. The great majority of the

theory of Γ-complete factorization translates to non-cancellative monoids with no

change. There are three things to watch out for worth mentioning: (1) sometimes a

formerly optional “nonzero” qualifier in a definition or result becomes non-optional,

(2) when generalizing a theorem or definition that references the associate relation

one needs to take care in choosing which “associate” relation to replace it with,

and (3) the proof of the implication “(1) ⇒ (2)” in Theorem 3.3.3 only applies to

présimplifiable monoids. On the other hand, working without a cancellative (or at

least présimplifiable) assumption tremendously increases the complexity of the theory

of Γ-atomic factorization. For those familiar with the varying levels of “irreducibility”
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in non-cancellative monoids, our work in the next chapter carries over very well to

the theory concerning the “very strongly irreducible” notion (with similar comments

to the above about translating), but that is just a fraction of the total theory.

The definition of τ -complete factorization was already present in the thesis

[14] that introduced τ -factorization. The author proved sufficient conditions for the

τ -complete and τ -atomic factorizations to coincide, but focused primarily on τ -atomic

factorization. The subsequent literature has extended the study of the complete con-

cepts a little, but has largely ignored them in comparison to the atomic concepts. For

example, the thesis [21] that introduced Γ-factorization does not define “Γ-complete

factorization”. This chapter will be devoted to rectifying this omission. In fact, this

thesis will make an argument for the systematic study of the complete concepts prior

to an in-depth look at the atomic concepts, since in the following chapter we will see

that many of the theorems about the complete concepts are generalizations of and

easier to prove than previous ones for their atomic counterparts.

The first section of this chapter will be devoted to definitions and a few other

preliminaries. We will find it of some interest to further abstract the concept of

a Γ-complete factorization as follows: if Γ1 and Γ2 are factorization systems on a

cancellative monoid H, then a Γ1-Γ2-complete factorization is a Γ2-factorization with

no proper Γ1-refinements, and H is Γ1-Γ2-complete if every Γ2-expressible (nonzero)

nonunit has a Γ1-Γ2-complete factorization. We will go on to define various levels of

“completeness”, which will be categorized in the second section.

Several different kinds of atomic monoids have been defined and studied in
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depth, particularly in the case of integral domains. Our general reference for standard

factorization theory in integral domains (and cancellative monoids by analogy) is

[3]. The domains that this paper studied were generalized with τ -factorization in

[6], and there the implications between them and their relationship to the standard

factorization concepts was almost fully worked out. The one remaining significant

piece was completed in [18], where it was shown (in our terminology) that an atomic

domain need not be τ -complete even for τ both multiplicative and divisive. In the

third section we will generalize these different kinds of atomic domains to different

kinds of Γ1-Γ2-complete cancellative monoids, categorize them, and give examples

showing that there are no further implications. The same process will be carried out

for their stronger counterparts, the Γ1-Γ2-completable monoids, which are cancellative

monoids in which every Γ2-factorization can be sequentially Γ1-Γ2-refined into a Γ1-

Γ2-complete factorization. We will see there that these monoids have quite a lot of nice

properties, and in the next chapter we will see that most of the nontrivial theorems

about the atomic concepts are actually special cases of the analogous results about

the complete concepts.

In the final section we will begin a study of how taking various closures of

a factorization system affect certain properties, with an emphasis on those related

to completeness. In particular, this approach gives us a way to translate between

results about Γ-factorization and reduced Γ-factorization, generalizing and extending

previous theorems about reduced τ -factorization found in [21].
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3.1 Basic Definitions

Let Γ1 and Γ2 be factorization systems on a cancellative monoid H. In analogy

with the τ -factorization definition in [6], we define a Γ1-Γ2-complete factorization to

be a Γ2-factorization with no proper Γ1-Γ2-refinements. We say H is Γ1-Γ2-complete

if every Γ2-expressible (nonzero) nonunit has a Γ1-Γ2-complete factorization. Other

plausible definitions are: (1) every (nonzero) nonunit is either a Γ1-atom (that is,

it has no nontrivial Γ1-factorizations) or has a Γ1-Γ2-complete factorization, or (2)

every (nonzero) nonunit has a Γ1-Γ2-complete factorization. All three definitions are

equivalent if Γ2 is reduced normal, but simple examples show that they differ in

general. We go with our choice because it seems to lead to the cleanest theory, as we

will begin to appreciate after a few theorems.

Let Γ1,Γ2, and Γ3 be factorization systems on a cancellative monoid H, and

let ≡ be an equivalence relation on H#
0 . We say two factorizations λa1 · · · am and

µb1 · · · bn are ≡-equivalent if m = n and each ai ≡ bi after a suitable reordering. Note

that the notion of ≡-equivalence forms an equivalence relation on fact(H). We say

H is:

(1) Γ1-Γ2-Γ3-completable if every Γ2-factorization can be sequentially Γ3-Γ2-refined

into a Γ1-Γ2-complete factorization,

(2) strongly Γ1-Γ2-Γ3-completable if every Γ2-factorization can be Γ3-Γ2-refined into

a Γ1-Γ2-complete factorization,

(3) (strongly) Γ1-Γ2-completable if it is (strongly) Γ1-Γ2-Γ1-completable,

(4) weakly Γ1-Γ2-completable if it is (strongly) Γ1-Γ2-fact(H)-completable,
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(5) a Γ1-Γ2-complete BFM if it is Γ1-Γ2-complete and there is an upper bound on

the lengths of the Γ1-Γ2-complete factorizations of any given (nonzero) nonunit,

(6) a Γ1-Γ2-complete FFM≡ if it is Γ1-Γ2-complete and each (nonzero) nonunit has

only finitely many Γ1-Γ2-complete factorizations up to ≡-equivalence,

(7) a Γ1-Γ2-complete HFM if it is Γ1-Γ2-complete and the Γ1-Γ2-complete factor-

izations of a given (nonzero) nonunit all have the same length,

(8) a Γ1-Γ2-complete UFM≡ if it is Γ1-Γ2-complete and the Γ1-Γ2-complete factor-

izations of a given (nonzero) nonunit are unique up to ≡-equivalence, and

(9) a Γ1-Γ2-completable BFM (resp., FFM≡, HFM, UFM≡) if it is Γ1-Γ2-completable

and a Γ1-Γ2-complete BFM (resp., FFM≡, HFM, UFM≡).

If Γ1 = Γ2 = Γ, we replace the “Γ1-Γ2” with “Γ” in the above phrases, and if

additionally Γ1 = Γ2 = fact(H) (the standard factorization case), we drop the “Γ1-

Γ2 complete(able)”. (In the next chapter we will see that the properties of Γ1-Γ2-

complete and strongly Γ1-Γ2-Γ2-completable are equivalent for Γ2 refinable, unital,

associate-preserving, and divisible.) If ≡=∼, we drop the “≡”. We note that a Γ1-Γ2-

complete(able) BFM (resp., HFM) is actually a special case of a Γ1-Γ2-complete(able)

FFM≡ (resp., UFM≡), namely a Γ1-Γ2-complete(able) FFMψH (resp., UFMψH ). We

remark that one can define strongly or weakly Γ1-Γ2-completable versions of the BFM,

FFM≡, HFM, and UFM≡ notions, but the former versions do not share some of the

nice properties of the ones defined above (such as Theorems 3.3.1 and 3.3.3), and

we will see that the latter are equivalent to their corresponding Γ1-Γ2-completable

notions. We will later see that Γ-completable and weakly Γ-completable are equivalent
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if Γ is reduced divisible. We will also see in Theorem 3.2.1 below that in the case

with Γ2 reduced divisible we might as well assume that Γ1 ⊆ Γ2 in the above.

Although it is possible to develop a great deal of the theory in the full generality

in which we have given the definitions, we will concentrate mostly on the case ≡=∼

for the sake of simplicity. Sometimes the same proofs work for any choice of ≡,

sometimes they require ≡ to be bounded above or below by ∼, sometimes they require

≡ to be partition-preserving (essentially, to be a “congruence relation” on H#
0 ), and

sometimes they require precisely that ≡=∼. All in all, stating each theorem in the

strongest possible form becomes quite cumbersome, but a very careful examination

of the proofs given here should make it evident how certain results can be abstracted.

The acronyms “BFM”, “FFM”, “HFM”, and “UFM” stand for “bounded

factorization monoid”, “finite factorization monoid”, “half factorial monoid”, and

“unique factorization monoid”, respectively. Naturally, if we want to specify that

the monoid in question is actually a ring or domain, we change the “monoid” in the

names to “ring” or “domain” and the “M” in the acronyms to “R” or “D” as appro-

priate. We will have similar conventions with all later definitions that have the word

“monoid” in them.

To illustrate some of these abstract notions, we revisit some of our motivating

factorization system examples.

Example 3.1.1.

(1) An excellent survey of these concepts in the case Γ1 = Γ2 = fact(H) and ≡=∼

is given in [3]. The paper [2] drops the requirement ≡=∼.
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(2) A τd-complete domain is called a comaximal factorization domain (CFD) and a

τd-complete UFD is called a unique comaximal factorization domain (UCFD).

For example, every Noetherian domain (or more generally, any domain where

each ideal has only finitely many minimal primes) is a CFD [19, Lemma 1.1],

every UFD is a UCFD [19, Corollary 1.8], and of course every quasilocal domain

is trivially a UCFD. The paper [19] gives a very pleasing ideal-theoretic char-

acterization of the UCFD’s as the CFD’s in which every 2-generated invertible

ideal is principal.

(3) Complete comaximal factorizations of ideals are always unique (up to order)

when they exist [19, Theorem 5.1], so the monoid of ideals of a ring being τd-

complete is the same as it being a τd-complete UFM. A sufficient condition for

this to happen is for the ring in question to be Noetherian, or more generally

for every ideal to have only finitely many minimal primes [19, Theorem 5.4].

This fact allows us to show that such a ring is a τd-complete FFR (thus improv-

ing on [19, Lemma 1.1]), since the comaximal factorizations of a nonunit are

(up to associates) in a natural one-to-one correspondence with the comaximal

factorizations of its principal ideal into principal ideals.

(4) Recall the construction of the τt factorization system: X is a set, P(X) is a

monoid under ∪, and Y τtZ ⇔ Y ∩ Z = ∅. The τt-complete factorizations are

precisely the disjoint unions of singleton subsets of X, so P(X) is τt-complete

if and only if it is a τt-complete UFD if and only if X is finite. (In this

example we are breaking with the convention of insisting that our monoid must
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be cancellative, but as mentioned in the introduction, it really makes little

difference.)

(5) The domain Z is a τ(n)-completable FFD for each n ≥ 0. However, it is only a

τ(n)-complete UFD in the cases n = 0 and n = 1. (See [6], [14], or [16].)

(6) Let Γ be the factorization system on Z consisting of factorizations with at most

two even factors. The Γ-complete factorizations are (up to associates and order)

precisely those factorizations of the forms p1 · · · pn+1, 2p1 · · · pn, or 2k2mp1 · · · pn,

where n ≥ 0, k,m ≥ 1, and p1, . . . , pn+1 are odd primes. It follows that Z is

a Γ-complete HFD, and it is a Γ-complete FFD since every nonunit has only

finitely many factorizations (see 3.3.1 below). However, it is not a Γ-complete

UFD since 2 · 8 = 4 · 4 are Γ-complete factorizations.

3.2 Levels of “Completeness”

Let Γ1 and Γ2 be factorization systems on a cancellative monoid H. Directly

from the definitions we easily obtain the implications strongly Γ1-Γ2-completable ⇒

Γ1-Γ2-completable ⇒ weakly Γ1-Γ2-completable ⇒ Γ1-Γ2-complete.

The special case of (reduced) τ -factorization is of considerable interest. The

following theorem accomplishes a study of this case in greater generality, abstracting

to the property of reduced divisibility.

Theorem 3.2.1. Let Γ1, Γ2, and Γ3 be factorization systems on a cancellative monoid

H. Assume Γ2 is reduced divisible.

(1) Every Γ1-Γ2-refinement is a (Γ1 ∩ Γ2)-Γ2-refinement.
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(2) The Γ1-Γ2-complete factorizations and the (Γ1 ∩ Γ2)-Γ2-complete factorizations

coincide.

(3) The monoid H is Γ1-Γ2-complete if and only if it is (Γ1 ∩ Γ2)-Γ2-complete.

(4) The following properties of H are equivalent:

(a) (strongly) Γ1-Γ2-Γ3-completable,

(b) (strongly) (Γ1 ∩ Γ2)-Γ2-Γ3-completable,

(c) (strongly) Γ1-Γ2-(Γ2 ∩ Γ3)-completable, and

(d) (strongly) (Γ1 ∩ Γ2)-Γ2-(Γ2 ∩ Γ3)-completable.

(5) The monoid H is a Γ1-Γ2-complete(able) BFM (resp., FFM≡, HFM, UFM≡)

if and only if it is a (Γ1 ∩ Γ2)-Γ2-complete(able) BFM (resp., FFM≡, HFM,

UFM≡).

(6) If Γ2 ⊆ Γ3, then the following properties of H are equivalent:

(a) strongly Γ1-Γ2-Γ3-completable,

(b) Γ1-Γ2-Γ3-completable, and

(c) weakly Γ1-Γ2-completable.

Proof. Part (1) is a simple consequence of reduced divisibility, and each of parts (2)-

(5) follows nearly immediately from some combination of the parts preceding it. The

implication (a) ⇒ (b) ⇒ (c) in (6) is clear, and (c) ⇒ (a) follows from part (4) by

the fact that Γ2 ∩ Γ3 = Γ2 = Γ2 ∩ fact(H) when Γ2 ⊆ Γ3.

Let Γ1 and Γ2 be factorization systems on a cancellative monoid H. As noted

earlier, we have the implications strongly Γ1-Γ2-completable⇒ Γ1-Γ2-completable⇒
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weakly Γ1-Γ2-completable⇒ Γ1-Γ2-complete. In the simplified case where Γ1 = Γ2 =

Γ is reduced divisible, this chain of implications collapses to simply Γ-completable⇒

Γ-complete. The rest of the section will be occupied giving examples showing that

none of the implications reverse, even with several additional simplifying assumptions

in place.

Example 3.2.2. An example of a τ -complete UFD that is not τ -completable, with

τ an associate-preserving symmetric relation on the nonzero nonunits. Let R be an

integral domain and D = R[{Xr, Y r | r ∈ Q+}]. Let τ be the associate-preserving

symmetric relation on D# determined by XrτY r and (XY )rτ(XY )s for r, s ∈ Q+.

Note that τ is associate-preserving, and the only τ -reducible elements are those of

the form λ(XY )r, which have unique τ -complete factorizations λ(Xr)(Y r) up to as-

sociates and order. Therefore H is a τ -complete UFD. However, the τ -factorization

(XY )2 cannot be refined into a τ -complete factorization.

Example 3.2.3. An example of a weakly Γ-completable domain that is not Γ-

completable, where Γ is a symmetric, unital, and associate-preserving factorization

system. Let R be an integral domain and D = R[{Xr | r ∈ Q+}]. Obtain Γ by taking

the associate-preserving and unital closure of the set of factorizations of the forms

(X1/(2n+1·3))6, (X1/(2n·3))2n·3, (X1/2n+1
)2, and (X1/2m1 ) · · · (X1/2mk ), where n ≥ 0 and

m1, . . . ,mk ≥ 1 satisfy 1
2m1

+ · · · + 1
2mk

= 1. Observe that Γ is symmetric and the

only Γ-reducible elements are those of the form λX1/2n , where λ ∈ D× and n ≥ 0.

Therefore, for n ≥ 0 and λ ∈ D×, the Γ-factorizations λX1/2n = λ(X1/(2n·3))6 and

X = (X1/(2n·3))2n·3 are Γ-complete. Also, for λ ∈ D× and n ≥ 0, the Γ-factorization
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λ(X1/2n+1
)2 has a refinement λ(X1/(2n+1·3))3(X1/(2n+1·3))3 = (X1/(2n+1·3))6, which is a

Γ-complete factorization. Finally, for λ ∈ D×, n ≥ 0, and m1, . . . ,mk ≥ 1 with

1
2m1

+ · · ·+ 1
2mk

= 1, the Γ-factorization λ(X1/2m1 ) · · · (X1/2mk ) can be refined to the

Γ-complete factorization λ(X1/(2m·3))2m−m1 ·3 · · · (X1/(2m·3))2m−mk ·3 = λ(X1/(2m·3))2m·3,

where m = max(m1, . . . ,mk). This suffices to show that H is weakly Γ-completable.

We now show that D is not Γ-completable. Pick k ≥ 2 and m1, . . . ,mk ≥

1 with 1
2m1

+ · · · + 1
2mk

= 1 and m1 < mk. For each i, the fact that 1
2mi

< 1

implies that the only Γ-factorizations of X1/2mi are (up to associates and order)

(X1/2mi+1·3)6 and (X1/2mi+1
)2. Because m1 + 1 < mk + 1, we are unable to achieve

a Γ-refinement by replacing each X1/2mi with (X1/(2mi+1·3))6. So the only proper Γ-

refinement (up to associates and order) of the Γ-factorization (X1/2m1 ) · · · (X1/2mk ) is

(X1/2m1+1
)2 · · · (X1/2mk+1

)2, which is not Γ-complete, and we note that 2k ≥ 4 > 2,

1
2m1+1 + 1

2m1+1 + 1
2m2+1 + 1

2m2+1 + · · ·+ 1
2mk+1 + 1

2mk+1 = 1, and m1 + 1 < mk + 1. The

preceding argument shows that (X1/2)(X1/4)(X1/4) is a Γ-factorization that cannot

be sequentially Γ-refined to a Γ-complete factorization.

A Γ-completable domain that is not strongly Γ-completable is exhibited in

Example 2.1.5.

3.3 Classifying the “Complete” Cancellative Monoids

The purpose of this section is to classify all of the various kinds of Γ1-Γ2-

complete cancellative monoids that we have defined, completely determining the hi-

erarchy between them. The results of this effort are shown in the diagram of implica-
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tions given in Figure 3.1. A dotted line indicates that the implication holds if some

additional assumption is made, and that assumption is listed alongside the line. The

“p.p.” stands for the “partition-preserving” property we will define below. For now,

it will suffice to mention that ∼ is partition-preserving.

There are two more terms appearing in Figure 3.1 that need to be defined.

Let H be a cancellative monoid, Γ and Γ′ be factorization systems on H, and ≡ be

an equivalence relation on H#
0 . For X ⊆ H#, we call H an X-Γ-df≡ monoid if each

(nonzero) nonunit has only finitely many Γ-divisors in X up to ≡-equivalence. The

“df” is an acronym for “divisor finite”. We define the following additional abbrevi-

ations. A Γ′-Γ-idf≡ monoid is an atom(Γ′)-Γ-df≡-monoid (where the “i” stands for

“irreducible” and atom(Γ′) denotes the set of Γ′-atoms), a Γ-idf≡ monoid is a Γ-Γ-

idf≡ monoid, an idf≡ monoid is a fact(H)-idf≡ monoid, and an X-df≡ monoid is an

X-fact(H)-df≡ monoid. If ≡=∼, then we drop the “≡” from the above names.

Let H be a cancellative monoid, Γ be a factorization system on H, and ρ be a

relation on H. We say H satisfies the Γ-ascending chain condition up to ρ (Γ-ACCρ)

if whenever {an}∞n=1 is a sequence of (nonzero) nonunits with each an+1 |Γ an, then

there is an N ≥ 1 with ak+1ρak for k ≥ N . Again we drop the “Γ” in the case

Γ = fact(H). The Γ-ascending chain condition on principal ideals (Γ-ACCP) is the

Γ-ACC∼, and we will be focusing on this case. We note that the ascending chain

conditions arising from each of the three kinds of “associate” relations are important

in a non-cancellative setup.
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Figure 3.1: Classifying Γ1-Γ2-complete Cancellative Monoids

Γ1-Γ2-complete FFM≡ // Γ1-Γ2-complete BFM // Γ1-Γ2-complete

Γ1-Γ2-complete UFM≡ //

OO

Γ1-Γ2-complete HFM

OO

Γ1-Γ2-completable

OO

Γ1-Γ2-completable UFM≡ //

��

OO

Γ1-Γ2-completable HFM

��

OO

Γ1-Γ2-completable FFM≡ //

≡ p.p.
��

55

Γ2-completable BFM //

Γ2 ref.
��

ii

Γ1-Γ2-completable

OO

Γ∅-Γ2-idf≡ monoid

OO

(Γ2)r-ACCP

��
(Γ1 ∩ Γ2)r-ACCP

Γ2 red. div.

99

(Γ1)r-ACCP

OO

oo

Most of the implications in Figure 3.1 are obvious from the definitions. The

rest will follow from theorems that we give below. The reader may have noticed

that the “Γ2-completable BFM” entry is missing the “Γ1” and wonder if a typo was

made. Interestingly, it turns out that that property is completely independent of the

choice of Γ1. On a similar note, in the usual case where ≡ is partition-preserving, the

“Γ1” is also redundant in “Γ1-Γ2-completable FFM≡”. Figure 3.2 gives a simplified

τ -factorization version of Figure 3.1. (More generally, this same simplification could

be made for any reduced divisible factorization system.)
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Figure 3.2: Classifying τ -complete Cancellative Monoids

τ -complete FFM≡ // τ -complete BFM // τ -complete

τ -complete UFM≡ //

OO

τ -complete HFM

OO

τ -completable UFM≡ //

��

OO

τ -completable HFM

��

OO

τ -completable FFM≡ //

≡ p.p.
��

55

τ -completable BFM //

τ ref.
��

ii

τ -completable

OO

τ∅-τ -idf≡ monoid

OO

τr-ACCP

55

Specializing still further to the case of standard factorization in domains, we

obtain Figure 3.3. This special case was originally given in [3], and the authors gave

examples showing that no nontrivial implications could be added, which goes a long

way towards showing that no nontrivial implications can be added to Figures 3.1 and

3.3. During the remainder of this section we will see examples that finish the proof

of the fact that none of the figures can be improved.
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Figure 3.3: Classifying Atomic Domains

UFD //

��

HFD

��
atomic idf domain FFD ////oo BFD // ACCP // atomic

Our first step to better understand the various “completable” cancellative

monoids is to give alternative characterizations of the “BFM” case. Strictly speaking,

it is marginally more efficient to prove the “FFM” version of this theorem first and

derive the “BFM” version as an immediate corollary, but the latter version is so much

simpler that we find it more illuminating to prove it directly.

Theorem 3.3.1. Let Γ1 and Γ2 be factorization systems on a cancellative monoid H.

The following properties of H are equivalent:

(1) Γ∅-Γ2-complete BFM, i.e., every (nonzero) nonunit has an upper bound on the

lengths of its Γ2-factorizations;

(2) Γ1-Γ2-completable BFM;

(3) weakly Γ1-Γ2-completable BFM, i.e., a Γ1-Γ2-complete BFM that is weakly Γ1-

Γ2-complete; and

(4) Γ2-completable BFM.

Proof. It will suffice to show the equivalence of (1) − (3). (1) ⇒ (2): The only
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nontrivial part is showing that (1) implies that H is Γ1-Γ2-completable. For this,

we note that if there is a Γ2-factorization such that any Γ1-Γ2-sequence starting at

that Γ2-factorization has no Γ1-Γ2-complete elements, then one can construct an

arbitrarily long Γ1-Γ2-sequence starting at that Γ2-factorization such that the lengths

of the Γ2-factorizations in the Γ1-Γ2-sequence are strictly increasing. (2) ⇒ (3):

Clear. (3) ⇒ (1): If H is weakly Γ1-Γ2-completable, then every Γ2-factorization

can be refined into a Γ1-Γ2-complete factorization, which is necessarily at least as

long.

We wish to prove a similar theorem to the above for the “FFM” case, but in

order to do that, we will have to make some sort of assumption about the equivalence

relation. The additional property that we are looking for is the “partition-preserving”

property of the next lemma.

Lemma 3.3.2. Let H be a monoid and ≡ be an equivalence relation on H#
0 . The

following are equivalent.

(1) If two factorizations are ≡-equivalent, then any partition of the first is ≡-

equivalent to the corresponding partition of a reordering of the second.

(2) If two factorizations are ≡-equivalent, then any partition of the first is ≡-

equivalent to some partition of a reordering of the second.

(3) If a, b, c, d ∈ H#, a ≡ c, and b ≡ d, then ab ≡ cd.

(4) If a1, . . . , an, b1, . . . , bn ∈ H# and each ai ≡ bi, then a1 · · · an ≡ b1 · · · bn.

(5) The relation ≡ can be extended to a congruence relation on H.
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Proof. (2) ⇒ (3): Assume (2) and take any a, b, c, d ∈ H# with a ≡ c and b ≡ d.

Then ab and cd are ≡-equivalent factorizations, so some partition of cd must be ≡-

equivalent to the partition (ab) of cd. This forces ab ≡ cd. (3) ⇒ (4): Follows by

an easy induction. (4) ⇒ (1) ⇒ (2): Clear. (3) ⇔ (5): The implication (5) ⇒ (3)

is obvious, while, if (3) holds, then it is routine to check that ≡ ∪ (H× × H×) is a

congruence relation on H.

We call an equivalence relation satisfying the equivalent conditions of Lemma

3.3.2 partition-preserving. In particular, any congruence relation is partition-preserving.

Theorem 3.3.3. Let Γ1 and Γ2 be factorization systems on a cancellative monoid H,

and let ≡ be an equivalence relation on H. Consider the following statements.

(1) The monoid H is a Γ∅-Γ2-idf≡ monoid, i.e., each (nonzero) nonunit has only

finitely many Γ2-divisors up to ≡-equivalence.

(2) The monoid H is a Γ∅-Γ2-complete FFM≡, i.e., each (nonzero) nonunit has

only finitely many Γ2-factorizations up to ≡-equivalence.

(3) The monoid H is a Γ1-Γ2-completable FFM≡.

(4) The monoid H is a weakly Γ1-Γ2-completable FFM≡, i.e., a Γ1-Γ2-complete

FFM≡ that is weakly Γ1-Γ2-completable.

(5) The monoid H is a Γ2-completable FFM≡.

Then (1), (5) ⇐ (2) ⇒ (3) ⇔ (4). If ≡≤∼, then (1) ⇔ (2). If ≡ is partition-

preserving, then (2) − (5) are equivalent. Thus all five statements are equivalent if

≡≤∼ and ≡ is partition-preserving.
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Proof. For the first statement, it will suffice to prove (1)⇐ (2)⇒ (3)⇔ (4). (2)⇒

(1): By contradiction. Suppose that H is a Γ∅-Γ2-complete FFM≡ and there is a

nonzero nonunit a with an infinite sequence a1, a2, . . . of non-≡-related Γ2-divisors.

For each i pick some Γ2-factorization Fi of a containing ai. By assumption, there are

only finitely many Γ2-factorizations of a up to ≡-equivalence, so there must be some

Γ2-factorization that is ≡-equivalent to infinitely many Fi’s. This factorization must

contain factors ≡-equivalent to infinitely many ai’s, and these factors are necessarily

distinct, a contradiction. (2) ⇒ (3): The only nontrivial part is proving that H is

Γ1-Γ2-completable if it is a Γ∅-Γ2-complete FFM≡. But in this case each nonzero

nonunit has an upper bound on the lengths of its Γ2-factorizations, so Theorem 3.3.1

gives us our desired conclusion. (3)⇒ (4): Clear. (4)⇒ (3): Theorem 3.3.1.

Now assume ≡≤∼. (1) ⇒ (2): We adapt the proof of [3, Theorem 5.1].

Assume that H is a Γ∅-Γ2-idf≡ monoid and take any Γ2-expressible nonzero nonunit

a. Let a1, . . . , am be representatives of the finitely many ≡-equivalence classes of

the Γ2-divisors of a. Then each Γ2-factorization of a is ≡-equivalent (hence ∼-

equivalent) to a factorization of the form λan1
1 · · · anmm , where λ ∈ H× and each

ni ≥ 0, and λan1
1 · · · anmm ∼ a by the fact that ∼ is a congruence relation. Suppose

that some ni, say n1, is not bounded. Then we have factorizations λka
n1,k

1 · · · anm,km

≡-equivalent to Γ2-factorizations of a such that n1,1 < n1,2 < n1,3 < · · · . Suppose

that {ni,k}∞k=1 is bounded for each i ≥ 2. Then there are only finitely many ways

to choose (n2,k, n3,k, . . . , nm,k), so there must be some k < j with (n2,k, . . . , nm,k) =

(n2,j, . . . , nm,j). We have a
n1,k

1 · · · anm,km ∼ a ∼ a
n1,j

1 · · · anm,jm , and canceling yields
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a
n1,j−n1,k

1 ∼ 1 and n1,j − n1,k > 0, a contradiction. Therefore after a suitable re-

indexing we have {n2,k}∞k=1 unbounded. We can adjust by taking subsequences so

that n1,1 < n1,2 < n1,3 < · · · and n2,1 < n2,2 < n2,3 < · · · . Recursively carrying out

this process allows us to adjust things so that ni,1 < ni,2 < · · · for each i. But then

a
n1,1

1 · · · anm,11 ∼ a
n1,2

1 · · · anm,2m , and canceling yields a
n1,2−n1,1

1 · · · anm,2−nm,1m ∼ 1 with

each ni,2 − ni,1 > 0, a contradiction. Therefore there is a bound on each ni, so a has

only finitely many Γ2-factorizations up to ≡-equivalence.

Now assume that ≡ is partition-preserving. It will suffice to prove the equiva-

lence of (2)− (4). (4)⇒ (2): Assume that H is a weakly Γ1-Γ2-completable FFM≡.

Let a be any Γ2-expressible nonzero nonunit and let F1, . . . , Fn denote representatives

of the finitely many ≡-equivalence classes of the Γ1-Γ2-complete factorizations of a.

Because H is weakly Γ1-Γ2-completable, every Γ2-factorization of a is a partition of

some Γ1-Γ2-complete factorization of a, and hence ≡-equivalent to some partition of

some Fi by the fact that ≡ is partition-preserving. Therefore a has only finitely many

Γ2-factorizations up to ≡-equivalence.

Neither of the assumptions about ≡ can be dropped from Theorem 3.3.3. One

cannot drop the “≡≤∼” requirement, since using Γ = fact(H) and ≡= ψH yields

the false result that every monoid is a BFM. The following example shows that the

partition-preserving requirement cannot be dropped.

Example 3.3.4. An example of a UFD≡ D that is not a τ∅-τD-idf≡ domain. Let K

be any algebraically closed field, let D = K[x], and let ≡ be the equivalence relation

on D given by f ≡ g ⇔ f = g or deg f = deg g ∈ {0, 1}. (Note that ≡ is not
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partition-preserving since for α ∈ K∗ \ {1} we have x ≡ x, x ≡ αx, and x2 /≡αx2.) By

the fact that K is algebraically closed, each nonzero nonunit in K[x] splits into linear

factors, and this is certainly its unique atomic factorization up to ≡-equivalence, since

any two same-length factorizations with all linear factors are ≡-equivalent. Therefore

D is a UFD≡. However, the nonzero nonunit x3 has an infinite family {αx2 | α ∈ K}

of non-≡-equivalent divisors, so D is not a τ∅-τH-idf≡ domain.

Theorem 3.3.3 shows that the notions of a Γ-completable FFM≡ and a Γ∅-Γ-

idf≡ are equivalent if ≡ is partition-preserving and ≡≤∼. We get a somewhat weaker

variant with no assumptions on ≡.

Theorem 3.3.5. Let Γ1 and Γ2 be factorization systems on a cancellative monoid H.

If H is a Γ1-Γ2-completable FFM≡, then it is a Γ1-Γ2-idf≡ monoid.

Proof. By contradiction. Suppose that H is a Γ1-Γ2-completable FFM≡ and there

is an a ∈ H# with an infinite sequence a1, a2, . . . of non-≡-related Γ1-irreducible Γ2-

divisors. Each ai appears in some Γ2-factorization of a, which we may sequentially

Γ1-Γ2-refine to obtain a Γ1-Γ2-complete factorization Fi, which necessarily has ai

as a Γ2-factor by the fact that ai is Γ1-irreducible. Because there are only finitely

many Γ1-Γ2-complete factorizations of a up to ≡-equivalence, there must be some

Γ2-factorization that is ≡-equivalent to infinitely many Fi’s. This factorization must

contain factors ≡-equivalent to infinitely many ai’s, and these factors are necessarily

distinct, a contradiction.

We have stated Theorem 3.3.3 in its most general version in order to give some
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idea of how the properties of ∼ come into play, but from now on we will be dealing

only with the following simplified case.

Corollary 3.3.6. Let Γ1 and Γ2 be factorization systems on a cancellative monoid

H. The following properties of H are equivalent:

(1) Γ∅-Γ2-idf monoid,

(2) Γ∅-Γ2-complete FFM,

(3) Γ1-Γ2-completable FFM,

(4) weakly Γ1-Γ2-completable FFM, and

(5) Γ2-completable FFM.

At this point it is useful to bring in the ascending chain conditions. The paper

[6] showed that a domain is τ -completable if it satisfies τ -ACCP. The following is a

generalization.

Theorem 3.3.7. Let Γ1 and Γ2 be factorization systems on a cancellative monoid H.

Then H is Γ1-Γ2-completable if either of the following hold.

(1) The monoid H satisfies (Γ1)r-ACCP.

(2) The system Γ2 is reduced divisible and H satisfies (Γ1 ∩ Γ2)r-ACCP.

Proof. By contradiction. Suppose that (1) (resp., (2)) holds and that there is a

Γ2-factorization λa1 · · · an that cannot be sequentially Γ1-Γ2-refined into a Γ1-Γ2-

complete factorization. Then there is an infinite sequence of Γ2-factorizations starting

at λa1 · · · an with each a proper Γ1-Γ2-refinement of the last. Then for some ai there

must be an infinite sequence of reduced Γ1-factorizations starting at ai with each a
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proper Γ1-refinement of the last (resp., and by the reduced divisibility of Γ2 each

is in fact a proper (Γ1 ∩ Γ2)-refinement of the last). Let b1 = ai and carry out the

following recursive construction. Given b1, . . . , bk with each bj+1 a proper (Γ1)r-divisor

(resp., (Γ1 ∩ Γ2)r-divisor) of bj and an infinite sequence of reduced Γ1-factorizations

(resp., (Γ1∩Γ2)-factorizations) starting at bk with each a proper Γ1-refinement (resp.,

(Γ1∩Γ2)-refinement) of the last, we have a nontrivial reduced Γ1-factorization (resp.,

(Γ1 ∩ Γ2)-factorization) bk = c1 · · · clbk+1cl+1 · · · cm where bk+1 has in turn an infinite

sequence of reduced Γ1-factorizations (resp., (Γ1 ∩ Γ2)-factorizations) starting at it

with each a proper Γ1-refinement (resp., (Γ1 ∩ Γ2)-refinement) of the last. We now

have an infinite sequence {bk}∞k=1 in H# with each bk+1 a proper (Γ1)r-divisor (resp.,

(Γ1 ∩ Γ2)r-divisor), a contradiction.

The following example shows that the hypothesis that Γ2 is reduced divisible

in (2) above cannot be dropped.

Example 3.3.8. An example of a domain satisfying Γ-ACCP but not being τ -Γ-

complete, with τ and Γ having some nice properties. Let R be an integral domain

and D = R[Y, {Xr | r ∈ Q+}]. Define a relation τ on D# by λXrτµXs for r, s ∈

Q+ and note that τ is symmetric, multiplicative, divisive, and transitive. Obtain a

factorization system Γ on D by taking the symmetric, unital, associate-preserving,

and normal closure of the set of factorizations of the form (Xr1) · · · (Xrk)Y , where

k ≥ 0 and r1, . . . , rk ∈ Q+. We may observe that Γ is refinable and divisive. Also, any

element appearing in a nontrivial Γ-factorization is a Γ-atom, so D satisfies Γ-ACCP.

Finally, the nonzero nonunit XY has no τ -Γ-complete factorization.
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The paper [6] proved that a τ -completable BFD satisfies τ -ACCP for τ divisive.

The following is a generalization.

Theorem 3.3.9. Let Γ be a refinable factorization system on a cancellative monoid

H. If H is a Γr-completable BFM, then it satisfies Γr-ACCP.

Proof. Assume H is a Γr-completable BFM and let {an}∞n=1 be any sequence in H#

with each an+1 |Γr an. If there are infinitely many values of n with an+1 a proper Γr-

divisor of an, then by refinability we can use these reduced Γ-factorizations to obtain

arbitrarily long reduced Γ-factorizations of a1, a contradiction to Theorem 3.3.1.

The next example shows that the refinability assumption cannot be dropped.

Example 3.3.10. An example of a τ -completable UFD that does not satisfy τ -ACCP,

where τ is a symmetric and associate-preserving relation on the nonzero nonunits. Let

R be an integral domain andD = R[{Xr | r ∈ Q+}]. Let τ be the associate-preserving

and symmetric relation on D# determined by X3/2n+2
τX1/2n+2

for n ≥ 0. We observe

that the only non-trivial τ -factorizations are (up to associates and order) those of

the form λ(X3/2n+2
)(X1/2n+2

), which are necessarily τ -complete since there are no

τ -factorizations of length greater than 2. It follows that H is a τ -completable UFD.

However, we have an infinite sequence {X1/22n}∞n=0 in D# where each X1/22(n+1)
=

X1/22n+2
is a proper τ -divisor of X1/22n

= (X3/2n+2
)(X1/22n+2

), so D does not satisfy

τ -ACCP.

We end this section with a look at several theorems where a certain factoriza-

tion property is automatically inherited if we have the corresponding one with some
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different factorization systems.

The following is a generalization of [21, Theorem 4.11].

Theorem 3.3.11. Let H be a cancellative monoid, Γ ⊆ Γ′ be factorization systems

on H, and ρ ≥ ρ′ be relations on H. If H satisfies Γ′-ACCρ′, then it satisfies Γ-ACCρ.

Proof. Assume H satisfies Γ′-ACCρ′ . If {xn}∞n=1 is a sequence with each xn+1 |Γ xn,

then each xn+1 |Γ′ xn, so there is an N ≥ 1 with xk+1ρ
′xk (hence xk+1ρxk) for

k ≥ N .

Theorem 3.3.12. Let Γ1 ⊆ Γ′1 and Γ3 ⊇ Γ′3 be factorization systems on a cancellative

monoid H. If H is Γ′1-Γ2-complete, then it is Γ1-Γ2-complete. If H is (strongly) Γ′1-

Γ2-Γ′3-completable, then it is (strongly) Γ1-Γ2-Γ3-completable.

Proof. Any Γ′1-Γ2-complete factorization is Γ1-Γ2-complete, and any Γ′3-Γ2-refinement

is a Γ3-Γ2-refinement.

Theorem 3.3.13. Let Γ ⊆ Γ′ be factorization systems on a cancellative monoid H.

If H is a Γ′-completable BFM (resp., FFM), then it is a Γ-completable BFM (resp.,

FFM). In particular, a BFM (resp., FFM) is a Γ-completable BFM (resp., FFM).

Proof. Follows from Theorem 3.3.1 (resp., Corollary 3.3.6).

Theorem 3.3.14. Let Γ1 ⊇ Γ′1 and Γ2 be factorization systems on a cancellative

monoid H. If H is a Γ′1-Γ2-completable HFM (resp., UFM), then it is a Γ1-Γ2-

completable HFM (resp., UFM).

Proof. The only nontrivial part is showing that a Γ′1-Γ2-completable HFM (resp.,

UFM) is Γ1-Γ2-completable, but this is taken care of by Theorem 3.3.1.
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There is more to be said about unique factorization inheritance, but at this

point it would involve too great of an excursion from the main themes of this chapter.

We leave this discussion for a later chapter after we have introduced Γ-primes and

other useful tools.

We end this section with diagrams of implications summarizing the most im-

portant inheritance properties that follow from the results of this section.

Figure 3.4: Inheritance of “Completable” Properties with Γ2 ⊆ Γ′2

Γ′1-Γ′2-completable UFM

��

Γ1-Γ2-completable UFM

��
Γ′2-completable FFM //

��

Γ2-completable FFM

��
Γ′2-completable BFM

Γ′2 ref.
��

//

&&

Γ2-completable BFM

Γ2 ref.
��

xx

(Γ′2)r-ACCP

Γ′2 red. div.
��

// (Γ2)r-ACCP

Γ2 red. div.
��

Γ′1-Γ′2-completable Γ1-Γ2-completable
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Figure 3.5: Inheritance of “Completable” Properties with Γ ⊆ Γ′

Γ′-completable UFM

��

Γ-completable UFM

��
Γ′-completable FFM //

��

Γ-completable FFM

��
Γ′-completable BFM

Γ′ ref.
��

//

&&

Γ-completable BFM

Γ ref.
��

xx

(Γ′)r-ACCP

��

// Γr-ACCP

��
Γ′-completable Γ-completable

3.4 Factorization and Closures, II

In this section we will continue our study of the various closures of factorization

systems, primarily focusing on how the complete concepts are affected. In the next

chapter there will be an analogous section focusing on the atomic concepts.

Theorem 3.4.1. Let Γ1 and Γ2 be factorization systems on a cancellative monoid H,

and let Γ be the factorization system consisting of the Γ1-Γ2-complete factorizations.

(1) If Γ2 is unital, then so is Γ.

(2) If (Γ1)r and Γ2 are associate-preserving, then so is Γ.

Proof.

(1) Assume that Γ2 is unital. Let λa1 · · · an be any Γ1-Γ2-complete factorization,

and take any µ ∈ H×. The factorization µa1 · · · an is a Γ2-factorization by the
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unital property, and we must show that it has no proper Γ1-Γ2-refinements.

But this is evident, since the unital property gives an obvious length-preserving

one-to-one correspondence between the Γ1-Γ2-refinements of the aforementioned

factorizations.

(2) Assume that (Γ1)r and Γ2 are associate-preserving. Take any Γ1-Γ2-complete

factorization λa1 · · · an and µ1, . . . , µn ∈ H×. Then λ(µ1a1) · · · (µnan) is a Γ2-

factorization by the associate-preserving property of Γ2. We must show that it

is Γ1-Γ2-complete, so let µ1a1 = b1,1 · · · b1,m1 , . . . , µnan = bn,1 · · · bn,mn be any

((Γ1)r ∪ trfact(H))-factorizations with λb1,1 · · · bn,mn a Γ2-factorization. By the

fact that (Γ1)r is associate-preserving, each ai = (µ−1
i bi,1)bi,2 · · · bi,mi is a ((Γ1)r∪

trfact(H))-factorization, and λ(µ−1
1 b1,1)b1,2 · · · b1,m1 · · · (µ−1

n bn,1)bn,2 · · · bn,mn is a

Γ1-Γ2-refinement of λa1 · · · an by the fact that Γ2 is associate-preserving. By

Γ1-Γ2-completeness, each mi = 1, as desired.

Theorem 3.4.2. Let Γ be a unital or strong associate-preserving factorization system

on a monoid H.

(1) For every Γu,sap-factorization, there is a Γ-factorization of the same element of

the same length whose factors are strong associates of the corresponding factors

in the original factorization.

(2) The Γ-expressible and Γu,sap-expressible elements coincide.

(3) Every Γu,sap-divisor of a nonunit is a strong associate of a Γ-divisor of that

element.
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Proof. It will suffice to prove (1), since (2)-(3) will then become obvious.

Let a = λa1 · · · an be a Γu,sap-factorization. Then there are ν, µ1, . . . , µn ∈

H× with ν(µ1a1) · · · (µnan) a Γ-factorization. If Γ is unital, then a =

(λµ−1
1 · · ·µ−1

n )(µ1a1) · · · (µnan) is a Γ-factorization, while if Γ is strong associate-

preserving, then a = ν(ν−1λa1)a2 · · · an is a Γ-factorization.

Corollary 3.4.3. Let Γ1 and Γ2 be factorization systems on a cancellative monoid

H, with Γ1 associate-preserving and Γ2 unital or associate-preserving. Then every

Γ1-(Γ2)u,ap-complete factorization is ∼-equivalent to a Γ1-Γ2-complete factorization

of the same element.

Proof. Theorem 3.4.2 part (1) and Theorem 3.4.1.

Lemma 3.4.4. Let Γ1 and Γ2 be factorization systems on a cancellative monoid H.

(1) If H is Γ1-Γ2-complete and every (Γ2)u-expressible nonzero nonunit is Γ2-

expressible, then H is Γ1-(Γ2)u-complete.

(2) If H is a Γ1-(Γ2)u-completable BFM (resp., FFM, HFM, UFM), then it is a

Γ1-Γ2-completable BFM (resp., FFM, HFM, UFM).

Proof.

(1) Follows from the observation that a Γ1-Γ2-complete factorization is Γ1-(Γ2)u-

complete.

(2) Assume H is a Γ1-(Γ2)u-completable BFM (resp., FFM, HFM, UFM). By Theo-

rem 3.3.13, we know thatH is Γ1-Γ2-completable, and all that remains is to show
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that the other half of the Γ1-Γ2-completable BFM (resp., FFM, HFM, UFM)

definition is satisfied. For this it suffices to note that every Γ1-Γ2-complete

factorization is Γ1-(Γ2)u-complete.

The implications in (1) and (2) above do not reverse.

Example 3.4.5. An example of a τ -complete UFD that is not τr-complete, with τ

a symmetric relation on the nonzero nonunits. Let D = C[{Xr | r ∈ Q+}] and τ be

the symmetric relation on D# determined by XrτiXr. Then the τ -reducible nonzero

nonunits are precisely those of the form λXr, which have unique (up to order) τ -

complete factorizations (−iλ)(Xr/2)(iXr/2). However, the nonzero nonunit Xr has

no τr-complete factorization.

Example 3.4.6. An example of a τr-completable UFD that is not a τ -complete BFD.

Let D = R[{Xr | r ∈ Q+}] and τ be the symmetric relation on D# given by 2Xrτ2Xr.

Note that D is τr-completable since every nontrivial reduced τ -factorization is already

τ -complete. Moreover, the τr-reducible nonzero nonunits are precisely those of the

form 2nXr, which have unique τr-complete factorizations (2Xr/n)n, so D is a τr-

completable UFD. However, since X has arbitrarily long τ -complete factorizations,

namely those of the form X = 2−n(2Xr/n)n, the domain D is not a τ -complete BFD.

Theorem 3.4.7. Let H be a cancellative monoid, Γ and Γ′ be factorization systems

on H, and X ⊆ H#. Assume Γ is unital or associate-preserving and Γ′ is associate-

preserving.
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(1) The monoid H satisfies Γ-ACCP if and only if it satisfies Γu,ap-ACCP.

(2) The monoid H is a Γ-completable BFM (resp., FFM) if and only if it is a

Γu,ap-completable BFM (resp., FFM).

(3) If H is a Γ′-Γ-completable HFM (resp., UFM), then it is a Γ′-Γu,ap-completable

HFM (resp., UFM). In particular, a Γ-completable HFM (resp., UFM) is a

Γu,ap-completable HFM (resp., UFM).

(4) The monoid H is an X-Γ-df monoid if and only if is an X-Γu,ap-df monoid.

(5) If H is Γ′-Γu,ap-complete, then it is Γ′-Γ-complete.

Proof.

(1) (⇒): Assume H satisfies Γ-ACCP and let {an}∞n=1 be a sequence of nonzero

nonunits with each an+1 |Γu,ap an. Let b1 = a1 and carry out the following

recursive construction. Given b1, . . . , bk with each bi ∼ ai and each bi+1 |Γ bi,

note that ak+1 |Γu,ap ak and hence ak+1 |Γu,ap bk by the unital property, and

Theorem 3.4.2 part (3) implies that there is a bk+1 ∼ ak+1 with bk+1 |Γ bk. So

we have constructed a sequence {bn}∞n=1 with each bn+1 |Γ bn and bn ∼ an. By

the Γ-ACCP property, there is an N with bk+1 ∼ bk (and hence ak+1 ∼ ak) for

k ≥ N . (⇐): Theorem 3.3.11.

(2) By Corollary 3.3.6, the “FFM” case is just the special case X = H# of part

(4) below. The “BFM” case follows from Theorem 3.4.2 part (1) and Theorem

3.3.1.

(3) The second statement will follow from combining the first with Theorem 3.3.14.
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Now assume that H is a Γ′-Γ-completable HFM (resp., UFM). By part (2) and

Theorem 3.3.1, we know H is Γ′-Γu,ap-completable, so all that remains is to

show the Γ′-Γu,ap-complete factorizations of a given nonzero nonunit are all of

the same length (resp., are all ∼-equivalent). For this it will suffice to show

that every Γ′-Γu,ap-complete factorization is ∼-equivalent to a Γ′-Γ-complete

factorization of the same nonzero nonunit, which is accomplished in Corollary

3.4.3.

(4) (⇒): Theorem 3.4.2 part (3). (⇐): Clear.

(5) Assume H is Γ′-Γu,ap-complete and take any Γ-expressible a ∈ H#. Then a is

certainly Γu,ap-expressible, and thus has a Γ′-Γu,ap-complete factorization a =

λa1 · · · an. By Theorem 3.4.2 part (1), there is a Γ-factorization a = λ′a′1 · · · a′n

with each a′i ∼ ai, and this is a Γ′-Γ-complete factorization by Theorem 3.4.1.

The following examples show that the implications in (3) and (5) do not re-

verse.

Example 3.4.8. An example of a τap-completable UFD that is not a τap-τ -complete

HFD (hence not a τ -complete HFD), with τ a symmetric relation on the nonzero

nonunits with (Γτ )ap = Γτap . Let τ be the symmetric relation on Z# given by aτb⇔

ab > 0. Note that (Γτ )ap = Γτap = fact(Z), and Z is certainly a UFD. But Z is not

a τZ-τ -complete HFD, since (−4)(−2) = 23 are two different length τZ-τ -complete

factorizations of the same element.
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Example 3.4.9. An example of a domain that is both a τ -complete UFD and

a τap-τ -complete UFD, but not τ -τap-complete (hence not τap-complete), where

τ is a symmetric relation on the nonzero nonunits with (Γτ )ap = Γτap . Let

D = C[{Xr | r ∈ Q+}] and τ be the symmetric relation on D# deter-

mined by ±XrτXr, ±XrτiXr, and −iXrτiXr, where r ∈ Q+. Observe that

(Γτ )ap = Γτap = tfact(D) ∪ {λ(µ1X
r) · · · (µnXr) | λ, µ1, . . . , µn ∈ C×}. The non-

trivial τ -factorizations are (up to order) the factorizations of the forms λ(Xr)n,

λ(Xr)n(−Xr), λ(Xr)n(iXr), λ(Xr)n(−Xr)(iXr), λ(−Xr)(iXr), and λ(iXr)(−iXr).

The last is τap-τ -complete, while the rest have proper τ -refinements λ(Xr/2)2n,

λ(Xr/2)2n+1(−Xr/2), λ(Xr/2)2n+1(iXr/2), λ(Xr/2)2n+1(−Xr/2)(Xr/2)(iXr/2), and

λ(Xr/2)(−Xr/2)(Xr/2)(iXr/2), respectively. The τ -reducible nonzero nonunits are

those of the form λXr, which have unique (up to order) τ -complete factoriza-

tions λ(iXr/2)(−iXr/2), which are in fact τap-τ -complete. Therefore D is both a

τ -complete UFD and a τap-τ -complete UFD. However, we can use the reduced τ -

factorizations Xr = (Xr/2)2, −Xr = (Xr/2)(−Xr/2), iXr = (Xr/2)(iXr/2), and

−iXr = (−Xr/2)(iXr/2) to obtain a proper τ -τap-refinement of any nontrivial τap-

factorization, so D is not τ -τap-complete.

Some of these results can be improved if we strengthen “unital or associate-

preserving” to “associate-preserving”.

Theorem 3.4.10. Let Γ1 and Γ2 be associate-preserving factorization systems on a

cancellative monoid H.

(1) The monoid H is Γ1-Γ2-complete if and only if it is Γ1-(Γ2)u-complete.
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(2) The monoid H is a Γ1-Γ2-complete(able) BFM (resp., FFM, HFM, UFM) if

and only if it is a Γ1-(Γ2)u-complete(able) BFM (resp., FFM, HFM, UFM).

Proof.

(1) (⇒): Theorem 3.4.2 part (2) and Lemma 3.4.4 part (1). (⇐): Theorem 3.4.7

part (5).

(2) The “⇐” direction for the “completable” case is Lemma 3.4.4 part (2), and the

“⇒” direction for that case is covered in Theorem 3.4.7. So we move on to the

“complete” case. (⇒): Assume H is a Γ1-Γ2-complete BFM (resp., FFM, HFM,

UFM). By part (1), we know H is Γ1-(Γ2)u-complete, and it suffices to prove the

other half of the Γ1-(Γ2)u-complete BFM (resp., FFM, HFM, UFM) definition

is satisfied, and for this it suffices to show that every Γ1-(Γ2)u-complete factor-

ization is ∼-equivalent to a Γ1-Γ2-complete factorization of the same element.

For this we cite Corollary 3.4.3. (⇐): Analogously to the “⇒” direction, it

suffices to note that every Γ1-Γ2-complete factorization is Γ1-(Γ2)u-complete.

While we can obtain several results about reduced Γ-factorization as a special

case of the very general setup of Theorem 3.4.2, there are some that require something

more specific about reduced Γ-factorization, namely the leading unit being constant.

Let H be a monoid, Γ be a factorization system on H, and ν ∈ H×. We use Γr,ν

to denote the factorization system consisting of Γ-factorizations with ν as the lead-

ing unit. For lack of a better term, we call a fact(H)r,ν-factorization a ν-reduced
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factorization. Of course, the 1-reduced Γ-factorizations are simply the reduced Γ-

factorizations. The following observations are noteworthy, as they allow us to derive

immediate ν-reduced Γ-factorization corollaries from many general results: (i) if ρ is

a relation on H# and Γ is ρ-preserving, then so is Γr,ν , and (ii) if Γ is unital, then

(Γr,ν)u = Γ = Γu and (Γr,ν)u,sap = Γsap = Γu,sap.

Lemma 3.4.11. Let Γ1, Γ2, and Γ3 be factorization systems on a cancellative monoid

H with Γ2 unital, and let ν ∈ H×.

(1) If H is Γ1-(Γ2)r,ν-complete, then it is Γ1-Γ2-complete.

(2) The monoid H is (strongly) Γ1-Γ2-Γ3-completable if and only if it is (strongly)

Γ1-(Γ2)r,ν-Γ3-completable.

(3) If H is a Γ1-Γ2-completable BFM (resp., FFM, HFM, UFM), then it is a Γ1-

(Γ2)r,ν-completable BFM (resp., FFM, HFM, UFM).

Proof.

(1) Lemma 3.4.4 part (1).

(2) (⇒): Clear. (⇐): We will prove the “non-strongly” case. The “strongly”

case is similar. Assume H is Γ1-(Γ2)r,ν-Γ3-completable. Let λa1 · · · an be any

Γ2-factorization. We can sequentially Γ3-(Γ2)r,ν-refine the (Γ2)r,ν-factorization

νa1 · · · an to a Γ1-(Γ2)r,ν-complete (hence Γ1-Γ2-complete) factorization νb1 · · · bm.

By the fact that Γ2 is unital, this means we can sequentially Γ3-Γ2-refine

λa1 · · · an to λb1 · · · bm, which is Γ1-Γ2-complete by Theorem 3.4.1.

(3) Follows from part (2) and the observation that every Γ1-(Γ2)r,ν-complete fac-
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torization is Γ1-Γ2-complete.

Example 3.4.6 shows that the converse to (3) is false, while the following

example shows that the converse to (1) is false. Also, these examples show that there

is no hope of making a version of (3) with the “completable” monoids replaced with

the weaker “complete” ones.

Example 3.4.12. An example of a τ -completable UFD that is not τr-complete, with

τ a symmetric relation on the nonzero nonunits. Let D and τ be as in Example 3.4.8

above. Then D is a τ -completable UFD, but it is not τr-complete since iX has no

τr-complete factorization.

Theorem 3.4.13. Let H be a cancellative monoid, Γ1 and Γ2 be factorization systems

on H, and ν ∈ H×. Assume Γ1 is associate-preserving and Γ2 is unital and associate-

preserving.

(1) The monoid H is Γ1-Γ2-complete if and only if it is Γ1-(Γ2)r,ν-complete.

(2) The monoid H is a Γ1-Γ2-complete(able) BFM (resp., FFM, HFM, UFM) if

and only if it is a Γ1-(Γ2)r,ν-complete(able) BFM (resp., FFM, HFM, UFM). In

particular, the monoid H is a Γ2-completable BFM (resp., FFM, HFM, UFM)

if and only if it is a (Γ2)r,ν-completable BFM (resp., FFM, HFM, UFM).

Proof.

(1) (⇒): Use Theorem 3.4.1 to construct Γ1-(Γ2)r,ν-complete factorizations of ele-

ments out of their Γ1-Γ2-complete factorizations. (⇐): Lemma 3.4.11.
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(2) In view of part (1), it will suffice to show that every Γ1-Γ2-complete factorization

is ∼-equivalent to a Γ1-(Γ2)r,ν-complete factorization of the same element, and

this follows from Corollary 3.4.3.

Let H be a cancellative monoid and τ be an associate-preserving relation on

H#. Applying the results of this section to τr and (τr)u = τ , or to τ and τr, we

can obtain several results about reduced τ -factorization. This sort of comment will

apply to many future theorems as well (and obviously its applications extend well be-

yond reduced τ -factorization). This generalizes work done in [21] on the relationship

between τ -factorization and reduced τ -factorization, and also makes more explicit

the general convention of [6] of working with reduced τ -factorization whenever τ is

associate-preserving. For convenience, we now restate several of the above results in

a (reduced) τ -factorization context.

Corollary 3.4.14. Let H be a cancellative monoid and τ be a relation on H#.

(1) If H satisfies τ -ACCP, then it satisfies τr-ACCP. If τ is associate-preserving,

then the converse is true.

(2) If H is τr-complete, then it is τ -complete. If τ is associate-preserving, then the

converse is true.

(3) The monoid H is τ -completable if and only if it is τr-completable.

(4) If H is a τ -completable BFM (resp., FFM, HFM, UFM), then it is a τr-

completable BFM (resp., FFM, HFM, UFM). If τ is associate-preserving, then
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the converse is true.

Another important closure to consider is the combinable closure.

Theorem 3.4.15. Let Γ be a factorization system on a monoid H.

(1) A nonunit has a Γ-factorization of length at least n if and only if it has a

Γc-factorization of length at least n.

(2) The Γ-expressible elements of H#
0 coincide with the Γc-expressible elements.

(3) (Γc)u = (Γu)c.

(4) ((Γc)sap)u = (Γu,sap)c.

(5) If Γ is associate-preserving (resp., symmetric, reflexive, transitive, divisive, (re-

duced) normal, (reduced) divisible, (reduced) divisible, relational), then so is

Γc.

Proof. Parts (1)-(3) are clear, and (4) is a straightforward calculation. We will do

the relational case of (5) and leave the rest to the reader. In this case, we may write

Γ = Γψ for some relation ψ on H by Theorem 2.2.1. Define λψca for λ ∈ H× and

a ∈ H#
0 if and only if a has a factorization a = a1 · · · an, where λψai for each i

and aiψaj for each i < j. Define aψcb for a, b ∈ H# if and only if a and b have

factorizations a = a1 · · · am and b = am+1 · · · an, where aiψaj for i < j. It is easily

verified that Γc = Γψc .

Theorem 3.4.16. Let H be a cancellative monoid and Γ be a factorization system

on H.
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(1) The monoid H is a Γ-completable BFM if and only if it is a Γc-completable

BFM.

(2) If ≡ is partition-preserving, then H is a Γ-completable FFM≡ if and only if it

is a Γc-completable FFM≡.

Proof.

(1) Theorem 3.4.15 part (1) and Theorem 3.3.1.

(2) Assume ≡ is partition-preserving. (⇒): Assume H is a Γ-completable FFM≡.

Every Γc-factorization of an nonzero nonunit is a partition of a Γ-factorization

of that element. As in the proof of Theorem 3.3.3, this implies that each nonzero

nonunit has only finitely many Γc-factorizations up to ≡-equivalence. We apply

Theorem 3.3.3 to conclude that H is a Γc-completable FFM≡. (⇐): Theorem

3.3.13.

Theorem 3.4.17. Let Γ be a reduced divisible factorization system on a monoid H.

(1) Every fact(H)-Γc-refinement of a factorization may be Γ-refined to a Γ-

refinement of the original factorization.

(2) The Γ-complete factorizations coincide with the (Γ)c-complete factorizations.

Proof.

(1) Let λa1 · · · an be any factorization and λb1,1 · · · bn,mn be any fact(H)-Γc-

refinement of it, where each ai = bi,1 · · · bi,mi is a reduced Γc-factorization.

We may write each bi,j as a reduced factorization bi,j = ci,j,1 · · · ci,j,ki,j , where
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λc1,1,1 · · · cn,mn,kn,mn is a Γ-factorization. By the reduced divisibility of Γ, each

ai = ci,1,1 · · · ci,mi,ki,mi is a Γ-factorization and each bi,j = ci,j,1 · · · ci,j,ki,j is

a Γ-factorization. Therefore the Γ-factorization λc1,1,1 · · · cn,mn,kn,mn is a Γ-

refinement of both λb1,1 · · · bn,mn and λa1 · · · an.

(2) Any Γ-complete factorization is Γc-complete by part (2). It follows from the

reduced divisible property that any (Γc)-complete factorization must be Γ-

complete.

We will finish this section with some results about normal closures.

Theorem 3.4.18. Let H be a cancellative monoid, and let Γ,Γ′,Γi, and Γ′i be fac-

torization systems on H for i = 1, 2, 3. Assume Γ ⊆ Γ′ ⊆ Γ ∪ tfact(H), and

Γi ⊆ Γ′i ⊆ Γi ∪ tfact(H) for each i.

(1) The Γ-fact(H)-refinements of a factorization coincide with its Γ′-fact(H)-

refinements.

(2) A Γ1-Γ2-complete factorization is Γ′1-Γ′2-complete.

(3) A factorization of a non-Γ-expressible nonzero nonunit has no proper fact(H)-

Γ′-refinements.

(4) If H is Γ1-Γ2-complete, then it is Γ′1-Γ′2-complete.

(5) If H is (strongly) Γ′1-Γ′2-Γ′3-completable, then it is (strongly) Γ1-Γ2-Γ3-completable.

(6) The monoid H is a Γ-completable BFM (resp., FFM) if and only if it is a

Γ′-completable BFM (resp., FFM).
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(7) If H satisfies Γ′-ACCP, then it satisfies Γ-ACCP. If Γ is unital or associate-

preserving, then the converse is true.

Proof.

(1) This follows from the fact that Γr ∪ trfact(H) = (Γ′)r ∪ trfact(H).

(2) A Γ1-Γ2-complete factorization is Γ1-Γ′2-complete because every nontrivial Γ′2-

factorization is a Γ2-factorization, and hence Γ′1-Γ′2-complete by part (2).

(3) If a ∈ H# has a factorization that can be properly refined to a Γ′-factorization,

then that Γ′-factorization is nontrivial and hence a Γ-factorization.

(4) Assume H is Γ1-Γ2-complete and let a ∈ H# be any Γ′2-expressible nonzero

nonunit. If a is not Γ2-expressible, then any Γ′2-factorization of a is Γ′1-Γ′2-

complete by part (4). On the other hand, if a is Γ2-expressible, then it has a Γ1-

Γ2-complete factorization, which is Γ′1-Γ2-complete by part (2), which is in fact

Γ′1-Γ′2-complete since all of the nontrivial Γ′2-factorizations are Γ2-factorizations.

(5) We prove the “non-strongly” case; the “strongly” case is similar. Assume

H is Γ′1-Γ′2-Γ′3-completable. Then any Γ2-factorization can be sequentially

Γ′3-Γ′2-refined to a Γ′1-Γ′2-complete factorization. But any sequential Γ′3-Γ′2-

refinement of a Γ2-factorization is in fact a sequential Γ3-Γ2-refinement, so any

Γ2-factorization can be sequentially Γ3-Γ2-refined to a Γ1-Γ2-complete factor-

ization.

(6) Follows from Theorem 3.3.1 (resp., 3.3.3) since each nonzero nonunit has at

most one Γ′-factorization that is not a Γ-factorization.
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(7) (⇒): Theorem 3.3.11. (⇐): Assume that Γ is unital or associate-preserving and

that H satisfies Γ-ACCP. We proceed by contradiction. Suppose that there is a

sequence {an}∞n=1 in H# with each an+1 |Γ′ an and ak+1 � ak for infinitely many

k’s. By the associate-preserving property of (Γ′)ap, we can take subsequences

and start our notation over again with each an+1 a proper (Γ′)ap-divisor of

an, hence a proper Γu,ap-divisor of an. But this contradicts Theorem 3.4.7’s

assertion that H satisfies Γu,ap-ACCP.

Theorem 3.4.19. Let Γ, Γ′, and Γ3 be factorization systems on a cancellative monoid

H. Assume Γ is unital and associate-preserving, and that Γ ⊆ Γ′ ⊆ Γ ∪ tfact(H).

(1) The Γ-complete and Γ′-complete factorizations of Γ-expressible elements of H#

coincide.

(2) The monoid H is Γ-complete if and only if it is Γ′-complete.

(3) If Γ3 ⊇ Γ, then H is Γ-Γ-Γ3-completable if and only if it is Γ′-Γ′-Γ′3-completable.

(4) The monoid H is a Γ-complete(able) BFM (resp., HFM) if and only if it is a

Γ′-complete(able) BFM (resp., HFM).

(5) If H is a Γ′-complete(able) FFM≡ (resp., UFM≡), then it is a Γ-complete(able)

FFM≡ (resp., UFM≡). If ∼≤≡, then the converse is true.

Proof.

(1) It will suffice to show that any trivial Γ′-complete factorization λa of a Γ-

expressible nonzero nonunit is Γ-complete. Since Γ is unital and associate-
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preserving, we know a has a reduced Γ-factorization, which we can use to get

a Γ-refinement of λa. This refinement cannot be proper, so λa is in fact a

Γ-complete factorization.

(2) Follows from part (1).

(3) Assume Γ3 ⊇ Γ. (⇒): Assume H is Γ-Γ-Γ3-completable. Any Γ-factorization

can be sequentially Γ3-Γ-refined, hence sequentially Γ′3-Γ′-refined, into a Γ-

complete factorization, which is Γ′-complete by Theorem 3.4.18 part (3). Any

Γ′-factorization that is not a Γ-factorization is a trivial factorization λa. If

λa is not Γ-expressible, then this factorization is Γ′-complete by part (1), so

let us assume λa is Γ-expressible, and hence a has a reduced Γ-factorization

a = b1 · · · bn by the fact that Γ is associate-preserving. So a = λb1 · · · bn is

a Γ-refinement of the factorization λa, and this Γ-refinement may in turn be

sequentially Γ3-Γ-refined into a Γ-complete factorization, which is Γ′-complete

by Theorem 3.4.18 part (3). (⇐): Theorem 3.4.18 part (6).

(4) Follows from parts (1)-(3).

(5) (⇒): Follows from parts (1)-(3). (⇐): If ∼≤≡, then each nonzero nonunit that

is Γ′-expressible but not Γ-expressible has exactly one Γ′-factorization up to

≡-equivalence, and the remainder of the proof is accomplished by parts (1)-(3).
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CHAPTER 4
ATOMICITY

In this chapter, we will consider the other natural generalization of atomic

factorization, namely Γ-atomic factorization. Recall that, in a cancellative monoid,

an atom or irreducible is a nonunit with no nontrivial factorizations, or, equivalently,

a nonunit whose non-unit divisors are all (strongly) associate to it. The equivalence of

these statements also holds for a présimplifiable monoid, but in general monoids they

are not necessarily equivalent, giving rise to three different kinds of “irreducibles”: the

very strong irreducibles, strong irreducibles, and irreducibles, in order from strongest

to weakest. So in general monoids we would need three separate analogous notions

of “Γ-irreducible”, and we will simplify matters by restricting our consideration to

cancellative monoids. In a cancellative monoid, a Γ-atom or Γ-irreducible is a nonunit

with no nontrivial Γ-factorizations. (Since the monoid is cancellative, this is equiva-

lent to a nonunit whose Γ-divisors are all (strongly) associate to it.) Again returning

to past remarks, the thesis [20] carries out the intricate work of generalizing τ -atomic

factorization from domains to commutative rings with zero divisors, and we refer the

reader there for an idea of how the atomic topics discussed here could be analogously

generalized to non-cancellative monoids. The work contained in this thesis for the

most part generalizes to the “very strongly irreducible” portion of the most general

theory with trivial changes, since the definition we have given for a Γ-atom in a

cancellative monoid is the definition of a very strong Γ-atom in a general monoid.

The first four sections of this chapter will be analogous to those of the previous
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chapter, focusing on the atomic concepts analogous to those complete ones studied

in the corresponding sections. Attention will be given to the relationship between

the atomic and complete concepts, demonstrating all of the nontrivial implications

between them and showing that no others exist. One can generalize the Γ-atomic

factorizations to the Γ1-Γ2-atomic factorizations, which are Γ2-factorizations whose

factors are Γ1-atoms, and one can further generalize these to X-Γ-factorizations,

which are Γ-factorizations whose factors are taken from some set X of distinguished

elements. We will see in the first section that X is the set of Γ′-atoms for some

factorization system Γ′ if and only if X contains all of the irreducible elements of H.

It is easy to see that, if every nonzero nonunit has an X-Γ-factorization and X is

associate-preserving (i.e., if a ∼ a′, then a ∈ X ⇔ a′ ∈ X), then these equivalent

conditions hold, so there is little lost in restricting ourselves to the study of Γ1-Γ2-

atomic factorization.

In the fifth section we see all of our work on the atomic and complete con-

cepts come together when we study how refinability (along with some other mild

hypotheses) makes the complete and atomic concepts equivalent. We will show how

most of the known theorems for the atomic concepts are special cases of the complete

ones. At the end we show that many of the Γ-atomic factorization properties can be

characterized by chain conditions if Γ has some particularly nice properties.

One thing that we have left out of this chapter and the last is an in-depth

study of unique factorization, opting to leave this for the final chapter when it can

be studied in conjunction with generalized primes.



83

4.1 Preliminaries

Let Γ be a factorization system on a cancellative monoid H. A nonunit is

Γ-irreducible or a Γ-atom if it has no nontrivial Γ-factorizations. We denote the set of

Γ-atoms by atom(Γ). The fact(H)-atoms are called simply atoms or irreducibles, and

we abbreviate atom(fact(H)) = atom(H). The following proposition makes explicit

some fairly obvious facts that we will be using.

Proposition 4.1.1. Let Γ be a factorization system on a cancellative monoid H.

(1) A nonunit is Γ-irreducible if and only if all its Γ-divisors are associate to it.

(2) If Γ is unital or associate-preserving, then a nonunit is Γ-irreducible if and only

if it is an associate of a Γ-atom.

(3) If Γ is combinable, then a nonunit is Γ-irreducible if and only if it has no Γ-

factorization of length 2.

(4) If Γ ⊆ Γ′, then atom(Γ′) ⊆ atom(Γ).

(5) If {Γα}α∈J is any family of factorization systems, then atom(
⋃
α Γα) =⋂

α atom(Γα) and atom(
⋂
α Γα) ⊇

⋃
α atom(Γα).

Proof. Parts (1), (3), and (4) are clear, and part (5) is [7, Theorem 4.6(13),(14)].

For part (2), assume Γ is unital (resp., associate-preserving), and let a be any Γ-

atom and let µ ∈ H×. If µa = λa1 · · · an is a nontrivial Γ-factorization, then so is

a = (µ−1λ)a1 · · · an (resp., a = λ(µ−1a1)a2 · · · an), a contradiction. Therefore µa is a

Γ-atom.

In standard factorization, the most important case of writing an element as
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a product of some sort of distinguished elements is undoubtedly factorization into

atoms. Similarly, our main example in this chapter will be Γ-factorization into Γ-

atoms. However, we will find that we can accomplish most of our goals in much

greater generality by replacing the set of Γ-atoms with an arbitrary distinguished set

of nonunits.

We will find it useful to define several properties that such a set of distinguished

elements can have. Let H be a monoid and ρ be a relation on H#
0 . We call X ⊆ H#

0

ρ-preserving if aρb ∈ X ⇒ a ∈ X. Note that the ρ-preserving property is preserved by

arbitrary intersections. A set of nonunits is called associate-preserving (resp., strong

associate-preserving, divisive) if it is ∼-preserving (resp., ≈-preserving, |-preserving).

Let Γ be a factorization system on a cancellative monoid H. By Proposition

4.1.1 part (2), the set atom(Γ) is associate-preserving if Γ is unital or associate-

preserving. A natural thing to ask is what sets of nonunits correspond to the Γ-atoms

of some factorization system Γ. For this question and many others, the following

construction will prove extremely useful. Given X ⊆ H#
0 and a factorization system

Γ, we define a new factorization system Γ(X) obtained by removing the nontrivial

factorizations of elements of X from Γ.

Theorem 4.1.2. Let H be a cancellative monoid, X ⊆ H#
0 , and Γ be a factorization

system on H. Then Γ(X) is the unique largest factorization system contained in Γ

with X ⊆ atom(Γ(X)). Also, atom(Γ(X)) ⊆ X ∪ atom(Γ), so X = atom(Γ(X))

if atom(Γ) ⊆ X. If Γ is symmetric (resp., combinable, normal, reduced normal),

then so is Γ(X). If X is associate-preserving, then Γ(X) is unital (resp., (weakly)
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associate-preserving) if Γ is.

Proof. The fact that Γ(X) is the unique largest factorization system contained in Γ

with X ⊆ atom(Γ(X)) is clear. If a Γ-reducible element is not in X, then its nontrivial

Γ-factorizations are Γ(X)-factorizations. Hence atom(Γ(X)) ⊆ X∪atom(Γ). Because

no trivial factorizations were removed from Γ in constructing Γ(X), the system Γ(X)

is (reduced) normal if Γ is. The permutations (resp., partitions) of a factorization

are still factorizations of the same element, and it follows that Γ(X) is symmetric

(resp., combinable) if Γ is. If X is associate-preserving, then in constructing Γ(X)

from Γ we must remove all the factorizations that are equal up to associates with any

factorization that we remove, and the last claim follows.

Let H be a cancellative monoid and X ⊆ H#
0 . Theorem 4.1.2 and Proposition

4.1.1 part (4) provide a nice answer to the above question: we have X = atom(Γ) for

some factorization system Γ if and only if X contains all of the atoms. More specifi-

cally, if Γ′ is a factorization system on H, then X = atom(Γ) for some factorization

system Γ ⊆ Γ′ if and only if atom(Γ′) ⊆ X. In this case, the unique largest such Γ is

Γ′(X).

Let Γ be a factorization system on a cancellative monoid H, and let X ⊆ H#
0 .

A Γ-factorization into elements of X is called an X-Γ-factorization. We say H is

X-Γ-atomic if every Γ-expressible nonzero nonunit has an X-Γ-factorization. Other

plausible definitions are: (1) every nonzero nonunit not in X has an X-Γ-factorization,

or (2) every nonzero nonunit has an X-Γ-factorization. All three definitions are

equivalent if Γ is reduced normal, but simple examples show that they differ in general.
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We go with our choice because it seems to lead to the cleanest factorization theory,

as we will begin to appreciate after a few theorems. The definition and most of

the general theory of the X-Γ-factorizations could be adapted to non-cancellative

monoids with essentially trivial changes (similar comments to adapting the theory

of the complete concepts apply), but we will work in a cancellative context since

the main example we have in mind is when X is the set of “irreducibles” for some

factorization system.

Theorem 4.1.3. Let H be a cancellative monoid, Γ be a factorization system on

H, and X ⊆ H#
0 . Assume H is X-Γ-atomic and that X contains all the non-Γ-

expressible nonunits. Then atom(Γ) ⊆ H×X. So, if X is associate-preserving, then

atom(Γ) ⊆ X and X = atom(Γ(X)).

Proof. Every Γ-expressible Γ-atom must have a trivial X-Γ-factorization, and thus

must be an associate of an element of X. The last statement follows by Theorem

4.1.2.

Let Γ1 and Γ2 be factorization systems on a cancellative monoid H. A Γ1-

Γ2-atomic factorization is an atom(Γ1)-Γ2-factorization, and we say that H is Γ1-Γ2-

atomic if it is atom(Γ1)-Γ2-atomic. Theorem 4.1.3 above shows that there is little

lost in restricting ourselves to the study of Γ1-Γ2-atomic factorizations instead of the

slightly more general X-Γ-factorizations of the previous paragraph, so we will make

this simplification from now on.

With these definitions in mind, we are ready to introduce some more advanced
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concepts. Let Γ1, Γ2, and Γ3 be factorization systems on a cancellative monoid H.

We call H:

(1) Γ1-Γ2-Γ3-atomicable if every Γ2-factorization can be sequentially Γ3-Γ2-refined

into a Γ1-Γ2-atomic factorization,

(2) strongly Γ1-Γ2-Γ3-atomicable if every Γ2-factorization can be Γ3-Γ2-refined into

a Γ1-Γ2-atomic factorization,

(3) (strongly) Γ1-Γ2-atomicable if it is (strongly) Γ1-Γ2-Γ1-atomicable,

(4) weakly Γ1-Γ2-atomicable if it is (strongly) Γ1-Γ2-fact(H)-atomicable,

(5) a Γ1-Γ2-BFM if it is Γ1-Γ2-atomic and each (nonzero) nonunit has a finite upper

bound on the lengths of its Γ1-Γ2-atomic factorizations,

(6) a Γ1-Γ2-FFM≡ if it is Γ1-Γ2-atomic and each (nonzero) nonunit has only finitely

many Γ1-Γ2-atomic factorizations up to ≡-equivalence,

(7) a Γ1-Γ2-HFM if it is Γ1-Γ2-atomic and any two Γ1-Γ2-atomic factorizations of a

given (nonzero) nonunit have the same length,

(8) a Γ1-Γ2-UFM≡ if it is Γ1-Γ2-atomic and the Γ1-Γ2-atomic factorizations of a

given (nonzero) nonunit are unique up to ≡-equivalence, and

(9) a Γ1-Γ2-atomicable BFM (resp., FFM≡, HFM, UFM≡) if it is Γ1-Γ2-atomicable

and a Γ1-Γ2-BFM (resp., -FFM≡, -HFM, -UFM≡).

When ≡ is the relation ∼, we drop the “≡” from the above names. If Γ1 = Γ2 = Γ,

then we replace the “Γ1-Γ2” in the above names with simply “Γ”, and if additionally

Γ = fact(H), then we drop the “Γ1-Γ2” entirely. As will be more formally demon-
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strated later, the properties of atomicable and atomic are equivalent, so we would

never write “atomicable UFM” but simply “UFM”, and so on. One potential area of

confusion is what “∅-Γ” means in the above, as we get radically different meanings

depending on whether we interpret the “∅” as the empty set of nonunits or as the

empty factorization system. Of course, all of the above definitions are utterly trivial

with the former interpretation of “∅-Γ”, so it can always be reasonably assumed that

the latter is meant. However, to achieve perfect clarity, we would suggest writing

the second interpretation in one of the following equivalent ways: “H#
0 -Γ”, “ψ∅-Γ”,

“τ∅-Γ”, or “Γ∅-Γ”.

As it turns out, under some mild hypotheses we only need to study Γ1-Γ2-

atomic factorizations for Γ1 ⊆ Γ2 for most purposes. We will take the point of view

that the situations in which we cannot reduce our considerations to the case Γ1 ⊆

Γ2 are not of sufficient interest to inconvenience ourselves writing slightly stronger

versions of theorems to include them. For example, sometimes a theorem may be

proved for Γ1-Γ2-atomic factorizations where Γ1 ⊇ Γ2, but we will just state it for the

case Γ1 = Γ2 = Γ.

To illustrate some of these abstract notions, we revisit some of our motivating

factorization system examples.

Example 4.1.4.

(1) We will see later in this chapter that, when the factorization systems in ques-

tion are refinable, unital, and associate-preserving, then the “complete” and

“atomic” concepts coincide. (Or “complete” and “very strongly irreducible”
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when the monoid in question is not présimplifiable, but we will not be getting

too deeply into this.) For example, this is the case for the fact(H), τd, τt, τ[ ],

and τ(2) factorization systems.

(2) A (very strong) fact(H)-atom is simply a (very strongly) irreducible element.

(3) The τd-atoms are the pseudo-irreducibles defined by [19]. It turns out that

pseudo-irreducibles and “very strongly pseudo-irreducibles” are the same thing.

(This terminology applies to either elements or ideals of a ring.)

(4) Recall the construction of the τt factorization system: X is a set, P(X) is a

monoid under ∪, and Y τtZ ⇔ Y ∩ Z = ∅. The (very strong) τt-atoms are the

singleton subsets of X.

(5) The thesis [16] has shown that the values of n ≥ 0 for which Z is τ(n)-atomic are

precisely 0 ≤ n ≤ 6, n = 8, and n = 10. (The original claim of the thesis that Z

is τ(12)-atomic is false, since the element 24 ·33 has no τ(12)-atomic factorization.)

Observe that the same statement with “τ(n)-atomic” replaced with “a τ(n)-FFD”

must also be true. However, the domain Z is only a τ(n)-UFD in the cases n = 0

and n = 1. (See [6], [14], or [16].)

(6) Let Γ be the factorization system on Z consisting of factorizations with at

most two even factors. The Γ-atoms are simply the atoms, so the Γ-atomic

factorizations are (up to associates and order) precisely those factorizations of

the forms p1 · · · pn+1, 2p1 · · · pn, or 2 · 2p1 · · · pn, where n ≥ 0, k,m ≥ 1, and

p1, . . . , pn+1 are odd primes. So Z is not Γ-atomic, since any nonzero multiple

of 8 has no Γ-atomic factorization.
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Example 4.1.5. Let Γ1 and Γ2 be factorization systems on a cancellative monoid

H. In analogy with [21], we can define a Γ1-Γ2-bi-atomic factorization to be an

(atom(Γ1)∩atom(Γ2))-Γ2-factorization, andH to be Γ1-Γ2-bi-atomic if it is (atom(Γ1)∩

atom(Γ2))-Γ2-atomic. We can similarly define “bi-atomic” versions of the rest of

the concepts we have defined above. Now we consider the case where each Γi is

unital or associate-preserving (as would be the case in a τ -factorization setup, for

instance). Then Proposition 4.1.1 tells us that atom(Γ1) ∩ atom(Γ2) is associate-

preserving, and it follows from Theorem 4.1.3 that if H is Γ1-Γ2-bi-atomic, then

atom(Γ2) = atom(Γ1) ∩ atom(Γ2). Thus we have the following result that unfortu-

nately brings a rather quick resolution to the study of Γ1-Γ2-bi-atomic factorization:

H is Γ1-Γ2-bi-atomic if and only if it is Γ2-atomic and atom(Γ2) ⊆ atom(Γ1), in which

case the Γ2-atomic factorizations and the Γ1-Γ2-bi-atomic factorizations coincide.

4.2 Levels of “Atomicity”

As an easy consequence of the definitions along with the observation that a

(Γ1)r-Γ2-atomic factorization (hence a Γ1-Γ2-atomic factorization) is necessarily Γ1-

Γ2-complete, we obtain the implications illustrated in Figure 4.1.
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Figure 4.1: Levels of Atomicity and Completeness in Cancellative Monoids

strongly Γ1-Γ2-atomicable //

��

strongly Γ1-Γ2-completable

��
Γ1-Γ2-atomicable //

��

Γ1-Γ2-completable

��
weakly Γ1-Γ2-atomicable //

��

weakly Γ1-Γ2-completable

��
Γ1-Γ2-atomic // Γ1-Γ2-complete

If Γ1 = Γ2 = Γ is reduced divisible, then Figure 4.1 simplifies to Figure 4.2,

which was already demonstrated for the special case of τ -factorization in [14].

Figure 4.2: Levels with Γ Reduced Divisible

Γ-atomicable //

��

Γ-completable

��
Γ-atomic // Γ-complete

We already know from Theorem 3.2.1 that the completeness half reduces as

shown. Proceeding analogously with the atomic concepts yields the following theorem,

giving us the reduction in the atomic half.

Theorem 4.2.1. Let Γ1, Γ2, and Γ3 be factorization systems on a cancellative monoid
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H be a cancellative monoid, with Γ2 reduced divisible.

(1) H is (strongly) Γ1-Γ2-Γ3-atomicable if and only if it is (strongly) Γ1-Γ2-(Γ2∩Γ3)-

atomicable.

(2) If Γ2 ⊆ Γ3, then the following properties of H are equivalent:

(a) strongly Γ1-Γ2-Γ3-atomicable,

(b) Γ1-Γ2-Γ3-atomicable, and

(c) weakly Γ1-Γ2-atomicable.

We end this section by giving examples showing that no nontrivial implications

can be added to Figures 4.1 or 4.2.

Example 4.2.2. An example of a τ -completable UFD that is not τ -atomic, where τ is

an associate-preserving and symmetric relation on the nonzero nonunits. Let τ be the

associate-preserving and symmetric relation on Z# determined by 2τ6 and 2τ3. Then

the only τ -reducible elements of Z are ±12 and ±6, which have unique (up to order

and associates) τ -complete factorizations ±12 = ±2 · 6 and ±6 = ±2 · 3. Therefore Z

is a τ -complete UFD. In fact, every nontrivial τ -factorization is τ -complete, so Z is a

τ -completable UFD. However, the nonzero nonunit 12 has no τ -atomic factorization.

The remainder of the necessary examples have in fact already been given, but

as examples of other things. We collect a list of them here and leave it up to the

reader to reread the old examples and verify that each does indeed serve this new

additional purpose.

(1) Example 2.1.5 exhibits a Γ-atomicable domain that is not strongly Γ-completable.
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(2) Example 3.2.2 exhibits a τ -UFD that is not τ -completable, with τ an associate-

preserving symmetric relation on the nonzero nonunits.

(3) Example 3.2.3 exhibits a weakly Γ-atomicable but not Γ-completable domain,

with Γ a symmetric and associate-preserving factorization system.

4.3 Classifying the “Atomic” Monoids

Simply following the definitions leads us directly to the implications depicted

in Figure 4.3.

Figure 4.3: Classifying the “Atomic” and “Complete” Cancellative Monoids

Γ1-Γ2-UFM≡ //

��

Γ1-Γ2-HFM

��
Γ1-Γ2-FFM≡ // Γ1-Γ2-BFM // Γ1-Γ2-atomic

��

Γ1-Γ2-complete UFM≡ //

��

Γ1-Γ2-complete HFM

��
Γ1-Γ2-complete FFM≡ // Γ1-Γ2-complete BFM // Γ1-Γ2-complete

We now show that no nontrivial implications can be added to Figure 4.3,

even in the simplified case of τ -atomic/complete factorization. Most of the work has

already been done, either in previous examples in this thesis, or in [3] when it was

shown that Figure 3.3 cannot be improved. The remainder is taken care of by the
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following example.

Example 4.3.1. An example of a τ -UFD that is not a τ -complete BFD, with τ an

associate-preserving symmetric relation on the nonzero nonunits. Let R be an integral

domain and D = R[{Xr, Y r | n ∈ Q+}]. Let τ be the associate-preserving and sym-

metric relation on D# determined by XrτY s, XrτXrY s, Y sτXrY s, and XrY sτXrY s

for r, s ∈ Q+. The only τ -reducible elements are those of the form λXrY s, which have

unique (up to order and associates) τ -atomic factorizations λ(Xr)(Y s) and arbitrarily

long τ -complete factorizations of the form λ(Xr/(n+1))(Y s/(n+1))(Xr/(n+1)Y s/(n+1))n.

Therefore D is a τ -UFD but not a τ -complete BFD.

We now move on to studying the different kinds of “atomicable” monoids.

Our first step is to show that the “atomicable” monoids are stronger versions of their

“completable” counterparts.

Theorem 4.3.2. Let Γ1 and Γ2 be factorization systems on a cancellative monoid

H, and let ≡ be an equivalence relation on H#
0 . Then H is a Γ1-Γ2-atomicable BFM

(resp., FFM≡, HFM≡, UFM≡) if and only if it is Γ1-Γ2-atomicable and a Γ1-Γ2-

complete(able) BFM (resp., FFM≡, HFM≡, UFM≡).

Proof. Follows immediately after observing that, if H is Γ1-Γ2-atomicable, then the

Γ1-Γ2-atomic and Γ1-Γ2-complete factorizations coincide.

The relationship between the “FFM” and “idf monoid” concepts is interesting.

In [3, Theorem 5.1] it is shown that an FFD is equivalent to an atomic idf domain.

Later, the thesis [14] noted this is a special case of how the notions of a τ -atomic
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τ -idf domain and a τ -FFD coincide for τ divisive. In the refinability section we will

come to understand that the following theorem is a generalization of this last fact.

Theorem 4.3.3. Let Γ1 and Γ2 be factorization systems on a cancellative monoid H,

and let ≡ be an equivalence relation on H#
0 . If H is a Γ1-Γ2-atomicable FFM≡, then

it is a Γ1-Γ2-atomicable Γ1-Γ2-idf≡ monoid. If ≡≤∼, then the converse is true.

Proof. (⇒): Theorems 4.3.2 and 3.3.5. (⇐): Adapt the proof of “(1) ⇒ (2)” in

Theorem 3.3.3.

The thesis [21] has done extensive work on τ1-τ2-atomic factorizations, and

it notes that a τ1-τ2-atomic τ1-τ2-idf domain is a τ1-τ2-FFD. A slight modification

of the proof of “(1) ⇒ (2)” in Theorem 3.3.3 yields the generalization that a Γ1-Γ2-

atomic Γ1-Γ2-idf≡ monoid is a Γ1-Γ2-FFM≡. Theorem 4.3.3 shows the partial converse

that a weakly Γ1-Γ2-atomicable FFM≡ is a Γ1-Γ2-idf monoid. However, the following

example spoils our hopes of a full converse.

Example 4.3.4. An example of a τ -UFD that is not a fact(H)-τ -idf domain (hence

not a τ -idf domain), with τ an associate-preserving symmetric relation on the nonzero

nonunits. We modify Example 4.1(a) in [3]. Let D = R + XC[X] and τ be the

symmetric and associate-preserving relation on D# determined by (r + i)Xτ X
4

r+i
,

X
r+i
τX3, and X2τX3 for r ∈ R. The only τ -reducible elements are those of the

forms λX5 = λ(X2)(X3) and λ
r+i
X4 = λ( 1

r+i
X)(X3), which also happen to be their

unique τ -atomic factorizations up to associates and order. Therefore D is a τ -UFD.

However, it is not a fact(H)-τ -idf domain because the set {(r + i)X | r ∈ R} forms
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an infinite family of non-associate irreducible τ -divisors of x5.

In [21], the author stated that the following are equivalent: (1) The domain

D is a τ1-τ2-FFD, (2) Every element of D# has only finitely many τ2-factorizations

into τ1-atoms, and (3) D is a τ1-τ2-atomic τ1-τ2-idf domain. We have seen that

(3) ⇒ (1) ⇒ (2) holds, but (1) ⇒ (3) is false by the above example. An integral

domain that is not a field and has no atoms (see [13] or [5] for examples) vacuously has

each element having only finitely many factorizations into atoms but is not atomic,

so (2) ⇒ (1) is false even for standard factorization. The equivalence (1) ⇔ (3) is

true if one assumes that τ2 is associate-preserving and refinable, as we will see in the

refinability section.

One difference between the Γ-atomicable and -completable concepts comes

up in their relationship to the Γ-ACCP property. Example 3.3.10 shows that a τ -

completable UFD need not satisfy τ -ACCP. However, we have the following.

Theorem 4.3.5. Let Γ be a reduced divisible factorization system on a cancellative

monoid H. If H is a Γ-atomicable HFM, then it satisfies Γ-ACCP.

Proof. Assume H is a Γ-atomicable HFM, and let {an}∞n=1 be any sequence in H#

with each an+1 |Γ an. For any n ≥ 1 with an+1 a proper Γ-divisor of an, we can

Γ-refine a nontrivial Γ-factorization of an in which an+1 appears to obtain a Γ-atomic

factorization of an that is strictly larger than the common length of the Γ-atomic

factorizations of an+1. This observation implies that we can have at most m − 1

instances where an+1 properly divides an, where m is the common length of the Γ-

atomic factorizations of a1.
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A similar proof to that of the above theorem shows that it is true with “Γ”

replaced by “Γr” and “ACCP” replaced by “ACCρ” for any reflexive relation ρ on

H. Also, adjusting the proof mutatis mutandis gives the following generalization.

Let Γ1 and Γ2 be factorization systems on a cancellative monoid H. If H is strongly

Γ1-Γ2-Γ2-atomicable and a Γ1-Γ2-HFM, then it satisfies Γ2-ACCP.

The following example shows that there is no improvement on the above the-

orem even for the simplified case of τ -factorization.

Example 4.3.6. An example of a τ -atomicable FFD that does not satisfy τ -

ACCP, with τ an associate-preserving symmetric relation on the nonzero nonunits.

Let R be an integral domain and D = R[{Xr | r ∈ Q+}]. Let τ be the

associate-preserving symmetric relation on D# determined by X3/2n+2
τX1/2n+2

,

X3/2n+2
τX5/2n+6

, X3/2n+2
τX11/2n+6

, and X5/2n+6
τX11/2n+6

for n ≥ 0. It fol-

lows from Theorem 3.3.11 and Example 3.3.10 that D does not satisfy τ -ACCP.

The only nontrivial τ -factorizations (up to associates and order) are those of the

forms λX1/2n = λ(X3/2n+2
)(X1/2n+2

), λX1/2n = λ(X3/2n+2
)(X5/2n+6

)(X11/2n+6
),

λX53/2n+6
= λ(X3/2n+2

)(X5/2n+6
), λX59/2n+4

= λ(X3/2n+2
)(X11/2n+6

), and λX1/2n+2
=

(X5/2n+6
)(X11/2n+6

) for λ ∈ H× and n ≥ 0. By inspection, we can see that every

nonzero nonunit has a τ -atomic factorization. The only nontrivial non-τ -atomic fac-

torizations are those of the form λ(X3/2n+2
)(X1/2n+2

) for λ ∈ D× and n ≥ 0, which

can be τ -refined into the τ -atomic factorizations λ(X3/2n+2
)(X5/2n+6

)(X11/2n+6
). Also,

each nonzero nonunit has a unique τ -atomic factorization (up to associates and or-

der), except for those of the form λX1/2n for n ≥ 2, which have exactly two τ -atomic
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factorizations (up to associates and order), namely λX1/2n = (X5/2n+4
)(X11/2n+4

) and

λX1/2n = λ(X3/2n+2
)(X5/2n+6

)(X11/2n+6
). From the above observations it follows that

D is a τ -atomicable FFD.

Some of the work in length functions for standard factorization translates over

to abstract factorization. Let Γ be a factorization system on a cancellative monoid

H. We define a length function LΓ : H → Z≥0 ∪ {∞} as follows. For a ∈ H×,

we set LΓ(a) = 0. For a non-Γ-expressible nonunit a, we set LΓ(a) = 1. Otherwise

LΓ(a) is the supremum of the lengths of the Γ-factorizations of a. We abbreviate

L = Lfact(H). Note that LΓ(a) = 1 if and only if a is a Γ-atom. Talking about length

functions for non-cancellative monoids is a more complicated matter, since in a non-

présimplifiable monoid one is confronted with the question of what to do with the

“redundant” factorizations of the form λa1 · · · anb1 · · · bm = λa1 · · · an, and it would be

a good idea to define an alternate length function that only considers “irredundant”

factorizations. We refer the interested reader to [1] for more information.

The following is an abstract factorization version of a fact noted in [3].

Theorem 4.3.7. Let Γ be a factorization system on a cancellative monoid H. Assume

H is Γ-atomicable. The following are equivalent.

(1) The monoid H is a Γ-HFM.

(2) There is a function l : H#
0 → Z+ such that l(a) = 1 if (and only if) a is

a Γ-atom, and l(λa1 · · · an) = l(a1) + · · · + l(an) whenever λa1 · · · an is a Γ-

factorization.

(3) For each Γ-factorization λa1 · · · an, we have LΓ(λa1 · · · an) = LΓ(a1) + · · · +
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LΓ(an).

If atom(Γ) is associate-preserving and Γ is combinable and reduced divisible, then we

can add:

(4) There is a function l : H#
0 → Z+ such that l(a) = 1 if (and only if) a is a

Γ-atom, and l(λab) = l(a) + l(b) whenever λab is a Γ-factorization.

(5) We have LΓ(λab) = LΓ(a) + LΓ(b) whenever λab is a Γ-factorization.

When the equivalent conditions hold, we may take l = LΓ.

Proof. (3)⇒ (2): Use l = LΓ. The inclusion LΓ(H#
0 ) ⊆ Z+ follows from (3) and the

fact that H is Γ-atomic. (2) ⇒ (1): If the formally weaker version of (2) holds and

λa1 · · · am = µb1 · · · bn are two Γ-atomic factorizations of the same nonzero nonunit,

then m = l(a1) + · · · + l(am) = l(λa1 · · · am) = l(µb1 · · · bn) = l(b1) + · · · + l(bn) =

n, showing H to be a Γ-HFM. (1) ⇒ (3): Assume H is a Γ-HFM. Take any Γ-

factorization a = λa1 · · · an. By the fact that H is Γ-atomicable, we may Γ-refine this

to a Γ-atomic factorization of the form λb1,1 · · · bn,nm , where each ai = bi,1 · · · bi,ni is a

(Γ ∪ trfact(H))-atomic factorization. Thus LΓ(a) = n1 + · · · + nm = LΓ(a1) + · · · +

LΓ(an). (2)⇒ (4) and (3)⇒ (5): Clear.

Now assume that atom(Γ) is associate-preserving and Γ is combinable and

reduced divisible. (4) ⇒ (2): Assume (4) and let λa1 · · · an be any Γ-atomic fac-

torization. We have l(λa1) = 1 by the fact that atom(Γ) is associate-preserving, so

let us assume n ≥ 2. Then λa1(a2 · · · an) and a2 · · · an are Γ-factorizations by the

combinable and reduced divisible properties, so l(λa1 · · · an) = l(λa1) + l(a2 · · · an) =

1 + (n− 1) = n by induction. (5)⇒ (3): Similar to (4)⇒ (2).
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The following examples show that none of the three extra hypotheses necessary

for the addition of (4) and (5) can be dropped.

Example 4.3.8. An example of a ψ-atomicable FFD that satisfies (5) above but is not

a ψ-HFD, with ψ a combinable and refinable symmetric relation on the domain. Let ψ

be the symmetric relation on Z determined by (−1)ψ(±2), (−1)ψ(−4), and 2ψ(−2).

Then Γψ = {(−1)(±2), (−1)(−4), (−1)(±2)(∓2)}, and it is easily verified that ψ is

combinable and refinable, and that every ψ-factorization is ψ-atomic, so Z is trivially

ψ-atomicable. Also, the elements ±2 have unique ψ-atomic factorizations ±2 =

(−1)(∓2), while 4, the only other ψ-expressible element, has exactly two ψ-atomic

factorizations up to order and associates, namely 4 = (−1)(−4) and 4 = (−1)(2)(−2).

Thus Z is a ψ-atomicable FFD but not a ψ-HFD. Checking that Lψ((−1)(±2)(∓2)) =

2 = 1+1 = Lψ(±2)+Lψ(∓2) shows that (5) above is satisfied. Note that this example

was made possible by atom(ψ) failing to be associate-preserving, with −4 being a ψ-

atom but its associate 4 being ψ-reducible.

Example 4.3.9. An example of a τ -FFD that satisfies (5) above but is not a τ -

HFD, with τ a divisive symmetric relation on the nonzero nonunits. (We will later

see that the corresponding atomic, atomicable, complete, and completable concepts

are equivalent for refinable and associate-preserving factorization systems, so for τ

divisive a τ -FFD is the same thing as a τ -atomicable FFD.) Let R be an FFD,

D = R[X3, X4], and τ be the symmetric relation on Z# given by λX3τµX3 and

λX4τµX4 for λ, µ ∈ R×. Note that τ is divisive, and that (5) above is satisfied by

Lτ . Now, the domain R[X] is an FFD by [3, Proposition 5.3]. Using the equivalence
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in the parenthetical remark at the start of the example, one can easily use the work

in the previous chapter to show that D is a τ -FFD. It is also routine to verify that

(5) holds. However, the τ -atomic factorizations (X3)4 = (X4)3 show that D is not a

τ -HFD. Note that this example was made possible by τ not being combinable.

Example 4.3.10. An example of a Γ-FFD that satisfies (5) above but is not a Γ-HFD,

with Γ a refinable, unital, associate-preserving, combinable, normal, and symmetric

factorization system. Let Γ = fact(Z) \ {λab | a, b ∈ atom(Z)}, and note that Γ has

the stated properties. By the equivalence mentioned at the beginning of the previous

example, we immediately see that Z is a Γ-FFD. However, the Γ-atomic factorizations

(22) · 2 = 23 show that Z is not a Γ-HFD. Note that this example was made possible

by Γ failing to be reduced divisible.

We could similarly prove an analogous version of Theorem 4.3.7 for reduced

Γ-factorization, and in that theorem one could drop the assumption that atom(Γr) is

associate-preserving. However, Example 4.3.8 shows that the corresponding assump-

tion cannot be dropped for (−1)-reduced Γ-factorization.

It is useful to review some special cases of the hypothesis thatH is Γ-atomicable

in Theorem 4.3.7. If Γ is reduced divisible, then a weakly Γ-atomicable monoid is Γ-

atomicable by Theorem 3.2.1. We will later see in Theorem 4.5.5 that if Γ is refinable

and associate-preserving, then a Γ-complete monoid is Γ-atomicable. It is not hard

to see that (2) above implies that the Γ-factorizations of any given nonunit have an

upper bound on their lengths, and hence that H is a weakly Γ-completable BFM by

Theorem 3.3.1. With these observations, we can get another version of the theorem
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by replacing the assumption that H is Γ-atomicable with the assumption that Γ is

refinable and associate-preserving.

Let Γ be a factorization system on a cancellative monoid H. A question one

might ask is what sort of subset of Z+ ∪ {∞} the set LΓ(H#
0 ) is. For standard

factorization, we have L(H#
0 ) = Z+ if and only if H is a BFM. This result obviously

does not carry over to general factorization systems (for instance, any quasi-local

domain is a UCFD with Lτd(H
#
0 ) = {1}), but it is interesting to see how close we can

get with certain hypotheses on Γ and H. Here are a few simple observations.

Theorem 4.3.11. Let Γ be a factorization system on a cancellative monoid H.

(1) If Γ is unital or associate-preserving, then LΓ = LΓu,ap.

(2) The monoid H is a Γ-completable BFM if and only if LΓ(H#
0 ) ⊆ Z+.

(3) If Γ is (reduced) divisible and H is a Γ-atomicable HFM, then LΓ(H#) is either

Z+ or an interval {1, . . . , N}.

(4) If Γr is divisible, refinable, and combinable, then LΓr(H
#) is either {∞}, Z+,

Z+ ∪ {∞}, an interval {1, . . . , N}, or the union of such an interval with {∞}.

Proof.

(1) Theorem 3.4.2 part (1).

(2) Theorem 3.3.1.

(3) Assume Γ is (reduced) divisible and H is a Γ-atomicable HFM. Then H is a

Γ-completable BFM, so by part (1) we have LΓ(H#) ⊆ Z+ and it will suffice to

show that for every n ∈ LΓ(H#) \ {1} we have n − 1 ∈ LΓ(H#). Recall from
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the proof of the previous theorem that for a Γ-expressible a ∈ H#, the value of

LΓ(a) is the common length of a’s Γ-atomic factorizations. Therefore for any

n ∈ LΓ(H#)\{1} there is a Γ-atomic factorization λa1 · · · an of length n, and by

(reduced) divisibility λa1 · · · an−1 (resp., a1 · · · an−1) is a Γ-atomic factorization,

so n− 1 ∈ LΓ(H#).

(4) Assume Γr is divisible, refinable, and combinable. It will suffice to show that

for every n ∈ LΓr(H
#) \ {1,∞} we have n − 1 ∈ LΓr(H

#). Pick such an n

and let a ∈ H# be an element with LΓr(a) = n, say a = a1 · · · an is a re-

duced Γ-factorization of a of maximum length. By divisibility, the factorization

a1 · · · an−1 is a reduced Γ-factorization, so LΓr(a1 · · · an−1) ≥ n−1. If b1 · · · bm is

a reduced Γ-factorization of a1 · · · an−1, then by combinability and refinability

(a1 · · · an−1)an = (b1 · · · bm)an = b1 · · · bman are reduced Γ-factorizations of a, so

m ≤ n− 1. Hence LΓr(a1 · · · an−1) = n− 1.

The following is one of the more important special cases of (1) above. We

have Γu,ap = (Γr)u,ap. So if Γr is associate-preserving, then LΓu,ap = L(Γr)u,ap = LΓr ≤

LΓ ≤ LΓu,ap and hence LΓr = LΓ = LΓu,ap . By a similar sort of argument, we arrive at

the following generalization. If for i = 1, 2 we have Γi unital or associate-preserving,

Γi ⊆ Γ′i ⊆ (Γi)u,ap, and (Γ1)u,ap = (Γ2)u,ap, then LΓ′1
= LΓ′2

. As a consequence of

all this, if we additionally assume that Γr is associate-preserving in (4), then we can

replace “LΓr(H
#)” in the conclusion with “LΓ′(H

#)”, where Γ′ is any factorization

system with Γr ⊆ Γ′ ⊆ Γu,ap.
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We have the following diagram of implications summing up our work on

classifying the Γ1-Γ2-atomicable and -completable monoids in the special case of τ -

factorization. Replacing “τ” with “Γ1-Γ2” as appropriate generalizes the diagram to

the case where Γ2 is reduced divisible. We invite the reader to use the results of this

section to construct a diagram for the most general case with no assumptions on Γ2.

It is not a hard task, but the diagram itself is slightly too large to display here.

Figure 4.4: Classifying τ -atomicable and τ -completable Monoids

τ-completable UFM //

��

τ-completable HFM

��

τ-atomicable UFM //

��

ii

τ-atomicable HFM

��

55

// τr-ACCP

��

τ-atomicable FFM //

uu

��

τ-atomicable BFM

))

��

τ-completable FFM //
OO

��

τ-completable BFM

τ refinable

<<

((
τ∅-τ-idf monoid

τ-atomicable
τ-idf monoid

OO

τ-atomicable // τ-completable

Examples have been given to show that we did not omit any nontrivial impli-

cations.

The following theorems list some simple results about inheritance of the

“atomic(able)” property. They follow straight from the definitions, and we have

in fact already implicitly used them a couple times.
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Theorem 4.3.12. Let Γ1 ⊆ Γ′1 and Γ2 ⊇ Γ′2 be factorization systems on a cancellative

monoid H. Assume that every Γ2-expressible nonzero nonunit is Γ′2-expressible. If H

is Γ′1-Γ′2-atomic, then it is Γ1-Γ2-atomic.

Theorem 4.3.13. Let Γ1 ⊆ Γ′1, Γ2, and Γ3 ⊇ Γ′3 be factorization systems on a

cancellative monoid H. If H is (strongly) Γ′1-Γ2-Γ′3-atomicable, then it is (strongly)

Γ1-Γ2-Γ3-atomicable.

4.4 Factorization and Closures, III

In this section we will give some conditions under which the Γ1-Γ2-atomic

factorization concepts will coincide with the ones where we replace Γ1 or Γ2 or both

with various closures. This will be highly convenient when we study the effects of

refinability in the next section, because the easiest path is to prove the results for

reduced factorization systems and then apply the results of this section to get the

Γ-factorization versions of the theorems after adding suitable hypotheses like unital

and so on.

The following simple but fundamental result follows immediately from Theo-

rem 3.4.2 part (1).

Theorem 4.4.1. Let Γ be a unital or associate-preserving factorization system on a

cancellative monoid H. Then atom(Γ) = atom(Γu,ap).

Let Γ1, Γ2, Γ′1, and Γ′2 be factorization systems on a cancellative monoid H. If

every Γ′2-expressible element is Γ2-expressible, then Γ1-Γ2-atomic implies Γ′1-Γ′2-atomic

for any Γ′1 ⊆ Γ1 and Γ′2 ⊇ Γ2. If not every Γ′2-expressible element is Γ2-expressible,
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the above conclusion does not hold in general. However, the desired result does work

for unital and associate-preserving closures, as we will see in the next theorem.

Theorem 4.4.2. Let Γ1 and Γ2 be factorization systems on a cancellative monoid H.

In the following statements, we have (1)⇒ (2)⇒ (3).

(1) H is Γ1-Γ2-atomic.

(2) H is Γ1-(Γ2)u-atomic.

(3) H is Γ1-(Γ2)u,ap-atomic.

Then (1)⇒ (2)⇒ (3).

Proof. (1)⇒ (2): Assume H is Γ1-Γ2-atomic and let a ∈ H# be any (Γ2)u-expressible

element. There is a λ ∈ H× with λa Γ2-expressible, so there is a Γ1-Γ2-atomic fac-

torization λa = µa1 · · · an, and a = (λ−1µ)a1 · · · an is a Γ1-(Γ2)u-atomic factorization.

(2)⇒ (3): Theorems 4.3.12 and 3.4.2.

Theorem 4.4.3. Let Γ1 and Γ2 be factorization systems on a cancellative monoid

H, each of which is unital or associate-preserving. Let ≡ be an equivalence relation

on H#
0 .

(1) For every Γ1-(Γ2)u,ap-atomic factorization, there is a Γ1-Γ2-atomic factorization

of the same element of the same length whose factors are associates of the

corresponding factors in the original factorization.

(2) The monoid H is Γ1-Γ2-atomic if and only if it is Γ1-(Γ2)u,ap-atomic.

(3) The monoid H is a Γ1-Γ2-BFM (resp., -HFM) if and only if it is a Γ1-(Γ2)u,ap-

BFM (resp., -HFM).
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(4) If H is a Γ1-(Γ2)u,ap-FFM≡ (resp., -UFM≡), then it is a Γ1-Γ2-FFM≡ (resp.,

-UFM≡). If ∼≤≡, then the converse is true.

Proof.

(1) Follows from the proof of Lemma 3.4.2 part (1) and the fact that an associate

of a Γ1-atom is Γ1-irreducible.

(2) (⇒): Lemma 4.4.2. (⇐): Follows from part (1).

(3) Parts (1) and (2).

(4) By part (2), we only need to consider the uniqueness aspects. (⇒): Clear.

(⇐): If ∼≤≡, then by part (1) the existence of a set of m non-≡-equivalent

Γ1-(Γ2)u,ap-atomic factorizations of some a ∈ H# implies the existence of a set

of m non-≡-equivalent Γ1-Γ2-atomic factorizations of a.

Lemma 4.4.4. Let Γ1, Γ2, and Γ3 be factorization systems on a cancellative monoid

H, with Γ2 unital. For ν ∈ H×, the monoid H is (strongly) Γ1-(Γ2)r,ν-Γ3-atomicable

if and only if it is (strongly) Γ1-Γ2-Γ3-atomicable.

Proof. Similar to the proof of Lemma 3.4.11 part (2).

Lemma 4.4.5. Let Γ1, Γ2, and Γ3 be factorization systems on a cancellative monoid

H, with (Γ3)r associate-preserving and Γ1 unital or associate-preserving. If H is

(strongly) Γ1-Γ2-Γ3-atomicable, then it is (strongly) Γ1-(Γ2)u,ap-Γ3-atomicable.

Proof. AssumeH is Γ1-Γ2-Γ3-atomicable, and let λa1 · · · an be any (Γ2)u,ap-factorization.

Then there are µ1, . . . , µn ∈ H× with ν(µ1a1) · · · (µnan) a Γ2-factorization, so it may
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be sequentially Γ3-Γ2-refined to a Γ1-Γ2-atomic factorization. If none of these refine-

ments are proper, then ν(µ1a1) · · · (µnan) is a Γ1-Γ2-atomic factorization, and hence

λa1 · · · an is a Γ1-(Γ2)u,ap-atomic factorization by the fact that atom(Γ1) is associate-

preserving. So we may assume that the sequence of Γ3-Γ2-refinements consists of

some positive number N of proper Γ3-Γ2-refinements. Let us say the first of these

is νc1,1 · · · cn,mn , where each µiai = ci,1 · · · ci,mi is a reduced Γ3-factorization. By the

fact that (Γ3)r is associate-preserving, for each i we have ai = (µ−1
i ci,1)ci,2 · · · ci,mi

a reduced Γ3-factorization. We can use these to get a Γ3-(Γ2)u,ap-refinement of

λa1 · · · an whose factors are each associates of the corresponding ones in the Γ3-Γ2-

refinement νc1,1 · · · cn,mn of ν(µ1a1) · · · (µnan). If N = 1, then we have Γ3-(Γ2)u,ap-

refined λa1 · · · an into a Γ1-(Γ2)u,ap-atomic factorization by the fact that atom(Γ1) is

associate-preserving. If N > 1, then by induction we can sequentially Γ3-(Γ2)u,ap-

refine this Γ3-(Γ2)u,ap-refinement into a Γ1-(Γ2)u,ap-atomic factorization. It follows

that H is Γ1-(Γ2)u,ap-Γ3-atomicable. If H is strongly Γ1-Γ2-Γ3-atomicable, then the

above argument shows that it is strongly Γ1-(Γ2)u,ap-Γ3-atomicable, since we may

choose our sequence so that N = 1 in the above.

We finish this section with some results about the combinable and normal

closures.

Theorem 4.4.6. Let Γ, Γ1, and Γ2 be factorization systems on a cancellative monoid

H.

(1) atom(Γ) = atom(Γc).

(2) If H is Γ1-Γ2-atomic, then it is Γ1-(Γ2)c-atomic.
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(3) If Γ is reduced divisible, then the Γ-atomic factorizations coincide with the Γc-

atomic factorizations.

Proof. Parts (1) and (2) are clear, and hence every Γ-atomic factorization is a Γc-

atomic factorization. Now assume Γ is reduced divisible. Then every Γc-factorization

has a fact(H)-Γ-refinement, and hence a Γ-refinement by reduced divisibility. Since a

Γc-atomic factorization has no nontrivial Γ-refinements by part (1), every Γc-atomic

factorization must be Γ-atomic.

Theorem 4.4.7. Let Γ and Γ′ be factorization systems on a cancellative monoid H,

with Γ ⊆ Γ′ ⊆ Γ ∪ tfact(H). Then atom(Γ) = atom(Γ′).

Proof. Follows after observing that Γ and Γ′ have the same nontrivial factorizations.

Theorem 4.4.8. Let Γ and Γ′ be factorization systems on a cancellative monoid H,

with Γ unital and associate-preserving and Γ ⊆ Γ′ ⊆ Γ ∪ tfact(H).

(1) The Γ-atomic and Γ′-atomic factorizations of Γ-expressible nonzero nonunits

coincide. Every Γ′-factorization of a non-Γ-expressible nonzero nonunit is a

trivial Γ′-atomic factorization.

(2) The monoid H is Γ-atomic if and only if it is Γ′-atomic.

(3) If Γ ⊆ Γ3 ⊆ fact(H), then H is Γ-Γ-Γ3-atomicable if and only if it is Γ′-Γ′-Γ′3-

atomicable.

(4) The monoid H is a Γ-(atomicable )BFM (resp., -(atomicable) HFM) if and only

if it is a Γ′-(atomicable )BFM (resp., -(atomicable) HFM).
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(5) If H is a Γ′-(atomicable )FFM≡ (resp., -(atomicable )UFM≡), then it is a Γ-

(atomicable )FFM≡ (resp., -(atomicable )UFM≡). If ∼≤≡, then the converse

is true.

Proof. Adjust the proof of Theorem 3.4.19.

4.5 The Effect of Refinability

In [14] it was shown that the properties of τ -atomic, τ -complete, τ -completable,

and τ -atomicable are equivalent for τ divisive. This section will be devoted to devel-

oping a generalization involving the Γ1-Γ2-complete and Γ1-Γ2-atomic factorizations.

We will then derive generalized versions of all the main theorems about the τ -atomic

monoids as corollaries of this and previous results.

The following two theorems should be compared with Theorem 3.2.1, which

also gives conditions where we can lump different levels of completeness together.

Theorem 4.5.1. Let Γ1 and Γ2 be factorization systems on a cancellative monoid H,

with Γ2 refinable. Assume further that every non-(Γ2)r-expressible nonzero nonunit

is Γ1-irreducible. The following properties of H are equivalent:

(1) strongly Γ1-(Γ2)r-Γ2-atomicable,

(2) Γ1-(Γ2)r-Γ2-atomicable,

(3) weakly Γ1-(Γ2)r-atomicable, and

(4) Γ1-(Γ2)r-atomic.

Also, the monoid H is a Γ1-(Γ2)r-BFM (resp., -FFM≡, -HFM, -UFM≡) if and only

if it is a Γ1-(Γ2)r-atomicable BFM (resp., -FFM≡, -HFM, -UFM≡). (Here ≡ is an
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equivalence relation on H#
0 .)

Proof. (1) ⇒ (2) ⇒ (3) ⇒ (4): Clear. (4) ⇒ (1): Assume H is Γ1-(Γ2)r-atomic and

let a1 · · · an be any reduced Γ2-factorization. If some ai = 0, then n = 1 and the

factorization is already Γ1-(Γ2)r-atomic, so let us assume that each ai ∈ H#, and

hence either Γ1-irreducible or (Γ2)r-expressible. Either way, each ai has a Γ1-((Γ2)r ∪

trfact(H))-atomic factorization, and we can use these along with the refinability of

Γ2 to Γ2-refine a1 · · · an into a Γ1-(Γ2)r-atomic factorization.

In the special case Γ1 = Γ2 = Γ of the above theorem, we need only assume

that Γ is refinable, since every non-Γr-expressible nonzero nonunit is automatically a

Γr-atom.

Theorem 4.5.2. Let Γ1 and Γ2 be factorization systems on a cancellative monoid H,

with Γ2 refinable and reduced divisible. Let ≡ be an equivalence relation on H#
0 . The

following properties of H are equivalent:

(1) strongly Γ1-(Γ2)r-Γ2-completable,

(2) Γ1-(Γ2)r-Γ2-completable,

(3) weakly Γ1-(Γ2)r-completable, and

(4) Γ1-(Γ2)r-complete.

Proof. (1)⇒ (2)⇒ (3)⇒ (4): Clear. (4)⇒ (1): Assume H is Γ1-(Γ2)r-complete and

let a1 · · · an be any reduced Γ2-factorization. By the fact that Γ2 is reduced divisible,

each ai is Γr-expressible and thus has a Γ1-(Γ2)r-complete factorization. We can use

these and the refinability of Γ2 to Γ2-refine a1 · · · an. If this Γ2-refinement has a proper
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Γ1-Γ2-refinement, then by divisibility some reduced Γ1-Γ2-complete factorization of

some ai has a proper Γ1-Γ2-refinement, a contradiction. Therefore this Γ2-refinement

is Γ1-Γ2-complete.

Corollary 4.5.3. Let Γ be a refinable and reduced divisible factorization system on

a cancellative monoid H. Let ≡ be an equivalence relation on H#
0 . The monoid

H is Γr-complete ⇔ it is (strongly) Γr-completable ⇔ it is weakly Γr-completable.

Furthermore, it is a a Γr-complete BFM (resp., FFM≡, HFM, UFM≡) if and only if

it is a Γr-completable BFM (resp., FFM≡, HFM, UFM≡).

If we add the hypothesis that Γ1 is associate-preserving, we may replace each

“(Γ1)r” with “Γ1” in the following theorem.

Theorem 4.5.4. Let Γ1 and Γ2 be factorization systems on a cancellative monoid H,

with Γ2 Γ1-refinable. Let ≡ be an equivalence relation on H#
0 .

(1) The Γ1-Γ2-complete factorizations and the (Γ1)r-Γ2-atomic factorizations coin-

cide.

(2) The monoid H is a Γ1-Γ2-complete(able) BFM (resp., FFM≡, HFM, UFM≡)

if and only if it is a (Γ1)r-Γ2-(atomicable )BFM (resp., -(atomicable )FFM≡,

-(atomicable )HFM, -(atomicable )UFM≡).

Proof.

(1) Let λa1 · · · an be any Γ1-Γ2-complete factorization. If some ai has a nontriv-

ial reduced Γ1-factorization ai = b1 · · · bm, then λa1 · · · ai−1b1 · · · bmai+1 · · · an is

a proper Γ1-Γ2-refinement of λa1 · · · an by the fact that Γ2 is Γ1-refinable, a
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contradiction. Therefore λa1 · · · an is (Γ1)r-Γ2-atomic.

(2) Obvious by part (1).

Theorem 4.5.5. Let Γ be a refinable factorization system on a cancellative monoid

H.

(1) The following properties of H are equivalent:

(a) strongly Γr-atomicable,

(b) Γr-atomicable,

(c) weakly Γr-atomicable,

(d) Γr-atomic,

(e) strongly Γr-completable,

(f) Γr-completable,

(g) weakly Γr-completable, and

(h) Γr-complete.

(2) The following properties of H are equivalent:

(a) Γr-complete BFM (resp., FFM≡, HFM, UFM≡),

(b) Γr-completable BFM (resp., FFM≡, HFM, UFM≡),

(c) Γr-BFM (resp., FFM≡, HFM, UFM≡), and

(d) Γr-atomicable BFM (resp., FFM≡, HFM, UFM≡).

Proof.

(1) We have (a) ⇔ (e) and (d) ⇔ (h) by Theorem 4.5.4. The implications (a) ⇒
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(b) ⇒ (c) ⇒ (d) and (e) ⇒ (f) ⇒ (g) ⇒ (h) are clear. Finally, we have (d) ⇒

(a) by Theorem 4.5.1.

(2) We have (a)⇔ (c) and (b)⇔ (d) by Theorem 4.5.4, and (c)⇔ (d) by Theorem

4.5.1.

We briefly consider the special case Γ = Γτ of the above theorem. If τ is divisive

(or more generally refinable and associate-preserving), then all the hypotheses of the

above theorem are satisfied, and since τ is unital and associate-preserving we may

replace each “τr” with “τ” and arrive at the result of [14].

Let Γ ⊆ Γ′ be factorization systems on a cancellative monoid H. We have

the following diagram of implications, where a single dotted line indicates that the

factorization systems involved are refinable, unital, and associate-preserving, and

where two parallel dotted lines indicate that we additionally have Γ divisible and

divisive. We will prove that this latter implication holds in the next chapter, while

the remainder of the implications are just a special case of Figure 3.4.

Figure 4.5: Inheritance of “Atomic” Properties with Γ ⊆ Γ′

Γ′-UFM //

��

Γ′-FFM //

��

Γ′-BFM

��

//
��

Γ′-ACCP //

��

Γ′-atomic

Γ-UFM // Γ-FFM // Γ-BFM //
FFΓ-ACCP // Γ-atomic
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Examples from [14] and [18] show that no nontrivial implications can be added

to the above diagram, even in the special case of τ -factorization inheritance from

standard factorization in integral domains.

The situation is simplified if we are working in a reduced factorization setup,

where the unital and associate-preserving assumptions of the last diagram can be

dropped.

Figure 4.6: Inheritance of “Atomic” Properties with Γr ⊆ (Γ′)r

(Γ′)r-UFM //

��

(Γ′)r-FFM //

��

(Γ′)r-BFM

��

//
��

(Γ′)r-ACCP //

��

(Γ′)r-atomic

Γr-UFM // Γr-FFM // Γr-BFM //
AAΓr-ACCP // Γr-atomic

The above diagram for the special case of divisive τ1 ≤ τ2 was demonstrated

in [21].

The thesis [21] gives results slightly different than ours.

(1) If Γ is unital and refinable, then a Γ-BFD satisfies Γ-ACCP.

(2) If Γ is unital and refinable, then a domain satisfying Γ-ACCP is Γ-atomic.

(3) If Γ is unital and refinable, then a BFD (resp., FFD) is a Γ-BFD (resp., FFD).

(4) If Γ is unital, associate-preserving, refinable, and divisive, then a UFD is a

Γ-UFD.
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Results (1)-(3) are the results given here with the “associate-preserving” requirement

dropped, while (4) has “divisible” left out from our corresponding version. We note

that in that thesis the author defines Γ-atomic to mean that every element in H# has

a Γ-atomic factorization. So “H is Γ-atomic (resp., a Γ-BFM, a Γ-FFM, a Γ-HFM,

a Γ-UFM)” in that thesis is equivalent to “Γ is expressive and H is Γ-atomic (resp.,

a Γ-BFM, a Γ-FFM, a Γ-HFM, a Γ-UFM)” in our terminology. The following three

examples show that the above statements are unfortunately incorrect with either

definition of Γ-atomic.

Example 4.5.6. An example of a τ -UFD that does not satisfy τ -ACCP, with τ

refinable. Let D = Z[{Xr | r ∈ Q+}], and let τ be the symmetric relation on D#

determined by (−X1/2n+2
)τ(−X3/2n+2

) and X3/2n+3
τX5/2n+3

for n ≥ 0. The only τ -

reducible nonzero nonunits are those of the form ±X1/2n for n ≥ 0, which have unique

τ -atomic factorizations ±(X3/2n+3
)(X5/2n+3

). Also, the system τ is refinable because

the only τ -reducible nonzero nonunits that appear in nontrivial τ -factorizations are

those of the form −X1/2n+2
for n ≥ 0, and they are τr-irreducible. However, we have

a sequence {−X1/22n}∞n=0 of nonzero nonunits with each −X1/22(n+1)
= −X1/22n+2

a proper τ -divisor of −X1/22n
= −(−X1/22n+2

)(−X3/22n+2
), so D does not satisfy

τ -ACCP.

Example 4.5.7. An example of a UFD that is not τ -atomic, with τ refinable. Let

τ be the symmetric relation on Z# determined by 3τ4 and 2τ(−2). The only thing

we need to do to verify that τ is refinable is note that 4 is τr-irreducible. Finally, the

domain Z is a UFD but 12 has no τ -atomic factorization.
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Example 4.5.8. An example of a UFD that is not a Γ-UFD, with Γ a refinable,

divisive, associate-preserving, normal, symmetric, and transitive factorization system.

Let D be a domain and Γ be the normal closure of the set of factorizations in

D of the form λa1 · · · an where (a1, . . . , an) = D. Note that Γ satisfies all of the above

properties.

We claim that D is a Γ-UFD if and only if it is quasi-local. The fact that D is

a Γ-UFD if it is quasi-local is clear. Now suppose that D is a Γ-UFD that is not quasi-

local. Then there are x, y ∈ D# with (x, y) = D, and we may arrange for x and y to

be Γ-atoms. If b ∈ H# is a reducible Γ-atom, say b = cd, then bxy = cdxy are two Γ-

factorizations, and using reduced Γ-atomic factorizations of c and d, we may Γ-refine

the right-hand side to a Γ-atomic factorization of a longer length than the right-

hand-side, a contradiction. So atom(Γ) = atom(H). If b1 · · · bm = c1 · · · ck are two

atomic factorizations, then b1 · · · bmxy = c1 · · · ckxy are two Γ-atomic factorizations,

so by uniqueness of Γ-atomic factorization it follows that m = k and each bi ∼

ci after a suitable reordering. Therefore H is a UFD. Since atom(H) = atom(Γ),

every Γ-atomic factorization is an atomic factorization, and by uniqueness of atomic

factorizations it follows that x2 has no Γ-atomic factorization, a contradiction.

So, by taking D to be any non-quasi-local UFD, we get a UFD that is not a

Γ-UFD.

Refinability allows us to characterize the Γ-BFM’s with length functions in

the same way that was done for BFD’s in [3, Theorem 2.4].

Theorem 4.5.9. Let Γ be a refinable factorization system on a cancellative monoid
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H. The following are equivalent.

(1) The monoid H is a Γr-BFM.

(2) There is a function l : H# → Z+ with l(a1 · · · an) ≥ l(a1) + · · ·+ l(an) whenever

a1 · · · an is a reduced Γ-factorization.

(3) LΓr(H
#) ⊆ Z+ and LΓr(a1 · · · an) ≥ LΓr(a1) + · · ·+ LΓr(an) whenever a1 · · · an

is a reduced Γ-factorization.

If Γ is combinable and reduced divisible, then we can add the following statements to

the equivalence.

(4) There is a function l : H# → Z+ with l(ab) ≥ l(a) + l(b) whenever ab is a

reduced Γ-factorization.

(5) LΓr(H
#) ⊆ Z+ and LΓr(ab) ≥ LΓr(a) + LΓr(b) whenever ab is a reduced Γ-

factorization.

Proof. (3) ⇒ (2): Clear. (2) ⇒ (1): If a = a1 · · · an is a reduced Γ-factorization,

then n ≤ l(a1) + · · ·+ l(an) ≤ l(a1 · · · an) = l(a), showing that H is a Γr-completable

BFM by Theorem 3.3.1, or equivalently a Γr-BFM by Theorem 4.5.5. (1) ⇒ (3): If

H is a Γr-BFM, then LΓr(H
#) ⊆ Z+ by Theorem 4.3.11 part (2), and it follows from

refinability that for any reduced Γ-factorization a1 · · · an we have LΓr(a1 · · · an) ≥

LΓr(a1) + · · ·+ LΓr(an). (3)⇒ (5)⇒ (4): Clear.

Now assume Γ is combinable and reduced divisible. (4) ⇒ (2): Assume (4)

and let a1 · · · an be any reduced Γ-factorization. The case n = 1 is trivial, so let

us assume n ≥ 2. Then a1(a2 · · · an) and a2 · · · an are reduced Γ-factorizations by

combinability and reduced divisibility, so we have l(a1 · · · an) = l(a1(a2 · · · an)) ≥
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l(a1) + l(a2 · · · an) ≥ l(a1) + l(a2) + · · ·+ l(an) by induction.

Let Γ be a refinable factorization system on a cancellative monoid H. We

can define a strict partial order <Γr on H# by defining a <Γr b if and only if b is a

proper Γr-divisor of a. We call a nonempty subset of H# a Γr-chain if <Γr is a strict

total order on it. The length of a Γr-chain is the number of elements in it. We say

that two finite Γr-chains a1 <Γr · · · <Γr am and b1 <Γr · · · <Γr bn are ≡-equivalent

if m = n and each ai ≡ bi. For a ∈ H# we use CΓ(a) to denote the set of finite

Γr-chains with smallest element a. We call a Γr-chain C ′ an extension of a Γr-chain

C if C ′ and C have the same minimal element and C ⊆ C ′; it is proper if C 6= C ′.

A maximal element of CΓ(a) is one with no proper extensions. For each a ∈ H#, we

may associate the ∼ equivalence classes of elements of Cfact(H)(a) with finite chains of

principal ideals starting at (a). Without much effort, one can translate some results

given in [3] into our terminology. The monoid H is:

(1) atomic if and only if each Cfact(H)(a) has a maximal element,

(2) a BFM if and only if each Cfact(H)(a) has an upper bound on the lengths of its

elements,

(3) an FFM if and only if each Cfact(H)(a) has only finitely many elements up to

associates, and

(4) an HFM if and only if each Cfact(H)(a) has a maximal element and any two such

maximal elements have the same length.

Under suitable hypotheses, we can characterize the corresponding Γr-atomic concepts
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in the same fashion.

Theorem 4.5.10. Let Γ be a symmetric, refinable, combinable, and divisible factor-

ization system on a cancellative monoid H.

(1) For each a ∈ H#, there is a length-preserving bijection F (a) between Γr(a) ∪

trfact(a) and CΓ(a), given by taking a = a1 · · · an to

a1 · · · an <Γr a2 · · · an <Γr · · · <Γr an−1an <Γr an;

its inverse map F (a)−1 takes a = b1 <Γr · · · <Γr bm to a =

(b1b
−1
2 ) · · · (bm−1b

−1
m )bm.

(2) The image under F (a) of a (proper) Γr-refinement of a (Γr ∪ trfact(H))-

factorization of a is a (proper) extension of the image of the original factor-

ization.

(3) The image under F (a)−1 of a (proper) extension of a Γr-chain in CΓ(a) is a

(proper) Γr-refinement of the image of the original Γr-chain.

(4) The map F (a) gives a one-to-one correspondence between the Γr-(Γr∪trfact(H))-

atomic factorizations of a and the maximal elements of CΓ(a).

(5) The following are equivalent.

(a) The monoid H is Γr-atomic.

(b) For every a ∈ H#, every element of CΓ(a) can be extended to a maximal

element.

(c) For every a ∈ H#, the set CΓ(a) has a maximal element.

(6) The monoid H is a Γr-BFM if and only if for each a ∈ H# there is an upper
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bound on the lengths of the Γr-chains in CΓ(a).

(7) If ≡ is a partition-preserving equivalence relation on H#
0 , then H is a Γr-FFM≡

if and only if for every a ∈ H# there are only finitely many elements of CΓ(a)

up to ≡-equivalence.

(8) The monoid H is a Γr-HFM if and only if for every a ∈ H# the set of maximal

elements of CΓ(a) form a non-empty set of Γr-chains of the same length.

Proof.

(1) Take any a ∈ H#. If the proposed maps are well-defined, then a simple com-

putation shows that they are indeed inverses. The fact that the map from

Γr(a)∪ trfact(a) is well-defined follows by the combinable and divisible proper-

ties, while the fact that the proposed inverse map is well-defined follows from

the combinable, refinable, and symmetric properties. The fact that F (a) is

length-preserving is clear.

(2)-(3) These are straightforward consequences of the definitions.

(4) Because (Γr ∪ trfact(H)) is Γr-refinable, by 4.5.4 it will suffice to show that

F (a)(A) = B, where A is the set of (Γr ∪ trfact(H))-factorizations of a with

a proper Γr-refinement and B is the set of Γr-chains in CΓ(a) with a proper

extension. By part (2) we have F (a)(A) ⊆ B, and by part (3) we have

F (a)−1(B) ⊆ A. Hence B = F (a)(F (a)−1(B)) ⊆ F (a)(A) ⊆ B, as desired.

(5) (a)⇒ (b): Assume H is Γr-atomic. Then it is Γr-atomicable by Theorem 4.5.1.

Take any a ∈ H#. If a is not Γr-expressible, then CΓ(a) = {{a}}, so let us
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assume a is Γr-expressible. Then a has a Γr-atomic factorization, so the Γr-

chain {a} can be extended to a maximal element of CΓ(a) by part (4). On the

other hand, any Γr-chain in CΓ(a) with more than two elements gets mapped by

F (a)−1 to a reduced Γ-factorization of a, which can be Γr-refined to a Γr-atomic

factorization, whose image under F (a) is an extension of the original Γr-chain

that is a maximal element of CΓ(a) by part (4). (b) ⇒ (c): If (b) holds, then

for every a ∈ H#, the Γr-chain {a} can be extended to a maximal element of

the set CΓ(a). (c) ⇒ (a): Assume (c) and take any Γr-expressible a ∈ H#. If a

is a Γr-atom, then a = a must be a Γr-atomic factorization, so let us assume a

is Γr-reducible. Let a = a1 · · · an be the image of a maximal element of CΓ(a).

By part (4), this is a Γr-(Γr ∪ trfact(H))-atomic factorization. By the fact that

a is Γr-reducible, n ≥ 2, so this is in fact a Γr-atomic factorization.

(6) By Theorems 3.3.1 and 4.5.5, the monoid H is a Γr-BFM if and only if each

element of H# has an upper bound on the lengths of its Γr-factorizations. The

result is now immediate from part (1).

(7) Assume≡ is partition-preserving. Let us introduce some temporary terminology

and call two factorizations λa1 · · · am and µb1 · · · bn strongly ≡-equivalent if m =

n, λ ≡ µ, and each ai ≡ bi. It is not hard to see that we could equivalently define

Γr-FFM with “strong ≡-equivalence” in place of “≡-equivalence”. (⇒): By

contrapositive. Assume there is an a ∈ H# with an infinite sequence C1, C2, . . .

of non-≡-equivalent Γr-chains in CΓ(a). We may choose such a sequence with

each Ci not the trivial Γr-chain {a}, and hence each F (a)−1(Ci) a reduced Γ-
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factorization of a. If F (a)−1(Ci) and F (a)−1(Cj) are strongly ≡-equivalent for

some i 6= j, then it follows by the partition-preserving property that Ci and Cj

are ≡-equivalent, a contradiction. Therefore F (a)−1(C1), F (a)−1(C2), . . . is an

infinite sequence of non-strongly ≡-equivalent reduced Γ-factorizations of a, and

thus H is not a Γr-completable FFM≡ by Theorem 3.3.3, hence not a Γr-FFM≡

by Theorem 4.5.5. (⇐): By contrapositive. Assume H is not a Γr-FFM≡. By

Theorems 3.3.3 and 4.5.5, there is an a ∈ H# with an infinite sequence of non-

≡-related Γr-divisors a1, a2, . . ., and a <Γr a1, a <Γr a2, . . . forms an infinite

sequence of non-≡-related elements of CΓ(a).

(8) Let a be any Γr-expressible nonzero nonunit. If a is a Γr-atom, then a = a is a

Γr-atomic factorization. Therefore the Γr-(Γr∪trfact(H))-atomic factorizations

and Γr-atomic factorizations coincide, so by parts (1) and (4) the map F (a) is

a length-preserving bijection between the Γr-atomic factorizations of a and the

maximal elements of CΓ(a). The equivalence now follows.
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CHAPTER 5
GENERALIZED PRIMES AND PRIMALS

In this chapter we will study generalized primes and primals and their effects

on unique factorization. In order to avoid spending excessive effort dealing with

trivialities, all factorization systems in this chapter will be reduced normal.

5.1 Generalized Primals

Let Γ, Γ1, Γ2, and Γ3 be factorization systems on a monoid H. We call a

nonunit Γ1-Γ2-Γ3-superprimal if whenever it Γ2-divides a Γ1-factorization λa1 · · · an,

then there are 1 ≤ i1 < · · · < ik ≤ n such that it has a Γ1-factorization µa′i1 · · · a
′
ik

,

where each a′ij |Γ3 aij . A Γ1-Γ2-Γ3-primal is defined by restricting to the case

n ≤ 2 in the above definition. Observe that 0 is necessarily Γ1-Γ2-Γ3-(super)primal.

A nonunit is completely Γ1-Γ2-Γ3-(super)primal if all of its Γ1-divisors are Γ1-Γ2-

Γ3-(super)primal. A Γ-(super)primal is a Γ-fact(H)-fact(H)-(super)primal, a |Γ-

(super)primal is a Γ-Γ-Γ-(super)primal, a half |Γ-(super)primal is a Γ-Γ-fact(H)-

(super)primal, and a (super)primal is a fact(H)-(super)primal. We call H Γ1-Γ2-

Γ3-pre-Schreier if every (nonzero) nonunit is Γ1-Γ2-Γ3-superprimal, and Γ1-Γ2-Γ3-

Schreier if it is additionally integrally closed; similar abbreviations as those used

for the special kinds of Γ1-Γ2-Γ3-superprimals apply. The thesis [21] uses “τ1-τ2-τ3-

primal” to mean what we would call “τ1-τ2-τ3-superprimal”; we have made the above

changes so that the special case τ = τH is consistent with the classic definitions of pri-

mal and (pre-)Schreier. (More specifically, we will see shortly that superprimal is in
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general a stronger property than primal. Traditionally, in defining “(pre-)Schreier”,

one uses “primal” in place of “superprimal”, but we will see that the two definitions

are equivalent, since completely primal implies superprimal.) We have introduced the

definitions of the “half” versions, which are motivated by the half |τ -primes studied

in [18]. We will get to these and the other generalizations of prime elements later, but

we start with the more general theory of the various “superprimals”. The reader is

referred to the classic paper [12] for some basics on Schreier domains and on primals.

The usual example of a Schreier domain is a GCD domain. (See [12, Theorem 2.4].)

We start by exploring how the superprimal property is related to the classic

primal and completely primal properties. Let H be a monoid. For n ≥ 1, we call a

nonunit a n-primal if whenever it divides a length n product b1 · · · bn, we can write

a = a1 · · · an, where each ai | bi. (Of course, any element is trivially 1-primal.) Thus

a superprimal is an element that is n-primal for all n, and a primal is a 2-primal. For

each n ≥ 1 we have: completely primal⇒ superprimal⇒ (n+1)-primal⇒ n-primal.

(The first implication follows from a simple induction.) We give examples to show

that none of the implications can be reversed.

Example 5.1.1. An example of a superprimal that is not completely primal. Let R

be any non-pre-Schreier domain (for example, any atomic domain that is not a UFD),

let K be its quotient field, and let D = R+K[X]. In [23] it is shown that the element

X of D is primal but not completely primal. We will extend this result a little by

showing that X is superprimal. We make the following observation: for a monomial f

and a polynomial g 6= 0 in D, f | g if and only if f divides g’s nonzero term of lowest
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degree. So to prove that X is superprimal it will suffice to consider the case where

X | (α1X
r1) · · · (αnXrn) for some n ≥ 3, α1, . . . , αn ∈ K, and r1, . . . , rn ≥ 0. Because

X is primal, we may reduce to the case where X divides no length 2 subproduct of

(α1X
r1) · · · (αnXrn), which forces (without loss of generality) r1 = 1 and r2 = · · · =

rn = 0. Then the fact that X | (α1X)α2α3 · · ·αn implies that α1 · · ·αn ∈ R, and we

can write X = ((α2 · · ·αn)−1X)α2 · · ·αn, where (α2 · · ·αn)−1X | α1X, as desired.

Example 5.1.2. An example of a domain that has, for each n ≥ 1, an n-primal that

is not (n + 1)-primal. Let K ( L be any fields so that for each n ≥ 1 there is a

c ∈ L with cn /∈ K, and let D = K + XL[X]. (For example, we could take K = R

and L = C, or K to be any field and form L by adjoining a transcendental element.)

Consider the element Xn ∈ D. In [10, Example 3.4] it is shown that X2 is primal but

not completely primal. We will extend this result by showing that Xn is n-primal

but not (n+ 1)-primal.

As in the previous example, a monomial f divides a polynomial g 6= 0 if

and only if f divides g’s nonzero term of lowest degree. So, to show that Xn is n-

primal it will suffice to consider the case where Xn | (α1X
r1) · · · (αnXrn) for some

α1, . . . , αn ∈ L and r1, . . . , rn with 0 ≤ rn ≤ · · · ≤ r1 ≤ n. If r1 + · · · + rn = n,

then r1 ≥ 1, α1 · · ·αn ∈ K, and Xn = ((α2 · · ·αn)−1Xr1)(α2X
r2)(α3X

r3) · · · (αnXrn),

where (α2 · · ·αn)−1Xr1 | α1X
r1 . So let us assume r1 + · · ·+ rn ≥ n+ 1. Then r1 ≥ 2,

and there are i2, . . . , in with each ik ∈ {0, . . . , rk} such that (r1 − 1) + i2 + · · ·+ in =

n. For each k = 2, . . . , n, let βk = 1 if ik = 0 and βk = αk otherwise. Then

Xn = ((β2 · · · βn)−1Xr1−1)(β2X
i2) · · · (βnX in), where (β2 · · · βn)−1Xr1−1 is an element
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of D dividing α1X
r1 , and for k ≥ 2 we have βkX

ik an element of D dividing αkX
rk ,

as desired.

Now suppose that Xn is (n + 1)-primal. Find c ∈ L with cn /∈ K. Then

the fact that Xn | (cX)(n+1) implies that Xn = (a1X) · · · (anX)(a1 · · · an)−1 for

some a1, . . . , an ∈ L with a1 · · · an ∈ K and each c
ai
∈ K. Therefore cn =

( c
a1

) · · · ( c
an

)(a1 · · · an) ∈ K, a contradiction.

In this chapter we will mostly restrict our study to the various “Γ-

(super)primals”, since the primary thing we are interested in is unique Γ-atomic

or Γ-complete factorization, but many of the results we will prove do generalize. It is

intuitively clear that there are countless technicalities that we avoid by dealing only

with reduced normal factorization systems in this chapter, since certain proofs will

depend on being able to assert that a = a is a Γ-factorization, or that aij |Γ aij .

We begin our study with some basic properties. We will focus on the more

important “superprimal” case, but we note that a great deal of the proofs apply to

the generalized primals mutandis mutatis.

Theorem 5.1.3. Let Γ be a unital, divisible, and divisive factorization system on

a monoid H. Then a nonunit is Γ-superprimal (resp., |Γ-superprimal, half |Γ-

superprimal) if and only if whenever it divides (resp., Γ-divides, Γ-divides) a Γ-

factorization λa1 · · · an, then there are 1 ≤ i1 < · · · < ik ≤ n such that it has a

factorization µa′i1 · · · a
′
ik

, where each a′ij divides (resp., Γ-divides, divides) aij .

Proof. This is a simple consequence of the definitions.
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Theorem 5.1.4. Let Γ be a unital and strong associate-preserving factorization sys-

tem on a monoid H.

(1) The Γ-superprimals (resp., half |Γ-superprimals) and Γr-superprimals (resp.,

half |Γr-superprimals) coincide.

(2) A |Γr-superprimal is |Γ-superprimal.

Proof.

(1) First let a be any Γ-superprimal (resp., half |Γ-superprimal), and let a1 · · · an

be any reduced Γ-factorization that it divides (resp., Γr-divides). Then there

is a Γ-factorization a = λa′i1 · · · a
′
ik

, where 1 ≤ i1 < · · · < ik ≤ n and each a′ij

divides aij . Since Γ is unital and strong associate-preserving, the factorization

a = (λa′i1)a′i2 · · · a
′
ik

is a reduced Γ-factorization, and of course λa′i1 | ai1 .

Now let a be any Γr-superprimal (resp., half |Γr -superprimal) and let λa1 · · · an

be any Γ factorization that it divides (resp., Γ-divides). Since Γ is unital

and strong associate-preserving, we know that (λa1)a2 · · · an is a reduced Γ-

factorization, and we know that a divides (resp., Γ-divides) it. If a ≈ a1 · · · an,

then by the unital property there is a Γ-factorization a = µa1 · · · an, so let us

assume that a/≈a1 · · · an. Then a divides (resp., Γr-divides) the aforementioned

reduced Γ-factorization, and the rest is simple.

(2) Proceed as in the second paragraph of the proof of part (1), making the neces-

sary small adjustments.
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We note that the |Γr -superprimal property is hardly ever satisfied. For exam-

ple, if H is a monoid, 1 6= λ ∈ H×, and a, b ∈ H# are relatively prime, then a is

not |rfact(H)-superprimal. This can be seen by considering the reduced factorization

(λa)(λ−1b).

Theorem 5.1.5. Let Γ be a factorization system on a monoid H.

(1) If Γ is unital or strong associate-preserving, then a strong associate of a Γ-

superprimal is Γ-superprimal.

(2) If Γ is unital and strong associate-preserving, then a strong associate of a (half)

|Γ-superprimal is (half) |Γ-superprimal.

Proof.

(1) Assume that Γ is unital or strong associate-preserving. Let a be Γ-superprimal

and take any ν ∈ H× and any Γ-factorization λa1 · · · an that νa divides.

Then a | λa1 · · · an, so there is a Γ-factorization a = µa′i1 · · · a
′
ik

, where

1 ≤ i1 < · · · < ik ≤ n and each a′ij | aij . If Γ is unital, then νa =

(νµ)a′i1 · · · a
′
ik

is a Γ-factorization, while, if Γ is strong associate-preserving,

then νa = µ(νa′i1)a′i2 · · · a
′
ik

is a Γ-factorization and νa′i1 | ai1 . Either way, we

have shown that νa is Γ-superprimal.

(2) Assume that Γ is unital and strong associate-preserving. Let a be (half) |Γ-

superprimal and take any ν ∈ H× and any Γ-factorization λa1 · · · an that νa

Γ-divides. Because Γ is strong associate-preserving, we know that a Γ-divides

(ν−1λ)a1 · · · an, which is a Γ-factorization by the unital property. Since a is

(half) |Γ-superprimal, there are 1 ≤ i1 < · · · < ik ≤ n and a Γ-factorization



130

a = µa′i1 · · · a
′
ik

with each a′ij Γ-dividing (dividing) aij . Again using the unital

property, we obtain a Γ-factorization νa = (νµ)a′i1 · · · a
′
ik

, as desired.

It is immediate from the definitions that, if Γ2 ⊆ Γ′2 and Γ3 ⊇ Γ′3, then a Γ1-

Γ′2-Γ′3-(super)primal is Γ1-Γ2-Γ3-(super)primal. If Γ1 is divisible and divisive, then it

is not hard to use a generalization of Theorem 5.1.3 part (1) to show that, if Γ1 ⊆ Γ′1,

then a Γ′1-Γ′2-Γ′3-(super)primal is Γ1-Γ2-Γ3-(super)primal. The analogous result for a

τ -factorization setup was stated in [21], but with the divisive requirement dropped.

Unfortunately, the following example shows that this is false.

Example 5.1.6. An example of a completely primal element that is not τ -primal,

where τ is symmetric, refinable, and associate-preserving. LetR be an integral domain

and D = R[X, Y ]. Let τ be the symmetric and associate-preserving relation on D#

determined by X2τY 2. Note that τ is refinable but not divisive. The element XY is

completely primal by [12, Lemma 2.5] since it is a product of prime (hence completely

primal) elements, but it is not τ -primal, since it divides the τ -factorization (X2)(Y 2),

but has no τ -factorization of the required form.

In [21, Lemma 2.8(1)] it is shown that a τ -superprimal is |τ -superprimal for τ

symmetric, divisive, and multiplicative. The following is a generalization.

Theorem 5.1.7. Let Γ be a symmetric, unital, divisive, and combinable factorization

system on a cancellative monoid H. Then the |Γ-superprimals and half |Γ-superprimals

coincide.
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Proof. It is clear that every |Γ-superprimal is half |Γ-superprimal. Now let a be

any nonzero nonunit half |Γ-superprimal and let λa1 · · · an be any Γ-factorization

that it Γ-divides, say λa1 · · · an = µab are Γ-factorizations. (The fact that Γ is

symmetric and combinable ensures that we can write the right-hand side in the given

form.) Since a is half |Γ-superprimal, there is a Γ-factorization a = νa′i1 · · · a
′
ik

, where

1 ≤ i1 < · · · < ik ≤ n and each a′ij | aij , say aij = a′ijcij . Since Γ is unital and strong

associate-preserving, we may arrange for each invertible cij to be 1. Canceling yields

ci1 · · · cik | b, so by divisiveness each µa′ijcij is a Γ-factorization (ignoring any factors

of 1), so that each aij = a′ijcij is a Γ-factorization (ignoring any factors of 1) by the

unital property, as desired.

Thus we have |Γ-superprimal⇒ half |Γ-superprimal⇐ Γ-superprimal, and the

second implication reverses if Γ is symmetric, unital, divisive, and combinable. The

same implications hold with “pre-Schreier” in place of “superprimal”.

5.2 Generalized Primes

Let Γ1, Γ2, and Γ3 be factorization systems on a monoid H. In analogy with [6]

and [21], we call a nonunit Γ1-Γ2-Γ3-prime if whenever it Γ2-divides a Γ1-factorization,

then it Γ3-divides some factor. A Γ-prime is a Γ-fact(H)-fact(H)-prime, a |Γ-prime

is a Γ-Γ-Γ-prime, and a half |Γ-prime is a Γ-Γ-fact(H)-prime. A prime is a fact(H)-

prime; Theorem 5.2.4 part (1) shows that this is equivalent to the usual definition of

a prime element.

The following characterization of the Γ1-Γ2-Γ3-primals in cancellative monoids
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shows us how they generalize the Γ1-Γ2-Γ3-primes.

Theorem 5.2.1. Let Γ1, Γ2, and Γ3 be factorization systems on a cancellative monoid

H. A Γ1-Γ2-Γ3-prime is a Γ1-irreducible Γ1-Γ2-Γ3-superprimal. If Γ2 is unital and

associate-preserving, then the converse is true.

Proof. (⇒): Let p be a Γ1-Γ2-Γ3-prime. If p = λa1 · · · an is a Γ1-factorization, then

p divides some ai, and the présimplifiable property forces n = 1. Therefore p is

Γ1-irreducible. Now let λa1 · · · an be any Γ1-factorization that p Γ2-divides. Then

p = p is a Γ1-factorization and p Γ3-divides some ai, showing that p is Γ1-Γ2-Γ3-

primal. (⇐): Let p be a Γ1-irreducible Γ1-Γ2-Γ3-primal, and let λa1 · · · an be any Γ1-

factorization that it Γ2-divides. Then there is a Γ1-factorization p = µa′i1 · · · a
′
ik

, where

1 ≤ i1 < · · · < ik ≤ n and each a′ij |Γ2 aij . Since p is Γ1-irreducible, we have p = µa′i1 ,

which Γ2-divides ai1 by the fact that Γ2 is unital and associate-preserving.

Corollary 5.2.2. Let Γ be a factorization system on a cancellative monoid H.

The Γ-primes are precisely the Γ-irreducible Γ-superprimals, and, if Γ is unital and

associate-preserving, then the (half) |Γ-primes are precisely the Γ-irreducible (half)

|Γ-superprimals.

Corollary 5.2.3. Let Γ be a symmetric, unital, divisive, and combinable factorization

system on a cancellative monoid H. Then the |Γ-primes and half |Γ-primes coincide.

Proof. Theorem 5.1.7 and Corollary 5.2.2.

So |Γ-primal ⇒ half |Γ-primal ⇐ Γ-primal, and the first implication reverses

for Γ symmetric, unital, divisive, and combinable.
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Analogously to the previous section, we will mostly content ourselves with

studying the various kinds of “Γ-primes”. We continue giving some basic properties.

Theorem 5.2.4. Let Γ be a factorization system on a monoid H.

(1) If Γ is divisible, unital, strong associate-preserving, and combinable, then a

nonunit is Γ-prime (resp., |Γ-prime) if and only if whenever it divides (resp.,

Γ-divides) a length 2 reduced Γ-factorization, then it divides (resp., Γ-divides)

some factor.

(2) A strong associate of a Γ-prime is Γ-prime.

(3) If Γ is unital and strong associate-preserving, then a strong associate of a (half)

|Γ-prime is (half) |Γ-prime.

Proof.

(1) (⇒): Clear. (⇐): Assume that Γ is divisible, unital, strong associate-preserving,

and combinable. Let a be any nonunit with the stated property, and let

a = λa1 · · · an be any Γ-factorization that it divides (resp., Γ-divides). If n = 1,

then a = λa1, which divides (resp., Γ-divides) a1 by the fact that fact(H) (resp.,

Γ) is normal. So let us assume n ≥ 2. By the unital and strong associate-

preserving properties, the factorization a = a1(λa2 · · · an) is a length 2 reduced

Γ-factorization, so a divides (resp., Γ-divides) a1 or λa2 · · · an. In the former

case we are done, while in the latter case the proof is finished by induction since

λa2 · · · an is a Γ-factorization by divisibility.

(2) Let a be a Γ-prime, ν ∈ H×, and λa1 · · · an be any Γ-factorization that νa
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divides. Then a | λa1 · · · an, so a divides some ai, and hence µa | ai.

(3) Adjust the proof of part (2), using the unital and strong associate-preserving

properties where necessary.

5.3 Generalized Primes and Unique Factorization

Let Γ be a factorization system on a cancellative monoid H. The purpose

of this section is to thoroughly investigate the implications between the following

statements.

(1) The monoid H is a Γ-UFM.

(2) Every (nonzero) nonunit has a Γ-factorization into |Γ-primes.

(3) The monoid H is Γ-atomic and every Γ-atom is |Γ-prime.

(2′) Every (nonzero) nonunit has a Γ-factorization into Γ-primes.

(3′) The monoid H is Γ-atomic and every Γ-atom is Γ-prime.

(2′′) Every (nonzero) nonunit has a Γ-factorization into half |Γ-primes.

(3′′) The monoid H is Γ-atomic and every τ -atom is half |Γ-prime.

The equivalence (2′) ⇔ (3′) follows quickly from the fact that an associate of a Γ-

prime is Γ-prime, and, if Γ is unital and associate-preserving, then (2) ⇔ (3) and

(2′′) ⇔ (3′′) follow similarly. Corollary 5.4.5 will give the perhaps unexpected result

that, if Γ = Γτ is divisive, then “Γ-factorization” can equivalently be replaced with

“factorization” in (2′).
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The paper [6] was the first to bring up this type of question, when it proved

that (2′) ⇔ (3′) ⇒ (1) ⇔ (2) ⇔ (3) for the special case where Γ = Γτ is divisive

(examining the proofs allows us to weaken “divisive” to “refinable and associate-

preserving”), and the authors posed the question of whether all five statements are in

fact equivalent in this case. The τ -factorization versions of (2′′) and (3′′) were added

to the list in [18, Section 4], where the work of [6] was extended to show that (1)−(3),

(2′′), and (3′′) are equivalent in the refinable and associate-preserving case, and that

the other properties are not equivalent, even for τ both multiplicative and divisive.

We will extend these results to a Γ-factorization framework, as well as investigate

the implications between the statements with various different assumptions on the

factorization systems.

We will give examples to show that our results about statements (1)−(3), (2′),

and (3′) are the best possible under these possible hypotheses on τ : no hypotheses,

τ associate-preserving, τ divisive, τ both multiplicative and divisive, and τ = τd.

In particular, we answer the above question from [6] in the negative. However, the

half |τ -primes are still somewhat mysterious and not well understood when τ is not

associate-preserving.

Let Γ be a factorization system on a monoid H. It is obvious from the def-

initions that any two Γ-factorizations of the same element into half |Γ-primes are

homomorphic (i.e., each factor in one divides some factor in the other). If H is can-

cellative, then homomorphic factorizations are ∼-equivalent (see, for example, the

proof of [18, Theorem 4.1]), and we have established the theorem below.
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Theorem 5.3.1. Let Γ be a factorization system on a cancellative monoid H. Any

two Γ-factorizations of the same element into half |Γ-primes are equal up to order and

associates.

We can prove stronger results for |Γ-primes if Γ is reasonably well-behaved,

with the following series of results extending and generalizing [21, Theorem 2.4].

Theorem 5.3.2. Let Γ be a unital and divisible factorization system on a cancellative

monoid H. Let λa1 · · · am = µb1 · · · bn be Γ-atomic factorizations with at most one ai

not |Γ-prime. Then m = n and each ai ∼ bi after a suitable reordering.

Proof. If m = 1, then by the fact that a1 is a Γ-atom we have n = 1 and a1 ∼ b1. So

let us assume that m ≥ 2. After a suitable reordering, am is |Γ-prime and am |Γ bn, so

am ∼ bn. Canceling, we obtain Γ-atomic factorizations λ′a1 · · · am−1 = µ′b1 · · · bn−1,

and by induction m− 1 = n− 1 (hence m = n) and ai ∼ bi for i = 1, . . . ,m− 1 after

a suitable reordering.

Adding a divisive requirement makes the situation even nicer.

Theorem 5.3.3. Let Γ be a unital, divisive, and divisible factorization system on a

cancellative monoid H. Let x1 · · ·xn = µp1 · · · pm be Γ-factorizations with possibly

some of the xi’s units, and the pi’s Γ-atoms, all but at most one of which is half

|Γ-prime. Then there is a partition of {1, . . . ,m} into (possibly empty) disjoint sets

B1, . . . , Bn such that each
∏

i∈Bj pi ∼ xj.

Proof. If m = 1, then by the fact that p1 is a Γ-atom we have some xi ∼ p1 and the

other xj’s are units, so let us assume m ≥ 2. Without loss of generality, assume p1
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is half |Γ-prime and p1 | x1, say x1 = p1a. Canceling yields ax2 · · ·xn = µp2 · · · pm,

which are Γ-factorizations by divisibility and divisiveness (with a and some of the

xi’s possibly units). By induction, there is a partition of {2, . . . ,m} into disjoint

sets B,B2, . . . , Bn such that
∏

i∈B pi ∼ a and each
∏

i∈Bj pi ∼ xj for 2 ≤ j ≤ n.

Let B1 = B ∪ {1}. Then B1, . . . , Bn form a partition of {1, . . . ,m} and
∏

i∈B1
pi =

p1

∏
i∈B pi ∼ p1a = x1, as desired.

Corollary 5.3.4. Let Γ be a unital, divisive, and divisible factorization system on a

cancellative monoid H. Let λx1 · · ·xn = µp1 · · · pm be Γ-factorizations, where the pi’s

are Γ-atoms, all but at most one of which is half |Γ-prime. Then:

(1) m ≥ n.

(2) If each xi is Γ-irreducible, then n = m and each xi ∼ pi after a suitable reorder-

ing.

(3) If n = m, then each xi ∼ pi after a suitable reordering.

Proof. Partition {1, . . . ,m} as in Theorem 5.3.3. Because each xj is not a unit, each

|Bj| ≥ 1, so m = |B1|+ · · ·+ |Bn| ≥ n. If each xi is Γ-irreducible, then each |Bi| = 1

so m = n. If n = m, this forces each |Bi| = 1.

We are now ready for our Γ-factorization generalization of [6, Theorem 2.7].

Theorem 5.3.5. Let Γ be a factorization system on a cancellative monoid H. In

the statements at the beginning of the section, (2) ⇐ (3) ⇒ (3′′) ⇒ (1) and (2′) ⇔

(3′) ⇒ (3′′) ⇒ (2′′) ⇐ (2). If Γ is unital and associate-preserving, then (2′′) ⇔ (3′′)

and (2) ⇔ (3). If Γ is unital and divisible, then (2) ⇒ (1). If Γ is refinable, unital,
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and associate-preserving, then (1)− (3), (2′′), and (3′′) are equivalent.

Proof. The non-obvious implications in the first four sentences are (2) ⇒ (1) and

(3′′) ⇒ (1), which follow from Theorems 5.3.2 and 5.3.1, respectively. Now assume

that Γ is refinable, unital, and associate-preserving, and that H is a Γ-UFM. Let a be

any Γ-atom and λa1 · · · an be any Γ-factorization that it Γ-divides, say µax1 · · ·xk =

λa1 · · · an are Γ-factorizations. By Theorem 4.5.5 and Lemma 4.4.4, the monoid

H is a Γ-atomicable UFM, so we can Γ-refine both Γ-factorizations into Γ-atomic

factorizations. By uniqueness, the element a is an associate of some Γ-factor of the

Γ-refined right-hand side, which in turn is a Γ-divisor of some ai. Because Γ is unital

and associate-preserving, we have a |Γ ai, as desired.

The following diagram of implications summarizes Theorem 5.3.5.

Figure 5.1: Statements about Generalized Primes and Unique Factorization

3 //

��

2

u., a.p.

��

u., divisibleuu

��

1

ref., u., a.p.
ii

3′′ //

55

2′′

u., a.p.

ZZ

3′

OO

oo // 2′

OO
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We have the following slightly simplified diagram that applies to τ -

factorization (or more generally, to a unital and divisible factorization system).

Figure 5.2: Statements in a τ -factorization Context

3 //

��

2

a.p.

��

uu

��

1

ref., a.p.
ii

3′′ //

55

2′′

a.p.

ZZ

3′

OO

oo // 2′

OO

We will now give several examples to show that Figure 5.2 is at least close to

the best possible.

Example 5.3.6 ([18, Example 4.3]). In a τ -UFD, an atom (hence a τ -atom) need not

be τ -prime, even if τ is both multiplicative and divisive. Let R be an integral domain

and D = R[X2, Y 2, XY ]. Define τ to be the symmetric and associate-preserving

relation on D# determined by (X2m)τ(Y 2n) for m,n ≥ 1. Note that τ is divisive

and multiplicative. The only nonzero nonunits that are not τ -atoms are those of

the form λ(X2m)(Y 2n), which also happens to be their unique τ -atomic factorization

(up to associates and order). So D is a τ -UFD. Now, the atom XY divides the

τ -factorization (X2)(Y 2), but it does not divide X2 or Y 2, so XY is not τ -prime.
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Example 5.3.7. In a τ -UFD, an atom need not be an associate of a half |τ -prime,

even if τ is associate-preserving. Let R be an integral domain, D = R[X, Y 2, XY ], and

τ be the symmetric and associate-preserving relation on D# determined by X2τY 2,

XY τXY , and XτX. The only τ -reducible elements are those of the forms λ(XY )n

and λXn (n ≥ 2), which also happens to be their unique τ -atomic factorizations.

(Note that the τ -factorization (X2)(Y 2) is not τ -atomic.) Because (XY )2 = (X2)(Y 2)

are τ -factorizations and XY does not divide X2 or Y 2, the atom XY is not half |τ -

prime. Because τ is associate-preserving, we conclude that XY is not an associate of

a half |τ -prime.

Example 5.3.8. An example of a domain where every nonzero nonunit is a τ -product

of prime |τ -primes (hence τ -primes), but not every prime (hence not every τ -atom)

is |τ -prime. Let D = Z and define aτb ⇔ a, b > 0 or ab = 12. Observe that every

positive prime is |τ -prime, so every nonzero nonunit is a τ -product of prime |τ -primes.

Now, the element −2 is prime and 3 · 4 = (−2)(−6) are τ -factorizations, but −2 does

not τ -divide either 3 or 4, so −2 is not |τ -prime.

Example 5.3.9. An example where τ is associate-preserving, D is a τ -UFD, and

every τ -atom is τ -prime, but not every prime (hence not every τ -atom) is |τ -prime.

Let D = Z and let τ be the symmetric relation on D# determined by (±2)τ(±24),

(±2)τ(±3), (±2)τ(±4), (±3)τ(±4), and (±4)τ(±4). Note that τ is associate-preserving.

We may observe that the only τ -reducible nonzero nonunits are those elements of the

form ±22n, ±22n+1, ±3 · 22n, and ±3 · 22n+1 for some n ∈ Z≥0, which have unique

τ -atomic factorizations ±4n, ±2 · 4n, ±3 · 4n, and ±2 · 3 · 4n, respectively, so D is a
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τ -UFD. (Note that 2·24 is not a τ -atomic factorization since 24 = 2·3·4 is a nontrivial

τ -factorization of 24. So 48 = 3 · 42 is indeed the unique τ -atomic factorization of

48.) To show that every τ -atom is τ -prime, it will suffice to show that every τ -atom

x ∈ Z≥2 dividing something of the form 2 · 3 · 4n is τ -prime. Such an x must be either

2, 3, or 4. 2 and 3 are prime (hence τ -prime), and any τ -factorization that 4 divides

must be of the form ±4n, ±2 · 4n, ±3 · 4n, or ±2 · 3 · 4n for some n ∈ Z+, and in any

case 4 divides one of the terms of that τ -factorization. So every τ -atom is τ -prime.

However, 2 is prime and 2 τ -divides 48 = 3 · 42 = 2 · 24, but 2 does not τ -divide 3 or

4, so 2 is not |τ -prime.

For τ = τd, all seven of the above statements are equivalent, but we have

seen that most of the implications between them do not hold for a general symmetric

relation τ . In the following tables, we will attempt to gain some insight into what is

happening by showing the truth or falsity of each implication as we impose progres-

sively stronger conditions on τ : τ any symmetric relation, τ an associate-preserving

relation, τ divisive, τ both divisive and multiplicative, τ = τ?, and τ = τd. The entries

will indicate whether the row implies the column. “T” indicates that the implication

is true by Theorem 5.3.5, a reference to a theorem indicates that it is true by the

theorem referenced, a reference to one of the above examples indicates that it is false

and that example provides a counterexample, and a question mark indicates that the

truth of the implication is unknown to us. The question marks in the τ = τ? chart

were conjectured to be true in [6].
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Table 5.1: Implications with τ any relation

(1) (2) (2′) (3) (3′) (2′′) (3′′)
(1) T Ex 5.3.7 Ex 5.3.6 Ex 5.3.7 Ex 5.3.6 Ex 5.3.7 Ex 5.3.7
(2) T T Ex 5.3.6 Ex 5.3.8 Ex 5.3.6 T ?
(2′) T Ex 5.3.9 T Ex 5.3.9 T T T
(3) T T Ex 5.3.6 T Ex 5.3.6 T T
(3′) T Ex 5.3.9 T Ex 5.3.9 T T T
(2′′) ? Ex 5.3.9 Ex 5.3.6 Ex 5.3.8 Ex 5.3.6 T ?
(3′′) T Ex 5.3.9 Ex 5.3.6 Ex 5.3.9 ? T T

Table 5.2: Implications with τ associate-preserving

(1) (2) (2′) (3) (3′) (2′′) (3′′)
(1) T Ex 5.3.7 Ex 5.3.6 Ex 5.3.7 Ex 5.3.6 Ex 5.3.7 Ex 5.3.7
(2) T T Ex 5.3.6 T Ex 5.3.6 T T
(2′) T Ex 5.3.9 T Ex 5.3.9 T T T
(3) T T Ex 5.3.6 T Ex 5.3.6 T T
(3′) T Ex 5.3.9 T Ex 5.3.9 T T T
(2′′) T Ex 5.3.9 Ex 5.3.6 Ex 5.3.9 Ex 5.3.6 T T
(3′′) T Ex 5.3.9 Ex 5.3.6 Ex 5.3.9 Ex 5.3.6 T T
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Table 5.3: Implications with τ divisive

(1) (2) (2′) (3) (3′) (2′′) (3′′)
(1) T T Ex 5.3.6 T Ex 5.3.6 T T
(2) T T Ex 5.3.6 T Ex 5.3.6 T T
(2′) T T T T T T T
(3) T T Ex 5.3.6 T Ex 5.3.6 T T
(3′) T T T T T T T
(2′′) T T Ex 5.3.6 T Ex 5.3.6 T T
(3′′) T T Ex 5.3.6 T Ex 5.3.6 T T

The above diagram remains unchanged if we strengthen “divisive” to “both

multiplicative and divisive”, or if we weaken it to “refinable and associate-preserving”.

Table 5.4: Implications for τ = τ?

(1) (2) (2′) (3) (3′) (2′′) (3′′)
(1) T T ? T ? T T
(2) T T ? T ? T T
(2′) T T T T T T T
(3) T T ? T ? T T
(3′) T T T T T T T
(2′′) T T ? T ? T T
(3′′) T T ? T ? T T
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Table 5.5: Implications for τ = τd

(1) (2) (2′) (3) (3′) (2′′) (3′′)
(1) T T [6, 4.1] T [6, 4.1] T T
(2) T T [6, 4.1] T [6, 4.1] T T
(2′) T T T T T T T
(3) T T [6, 4.1] T [6, 4.1] T T
(3′) T T T T T T T
(2′′) T T [6, 4.1] T [6, 4.1] T T
(3′′) T T [6, 4.1] T [6, 4.1] T T

5.4 Properties of Products of Elements

The theory of abstract factorization has several theorems of the form “if Γ has

property P1, a is a nonunit with properties P2, and b is a nonunit with property P3,

then either ab is a Γ-factorization or ab has property P4”. In this section, we will

derive several results of this type and investigate some of their applications.

Let D be an integral domain and τ be a relation on D#. In [6], the first

theorem of the above form was proved: if τ is symmetric and divisive, a is τ -prime,

and b is a τ -atom, then either aτb or ab is a τ -atom. The thesis [21] expanded on

this work with some more theorems of this type. We intend to review some of these

theorems, generalize, and make additions. However, we would first like to correct two

mistakes. In [21, Lemma 2.18(2),(4)], it is stated that the following for τ symmetric

and divisive and a, b ∈ D# with a/τb:

(1) If a is a τ -atom and b is τ -superprimal, then ab is a τ -atom.

(2) If a is τ -prime and b is a τ -superprimal relatively prime to a, then ab is τ -prime.
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Unfortunately, however, both statements are false, as the following counterexample

shows.

Example 5.4.1. An example where τ is a multiplicative and divisive relation on the

nonzero nonunits of a domain D, a ∈ D# is prime, b ∈ D# is a primal relatively prime

to a, a/τb, and ab is not a τ -atom. Let R be an integral domain, let D = R[X, Y, Z],

and let τ be the symmetric and associate-preserving relation on D# determined by

XkτY mZn for k ≥ 1, and m,n ≥ 0 with m+n ≥ 1. Note that τ is both multiplicative

and divisive, Y is prime, the element XZ is primal and relatively prime to Y , Y /τXZ,

and Y (XZ) = X(Y Z) is not a τ -atom. We can additionally arrange for D to have

nice properties like being a UFD and so on by choosing R appropriately.

With that counterexample out of the way, we are ready to give our first ab-

straction of [6, Theorem 4.12].

Theorem 5.4.2. Let Γ be a symmetric, unital, divisive, and divisible factorization

system on a cancellative monoid H. Let a be a Γ-atom and b be Γ-prime. Then ab is

a Γ-factorization or a Γ-atom.

Proof. Assume ab has a nontrivial Γ-factorization ab = c1 · · · cn. Because b is Γ-prime,

it divides some ci, say c1 = br. Canceling yields a = rc2 · · · cn, where the right-hand

side is a Γ-factorization (with r possibly a unit) by divisiveness or by divisibility

and the unital property. Because a is Γ-irreducible, we have r ∈ H×, n = 2, and

a ∼ c2. Canceling now gives b ∼ c1, so c1c2 ∼ ba = ab are Γ-factorizations by the

associate-preserving and symmetric properties.
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Theorem 5.4.3. Let Γ be a unital, divisive, and divisible factorization system on a

monoid H.

(1) Any product of (completely) Γ-superprimal elements is (completely) Γ-superprimal.

(2) If Γ is additionally symmetric, refinable, and combinable, then any Γ-product of

(completely) |Γ-superprimal (resp., half |Γ-superprimal) elements is (completely)

|Γ-superprimal (resp., half |Γ-superprimal).

Proof.

(1) Let a and b be Γ-superprimal, and let c1 · · · cn be any reduced Γ-factorization

that ab divides. Since b | c1 · · · cn, we have a reduced Γ-factorization b = d1 · · · dn

(with some of the di’s possibly 1) where each di | ci, say ci = dixi. Canceling

gives a | x1 · · ·xn, the latter being a Γ-factorization (with the units collected

together) by divisiveness and the unital property. So we have a Γ-factorization

a = y1 · · · yn (with some of the yi’s possibly 1), where each yi | xi, say xi = yizi.

So ab = (d1y1) · · · (dnyn) and each diyi | (diyi)zi = dixi = ci. By Theorem 5.1.3,

the proof of the “non-completely” case is complete.

Now assume that a and b are completely Γ-superprimal, and let ab = f1 · · · fk

be any reduced Γ-factorization. We need to show that each fi is Γ-superprimal.

We have a reduced Γ-factorization a = f ′1 · · · f ′k (with some of the factors pos-

sibly 1) with each f ′i | fi, say fi = f ′igi. Canceling yields b = g1 · · · gk, which

is a Γ-factorization (collecting all the units together) by the divisive, divisi-

ble, and unital properties. Since a and b are completely Γ-superprimal, each

nonunit f ′i and gi are Γ-superprimal, so the product of all those elements is Γ-
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superprimal by the previous paragraph, and ab is Γ-superprimal since associates

of Γ-superprimals are Γ-superprimal.

(2) Assume Γ is symmetric, refinable, and combinable. In view of Theorem 5.1.7,

combinability, and induction, we only need to show that any Γ-product ab of

two (completely) |Γ-superprimal elements is (completely) |Γ-superprimal. Let

c1 · · · cn be any reduced Γ-factorization that ab Γ-divides. Since Γ is refinable,

unital, and associate-preserving, we have b |Γ c1 · · · cn, so there is a reduced Γ-

factorization b = d1 · · · dn (with some of the di’s possibly 1) where each nonunit

di |Γ ci, say ci = dixi. (Set xi = ci when di = 1.) Use these Γ-factorizations to

Γ-refine c1 · · · cn and one of its Γ-factorizations with ab as a Γ-factor, and then

cancel and apply the divisible and unital properties to see that a |Γ x1 · · ·xn.

So we have a Γ-factorization a = y1 · · · yn (with some of the yi’s possibly 1),

where each nonunit yi |Γ xi, say xi = yizi. (Set zi = xi when yi = 1.) So

ab = (d1y1) · · · (dnyn). By refinability and combinability, the factorizations

ci = dixi = di(yizi) = diyizi = (diyi)zi are Γ-factorizations, so each diyi |Γ ci

and we have shown that ab is |Γ-superprimal by Theorem 5.1.3.

If a and b are completely |Γ-superprimal, then we can show that ab is completely

|Γ-superprimal by a minor modification to the second paragraph of the proof of

part (1).

The following generalizes [21, Lemma 2.18(3)].
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Corollary 5.4.4. Let Γ be a unital, divisive, and divisible factorization system on a

cancellative monoid H. Any product of two Γ-primes is Γ-prime or a Γ-factorization.

Proof. Theorems 5.4.2, 5.4.3, and Corollary 5.2.2.

We note that the following result is one of only a handful of abstract fac-

torization theorems that make use of the relational property; most theorems about

τ -factorization can be proven just as easily for any unital, divisible, and normal fac-

torization system.

Corollary 5.4.5. Let H be a cancellative monoid and τ be a symmetric and divisive

relation on H#. Then any product of τ -primes is (after a suitable reordering) a

refinement of a τ -product of τ -primes.

Proof. Let λa1 · · · an be any product of τ -primes that is not a τ -product. Reorder

if necessary so that a1/τa2. Then λ(a1a2)a2 · · · an is a product of τ -primes by by

Corollary 5.4.4, which by induction is a refinement of a τ -product of τ -primes.

We should remark that the above result only elaborates very slightly on [21,

Lemma 4.9], which already showed that an element that, for τ symmetric and divisive,

an element that can be written as a product of τ -primes can be written as a τ -product

of τ -primes.

We end this thesis with a theorem collecting some of our main characterizations

of Γ-UFM’s, and a corollary showing how to apply these characterizations to obtain

the results about unique factorization inheritance that we have long been promising.

The following is a summary of the history of the theory of complete factorization
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inheritance. In [6] it was shown that a UFD is a τ -UFD for τ divisive. The proof was

very involved, but a much simpler one was later discovered: the result is immediate

from Corollary 5.4.5 and Theorem 5.3.5, since a prime is clearly τ -prime. Later, the

thesis [21] extended unique factorization inheritance further by showing that a τ2-UFD

is a τ1-UFD for divisive τ1 ≤ τ2; the proof essentially adapted the one of [6], and, as

expected, was even more difficult than the original. At this point, it would be natural

to wonder if there could be a simplified proof analogous to the simple proof of a

UFD being a τ -UFD, but Example 5.3.6 ruins all hope of such an approach working.

A simplified proof of the result of [21] is given in [18, Theorem 4.4], where as an

added bonus the divisive requirement on τ2 was weakened to refinable and associate-

preserving. (The divisive requirement on τ1 cannot be similarly weakened, since the

UFD Z is not a τ(2)-UFD even though τ(2) is refinable and associate-preserving.) Our

proof of the analogous Γ-factorization theorem will essentially be the same. Finally,

as a side note, one interesting proof that a UFD is a Γ-UFD for Γ unital, associate-

preserving, refinable, divisible, and divisive is given in [21, Theorem 6.16(1)]. A UFD

is Schreier, and thus Γ-Schreier by Theorem 5.1.3. On the other hand, a UFD is Γ-

atomic by Figure 4.6, and every Γ-atom is Γ-primal and hence Γ-prime, so the result

now follows from Theorem 5.3.5.

Theorem 5.4.6. Let Γ be a unital, associate-preserving, refinable, and divisible fac-

torization system on a cancellative monoid H. The following are equivalent.

(1) The monoid H is a Γ-UFM.

(2) The monoid H is Γ-atomic and (half) |Γ-pre-Schreier.
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(3) The monoid H is Γ-atomic and every Γ-atom is (half) |Γ-prime.

Proof. (1) ⇔ (3): Theorem 5.3.5. (2) ⇒ (3): Corollary 5.2.2. (1) ⇒ (2): Assume

that H is a Γ-UFM, and let λa1 · · · am = µb1 · · · bn be any Γ-factorizations of the same

element. We need to show that each ai has a Γ-factorization of the form ai = b′i1 · · · b
′
ik

,

where 1 ≤ i1 < · · · < ik ≤ n and each b′ij |Γ bij . This is accomplished by Γ-refining

the two Γ-factorizations into Γ-atomic factorizations and applying uniqueness.

Corollary 5.4.7. Let Γ ⊆ Γ′ be unital, associate-preserving, refinable, and divisible

factorization systems on a cancellative monoid H. Additionally assume that Γ is

divisive. If H is a Γ′-UFM, then it is a Γ-UFM.

Proof. Assume H is a Γ′-UFM. Then it is half |Γ′-pre-Schreier (hence half |Γ-pre-

Schreier) by Theorem 5.4.6. From Figure 4.6, we see that H is also Γ-atomic, so it is

a Γ-UFM by Theorem 5.4.6.
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