


86 
 

 

 

Figure IV-6: miR-302 as a redox-sensitive regulator of ARID4a and CCL5 
mRNAs.   

(A) Fibroblasts were infected with 30 MOI of adenovirus carrying either the SOD2 
gene (AdSOD2) or a control vector (AdBglII).  miR-302 abundance as well as 
mRNA levels of SOD2, ARID4a and CCL5 were analyzed in control, AdBglII and 
AdSOD2 infected fibroblasts.  Asterisks represent statistical significance relative 
o un-infected controls.  (B) SOD2 mRNA, activity, and protein levels were 
measured in control and 15 d 200 'M HT -fed fibroblasts.  (C) Fibroblasts were 
treated with 200 'M HT for 15 d and analyzed for miR-302 abundance as well as 
mRNA levels of ARID4a and CCL5.  (D) Fibroblasts were treated with 200 'M 
H2O2 and analyzed for miR-302 and its target mRNAs ARID4a and CCL5.  
Asterisks represent statistical significance relative to respective controls.  
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Figure IV-7: miR-302 overexpression increases the percentage of BrdU-positive 
cells.   

MB-231 cells were transfected with pCMV or pCMV-302.  (A) Transfected 
monolayers were immunostained for GFP followed by counterstaining with DAPI.  
Representative microscopy images of nuclei (DAPI), GFP, and overlay images 
are shown.  Transfection efficiency was calculated by counting the percentage of 
GFP-positive cells.  (B) Representative microscopy images of nuclei (DAPI) and 
BrdU-positive cells in pCMV (top) and pCMV-302 (bottom) transfected cells.  (C) 
ImageJ software was used to calculate the percentage of BrdU-positive cells in 
pCMV and pCMV-302 transfected low and high cell density cultures.  Five  
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Figure IV-7.  Continued. 
 
hundred cells were counted in low cell density cultures, and 2000 cells were 
counted in high cell density cultures, over a 4mm x 4mm field.  
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CHAPTER V 

FUTURE DIRECTIONS 

Hypothesis and Specific Aims 

Radiation therapy alone or, more often, in combination with chemotherapy 

is used as a standard treatment approach for most tumors and cancers.  Ionizing 

radiation is known to induce cell death by both direct and indirect effects.  Direct 

effects involve ionization of DNA molecules directly while indirect effects are due 

to production of ROS within the cells that damages cellular macromolecules.  

Cellular antioxidant systems within both cancer and normal cells help to remove 

ROS and protect from indirect effects of radiation.  Chemotherapy adjuvants can 

be used to promote radiosensitivity of cancer cells by increasing ROS or promote 

radioresistance of normal cells by reducing ROS.  Different stages of the cell 

cycle also have varied responses to radiation.  S-phase cells are known to be the 

most resistant while G1 and mitotic cells are particularly sensitive to radiation.  

Because cancer cells are rapidly dividing they spend a relatively longer time in 

the radiation resistant S-phase than normal cells.  Chemotherapy can also be 

used to halt cancer cell progression in the G1-phase to promote radiation 

sensitivity.  We propose that a combination of naturally occurring compounds, 

hydroxytyrosol, piperlongumine, and curcumin, can promote radiation sensitivity 

by increasing ROS and halting cells in the G1-phase.  We hypothesize that 

decreased miR-302 expression is responsible for the increased sensitivity and 

that overexpression of miR-302 will lead to radiation resistance. 

AIM 1: Determine if overexpression of miR-302 confers radioresistance of 

cancer cells via downregulation of ARID4a and CCL5. 
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Experimental Design 

In order to determine if miR-302 promotes radioresistance, various cancer 

cell lines will be studied for: 

1a.  Viability and clonogenic survival following radiation, with and without 

genetic miR-302 overexpression. 

1b.  Determine if cis-acting elements in addition to miR-302 target sites 

also regulate ARID4a and CCL5 expression. 

1c.  Determine if overexpression of gene targets ARID4a or CCL5 in 

combination with miR-302 represses the radioprotective effect of miR-302 alone. 

The use of multiple cancer cells lines, including breast cancer cell line MB-

231 and head and neck cancer cell lines FaDu and Cal27, is proposed in order to 

show the generality of the proposed hypothesis. 

1a.  Cancer cells will be plated followed by transfection with either an 

empty or miR-302 containing plasmid, as reported previously (Chapter II, page 

22).  miR-302 expression will be confirmed 48 h after transfection using the 

TaqMan assay (Chapter II, page 29).  Cells from parallel plates will be irradiated 

using 2, 4, and 8 Gy radiation doses.  Cells will be collected at the time of 

radiation and early (2 h and 8 h) and late (24 h and 48 h) time points following 

radiation.  Cell cycle distribution will be determined by DNA content using 

propidium iodide staining.  Viability will be determined by propidium iodide 

exclusion by flow cytometry.  In addition, a small number of cells will be replated 

in order to determine clonogenic survival.  These plates will be stained with 

coomassie blue 2 weeks later and the number of colonies counted to determine 

the surviving fraction following radiation with and without miR-302 

overexpression. 
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1b.  Sequence analysis of the ARID4a 3'-UTR identified two miR-302 

target sites.  Interestingly, only the proximal miR-302 target site seems to be 

responsive to miR-302 regulation (Figure IV-3C).  When the distal target site was 

cloned into the psiCheck-2 reporter vector, miR-302 overexpression had no 

effect on luciferase expression.  In this construct there is an ARE within 1 base 

pair of the miR-302 target site.  It is likely that ARE binding proteins such as HuR 

or AUF1 compete with miR-302.  Furthermore, there are 9 total AREs found in 

the 3'-UTR of ARID4a.  CCL5 also contains one region enriched for adenine and 

uracil, although it is not a canonical AUUUA element.  In order to determine if 

ARE binding proteins compete with miR-302 for regulation of ARID4a and CCL5 

luciferase expression vectors will be utilized.  In the psiCheck-2 vectors 

containing the distal miR-302 target site, the ARE will be mutated to prevent ARE 

binding proteins from binding.  These mutant plasmids will be cotransfected with 

miR-302 and luciferase expression determined.  Additional vectors will be 

generated to determine if the other AREs present in the 3'-UTR of ARID4a and 

CCL5 contribute to mRNA expression. 

1c.  miR-302 expression is predicted to have a radioprotective effect.  This 

is predicted to be due to repression of gene targets ARID4a and/or CCL5.  In 

order to determine if these targets mediate the effects of miR-302, ARID4a and 

CCL5 will be artificially overexpressed in combination with miR-302 

overexpression.  The ARID4a or CCL5 gene will be cloned in to the multiple 

cloning site of the pShooter vector, which drives gene expression through a CMV 

promoter.   Importantly, the 3'-UTR of these genes will be truncated to eliminate 

any miR-302 binding sites.  This is necessary because cotransfection with miR-

302 would result in downregulation of the genes at the mRNA level.  

Overexpression of the genes with the 3'-UTR may also serve as a decoy for miR-
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302, effectively negating the overexpression of miR-302.  Forty-eight hours after 

cotransfection of miR-302 and either ARID4a or CCL5 plasmids, miR-302 and 

gene target expression will be determined by Q-RT-PCR.  Parallel plates will be 

irradiated and viability and clonogenic survival determined. 

Anticipated Results 

Based on results presented in chapter IV, it is anticipated that miR-302 

overexpression will protect cells from radiation-induced death.  miR-302 has 

been shown to promote S-phase entry which is known to be radioresistant.  

Furthermore, miR-302 has been shown to negatively regulate CCL5.  Others 

have reported CCL5 induces hydrogen peroxide production.  miR-302 

overexpression will suppress CCL5 expression and thus limit the production of 

hydrogen peroxide, leading to cell survival.   

Previous studies have shown that ARE-binding proteins compete with 

miRs for regulation of mRNA targets [31, 37, 191].  We anticipate a similar 

competition with miR-302 and ARE-binding proteins.  Preliminary results showed 

differential regulation of two ARID4a 3'-UTR constructs in which one of the 

differences was the presence of an ARE.  By mutating the ARE we anticipate 

relief of competition with ARE binding proteins and miR-302 will inhibit luciferase 

expression.  However, CCL5 does not contain a canonical ARE.  We do not 

anticipate ARE-binding proteins to have an effect on CCL5 mRNA stability. 

Since we anticipate resistance to radiation is mediated through cell cycle 

control, maintaining ARID4a expression in the presence of miR-302 should 

negate the effects of miR-302 expression alone.  By maintaining ARID4a 

expression, it is anticipated that RB will be bound, and cells will not progress to 

S-phase.  By “trapping” the cells in this radiosensitive phase, the effects of miR-

302 overexpression in protection from radiation damage will be negated.  In 
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addition, we predict that CCL5 expression would indirectly induce ROS 

production, which would promote radiation-induced damage. 

Alternative Approach 

It is possible that miR-302 expression will have the opposite effect on 

radiation response.  That is, miR-302 expression might actually sensitize cells to 

radiation.  In this case we will examine alternate targets of miR-302.  For 

example, miR-302 target sites are also located in the long transcript of SOD2 but 

not the short transcript.  Previous results from Chaudhuri et al. [8] have indicated 

that the long transcript (4.2 kb) of SOD2 is preferentially selected for in 

proliferating cells while the short transcript (1.5 kb) is selected for in quiescence.  

miR-302 regulation of SOD2 expression may be more important than regulation 

of ARID4a or CCL5 following radiation and affect radiation response. 

It is also possible that miR-302 expression may have no effect on radiation 

sensitivity.  In this case, alternate miRs will be explored for regulation of radiation 

response.  miR-377 has been shown to regulate SOD2 and may have an effect 

on radiation response [192].  In addition, seven miRs were found to be 

downregulated following radiation in our array results (Figure IV-1C), many of 

which have been shown to have roles in proliferation or carcinogenesis.  For 

example, miR-20a may govern transitions through G1 by regulation of E2F1 

[193].  Members of the miR-17-92 family were also shown to be downregulated 

following radiation.  Overexpression of miR-17-92 members were shown to 

promote proliferation and drive retinoblastoma formation in RB-deficient retinal 

cells [194].  These miRs may be of interest to study in radiation response if miR-

302 expression does not affect radiation sensitivity. 

There are many ways of determining if proteins bind to particular mRNA 

targets.  If our simple mutation of the ARE does show any difference in luciferase 
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expression, RNA-Binding Protein Immunoprecipitation (RIP) may be used [195].  

In this method, RNA-binding proteins (RBP) are crosslinked with their mRNA 

targets using formaldehyde.  RBP specific antibodies are used to pull down the 

RBP with their mRNA targets.  RNA is eluted from the proteins and RT-PCR can 

be used to identify target RNA using specific primers for the predicted target 

regions. 

Although unlikely, it is possible that RBPs do not interact with ARID4a.  In 

this case we can analyze the 3-dimensional structure of the mRNA to determine 

if the second target site of ARID4a for miR-302 is inaccessible to the RISC 

complex. 

Overexpression of ARID4a and CCL5 in the presence of miR-302 may 

have no effect on the radiation response of cells.  Individual miRs are known to 

have hundreds of targets and regulate many different pathways.  miR-302 alone 

has over 800 predicted targets based on TargetScan 6.0.  It is likely that not just 

one target of miR-302 regulates response to radiation.  In order to determine 

which targets of miR-302 regulate radiation response, genome wide arrays may 

be utilized.  RNA can be collected from irradiated cells both overexpressing miR-

302 and without miR-302.  Genome-wide array analysis can identify genes that 

are differentially regulated between the two groups.  These genes can be 

compared against the predicted miR-302 targets to help determine which miR-

302 targets may play a role in radiation response. 

Aim 2 

Determine if naturally occurring compounds hydroxytyrosol, 

piperlongumine, and curcumin induce radiosensitivity via miR-302 and 

downstream targets. 
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Rationale 

Preliminary results have shown that hydroxytyrosol, piperlongumine, and 

curcumin treatments have caused decreased viability as determined by the MTS 

assay (Figure V-3).  We have also reported hydroxytyrosol treatments produce 

ROS and repress miR-302 expression (Figure III-1, Figure IV-6).  Others have 

reported piperlongumine also induces ROS while curcumin is known to have cell 

cycle effects.  We anticipate the increase in ROS and G1-phase cell cycle block 

will increase radiosensitivity via a miR-302 dependent mechanism. 

Experimental Design 

The role of hydroxytyrosol, piperlongumine, and curcumin in radiation 

sensitivity will be explored in the following two subaims: 

2a.  Determine if hydroxytyrosol, piperlongumine, and curcumin treatment 

sensitizes cancer cells to radiation. 

2b.  Determine if hydroxytyrosol, piperlongumine, and curcumin regulate 

radiation response via a miR-302 dependent pathway.  

2a.  Cells will be treated with hydroxytyrosol, piperlongumine, and 

curcumin individually and in combination.  At early (2 h and 8 h) and late (24 h 

and 48 h) time points, treated cells will be collected for ROS measurements and 

cell cycle distribution.  ROS will be determined using dihydroethidium (DHE, 

Invitrogen) and 2', 7'-dichlorodigydroflurescein diacetate (DCFH, Invitrogen) 

assays for superoxide and hydrogen peroxide levels, respectively.  Based on 

results from ROS and cell cycle measurements, treated cells will be irradiated 

after hydroxytyrosol, piperlongumine, and curcumin treatment with 2, 4, and 8 Gy 

doses.  Cells will be analyzed for ROS, cell cycle distribution, viability, and 

clonogenic survival at early and late time points following radiation as in AIM 1a. 
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2b.  miR-302 expression will be determined following treatment with 

hydroxytyrosol, piperlongumine, and curcumin.  miR-302 will be overexpressed 

after treatment with hydroxytyrosol, piperlongumine, or curcumin but prior to 

radiation.  Following radiation treatment, viability and clonogenic survival will be 

determined. 

Anticipated Results 

Prior to radiation we anticipate hydroxytyrosol alone will induce ROS, as 

previously demonstrated.  Other studies have demonstrated piperlongumine also 

induces ROS, and we anticipate similar results in this study.  Curcumin has been 

shown to have cell cycle effects and we anticipate a G1-phase cell cycle block 

following treatment.  When used in combination, we expect to see both an 

increase in ROS and cell cycle block in the G1-phase.  We anticipate that this 

combined effect will sensitize cells to radiation leading to decreased viability and 

clonogenic survival. 

We have already demonstrated that hydroxytyrosol treatment negatively 

regulates miR-302.  It is anticipated that piperlongumine and curcumin 

treatments will suppress miR-302 expression as well.  Preliminary results have 

also shown hydroxytyrosol treatments to increase radiation sensitivity (Figure V-

1).  We hypothesize that this is due to miR-302 repression.  Therefore, we 

anticipate overexpression of miR-302 in the presence of hydroxytyrosol treatment 

will reverse, or blunt, the radiation sensitivity.  We expect similar results when 

miR-302 is overexpressed in the presence of combination treatments as well. 

Alternative Approach 

While we already have results suggesting hydroxytyrosol treatment affects 

radiation response, it is possible that piperlongumine and curcumin do not, or do 
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not have a synergistic effect with hydroxytyrosol.  In this case efforts can be 

focused on the results showing decreased viability with piperlongumine and 

curcumin treatment alone, without radiation.  Alternatively, efforts can be focused 

on the use of hydroxytyrosol alone as a radiation sensitizer. 

It is also possible that hydroxytyrosol, piperlongumine, and curcumin 

promote radiation sensitivity independent of miR-302 expression.  Since there 

exists hundreds of miRs predicted to regulate up to 60% of the human genome, it 

is likely that a different miR, or set of miRs may regulate radiation response due 

to these treatments.  miR array analysis may be used to determine if any miRs 

are altered by treatment.  RNA will be isolated and purified for small RNA from 

cells treated with hydroxytyrosol, piperlongumine, and curcumin individually and 

in combination.  Purified small RNA can be reverse transcribed and hybridized to 

miFinder PCR arrays to determine if treatments affect miR expression.  
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Figure V-1:  Hydroxytyrosol decreases clonogenic survival following radiation. 

HT was added 24-72 h post-irradiation, and a clonogenic assay was used to 
measure survival of 4 Gy irradiated MB231 and Cal27 cancer cells. 
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Figure V-2:  Chemical structures of naturally occurring compounds. 

Structure of (A) hydroxytyrosol, (B) piperlongumine, and (C) curcumin. 
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Figure V-3:  Naturally occurring compounds, hydroxytyrosol, piperlongumine, and 
curcumin, decrease viability when used individually and in combination. 
 
 
MB-231 cells were plated in 96 well plates.  Twenty-four hours after plating cells 
were treated with the indicated concentrations of hydroxytyrosol (HT),  
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Figure V-3. Continued. 
 
piperlongumine (PL), and/or curcumin (Cur).  Forty-eight hours after treatment, 
viability was determined by the MTS assay.  Wells containing only media, no 
cells, and the indicated concentrations HT, PL, and/or Cur were used to correct 
for background.  Viability is shown relative to untreated controls.  (A) Viability of 
MB-231 cells was determined after exposure to naturally occurring compounds 
alone at the indicated concentrations.  (B) Viability of cells was determined after 
exposure to HT and PL in combination at the indicated concentrations.  (C) 
Viability of cells was determined after exposure to HT and Cur in combination at 
the indicated concentrations.  (D) Viability of cells was determined after exposure 
to PL and Cur in combination at the indicated concentrations.    
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