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Figure 4.6: Estimated predictive binomial FME curves 
and 95% credible intervals for speech 
perception in different age groups 

4.7 Discussion 

By implementing a Bayesian approach, and capitalizing on the hierarchical nature 

of the FME model, we are able to offer an alternative method for analyzing longitudinal 

growth curve data for binomial outcomes.  The binomial functional mixed-effects model 

offers a new way to model percentage data, without assuming normality, by adding a 

hierarchical level to the estimation of Guo’s functional mixed-effects model.  In doing so, 

the predicted curves (and outcomes) are guaranteed to be within the parameter space 

appropriate for percentage data.  Furthermore, we can account for the variability in the 

observed outcomes by using the predictive binomial model to estimate the outcomes 

given the MCMC estimated probabilities.  This method results in a credible interval for 

the outcomes themselves rather than the credible interval for the probabilities in the 
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binomial model and provides a more conservative approach for predicting differences in 

growth trajectories.    

Simulation studies suggest the binomial model is most appropriate in situations 

with binomial outcomes where number of trials and number of time points are small and 

the outcomes occur at the high end of the binomial parameter space (70%-100%).  In 

these situations, the asymptotic normality assumptions break down and accurately 

specifying the true distribution of the binomial outcomes is necessary.  When the number 

of trials is large, say 100, the normal model is a viable alternative even with a small 

number of time points in the high end of the parameter space.  In general, the normal 

model proves to be a good approximation for percentage data when N is large (e.g., 

N=100) as it outperforms the other models in various situations.  Yet, the binomial model 

often performs sufficiently well in these situations whereas the logit model lags 

noticeably behind.   

When data are missing at random, the aforementioned trends hold true; however, 

all the models perform slightly worse in terms of RMSE, relative bias and coverage 

probability than they do when all data are present. Furthermore, the homogeneous error 

assumption for normal outcomes causes difficulty in estimation for the normal model, 

whereas the binomial model allows for different variances and different time points and 

thus often results in stronger predictions in situations with a large amount of missing 

data.  One remaining limitation to the normal FME model is its prediction of 

outcomes/curves outside of the meaningful parameter space for percentage data. This 

results in modeling unrealistic growth curves; however, the binomial model always 

ensures the predicted outcomes are between 0%-100% and thus all curves can be 

accurately interpreted.  Furthermore, choosing different covariance structures is both 

feasible and appropriate with these models, especially if the investigator has prior 

information as to how the outcomes may be related temporally within individuals. 
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The binomial FME model shows promise in its ability to accurately model growth 

over time.  Although, the normal model appears to be a good approximation to the 

binomial model in most cases, there are still advantages to choosing the binomial 

approach.  Our next research goal is to extend this model such that covariates other than 

time are included in the model; this extension would allow us to compare growth curves 

between various groups of individuals in one run of the model and assess the role other 

variables may play in promoting or inhibiting growth.  
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CHAPTER 5 

FUNCTIONAL MIXED-EFFECTS MODELS FOR 

MULTINOMIAL OUTCOMES 

5.1 Introduction 

Studies with categorical outcomes are frequently conducted in public health 

research and many methods exist to model such outcomes when they resemble binary or 

count data (e.g. generalized estimating equations, generalized linear mixed models).  

However, when the categorical outcomes are multinomial in nature, available statistical 

methodologies to model the outcomes longitudinally are limited.  One challenge in 

modeling this type of data longitudinally is in the specification of the correlation structure 

between two multinomial variables (Li & Chan, 2006).  Other adaptations of the 

generalized estimating equations (GEE) and proportional odds models have been 

proposed to model multinomial outcomes; however, these adaptations are unable to 

model subject-specific profiles and are based on parametric assumptions (e.g., Zeger & 

Liang, 1986).  When the purpose of the analysis is to model subject-specific curves 

and/or the curves do not follow a known parametric trajectory, these methods are 

unsuitable. 

In this chapter, we propose an extension to the nonparametric functional mixed-

effects model for binary outcomes introduced in Chapter 4.  We extend the binomial 

FME model to the multinomial setting where the outcomes consist of more than two 

nominal categories and the probabilities associated with each category sum to one.  At 

each time point, an individual’s outcome consists of a Rx1 vector of responses,   

(          ) ,  representing the observed number of successes for each category of the 

outcome variable with R total categories.  The elements of the   response vector are 

mutually exclusive and sum to a fixed number of N trials at all time points.  The 

multinomial functional mixed-effects model then models individual and population 
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curves for R-1 categories of the multinomial outcome.  If the outcome only has two (R=2) 

categories, this model simplifies to the binomial model of Chapter 4. 

5.2 Motivation for Modeling Longitudinal Data with Multinomial 

Outcomes 

Our proposed multinomial extension is motivated by an application in the speech 

and hearing sciences involving the modeling of eye-tracking data.  When listening to an 

individual speak, the speech signal received by the listener can be highly variable and 

noisy.  There is evidence that individuals differ in the rate at which they recognize words, 

and researchers are highly interested in identifying the components of word recognition 

that vary between individuals so as to have a better understanding of language processing 

when diagnosing and treating language disorders (McMurray, Samelson, Lee, & 

Tomblin, 2010).  Researchers in the language sciences have attempted to study and 

understand how listeners process language for many years, and the development of the 

visual world paradigm (Section 2, Chapter 1) in 1974 has greatly improved their ability to 

investigate speech processing.  As a result, research in this field has significantly 

improved over the last 30 years; however, there are still limitations in statistical 

methodology to accurately model the process of speech recognition via the visual world 

paradigm (eye-tracking) approach. 

Different versions of the visual world paradigm (VWP) exist, but most involve 

tracking eye-movements while individuals are instructed to manipulate objects on a 

visual screen (e.g. click on a picture; drag a box to a new location).  One commonly used 

version of the VWP involves a visual display containing an image of the “target” or 

correct word, a “rhyme” picture depicting a word that rhymes with the spoken word, a 

“cohort” word which shares the same stem as the correct word and an “unrelated” word 

which has nothing to do with the target (or spoken) word.  For example, in Figure 5.1, 

beaker represents the target word, speaker represents the rhyme word, beetle represents 
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the cohort and hammer represents the unrelated word.  As the patient clicks on the target 

word, the eye-tracking device records where the patient is looking within the first 3000 

milliseconds of processing the word by making a digital recording at 4 millisecond 

intervals.  The screen coordinates of the looks recorded by the eye-tracker are then 

matched with the images to determine the object of fixation at a given time point.   The 

red dot in the center of the screen serves to center the subject’s eyes before the beginning 

of each trial.  The resulting eye movements, from a set number of trials, are then used to 

assess how strongly the subject considers each class of during the process of spoken word 

recognition.  In addition to the four categories presented above, there is a fifth category 

that isn’t displayed because it captures the eye-tracking device’s inability to pick-up the 

Figure 5.1: Example of visual world paradigm in which 
individual hears the spoken/target word 
(beaker) and must click on it amongst 
competing words such as speaker (rhyme), 
beetle (cohort), and hammer (unrelated) 
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subject looking at one of the four aforementioned pictures (e.g., blinking, looking away 

from the screen, looking in between pictures).  Thus, the five categories (target, cohort, 

rhyme, unrelated and none) comprise a true multinomial situation at each time point since 

an individual can only be looking at exactly one category at every time point.  Figure 5.2 

shows all individual curves for the four outcome categories interest to investigators in the 

eye-tracking cochlear implant dataset introduced in Chapter 1.   

 

Currently, various measures exist to study differences among individuals and 

populations in spoken word processing using the VWP; yet, many language sciences 

researchers believe the current methods are less than ideal.  Perhaps the simplest method 

for analyzing VWP data involves using t-tests and ANOVA methods to compare mean 

proportions of each visual fixation in a certain window of time (Mirman, Dixon, & 

Figure 5.2: Observed Fixation Curves for Individuals 
in Eye-Tracking Dataset 
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Magnuson, 2008).  Although this reduces the concern of assumption violations, it greatly 

compresses the data and does not consider changes in fixation proportions over time.  A 

fix is to calculate the mean fixation proportions in successive timeframes and then 

perform an RM-ANOVA on the mean fixation proportions (Allopenna et al., 1998).  

Although this approach retains the time component, the choice of timeframe is subjective 

at best and is treated as a factor (consisting of a set of timeframes) instead of a continuous 

process. 

Another easily and commonly implemented method is to use area under the curve 

analysis over specific windows of time as a way to assess where an individual focuses 

most of his/her attention in the early stages of processing (e.g., McMurray, Tanenhaus, 

Aslin, & Spivey, 2003; Spivey, Grosjean, & Knoblich, 2005).  An ANOVA model can 

then be used to assess whether or not there is a difference in the average area under the 

curve for each element of the visual word paradigm.  However in doing so, the element of 

time is excluded and the independence assumption in ANOVA methods is violated 

because an individual has observations in each category being compared.  Also, 

individual differences cannot be assessed because the curves are often averaged across 

time and participants.  Furthermore, all participants must have data in the specified time-

window which is difficult to maintain given different word processing rates. 

Mixed-effects models have arguably been used most successfully to model this 

type of data (Mirman et al., 2008).  In these approaches, a polynomial function of time is 

typically fit to each participant’s fixation curve which allows time to be explicitly 

modeled.  Moreover, this method allows both population and subject-specific curves to 

be fit allowing for differences in fixation among individuals and groups.  Furthermore, 

different rates of word processing among individuals and groups are no longer an issue 

since time is included in the function.  Despite their ability to represent the curvilinear 

relationship between time and fixation proportions, polynomial models are still 

considered less than ideal for fitting this sort of data since 5
th

 or 6
th

 order polynomials are 



86 
 

often needed in order to accurately resemble the shape of the curves (McMurray et al., 

2010; Mirman et al., 2008). As a result, the coefficients of the polynomial functions are 

not easily interpretable and at times these high order polynomials cannot be fit.  

Nonlinear extensions of the mixed-effects model, such as logistic functions (McMurray et 

al., 2010) have also been used; but in these models individuals’ results are modeled 

separately (target, cohort, rhyme, unrelated, none) excluding the multinomial relationship 

between the possible outcomes, and a parametric shape is still specified. 

As with all modeling procedures, each approach has strengths and weaknesses 

and researchers must choose an appropriate approach based on their unique situation.  

With our model, though, we intend to add to the literature by introducing a Bayesian 

nonparametric approach to modeling the longitudinal multinomial outcomes.  In this 

approach, the models aren’t constrained by parametric assumptions and all the curves can 

be fit simultaneously by accurately accounting for the connection between categories of 

the outcome variable. 

5.3 Proposed Multinomial FME model   

Our proposed model involves extending the binomial FME model introduced in 

Chapter 4 to the multinomial setting which will simultaneously alleviate many of the 

limitations mentioned in Section 5.2.  We wish to formulate a model similar to that of our 

proposed binomial model where the outcome of interest is now multinomial.  As such, 

the data will drive the shape of the curve as opposed to a parametric (linear or nonlinear) 

function.  Also, a hierarchical model such as the one we present will inherently account 

for the multinomial association between the outcome categories.  There are multiple ways  
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to arrive at a longitudinal multinomial model, but we propose a model which is 

comprised of a sequence of conditional binomial FME models (Figure 5.3).  At the first  

Figure 5.3: Visual depiction of multinomial FME model 
based on sequence of conditional binomial 
models 

stage, we will model the binomial situation that an individual’s response belongs to 

category “one” versus any other category of the response variable.  Then, given the 

individual’s response at a given time point was not in category “one”, we will model the 

binomial situation that it was in category “two” versus any of the remaining categories.  

We can continue on in this hierarchical fashion until R-1 categories are modeled (where 

R equals the number of categories in the multinomial outcome), resulting in R-1 binomial 

curves.  In this set-up, the order in which the categories are considered does not matter 

because the responses are mutually exclusive. 
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The proposed multinomial FME model can formally be written as follows:  

         (      )  (5.1) 

      (    )    (   )     (   )        

     
    

        (   )       
  

                              

where     (                )   is a multivariate response vector for the number of 

“successes” in each category at the jth time point for the ith subject.  Assuming no 

missing data, the sum of the elements of      equals the total number of trials, N, which 

for simplicity is assumed to be the same for all individuals at all time points.          

is the index for number of recorded time points for a given subject (assuming the same 

number of time points for all subjects), and          is the number of levels for the 

multinomial outcome with R-1 levels actually modeled.      (                )  is 

the vector of probabilities for an individual’s response belonging to each category at a 

specific time point.    ( ) is the rth function representing the population average profile 

for the rth outcome category, and   (   ) is the evaluation of this rth function for the ith 

individual at the jth time point.    ( ) are subject-specific random functions specifying 

individual deviations from the rth category population function, and    (   ) are 

evaluations of these subject-specific functions at specific time points for the rth outcome.  

Lastly,      is the measurement error for the      (    ) values.  In order to accurately 

model these probabilities, and ensure they add up to one in the multinomial framework, 

we don’t model the      directly, but rather we model a transformation of them,     , with  

       (and not explicitly modeled) for the designated baseline category.  This 

transformation allows us to estimate the probabilities, for R-1 categories, conditionally as 

described above and shown in Figure 5.3.  Once we have estimated each     , we 

transform back to the original probability scale to create the fixation curves. 
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The functional components of model (5.1) will be modeled similarly to those in 

Chapter 4 (4.1, 4.2); however the      values are used in place of the     :   

     (    )  (         )  (           )              (    )  

Let          and           be m×2 design matrices and   (          )  be a 

vector of the design time points which is the same for each individual and each category 

of the outcome variable.  Then    (1×2) represents the jth row of the T matrix and     

(1×2) represents the jth row of the    matrix.     (       )
  is a 2×1 vector 

containing the slope and intercept for the population function of each category and is 

modeled with a large, diffuse prior,      (         );     (         )
  are 2×1 

vectors of the slopes and intercepts for the random effects functions of each category, 

with    (   
     

       
 )  and each       (    ). The random effects for each curve 

are represented by     (             )
  and     (                )

  which 

control for the smoothness of the curves by estimating the departure of the population and 

subject-specific curves from a straight line for each modeled category, r.  Let    

(   
     

       
 )  where               and        (       ) and let 

   (   
     

       
 )  where        (       )        and     are smoothing 

parameters which control the trade-off between amount of smoothing and bias of the 

curve.  When        and/or        little to no smoothing occurs; however, as 

                     a large amount of smoothing takes place and the spline tends 

towards a straight line.        represents the variance-covariance matrix of an 

integrated Wiener process evaluated at the design points.  

Let     be a m×1 mean vector such that     (         )  (           ) 

and    (   
     

       
 ) .  We use Bayesian MCMC methods to estimate the 

parameters in our model and primarily rely on Bayesian Gibbs sampling algorithms to 

estimate the population and subject-specific model parameters from their posterior 

distributions.  The variance parameters are also estimated using a Gibbs sampler while a 
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slice sampler is used to estimate      (    ) since it does not follow any known 

distributional form.  Prior distributions for    
 ,      and     are IG(α,β), and the prior for 

each    is   (   ).  Hyperparameters can be chosen based on prior knowledge or kept 

general to create diffuse priors to allow the data to drive the estimation.   

5.4 Full Conditional Distributions of Multinomial FME Model 

Given the Bayesian hierarchical model set-up described in Section 5.3, we can 

then estimate the following posterior distributions for each parameter: 

1. The conditional distribution of          (   )  is:  

 (   |       )   (   |       )   (   ) 

    |     (∏(    )
    

(      )
       

 

   

)   {
 

   
 
(       ) (       )} 

where    represents the total number of “leftover” looks possible after accounting for the 

number of looks already modeled in previous categories and     (                )
 .  

Let    (   
     

       
 )  be a      vector of all estimated logit probabilities of all 

individuals.  Due to autocorrelation among the population parameters, the population 

curve parameters are estimated simultaneously.   

2. The conditional distribution of     (  
     

 )  given 

   (             
    

 ) can be written as: 
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where        [
 

   
    (     )  ] and  ̃             (   )   

3. The conditional distribution of     given    (             
    )  is: 
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4. The conditional distribution of     given    (                 
 )  is: 
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And the conditional distributions for the variance components are as follows. 

5. The conditional distribution for the population smoother is: 
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] is a nm×nm block diagonal matrix of the    variance-

covariance structure. 

6. The conditional distribution for the subject-specific smoother is: 
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  [

    
   
    

] is a nm×nm block diagonal matrix of the    variance-covariance 

structure. 

7. The conditional distribution for the subject-specific slopes and intercepts is: 

 (  |   )   (  |  )   (  ) 

   |       (        
   )  

8. Finally, the full conditional for the model error is as follows: 

 (  
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5.5 Simulation Studies 

Simulated multinomial datasets which mimic the 5-category eye-tracking data are 

constructed under various conditions to assess the effect sample size and number of trials 

have in the ability of the proposed multinomial FME model to accurately estimate the 

underlying trajectory of each modeled curve for multinomial outcomes.  The accuracy of 

the multinomial FME model is then compared to the accuracy of the commonly used 

Frequentist mixed model approach when modeling this type of longitudinal multinomial 

data.  The results of these simulations are presented in Section 5.5.1.  In Section 5.5.2, we 

assess the impact of controlling the amount of smoothing in these models by choosing 

different combinations of smoothing parameters for the population and subject-specific 

curves for one dataset consisting of 20 individuals and 100 trials.  Because the proposed 

multinomial FME model is based on the binomial model of Chapter 4, we rely on the 

results of those simulations to inform us as to how the multinomial model may perform in 

the presence of missing data and choice of different covariance structures, though these 

issues are not directly addressed with this model. 

For each simulated dataset, probabilities associated with a 5-category multinomial 

outcome were randomly generated by pre-specifying all population and subject-specific 
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parameters needed to create probability estimates at all time points for each individual.  

The datasets, though differing by number of trials and number of individuals, were 

simulated from the same values for all population and subject-specific parameters.  

     (    ) values at 751 time points were estimated in each dataset between 0 and 3000 

milliseconds to mimic the eye-tracking data where data are often collected on individuals 

every 4 milliseconds for up to 3000 milliseconds.  Datasets of 10, 20 and 50 individuals 

were simulated with 10, 20 and 100 trials each (resulting in 9 unique datasets).  All 

     (    ) values were then transformed to the original probability scale where the 

estimated probabilities for each category of the outcome(summing up to 1 for each 

individual at each time point) were then used to simulate observed outcomes using the 

random multinomial distribution in R. 

Because the goal of these models is to estimate the true underlying curves, we 

used the same measures for assessing goodness-of-fit that were considered in our 

simulation studies of Chapter 4, Section 6.  The measures include average coverage 

probabilities, ½ credible interval widths, root MSE and relative bias.  We refer the reader 

back to Chapter 4 for detailed definitions of each of these measures.  Briefly, the 

coverage probability measure provides information on how often the true probability 

curve falls within the estimated credible intervals at each time point for all individuals 

and the ½ credible interval width provides information on the width of the intervals.  The 

root MSE is a longitudinal version of the traditional RMSE and calculates the average 

root mean square error of the estimated smooth curve from the actual smooth curve.  

Similarly, the relative bias measures the average amount of bias present for the point 

estimates in the estimated curve versus the underlying true smooth curve.   

Due to the very low probabilities (essentially 0) in the beginning time points and 

the very low probabilities for incorrect (Unrelated, Cohort, Rhyme) curves coupled with 

the constant, high probabilities for the correct (Target) curves at the latter time points, we 

restrict our simulation results to time points between 500 and 2500 milliseconds (ms) 
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where a majority of the growth and change occurs.  In real data, from which the 

simulated data were modeled, fixations occurring in the first 300 ms cannot be a result of 

the auditory stimulus as there are 100 ms of silence at the beginning of each sound file 

and 200 ms are required to plan and launch an eye-movement (Farris-Trimble et al., 

2013).  Thus, the earliest an eye-tracking device can detect any movement is at 300 ms 

and to account for individual differences in spoken word recognition, we don’t start our 

simulation analyses until 500 ms.   

5.5.1 Multinomial Simulations for Differing Sample Sizes and Trials 

The proposed multinomial FME model is designed to more accurately model 

longitudinal growth curves with multinomial outcomes than existing methods described 

in Section 5.2.  One common method used to model these multinomial outcomes is a 

Frequentist mixed-effects model which assumes independence among the categories and 

models them separately.  One problem with this approach is that the estimated 

probabilities may sum up to a value greater than 100%.  Also, when the number of trials 

and number of individuals are small, the Frequentist approach is not as robust to 

departures of normality since it is based on asymptotic properties requiring large sample 

sizes and number of trials.  In this section, we assess the impact of differing sample sizes 

and number of trials in both methods and compare the results between the Bayesian 

multinomial FME model and the Frequentist mixed-effects model.   

For all Frequentist mixed-effects analyses, a generalized linear mixed-effects 

model was constructed using PROC GLIMMIX in SAS and assumed a binomial 

distribution for each of the outcome categories.  Furthermore, a random intercept was 

included to allow for the curves to shift among individuals; due to small numbers of 

individuals, a random slope parameter was unfeasible and thus left out of all analyses in 

order to maintain consistency across models.  The within-subject covariance structure is 

assumed to follow an AR1 structure as this structure is closest in spirit to the integrated 
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Wiener process used to account for within-subject correlation in the multinomial FME 

model and models coded with more flexible covariance structures struggled to converge.  

In order to sufficiently capture the non-linear shape of the curves, polynomial curves are 

fit over time.  The Target curve for all simulated datasets is fit with a fourth order 

polynomial, which is the highest order polynomial that could feasibly be fit given the 

data.  The additional curves (cohort, rhyme, unrelated) are fit using fifth-order 

polynomials as higher polynomials could not be successfully modeled.   

In our simulations, we used vague priors for all parameters in the model to reflect 

lack of pre-existing information on the parameters.  The same priors were used for each 

category of the response variable.  A    (        ) prior was used for all population 

slopes and intercepts.  The covariance matrices,     were given independent 

  (            ) priors, and both the smoothing parameters and error variance were 

given   (         ) priors.  Sensitivity to choice of prior was assessed within a 

reasonable range of noninformative hyperparameters and similar results were achieved.  

The chains were run for 1000 iterations and all parameters achieved burn-in after 100 

iterations.  Convergence was assessed and achieved by examining trace plots from 

various reasonable starting values and using the Geweke diagnostic criterion with an 

α=0.05 (Cowles & Carlin, 1996; Geweke, 1991). 

The results of our simulations are given in Tables 5.1 – 5.4 for each of the 

modeled categories/curves in a typical eye-tracking dataset (e.g., Target, Rhyme, Cohort, 

Unrelated).  The Target curve most closely resembles a traditional growth curve and it 

appears as though the accuracy in modeling the true underlying curve increases as the 

number of trials increases.  In each of the three levels of individuals (i.e.10,20,50), the  
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Table 5.1: Comparison of simulation results of various combinations of sample size and number of trials using goodness-of-fit measures 
for estimated TARGET curves from Bayesian multinomial FME model and Frequentist generalized linear mixed-effects models 
assuming binomial outcomes (1 simulated dataset; 1000 iterations; burn-in=100 iterations). 

TARGET  Multinomial FME Model Frequentist Mixed-Effects Model 

Number of 
Individuals 

Number of 
Trials 

95% Coverage 
Probability 

RMSE Relative 
Bias 

CI Width/2 Coverage 
Probability 

RMSE Relative 
Bias 

CI Width/2 

10 

10 0.954 0.013 3.22 0.054 0.305 0.018 3.97 0.012 

20 0.973 0.010 2.32 0.035 0.236 0.019 4.21 0.008 

100 0.993 0.005 1.05 0.016 0.088 0.019 4.14 0.004 

20 

10 0.967 0.014 3.55 0.055 0.227 0.029 8.02 0.012 

20 0.984 0.009 2.03 0.035 0.179 0.028 7.70 0.008 

100 0.978 0.005 1.16 0.016 0.076 0.028 7.76 0.004 

50 

10 0.979 0.013 3.25 0.054 0.271 0.027 6.38 0.011 

20 0.981 0.008 2.06 0.034 0.204 0.027 6.29 0.008 

100 0.988 0.005 1.15 0.016 0.087 0.027 6.29 0.003 
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RMSE decreases with an increase in number of trials; though it stays fairly consistent as 

the number of individuals increase.  The relative bias stays below 5% in all simulated 

datasets for the Target curve and it also decreases as the number of trials increase, though 

there is no discernible improvement with an increase in number of individuals.  One 

effect of increasing the number of trials is a decrease in the width of the credible intervals 

associated with the predicted outcomes.  Yet, despite the decrease in CI width, the 

coverage probabilities are strong in all settings with the lowest probability occurring with 

10 individuals and 10 trials (95.4%) and the highest at approximately 99% for the settings 

with 100 trials.   

When comparing the results of our multinomial FME model to the commonly 

used Frequentist mixed-effects model, some strikingly apparent differences arise.  First, 

the relative bias is larger in the Frequentist approach than it is with the Multinomial FME 

model (Rbias ranges from 1.05 to 3.25 in multinomial FME versus 3.97 to 8.02 in 

Frequentist mixed-effects approach).  Also, the RMSE does not decrease as the number 

of trials increases.  In all cases, the RMSE from the Frequentist approach is larger than 

the RMSE in our proposed model (RMSE spans from 0.009-0.014 in multinomial FME 

model and from 0.018-0.029 in Frequentist mixed-effects model).  It is interesting to note 

that the CI widths (which are confidence intervals as opposed to credible intervals in the 

Frequentist model) are smaller than those of the multinomial approach and get tighter as 

the number of trials increases.  Yet, the coverage probability associated with these curves 

suffers with the Frequentist approach as the number of trials increases whereas it stays 

high in the multinomial FME models.   

The Rhyme, Cohort and Unrelated curves follow similar “growth” trajectories 

(similar to the real data presented in Figure 5.2); however, these curves differ in shape 

from the Target curve as they grow to a peak earlier in the time frame before steadily 

declining as time progresses.  The RMSEs associated with the Rhyme, Cohort and  
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Table 5.2: Comparison of simulation results of various combinations of sample size and number of trials using goodness-of-fit measures 
for estimated RHYME curves from Bayesian multinomial FME model and Frequentist generalized linear mixed-effects models 
assuming binomial outcomes (1 simulated dataset; 1000 iterations; burn-in=100 iterations). 

RHYME  Multinomial FME Model Frequentist Mixed-Effects Model 

Number of 
Individuals 

Number of 
Trials 

Coverage 
Probability 

RMSE Relative 
Bias 

CI Width/2 Coverage 
Probability 

RMSE Relative 
Bias 

CI Width/2 

10 

10 0.955 0.007 15.78 0.026 0.271 0.017 40.53 0.006 

20 0.910 0.005 12.48 0.019 0.19 0.017 41.29 0.004 

100 0.935 0.002 6.16 0.007 0.072 0.017 40.41 0.002 

20 

10 0.909 0.008 14.59 0.029 0.248 0.019 39.81 0.006 

20 0.921 0.005 10.74 0.021 0.168 0.019 39.13 0.004 

100 0.930 0.003 5.31 0.007 0.078 0.018 40.19 0.002 

50 

10 0.933 0.008 13.58 0.031 0.198 0.025 39.18 0.006 

20 0.964 0.005 8.92 0.021 0.162 0.025 38.80 0.004 

100 0.971 0.003 4.29 0.008 0.073 0.025 38.95 0.002 
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Table 5.3: Comparison of simulation results of various combinations of sample size and number of trials using goodness-of-fit measures 
for estimated COHORT curves from Bayesian multinomial FME model and Frequentist generalized linear mixed-effects 
models assuming binomial outcomes (1 simulated dataset; 1000 iterations; burn-in=100 iterations). 

COHORT  Multinomial FME Model Frequentist Mixed-Effects Model 

Number of 
Individuals 

Number of 
Trials 

Coverage 
Probability 

RMSE Relative 
Bias 

CI Width/2 Coverage 
Probability 

RMSE Relative 
Bias 

CI Width/2 

10 

10 0.903 0.010 13.22 0.035 0.443 0.017 15.17 0.009 

20 0.976 0.007 7.17 0.022 0.299 0.016 15.38 0.007 

100 0.968 0.003 3.94 0.010 0.134 0.017 15.61 0.003 

20 

10 0.984 0.008 10.10 0.031 0.316 0.017 18.95 0.008 

20 0.966 0.006 7.53 0.021 0.247 0.018 18.99 0.006 

100 0.965 0.003 3.99 0.010 0.104 0.0175 18.15 0.003 

50 

10 0.967 0.009 9.58 0.032 0.345 0.018 21.08 0.009 

20 0.981 0.006 6.62 0.020 0.248 0.018 21.03 0.006 

100 0.977 0.003 3.56 0.009 0.117 0.018 20.66 0.003 
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Table 5.4: Comparison of simulation results of various combinations of sample size and number of trials using goodness-of-fit measures 
for estimated UNRELATED curves from Bayesian multinomial FME model and Frequentist generalized linear mixed-effects 
models assuming binomial outcomes (1 simulated dataset; 1000 iterations; burn-in=100 iterations). 

UNRELATED  Multinomial FME Model Frequentist Mixed-Effects Model 

Number of 
Individuals 

Number of 
Trials 

Coverage 
Probability 

RMSE Relative 
Bias 

CI Width/2 Coverage 
Probability 

RMSE Relative 
Bias 

CI Width/2 

10 

10 0.796 0.004 24.79 0.011 0.420 0.006 34.54 0.004 

20 0.864 0.003 18.61 0.009 0.348 0.006 32.62 0.003 

100 0.902 0.001 8.81 0.004 0.180 0.006 32.68 0.001 

20 

10 0.831 0.005 21.99 0.014 0.371 0.009 33.93 0.005 

20 0.935 0.004 13.85 0.012 0.275 0.009 33.47 0.003 

100 0.961 0.002 6.73 0.005 0.129 0.008 32.65 0.002 

50 

10 0.835 0.004 22.89 0.010 0.389 0.007 35.90 0.004 

20 0.901 0.003 16.23 0.010 0.389 0.007 35.89 0.004 

100 0.909 0.001 8.23 0.004 0.157 0.007 34.13 0.001 
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Unrelated curves are slightly smaller than those for the Target curve in the multinomial 

FME model (Table 5.2, 5.3, 5.4), but these values are comparable and get smaller as the 

number of trials increases.  The relative bias for these curves is smaller than that for the 

Target curve, and this is mostly due to the location of these curves in the parameter space.  

Estimates in the low end of the parameter space have the potential to show more bias than 

those in the middle of the parameter space due to the very small proportions being 

estimated at certain time points.  Although the coverage probability for the Rhyme and 

Cohort curves remain similar to those of the Target curve (ranging from 90%-98%), the 

coverage probability of the Unrelated curve is not as strong ranging from 80%-96% 

(Table 5.4).  Again, the small estimates at the low end of the parameter space don’t 

always capture the true underlying proportion at different points along the curve despite 

the fact that the RMSE remains small.    

When comparing the Frequentist approach to our Multinomial FME model with 

each of these incorrect curves, we see the FME models continue to outperform the 

Frequentist models based on our chosen goodness-of-fit measures.  Most strikingly, the 

relative bias with each of these curves is far greater in all combinations for the 

generalized linear mixed-effects models than it is for the multinomial FME model.  

Similarly to the Target curve, the RMSE values are larger in the Frequentist approach and 

they do not decrease as the number of trials increases.  Due to the average width of the 

confidence intervals, the coverage probability measure struggles in the Frequentist 

approach with coverage probabilities as low as 7% in the estimated Rhyme curves (Table 

5.2).  Across all curves for the outcome, the multinomial FME curve shows promise 

when compared to the Frequentist mixed-effects model.  It consistently outperforms the 

Frequentist method in goodness-of-fit test measures and it also accounts for all curves 

simultaneously. 
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5.5.2 Effect of Amount of Smoothing on Predicted Curves 

In certain situations, investigators may be interested in controlling the amount of 

smoothing that occurs while modeling these longitudinal curves.  If allowed to be 

random, the Bayesian Multinomial FME model chooses the smoother such that there is a 

balance between the amount of smoothing of the data and the bias created as a result of 

smoothing.  If an investigator wishes for a larger amount of smoothing, he/she can fix the 

population and/or subject-specific smoother (   and   , respectively) at a small value or 

use tight priors; whereas if the investigator wants little to no smoothing, the smoothers 

can be fixed at a larger number.  The appropriate large or small number is dependent on 

the data collected and the amount of data available to inform the shape of the curve.  In 

this section, we present the results of simulated datasets where curves are estimated with 

fixed smoothers chosen before modeling.  The population smoothers are set to be 

equivalent for all categories of the multinomial variable as are the subject-specific 

smoothers.  The data are simulated as described at the beginning of Section 5.5 with 751 

time points, 20 individuals, 100 trials, and population and subject-specific smoothers both 

set at 10.  As such, all hyperparameters, priors and diagnostics are the same as those 

described previously for the multinomial FME model.  We assess how well the model 

handles different levels of smoothing when the parameters are controlled by the 

investigator.  Different combinations of large and small smoothers are chosen for the 

population and subject-specific smoothers: both parameters can take on values of 1, 10 

and 100, resulting in 8 combinations to compare to the true dataset where both smoothers 

equaled 10.   

In general, the greatest amount of smoothing occurs in the model with both the 

population and individual smoother set to 1 and the least amount of smoothing occurs 

when these smoothers are both set to 100.  Tables 5.5, 5.6, 5.7 and 5.8 provide goodness-

of-fit results for the Target, Rhyme, Cohort and Unrelated curves, respectively, with pre-

specified values for the population and individual smoothers.  In all curves, with perhaps 
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an exception for the Unrelated curve (Table 5.8), the goodness-of-fit measures stay 

relatively consistent across different combinations of smoothers.   

In the Target curve (Table 5.5), the best results occur with smoothing parameters 

close to their true values (population and individual smoothers equal to 10).  The curve 

appears to struggle most when the population smoother is lowest (most smoothing). 

Within this setting, the relative bias and RMSE measures are highest among other values 

for the population smoother (e.g.      ,       ) and the coverage probability is 

most affected even though the credible interval widths are relatively consistent.  Though 

overall, most models fair well for the Target curve which is informative for investigators 

who wish to have a little more control over the smoothing mechanism in their studies.  

The performance results may be, in part, due to the large amount of data available in 

constructing these curves.  Due to the many time points informing the shape of the curve,  

Table 5.5: Comparison of simulation results of various combinations of population and 
subject-specific smoothers using goodness-of-fit measures for estimated 
TARGET curves from Bayesian multinomial FME model (1 simulated 
dataset; 1000 iterations; burn-in=100 iterations; population and subject-
specific smother = 10). 

Population 
Smoother 

Individual 
Smoother 

Coverage 
Probability 

RMSE Relative 
Bias 

CI Width/2 

1 

1 0.828 0.006 1.46 0.012 

10 0.920 0.006 1.50 0.015 

100 0.966 0.006 1.56 0.020 

10 

1 0.931 0.005 1.13 0.012 

10 0.960 0.005 1.23 0.015 

100 0.982 0.006 1.41 0.020 

100 

1 0.969 0.004 1.02 0.013 

10 0.978 0.005 1.11 0.016 

100 0.988 0.006 1.44 0.020 
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the effect of smoothing (although occurring) is somewhat minimal.  Datasets with fewer 

time points available to drive the shape of the curve may be affected differently by pre-

specification of smoothing values.  Though these simulations are beyond the scope of this 

thesis, they should be considered in future simulation studies.  

Similar results to the Target curve are also seen in the Rhyme (Table 5.6), Cohort 

(Table 5.7) and Unrelated curves (Table 5.8).  With each of these curves, the RMSE 

values stay relatively consistent while the coverage probabilities and relative bias 

measures are most affected with a large amount of population smoothing (    ).  Of 

all curves, the Unrelated curve has the lowest goodness-of-fit measures which can be 

attributed to the low observed percentages associated with this curve across time.  The  

Table 5.6: Comparison of simulation results of various combinations of population and 
subject-specific smoothers using goodness-of-fit measures for estimated 
RHYME curves from Bayesian multinomial FME model (1 simulated dataset; 
1000 iterations; burn-in=100 iterations; population and subject-specific 
smother = 10). 

Population 
Smoother 

Individual 
Smoother 

Coverage 
Probability 

RMSE Relative 
Bias 

CI Width/2 

1 

1 0.743 0.004 6.27 0.005 

10 0.843 0.004 6.46 0.007 

100 0.930 0.004 6.78 0.009 

10 

1 0.855 0.003 4.94 0.005 

10 0.899 0.003 5.66 0.007 

100 0.938 0.003 6.53 0.009 

100 

1 0.915 0.002 4.48 0.006 

10 0.936 0.003 5.11 0.007 

100 0.950 0.003 6.43 0.009 
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Table 5.7: Comparison of simulation results of various combinations of population and 
subject-specific smoothers using goodness-of-fit measures for estimated 
COHORT curves from Bayesian multinomial FME model (1 simulated 
dataset; 1000 iterations; burn-in=100 iterations; population and subject-
specific smother = 10). 

Population 
Smoother 

Individual 
Smoother 

Coverage 
Probability 

RMSE Relative 
Bias 

CI Width/2 

1 

1 0.829 0.004 4.44 0.007 

10 0.922 0.004 4.68 0.009 

100 0.95 0.004 5.09 0.011 

10 

1 0.913 0.003 3.41 0.007 

10 0.966 0.003 4.05 0.009 

100 0.966 0.004 4.89 0.012 

100 

1 0.954 0.003 3.21 0.007 

10 0.975 0.003 3.74 0.009 

100 0.977 0.004 4.87 0.012 

Table 5.8: Comparison of simulation results of various combinations of population and 
subject-specific smoothers using goodness-of-fit measures for estimated 
UNRELATED curves from Bayesian multinomial FME model (1 simulated 
dataset; 1000 iterations; burn-in=100 iterations; population and subject-
specific smother = 10). 

Population 
Smoother 

Individual 
Smoother 

Coverage 
Probability 

RMSE Relative 
Bias 

CI Width/2 

1 

1 0.532 0.004 14.44 0.004 

10 0.649 0.003 13.78 0.004 

100 0.851 0.003 11.46 0.005 

10 

1 0.779 0.002 8.35 0.004 

10 0.867 0.002 9.11 0.004 

100 0.925 0.002 9.47 0.005 

100 

1 0.932 0.002 5.98 0.004 

10 0.956 0.002 6.96 0.004 

100 0.960 0.002 8.38 0.006 
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performance of this curve is not surprising given our results in Section 5.5.1 where the 

other curves outperformed the Unrelated curve in our goodness-of-fit measures.  Also of 

note, when we compare the simulation results of this section to the simulation results in 

Section 5.5.1 for the dataset with 20 individuals and 100 trials, we see we don’t gain or 

lose much in terms of goodness-of-fit by allowing the model to determine the appropriate 

amount of smoothing versus specifying the smoothing ourselves.  The same dataset of 20 

individuals and 100 trials is used in both simulation sets and the RMSEs don’t change 

while the relative bias and coverage probabilities stay within the same range. 

5.6 Application to Eye-Tracking Data 

As described in Section 5.2, the motivation for the multinomial FME model arose 

from an application in the area of psycholinguistics involving appropriate modeling of 

spoken word recognition using eye-tracking methods.  This dataset consists of 33 post-

lingually deafened adults with cochlear implants who were given a speech and hearing 

test using the visual world paradigm (Tanenhaus, Spivey-Knowlton, Eberhard, & Sedivy, 

1995).  Patients, sitting in front of a desktop mounted eye-tracking device in an open-

door-sound-attenuated booth, responded to 145 “target” words they heard from a digitally 

recorded voice by clicking on a picture of the word they heard out of a grid of four 

pictures on a computer screen (Farris-Trimble et al., 2013).  In this dataset, the 

probability of an individual looking at a given category at a specific time point is 

determined by taking the average number of looks in the specific category out of the 145 

spoken words (trials).  The four curves of interest include the Target, Cohort, Rhyme and 

Unrelated curves.  Researchers are not interested in the curve which measures erroneous 

and unclassifiable eye-movement (None curve), but it is necessary for completeness of 

the multinomial model. 

The purpose of this application is to assess the impact of modeling the curves 

simultaneously using our proposed multinomial FME model versus estimating them 
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individually using the binomial FME model of Chapter 4.  We compare the population 

model parameters as well as three goodness-of-fit measurements: the 95% credible 

interval, credible interval width/2 and the RMSE.  As was the case with the binomial 

FME model, the goodness-of-fit measurements provide a less than ideal criteria for curve 

comparison in real data analysis because they compare the estimated probabilities to the 

observed probabilities as opposed to the true underlying (and unknown) probabilities.  

We present these goodness-of-fit measurements for completeness.  

We use vague priors for all parameters in the model to reflect lack of pre-existing 

information on the parameters.  Furthermore, although the multinomial FME model 

allows for the smoothing parameters to be different for each category of the multinomial 

response variable, we specify each to be the same in the model.  For each category of the 

multinomial response variable, the same priors are used.  A  (      ) prior is used for 

all population slopes and intercepts.  The covariance matrices are given independent 

  (           ) priors, and both the smoothing parameters and error variance are given 

  (         ) priors.  Sensitivity to choice of prior was assessed within a reasonable 

range of noninformative hyperparameters and similar results were achieved.  The chains 

were run for 1000 iterations and all parameters achieved burn-in after 100 iterations, 

resulting in 900 iterations used for parameter estimation.  Convergence was assessed and 

achieved by examining trace plots from various reasonable starting values and using the 

Geweke diagnostic criterion with an α=0.05 (Cowles & Carlin, 1996; Geweke, 1991). 

The population results of the multinomial FME modeling and the binomial FME 

modeling are presented in Table 5.9.  Recall the population and individual smoothers are 

assumed to be the same in the multinomial model since they are all part of the same 

outcome variable (i.e., number of looks).  The amount of smoothing in the individual 

binomial models ranges from the most smoothing in the Target curves to the least amount 

of smoothing in the Unrelated curves.  The smoothers for the multinomial model fall 

within the ranges of smoothing parameters for the individual models.  The intercepts for  
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Table 5.9: Select goodness-of-fit and parameter estimate comparisons in results of cochlear implant eye-tracking data analyses using 
multinomial FME model and individual binomial FME models. 

  Individual Binomial Models Multinomial Model 

 Priors Target 
Curve 

Rhyme 

Curve 

Cohort 
Curve 

Unrelated 

Curve 

Target 

Curve 

Rhyme 

Curve 

Cohort 

Curve 

Unrelated 

Curve 

Population 
Smoother 

  (         ) 
14.86 
(3.81) 

15.12 
(5.59) 

26.73 
(6.19) 

27.34 (6.95) 22.50 (2.12) 

Individual 
Smoother 

  (         ) 
11.11 
(0.61) 

21.34 
(1.66) 

34.40 
(2.65) 

68.32 (4.53) 59.75 (6.04) 

Model Error 
  (         ) 

0.006 
(0.0002) 

0.14 
(0.0004) 

0.019 
(0.0006) 

0.028 
(0.0008) 

0.002 (0.0078) 

Population 
Intercept 

  (        ) 

-7.70 
(2.84) 

-8.35 
(2.93) 

-6.6 
(3.78) 

-5.83 (3.83) 
0.15 
(4.15) 

0.24 
(4.07) 

0.39 
(3.99) 

0.617 (4.035) 

Population 
Slope 

0.012 
(0.001) 

0.014 
(0.001) 

0.009 
(0.001) 

0.012 (0.001) 
0.010 
(0.001) 

0.011 
(0.001) 

0.010 
(0.001) 

0.009 (0.001) 

95% CI N/A 83.95% 75.67% 74.16% 72.91% 91.42% 73.71% 62.97% 56.1% 

CI width/ 2 NA 0.0125 0.0085 0.008 0.007 0.0136 0.0078 0.006 0.005 

RMSE N/A 0.006 0.0047 0.004 0.004 0.005 0.0044 0.004 0.004 
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each curve differ between the individual binomial models and the multinomial model; 

however, it is important to note that the outcomes are different in these models with the 

transformed      being modeled in the latter compared to the     in the former.  It is 

interesting to note that the RMSE of the curves for the individual models is relatively the 

same as the RMSE of the curves created using the multinomial model.  Yet, the 

individual binomial models more adeptly capture the observed curve than does the 

multinomial model.  The lower percentage of 95% credible intervals capturing the actual 

observed curve in the multinomial model can partially be attributed to the smaller 

credible interval width in this model.  This is to be expected since the multinomial model 

is formed from a sequence of conditional binomial models – each curve drawing on 

information obtained from previous curves.  The order in which the categories are 

modeled does not affect the results and a similar method was used by Oleson and He 

(2008). 

One strength of this multinomial FME model is that at each time point, the sum of 

estimated ‘proportion of looks’ in each category will equal 1; however 27.1% of the  

estimates in the individual models summed to a value greater than one and 72.9% 

summed to a value less than one.  Therefore, none of the categories summed to a total of 

100% at each time point (across all individuals), whereas in the multinomial model all 

estimated probabilities summed to 100%.  In this situation with a large number of trials, 

the summations above and below 100% were minimal, and this makes sense given the  

ability of the binomial FME model to accurately model curves (see simulations in 

Chapter 4).  

The estimated curves for the individual binomial models and the multinomial 

model are remarkably similar.  The population curves for both models are presented in 

Figure 5.4.  Both curves suggest that, on average, the CI patients fixate on the target 

(correct) word just under 80% of the time after roughly 1250 milliseconds.  Early on in 

the spoken word recognition process, these patients tend to struggle the most with the 
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cohort word; however, the rhyme word becomes a greater source of difficulty as time 

progresses.  Individual curves show more variability in the spoken word recognition 

process among CI patients.  In Figures 5.5 and 5.6, more smoothing occurs in the curves 

estimated via individual binomials than those estimated with the multinomial model.  

This can also be seen in Table 5.9 where the smoothing values for the binomial curves 

are smaller (more smoothing) than those for the multinomial curves.  Individual #3 only 

achieves a maximum “success” rate of correctly choosing the target word 60% of the 

time; whereas Individual #9 fixates on the target closer to 90% of the time.  Furthermore, 

Individual #3 struggles with the unrelated picture in greater proportion than both the 

population average and Individual #9.  Both individuals struggle with the rhyme image, 

especially as the spoken word recognition process unfolds.  Though we only have one 

group in this analysis, these curves can easily be compared to curves created from other  

Figure 5.4: Estimated population curves for cochlear implant eye-tracking data 
analyses when curves estimated (a) multinomially and (b) binomially 
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Figure 5.6: Estimated curves for cochlear implant patient with low performance in 
eye-tracking data analyses when curves estimated (a) multinomially and 
(b) binomially 

Figure 5.5: Estimated curves for cochlear implant patient #9 with high performance in 
eye-tracking data analyses when curves estimated (a) multinomially and 
(b) binomially 
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populations (e.g., Normal hearing patients) to further investigate individual and 

population differences in spoken word recognition. 

5.7 Discussion 

The Multinomial FME model proposed in this chapter was developed in response 

to a need in the Speech and Hearing Sciences to more accurately model eye-tracking data 

gathered using the visual world paradigm (Tanenhaus et al., 1995).  Current approaches 

to modeling this type of eye-tracking data fall short in their ability to accurately represent 

spoken word processing in various individuals and groups.  Our model builds upon the 

binomial FME model we introduced in Chapter 4 by constructing a multinomial model 

comprised of a sequence of conditional binomial outcomes.   

The multinomial FME model provides a novel approach to hierarchically 

modeling multinomial longitudinal outcomes using Bayesian techniques.  It is 

advantageous over many common approaches to modeling VWP data as it can model 

both population and subject-specific curves simultaneously while accounting for the 

association among curves.  Unlike the area under the curve approach to analyzing VWP 

data, this approach retains the time component of spoken word processing.  Furthermore, 

our simulations suggest an improvement in this approach over commonly used 

polynomial mixed-effects models because it relaxes the often limiting parametric 

assumptions associated with the shapes of the curves resulting in more flexibility in 

modeling the unique trajectories of these curves.  More simulation studies are needed to 

confirm the benefits of the multinomial FME model over the Frequentist mixed-effects 

approach, though, especially in the presence of fewer time points. 

Although we have demonstrated that this approach can successfully model 

multinomial longitudinal outcomes in a Bayesian framework, more research can be done 

to make these models more useful to psycholinguists and other researchers who often 

encounter this type of data.  It is of interest to add additional covariates to these models 
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(similarly to the models of Chapter 4) so comparisons between different populations can 

be directly drawn from the models.  Moreover, although missing observations were not 

considered in this model, it is conceivable that individuals may be missing observations 

at various time points and a thorough understanding of how missing effects these models 

is important future work.   
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CHAPTER 6 

FUNCTIONAL MIXED-EFFECTS MODELS FOR 

MULTIVARIATE OUTCOMES 

6.1 Introduction 

Multiple outcomes assessed longitudinally are common in public health research.  

Frequently multiple outcomes are collected in studies due to a desire to understand more 

than one outcome or because one primary clinical outcome may not be sufficient in 

understanding certain complex situations.  At each measurement time, individuals may be 

evaluated on multiple outcome variables which are often correlated with each other and 

when considered together can describe an individual construct, the individual’s current 

conditions, or the effectiveness of treatment regimens.  Many times, these outcomes are 

statistically treated as independent and multiple longitudinal models are fit by 

considering each outcome separately.  However this approach is not always appropriate 

because these outcomes tend to be correlated; nor is it efficient to model each outcome 

separately.  Hierarchical models lend themselves nicely to simultaneous modeling of the 

related outcomes due to their ability to incorporate correlation structures directly into the 

model.   

Traditionally, researchers consider various options when analyzing data with 

multiple outcomes.  Some investigators attempt to create a summary measure of each 

outcome score and model that endpoint measure as a representation of the related 

outcomes (Neuhäuser, 2006; Teixeira-Pinto, Siddique, Gibbons, & Normand, 2009).  

However, in doing so, outcome-specific information is lost and the constructed endpoint 

may rely too heavily on the scoring algorithm used to create it.  Also, missing data may 

cause problems when attempting to create a summary score, potentially leading 

investigators to only use subjects for which all data is present which brings about a new 

set of issues and concerns (Li, Caffo, & Scharfstein, 2007).  Another issue with creating a 
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summary score is the requirement that all outcomes be commensurate (Teixeira-Pinto et 

al., 2009).  Since it would be impractical to combine a binomial outcome with a 

continuous outcome, as mentioned earlier, another common approach is to model each 

outcome separately and assume (perhaps unreasonably) independence among outcomes 

while using a Bonferroni correction for multiple models (Pocock, Geller, & Tsiatis, 

1987).  One advantage of this separate analyses approach is that noncommensurate 

outcomes can be modeled.  Furthermore, if the dataset is complete or missing data is truly 

missing completely at random, the parameter estimates will not be affected by the 

separate analyses even if the outcomes are correlated.  The standard errors, however, will 

be larger than they would be if the positive correlation were to be accounted for in a 

multivariate outcome approach (Teixeira-Pinto et al., 2009).  For large datasets, this may 

not be of much concern to investigators who would rather opt for the simplest approach 

possible. Nevertheless, simultaneous modeling of the outcomes via Bayesian hierarchical 

modeling can account for the relationship among the outcomes by using correlation 

structures on the different outcomes.  In comparing the outcomes simultaneously, we can 

acknowledge the collective influence of each outcome while still observing the outcome-

specific effects and we can increase the efficiency in modeling and avoid the need to 

make multiple comparisons between outcomes.   

The approach of specifying a correlation structure in a Bayesian hierarchical 

(mixed-effects) model is reasonable; however, functional mixed-effects models add an 

additional challenge due to the role of the smoothing parameters.  It can be assumed that 

the underlying population curve smoothers for each outcome are related to each other as 

are the underlying individual curve smoothers.  Thus, in addition to specifying a 

correlation structure to account for the correlations between groups, we also need to 

account for the relationships among the smoothers.  We wish to expand upon Guo’s FME 

model (Chapter 3) and our proposed binomial FME model (Chapter 4) by introducing a 

multivariate functional mixed-effects model which accounts for individuals having 
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multiple outcomes measured at each time point. The outcomes do not necessarily need to 

be commensurate; however in our working example they are indeed measured on the 

same scale.   

6.2 Proposed Multivariate FME Models  

6.2.1 Normal Multivariate FME Model  

Our proposed model for normally distributed outcomes is written similarly to the 

original FME model described in Chapter 3, but contains a subscript to denote the sth 

outcome for a given individual at a specific time point.  The differences lie in the 

parameterization of our model:    

        (    )     (    )        (6.1) 

Here,      is the response of subject i at time       for the sth outcome, where   

        is the number of individuals in the dataset;           is the number of 

outcomes measured at each time point (assumed to be the same for each individual), and 

          represents the number of time points for the ith individual.  Let    be a 

nm×1 vector of all observations for the sth outcome such that    (   
     

       
 )  

where     (                ) .  Then   (  
    

      
 )  is a rnm×1 vector 

containing the      values of all individuals, at all time points, and for all outcomes.   ( ) 

is a function representing the population average profile for the sth outcome, and   (    ) 

is the evaluation of this sth function for the ith individual at the jth time point.     ( ) are 

subject-specific random functions for each individual across all time points for the sth 

outcome, and    (    ) are evaluations of these subject-specific functions at specific time 

points for the sth outcome.  The      values represent the measurement error 

where       (    
 ).   

Similarly to the estimation procedure introduced in Chapter 3, the functions   ( ), 

evaluated at the design time points  , can be modeled as follows:  
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   ( )                    (       )  

          is a m×2 design matrix which, for simplicity, is assumed to be the same for 

each outcome.     (       )
  is a 2×1 vector containing the estimated slope and 

intercept for the population function of outcome s and      (         ). Let  

  (  
      

      
 )   be a 2r×1 vector containing population slope and intercept 

values for all outcomes.  As in the single outcome model of Chapter 3, the smoothness of 

the population curves are controlled for via    which model the departure of the 

population curves for each outcome from a straight line.  Let    

(             )  where   (  
      

      
 )  is a rm×1 vector containing 

population curve values for all outcomes.    is the same for all individuals and 

      (       ).      is the population smoothing parameter controlling the trade-off 

between error and amount of smoothing that occurs in the population curve and    

(             )
  is the vector of smoothing parameters for each outcome.     is a 

(m×m) covariance matrix that accounts for the correlation between time points.  Each 

  ( ) function can be estimated independently because of the independent correlation 

structures on the    vectors.  

The correlations among multiple outcomes are modeled in the pairwise 

covariance structure of the random functions and so these functions must be estimated 

simultaneously for each individual.  Let   ( )  (   ( )    ( )      ( ))
 
 be a vector 

of subject-specific deviation functions for all outcomes.  Then,  

   ( )                     (   )  

   [
    
   
    

]    [
       

   
       

]  

   is a mr×2r block diagonal matrix where r denotes the number of correlated outcomes 

and           are m×2 design matrices containing the design points for each 

outcome. Because time is the only covariate in our model and the time points are 

assumed to be the same,    is constant across outcomes and individuals.     
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(                               )
  are 2r×1 vectors of the estimated slopes and 

intercepts for the random effects functions of all outcomes for a specific individual, 

where       (    ).  The covariance matrix of the    vectors,   , is an unstructured 

2r×2r matrix allowing for the slopes and intercepts of each modeled curve to be 

positively or negatively correlated for all outcomes.  We place an inverse Wishart prior 

on this matrix,      (   )  to account for the covariance between the outcome-

specific slopes and intercepts. Note that each individual will be assumed to have the same 

between-outcome correlation as each individual is given the same    variance-covariance 

matrix. The    vectors control the smoothness of the subject-specific deviations curves 

and estimate the departure of the subject-specific curves from a straight line.  Let 

   (    
     

       
 )

 
 be a mr×1vector containing the estimated subject-specific 

deviations for all outcome curves in the ith individual with     (                ) .  

       (   ) are vectors of unique subject-specific smoothing parameters for each 

outcome.    represents the mr×mr block diagonal variance-covariance matrix of an 

integrated Wiener process at the design points with each variance-covariance matrix 

multiplied by the appropriate smoothing parameter,    .  Furthermore,    and    are 

assumed to have the same structure and same values with this specific covariance 

structure.   

The smoothing components,     and    , used in the modeling of    and     

respectively will be related because we assume that each outcome has the same latent 

smoothing mechanism.  The relationship among the population smoothing parameters 

and the relationship among the individual smoothing parameters will ensure the 

connectedness of the smooth deviations from the straight line for the population curves 

and subject-specific curves.  All population smoothers (         ) will be related to 

each other as will all individual curve smoothers (         ) by sharing a baseline 

smoothing mechanism.  Additional (r-1) parameters will allow the smoothing mechanism 

to differ for each related outcome.  That is, for r outcomes, 
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                       (   )   

                       (   )    

where    and    represent the shared smoothing mechanism among the population 

smoothers and subject-specific smoothers, respectively.  The    and    values for 

      (   ) allow the related smoothing mechanisms to differ from each other.  For 

situations where the outcomes are on the same measure (commensurate), it is reasonable 

to assume that the true underlying smoothers are equivalent for each outcome.  Therefore, 

if the    and    values are fixed at 1, the same smoother is assumed to smooth each curve. 

6.2.2 Binomial Multivariate FME Model 

The binomial multivariate outcome model will be set up in the same manner as 

the normal model (6.2.1), except the logit(    ) will replace the      in equation (6.1) and 

the      will be modeled as binomial outcomes at a higher level in the hierarchical 

framework:  

         (      ) 

      (    )    (    )     (    )        

                                  

6.2.3 Model Implementation 

Again, MCMC methods are required to estimate the model parameters.  The 

estimation procedure for the   ( ) and    ( ) functions of the binomial multivariate FME 

model directly follows that of the normal model described in previous sub-sections.  The 

     values are also defined as in Section 6.2.1, but because the      values are 

additionally estimated in the binomial model, let    be a nm×1 vector such that    

(     (   
 )      (   

 )        (   
 ))

 
and     (                ) .    

(  
    

      
 )  is a rnm×1 vector containing      (    ) values of all individuals, at 

all time points, and for all outcomes. 
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Given that the normal and binomial Bayesian hierarchical multivariate FME 

models are largely composed of conjugate priors, the MCMC sampling algorithms used 

for both the population and subject-specific model parameters are primarily Gibbs 

sampling algorithms.  However, the full conditional distribution of      does not follow 

any known distributional form and thus a slice sampler is used.  Prior distributions for 

  
 ,      and     are IG(α,β), and priors for all other parameters are implemented as 

specified in Section 6.2.1.  Hyperparameters are chosen based on prior knowledge or kept 

non-informative to create diffuse priors which allow the data to drive the estimation.  Full 

conditional distributions for the binomial (and normal) model are provided in Appendix 

B. 

6.3 Application of Multivariate Model to Cochlear Implant Data 

Eighty seven adults with severe to profound hearing loss (above 2000 Hz) were 

enrolled in an FDA multi-center clinical trial aimed at assessing the impacts of a cochlear 

implant device developed to restore hearing for individuals who have high-frequency 

hearing loss yet maintain functional low-frequency hearing (Gantz et al., 2009).  During 

this trial, the patients were implanted with the Iowa/Nucleus 10-mm Hybrid implant in 

the ear determined to have poorer hearing.  All candidates had preoperative Consonant-

Nucleus-Consonant (CNC) scores between 10%-60%.  Postoperatively, patients’ hearing 

abilities were assessed in a variety of settings using CNC scores.  For the purpose of this 

application, we consider three of the settings in which they were assessed.  Because 

patients used hearing aids prior to cochlear implantation and as a part of their everyday 

living, it was of interest to assess how much impact the cochlear implant has on a patient 

if use of the hearing aid is considered in determining effectiveness. The first setting was 

one in which the patients were tested with a hearing aid in the same ear as the cochlear 

implant, a hybrid situation (the same scenario used in Chapter 4).  Patients were also 

tested with the hearing aid placed in the ear that did not contain the implant, a bimodal 



121 
 

situation.  Lastly we consider the scenario in which the patients had hearing aids placed 

in both ears (in addition to the cochlear implant), the combined setting.  The 

amplification of the hearing aids was set to the cutoff of useful residual hearing (Gantz et 

al., 2009).  

Due to the commensurate nature of the responses (all CNC scores) and the 

positive correlation among the source outcomes, it is advantageous to analyze the 

outcomes jointly rather than separately.  Generally, joint modeling is more efficient than 

modeling the outcomes separately, but it also provides a formal basis for the comparison 

of covariates across the different outcomes.  In this manner, we can directly assess what 

setting produces the best hearing for individuals and the population as a whole. In this 

specific example involving cochlear implant data, the only covariate included in the 

model is time.  Furthermore, the population and subject-specific smoothing parameters 

for each outcome are set to be equal.  

The raw data are displayed in Figure 6.1 for the three different outcomes of all 

individuals in the dataset.  CNC scores were measured just before implantation (baseline) 

and at 3 months, 6 months, 12 months, 18 months and 24 months post implantation.  The 

population profiles show that the combined setting, in which patients use hearing aids in 

both ears (in addition to the CI), has the greatest impact on hearing growth followed by 

the bimodal situation and the hybrid situation. At baseline, however, the combined and 

bimodal settings are identical.  Again, missing data is potentially a concern with this 

dataset as missing observations are abundant towards the latter end of the study period in 

all three outcomes.  However, the reason for the missing data at the latter time points is 

due to the fact that the original study was a multi-center study and only subjects at the 

University of Iowa were measured out to 24 months.  It is not believed that missing 

values would be dependent upon outcome scores.  Thus, the missingness mechanism can 

be assumed to be missing at random.  
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Despite the combined setting appearing to be the best outcome (on average) for 

all individuals in the dataset, individual curves show more variability in performance for 

 

Figure 6.1: Observed population and subject-

specific CNC outcome curves for 

hybrid, bimodal and combined Settings 

each setting.  Each individual responds to the three settings in their own way, and a 

setting that works best for one individual may not work best for the next. Figure 6.2 

shows the observed outcomes for four typical individuals in the dataset with at least three 

time points of consecutive observed data.  Individual 19 consistently performs very 

similarly in the three different settings considered, with CNC scores beginning around 

15% and ending around 50%; however the hybrid setting appears to lag in comparison to 

the combined and bimodal settings for Individual 30.  For this individual, it appears that 

having a hearing aid in the bilateral ear can help improve hearing.  Individual 76 
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performs just as well in the hybrid setting as he/she does in the combined setting; 

however the bimodal setting seems to fall off pace as time goes on.  This could be 

indicative of a need for amplification in the ear with cochlear implants and not the 

bilateral ear.  Lastly, Individual 78 appears to benefit from a hearing aid being placed in 

the bilateral ear as this patient’s correct CNC scores improve from approximately 30% to 

above 80% in the combined and bimodal situations, but the scores for the hybrid situation 

are noticeably lower.   

 

Figure 6.2: Select observed subject-specific curves for 

all CNC outcomes (hybrid, bimodal, 

combined) 

6.3.1 Population Curves 

The goal of the analysis is to model both the underlying population and subject-

specific curves using the multivariate outcome models described in Section 6.2.  We will 
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consider both the normal FME multivariate model and the binomial multivariate model.  

We also compare the estimated curves and a subset of parameters from the multivariate 

models to those curves and parameters estimated when each outcome is modeled 

independently.  The top left panel of Figure 6.3 displays the estimated population curves 

when estimated together using the binomial multivariate outcome model.  The other three 

panels show the 95% credible intervals for each of these three population curves.  The 

model accurately estimates each of the three curves with the most smoothing occurring in 

the bimodal growth curve at month 3 where over 35% of the observations are missing for 

this outcome.  The model relies on the correlation between outcomes at this time point in 

addition to observed values at month 3 from the bimodal setting to properly estimate the  

 

Figure 6.3: Estimated population curves and 95% credible 

intervals for multiple outcomes assuming 

binomial distribution  
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underlying smooth curve.  The 95% credible intervals, although wider than when the 

curves are estimated independently, adequately capture reasonable values of the 

population growth in hearing ability especially at the latter time points where missing 

data are highly prevalent.  

The normal multivariate model noticeably struggles to confidently predict the 

population growth curve in this setting.  The top left panel of Figure 6.4 displays the 

estimated population curves when estimated simultaneously using the multivariate 

outcome model assuming normality.  The other three panels show the 95% credible 

intervals for each of these three population curves.  Though the model appears to smooth 

the observed curves when estimating an underlying growth curve, it underestimates the 

values at the later time points where missingness is heavy.  Furthermore, the credible  

 

Figure 6.4: Estimated population curves and 95% 

credible intervals for multiple outcomes 

assuming normal distribution 
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intervals are much wider in these graphs (at times extending beyond the valid parameter 

space) than they are for the binomially estimated population growth curves.  This may be 

representative of a lack of confidence in the estimates for the curves at the later time 

points where missing data is highly prevalent and ultimately it makes it difficult to 

discern meaningful conclusions for population averages with this set of data.  

6.3.2 Individual Curves 

Although having an understanding of population growth is important, 

investigators are often interested in assessing individual growth patterns as well.  Figures 

6.5 and 6.6 present the modeling results of the select individual estimated curves for the 

binomial and normal multiple outcome models, respectively, when the outcomes are  

 

Figure 6.5: Modeled (solid) and observed (dotted) curves 

for select individuals using binomial FME for 

multiple outcomes  
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Figure 6.6: Modeled (solid) and observed (dotted) curves 

for select individuals using normal FME 

for multiple outcomes 

modeled simultaneously.  These individuals are a representation of common individual 

growth patterns occurring in this dataset.  One individual has data for the full two years 

while the other three individuals have missing data and differing growth trajectories.  

Individual 19, an individual with complete data for the hybrid and combined situations, 

has similar curve estimates in both the normal and binomial model.  In Individual 30, 

with missing data in the last two time points, the binomial curve estimate stays at 

maximum growth whereas the normal estimate predicts a slight decline in growth.  The 

normal model predicts higher underlying growth curves for Individual 76 than the 

binomial, but tells a similar story in terms of how the three growth curves relate.  The 

normal curve for Individual 78 struggles to identify an underlying curve as it predicts the 

last few time points outside of the parameter space and outside the range of observed 
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data.  The binomial curve, however, sufficiently predicts growth within the parameter 

space.   

6.3.3 Comparison with Alternative Models 

We also consider how the multiple outcome models compare to predicting the 

curves independently (for both the normal and binomial models) as is frequently done in 

medical research.  The benefits of simultaneously modeling the outcomes include the 

ability to draw on and model the correlation among outcomes in estimation of the curve 

(especially in the presence of missing data) and it reduces the number of analyses needing 

to be conducted.  The estimated smooth population curves in Figure 6.7, modeled 

independently using the univariate normal FME model of Chapter 3, appear to follow the  

 

Figure 6.7: Estimated population curves and 95% 

credible intervals for each outcome using 

individual normal FME models  
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data more closely than they do in the multiple outcome model (Figure 6.4).  The effect of 

the missing data is not as pronounced as it is in the multiple outcome model and the 95% 

credible intervals around the smooth curve are much tighter. 

We can also compare various parameter estimates obtained from the multiple 

outcome model and the models where each outcome is modeled separately. Table 6.1 

gives the smoothing parameters, model error and estimated population slopes and 

intercepts for each estimated curve in the multivariate case and the bimodal, combined 

and hybrid settings individually when the outcomes are assumed to be normally 

distributed.  The population smoothing parameter was estimated to be 0.07 in the  

Table 6.1: Comparison of select population parameters for multivariate FME model 

assuming normality and individual FME models assuming normal outcomes. 

Population 

Parameters 

Multivariate 

(SE) 

Bimodal 

(SE) 

Combined 

(SE) 

Hybrid  

(SE) 

Population Smoother 0.07 (0.03) 0.06 (0.07) 0.08 (0.12) 0.07 (0.09) 

Individual Smoother 0.04 (0.02) 0.03 (0.01) 0.03 (0.01) 0.02 (0.01) 

Model Error 0.01 (0.03) 0.01 (0.07) 0.01 (0.1) 0.01 (0.1) 

Slope (Hybrid) 0.02 (0.02) NA NA 0.004 (0.01) 

Intercept (Hybrid) 0.31 (0.26) NA NA 0.31 (0.26) 

Slope (Bimodal) 0.02 (0.02) 0.002 (0.01) NA NA 

Intercept (Bimodal) 0.42 (0.26) 0.40 (0.23) NA NA 

Slope (Combined) 0.02 (0.01) NA 0.004 (0.01) NA 

Intercept 

(Combined) 

0.44 (0.26) NA 0.42 (0.28) NA 
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multivariate model whereas it ranges from 0.06-0.08 in the individual models; thus, a 

combined smoothing parameter seems reasonable.  Similarly, the individual smoothing 

parameter is estimated as 0.04 in the simultaneous modeling and ranges from 0.02-0.03 in 

the independent models.  The population slopes and intercepts for each curve are 

consistent across the multiple outcomes model and individual outcome models.   

When the population curves are modeled independently using the binomial FME 

model introduced in Chapter 4, the curves end up being similar to the curves modeled 

simultaneously using the multiple outcome model (Figure 6.3).  More smoothing takes 

place in the multiple outcome model than it does in each outcome modeled separately, 

thus Figure 6.8 shows the resulting smooth curves more closely aligned with the actual 

observed curves.  Visually, we can see the 95% credible intervals for the individual  

 

Figure 6.8: Estimated population curves and 95% 
credible intervals for multiple outcomes 
modeled individually with Binomial FME 
model 
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models (Figure 6.8) are, as expected, tighter than the credible intervals for the 

simultaneous modeled curves in Figure 6.3.  The observed population average curve does 

fall outside the predicted credible intervals of the smooth underlying curve in the bimodal 

and combined settings.  Thus, the wider credible interval of the simultaneous model may 

be more appealing to investigators.   

It is important to note the goal of the model is to smooth the data (seen as noisy 

observations around a true curve) so as to determine the true underlying smooth curve.  

Because this “true” smooth curve is unobtainable in real data analysis, the effectiveness 

of the model in estimating the underlying curve is difficult to assess.  We must rely on  

Table 6.2: Comparison of select population parameters for multivariate FME model and 
individual FME models assuming binomial outcomes. 

Population 

Parameters 

Multivariate 

(SE) 

Bimodal 

(SE) 

Combined 

(SE) 

Hybrid 

(SE) 

Population Smoother 0.80 (0.36) 1.12 (1.22) 1.99 (2.14) 1.43 (1.59) 

Individual Smoother 0.02 (0.03) 0.75 (0.13) 0.70 (0.11) 0.72 (0.12) 

Model Error 0.24 (0.03) 0.29 (0.07) 0.25 (0.04) 0.30 (0.04) 

Slope (Hybrid) 0.01 (0.04) NA NA 0.02 (0.03) 

Intercept (Hybrid) -0.94 (0.85) NA NA -0.96 (1.14) 

Slope (Bimodal) 0.09 (0.06) 0.02 (0.03) NA NA 

Intercept (Bimodal) -0.34 (0.86) -0.49 (1.01) NA NA 

Slope (Combined) -0.02 (0.08) NA 0.02 (0.04) NA 

Intercept 

(Combined) 

-0.37 (0.87) NA -0.35 (1.36) NA 
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simulation studies, where the true smooth curve is known, to understand more about the 

merits of each modeling approach.  Therefore, conclusions regarding observed curves 

falling outside 95% credible intervals should be made with caution. 

When comparing population parameters from the multiple outcome model and 

individual outcomes models, and assuming a binomial distribution as opposed to 

normality, some important differences arise (Table 6.2).  Both the population and 

individual smoothing parameters are smaller (indicating more smoothing) than when the 

outcomes are modeled separately.  The population slope and intercept parameters for 

each situation are relatively similar across models.  These estimates are in the logit scale 

because we are modeling the logit of the probabilities, so negative intercepts and slopes 

are reasonable.   

 

Figure 6.9: Modeled (solid) and observed (dotted) 
curves for select individuals using separate 
normal FME models for each outcome 
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The individual curves in the normal models where each outcome is modeled 

separately (Figure 6.9) are more viable and representative curves than the multiple 

outcomes model where the outcomes are considered simultaneously (Figure 6.6).   

No longer do the curves predict a decline in growth for Individual 30, but rather show the 

growth curve leveling off after twelve months. Furthermore, Individual 78’s predicted 

growth curve stays within the appropriate parameter space when each outcome is 

modeled separately as the growth curve is modeled less steeply where the outcomes are 

missing.  Both Individual 19 and Individual 76 have similarly estimated curves in the 

multiple outcome model and univariate outcome models when assuming normality.    

 

Figure 6.10: Modeled (solid) and observed (dotted) 
curves for select individuals using 
separate binomial FME models for each 
outcome 
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On the other hand, the individual curves for the multiple outcome model when 

assuming binomial outcomes (Figure 6.10) are remarkably similar to the predicted 

individual curves when the outcomes are considered separately (Figure 6.5).  This 

similarity gives credence to the fact that the multiple outcome model is a viable choice 

for investigators when they wish to model multiple outcomes. 

6.4 Discussion 

The notion of modeling multiple outcomes simultaneously is an appealing and 

important idea because it allows investigators to capture correlation among outcomes 

when modeling various health situations and it minimizes the number of analyses needed 

in order to capture a more holistic view of individual and population growth.  Our 

multiple outcome model accounts for the correlation among outcomes in two ways: (1) 

we add a flexible correlation structure to the modeling of individual curves as a way to 

capture the relationship among outcomes and (2) we relate the smoothing parameters 

using a latent variable approach under the assumption that the underlying smooth curves 

should be related.  Although this approach adds parameters to the model which in turn 

need to be estimated, it models all outcomes in one Monte Carlo sampling routine and 

gives additional important information regarding the relationship between outcomes. 

In this specific application of the model, we only included time as a potential 

covariate and we set the smoothing parameters to all be equivalent.  The normal multiple 

outcome approach struggled in its ability to accurately model the correlated curves and 

the univariate modeling appeared more efficient and reliable, perhaps due to the missing 

data.  This is likely because the original data are not normally distributed and the 

multivariate model expounds the problems seen in the univariate setting.  In addition, we 

believe the ability of the normal model to accurately model the curve declines due to the 

overwhelming amount of missing data in the latter time points and the fact that the 

normal model assumes a constant, homogeneous variance at all time points, but more 
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work is necessary to understand these issues.   On the other hand, the binomial multiple 

outcome model faired remarkably well and shows promise in its effectiveness for 

modeling multiple outcomes simultaneously.  Simulation studies still need to be 

conducted to fully determine the advantages and disadvantages of this approach, and the 

impact of missing data should be assessed as well.   

Furthermore, we see this model being particularly useful when we extend it to 

include more covariates.  In doing so, we can assess the impact of various covariates on 

the outcomes at once (as opposed to separately), and we can make conclusions regarding 

the impact of various predictors on a medical situation as a whole.  In the end, our 

application shows promise for this multiple outcome approach; however, more work is 

necessary to assess its value and make it practical for investigators to use.   
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CHAPTER 7 

CONCLUSION 

7.1 Final Thoughts 

The motivation for this thesis work stems from a desire in the field of Speech and 

Hearing Sciences to more accurately and flexibly model population and individual 

growth longitudinally.  Growth trajectories in this field typically do not satisfy parametric 

assumptions because growth is often characterized by initial steep growth followed by a 

slower, steady growth rate which eventually asymptotes once full potential has been 

achieved.  Although polynomial mixed-effects models (as well as other nonlinear 

parametric longitudinal models) have been used, these approaches aren’t always able to 

accurately identify and model the true underlying growth curve.  Moreover, the outcomes 

collected in speech and hearing sciences are not always normally distributed; in fact, 

many outcome measures used to describe speech perception and hearing ability are best 

represented as percents correct which naturally resemble a binomial distribution.  Current 

literature in growth curve modeling for non-normal outcomes, such as binomial 

measures, is limited and difficult to implement with small sample sizes.  By 

implementing a Bayesian approach, and capitalizing on the hierarchical nature of 

flexible, nonparametric FME models, we offer an alternative method for analyzing 

longitudinal growth curve data for non-normal outcomes and add to the limited literature 

for this problem.   

The binomial functional mixed-effects model introduced in Chapter 4 is a viable 

new Bayesian approach to modeling longitudinal percentage data (number of successes 

out of total number of trials), when the assumption of normality may not hold or may be 

problematic (e.g., estimating outcomes outside of the acceptable parameter space for 

probabilities).   Our simulation studies suggest the model is most beneficial in situations 

where a limited number of trials are conducted and when the outcomes occur in the high 
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end of the probability space.  Furthermore, the Bayesian posterior predictive model, 

which estimates the outcomes in addition to the probabilities of the outcomes, results in 

prediction credible intervals on the outcomes that are wider than the credible intervals on 

the estimated probabilities.   This model provides a more conservative boundary for 

estimated probabilities in individual and population growth curves and can be of use in 

predicting individual growth. 

The multinomial model extension introduced in Chapter 5 addresses a critical 

need within the language science community as it allows researchers to more accurately 

model multinomial language outcomes when the outcomes are comprised of more than 

two mutually exclusive categories.  This model improves upon existing, limited methods 

for analyzing such data including independent polynomial mixed-effects models for each 

outcome.  Our simulated datasets suggest a greater ability of our Bayesian nonparametric 

approach in accurately modeling true underlying growth as opposed to current parametric 

approaches. 

Lastly, our extension of the original functional mixed-effects model (Chapter 3) 

and the binomial functional mixed-effects model (Chapter 4) to incorporate multivariate 

outcomes (Chapter 6) allows applied researchers to utilize all outcomes they measure at 

each time point while accurately accounting for the shared information across these 

measures.  Although simulation studies were not conducted on the multiple outcomes 

model, the applied analyses to CNC cochlear implant data show promise in the ability of 

the binomial model to draw information from related outcomes and accurately fit the 

correlated curves at both an individual and population level.  One strength of this method 

is that it allows the curves to be modeled simultaneously instead of applying individual 

models at each outcome.  In the presence of missing data in binomially distributed 

outcomes, the multivariate model for binomial outcomes outperforms the multivariate 

model assuming normal outcomes in our application. 
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7.2 Future Work  

Although this thesis adds to existing literature for modeling growth, more work is 

necessary in order to apply these models to complex datasets with multiple groups and 

additional covariates.  Our primary interest is expanding the models to include functions 

other than the one for time so that comparisons between groups can be considered via one 

model and adjustments to the curves can be made based on the effect of additional 

variables.  These models are general enough to accommodate additional covariate 

functions; however, the effect of doing so in practice is unclear.   

Moreover it is of interest to extend these models to include outcomes which 

follow other non-Gaussian distributions (e.g. Poisson).  Due to the hierarchical approach 

we take in the binomial and multinomial models, it is feasible to consider outcome 

variables with other distributions in the exponential family as we specify the distribution 

on the outcomes and model the means (or probabilities) using the functional mixed-

effects model.   

As mentioned in Chapter 4, the DIC is not a valid model comparison tool across 

models, and so we are in need of developing methods to compare these Bayesian models 

when the outcomes are assumed to be from different distributions.  Currently we can use 

goodness-of-fit measures such as RMSE, 95% credible intervals, etc.; however, these 

measures are most practical in simulations only where we know the shape of the true 

underlying curve.  When comparing models using real data, where the true underlying 

growth curve is unknown, our goodness-of-fit measures don’t accurately assess the 

ability of the model to find the true curve as they measure the ability of the model to fit 

the observed data.  Goodness-of-fit measures in the Bayesian paradigm are admittedly 

lacking in comparison to the Frequentist approach, and our models clearly demonstrate 

the need for more work in this area. 

There are many directions we can take to further enhance our understanding of 

the benefits of these models and to make them more useful in practice.  It will be of 
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interest to more deeply assess the impact of missing data on these model structures, 

especially if they data cannot be assumed to be missing completely at random or missing 

at random, and the role the choice of covariance structure plays in the 

smoothing/estimation of the final curves.  But these models show promise in their ability 

to provide a flexible, nonparametric approach to modeling growth trajectories in 

longitudinal data where the outcomes are not normally distributed and the growth pattern 

does not follow a parametric shape.   

  



140 
 

APPENDIX A 

EXPONENTIAL FAMILY FOR FME MODEL 

A.1 General Exponential Family Framework 

The FME model first presented and fully defined in Chapter 3 (equation 3.5) can 

be rewritten such that the fixed and random components are grouped:  

    (   )  (            )       

                    

    [

  

  

   

]  

where     is the design matrix for the random effects in    .  Suppose     is of 

exponential family form such that    |(      )  ( ) and  ( ) is a member of the 

exponential family.  The distribution of     can thus be written in exponential dispersion 

family form as follows: 

 (   |      )     [
        (   )

 (  )
  (      )] 

where         is the number of individuals,           is an index for the time 

points,     represents the canonical parameter and    represents the dispersion parameter.  

Let      [   |        ]    (   ) with  (   )                 where  ( ) is a 

monotonic link function,   is a vector of fixed effects and     is a vector of random 

effects for the ith individual at the jth time point.  Thus,        (     )  

A.1.1 Normal Exponential Family Form 

If    |(      )  ( ) such that  ( ) is a normal distribution, then  (   |      ) 

can be written in exponential family form: 

 (   |     
 )  

 

(    )   
    [ 

 

   
(       )

 
] 
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In this form,           [   |        ],  (   )  
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A.1.2 Binomial Exponential Family Form 

If    |(      )  ( ) such that  ( ) is a binomial distribution, then  (   |      ) 

can be written in exponential family form as follows: 
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In this form,        (
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APPENDIX B 

FULL CONDITIONAL DISTRIBUTIONS FOR MULTIPLE 

OUTCOMES 

Full conditional distributions for all model parameters in the binomial 

multivariate FME model described in Section 2.2 of Chapter 6 are detailed here.  The full 

conditional distributions for the parameters in the normal multivariate model are the same 

as those for the binomial with   ,   and     replacing   ,   and     in the normal model, 

respectively.  

To estimate the population parameters, the subject-specific parameters must be 

arranged appropriately into vectors for each outcome.  Let 

  

[
 
 
 
 
             

             

    
             

             ]
 
 
 
 

 

be a      matrix containing all individual slopes and intercepts for all outcomes and 

     ( ) be a 2nr×1 stacked vector of the estimated slopes and intercepts for all 

individuals.    can then be partitioned into r sub-vectors containing the slopes and 

intercepts of all individuals for each of the r outcomes,   (  |   |  )
    Similarly, let 

  [

          

          

    
          

] 

be a      matrix containing all subject-specific deviations at the design time points for 

all outcomes and      ( ) be a mnr×1 stacked vector of these values.   can then be 

partitioned into r sub-vectors containing the deviations at all design time points for each 

of the r outcomes,   (  |   |  )
    To estimate the subject-specific parameters, the 

w vector must be appropriately partitioned into n vectors, containing all outcome 

probabilities for each individual.  Let     (   
     

       
 )  represent this 
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partition where     (                )
  as introduced Section 2.2 of Chapter 6 and let 

                     be a     mean vector of logit probabilities for a 

specific person and outcome.  The values of     are continually updated via MCMC 

sampling as the model updates the other parameters  

For the binomial model only, the conditional distribution of          (   ) is: 

 (   |       )   (   |       )   (   ) 

    |     (∏ (    )
    

(      )
       

   )    {
 

   
 (       ) (       )}. 

Let    (   
     

       
 )  be a      vector of estimated logit probabilities for 

each outcome; then   (  
    

      
 )  is a       vector of all estimated logit 

probabilities.  Furthermore, let     (   
     

      
 )    be a      vector of 

estimated logit probabilities for all of the ith individual’s outcomes.  This full conditional 

does not exist in the normal model because the binomial hierarchy is ignored as the 

outcomes are assumed to be normally distributed.   

Due to autocorrelation among the population parameters, the population curve 

parameters are estimated simultaneously.  The population parameters for each outcome 

are modeled independently.  Thus, the conditional distribution of     (  
    

 ) , 

         , given   (            
    

 ) is: 

 (    |     )   (  |     )   (   ) 

     |       ((
 

  
  ̃  ̃   )

  

(
 

  
  ̃ (         )  (

 

  
  ̃  ̃   )

  

)  

where       [
 

  
    (     )  ] and  ̃             (   ).    

The conditional distribution of the subject-specific     given   (          
    )  is: 

 (  |     )   (   |    )   (  ) 
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The conditional distribution of the subject-specific     given   (            
 )  is: 
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And the conditional distributions for the variance components follow.  The conditional 

distribution for the population smoother is: 
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] is a nm×nm block diagonal matrix of the    variance-

covariance structure.  The conditional distribution for the subject-specific smoother is: 
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     )  (   ) 
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  [

    
   
    

] is a nm×nm block diagonal matrix of the    variance-covariance 

structure.  The conditional distribution for the subject-specific slopes and intercepts is: 
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 (  |  )   ( |  )  (  ) 

   |      (          )  

Finally, the full conditional for the model error is as follows: 

 (  
 |   )   ( | )  (  

 ) 
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