
53

dried in air. Silver epoxy was used to contact wires on the back side of electrodes

and Loctite nonconductive epoxy was applied to cover the exposed silver epoxy. For

GCEs, glassy carbon rotating disc electrodes with 0.5 mm diameter were used after

polishing.

The prepared noncatalytic electrodes, nGaAsEs and GCEs, were magnetically

modified or modified with only Nafion. Magnetic modification involved application

of a mixture of magnetic microparticles and Nafion suspension (15 % v/v) directly

onto the electrode surface. Magnetic microparticles of iron oxide (Fe3O4, Aldrich)

with a silane coating were prepared according to the method described in Chapter

2. Nafion modification involved coating electrode surfaces with only the Nafion

suspension (Ion Power). The coating thickness was controlled to be 6 m, based on

the calculated total volume of dried Nafion. A density of 1.95 g/cm3 was used [45].

The three-electrode electrochemical cell included using a saturated calomel

electrode (SCE) as the reference electrode and a platinum mesh as the counter

electrode. Nitric acid (1.00 M) was used as the electrolyte. Solutions were not

degassed. Potential sweep voltammograms of hydrogen evolution reaction were

recorded using a CH Instrument model Chi760b potentiostat/galvanostat.

3.1.1 Computer Simulation

To compare rate constants of magnetically modified and to only Nafion modified

glassy carbon electrodes, current voltage profiles were fitted to a computer

simulation. The computer simulation was based on semi-infinite linear diffusion

condition and the Butler-Volmer model for electron transfer kinetic model. The



54

Table 9. Parameters used in the computer simulation.

 Initial potential (V)

 Final potential (V)

A Electrode surface area (GC: 0.785, nGaAs: 0.25, p-Si: 0.25 cm2)

Frx Conc Fractional concentration: 1

 Scan rate (0.1 V/s)

T Temperature (298 K)

 Maximum characteristic time: 2 ( −)  or 1

C Concentration (1.5 mole/cm3)

0 Standard redox potential: -2.42 V vs SCE

 Transfer coefficient

D Dimensionless diffusion coefficient: ∆ (∆)
2

0 Dimensionless standard heterogeneous electron transfer rate: 0
p


n Number of electron

0 Standard heterogeneous rate constant

D Diffusion coefficient (500× 10−5 cm2/s)
max Maximum spatial index: 1 + 6

√
max

max Total number of time steps in the simulation: 300

simulation was coded in Visual Basic programming language in Microsoft Excel 2003.

The code was shown in Appendix C. Table 9 includes explanations of parameters

used in the simulation.

3.2 Results and Discussion

3.2.1 Hydrogen Evolution Reaction on n-GaAs

Electrodes

Figure 17 shows cyclic voltammograms (CV) of the HER at magnetically modified

(nGaAsMag) and Nafion modified (nGaAsNaf) electrodes. When hydrogen evolution

current reaches 1 mA, the potential of the magnetically modified electrodes is 233

mV positive of the potential for Nafion modified electrodes. Concentrations are

the same for both electrodes. The more facile HER on the magnetically modified

electrodes arise from magnetically improved heterogenous electron transfer kinetics.
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Figure 17. Cyclic voltammograms for hydrogen evolution on n-GaAs electrodes with
magnetic modification (solid) and Nafion modification (dotted). The potential of
the magnetically modified electrodes is 233 mV positive of the potential for Nafion
modified electrodes
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Hydrogen evolution is an adsorbate reaction. Adsorbate reactions can be modeled

as diffusion-free thin layer cells [37,46].

Analysis for a totally irreversible electron transfer process in a thin layer cell is

 = 00 +



ln

µ
0

 

¶
(14)

where , 
00, ,  , ,  , 0,  ,  and  are peak potential (V), formal potential

(V), ideal gas constant (8.314 J mol−1 K−1), temperature (K), transfer coefficient,

standard heterogeneous rate constant (cm/s), Faraday constant (9.64853×104 C),

electrode surface area (cm2) and scan rate (V/s), respectively.

Because the hydrogen evolution current-voltage profile does not depict a peak

current,  analysis can not be directly applied to the measured data. However,

relative 0 values for the two systems can be estimated by comparing potentials

at the same current on each system. Therefore, if 1 and 2 are potentials when

each magnetic and non-magnetic electrode reaches the same current, the ratio of

heterogeneous rate constant for magnetic (01) and non-magnetic (
0
2) electrode can

be calculated from Equation 15.

1 −2 =



ln

µ
01
 

¶
− 


ln

µ
02
 

¶
=




ln

µ
01
02

¶

01
02
= exp

∙



(1 −2)

¸
(15)

This analysis is a good approximation if the wave shapes for the thin layer

response are the same. The potential difference between the magnetically modified
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electrode and Nafion modified electrode for current of at 1.0 mA is 233 mV.

Assuming  = 05, The calculated ratio of rate constants (01
0
2) for n-GaAsMag

to n-GaAsNaf is 93. The heterogenous electron transfer kinetics of the HER on an

n-GaAs electrode is estimated to be 93 times faster or about two orders of magnitude

faster under magnetic modification than with only Nafion modification.

Figures 18 and 19 show potential sweep voltammograms of the hydrogen evolution

reaction on a magnetically modified n-GaAs electrode (nGaAsMag, dotted red) and

Nafion modified n-GaAs electrode (nGaAsNaf, dashed green). Reaction kinetics

of these two potential sweep voltammograms are obtained by fitting the data to

the computer simulation for cyclic voltammetry. Simulated data (solid black) for

the n-GaAsNaf and n-GaAsMag are plotted in Figures 18 and 19, respectively.

Butler-Volmer kinetic and explicit finite difference method for semi-infinite linear

diffusion are used for the simulation. In Tables 10 and 11, parameters for the

simulated data fitting are tabulated. All parameters are the same for the two

simulations except for the dimensionless rate constant 0, which is set by 0. As

shown in the Tables 10 and 11, the 0 for magnetically modified n-GaAs is 16×10−13

where as 0 for the Nafion modification is 16× 10−15. The transfer coefficients ()

are the same for the two electrodes,  = 02. From the result of the simulations, the

fact that magnetic field modification improves the HER rate constant on n-GaAs

electrodes 100 times is also confirmed by computer simulation.



58

0.E+00

1.E-04

2.E-04

3.E-04

4.E-04

5.E-04

6.E-04

7.E-04

8.E-04

9.E-04

1.E-03

-1.E+00-1.E+00-1.E+00-8.E-01-6.E-01-4.E-01-2.E-010.E+00

Potential (E) / V vs SCE

C
u

rr
e

n
t 

(i
) 

/ 
A

Simulated

Exp Mag

Exp NAf

Figure 18. Potential sweep voltammogram of hydrogen evolution on n-GaAs elec-
trodes with magnetic modification (dotted red) and Nafion modification (dashed
green). Blue solid line is computer simulated current voltage profile for magneti-
caly modified n-GaAs electrode where 0 is 16× 10−13. Refer to Table 10 for more
details about the simulation parameters.

Table 10. Simulation parameters for magnetically modi-
fied n-GaAs electrode.

 0 V 0 −242 V

 −2 V  12

A 025 cm2 D 049

Frx Conc 1 0 320× 10−10
 01 V/s n 2

T 298 K 0 16× 10−13
 40 D 10× 10−5 cm2/s

C 15 mole/cm3 max 737

max 0003
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Figure 19. Potential sweep voltammogram of hydrogen evolution on n-GaAs elec-
trodes with magnetic modification (dotted red) and Nafion modification (dashed
green). Blue solid line is computer simulated current voltage profile for Nafion mod-
ified n-GaAs electrode where 0 is 16 × 10−15. Refer to Table 11 for more details
about the simulation parameters.

Table 11. Simulation parameters for Nafion modified
n-GaAs electrode.

 0 V 0 -2.42 V

 -2 V  0.2

A 0.25 cm2 D 0.49

Frx Conc 1 0 320× 10−12
 0.1 V/s n 2

T 298 K 0 16× 10−15
 40 D 10× 10−5 cm2/s

C 1.5 mole/cm3 max 73.7

max 0.003
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3.2.2 Hydrogen Evolution Reaction on Glassy Carbon

Electrodes

Figures 20 and 21 show potential sweep voltammograms for the hydrogen

evolution reaction on magnetically modified glassy carbon electrode (MMGCE,

dotted red) and Nafion modified glassy carbon electrode (NMGCE, dashed green).

The potential differences between MMGCE and NMGCE at 1.0 ×10−4 A and

1.0 ×10−3 A are 0.314 V and 0.111 V, respectively. Since the potential differences

vary with the current, the thin layer analysis used for n-GaAs electrodes is not

appropriate here.

Reaction kinetics of these two potential sweep voltammograms are obtained by

fitting the data to a computer simulation for the cyclic voltammogram. Simulated

data (solid black) for the NMGCE and MMGCE are plotted in Figure 20 and

21, respectively. Butler-Volmer kinetic and explicit finite difference method for

semi-infinite linear diffusion are used for the simulation. In Tables 12 and 13,

parameters for simulation fitting are tabulated. 0 for MMGCE is 8× 10−11 where

as 0 for NMGCE, it is 1 × 10−15. From the result of the simulations, magnetic

modification improves the rate constant of HER on GCEs by 8 × 104 fold. The

transfer coefficient () of MMGCE, 0.1, is much smaller than that for NMGCE, 0.3.

Because the transfer coefficient characterizes the symmetry of the energy barrier for

electron transfer, different  values mean the symmetry of the energy barrier of the

reaction under the magnetic field differs from the barrier without the magnetic filed.
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Figure 20. Potential sweep voltammogram of hydrogen evolution on glassy carbon
electrodes with magnetic modification (dotted red) and Nafion modification (dashed
green). Blue solid line is computer simulated current voltage profile for magneticaly
modified GC electrode where 0 is 14 × 10−10. Refer to Table 12 for more details
about the simulation parameters.

Table 12. Simulation parameters for magnetically modi-
fied glassy carbon electrode.

 0 V 0 -2.42 V

 -1 V  0.09

A 0.785 cm2 D 0.49

Frx Conc 1 0 141× 10−7
 0.1 V/s n 2

T 298 K 0 1× 10−10
 20 D 10× 10−5 cm2/s

C 1.5 mole/cm3 max 73.7

max 0.003
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Figure 21. Potential sweep voltammogram of hydrogen evolution on glassy carbon
electrodes with magnetic modification (dotted red) and Nafion modification (dashed
green). Blue solid line is computer simulated current voltage profile for Nafion mod-
ified GC electrode where 0 is 14× 10−15. Refer to Table 13 for more details about
the simulation parameters.

Table 13. Simulation parameters for Nafion modified
glassy carbon electrode.

E 0 V 0 -2.42 V

E -1 V  0.3

A 0.785 cm2 D 0.49

Frx Conc 1 0 198× 10−12
 0.1 V/s n 2

T 298 K 0 14× 10−15
t 20 D 10× 10−5 cm2/s

C 1.5 mole/cm3 max 73.7

max 0.003
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3.2.3 Hydrogen Evolution Reaction on p-Type Silicon

Electrodes

Figures 22 and 23 show potential sweep voltammograms for the hydrogen

evolution reaction on a magnetically modified p-type silicon electrode (100a/M20/1,

dotted red) and Nafion modified p-type silicon electrode (100a/M0/1, dashed green).

Electrodes are illuminated as in Chapter 2. The potential differences between

100a/M20/1 and 100a/M0/1 at 5 × 10−4 A and 25 × 10−3 A are 0.383 V and

0.244 V, respectively. Because the potentials differences vary with the current, the

thin layer analysis is not appropriate here, again.

Reaction kinetics of these two potential sweep voltammograms are obtained by

fitting the data to a computer simulation for a cyclic voltammetry. Simulated data

(solid black) for the 100a/M20/1 and 100a/M0/1 are plotted in Figures 22 and 23,

respectively. In Tables 14 and 15, parameters for the simulation fitting are tabulated.

0 for 100a/M20/1 is 13× 10−9 whereas 0 for 100a/M0/1 is 20× 10−11. From the

simulations, the magnetic modification increases the rate constant for the HER on

p-type silicon by 65 fold. The transfer coefficient () of 100a/M20/1, 0.08, is much

smaller than that for100a/M0/1, 0.135. Because the transfer coefficient characterizes

the symmetry of the energy barrier for electron transfer, different  values mean the

symmetry of the energy barrier of the reaction under magnetic field differs from the

barrier without the magnetic field.

If a totally irreversible thin layer cell analysis is used at the potentials when

current is 1 mA, the ratio of 0 of 100a/M20/1 and 0 of 100a/M0/1 is 266. The

results of the totally irreversible thin-layer analysis and of Butler-Volmer kinetic
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Figure 22. Potential sweep voltammogram of hydrogen evolution on p-Si electrodes
with magnetic modification (dotted red) and Nafion modification (dashed green).
Blue solid line is computer simulated current voltage profile for magneticaly modified
p-Si electrode where 0 is 201× 10−6. Refer to Table 14 for more details about the
simulation parameters.

simulation has differ by about 4 fold, but this is not surprising as the  value

assumed in the thin layer analysis is 0.5. Both analyses are consistent with a

substantial increase in rate under magnetic modification.

3.2.4 Summary of Data

The data for the magnetic and Nafion modified electrodes are summarized in

Table 16.
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Table 14. Simulation parameters for magnetically mod-
ified p-Si electrode.

 0.2 V 0 -2.42 V

 -1 V  0.08

A 1 cm2 D 0.49

Frx Conc 1 0 201× 10−6
 0.1 V/s n 2

T 298 K 0 13× 10−9
 24 D 10× 10−5 cm2/s

C 1.5 mole/cm3 max 73.7

max 0.003
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Figure 23. Potential sweep voltammogram of hydrogen evolution on p-Si electrodes
with magnetic modification (dotted red) and Nafion modification (dashed green).
Blue solid line is computer simulated current voltage profile for magneticaly modified
p-Si electrode where 0 is 201× 10−6. Refer to Table 14 for more details about the
simulation parameters.
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Table 15. Simulation parameters for Nafion modified
p-Si electrode.

 0.2 V 0 -2.42 V

 -1 V  0.135

A 1 cm2 D 0.49

Frx Conc 1 0 310× 10−8
 0.1 V/s n 2

T 298 K 0 200× 10−11
 24 D 10× 10−5 cm2/s

C 1.5 mole/cm3 max 73.7

max 0.003

Table 16. Summary of 0 and  data for noncatalytic electrodes and
Pt.

Surface Loading 0()0() () ()

n-GaAs (100) 15 100 0.2 0.2

Glassy Carbon - 15 80,000 0.09 0.3

p-Si (100) 20 65 0.08 0.135

Pt - - 1 0.5 0.5

From the data, magnetic modification consistently increases the standard

heterogeneous rate constant, 0. The largest effect is for GC, where the increase is

80,000 fold and the current voltage profile shifts about 111 - 314 mV to lowered

potential. For n-GaAs, 0 is 100 fold faster and overpotential is reduced by 233 mV.

For p-Si, 0 is 65 fold faster aand the current voltage profile shifts about 383 -

244 mV to lowered potential. The transfer coefficients are low for all these adsorbate

reactions, and in the case of glassy carbon and p-Si, the  values are smaller under

magnetic modification.

3.3 Discussion and Conclusion

To investigate magnetic field effects on the HER on noncatalytic electrodes,
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n-GaAs , glassy carbon , p-Si electrodes are prepared and modified with a mixture of

magnetic particles and Nafion or only Nafion. By comparing current voltage profiles

of HER on these electrodes, it has been shown that heterogenous electron transfer

kinetics for hydrogen evolution on magnetically modified electrodes is 102 to 104

times faster than only Nafion modified electrodes. Results are summarized in Table

16.

For n-GaAs electrode experiments, peak current analysis for a totally irreversible

thin layer cell is used and the ratio of the electron transfer rate constant of a

magnetic modified electrode and a Nafion modified electrode is calculated and

 is 93. For the glassy carbon experiments, experimental results of potential

sweep voltammogram are fitted by computer simulation which is based on the models

of Butler-Volmer kinetic and explicit finite difference method for mass transport.

The result of the simulation is a  ratio of 10
4. Although calculated and

simulated values are different by two orders of magnitude, the discrepancy can be

attributed to the differences between assumptions of these two methods and possible

material properties differences. The fact that the magnetic field enhances the

heterogeneous electron trasfer kinetic of hydrogen evolution reaction is confirmed.

Magnetic fields have been shown to increase the rate of electron transfer at

semiconductor surfaces (Chapter 2) and between outer sphere transition metal

complexes (Chapter 4). Here, the rate of heterogeneous electron transfer are

substantially improved at noncatalytic electrodes. Further increases in the efficiency

of these electrodes are possible with application of magnetic microparticles with

higher magnetization, such as samarium cobalt and neodymium iron boron magnets.
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With sufficiently high magnetic fields, noncatalytic electrodes may be rendered

effective catalysts. Conversely, the efficiency of catalytic electrode may arise from

their magnetic properties and ability to interact with the spin characteristics of

redox probe and adsorbates.
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CHAPTER 4

MAGNETIC FIELD EFFECT ON SELF EXCHANGE REACTION

4.1 Theoretical Background

Magnetic field effects on self exchange reactions were first reported by Shelley

Minteer [1]. It was found the rates increased in the field and in proportion to

the magnetic properties of the redox probe. For reactions where the halves of

the redox couple include one diamagnetic and one paramagnetic species, the rates

were proportional to , where  is the Lande g-value and  is the spin for the

paramagnetic half of the couple. However, full physical interpretation of these results

for outer sphere transition metal redox couples has not been completed. Models

are needed that account for different spin states, , and the impact of the field

strength, .

To develop a more complete physicochemical model for magnetic effects, the

temperature dependence of magnetic field effects on self exchange reactions

for Co(bpy)
2+3+
3 , Co(bpy)

2+1+
3 , Ru(bpy)

3+2+
3 and Os(bpy)

3+2+
3 redox couples

are studied at electrodes modified with Nafion, with and without magnetic

microparticles. Magnetic microparticles with different magnetic field strengths were

used to vary the field. The couples have different self exchange rates, standard

potentials, and magnetic properties, but are otherwise similar in charge, size, and

electrostatic interaction with the Nafion matrix. Cyclic voltammetric peak currents

were determined for each redox probe at various temperatures from 5 to 70 C. The
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square of the peak current is proportional to the apparent diffusion coefficient that

is, in turn, proportional to the self exchange rate.

The data are analyzed according to the Arrhenius equation to find the pre-

exponential factor and the activation energies of the self exchange reaction for each

redox couple. The data derived from the Arrhenius analysis are the basis of a model

for magnetic effects that is developed within classical transition state theory (TST).

The relatively simple model includes impacts of prepolarization in an applied field

and spin polarization effects on the cage complex. When one half of the redox couple

is a singlet (diamagnetic), electron nuclear spin polarization occurs. In this model,

magnetic impacts on enthalpy and entropy are identified. The model provides

a simple interpretation of outer sphere self exchange reactions of tris-bipyridal

complexes. It is found that  is a component in the enthalpy of activation but

that enthalpy is largely set by electrostatics. The entropy includes terms associated

with the spin states of the halves of the couple.

4.1.1 Physical Diffusion and Hopping Diffusion in

Electrochemical Systems

Figure 24 shows an electrochemical system of an electrode in low viscosity

electrolyte such as an aqueous solution. Three basic electrochemical events are

presented: change of potential on the electrode, heterogeneous electron transfer to

a redox probe (e.g., Ru3+), and diffusion of the product (e.g., Ru2+) away from

the electrode and fresh reactant (e.g., Ru3+) toward the electrode. In typical

electrochemical systems, the concentration of the redox probe is low and the viscosity
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is low such that transport occurs by physical diffusion. In the Dahms [47] and Ruff

[48—50] models, diffusion of redox couples in an electrolyte occurs by two processes

[51]. One process is physical diffusion and the other is electron hopping. When the

electrolyte has low viscosity, the motion of the redox couple is parameterized by 

(cm2/s), physical diffusion. When electrolyte viscosity is extremely high, physical

diffusion is limited. If the concentration of the redox probes is also high, electron

hopping between adjacent redox moieties becomes possible and the diffusion is

enhanced by electron self exchange between the redox moieties. This is illustrated in

Figure 25 when electrodes are modified with Nafion that restricts physical motion

and extracts cations to high concentrations. Under these conditions, the measured

apparent diffusion coefficient (0) is dominated by self exchange or hopping

diffusion. Dahms and Ruff modeled the apparent diffusion coefficient in terms of 

and the self exchange diffusion coefficient .

0 =  + (16)

=  +


2∗0
6

(17)

where  is the self exchange reaction rate constant (M
−1s−1),  is the center to

center distance between the two adjacent redox moieties that undergo self exchange

(cm), and ∗0 is bulk concentration of the redox couple (M). The value of 6 is a

geometric factor for three dimensions. Based on data from Gellett’s dissertation [2]

for transition metal complexes in Nafion,  is of the order of 10
−12 cm2/s, which is

negligible compared to . Thus,

0 → 
2∗0
6

(18)
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Figure 24. Schematic diagram of an electrochemical cell in a low viscosity electrolyte.
The three events central to the current response are: potential at the electrode surface
is applied, heterogeneous electron transfer event occurs between the electrode and
redox probe in solution, and the redox reactant and product diffusion toward and
away from the electrode, respectively.

4.1.2 Determination of Apparent Diffusion Coefficients

In cyclic voltammetry, the peak current on the forward sweep yields the

apparent diffusion coefficient, 0. The transition metal complexes considered

here are fully exchanged into Nafion and displace all other cations. The

complexes neutralize the available sulfonic acid sites (−−3 ) of the Nafion. The

sulfonate concentration is determined from in the Nafion density, 1.95 g cm−3

[52], and the nominal equivalent weight of 1100 g/mole of −3 . (Titration

has shown the equivalent weight is closer to 1000 g/mol of −3 [45].) This

yields ∗3 = (195  −3)  (1100 ) = 177 × 10−3 mol/cm3. The

concentration of the redox probe is determined from the charge of the redox

species present at the electrode surface at the start of the cyclic voltammetric

perturbation of the redox couple. For a species with  of 3, the redox probe
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Table 18. Properties specific to commercial
Chemicell magnetite microparticles.

Naming Functional Group

SiMAG-Octadecyl C18 -Si-(CH2)17CH3
SiMAG-Octyl C8 -Si-(CH2)7CH3
SiMAG-Propyl C3 -Si-(CH2)2CH3
SiMAG-Methyl C1 -Si-CH3
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Figure 26. Temperature program for the electrochemical cell. The temperature is
first lowered to 5 ◦ and held for 1 hour. The temperature is then raised to 75 ◦ at
a rate of approximately 10 ◦/hour. Cyclic voltammograms are recorded at various
temperatures along the temperature program.
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4.2.2 Temperature Control

Temperature studies were undertaken with a Thermotron Environmental Chamber

that was programmed with a 288 Programmer/Controller. The three-electrode cell

was placed in the chamber and the temperature was controlled from 5 C to 70 C.

A typical temperature program is shown in Figure 26. The temperature was first

lowered to 5 ◦ and held for 1 hour. The temperature was then raised to 75 ◦ at a

rate of approximately 10 ◦C/hour. Cyclic voltammograms were recorded at various

temperatures along the temperature program.

A two probe temperature logger was used to record the temperature (HH506RA

Omega). One probe was placed in the air in the chamber and the other was placed in

the electrolyte solution attached at the top of a electrode to measure the temperature

about the electrode surface.

4.2.3 Magnetic Susceptibility Measurements

Magnetic susceptibilities of the magnetic microparticles were measured with a

magnetic susceptibility balance (The Auto MSB, Sherwood scientific). Samples were

prepared by dispersing the commercial magnetic particle suspension into deionized

water by weight. Before the weighing tube was put in the magnetic susceptibility

balance, the suspensionwas thoroughly mix to make the particle dispersed well.

Immediately after the weighing tube was inserted into the balance, the magnetic

susceptibility was read as the magnetic susceptibility. The value decreased and

stabilized when the magnetic particles agglomerated on the bottom of the test tube.
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Table 19. Magnetic Properties of Transition
Metal Complexes.

Complex  (BM)    

Ru(bpy)3+3 1.86 1  2.15 1/2 1.07

Os(bpy)3+3 1.49 1  1.72 1/2 0.86

Co(bpy)2+3 3.45 3  1.78 3/2 2.67

Co(bpy)1+3 * 2  1 2

Note: All values were determined experimentally by

Gellett in SQUID except Co(bpy)1+3 (marked by *) ,

 is taken as 2 and the electron configuration for a T

yields  = 1.

Because the magnetic susceptibility should have been measured when samples were

homogeneously suspended in the test tube, the value measured first was reported as

the magnetic susceptibility of the commercial particles.

4.2.4 Experimental Setups

The protocol to evaluate the dependence of the self exchange reaction

on temperature was as follows. A glassy carbon electrode (5 mm diameter,

 = 0196 cm2) was modified with either Nafion or Nafion/Simag suspension. A

total of six glassy carbon electrodes are prepared. The modified GC electrodes

were soaked in an electrolyte solution, containing 1 mM redox couple and 0.1 M

electrolyte, to equilibrate the probe into the Nafion matrix for at least 9 hours. A

large surface area platinum mesh counter electrode was used and a saturated silver

chloride electrode was used as the reference. A Chi1030 8-channel multi-potentiostat

was used to measure cyclic voltammograms. Peak currents were measured manually.

The redox species initially extracted into the films are Co(bpy)3+3 , Ru(bpy)
2+
3
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and Os(bpy)3+3 . The Co(bpy)
2+1+
3 was measured on cyclic voltammetric sweep well

after the initial present Co(bpy)3+3 had been reduced to Co(bpy)2+3 . The initial

concentration for the Co(bpy)
2+1+
3 was thus taken as Co(bpy)2+3 . ∗0 for each species

was ∗3. Thus, for Co(bpy)
3+
3 and Os(bpy)3+3 ∗0 is 0591× 10−3 mol/cm3

and for Ru(bpy)2+3 and Co(bpy)2+3 , 
∗
0 was 0886× 10−3 mol/cm3.

Some data, presented in Table 19 taken from Gellett’s dissertation are needed for

the current discussion [2]. Several species are singlets: Ru(bpy)2+3 , Os(bpy)
2+
3 , and

Co(bpy)3+3 , so all have  = 0,  = 0, and  = 0.

4.3 Results

4.3.1 Magnetic Susceptibilities

Magnetic susceptibilities are measured and converted to volume magnetic

susceptibilities for the commercial magnetic particles. Figure 27 shows the volume

magnetic susceptibilities of the commercial particles. A correlation between volume

magnetic susceptibilities and the coatings of the Simag particles was anticipated

based on the chain length of the silane coatings, but none was found. The strength of

the magnetic field established at each magnetic particle is important to characterizing

the response of the magnetically modified electrodes. The susceptibility is taken as a

relative measure of the field strength, . Susceptibilities are presented in Table 20.

4.3.2 Ru(bpy)
2+3+
3

The ruthenium complex was used as the probe to assess the impact of different
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Figure 27. Volume magnetic susceptibilies of purchased SiMAG particles. C1 has
highest magnetic susceptibility of 539× 10−05 (c.g.s. scale).

Table 20. Volume magnetic susceptibility
in c.g.s. for Simag particles.

Volume magnetic susceptibility (c.g.s)

Dispersed Agglomerated

C1 539× 10−05 190× 10−5
C3 239× 10−05 165× 10−5
C8 860× 10−6 340× 10−6
C18 196× 10−5 177× 10−5
water −106× 10−06
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Figure 28. Cyclic voltammogram of Ru(bpy)
+2+3
3 on various electrode modifications.

Nafion modificaton and C1, C3, C7 and C8 magnetic modifications are applied to each
electrode as well as Nafion only modification as a control.
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strength magnetic fields established at the electrode surface by using commercial

microparticles with different magnetic content. Nafion films and composites of

Nafion and C1, C3, C18, and C8 were evaluated.

4.3.2.1 Variation of Response with Magnetic Content

Figure 28 shows cyclic voltammogram for Ru(bpy)
2+3+
3 under various electrode

modifications. The electrolyte is 1.0 mM Ru(bpy)
2+3+
3 in 0.10 M HNO3. C1, C3, C8

and C18 magnetic microparticles are each applied electrodes in a Nafion suspension.

Unmodified and Nafion modified electrode are also shown. Different modifications

yield slightly different cyclic voltammetric morphologies and different peak currents.

C1 has the highest peak current whereas the unmodified electrode has the lowest

peak current. The C1 electrode yields current four times as high as the unmodified

electrode.

The peak currents of each voltammogram in Figure 27 increase monotonically

with volume magnetic susceptibility. In Figure 29, these data are linearized as peak

currents () versus volume susceptibility. Recall from Equation 22 that 2 ∝ .

When magnetic susceptibility and the magnetic content of the particles increases,

the self exchange reaction rate constant increases at room temperature.

4.3.2.2 Variation of Response with Magnetic Content and Temperature

To evaluate the impact of magnetic fields on the self exchange rate, a classical

kinetic study to evaluate rate with temperature was undertaken. The different

magnetic content commercial particles in Nafion were evaluated as was a Nafion film.
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Figure 29. Volume magnetic susceptibility versus  at 21
C. Peak current is directly

related to self exchange reaction rate constat (k). When magnetic susceptibility
increases self exchange reaction rate becomes faster then showing higher peak current
(i) for Ru

2+3+ at room temperature.



84

Temperature (T) / oC

0 10 20 30 40 50 60 70

P
ea

k 
cu

rr
en

t 
(i p)

 /
 m

A

0.0

0.1

0.2

0.3

0.4

0.5

0.6

NAF 
C1 
C3 
C8 
C18 

Figure 30. Peak currents (i) of CVs at increasing temperature from 5 to 60
C. Peak

currents increase exponentially following Arrhenius behavior.

The results of the temperature studies for 5 to 60 ◦C are shown in Figure 30. The

peak currents increase with temperature. These data are converted to an Arrhenius

format, based on Equation 22, by plotting ln(i2
2) vs 1/T. The slope of the

Arrhenius plot yields the activation energy (E) and pre-exponential factor (A). The

Arrhenius plots are shown in Figure 31. Note that as the magnetic susceptibility

increases, the slopes diminish, with the shallowest slope found for the C1 composites.

From the Arrhenius plot of various electrodes with individual modifications,
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Figure 31. Arrhenius plot of various electrode with individual modifications. Slopes
represents activation energy (E) and intercept can be converted to pre-exponential
factor (A).
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Table 21. The slopes () and intercepts () of the Arrhenius Analysis for
Various Commercial Particles.

Naf C1 C3 C8 C18

 4118± 031 3622± 023 3939± 088 4201± 119 3966± 055
(−) −7352± 94 −5420± 69 −6664± 268 −7267± 364 −6635± 169

r2 0998 0998 0984 0978 0993

100 


100 725± 18 901± 55 103± 7 897± 36

activation energy (E) and pre-exponential factor (A) vlaues can be obtained for

each magnetic particle which has different magnetic volume susceptibility. Slopes

represent activation energy (E) and intercept can be converted to pre-exponential

factor (A). Results are tabulated in Table 21.

In Table 21, the last row is the ratio of the activation energy for the magnetic

composite relative to the nonmagnetic Nafion film. C1, the composite with the

strongest magnetic field, has a 27 % lower activation energy than the Nafion film.

C3 and C18 also show activation energies reduced relative to the Nafion film.

The composite formed with the lowest reported magnetic susceptibility, C8, has

an activation energy that is the same as the nonmagnetic Nafion film. This is

consistent with the results in Figures 30 and 31 where the C8 composite data are

fully coincident with the Nafion data.

4.3.2.3 Magnetic Susceptibility vs Activation Energy

The relationship between activation energy with magnetic susceptibility for self

exchange reaction of Ru(bpy)2+3+ is shown in Figure 32. When volume magnetic

susceptibility increases, activation energy for the composite decreases linearly. The
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Figure 32. Activation energy (E) of Ru(bpy)
2+3+ self exchange reaction versus vol-

ume magnetic susceptibility. When volume magnetic susceptibility increases, activa-
tion energy of the reaction decreases.
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Table 22. The slope (E)

and the intercept (ln(A)) of
the Arrhenius Analysis for
Co(bpy)23

+3+.

Naf Mag

ln(A) 3409± 102 2510± 064
E/R 6594± 312 3803± 194
R2 0982 0979

% E 100 57

intercept of the plot is 9321± 256 and the slope is −5348± 0816× 106. The R2 of

the regression line is 0.96.

4.3.2.4 Magnetic Susceptibility vs Pre-exponential Factor

The relationship between activation energy with pre-exponential factor for self

exchange reaction of Ru(bpy)2+3+ is shown in Figure 33. When volume magnetic

susceptibility increases, activation energy for the composite decreases linearly. The

intercept of the plot is 4183± 051 and the slope is −1019± 0183× 105.The R2 of

the regression line is 0.91.

4.3.3 Activation Energy and Pre-exponential Factor of

Co(bpy)
2+3+
3 Self Exchange Reaction

In Figure 34, ln() versus 1/T for Co(bpy)
2+3+
3 on magnetically modified

electrode and Nafion modified electrode are plotted. Using Equation 25, E/R and

ln(A) values are extracted by linear regression. Slopes of the Nafion and magnetic

particles modified electrodes are linear showing R2 of 0.97 and 0.97, respectively.

Percent activation energies relative to Nafion modified electrode are calculated and
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Figure 33. ln(A) of Ru(bpy)2+3+ self exchange reaction versus volume magnetic sus-
ceptibility. When volume magnetic susceptibility increases, activation energy of the
reaction decreases.
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Figure 34. ln() versus 1/T for Co(bpy)
2+3+
3 on magnetically modified electrode

and Nafion modified electrode.
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Table 23. The slope (E)

and the intercept (ln(A)) of
the Arrhenius Analysis for
Co(bpy)23

+1+.

Naf Mag

ln(A’) 47.13±2.75 3448± 027
E/R -10400±50 −6230± 34
R2 0.9308 09980

% E 100 60

tabulated in Table 22. As a result, it is speculated that magnetic modification

reduces the activation energy of Co(bpy)
2+3+
3 self exchange reaction 43 %.

4.3.4 Activation Energy and Pre-exponential Factor of

Co(bpy)
2+1+
3 Self Exchange Reaction

In Figure 35, ln() versus 1/T for Co(bpy)
2+1+
3 on magnetically modified

electrode and Nafion modified electrode are plotted. Using Equation 25, E/R and

ln(A) values are extracted by linear regression. Slopes of the Nafion and magnetic

particles modified electrodes are linear showing R2 of 0.93 and 0.99, respectively.

Percent activation energies relative to Nafion modified electrode are calculated and

tabulated in Table 23. As a result, it is speculated that magnetic modification

reduces the activation energy of Co(bpy)
2+1+
3 self exchange reaction 40 %.

4.3.5 Activation Energy and Pre-exponential Factor of

Os(bpy)
2+3+
3 Self Exchange Reaction

In Figure 36, ln() versus 1/T for Os(bpy)
2+3+
3 on magnetically modified

electrode and Nafion modified electrode are plotted. Using Equation 25, E/R and
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Figure 35. ln () versus 1/T for Co(bpy)
2+1+
3 on magnetically modified electrode

and Nafion modified electrode.
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Figure 36. ln() versus 1/T for Os(bpy)
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3 on magnetically modified electrode

and Nafion modified electrode.
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Table 24. The slope (E) and

the intercept (ln(A)) of the Arrhe-

nius Analysis for Os(bpy)23
+3+.

Naf Mag

ln(A’) 4483± 097 3864± 057
E/R −8656± 288 −6124± 170
R2 09923 09946

% E 100 71

ln(A) values are extracted by linear regression. Slopes of the Nafion and magnetic

particles modified electrodes are linear showing R2 of 0.99 and 0.99, respectively.

Percent activation energies relative to Nafion modified electrode are calculated and

tabulated in Table 22. As a result, it is speculated that magnetic modification

reduces the activation energy of Os(bpy)
2+3+
3 self exchange reaction 30 %.

4.4 Model for Magnetic Effects in Self Exchange

Reactions

4.4.1 Self Exchange Reactions

Self exchange reactions are a specific class of electron transfer reactions in which

the products and reactants are the same species but the electron transfer leads to

a transposition of the reactants in space. Consider the two halves of the couple

in a tris-bipyridal transition metal complex with oxidation states +2 and +3 that

undergoes electron transfer at a standard potential, 0.

 ()
3+

3 + ­ ()
2+

3 (26)

Allow that in a matrix, the two halves of the couple are directly adjacent and
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sufficiently close that electron transfer is possible. The most probable electron

transfer is when the moieties are in contact, as is assumed in the following. Place

reactants  ()
2+

3 at position  and  ()
3+

3 at position . Following electron

transfer from ()
2+

3 to ()
3+

3 , ()
2+

3 will be at position  and ()
3+

3

will be at position .

 ()
2+

3 | + ()
3+

3 | ­ ()
3+

3 | + ()
2+

3 | (27)

Such processes are known to contribute to charge flux in highly concentrated and

slow transport matrices, such as ion exchange polymers.

4.4.1.1 Self Exchange Reactions in Matrices of High Concentration and

Slow Transport

Models have been developed for enhanced transport where self exchange processes

augment or supplant physical diffusion. Physical diffusion is the process by

which a moiety physically moves through space. Dahms [47] and Ruff [48—50, 54]

independently developed models for the effective or measured diffusion coefficient,

 (
2), that include the physical diffusion coefficient, , and the self exchange

or electron hopping diffusion coefficient, . The self exchange process is embedded

in  where the self exchange rate is 11 (
−1−1),  () is the diameter of the

reactants, ∗ () is the concentration of the reactants, and 6 is a geometrical factor

for diffusion in a three dimensional rectilinear coordinate system.

 =  +
11

∗2

6
(28)

Measurements in solution, matrices of high , did not reveal significant
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contributions to  by self exchange. However, from Equation 28, impacts of self

exchange on  will increase as  decreases and ∗ increases for a given 11.

Conditions of slow transport and high concentration are met when redox probes are

adsorbed to electrode surfaces, present in the solid state, and embedded in polymer

matrices. Electron hopping by self exchange is an established transport mechanism

in ion exchange polymers such as Nafion [55]. For a series of redox couples

 ()
2+3+

3 where  =    and ,  is ∼ 0 (10−12 cm2/s)  [2].

Here, data for a variety of magnetic microparticles in Nafion and Nafion films

were collected as a function of temperature. Data were evaluated by an Arrhenius

analysis. The slope and intercepts of the Arrhenius plots are well correlated with the

properties of the magnetic particles. Temperature data were also collected for C1

particles across a set of redox probes. Magnetic effects were again found. The effects

were quantified with an Arrhenius analysis. There is greater variability and more

parameters to consider in examining the redox probes than in the studies of the

microparticles with  ()
2+

3 . The following is a brief outline of a possible model

for the magnetic effects. Some evaluation of the model against the data is presented.

4.4.2 Transition State Theory (TST) for Self Exchange

Reactions without Magnetic Effects

Transition state theory (TST) evolved as a model for kinetics based on classical

mechanics and an activated complex. TST is also known as activated complex

theory and absolute rate theory [56]. In TST, two reactants come together to form

an associated pair of reactants held together in a cage of surrounding continuum
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media, denoted as follows where [] is the activated complex.

+ ­ [] (29)

The formation of the activated complex is associated with a potential energy barrier

of height ∆‡, the free energy of activation, as shown in Figure 37 for the self

exchange reaction + ­  +. The rate of the self exchange reaction is

 = 11 [] [] (30)

A + B B + A

[AB]

G‡

A + B B + A

[AB]

G‡

Figure 37. In transition state theory, the reactants,  and , come together to form
an activated complex []. The complex is at higher energy than the reactants or
products by the free energy of activation, ∆‡.

In TST, the self exchange rate is expressed as

11 =  (31)

where  is a pre-equilibrium constant that describes the formation of the activated
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complex from the available reactants as

 =
[]

[] []
(32)

The pre-equilibrium constant is calculated on a strictly electrostatic basis.  is

developed from considerations similar to those for activity effects, such as Debye

Hückel theory [57]. In this model,  has units of −1. Note that in TST, the

activated complex is formed as in equilibrium with the reactant and as in equilibrium

with the products.

The rate constant, , for a self exchange reaction is the rate of the electron

transfer based on the concentration of the activated complex []. Note, that in

TST models, the model follows the path of the reaction to the instant of electron

transfer. The process as drawn is reversible, but the TST model only considers

elementary kinetic steps along the path from the activated complex to the instant

of electron transfer. This consideration is particularly important in developing TST

models for self exchange reactions where there is no change in the concentration of

the reactants and products.

Here, the ∆‡ embeds free energies associated with the formation of the activated

complex and with the subsequent steps to the electron transfer. The rate  is then

expressed in an Arrhenius form as

 =  exp

∙
−∆‡



¸
(33)

where  (−1),  is Boltzmann’s constant (13806568 × 10−23 JK−1), and  is

temperature in Kelvin. This is on a per molecule basis; the form that uses
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energies of activation,  and the gas constant, , is on a per mole basis,

 =  exp
£−∆‡

¤
. The pre-exponential factor is  (−1). In classical TST, 

is taken as  where  is Planck constant (66260755× 10−34 J s). It is noted

that  has units of frequency (
−1).

From the Gibbs equation for the activated complex,

∆‡ = ∆‡ − ∆‡ (34)

where ∆‡ is the enthalpy of activation and ∆‡ is the entropy of activation.

Enthalpy measures heat and entropy measures disorder. The rate expression is

equivalently written as

 =  exp

∙
∆‡



¸
exp

∙
−∆‡



¸
(35)

4.4.3 General Considerations for Transition State

Theory (TST) That Includes Magnetic Effects

The TST model can be modified to include magnetic effects on the self exchange

reactions. Two components are considered here, the re-expression of Equation 35

to segregate magnetic terms and a description of magnetically dependent entropy

terms based on probabilities. It is noted that all self exchange reactions considered

here are outer sphere reactions that do not undergo structural changes on electron

transfer; that is, the reactions are simple.

The total enthalpy of activation is segregated into two parts, ∆
‡
0 and ∆‡

,

the enthalpy not subject to magnetic effects and the enthalpy dependent on the

magnetic effects, respectively. Segregation of thermodynamic parameters into two
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enthalpies is consistent with compounds in the magneto electrochemical potential.

The two components are taken as independent and to represent the total enthalpy

of activation as a sum.

∆‡ = ∆
‡
0 +∆‡

 (36)

Analogous definitions are provided for the entropy where ∆
‡
0 is the magnetically

independent entropy term and ∆‡ is the magnetically dependent entropy term.

Then, based on common thermodynamic methodes,

∆‡ = ∆
‡
0 +∆‡ (37)

Equation 35 is

 =  exp

"
∆

‡
0



#
exp

∙
∆‡


¸
exp

"
−∆

‡
0



#
exp

∙
−∆‡





¸
(38)

In this framework, effects of magnetic fields are expressed in enthalpy and entropy

and the magnetic effects are segregated from non-magnetic enthalpy and entropy.

The second consideration is the entropy based on the probability of states that

arises in statistical thermodynamics. The entropy for a single species is defined as




= −

X


 ln (39)

where the species has several assessable states and the probability of the species

being in a state  is . The entropy associated with magnetic effects will be

developed from Equation 39. The probabilities of interest are the probabilities of the

species being in a particular spin state. For example, in the absence of an applied

magnetic field, an unpaired electron has two states, one spin up and one spin down.

Then,  = − (05 ln(05) + 05 ln (05)) = − ln (05) = 0693. Note also that the
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calculation of ∆ requires application of Equation 39 to an initial and final state.

4.4.4 TST Modified for Magnetic Effects in Self

Exchange Reactions of Singlet-Doublets

Several of the transition metal couples,  ()
2+3+

3 , have one half of the couple

that is diamagnetic and one half that has a single unpaired electron, a paramagnetic

radical. These two states are a singlet () and a double (), respectively. The self

exchange reaction for these systems is

 ()
2+

3 | + ()
3+

3 | ­ ()
3+

3 | + ()
2+

3 | (40)

| +| ­ | + | (41)

 ()
2+

3 is the singlet and  ()
3+

3 is the doublet (radical of one unpaired

electron) when  is from Group 6B of the periodic table:  = , , or

. Tris-bipyridal complexes are octahedral. For Group 6B,  ()
2+

3 is 6 and

 ()
3+

3 is 5. The energy levels are filled as shown.

For reaction between a singlet and a radical, magnetic effects couple into the

system through electron nuclear spin polarization (ensp). ensp is the process by

which the electron spin on the radical couples to the nuclear spin of the singlet when
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both are in the cage complex. ensp is important to effective isoenergetic electron

transfer. Within the framework of TST, in the presence of a sufficient applied

magnetic field, the radical is polarized by the magnetic field. The pre-polarized

radical and singlet form a cage complex where the spin is localized on the radical.

The system undergoes electron nuclear spin polarization such that the spin is

delocalized over the entire cage. This state is represented as the spin delocalized

over the cage complex by superscript  on the bracket that represents the cage

complex. The isoenergetic electron transfer occurs within the cage while the spin is

delocalized across the cage; this is represented by the arrow.

The energetics of this process are shown in Figure 38. The curve for no magnetic

effects is shown in grey with a barrier height of ∆
‡
0, the free energy of activation.

The magnetic effects are represented by the blue curve where the top of the energy

barrier is split into two states. The cage with the spin localized on the radical,£
↑¤, is raised in energy above ∆

‡
0 by an amount  and the cage with the

spin delocalized over the entire cage, []
↑
, is lowered in energy below ∆

‡
0 by

.

For []
↑
, the system is fully configured for effective isoenergetic electron transfer,
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which is a state slightly lower in energy than
£
↑¤. The two energies differ by

2. There are additional entropy advantages to the electron nuclear spin

polarized states that accrue with delocalized spin; this contributes to lower ∆‡

The experimental determined  measures the response of the radical to an applied

magnetic field,  is spin, determined from  and equal to 1/2 for a doublet,  is

the strength of the applied magnetic field, and  is a constant, the Bohr magneton¡
92740154× 10−24 JT−1¢. The Zeeman energy,  is small compared to  .

G‡
0

gHS

[SD ]

[SD]

D + SS + D

gHS

G‡
0

gHS

[SD ]

[SD]

D + SS + D

G‡
0G‡
0

gHSgHS

[SD ][SD ]

[SD][SD]

D + SD + SS + DS + D

gHS

Figure 38. For a self exchange reaction between a singlet (S) and a doublet (D↑), a
cage complex is formed,

£
↑¤ where the spin is localized on the doublet within the

cage. The spin is then delocalized over the entire cage complex by electron nuclear

spin polarization to form []
↑
. The isoenergetic electron transfer occurs within

the cage to form []
↑
. The cage with localized spin,

£
↑¤, has energy elevated

slightly above the free energy of activation in the absence of magnetic effects, ∆
‡
0,

to ∆
‡
0 + . The spin delocalized cage complex has a slightly lower energy,

∆
‡
0− . In the Figure, the gray curve represents the barrier when no magnetic

effects are considered.
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The sequence of steps is represented as follows, where energy increases along the y

axis. Several points are evident. First, the pre-equilibrium constant, , is calculated

from a purely electrostatic model. The energetics of the two states
£
↑¤ and []↑

could in principle be included in the pre-equilibrium constant to distribute the

cage complexes between localized and delocalized spin. But the energy differences

between the two states are small and the redistribution between the states upon

electron nuclear spin polarization is characterized by the kinetic steps. Thus, the

strictly electrostatic calculation of  is used to determine the concentration of the

cage complex and, because of the similar energies of the delocalized and localized

complexes, the concentrations are approximated as equal.

1

2
 []

£
↑¤ ∼= £↑¤ ∼= []↑ (42)

Further refinements are possible, but this suffices for the current development.

Second, the reaction between
£
↑¤ and []↑ is modeled as a forward rate of

electron nuclear spin polarization, 1 and a backward rate where the spin is again
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localized on the radical within the complex, −1. Third, there is no energy change

associated with the isoenergetic forward and backward electron transfer rates within

the cage, 2 and −2, respectively. Fourth, once the spin is polarized by the applied

field, the spin is inherited up until the instance of electron transfer. Spin does not

spontaneously flip once it is oriented by the applied field. Finally, in TST, it is only

necessary to map the kinetic processes up to the instant of electron transfer, here

step 2. The rate is based on the concentration of []
↑
.

The rate expression for the process is dependent on expressing the concentration

of []
↑
subject to generation and loss. The mechanism is traced to the instant of

electron transfer, the isoenergetic and spin invariant rate, 2.

 = 2 []
↑

(43)

= 2

³
1
£
↑¤− −1 []

↑
´

(44)

=
1

2
 []

£
↑¤ (1 − −1) 2 (45)

The measured self exchange rate, 11 =  (1 − −1) 2. Because 2 is isoenergetic

and does not change entropy states, including spin, 2 is unity. The rates 1 and

−1 are expressed within TST as follows. Note the entropy terms are not yet

expressed.

1 =  exp

∙
∆‡



¸
exp

"
−∆

‡
00 − 



#
(46)

−1 =  exp

∙
∆‡



¸
exp

"
−∆

‡
00 + 



#
(47)
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The measured self exchange rate is now expressed as

11 =  exp

∙
∆‡



¸(
exp

"
−∆

‡
00 − 



#
− exp

"
−∆

‡
00 + 



#)
(48)

Consider the magnetic component of the entropy term. The complex
£
↑¤ has

one unpaired spin and it can be present in one of two states, spin up and spin down.

The probability of either state is 1/2. The entropy for the state is then

‡
¡£
↑¤¢


= −
X


 ln = −
2X

=1

1

2
ln

µ
1

2

¶
= − ln

µ
1

2

¶
(49)

The spin is taken as inherited, so the entropy from magnet effects for []
↑
is zero

because there is only one allowed spin state.

‡
³
[]

↑
´


= −

X


 ln = −
1X

=1

1 ln (1) = − ln (1) = 0 (50)

The difference in the entropies is based on the difference in delocalized and localized

spin for the cage complex.

∆‡


=
‡
³
[]

↑
´


− ‡

¡£
↑¤¢


= ln

µ
1

2

¶
(51)

Upon substitution of ∆‡, the above rate expression becomes

11 =  exp

"
∆

‡
0



#
exp

∙
∆‡


¸
exp

"
−∆

‡
00



#⎧⎨⎩ exp
h




i
− exp

h
−



i ⎫⎬⎭ (52)

=  exp

"
∆

‡
0



#
exp

"
−∆

‡
00



#
exp

∙
ln

µ
1

2

¶¸⎧⎨⎩ exp
h




i
− exp

h
−



i ⎫⎬⎭ (53)

=  exp

"
∆

‡
0



#
exp

"
−∆

‡
00



# µ
1

2

¶
| {z }

exp

∙
∆

‡




¸

⎧⎪⎪⎨⎪⎪⎩
exp

h




i
− exp

h
−



i
| {z }

⎫⎪⎪⎬⎪⎪⎭
exp

∙
−∆

‡




¸
(54)

For no sufficient applied magnetic field, the entropy for the  reaction is 1/2.
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When a sufficient magnetic field is applied, the spins are all pre-polarized by the

field, and the entropy term is 1, no uncertainty about the state because there is only

one state.

For the state where the systems are identical except that one has a sufficient

magnetic field applied, ∆
‡
0 is the same as are the collision frequency and

pre-equilibrium constant. The expression for the enthalpy for 11 (0) comes from the

expression for no magnetic effects, Equation 35. The entropy is calculated as above.

The ratio of 11 in an applied field  as compared to no applied field,  = 0, is

11 ()

11 (0)
= −

 exp
h
∆

‡
0



i
exp

∙
−∆

‡
00



¸
1
n
exp

h




i
− exp

h
−



io
 exp

h
∆

‡
0



i
exp

∙
−∆

‡
00



¸
1
2

(55)

Several notes are made based on this ratio and Equation 54. First, for a SD

reaction, the ratio shows that the rate is doubled by applying a sufficient field

because the degeneracy of the spins is removed. Second, from Equation 54, the

approximation that

lim
→0

exp []→ 1 +  (56)

and the note that    , 11 () can be expressed as

11 () =  exp

"
∆

‡
0



#
exp

"
−∆

‡
00



#
1

⎧⎨⎩ exp
h




i
− exp

h
−



i ⎫⎬⎭ (57)

=  exp

"
∆

‡
0



#
exp

"
−∆

‡
00



#
1

(
1 + 



−
³
1− 



´ ) (58)

=  exp

"
∆

‡
0



#
exp

"
−∆

‡
00



#
1

½
2




¾
(59)

The rate is directly proportional to . Third, the collision frequency,  is taken
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as  in classical TST. If this is substituted into the 11 expression, the result is

11 () = 



exp

"
∆

‡
0



#
exp

"
−∆

‡
00



#
1

½
2




¾
(60)

= 
2


exp

"
∆

‡
0



#
exp

"
−∆

‡
00



#
(61)

Two additional points of interest are of note. The collision frequency is no longer

temperature dependent, 2. The ratio  is the frequency for the

magnetic effects and it is substantially lower than the time constant . This

frequency  may account for the lack of temperature dependence typically

observed for Arrhenius plots (ln  vs 1 ) made for rate analyses.

4.4.5 TST Extended to Other Reaction Mechanisms

and Incorporation of Prepolarization of the

Reactants

The model for the self exchange reaction between singlet and doublet states

is extended to other singlet radical reactions and is applicable to radical-radical

reactions. For radical-radical reactions, that electron spin polarization may have

to be considered, is under consideration which may require additional experimental

studies for verification.

The model is modified to allow a prepolarization step that polarizes the spins

of the reactants when there is an applied magnetic field. This prepolarization has

two impacts. First, the applied field reduces the entropy because there is only one

probable state for the spins in the field. A consequence of that in the absence of

the applied field, the entropy terms are large for radical-radical reactions, such as

 reactions, and the rates are slow. Radical-radical reactions can be dramatically
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Figure 39. Energetic states of TST with pre-polarization.

impacted by applied fields because the field reduces the spin entropy of the reactants.

Second, the prepolarization of the reactants raises their reference energetic state by

a Zeeman energy, , relative to the reactant energy when there is no applied

field. Thus, the net enthalpy of activation barrier is reduced and the reaction rate

facilitated. In the model with the prepolarization, the entropy associated with the

spin is now moved into ∆‡ for the prepolarization step. ∆
‡
0 remains magnetically

independent and is ∆
‡
0.

The rate expression for the self exchange rate is now the product of the

prepolarization rate, , the the self exchange process developed above. Note that

when two radicals react,  is replaced with ∆.
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 = exp
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Rearranging,

 =  exp
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Then, from Arrhenius plot

ln [] = ln + ln+
∆‡


+
∆

‡
0


(70)

+

⎡⎣−
³
∆

‡
00 − 

´


⎤⎦+ ln
⎧⎨⎩ exp

h




i
− exp

h
−



i ⎫⎬⎭ (71)

= ln + ln+
∆‡


+
∆

‡
0


(72)

−∆
‡
00 − 


+ ln

⎧⎨⎩ exp
h




i
− exp

h
−



i ⎫⎬⎭ (73)

Now simplify exp
£




¤− exp £−



¤
by noting that

lim
→0

 → 1 +  (74)

lim
→0

½
exp

∙




¸
− exp

∙−



¸¾
= 1 +




−
µ
1− 



¶
(75)

=
2


(76)

So

ln  = ln + ln+
∆‡


+
∆

‡
0


− ∆

‡
00 − 


+ ln

∙
2



¸
(77)

= ln + ln+ ln

∙
2



¸
+

∆‡


+
∆

‡
0


− ∆

‡
00 − 


(78)

If

 =



(79)

This becomes

ln  = ln + ln

∙
2



¸
+

∆‡


+
∆

‡
0


− ∆

‡
00 − 


(80)



112

Equilibrium constant  = exp
³
−∆

‡




´
 then

ln  =
−∆‡




+ ln

∙
2



¸
+

∆‡


+
∆

‡
0


− ∆

‡
00 − 


(81)

= −∆‡



+

∆‡


+ ln

∙
2



¸
+

∆‡


+
∆

‡
0


− ∆

‡
00 − 


(82)

Because spin states are inherited ∆‡ = 0 then

ln  = ln

∙
2



¸
+

∆‡


+
∆

‡
0


− ∆‡

 +∆
‡
00 − 



∆
‡
00 ' 0 because energy state of

£
↑¤ and £↑¤ is almost same.

ln  = ln

∙
2



¸
+

∆‡


+
∆

‡
0


− ∆‡

 − 



Note the time constant for the magnetic effect is

 =



(83)

Arrhenius plots from Equation 80 yield intercepts () and slopes ().

 = ln

∙
2



¸
+

∆‡


+
∆

‡
0


(84)

 = −∆
‡
0 − 


= −∆

‡
0



∙
1− 

∆
‡
0

¸
(85)

4.4.5.1 Considerations of ∆‡

The sources of the ∆‡ is the unpaired spins on the reactants before the formation

of the cage complex. The model is that when there is a sufficiently large magnetic

field , the spins are prepolarized into a single spin configuration and there is no

multiplicity of spin states. When the field is not sufficiently large or  → 0, then
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the full multiplicity of spin states is described by Boltzmann’s statistical mechanical

description. That is, for  states where each state has a probability, the entropy

is




= −

X
=1

 ln (86)

Consider a species with  unpaired spins. The number of spin states is 1
2
. For a

doublet, , there is one unpaired electron that can be either up or down, so the

probability of each state is 1
21
. The entropy for  is then



 

= −
X
=1

 ln = −
∙
1

2
ln

∙
1

2

¸
+
1

2
ln

∙
1

2

¸¸
= − ln

∙
1

2

¸
= ln [2] = 0693 (87)

If there is sufficient  then − → 0 and there is no entropy for the prepolarized

 but the initial energy is shifted by the Zeeman energy .

The triplet  has  = 2 and the quartet  has  = 3. So, for the unpolarized

radicals where every state has probability 12, Equation 86 becomes




= −

2X
=1

 ln = − ln 1

2
=  ln 2 = 0693 (88)

To arrive at ∆‡, it is necessary to consider the product, the cage complex as

it is first formed, and the reactant, which is the individual radicals. If there is

a sufficiently large , then the individual reactant radicals are prepolarized to

a single state so |reactant = 0. The spin on the cage complex is inherited,

so there is only one possible state for the product cage, so the cage complex has

|product(cage) = 0. For the prepolarized radicals (in a field of sufficient ),

∆‡


=



|product(cage)


|reactant (89)

In a sufficiently large  that reactants are prepolarized
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∆‡


= 0− 0 = 0 (90)

The entropy for the radicals not prepolarized is set by the sum of the entropies for

the individual reactant species. For the reaction of a singlet with a radical with

 unpaired spins, |reactant = |reactant,S + |reactant,radical = 0 +  ln 2

where the radical has  unpaired spins. For the reaction between two radicals, as

for  ()
21

3 which is a  reaction, where there are  unpaired spins on one

reactant and  unpaired spins on the other reactant,

|reactant = |reactant,radicala + |reactant,radicalb (91)

=  ln 2 + ln 2 = ( +) ln 2 (92)

For the  of  ()
2+1+

3 , the entropy of the reactant is high as |reactant,TQ =

(2 + 3) ln 2 = 5 ln 2. When on reactant is a singlet, the same equation applies but

 = 0. The spin is inherited for the product cage complex, so |product(cage) = 0.

Then for radical not pre-polarized by an applied field,

∆‡


=



|product(cage)


|reactant (93)

= 0− ( +) ln 2 = − ( +) ln 2 (94)

as  → 0 and reactants are not prepolarized (95)

Thus, in considering difference in the intercepts of the Arrhenius plots for the

Nafion (not prepolarized) and C1 (assumed  sufficient for the radicals to be fully

prepolarized), then the difference between an Arrhenius intercept for a sufficient
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magnetic field and for a Nafion film will be

∆‡
 

− ∆‡
 

= 0− (− ( +) ln 2) (96)

= ( +) ln 2 (97)

Return now to the Arrhenius derived slope and intercept.

 = ln

∙
2



¸
+

∆‡


+
∆‡


(98)

 =
∆

‡
0 − 


=

∆
‡
0



∙
1− 

∆
‡
0

¸
(99)

The term ∆‡ does not appear in the slope. The Arrhenius slope does provide

access to ∆
‡
0 and . The term ∆

‡
0 is found in the Arrhenius slope.

4.4.5.2 Time Constant for Magnetic Effects on Chemical Reactions

The frequency for magnetic effects on chemical reactions is now embedded in the

preexponential factor, . This yields the time constant for magnetic effects,

.

 =



(100)

For a reaction of one unpaired electron in the earth’s magnetic field,  ∼ 2,  = 12,

and  = 1.  ∼  = (1) 6626× 10−34 J s9274× 10−28 J−1 = 7

144 8 × 10−7 or about 1 s. The time constant decreases with a stronger field or

more unpaired spins. Also note that this time constant is significantly longer than

 , which is of the order of 10
−13 s or 0.1 ps. The time constant for diffusion,

, in solution is approximated as 
2
, where  is the distance a species
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moves from one solvent well to the next, perhaps ∼0.3 nm, and  is the diffusion

coefficient in the solvent, ∼ 5 × 10−6 cm2/s in water. Then, in water the time

constant for diffusion is  ∼ (3× 10−8 cm)2 5× 10−6 cm2/s ∼ 18× 10−10 s

or about 0.2 ns.

4.4.5.2.1 Why Magnetic Effects on Electron Transfer Kinetics Rarely

Observed

There are several reasons why magnetic effects on electron transfer kinetics are

rarely observed. Most kinetic measurements are made in solvents with diffusion

coefficients comparable to water or in the gas phase where diffusion is even faster.

The time it takes for molecular species to move short compared to the time needed

to implement a magnetic effect. In solution,  ∼ 3500. When

measurements are made in polymers, in near solid state matrices such as batteries,

and on adsorbates, transport is markedly slowed or even eliminated. Under those

conditions the time constant for diffusion is comparable or longer than .

In domains of slow or no transport, magnetic effects are more likely to be observed.

A second reason magnetic effects on electron transfer reactions and on reactions

in general are rarely observed may be that it is easy to overlook effects when,

for  ∼ 1 and  = 1 for one unpaired electron in the earth’s magnetic field,

 ∼ 1.

Finally, in our studies, nonuniform magnetic fields established about the

micromagnets are always more effective at generating magnetic effects than

application of a uniform external field. It is probable that the magnetic field gradient
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is important in establishing an effect. It is noted that the model developed here is

for an average uniform field. Effects of a field gradient are beyond the scope of the

current model.

4.4.6 Some Testing of the Model against the Data

Consider first the data collected for  ()
2+3+

3 for a series of magnetic

particles.

4.4.6.1 Data with Magnetic Susceptibility

It is expected that  is proportional to magnetic susceptibility of the particles.

Measurements were made with a single redox probe,  ()
2+

3 and films of Nafion

and Nafion plus one of four different coatings, denoted C1, C3, C8, and C18. The

designation is for the number of carbons in the chain of the coating. It was expected

that stronger fields would be found with thinner coatings and that was largely

true. However, the C8 coating had a lower magnetic susceptibility than C18. In

the following,  is taken as proportional to susceptibility. That is, higher measured

susceptibility is taken as greater magnetite content by volume and thus a stronger

field.

4.4.6.1.2 Equation 85: slope vs 

A plot of Arrhenius slope,  versus  should be linear with form
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Figure 40. Equation 85: slope vs 

 =  +  .

 =
+


(101)

 = −∆
‡
0


(102)

Note slope should be negative.

 = +(445± 068)× 107 ( )− (7749± 212) with 2 = 09333 (103)
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Assessment of the Plot:

1. For a plot of the Arrhenius slope with assessment of magnetic strength, a positive

slope is expected, as found.

2. The correlation is acceptable given that this is a plot derived from another plot.

3. If  were plotted, then expect the slope of this plot to be +. For

 ()
3

3,  = 215× 1
2
= 1075. The constants  = 67× 10−5, so the

predicted slope would be 72 × 10−5 K/G. The slope is substantially higher,

but it cannot be interpreted as we do not know the correlation between 

and magnetic susceptibility. The discrepancy in the values may reflect the

relationship between  and the measured susceptibility.

4. The intercept is expected to be the enthalpy of activation independent of

magnetic effects, −∆
‡
0. From the plot, this is −7400± 200, which correlates

very well with the value of −∆
‡
0 found for the Nafion films of −7050± 90.

4.4.6.1.3 Equation 84: b vs 

The equation for the intercept can be rewritten as

 = ln

∙
2



¸
+ ln [] +

∆‡


+
∆‡


(104)

A plot of Arrhenius intercept  versus ln should be linear with form

 =  +  . Because the relationship between  and susceptibility

is not known, it is expected that the slope should be positive. Similarly the intercept

will likely have additional, but at this time, unknown terms. The terms should be
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Figure 41. Equation 84: b vs ln

the same for all Cn coatings.

  0 (105)

 = ln

∙
2



¸
+

∆‡


+
∆‡


+  (106)

 = − (313± 027) ln ( )− (565± 287) with 2 = 09858 (107)

Assessment of the Plot:

1. These plots show strong correlation between  and ln ( ). From the



121

equation, however, a positive slope is expected which is not what is observed.

The following point must be considered.

(a) The intercept interprets the electron nuclear spin polarization term, so this

is not an issue of the reactant energy being misinterpreted. It is conceivable

that the assumption of one zero for the sufficient field may be incorrect.

2. Given the derivative nature of the plot, the correlation is good.

3. The slope cannot be interpreted as the magnetic susceptibility relationship to 

is not known. However, the negative slope is difficult to understand, unless the

field is not large enough.

4. The intercept is complex because there may be other terms within the intercept

that are not accounted for by this model. It is interesting to consider the

intercept, −565 relative to the intercept of the Nafion film, 51. In the simplest

model, the difference would be ∆‡. That the difference of the determined

values are 1075 would indicate that the simplest case is not operative.

4.4.6.1.4 Equation 85: slope() - slope() vs 

It is anticipated that the ∆
‡
0 contains no magnetic terms and because it is

largely electrostatic, that the value of ∆
‡
0 is the same for all  ()

2+3+

3 redox

couples and is the same in Nafion as in the magnetic composites. It may be slightly

different for  ()
2+1+

3 because they have different charges. For Nafion,  → 0

so that the Arrhenius slope for Nafion is

()→ ∆
‡
0


(108)

This enthalpy will include any nonmagnetic effects and assumes the earth’s field
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is negligible where as the earth’s field is ∼ 1. Note that ∆
‡
0 would include

any events such as spin pairing that may be important to the  reaction of

the  ()
2+3+

3 . Allow () is the slope of the Arrhenius with magnetic

microparticles in the film and  () be the slope of the Arrhenius plot for the

Nafion film. Then, by examining the difference ()−  () the magnetic

enthalpy term is isolated.

 ()−  () = +



( −) (109)

So a plot of  ()−  () versus  should be linear with a slope of and an

intercept of ±. But this is a tertiary analysis and may be prone a great deal

of uncertainty and error propagation.

4.4.6.1.5  versus  () across  ()
+1

3 for C1

From Equation 85 and variation  ()
+1

3 for each separate Nafion and C1

micromagnet composites, a plot of  versus  is characterized as

 =



 − ∆

‡
0


(110)

yields

 ∝



(111)

 = −∆
‡
0


(112)

Note the proportionality in  because only a relative measure of  is

available.

The plot is shown for Nafion and C1 magnets. For the radical radical reaction of
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Figure 42. Equation 109: slope(M) - slope(N) vs .
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Figure 43.  versus  for the Nafion films and C1 magnetic composites. ∆
‡
0

may be different for the Co()
21

3 couple. The  value for the radical radical reaction

is taken as∆ =
¯̄̄
()23

− ()13

¯̄̄
where the -value for  ()

1

3 is approximated

as 2.

 ()
21

3 , a  , the  value is either 1+ 2 or |1 − 2| where the  value matches

the number of unpaired spins, 5/2 or 1/2. Here the difference is shown. So, the 

value for the radical radical reaction is taken as ∆ =
¯̄̄
()23

− ()13

¯̄̄
where

the -value for  ()
1+

3 is approximated as 2 and  = 12. This gives the best

line but the data interpretation is not apparent.
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The equation for the line is

 () = (1380± 490)  − (9880± 740) with 2 = 078 (113)

 (1) = (1000± 190)  − (6580± 280) with 2 = 093 (114)

Assessment of the Plot:

1. ∆
‡
0 may be different for the  ()

2+1+

3 couple than for  ()
2+3+

3 .

Removing Co()
2+1+

3 from the plots does not improve the quality of the plots.

2. There is a difference in the concentrations of the probes based on the initial

probe:  ()
3+

3 ,  ()
3+

3 , and  ()
2+

3 for the  ()
2+3+

3 and

 ()
2+

3 for  ()
2+1+

3 . This may be reflected in the data. The data as yet

are not corrected for the differences in concentration.

3. From the model, it is expected the slopes will be positive, which they are.

4. It is expected that the slopes will be proportional to  so Nafion should have a

lower slope than C1 magnets, but that is not observed.

5. The intercepts should reflect −∆
‡
0. The plot correlations are poor, so this

analysis is suspect but the intercept for the C1 magnetic data is comparable

(-7749 K) to  (1) = −6580 K . The intercept for the Nafion analysis

is -9880 K. Given the uncertainties, the values are some what similar. Both

intercepts are negative as anticipated.

6. Overall, the quality of the fit is poor and the uncertainties of concentration,

correct  value for the  couple, and the difference in ∆
‡
0, the analysis should
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Figure 44. Relationship between b(M) - b(N) vs slope(M) - slope(N).

not be relied on heavily.

It is interesting to note that  ()−  () versus [ ()−  ()] is linear

and consistent with a magnetic effect.

4.4.6.1.6 Entropy Analysis for Arrhenius Intercept with 

The studies with various magnetic particles, C1, C3, C8, and C18 and Nafion, but

one redox probe,  ()
2+

3 , allow  for the Nafion and the magnetic composites to
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be expressed as

 () = ln

∙
2



¸
+ ln [] + ln 2 +

∆‡


(115)

 () = ln

∙
2



¸
+ ln [] +

∆‡


(116)

where  approaches zero and is the earth’s field or less. If  is proportional to

magnetic suggestibility,

 ()−  () = ln

∙




¸
+ ln 2 (117)

So, if all else is equal,  ()−  () versus ln [] should be linear and the intercept

should be ln 2 as long as  = 1 and the relationship between  and magnetic

susceptibility is simply proportional.

4.4.6.1.7 Entropy Analysis for Arrhenius Intercept with 

For the expressions of  () and () with ,

 () = ln

∙
2



¸
+ ln [] + ( +) ln 2 +

∆‡


(118)

 () = ln

∙
2



¸
+ ln [] +

∆‡


(119)

In both cases, the Arrhenius intercepts  () and  () should increase with .

If all else remains the same, then

 ()−  () = ln

∙




¸
− ( +) ln 2 (120)

So a plot of  () −  () versus the expected ( +) should be linear with a

slope of -ln 2 and an intercept of ln [].
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Figure 45. Entropy Analysis for Arrhenius Intercept with 
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 ()− () = − (0554± 0059) ( +)−(204± 051) with 2 = 09896 (121)

Assessment of the Plot:

1. For a plot of difference in the Arrhenius intercepts with  + should have a

negative slope, as shown.

2. The correlation is acceptable given that this is a plot derived from another plot.

3. The slope is expected to be − ln 2 = −07. We have a slope of −0554 that is

close to the expected value.

4. The intercept is expected to be ln
h




i
, which suggests the intercept should

be positive if   . The intercept is negative at −24

4.5 Conclusion

Data have been collected for magnetically modified electrodes for a series of

transition metal complexes and for a series of magnetic microparticles with different

magnetic properties. Cyclic voltammetric studies as a function of temperature have

confirmed that magnetic fields impact the rates of self exchange reactions for the

transition metal complexes. The rates of the reactions increase with the magnetic

content of the microparticles.

The temperature data were analyzed by Arrhenius plots of log rate against

reciprocal temperature. These data were used to test models of magnetic effects on

electron transfer rates. Impacts were found in both the slope and intercept data for
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the magnetic composites and Nafion films.

The models predict that the enthalpy of activation is largely established by

electrostatics and is not subject to magnetic impacts. Magnetic effects on the

enthalpy arise from electron nuclear spin polarization and electron spin polarization

events. The magnetic effects on the entropy of the reaction arise from the spins

on the reactants such that in the absence of an applied field, the spin probabilities

establish the magnetically based entropy. When the field is applied, a single state

is probable and the spin based entropy becomes negligible. An additional step is

included in the mechanism. This is the prepolarization of the reactant spins in the

applied field. This reduces the entropy and the activation enthalpy for the reaction.
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CHAPTER 5

CONVOLUTION TECHNIQUE FOR THIN FILM ELECTRODES

In the previous chapters, magnetic field effects on heterogeneous electron transfer

and self exchange reactions have been examined by coating electrodes with ion

exchange polymers and magnetic particle composites. For these modifications, use

of an ion exchange polymer is indispensable to create coatings and to provide ionic

conductivity. Because the ion exchange polymer coating alters diffusion profiles

about the electrode surface, more advanced electrochemical modeling is needed

to further the understanding and interpretation of the current-voltage profiles of

modified electrodes. The type of films examined here fall in the class of polymer

coated electrode generally represented as uniform films because the film is spatially

invariant normal to the electrode.

Other examples of surface modifications include catalytic modifications, which is

an active research area for energy conversion applications. The modification is to

attach catalytic material or metal alloys to noncatalytic electrodes. The objective of

catalyst modification is to facilitate a slow electrochemical reaction on an inexpensive

electrode such that the reaction occurs at a potential closer to the theoretical redox

potential. For analytical applications, electrode modifications improve selectivity

and sensitivity to a specific electroactive analyte by selective extraction based on

their charge, hydrophilicity, and size.

For most of these electrode surface modifications, the uniform film model is

applicable. Development of an analytical tool to characterize uniform films would
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Figure 46. Concentration profile of thin film modified electrode where redox probe
present in solution at concentration ∗ partitions across the film solution interface
such that the initial concentration in the film is ∗. At the electrode surface, probe
is electrolyzed. The x-axis is the distance from the electrode and the y-axis is the con-
centration of the redox probe.  is thickness of film and  is the extraction parameter.
Profiles are shown for steady state electrolysis.

facilitate characterization of these systems. In this chapter, a newly developed

convolution technique for the uniform film is introduced and discussed.

5.1 Theoretical Background

Nafion is commonly used for various types of electrode modifications. Assessment

of the uniform film properties is critical to good system analysis. Nafion is well

represented as an uniform film on the electrode surface. The chemical structure is

shown in Figure 1.

When an electrode coated with an uniform film is placed in electrolyte solution

that contains a redox probe, the probe extracts across the film solution interface

and equilibrates in the film. Under electrochemical perturbation, diffusion profiles

for the probe are established in the film and the solution. The two diffusion profiles

interact with each other at the interface as described by an extraction parameter

(). A schematic description of the system is shown in Figure 46.
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The characteristics of electrochemical current responses to any voltammetric

perturbation are defined by a combination of models for charge transfer kinetic

and mass transport. Fick’s laws of diffusion are appropriate for uniform films. For

unmodified, planar electrodes, current voltage profiles for the redox probe in a

semi-infinite linear diffusion system was solved implicitly by Nicholson and Shain

[53]. The current-voltage profile for a redox probe in a uniform film on an electrode

was modeled and simulated explicitly by Hettige and Leddy [58]. The simulation for

cyclic voltammetry at a uniform film on an electrode uses an explicit finite difference

method and Butler-Volmer electron transfer kinetics.

Convolution techniques, also known as semi-integral methods, are one of the

electrochemical data analysis techniques introduced in the early 1970’s by Oldham

and Savéant [59,60]. The major advantage of this technique is to convert transient

currents to simpler, more steady state-like responses that are easier to analyze and to

extract parameters [61]. Convolution methods can discriminate against nonfaradaic

capacitance and uncompensated resistance and allows rapid determination of

reaction kinetics [37].

5.1.1 Derivation of the Convolution Responses

Figure 47 shows that a typical current-voltage profile from cyclic voltammetry at

an unmodified, large planar electrode. The characteristic avian shape of the cyclic

voltammogram (CV) is converted by convolution to a sigmoidal morphology more

characteristic of steady state voltammetry.

Derivations of the response for semi-infinite linear diffusion to a planar electrode
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Figure 47. Cyclic voltammogram (green) and its convoluted current-voltage plot
(blue) for semi-inifinite linear diffusion at an unmodified electrode. The y-axis is
the dimensionless current and the dimensionless convoluted current. The x-axis is
potential. The CV is generated by computer simulation and convoluted computa-
tionally.



135

were originally provided by Oldham [59,62] and Savéant [63]. The derivations serve

as a template for the derivations for an electrode modified with a uniform film and

the redox probe partitions from solution into the film. Derivation of the convolution

equation for an unmodified, planar electrode is as follows. The resulting convolution

equation, Equation 140 (page 133), is used to generate the response shown in Figure

47.

The current expression for a planar, unmodified electrode in one dimension is

()


= 

(0 )


(122)

where  () is the current (A); ( ) is the space and time dependent concentration

of the probe (mol/cm3);  is the coordinate normal to the electrode;  is the

diffusion coefficient of the probe (cm2/s);  is the number of electrons transferred in

the electron transfer reaction;  is the Faraday constant; and  is the electrode area

(cm2). The Laplace transform of the current expression is

()


= 

(0 )


(123)

Fick’s second law for the concentration gradients and diffusion is

( )


= 

2( )

2
(124)

The Laplace transform of this equation is

( )− ( 0) = 
2( )

2
(125)

 ( 0) is the initial concentration of the probe for all . Solution of this first order
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differential equation is

( ) =
( 0)


+ exp

∙
−
r






¸
+ exp

∙r





¸
(126)

Because the initial condition is specified as a fixed concentration in solution, ∗,

( 0) = ∗ (127)

and the semi-infinite boundary condition in  and convolution  coordinates is

lim
→∞

( ) = ∗ (128)

lim
→∞

( ) =
∗


(129)

 = 0. The equation becomes

( ) =
∗


+ exp

∙
−
r






¸
(130)

Differentiation of the equation yields

( )


= −

r



 exp

∙
−
r






¸
(131)

From Equation 130, the coefficient  is evaluated.

()


= −

r



(132)

 = − ()


√


(133)

Equation 130 becomes

( ) =
∗


− ()


√


exp

∙
−
r






¸
(134)
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We are interested in the concentration at the electrode surface, (0 ), where  = 0.

(0 ) =
∗


− ()


√


(135)

=
∗


−
µ

1


√


¶
()

µ
1√


¶
(136)

The convolution is recognized upon substitution as

() =
1√


() = ()

The generic convolution or semi-integral, Equation 138, allows the inverse of the

expression in Laplace transform coordinates, , to time coordinates  as

−1 [()()] =  ()∗() (137)

=

Z 

0

 (− )() (138)

The inverse of Equation 136 is obtained by application of Equation 138. The

concentration at the electrode surface is expressed by the convolution equation.

(0 ) = ∗ − 1

12

"
1

12

Z 

0

 ()

(− )
12



#
(139)

The response to any voltammetric perturbation that starts at zero current can be

used to characterize the concentration at the electrode surface through Equation

139 as long as the electrode is planar and the diffusion profile only probes one

phase at the electrode surface. The convoluted current,  (), is defined by Laplace

transform.

 () =
1

12

Z 

0

 ()

(− )
12

 (140)
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5.2 Mathematical Development of the Convolution

Equations

For the uniform film on an electrode, the model characterizes two domains. The

domain immediately at the planar electrode is the film, which is in contact with the

semi-infinite electrolyte layer. The probe is present in both domains and establishes

a concentration in the two domains that is characterized by an extraction parameter,

. Each domain, the film and solution has a diffusion coefficient,  and ,

respectively. A schematic diagram of the system is shown in Figure 46.

Fick’s second law for this system is specified for each domain. The film of

thickness  is established at the electrode surface from  = 0 to  = . The

electrolyte is present for   . The concentrations in the film and solution are space

and time dependent as  ( ) and  ( ).

( )


= 

2( )

2
0 ≤  ≤  (141)

( )


= 

2( )

2
   (142)

Laplace transform of these two partial differential equations with respect to time

yields

( ) = 
∗


+ exp

µ
−
r







¶
+ exp

µr






¶
0 ≤  ≤  (143)

( ) =
∗


+ exp

µ
−
r







¶
   (144)

The semi-infinite boundary condition for the solution phase eliminates the term

exp
hp


i
because the term will grow without bound as  increases. The initial
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concentrations in the film and solution are also incorporated into the equations.

 ( 0) = ∗ 0 ≤  ≤  (145)

 ( 0) = ∗    (146)

Boundary conditions for the junction between the film and solution, where  = , are

(− ) = (+ ) (147)



(− )


= 

(+ )


(148)

The positions − and + are the positions just inside the film and just outside the

film at the film solution interface. Equation 148 indicates the flux of probe into the

film must equal the flux of probe out of the solution; no material is lost. Laplace

transform of Equations 147 and 148 yields

(− ) = (+ ) (149)



(− )


= 

(+ )


(150)

Equations 143 and 144 are combined in these two expressions to yield

 exp

µ
−
r







¶
+ exp

µr






¶
=  exp

µ
−
r







¶
(151)

The first derivatives of Equations 143 and 144 yield

( )


=

⎡⎢⎢⎣ −
q




 exp

µ
−
q






¶
+
q




 exp

µq





¶
⎤⎥⎥⎦ 0 ≤  ≤  (152)

( )


= −

r




 exp

µ
−
r







¶
   (153)
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Substitution into the constraint on flux at the interface, Equation 150 yields

r




⎡⎢⎢⎣ − exp
µ
−
q






¶
+ exp

µq





¶
⎤⎥⎥⎦ = −

r




 exp

µ
−
r







¶
(154)

s




⎡⎢⎢⎣  exp

µ
−
q






¶
−√ exp

µq





¶
⎤⎥⎥⎦ =  exp

µ
−
r







¶
(155)

Let  is ratio of diffusion coefficients expressed as  =
p
. Allow the following

notation.

 =

r




(156)

0 =  exp

µ
−
r







¶
(157)

0 =  exp

µr






¶
(158)

0 =  exp

µ
−
r







¶
(159)

Equations 151 and 155 become

0 +0 = 0 (160)

 (0 −0) = 0 (161)

Equation 160 and 161 are combined to eliminate 0.

0 +0 = (0 −0) (162)

0(1− ) = −0(1 + ) (163)



141

Expanding the equations yields

 exp

µ
−
r







¶
(1− ) = − exp

µr






¶
(1 + ) (164)

 = − exp
µ
−
r





2

¶
(1− )

(1 + )
(165)

 =
1− 

1 + 
(166)

then

 = − exp
µ
−
r





2

¶
 (167)

Equation 123 can be applied to Equation 143 when  = 0, which is at the electrode

surface

()


= 





∙

∗


+ exp

µ
−
r







¶
+ exp

µr






¶¸
=0

(168)

= 

µ
−
r





+

r






¶
(169)

= −
p
 (−) (170)

The current expression for the Laplace transform is

()


p


= −+ (171)

Because  is determined by Equation 167,  can be determined.

()


p


= −− exp

µ
−
r





2

¶
(172)

()


p


= 

∙
−1−  exp

µ
−
r





2

¶¸
(173)

 = −  ()


p


∙
1 +  exp

µ
−
q



2

¶¸ (174)
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We are interested in (0 ).

(0 ) = 
∗


++ (175)

= 
∗


+− exp

µ
−
r





2

¶
(176)

= 
∗


+

∙
1−  exp

µ
−
r





2

¶¸
(177)

= 
∗


− ()


p


∙
1−  exp

µ
−
q



2

¶¸
∙
1 +  exp

µ
−
q



2

¶¸ (178)

From the series expansion,

1

1 + 
=

∞X
=0

(−1) (179)
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Equation 178 is expanded to

(0 ) = 
∗


(180)

− ()


p


⎡⎣ 1−
 exp

µ
−
q



2

¶ ⎤⎦ (181)

×
∞X
=0

(−1) exp

µ
−2

r






¶
(182)

= 
∗


(183)

− ()


p


⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∞P
=0

(−1) exp

µ
−2

q





¶
−

exp

µ
−
q



2

¶

∞P
=0

×(−1) exp

µ
−2

q





¶

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(184)

= 
∗


− ()


p


⎧⎪⎪⎨⎪⎪⎩
∞P
=0

(−1) exp

µ
−2

q





¶
−

∞P
=0

(−1)+1 exp

µ
−2 ( + 1)

q





¶
⎫⎪⎪⎬⎪⎪⎭(185)

= 
∗


− ()


p


⎧⎪⎪⎨⎪⎪⎩
1 +

∞P
=1

(−1) exp

µ
−2

q





¶
+

∞P
=1

(−1) exp

µ
−2

q





¶
⎫⎪⎪⎬⎪⎪⎭ (186)

= 
∗


− ()


p


(187)

−2 ()


p


∞X
=1

(−1) exp

µ
−2

r






¶
(188)

The second term of Equation 187 is the transformed current expression for

unmodified, planar electrode, Equation 136.

1


p


()
1√

=

1


p


Z 



()√

√
− 

 (189)

The third term is the newly added term for the uniform film modified electrode and
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is converted to real space using Equation 138.

2


p


()

r
1



∞X
=1

(−1) exp

µ
−
r





2

¶
(190)

=
2


p


Z 

0

()p
(− )

∞X
=1

(−) exp
µ −22
(− )

¶
 (191)

The result is

(0 ) = ∗ − 1


p


Z 

0

()√
− 



− 2


p


Z 

0

()√
− 

∞X
=1

(−) exp
µ −22
(− )

¶
 (192)

where

 =

s
2



(193)

Equation 192 has two important parameters that describe properties of uniform

film;  and .  is the film thickness relative to the diffusion coefficient and  is

flux parameter for a film in contact with a solution. When  is converted to a

dimensionless parameter,

0 =

s
2





It approximates the diffusion length relative to the film thickness.  is number of

electron,  =  (C/J = V−1), and  is scan rate (V/s). As 0 decreases as for

slowed scan rate, the diffusion profile exceeds the film thickness.

 is the flux parameter for a film in contact with a solution. For flux in the

film higher than in solution (  1), −1 ≤   0; for flux in the film less than

in solution, (  1), 0   ≥ 1. For  = 0, flux in the film and solution are

equal. Note that even if   , the usual case,  can be greater than 1 if  is

sufficiently large and  will be negative.
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5.3 Results

The derived equation, Equation 192 is coded in Matlab. The code is in

Appendix B. Cyclic voltammetric data are generated by Hettige’s program for cyclic

voltammetry (CV) for uniform films [58]. Figure 48 shows that computer simulated

cyclic voltammogram when  = 0999 and  = 12 (solid) and its convoluted current

with convolution for semi-infinite linear diffusion (dashed). As expected, convolution

for the unmodified planar electrode does not exhibit a sigmoidal response. However,

when the CV is convoluted according to Equation 192, the expected sigmoidal

response results (blue dotted).

Figure 49 shows the computer simulated cyclic voltammogram when  = 0999

and  = 35 (solid) and its convoluted graph with the semi-infinite convolution

(dashed). This is the case where the flux in the film is low compared to flux in

solution,   1. As expected, the semi-infinite convolution for planar electrode

does not exhibit a sigmoidal response. However, the same CV is convoluted using

the uniform film convolution yields the expected sigmoidal, the typical sigmoidal

response is shown (dotted line).

Figure 50 shows the computer simulated cyclic voltammogram for  = −08

and  = 25 (solid) and its convoluted by the semi-infinite algorithm (dashed).

In this case, flux in the film is high compared to flux in solution, consistent with

the Gaussian CV, and   1. As expected, the semi-infinite algorithm does not

yield a sigmoidal response. However, the same CV convoluted by the uniform film

algorithm, yields a sigmoidal response (dotted).
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Figure 48. Computer simulated cyclic voltammogram when  = 0999 and  = 12
(solid) and its convoluted current with the semi-inifinite equation technique (dashed).
The convolution for the uniform film equation yields the sigmoidal response shown
with the dotted lines.



147

Figure 49. Computer simulated cyclic voltammogram when  = 0999 and 0 = 35
(solid) and its convolution by the semi-infinite convolution expression (dashed) and
with uniform film convolution (dotted). The uniform film convolution plot shows
clear sigmoidal response whereas the semi-infinite convolution does not.
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Figure 50. Computer simulated cyclic voltammogram when  = −08 and 0 = 25
(black solid) and its convolution by the semi-infinite algorithm (blue dashed) and the
uniform film convolution (dotted red) are shown. The uniform film convolution plot
shows a clear sigmoidal response.



149

Figure 51. Computer simulated cyclic voltammogram when  = −08 and 0 = 025
(black solid ) and its convolution plot by semi-infinite (blue dashed) and uniform film
(dotted red) convolution . The uniform film convolution plot shows clear sigmoidal
response.

Figure 51 shows that computer simulated cyclic voltammogram when  = −08

and  = 35 (solid) and its convoluted graph by the semi-infinite (dashed) and

uniform film (dotted) convolution algorithms. As expected, the semi-infinite

algorithm does not yield a sigmoidal response but the uniform film convolution does,

as indicative of capturing effects of flux in both the solution and the film.

In conclusion, the uniform film convolution algorithm successful converts a CV

to the sigmoidal response characteristic of a successful convolution algorithm. The
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algorithm should allow system parameters to be extracted either by fitting or other

parametric protocol.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

Magnetic field effects on electrochemical energy conversion are the main topic of

this thesis. The photoelectrochemical hydrogen evolution reaction on semiconductor

electrodes was manipulated by magnetic modification. Modifications are achieved

by applying ion conductive polymer with electrochemically inert magnetic particles

to electrode surfaces. 15 % (v/v) magnetic modification on p-Si (1.5 Ωcm resistivity

and (100) surface) enhanced the photoelectrochemical hydrogen evolution reaction

current voltage profile by 400 mV in 0 pH electrolyte solution and achieved 6.2 %

energy conversion efficiency.

The physical basis of the MFEs was also investigated. Heterogeneous electron

transfer kinetics for the HER under magnetic modifications were measured on

non-catalytic electrodes. On glassy carbon electrodes, the rate constant for HER

on magnetically modified electrodes was 80,000 times higher than unmodified

electrodes.

Self exchange reaction rate constants were also measured by tracking peak currents

while varying redox couples, magnetic particles, and temperatures. Arrhenius type

analyses were conducted to evaluate the MFE and the magnetic modifications

decreased activation energy for outer sphere self exchange reaction by 30 - 40 %.

A kinetic model based on transition state theory was suggested for the MFE

on the self exchange reactions. The model includes a pre-polarization step and an

electron nuclear spin polarization step and the model successfully explained that for
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the observed MFEs parameter, gHS, the rate constant and the activation energy are

proportional to gHS.

A convolution technique for uniform film modified electrodes was developed and

programmed in Matlab mathematic software. Using this technique more convenient

and straightforward analysis became possible.

Although data have been collected for many different magnetic field experiments

relating to electron transfer kinetics, a fundamental understanding of MFE on

electrochemical system is still impcomplete. Because MFEs on electrochemistry

under external uniform magnetic fields have rarely been detected, magnetic

field gradients are speculated as the source of these phenomena. Therefore, a

more fundamental understanding and modeling of the MFE effects are needed.

Investigation of electron transfers kinetics under oscillating or gradually changing

magnetic field is of particularly interest. For such experiments, conditions can be

generated by using an electromagnet with AC currents for controlling the magnetic

field oscillations. An electrochemical cell with a high viscosity electrolyte and high

concentration of a redox couple, such as Nafion coated electrodes, could be placed

within the magnetic field. Controlling magnetic field oscillations, the electrochemical

response could be measured and recorded to reveal insights on the effects of magnetic

field on electrochemical electron transfer rates. This set of experiments will advance

the application of MFEs to all other types of electron transfer related chemistries.
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APPENDIX A

COMPUTER SIMULATION FOR PHYSICAL DIFFUSION IN TO A THIN FILM

As we discussed, diffusion of redox couple consists of two phenomena, a

physical motion and electron hopping. Because these two phenomena always occur

simultaneously, a measurement of each parameter separately using electrochemical

method has not been done. Here, peak currents are measured while redox couple is

loaded in known thickness of an ion exchange polymer, Nafion. By mathematical

modeling and computer programing of the diffusion profile, a method to get diffusion

coefficient for the physical motion is suggested.

A.1 Experimental

To investigate physical diffusion characteristics of Ru(bpy)
2+3+
2 in Nafion matrix,

three glassy carbon electrodes were coated with Nafion with thickness of 6 m and

with Nafion and silane coated suspension with the same thickness, respectively. Six

electrodes are placed in 1 mM Ru(bpy)
2+3+
2 in 0.1M HNO3 solution. Then cyclic

voltammograms are recorded every 30 min for 15 hours.

A.2 Mathematical Description of the Model

The concentration profile when the film is in loading over time is shown in Figure

A1. The x-axis is distance from an electrode surface and the y-axis is concentration

of a redox couple.

To describe diffusion profile of this system, two Fick’s second law equations are
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Figure A1. Concentration profile when the film is in loading over time. The x-axis is
distance and the y-axis is concentration

used

()


= 

2()

2
0 ≤  ≤  (A.1)

()


= 

2()

2
   (A.2)

Boundary conditions for this system are:

(0) = 0 (A.3)



(0)


= 0 (A.4)

(−) = (+) (A.5)



(−)


= 

(+)


(A.6)

(0) = ∗ (A.7)

lim
→∞

() = ∗ (A.8)
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Then Laplace transformations of them are

 

(0) = 0


(0)


= 0 

(0)


= 0

(−) = (+) (−) = (+)




(−)


= 


(+)





(−)


= 


(+)



(0) = ∗

lim→∞() = ∗ lim→∞() =
∗


(A.9)

() =
(0)


+ exp

µ
−
r







¶
+ exp

µr






¶
(A.10)

By the boundary condition Equations A.3 and A.4

()


= −

r




 exp

µ
−
r







¶
+
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



 exp
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




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(A.11)

(0)


= −

r




+

r




 = 0 (A.12)

 =  (A.13)

So
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∙
exp

µ
−
r







¶
+ exp

µr






¶¸
(A.14)

Laplace transform for in solvent phase is

() =
(0)


+  exp

µ
−
r







¶
+ exp

µr






¶
(A.15)

By boundary condition Equation A.7

() =
∗


+  exp

µ
−
r







¶
+ exp

µr






¶
(A.16)

By boundary condition Equation A.8

∗


=

∗


+  exp (−∞) + exp (∞) (A.17)
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The Second term on right side goes to zero and third term goes to infinite.

Therefore,

 = 0 (A.18)

and

() =
∗


+  exp

µ
−
r







¶
(A.19)

By Equation A.10
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To apply boundary condition Equation A.6, derivatives of A.19 and A.14 are

()


= 

r

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(A.22)

Then by Equation A.6


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µ
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p
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We are interested in (0) which is transformed to (0) Then,


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and the Equation A.14
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Then,
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Put this to Equation A.14
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For varification
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Verifications are

 → ∞ (A.65)

 → 0 (A.66)

erf  [(2 + 1)] = 1
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A.3 Results

The experimental result of peak currents over time when Ru(bpy)2+2 is loaded in

Nafion and magnetically modified Nafion is shown in Figure A2. Peak currents are

normalized so the currents enhanced by magnetic field effects are minimized. The

result is evident that physical diffusion of Ru(bpy)2+2 in Nafion and Nafion with

magnetic microparticles is the same. Another interpretation is magnetic modification

does not affect physical diffusion.

The derived equation is coded to simulate the concentration on the electrode

surface that is physically diffused through Nafion. Matlab is used for the simulation

calculation and the code is written in APPENDIX B. Figure A3 shows the result of

the simulation when.  = 8× 10−8 cm2/s,  = 8× 10−5 cm2/s,  = 20, C∗ = 005

and  = 0006 cm.
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Figure A2. Normalized peak current at an electrode surface versus time when
Ru(bpy)2+3 diffuses in Nafion matrix.
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Figure A3. Computer simmulated peak current response with time when.
 = 8× 10−8 cm2/s,  = 8× 10−5 cm2/s,  = 20, C∗ = 005 and  = 0006 cm.
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A.4 Computer Code for Physical Diffusion into a Thin

Film

function filmloading02

%dt=1;

df=0.00000007;

ds=0.00008;

kapa=20

conc=0.05;

l=0.0006;

zi=sqrt(df/ds)

omega=(1-kapa*zi)/(1+kapa*zi)

infi=0:1000;

ziomega=zi*omega;

ziomekapa=zi*omega*kapa;

presig=2*conc/(1/kapa+zi);

for T=1:720

b=l/(2*(df*T*100)^1/2);

errfc=erfc(((2.*infi)+1).*b);

prerr1=(-1).^infi;

prerr2=(omega.^infi);

prerr=prerr1.*prerr2;

sig=prerr.*errfc;

c(T)=presig.*sum(sig);
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i(T)=c(T)^(4/3);

t(T)=T*100/3600;

end

plot(t,c)

end
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APPENDIX B

COMPUTER CODE FOR HETEROGENEOUS ELECTRON TRANSFER RATE

CONSTANT

Next code is for the Visual Basic in the Microsoft Excel 2007. The program is

coded basically for a cyclic voltammogram. In this thesis, this code is run for a

single sweep to simulate a potential sweep voltammogram. Heterogeneous electron

transfer rate constants are obtained by adjusting parameters.

Sub HHCGC()

’define arrays

Dim FAOLD(1001) As Double

Dim FANEW(1001) As Double

Dim FBOLD(1001) As Double

Dim FBNEW(1001) As Double

’ask start

MsgBox "Start?"

Range(Cells(14, 1), Cells(10014, 8)).ClearContents

’Input Simulation variables

Einit = Range("B2")

Efin = Range("B3")

T = Range("B7")

fConc = Range("B5")
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tk = Range("B8")

A = Range("B4")

D = Range("B9")

Conc = Range("B12")

jmax = Range("D11")

kmax = Range("D12")

E01 = Range("D2")

alpha1 = Range("D3")

Dm1 = Range("D4")

XO1 = Range("D5")

n1 = Range("D6")

D1 = Range("D8")

’Initialize Arrays

For i = 0 To jmax

FAOLD(i) = fConc

FANEW(i) = FAOLD(i)

FBOLD(i) = 0

FBNEW(i) = 0

Next i

’Start Time Counter, k=1

For k = 1 To kmax

’Calculate FNEW(j) for 2 to jmax
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For j = 2 To jmax - 1

FANEW(j) = FAOLD(j) + Dm1 * (FAOLD(j + 1) - 2 * FAOLD(j) + FAOLD(j -

1))

FBNEW(j) = FBOLD(j) + Dm1 * (FBOLD(j + 1) - 2 * FBOLD(j) + FBOLD(j

- 1))

Next j

’Calculate Current Allowing Electrolysis in box j=1

If k  0.5 * kmax Then

E = Einit + 2 * (Efin - Einit) * k / kmax

Else

E = Einit + 2 * (Efin - Einit) * (1 - k / kmax)

End If

Enorm1 = n1 * 96485 / 8.314 / T * (E - E01)

XF1 = XO1 * Exp(-alpha1 * Enorm1)

XB1 = XO1 * Exp((1 - alpha1) * Enorm1)

Z = 2 * Sqr(Dm1 * kmax) * ((XF1 * FAOLD(1) - XB1 * FBOLD(1)) / (2 *

Sqr(Dm1 * kmax) + XF1 + XB1))

i = Z * n1 * 96485 * A * Conc * Sqr(D1) / Sqr(tk)

’diffusion in box j=1

FANEW(1) = FAOLD(1) + Dm1 * (FAOLD(2) - FAOLD(1))

FBNEW(1) = FBOLD(1) + Dm1 * (FBOLD(2) - FBOLD(1))

’current in box j=1

FANEW(1) = FANEW(1) - Z * Sqr(Dm1 / kmax)
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FBNEW(1) = FBNEW(1) + Z * Sqr(Dm1 / kmax)

’Aging

For m = 1 To jmax

FAOLD(m) = FANEW(m)

FBOLD(m) = FBNEW(m)

’Print Concentration profile

Cells(13 + m, 1) = FAOLD(m)

Cells(13 + m, 2) = FBOLD(m)

Next m

’Print Currnet and Potential

Cells(13 + k, 9) = i

Cells(13 + k, 6) = E

Cells(13 + k, 7) = Z

’display progress

’If (k Mod 25 = 0) Then

Application.ScreenUpdating = True

’End If

Next k

End Sub
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APPENDIX C

COMPUTER CODE FOR THIN FILM CONVOLUTION TECHNIQUE

This code is for Matlab mathematical software. Experimental or simulated

cyclic voltammogram data can be imported and convoluted. For example,

’Current-CA+P999_b3p5.txt’ is imported here.

function totaltfconv09

%dt=1;

cv=csvread(’Current-CA+P999_b3p5.txt’);

v=cv(:,4);

i=cv(:,5);

infi=1:1000;

kmax=1000;

deltaE=1;

F=96485;

T=298.15;

R=8.314;

b=3.5;

bnew=b*sqrt(kmax*R*T/(2*deltaE*F));

q=1:1000;

omega=0.999;

for j=1:1000; % tf convol



172

sig=exp(-(bnew.*infi).^2./j).*(-omega).^infi; % tf convol

sigma(1001-j)=sum(sig); % tf convol

end; % tf convol

for j=1:1000

s(j)=sqrt(1000-j+0.3);

end

for t=1:1000

snew=s(1001-t:end);

inew=i(1:t)’;

sigmanew=sigma(1001-t:end); % tf convol

conv=inew./snew+inew./snew.*sigmanew.*2;

sumicon(t)=sum(conv)/sqrt(pi*kmax) ;

end

inorm=i/sqrt(2*F*deltaE/(R*T));

plot(v,sumicon,v,inorm)

ylabel(’i(normalized)’)

xlabel(’V’)

end
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