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Figure 7.6. Observed and SVM model predicted biggaduction

The comparative results in Table 7.4 demonstratethe prediction model built
by the MLP neural network offers better predictamturacy than the other models.
Specifically, the mean absolute percentage errtine@tonstructed model is 0.07. This
error expresses the relative accuracy of the médacttional bias at 0.00 indicates a
satisfactory agreement between the predicted andliberved value. The root mean
square error of the model is 68,302, which is gdarumber. However, the value of the
biogas production could be larger than 28,317 m&/klatively small difference
between predicted and observed value will causege Iroot mean square error.
Normalized mean square error expressing the nazethkverage of the square error is
0.01 for the built model. The index of agreemen® @0 indicates a high correlation
between the predicted and observed values. Thetdoeparison of PE and FB among

all five data-mining algorithms can be seen in Fégu.7.



Table 7.4. Performance metrics

111

PE FB RMSE| NMSE 1A
NN 0.07 0.00 68,302 0.01 0.99
C&RT 0.15 0.08 139,378 0.04 0.99
Random forest 0.10 0.01 86,836 0.01 0.99
K-nearest 012 | 0.01 | 110,666 0.02 | 0.99
neighbor
SVM 0.13 0.04 110,898 0.02 0.99
0.16 ‘ -
0.14 +
0.12
0.1
0.08
0.06 HPE
0.04 mFB
0.02

Random

forest ~knearest gy
neighbor

Figure 7.7. Comparison among five algorithms

According to above results and analysis, the MLEralenetwork model performs
better than models built by the remaining four eataing algorithms. Therefore, MLP

neural network has been selected to optimize thgdsi production process.

7.4 Optimization of the biogas production

7.4.1 Problem formulation

The model trained by the MLP neural network wasluseconstruct the
optimization model. To optimize the biogas prodorctprocess, the single objective can

be expressed as a function of control variablesoAding to the operation conditions at
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WRF, the digester temperature was constrained 82:/22°C to 40.56°C, the total solids
was constrained between 2% and 12%, the volatiié Baction was constrained from
65% to 85%, and the pH value was constrained bet®eeand 8.0. The single
optimization problem can then be presented in (7.2)

max f (%, Xz, X3,X U1 U 51 5)

%, Xz, X3, X4

subject to:
32.22< x, < 40.5¢

2%< X, < 12%
65%s< X, < 85%
6.8< x, < 8.0 (7.2)

where f is the function in Eq. (7.1) and refershte model built in Section 3. The
descriptions of the seven input variables of mg¢d&l) are shown in Table 7.1.

Solving the complex biogas production model withttmeanatical programming
algorithms is a challenge. Heuristic search alpari like greedy search [132], and
evolutional algorithms like genetic algorithm [138fe good choices for solving complex
models. In this chapter, the standard PSO alguanitlas applied in this research to solve
model (7.2). The standard PSO algorithm is presiemést.

Step 1: Randomly initialize n particle positiahs§] R" and velocities; OR".
Step 2: Evaluate fitness value using current particle positions.
If f <f° thenf’=1f, p’=d,
If f,<f9 thenf9=1, p’=d
Step 3: Update all particle velocitiers
V=V ton(p —d) +er(p’ —d)
Step 4: Update all particle positiods
d=d +v
Step 5: Update fitness valid and f°
Step 6: If the stopping condition is satisfied,rthE’is the final optimal solution with the

particle positiorp®. Otherwise, return to step 3 to start next iterati
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Here, the dimension for each particle’s positthrand velocityv. is 4. Parameter
p,bis the best individual particle position, afdis the best global positiore, andc, are
cognitive and social parameters, they are setiasts researchr, andr, are random

numbers between 0 and 1. Figure 7.8 shows thedta#t diagram of the PSO algorithm.

Start

Randomly initialize all particle
positions and velocities

|

Evaluate fitness value using
current particle positions

l

H Update all particle velocities |
|

| Update all particle positions |

| Update particle fitness value |

Stopping criterion
satisfied?

Figure 7.8. Flow chart diagram of the PSO algorithm

7.4.2 Results and discussion

The test set was used to solve model (7.2) witiPtB® algorithm. In each
iteration, the trained MLP neural network is usegtedict the biogas production based
on controllable and uncontrollable variables. THePSO algorithm determines the best

fithess value (here biogas production) by detemgrihe settings of controllable
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variables. The initial parameters of the PSO atbariare as follows: the population size
is 50 and the maximum number of iterations is §€0a

To obtain a stable production of biogas, uncharapetational conditions for a
period of time is preferable, e.g., a full seasme optimal setting is used for all the time
in this period. The optimal value of each contrioléavariable is first investigated
separately, i.e., only one variable is optimizeche@me. The optimal value of process
temperature is found as 39.0 °C (see Figure 7.¢hiooptimization results). Under the
operational condition in which process temperateisto 39.0 °C, the biogas production
can be improved by 5.3%. The increased biogas ptmduis due to the optimization of
controllable setting based on the prediction mad&q. (7.1). It can be seen that the
computed biogas production is usually larger thenabserved values. Moreover, the
production for the test period shows less varigbihan the actual values, which have
very large differences on a daily basis. The stahtput is beneficial for the biogas

production process and plant operations.
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Figure 7.9. Observed and optimized biogas prodnatitder optimal temperature setting
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Biogas production at different total solids concation is also investigated. As
shown with the dotted line in Figure 7.10, biogasdoiction is increasing with the raise
of the total solids concentration from 2% to 12%w+éver, Table 7.5 illustrates that the
biogas production decreases when total solids crateon is less than 5%. This is due
to the average value of total solids concentraitiaine test dataset being around 5%.
When total solids concentration is larger than B%gas production is rising until it
reaches the maximum value for the total solids entration reaching its upper

constraining limit.

3500000
3000000 '/‘/‘/"‘XM
2500000
2000000
1500000

1000000

Biogas production (m?)

500000

® Production ——Curve fitting
0

1 2 3 4 5 6 7 8 9 10 11
Total solids concentration (%)

Figure 7.10. Biogas production with total solidsicentration

It is observed that the increase slows down as $otals concentration becomes
larger. The relationship between biogas produddiae total solids concentration can be
fitted with the power function in (7.3) (the solide in Figure 7.5).

y=a*(Ts)" (7.3)
where y is the biogas production, TS is total sotidncentration, a and b are constants of

the power function. Here, a and b are computed3328107 and 0.1378, respectively.
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The value of power coefficient b is much smallerthhe value obtained by Igoni et al.
(2007) which was 2.77. The authors believe thavtiee of the power coefficient
calculated in this research is more reasonablewr€ig.5 illustrates the relationship
between the rate of biogas production and totadilsaoncentration. Equation (7.3)
indicates that if the power coefficient is smatlean 1, total solids concentration does not
significantly increase biogas production. The skidgll become more acidic with higher

total solids concentration (Itodo and Awulu, 1999).

Table 7.5. Biogas production change rate in tha ®aglids concentration

Total solids concentration (%) Change rate (%)
-9.4
-6.3
-3.4
-0.7
1.8
4.0
6.0
7.8
9.4
10.8
12.1

=
RIES[©olo|~Nojos|w(N

It has been determined from this model that thgdsgoroduction reaches its
maximum for the total solids concentration of 12gure 7.11 shows the results of
biogas production for the optimized total solid centration. The total biogas production
can be increased up to 12.1%. The biogas produg#das in response to the sludge
flow rate and other input variables. However, trasiability is small which implies
stabile biogas output. The biogas production whhtotal solids concentration higher
than 12% is also studied, even though this conagotr is outside the range of the WRF

operating conditions. It has been found that tlogds production increases 17% when
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the total solids concentration is 20%. Due to #latively small data sample, the
accuracy cannot be validated; however, it is exgektiiat there is a certain point at which
the biogas production will not increase even adala solids concentration gets higher.
A possible reason is the decrease of the wateenoit the sludge, with the higher total
solids concentration resulting in a reduced levelative microorganism-digesting

activities.
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Figure 7.11. Observed and optimized biogas prodnatnhder optimal total solids setting

It has determined the optimal pH value of 6.8. @ittes operations condition,
biogas production increased 1.9%. As shown in Eigut2, biogas production has
increased compared to the biogas production uniggnal sampled pH values. This
proves that pH in the range 6.8 to 8.0 has a siighact on biogas production. Figure
7.13illustrates the impact of pH on biogas produttiA slight decrease of biogas

production at higher pH values is observed.
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Figure 7.12. Observed and optimized biogas production for pH value of 6.8
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Figure 7.13. Biogas production with pH values
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Table 7.6. Biogas production change rate in pHeslu

pH value Rate of change (%)
6.8 1.9
6.9 1.0
7.0 0.86
7.1 0.70
7.2 0.54
7.3 0.38
7.4 0.21
7.5 0.05
7.6 -0.11
7.7 -0.29
7.8 -0.45
7.9 -0.63
8.0 -0.79

Table 7.6 indicates that biogas production decreagen pH value is larger than
7.6. This could be due to the fact that the avedi@alue of the test dataset is 7.53. It is
also illustrated that pH has a small impact on &sopgroduction across the range [6.8 -
8.0]. The maximum biogas production is obtainedpidrvalue of 6.8, which is in the
recommended range for anaerobic digestion opesatlors worth to clarify that pH
might contribute to failures affecting the digestjorocess when its values are below 6.0
or above 8.0. For values smaller than 6.0, momi@or basic mixtures ferment at lower
speeds. The introduction of new sludge reduceplthkevel. Digestion will stop or slow
down until the microorganisms have neutralizedaties. High pH values encourage
production of acidic carbon dioxide to neutralire mix.

The PSO algorithm has determined that the optiraktie solids is 75%. Given
this operations condition, biogas production hasgased 0.4%. The results imply that
volatile solids has small impact on biogas productivhen it is in its lower and upper

limits.
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In the case that all controllable variables arenozed simultaneously, a 20.8%
biogas production increase can be obtained as shofigure 7.14. This is an ideal
situation as not all variables can be adjustedeasame time in wastewater treatment
plant operation practice. The optimal values fovatiables and the increases of biogas

production are summarized in Table 7.7. “NA” meansbeing optimized in that case.
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Figure 7.14. Observed and optimized biogas prodoainder optimal settings of all
variables

Table 7.7. Biogas production increasing rate wyhal settings

Temperature Total solids | Volatile solids pH Increasing
Q) (%0) (%) rate (%)
1 39.0 NA NA N/A 5.3
2 NA 12 NA N/A 12.1
3 NA NA 75 N/A 0.4
4 NA NA NA 6.8 1.9
5 39.2 12 80 6.8 20.8
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CHAPTER 8
CONCLUSION AND FUTURE WORK

8.1 Conclusion

As the wastewater treatment process is complexdgndmic, this dissertation is
focused on developing a framework for its modeklng optimization with a data-driven
approach. The framework includes two categories.firgt category is modeling, where
different data-mining algorithms and techniquesue®d to predict several important
parameters in wastewater process, such as themfifilow rate, the total suspended
solids, CBOD. The second category is optimizatwinere process is optimized by
evolutional algorithms either to save energy congiion or to maximize the energy
generation. The two categories are not separatecoopled together. The predicted
values in the first category will be used as omutnin the optimization in the second
category.

First, the influent flow is forecasted with two dadriven neural networks. To
satisfy the spatial and temporal characteristiaghefinfluent flow, rainfall data collected
at 6 tipping buckets, radar data measured by a sddion and historical influent data
were used as model inputs. The static MLP neuravoré& provided good prediction
accuracy up to 150 min ahead. To extend the timizdvo of predictions, to 300 min, a
dynamic neural network with an online corrector \wagposed. The time lag appeared in
MLP neural network model was significantly reducéble extended time horizon is
useful for energy efficiency management of WTTPs.

Second, data-mining algorithms are applied to ptesS in wastewater.
Numerous scenarios involving carbonaceous biochamig/gen demand (CBOD) and
influent flow rate were investigated to constru TSS time-series. The multi-layered
perceptron (MLP) model performed best among the different data-mining models

that were derived for predicting TSS. The accumadye predictions was improved
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further by an iterative construction of MLP algbnt models. The values of TSS were
predicted seven days in advance with accuraci¢sdahged from 73% to 79%.

And numerous models predicting carbonaceous biodatimxygen demand
(CBOD) is also investigated in Chapter 4. The penfnce of individual seasonal
models was found to be better for fall and wineasons, when the CBOD values were
high. For low CBOD values, the modified seasonatiel® were found most accurate.
Predictions for up to five days ahead were perfatnide reason for the low accuracy of
some of the models presented in the research wdewhfrequency (24 h) of the input
data. Once higher frequency data becomes availd@grediction accuracy of CBOD
will be improved. Such data will also allow the é&pment of accurate models for
predicting the potential of hydrogen (pH) and tbi&alt suspended solid (TSS).

Chapter 5 and all subsequent chapters focus omizatiion of the process. In
Chapter 5, optimization of wastewater pumping pssde presented. 20 cases of different
operating pump combinations are found through tllected dataset. To minimize
energy consumption, a single-objective optimizatioodel is formulated and solved with
the proposed two-level intelligent algorithm. Basedthe operation practice, decision
variables are the number of operating pumps asdhnge and the rotating speed of the
pump. The computational results revealed that @fstgnt energy reduction was
observed when the pumping station running undemopéd optimal settings. The wet
well level and outflow rate had not big differermefore and after optimization.

Chapter 6 focuses on the energy efficiency of tiwated sludge process. Two
objectives are considered, i.e., minimizing thergpeise and maximizing the effluent
quality. Two control strategies, constant and houdriable DO concentrations, are
investigated to find the optimal DO concentratiémrsthree different scenarios
representing the preference over energy savinfflaest quality. The computational
results indicated as much as 16% of the energy instb@ process could be saved when

preference was given to energy saving. A scenhabdave equal importance to energy
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saving and effluent quality was recommended tolgafeerate the activated sludge
process. It could save 10% of the energy consuniidhourly-variable, optimal DO
concentrations.

Optimization of biogas production is presented ihagter 7. Controllable
variables, temperature, total solids, volatile dslipH, and uncontrollable variables,
sludge flow rate, organic load, and detention twezre selected to build a prediction
model for biogas production with a multi-layer pgptron neural network. To optimize
biogas production, a single-objective optimizatinadel is formulated and solved with a
particle swarm optimization algorithm. The compiga&l results demonstrated that a
20.8% increase could be obtained when all contrtdlaalues were set to the optimal

values at the same time.

8.2 Future research

The research reported in this thesis indicatesabatrate prediction models
resulting in significant energy savings can be ttgwed. The predicted influent flow rate,
TSS and CBOD concentration in the raw wastewatempcavide useful information to
manage the plant. The optimized settings, sucluagspeed, configurations,
temperature of the sludge, dissolved oxygen conaton in the aeration tank, etc., can
give useful information to the plant operatorsawesenergy or improve the biogas
production.

Future research should focus on implementatiorherptoposed framework in
the wastewater treatment plant. To apply the rebda the wastewater industry, the
knowledge from the research must be transferrédetdreatment plant. A platform needs
to be created with the efforts from both researath the plant. To provide real-time
influent flow rate information to the plant, a pragy must be developed to collect and
read the upstream flow information, and output lgytiphical and texted predicting

values after processing the data and modelingeabdlckground. The similar work should
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be executed for predicting TSS, CBOD, as well ofation of pumping process, the
activated sludge process and maximizing the bipgaduction. During the
implementation, the problems can be found and solVhese real-time experiments will
improve the confidence of the plant to continue laypphe data-driven approach to
manage the wastewater treatment process rathectmarol the settings based on the
experience.

Another future direction is the integration of wars concepts reported in this
dissertation into a comprehensive model. The actishga tasks cover the main
processes in the wastewater treatment plant. ItduMoel interesting to create an
integration program which could show all prediciefdrmation and optimized variable
settings with only several inputs such as upstréamrates and local temperature, etc. A
plant operator then could read the information enade decisions to optimally manage
the plant.

As the online sensors are expensive and requigeérgly maintenance,
developing virtual sensors with a data-driven apphois worth to be studied in the future.
Using virtual sensors can not only save the investroost of the devices and high
maintenance expenses, but also significantly deertee noise generated by online
sensors. They can be also used to provide inpuil the missing values in the collected

dataset, which lead to higher accuracy of the ptedj models.
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