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Figure 7.6. Observed and SVM model predicted biogas production 

 
 
 

The comparative results in Table 7.4 demonstrate that the prediction model built 

by the MLP neural network offers better prediction accuracy than the other models. 

Specifically, the mean absolute percentage error of the constructed model is 0.07. This 

error expresses the relative accuracy of the model. Fractional bias at 0.00 indicates a 

satisfactory agreement between the predicted and the observed value. The root mean 

square error of the model is 68,302, which is a large number. However, the value of the 

biogas production could be larger than 28,317 m3/d. A relatively small difference 

between predicted and observed value will cause a large root mean square error. 

Normalized mean square error expressing the normalized average of the square error is 

0.01 for the built model. The index of agreement of 0.99 indicates a high correlation 

between the predicted and observed values. The direct comparison of PE and FB among 

all five data-mining algorithms can be seen in Figure 7.7.  
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Table 7.4. Performance metrics 

 PE FB RMSE NMSE IA 
NN 0.07 0.00 68,302 0.01 0.99 

C&RT 0.15 0.08 139,378 0.04 0.99 
Random forest 0.10 0.01 86,836 0.01 0.99 

K-nearest 
neighbor 

0.12 0.01 110,666 0.02 0.99 

SVM 0.13 0.04 110,898 0.02 0.99 
 
 
 

 

 

 

 

 

 

 

 
Figure 7.7. Comparison among five algorithms 

 
 
 

According to above results and analysis, the MLP neural network model performs 

better than models built by the remaining four data-mining algorithms. Therefore, MLP 

neural network has been selected to optimize the biogas production process.  
 

7.4 Optimization of the biogas production 

7.4.1 Problem formulation 

The model trained by the MLP neural network was used to construct the 

optimization model. To optimize the biogas production process, the single objective can 

be expressed as a function of control variables. According to the operation conditions at 
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WRF, the digester temperature was constrained from 32.22°C to 40.56°C, the total solids 

was constrained between 2% and 12%, the volatile solid fraction was constrained from 

65% to 85%, and the pH value was constrained between 6.8 and 8.0. The single 

optimization problem can then be presented in (7.2): 
   

1 2 3 4, , ,
1 2 3 4 1 2 3( , , , , , , )max

x x x x
f x x x x u u u               

    subject to: 
                                                132.22 40.56x≤ ≤  

                                                    22% 12%x≤ ≤     

                                                  365% 85%x≤ ≤           

46.8 8.0x≤ ≤                                             (7.2) 

where f is the function in Eq. (7.1) and refers to the model built in Section 3. The 

descriptions of the seven input variables of model (7.2) are shown in Table 7.1. 

Solving the complex biogas production model with mathematical programming 

algorithms is a challenge. Heuristic search algorithms like greedy search [132], and 

evolutional algorithms like genetic algorithm [133], are good choices for solving complex 

models.  In this chapter, the standard PSO algorithm was applied in this research to solve 

model (7.2). The standard PSO algorithm is presented next. 

Step 1: Randomly initialize n particle positions n
id R∈  and velocities n

iv R∈ . 

Step 2: Evaluate fitness value if  using current particle positions. 

           If b
i if f≤ , then b

i if f= , b
i ip d=  

           If g
if f≤ , then g

if f= , g
ip d=  

Step 3: Update all particle velocities iv  

           1 1 2 2( ) ( )g
i i i i iv v c r p d c r p d= + − + −  

Step 4: Update all particle positions id  

            i i id d v= +  

Step 5: Update fitness valuebif  and gf  

Step 6: If the stopping condition is satisfied, then gf is the final optimal solution with the 

particle position gp . Otherwise, return to step 3 to start next iteration. 
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Here, the dimension for each particle’s position id  and velocity iv is 4. Parameter

b
ip is the best individual particle position, and gp is the best global position. 1c  and 2c are 

cognitive and social parameters, they are set as 2 in this research. 1r  and 2r are random 

numbers between 0 and 1. Figure 7.8 shows the flow chart diagram of the PSO algorithm. 
 
 
 

 
Figure 7.8. Flow chart diagram of the PSO algorithm 

 
 
 

7.4.2 Results and discussion 

The test set was used to solve model (7.2) with the PSO algorithm.  In each 

iteration, the trained MLP neural network is used to predict the biogas production based 

on controllable and uncontrollable variables. Then the PSO algorithm determines the best 

fitness value (here biogas production) by determining the settings of controllable 
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variables. The initial parameters of the PSO algorithm are as follows: the population size 

is 50 and the maximum number of iterations is set at 20.  

To obtain a stable production of biogas, unchanged operational conditions for a 

period of time is preferable, e.g., a full season. The optimal setting is used for all the time 

in this period. The optimal value of each controllable variable is first investigated 

separately, i.e., only one variable is optimized each time. The optimal value of process 

temperature is found as 39.0 °C (see Figure 7.9 for the optimization results). Under the 

operational condition in which process temperate is set to 39.0 °C, the biogas production 

can be improved by 5.3%. The increased biogas production is due to the optimization of 

controllable setting based on the prediction model in Eq. (7.1). It can be seen that the 

computed biogas production is usually larger than the observed values. Moreover, the 

production for the test period shows less variability than the actual values, which have 

very large differences on a daily basis. The stable output is beneficial for the biogas 

production process and plant operations.  
 
 
 
 

 
 

Figure 7.9. Observed and optimized biogas production under optimal temperature setting 
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Biogas production at different total solids concentration is also investigated. As 

shown with the dotted line in Figure 7.10, biogas production is increasing with the raise 

of the total solids concentration from 2% to 12%. However, Table 7.5 illustrates that the 

biogas production decreases when total solids concentration is less than 5%. This is due 

to the average value of total solids concentration in the test dataset being around 5%. 

When total solids concentration is larger than 6%, biogas production is rising until it 

reaches the maximum value for the total solids concentration reaching its upper 

constraining limit. 
 
 
 

 
Figure 7.10. Biogas production with total solids concentration 

 
 
 

It is observed that the increase slows down as total solids concentration becomes 

larger. The relationship between biogas production and total solids concentration can be 

fitted with the power function in (7.3) (the solid line in Figure 7.5).  
bTSay )(*=                                        (7.3) 

where y is the biogas production, TS is total solids concentration, a and b are constants of 

the power function. Here, a and b are computed as 8.302×107 and 0.1378, respectively. 
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The value of power coefficient b is much smaller than the value obtained by Igoni et al. 

(2007) which was 2.77. The authors believe that the value of the power coefficient 

calculated in this research is more reasonable. Figure 7.5 illustrates the relationship 

between the rate of biogas production and total solids concentration. Equation (7.3) 

indicates that if the power coefficient is smaller than 1, total solids concentration does not 

significantly increase biogas production. The sludge will become more acidic with higher 

total solids concentration (Itodo and Awulu, 1999). 
 
 
 

Table 7.5. Biogas production change rate in the total solids concentration 

Total solids concentration (%) Change rate (%) 
2 -9.4 
3 -6.3 
4 -3.4 
5 -0.7 
6 1.8 
7 4.0 
8 6.0 
9 7.8 
10 9.4 
11 10.8 
12 12.1 

 
 

 

It has been determined from this model that the biogas production reaches its 

maximum for the total solids concentration of 12%. Figure 7.11 shows the results of 

biogas production for the optimized total solid concentration. The total biogas production 

can be increased up to 12.1%. The biogas production varies in response to the sludge 

flow rate and other input variables. However, this variability is small which implies 

stabile biogas output. The biogas production with the total solids concentration higher 

than 12% is also studied, even though this concentration is outside the range of the WRF 

operating conditions. It has been found that the biogas production increases 17% when 
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the total solids concentration is 20%. Due to the relatively small data sample, the 

accuracy cannot be validated; however, it is expected that there is a certain point at which 

the biogas production will not increase even as the total solids concentration gets higher. 

A possible reason is the decrease of the water content in the sludge, with the higher total 

solids concentration resulting in a reduced level of active microorganism-digesting 

activities.   
 
 
 

 
 
Figure 7.11. Observed and optimized biogas production under optimal total solids setting 
 
 
 

It has determined the optimal pH value of 6.8. Given this operations condition, 

biogas production increased 1.9%. As shown in Figure 7.12, biogas production has 

increased compared to the biogas production under original sampled pH values. This 

proves that pH in the range 6.8 to 8.0 has a slight impact on biogas production. Figure 

7.13illustrates the impact of pH on biogas production. A slight decrease of biogas 

production at higher pH values is observed.  
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Figure 7.12. Observed and optimized biogas production for pH value of 6.8 

 
 
 
 

 
Figure 7.13. Biogas production with pH values 
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Table 7.6. Biogas production change rate in pH values 

pH value Rate of change (%) 

6.8 1.9 
6.9 1.0 
7.0 0.86 
7.1 0.70 
7.2 0.54 
7.3 0.38 
7.4 0.21 
7.5 0.05 
7.6 -0.11 
7.7 -0.29 
7.8 -0.45 
7.9 -0.63 
8.0 -0.79 

 
 
 
 

Table 7.6 indicates that biogas production decreases when pH value is larger than 

7.6. This could be due to the fact that the average pH value of the test dataset is 7.53. It is 

also illustrated that pH has a small impact on biogas production across the range [6.8 - 

8.0]. The maximum biogas production is obtained for pH value of 6.8, which is in the 

recommended range for anaerobic digestion operations. It is worth to clarify that pH 

might contribute to failures affecting the digestion process when its values are below 6.0 

or above 8.0. For values smaller than 6.0, more acidic or basic mixtures ferment at lower 

speeds. The introduction of new sludge reduces the pH level. Digestion will stop or slow 

down until the microorganisms have neutralized the acids. High pH values encourage 

production of acidic carbon dioxide to neutralize the mix. 

The PSO algorithm has determined that the optimal volatile solids is 75%. Given 

this operations condition, biogas production has increased 0.4%. The results imply that 

volatile solids has small impact on biogas production when it is in its lower and upper 

limits.  
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In the case that all controllable variables are optimized simultaneously, a 20.8% 

biogas production increase can be obtained as shown in Figure 7.14. This is an ideal 

situation as not all variables can be adjusted at the same time in wastewater treatment 

plant operation practice. The optimal values for all variables and the increases of biogas 

production are summarized in Table 7.7. “NA” means not being optimized in that case.  
 
 
 

 

 
 

Figure 7.14. Observed and optimized biogas production under optimal settings of all 
variables 

 
 
 

 
Table 7.7. Biogas production increasing rate with optimal settings 

 Temperature 
(°C) 

Total solids 
(%) 

Volatile solids 
(%) 

pH Increasing 
rate (%) 

1 39.0 NA NA N/A 5.3 
2 NA 12 NA N/A 12.1 
3 NA NA 75 N/A 0.4 
4 NA NA NA 6.8 1.9 
5 39.2 12 80 6.8 20.8 
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CHAPTER 8 

CONCLUSION AND FUTURE WORK 

8.1 Conclusion 

As the wastewater treatment process is complex and dynamic, this dissertation is 

focused on developing a framework for its modeling and optimization with a data-driven 

approach. The framework includes two categories. The first category is modeling, where 

different data-mining algorithms and techniques are used to predict several important 

parameters in wastewater process, such as the influent flow rate, the total suspended 

solids, CBOD. The second category is optimization, where process is optimized by 

evolutional algorithms either to save energy consumption or to maximize the energy 

generation. The two categories are not separated but coupled together. The predicted 

values in the first category will be used as one input in the optimization in the second 

category. 

First, the influent flow is forecasted with two data-driven neural networks. To 

satisfy the spatial and temporal characteristics of the influent flow, rainfall data collected 

at 6 tipping buckets, radar data measured by a radar station and historical influent data 

were used as model inputs. The static MLP neural network provided good prediction 

accuracy up to 150 min ahead. To extend the time horizon of predictions, to 300 min, a 

dynamic neural network with an online corrector was proposed. The time lag appeared in 

MLP neural network model was significantly reduced. The extended time horizon is 

useful for energy efficiency management of WTTPs. 

Second, data-mining algorithms are applied to predict TSS in wastewater. 

Numerous scenarios involving carbonaceous biochemical oxygen demand (CBOD) and 

influent flow rate were investigated to construct the TSS time-series. The multi-layered 

perceptron (MLP) model performed best among the five different data-mining models 

that were derived for predicting TSS. The accuracy of the predictions was improved 
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further by an iterative construction of MLP algorithm models. The values of TSS were 

predicted seven days in advance with accuracies that ranged from 73% to 79%. 

And numerous models predicting carbonaceous biochemical oxygen demand 

(CBOD) is also investigated in Chapter 4. The performance of individual seasonal 

models was found to be better for fall and winter seasons, when the CBOD values were 

high. For low CBOD values, the modified seasonal models were found most accurate. 

Predictions for up to five days ahead were performed. The reason for the low accuracy of 

some of the models presented in the research was the low frequency (24 h) of the input 

data. Once higher frequency data becomes available, the prediction accuracy of CBOD 

will be improved. Such data will also allow the development of accurate models for 

predicting the potential of hydrogen (pH) and the total suspended solid (TSS).  

Chapter 5 and all subsequent chapters focus on optimization of the process. In 

Chapter 5, optimization of wastewater pumping process is presented. 20 cases of different 

operating pump combinations are found through the collected dataset. To minimize 

energy consumption, a single-objective optimization model is formulated and solved with 

the proposed two-level intelligent algorithm. Based on the operation practice, decision 

variables are the number of operating pumps at the same and the rotating speed of the 

pump. The computational results revealed that a significant energy reduction was 

observed when the pumping station running under optimized optimal settings. The wet 

well level and outflow rate had not big difference before and after optimization.  

Chapter 6 focuses on the energy efficiency of the activated sludge process. Two 

objectives are considered, i.e., minimizing the energy use and maximizing the effluent 

quality. Two control strategies, constant and hourly variable DO concentrations, are 

investigated to find the optimal DO concentrations for three different scenarios 

representing the preference over energy saving or effluent quality. The computational 

results indicated as much as 16% of the energy used in the process could be saved when 

preference was given to energy saving. A scenario that gave equal importance to energy 



123 
 

 

saving and effluent quality was recommended to safely operate the activated sludge 

process. It could save 10% of the energy consumed with hourly-variable, optimal DO 

concentrations.  

Optimization of biogas production is presented in Chapter 7. Controllable 

variables, temperature, total solids, volatile solids, pH, and uncontrollable variables, 

sludge flow rate, organic load, and detention time were selected to build a prediction 

model for biogas production with a multi-layer perceptron neural network. To optimize 

biogas production, a single-objective optimization model is formulated and solved with a 

particle swarm optimization algorithm. The computational results demonstrated that a 

20.8% increase could be obtained when all controllable values were set to the optimal 

values at the same time. 

8.2 Future research 

The research reported in this thesis indicates that accurate prediction models 

resulting in significant energy savings can be developed. The predicted influent flow rate, 

TSS and CBOD concentration in the raw wastewater can provide useful information to 

manage the plant. The optimized settings, such as pump speed, configurations, 

temperature of the sludge, dissolved oxygen concentration in the aeration tank, etc., can 

give useful information to the plant operators to save energy or improve the biogas 

production. 

Future research should focus on implementation on the proposed framework in 

the wastewater treatment plant.  To apply the research to the wastewater industry, the 

knowledge from the research must be transferred to the treatment plant. A platform needs 

to be created with the efforts from both research and the plant.  To provide real-time 

influent flow rate information to the plant, a program must be developed to collect and 

read the upstream flow information, and output both graphical and texted predicting 

values after processing the data and modeling at the background. The similar work should 
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be executed for predicting TSS, CBOD, as well optimization of pumping process, the 

activated sludge process and maximizing the biogas production. During the 

implementation, the problems can be found and solved. These real-time experiments will 

improve the confidence of the plant to continue employ the data-driven approach to 

manage the wastewater treatment process rather than control the settings based on the 

experience. 

Another future direction is the integration of various concepts reported in this 

dissertation into a comprehensive model. The accomplished tasks cover the main 

processes in the wastewater treatment plant. It would be interesting to create an 

integration program which could show all predicted information and optimized variable 

settings with only several inputs such as upstream flow rates and local temperature, etc. A 

plant operator then could read the information and make decisions to optimally manage 

the plant.  

As the online sensors are expensive and require frequently maintenance, 

developing virtual sensors with a data-driven approach is worth to be studied in the future. 

Using virtual sensors can not only save the investment cost of the devices and high 

maintenance expenses, but also significantly decrease the noise generated by online 

sensors.  They can be also used to provide inputs to fill the missing values in the collected 

dataset, which lead to higher accuracy of the predicting models.  
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