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ABSTRACT

.

Radio labeling of graphs is a specific type of graph labeling. The basic type of

graph labeling is vertex coloring; this is where the vertices of a graph G are assigned

different colors so that adjacent vertices are not given the same color. A k-coloring

of a graph G is a coloring that uses k colors. The chromatic number of a graph G is

the minimum value for k such that a k-coloring exists for G [2].

Radio labeling is a type of graph labeling that evolved as a way to use graph

theory to try to solve the channel assignment problem: how to assign radio channels to

radio transmitters so that two transmitters that are relatively close to one another do

not have frequencies that cause interference between them. This problem of channel

assignment was first put into a graph theoretic context by Hale [6]. In terms of graph

theory, the vertices of a graph represent the locations of the radio transmitters, or

radio stations, with the labels of the vertices corresponding to channels or frequencies

assigned to the stations.

Different restrictions on labelings of graphs have been studied to address the

channel assignment problem. Radio labeling of a simple connected graph G is a

labeling f : V (G) → Z+ such that for every pair of distinct vertices u and v of G,

distance(u, v) + |f(u) − f(v)| ≥ diameter(G) + 1. The radio number of G is the

smallest number m such that there exists a radio labeling f with f(v) ≤ m for all v

in V (G). The radio numbers of certain families of graphs have already been found.

Bounds and radio numbers of some tree graphs have been determined. Daphne Der-
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Fen Liu and Xuding Zhu determined the radio number of paths [9], Daphne Der-Fen

Liu found a general lower bound for the radio number of trees [8], and Xiangwen Li,

Vicky Mak, Sanming Zhou determined the radio number of complete m-ary trees [7].

Ruxandra Marinescu-Ghemeci found the radio number for some thorn graphs, one of

which is a particular type of caterpillar graph [10].

This thesis builds off of work done on paths and trees in general to determine

an improved lower bound or the actual radio number of certain types of caterpillar

graphs. This thesis includes joint work with Matthew Porter and Maggy Tomova

on determining the radio numbers of graphs with n vertices and diameter n − 2, a

subcase of which is a particular caterpillar. This thesis also establishes the radio

number of some specific caterpillar graphs as well as an improved lower bound for the

radio number of more general caterpillar graphs.
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CHAPTER 1
INTRODUCTION AND BACKGROUND

1.1 Motivation

Radio labeling of simple connected graphs is a specific type of graph labeling.

The basic type of graph labeling is vertex coloring; this is where the vertices of a

graph G are assigned different colors so that adjacent vertices are not given the same

color. A k-coloring of a graph G is a coloring that uses k colors. The chromatic

number of a graph G is the minimum value for k such that a k-coloring exists for G

[2].

A famous graph coloring problem is the Four Color Theorem. The idea of this

problem starts with having a map that is divided into countries, or sections of some

kind. Colors are assigned to each country so that countries which share a border

are given a different color. The goal is to color the map with the least number of

colors possible. This problem is translated to graph theory by letting each country

be represented by a vertex in a graph with two vertices adjacent in the graph if their

corresponding countries share a border. Then the goal of determining the fewest

number of colors needed to color the countries of a map is the same as finding the

chromatic number of the graph corresponding to the map. The statement that any

planar graph can be colored with four or fewer colors is what is known as the Four

Color Theorem [2].

Radio labeling is another type of graph labeling that evolved as a way to
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use graph theory to try to solve a problem. Radio labeling addresses the channel

assignment problem: how to assign radio channels or frequencies to different radio

transmitters in an optimal way. This means we want to assign radio channels so

that two radio transmitters that are geographically close to one another do not have

channels with frequencies that interfere with one another. This problem of channel

assignment was first put into a graph theoretic context by Hale [6]. In terms of

graph theory, the vertices of a simple connected graph represent the locations of the

radio transmitters, or radio stations, with the labels of the vertices corresponding to

channels or frequencies assigned to the stations.

1.2 Graph Theory Definitions and Notation

There are some basic graph theoretic definitions and notation that will be used

throughout this thesis. The graphs considered in this thesis are simple connected

graphs. This means there are no loops (edges from one vertex back to itself), no

multiple edges between two vertices, and between every pair of distinct vertices,

there exists a path. Throughout this thesis, let G be a simple connected graph with

n vertices. Let V (G) denote the vertex set of G and E(G) denote the edge set of

G. We say an edge e is incident to a vertex v if one of the endpoints of e is v. The

number of edges incident to a vertex v is called the degree of v. For a given set S,

let the order of S, denoted |S|, be the number of elements in S. Similarly, for a

component C of G, let |V (C)| denote the order of the vertex set of C and |E(C)|

denote the order of the edge set of C. For two distinct vertices u and v of G, let
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d(u, v) denote the distance between u and v, which is the length of the shortest path

between u and v. If d(u, v) = 1, we say u and v are adjacent. The diameter of G,

denoted by D, is the maximum distance between two vertices in G. A labeling, or

coloring, f of G is a function from the vertex set of G to the positive integers.

1.3 k-radio Labeling

There have been various restrictions used on labeling, or coloring, graphs in

an effort to model the channel assignment problem. Chartrand and Zhang discussed

the use of k-radio coloring of graphs and distance 2 labeling [3]. The k-radio coloring

condition of graphs is when, given a graph G with diameter D and 1 ≤ k ≤ D with

f : V (G)→ Z+ a coloring, the inequality

d(u, v) + |f(u)− f(v)| ≥ 1 + k

is satisfied for all vertices u, v in G. The largest number used as a label under the

labeling f is called the span of f . When k-radio labeling a graph, one tries to minimize

the span of that particular graph.

When k = 1, k-radio coloring can be used to determine the chromatic number

of a graph G. If f is a 1-radio labeling for G, then for adjacent vertices x and y, the

condition that needs to be satisfied becomes 1 + |f(x)− f(y)| ≥ 1 + 1 which implies

that |f(x)−f(y)| ≥ 1. This means that adjacent vertices cannot have the same label.

Also, for any two vertices of G that have distance two or greater, the 1-radio coloring

condition is satisfied even if those vertices have the same label. Thus, minimizing

the largest label given to a vertex of G such that the labeling satisfies the inequality
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d(u, v) + |f(u)− f(v)| ≥ 2 for all u, v ∈ V (G) gives the chromatic number of G.

Roberts suggested a variation of this type of labeling by determining the la-

beling based on when transmitters are considered to be close or very close to one

another [5]. The labeling that resulted from that distinction of closeness of stations

is distance-2 labeling. This labeling, denoted L(2, 1) is a labeling f of a graph G such

that

|f(u)− f(v)| ≥


2 if d(u, v) = 1

1 if d(u, v) = 2

for u, v ∈ V (G).

It can be seen that L(2, 1) labeling is k-radio coloring with k = 2. Minimizing the

span of a distance-2 labeling has been studied quite thoroughly as a way to address

the channel assignment problem. A variation on this type of labeling is a L(j, k)-

labeling, which is mentioned in a discussion on radio labeling of m-ary trees by Li,

Mak, and Zhou [7]. This is a labeling where adjacent vertices have labels that have

absolute difference at least j and vertices distance 2 apart have labels with absolute

difference at least k.

Using different k values can help when considering how the distance between

two stations could affect how close their corresponding frequencies could be. This

is what led to radio labeling, which is the specific k-radio coloring when k is the

diameter of a graph G. Studying this type of k-radio coloring has been helpful in

trying to solve the channel assignment problem. As Liu and Zhu mention, in practical

applications, interference between channels may occur between stations greater than

distance two apart[9]. This leads to the definition of a radio labeling, or multilevel
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distance labeling, of a graph G.

1.4 Radio Labeling

A radio labeling is a labeling f : V (G) → Z+1 such that the radio condition

is satisfied: for all pairs of vertices u, v ∈ V (G),

d(u, v) + |f(u)− f(v)| ≥ D + 1.

The largest value given in a labeling is called the span of that labeling. The radio

number of a graph G, denoted rn(G), is the smallest possible span of a radio labeling

of G. Equivalently, the radio number of G is the smallest integer m such that there

exists a radio labeling f of G with f(v) ≤ m for all v ∈ V (G) [9].

Work has been done to determine the radio number of various families of

graphs. Some of the graphs whose radio numbers have been determined are paths, k-

partite graphs, cycles, n-cubes, certain types of trees, certain types of spider graphs,

m-ary trees, some thorn graphs, complete graphs, stars, wheels, gear graphs, and

Cartesian products of complete graphs [3, 4, 6, 7, 8, 9, 10, 11].

1.5 Previous Results for Tree Graphs

A particular type of simple connected graph is a tree graph. This is a graph

with no cycles. Work has been done to determine the radio numbers of various

different types of tree graphs, including [7, 8, 9, 10].

In this thesis, we mostly look at particular types of tree graphs whose radio

1Some authors allow 0 as a label. In this thesis, we do not allow 0 to be a label and have
adjusted all the formulas of cited results accordingly.
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numbers are not yet known. In particular, we look at improving the lower bounds of

the radio number for these tree graphs that was established in [8]. As we discuss in

Chapter 3, in work with Maggy Tomova and Matthew Porter, we not only improve

the lower bound, but find the radio number for all simple connected graphs with n

vertices and diameter n− 2. We establish improved bounds for the radio number of

some more general trees in Chapter 4. In that chapter, we also determine the radio

number for an edge-balanced caterpillar that satisfies specific conditions.
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CHAPTER 2
TECHNIQUES FOR BOUNDS OF RADIO NUMBERS

To determine the radio number of a given graph G, we must find a labeling

that produces a relatively small span for the graph. We also must prove that it is

not possible to have a smaller span for a radio labeling of that particular graph.

In essence, this means we must prove an upper bound and a lower bound for the

radio number are equal. Finding this upper bound usually involves establishing an

algorithm to determine the order the vertices of G should be labeled to produce the

smallest possible span in a radio labeling of G. In this chapter we establish some

techniques to help in finding and proving a lower bound of the radio number that

equals an established upper bound.

2.1 Lower Bound Techniques

In this section we develop some general techniques for determining a good

lower bound for the radio number of a graph. First we establish some terminology

and notation we will use throughout this thesis to help when relating the order vertices

are labeled and a particular labeling function of a given graph G. Some of the results

in this section are from joint work with Maggy Tomova and Matthew Porter that can

be found in [1].

Definition. An ordering of the vertices of a graph G with n vertices is a bijection

of the vertices of G to the set {x1, . . . , xn} where the subscript denotes the order the

vertices are labeled.
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Definition. Given an ordering x1, . . . , xn of the n vertices of a simple connected

graph G let the associated radio labeling be a function f with f(x1) = 1 and defined

inductively so that f(xi) is the smallest integer so that the radio condition is satisfied

for all pairs xi and xj with j < i.

For the rest of this thesis, unless otherwise indicated, for a graph G with

n vertices, we refer to x1, . . . , xn as the ordering of the vertices of G and call the

associated radio labeling f .

Now consider the process in labeling vertices of a graph G so that the radio

condition is satisfied. Since a radio labeling f is a function from the vertices of G

to the positive integers, we let f(x1) = 1. As we label the rest of the vertices, at

each step, we choose f(xi) to be the smallest integer that satisfies the radio condition

with all vertices x1, x2, . . . , xi−1. When labeling xi, a reasonable first consideration

for f(xi) is the positive integer z such that

z = D + 1 + f(xi−1)− d(xi−1, xi).

Notice that if f(xi) = z, then the radio condition between the successively labeled

vertices xi−1 and xi is an equality. However, this value might not satisfy the radio

condition with xj for some 1 ≤ j ≤ i− 2. If this is the case, we having the following:

z < D + 1 + f(xj)− d(xj, xi)

⇒ z + Jf (xi−1, xi) = D + 1 + f(xj)− d(xj, xi)
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for some Jf (xi−1, xi) ∈ Z+. Thus, for the radio condition to be satisfied for all pairs

of vertices, we need to increase the value of f(xi) so that f(xi) = z + Jf (xi−1, xi).

Then when considering f(xi) in terms of the successively labeled vertices xi−1 and xi,

we have the following:

f(xi) = D + 1 + f(xi−1)− d(xi−1, xi) + Jf (xi−1, xi).

In this case, the radio condition is satisfied with a strict inequality for the pair of

vertices xi−1 and xi. This need to have a strict inequality for the radio condition

between successively labeled vertices is what we will refer to as needing jumps. This

is because we need to make an increase, or jump, in the value of f(xi) beyond what is

required when just considering the radio condition between the successively labeled

vertices xi−1 and xi. More formally, we have the following:

Definition. As in [7], let Jf (xi, xi+1) be a non-negative integer such that

d(xi, xi+1) + f(xi+1)− f(xi) = D + 1 + Jf (xi, xi+1).

We call Jf (xi, xi+1) the jump of f from xi to xi+1.

Definition. Given an ordering x1, . . . , xn of the vertices of a graph G and the asso-

ciated radio labeling f , we say that f requires jumps if
∑n−1

i=1 Jf (xi, xi+1) ≥ 1.

Proposition 1. Let G be a simple connected graph with n vertices and let x1, . . . , xn

be any ordering of the vertices of G with f the associated radio labeling. Then,

f(xn) = (n− 1)(D + 1) + f(x1)−
n−1∑
i=1

d(xi, xi+1) +
n−1∑
i=1

Jf (xi, xi+1).
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Proof. The result is obtained by adding up the equations

d(x1, x2) + f(x2)− f(x1) = D + 1 + Jf (x1, x2),

d(x2, x3) + f(x3)− f(x2) = D + 1 + Jf (x2, x3),

...

d(xn−1, xn) + f(xn)− f(xn−1) = D + 1 + Jf (xn−1, xn).

Proposition 2. Let G be a simple connected graph with n vertices. Then

rn(G) ≥ (n− 1)(D + 1) + f(x1)−max
p

n−1∑
i=1

d(xi, xi+1)

where the maximum is taken over all possible bijections p from V (G) to {x1, . . . , xn}.

Proof. This result follows directly from minimizing the right side of the equation in

Proposition 1.

From Proposition 2 we see that finding maxp
∑n−1

i=1 d(xi, xi+1) for a graph G

will give a lower bound for the radio number of G. As we will refer to this occurrence

of maximizing
∑n−1

i=1 d(xi, xi+1), we have the following definition:

Definition. We call any ordering x1, . . . , xn of the vertices of a graph G for which

maxp
∑n−1

i=1 d(xi, xi+1) is achieved a distance maximizing ordering. If

(maxp
∑n−1

i=1 d(xi, xi+1)) − 1 is achieved, we will call the ordering an almost distance

maximizing ordering.
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Notice that when G is a tree, Proposition 2 gives a preliminary lower bound for

the radio number of a tree. This is the same lower bound as given by Liu in Theorem

3 of [8] but with different notation. In Liu’s proof, she shows that
∑m−2

i=0 d(ui+1, ui) ≤

2ω(T )− 1 where ω(T ) = min{
∑

u∈V (G) d(w, u) : w ∈ V (G)} is the weight of the tree

T . The sum
∑m−2

i=0 d(ui+1, ui) in [8] is equivalent to
∑n−1

i=1 d(xi, xi+1) in this thesis.

Therefore, according to Liu’s proof, maxp
∑n−1

i=1 d(xi, xi+1) = 2ω(G) − 1 where the

maximum is taken over all possible bijections p from V (G) to {x1, . . . , xn}. Making

this substitution, exchanging variables to match this thesis’ notation, and adjusting

for that fact that Liu uses 0 as the first label in her labelings shows that the bound

given in Theorem 3 of [8] is the same as the bound given in Proposition 2. In this

thesis, we improve this bound for some particular types of tree graphs; in Section 3.2

we improve this bound for spire graphs and in Chapter 4, we improve this bound for

some other caterpillar graphs.

The following lemma will be useful in techniques we develop to determine the

value of
∑n−1

i=1 d(xi, xi+1) for particular graphs.

Lemma 1. Let G be a graph with vertices v1, ..., vn and edges e1, ..., em. Let p be a

bijection from the vertices of G to the set {x1, ..., xn}. Let Pj be a fixed shortest path

from xj to xj+1. Let n(ei) be the number of paths Pj that contain the edge ei. Then

the following hold:

1. Each edge can appear in any path Pj at most once.

2. Let {eki1 , ..., e
k
ir} be the set of all the edges incident to xk. Then n(eki1)+...+n(ekir)
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is even unless k = 1 or k = n in which case the sum is odd.

3. Suppose ei is an edge so that removing it from the graph gives a disconnected two

component graph where the two components are denoted A and B. Furthermore

assume that if xj and xj+1 are both contained in the same component, then so

is Pj. Then n(ei) ≤ 2min{|V (A)|, |V (B)|}.

4. Let {ei1 , ..., eir} be a set of edges so that no two of them are ever contained in

the same Pj. Then n(ei1) + ...+ n(eir) ≤ n− 1.

Proof. The first conclusion follows from the fact that Pj is a shortest path so it cannot

contain any cycles.

The second conclusion follows from the fact that if xk is not the endpoint of

a path Pj but the vertex is included in this path, two of its incident edges belong to

the path. If xk is the endpoint of a path, then exactly one of its incident edges is part

of the path. For 1 < k < n, xk is the endpoint of exactly two paths while each of x1

and xn is an endpoint of exactly one of the paths.

A path Pj contains the edge ei if and only if its endpoints are in different

components of the graph obtained by deleting ei. This observation verifies the third

conclusion.

The final conclusion follows from the fact that there are n− 1 paths and any

edge can appear in a path at most once.

Sometimes we will need a generalization of the third condition of Lemma 1,

i.e., we will need to simultaneously remove multiple edges to disconnect a graph.
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The following lemma describes the corresponding result in this case. In this thesis,

this generalization will only be needed when we consider graphs with n vertices and

diameter n− 2 that are not tree graphs in section 3.3.

Lemma 2. Let G be a graph with vertices v1, ..., vn and edges e1, ..., em. Let p be

a bijection from the vertices of G to the set {x1, ..., xn}. Let Pj be a fixed shortest

path from xj to xj+1. Let n(ei) be the number of paths Pj that contain the edge

ei. Let {ei1 , ..., eir} be a set of edges so that removing all of them from the graph

gives a disconnected two component graph, with the components denoted A and B.

Furthermore assume that

• If xj and xj+1 are both contained in the same component, then so is Pj, and

• Each path Pj contains at most one of the edges {ei1 , ..., eir}.

Then n(ei1) + ...+ n(eir) ≤ 2min{|V (A)|, |V (B)|}.

Proof. By the first condition a path Pj can contain one of the edges {ei1 , ..., eir} only

if its endpoints are in different components of the disconnected graph. Thus there are

at most 2 min{|V (A)|, |V (B)|} paths that contain one of these edges. By the second

condition each path can contain at most one of the edges so n(ei1) + ... + n(eir) ≤

2 min{|V (A)|, |V (B)|}.

Remark 1. Let G be a graph with vertices v1, ..., vn and edges e1, ..., em. Let N(ei) be

the maximal value of n(ei) allowable under the conditions of Lemmas 1 and 2. Then

maxp
∑n−1

i=1 d(xi, xi+1) ≤
∑m

j=1N(ej) where the maximum is taken over all bijections

p from the vertices of G to {x1, . . . , xn}.
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Now we introduce notation similar to that of Lemmas 1 and 2 for a particular

ordering of the vertices of a graph G.

Notation. Let G be a graph with an ordering x1, . . . , xn of its vertices. As in Lemma

1, let Pj be a fixed shortest path from xj to xj+1. For an edge e ∈ G, let nx(e) denote

the number of paths Pj that contain the edge e under the ordering x1, . . . , xn.

2.1.1 Techniques for Trees

In this thesis, the majority of the graphs considered are particular types of

tree graphs. Note that this means for a tree G with n vertices, there are n− 1 edges.

Unless otherwise indicated, in this thesis, we will denote the edges of a tree G as

e1, . . . , en−1.

We make the following observations that result from Lemma 1 when G is a

tree graph.

Remark 2. Let G be a tree:

1. Removing one edge will result in a disconnected graph of two components and

removing more than one edge will result in a disconnected graph with three or

more components. Thus, in a tree, removing just one edge, ei will result in two

disjoint components, Ai and Bi. Then for a given edge ei of G, (3) of Lemma

1 gives that n(ei) ≤ 2 min{|V (Ai)|, |V (Bi)|}. Also, (4) of Lemma 1 shows that

N(ei) ≤ n − 1 for all edges ei. It follows that the maximum possible value for
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nx(ei) for all possible orderings x1, . . . , xn and edges ei is

N(ei) =


n− 1 if min{|V (Ai)|, |V (Bi)|} = n

2

2 min{|V (Ai)|, |V (Bi)|} else

.

2. Note that from (2) of Lemma 1, for a specific ordering x1, . . . , xn of the vertices

of G, there needs to be at least one edge ei in G such that nx(ei) is odd.

3. Let x1, . . . , xn be an ordering of the vertices of G. Suppose x1 and xn are not

adjacent. Let {e1i1 , . . . , e
1
ir} be the set of edges incident to x1 and {eni1 , . . . , e

n
is}

be the set of edges incident to xn. By (2) of Lemma 1,
∑r

j=1 nx(e
1
ij

) and∑s
j=1 nx(e

n
ij

) must both be odd. Also, since x1 and xn are not adjacent, the

sets {e1i1 , . . . e
1
ir} and {eni1 , . . . e

n
is} do not have any common members. Thus,

there must be at least two edges ej such that nx(ej) is odd when x1 and xn are

not adjacent. Note, this also means that when there is only one nx(ei) value

that is odd, then x1 and xn are adjacent under the ordering x1, . . . , xn and both

are incident to the edge ek such that nx(ek) is odd.

The following proposition determines a way to describe
∑n−1

i=1 d(xi, xi+1) for a

tree graph G and ordering x1, . . . , xn in terms of the nx(ei) values for the edges ei of

G.

Proposition 3. Let G be a tree with ordering x1, x2, . . . , xn of the vertices of G. Let

e1, e2, . . . , en−1 be the edges of G. Then
∑n−1

i=1 d(xi, xi+1) =
∑n−1

i=1 nx(ei).
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Proof. Consider a fixed shortest path Pj between xj and xj+1. Suppose this path is

of length k. Since the length of this path is the shortest length of a path between xj

and xj+1, it follows that d(xj, xj+1) = k. Thus, d(xj, xj+1) contributes k to the total∑n−1
i=1 d(xi, xi+1).

Also, since there are k edges in Pj, this path contributes 1 to the nx(ei) value

for each of the k edges ei in the path. Therefore, Pj contributes k to the total sum∑n−1
i=1 nx(ei).

Since the above arguments are true for each j, 1 ≤ j ≤ n− 1, it follows that∑n−1
i=1 d(xi, xi+1) =

∑n−1
i=1 nx(ei).

Note that for a tree graph G, Proposition 3 implies that for x1, . . . , xn to be a

distance maximizing ordering,
∑

e∈E(G) nx(e) is maximized.

The following definition for trees in general will help us divide caterpillar

graphs, a particular type of tree graph, into different cases to consider in Chapter 4

when we work to improve the lower bound of their radio numbers.

Definition. Let G be a simple connected tree on n vertices with edges e1, . . . , en−1.

Let N(ei) denote the maximum n(ei) value for edge ei allowable under the conditions

of Lemma 1. A center edge, ec, is an edge with largest N(ei) value for the graph G.

The removal of a center edge results in a disconnected graph with two components,

A and B.
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CHAPTER 3
GRAPHS WITH N VERTICES AND DIAMETER N − 2

The radio number of paths, trees with n vertices and diameter n−1, has been

determined by Liu and Zhu in [9]. In this chapter, we determine the radio number of

all graphs with n vertices and diameter n − 2. The results of this chapter are from

joint work with Maggy Tomova and Matthew Porter that can be found in [1].

Much of this chapter will be devoted to studying a family of graphs which we

call spire graphs, which are paths with an extra leg vertex. More formally, we have

the following:

Definition. Let n, s ∈ Z where n ≥ 4 and 2 ≤ s ≤ n − 2. The spire graph Sn,s is

the graph with vertices v1, ..., vn and edges {(vi, vi+1)|i = 1, 2, ..., n−2} together with

the edge (vs, vn). The vertex vn is called the spire. Without loss of generality we will

always assume that s ≤ bn
2
c. See Figure 3.1.

Figure 3.1: Sn,s.

We will show that:

Theorem (Radio Number of Sn,s) Let Sn,s be a spire graph, where 2 ≤ s ≤
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bn
2
c. Then,

rn(Sn,s) =



2k2 − 4k + 2s+ 3 if n = 2k and 2 ≤ s ≤ k − 2,

2k2 − 2k if n = 2k and s = k − 1,

2k2 − 2k + 1 if n = 2k and s = k,

2k2 − 2k + 2s if n = 2k + 1.

Based on this result, in Section 3.3 we will also determine the radio numbers

of all other graphs with n vertices and diameter n− 2.

As mentioned in Section 2.1, Liu establishes bounds for the radio numbers of

trees in [8]. In particular she determines the exact radio numbers of spire graphs with

an odd number of vertices and of spire graphs when the spire is very close to the

middle of the path. Although our techniques easily cover these cases as well, in the

interest of brevity we will quote Liu’s results whenever feasible.

3.1 Radio Number of Spire Graphs–Upper Bound

In this section, we present algorithms for finding specific orderings of the ver-

tices of spire graphs. The associated radio labeling of these orderings gives an upper

bound for the radio number of these graphs. In Section 3.2, we find a lower bound

for the radio number of graphs which matches the upper bound found in this section

to establish the radio number of spire graphs.

Theorem 3 (Upper bound for Sn,s). Let Sn,s be a spire graph, where 2 ≤ s ≤ bn
2
c.

Then,
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rn(Sn,s) ≤



2k2 − 4k + 2s+ 3 if n = 2k and 2 ≤ s ≤ k − 2,

2k2 − 2k if n = 2k and s = k − 1,

2k2 − 2k + 1 if n = 2k and s = k,

2k2 − 2k + 2s if n = 2k + 1.

Proof. To establish this bound we define a labeling with the appropriate span. The

cases for n even and n odd are discussed separately.

Case I: First consider the case when n = 2k for some k ∈ Z. The upper bounds for

cases when k < 7 that are not included in this proof are shown explicitly in Appendix

A.

Subcase A: 2 ≤ s ≤ k − 2 and k ≥ 7. Order the vertices of Sn,s into three

groups as follows:

Group I: vk, v2k, vk+4, v5, vk+3, v3, vk+2, v4,

Group II: vk+5, v6, vk+6, v7, . . . , vk+m, vm+1, . . . , vk+(k−3), vk−2,

Group III: v2k−2, v2, vk+1, v1, v2k−1, vk−1.

In this ordering Group I always contains the same 8 vertices and Group III

always contains the same 6 vertices. Group II follows the indicated pattern and

contains n− 14 vertices.

Now, rename the vertices of Sn,s in the above ordering by x1, x2, . . . , xn where

x1 = vk, x2 = v2k, etc. In Table 3.1 we define a labeling f of Sn,s. We will let

f(x1) = 1. The first column in the table gives the order in which the vertices are

labeled, i.e., the inequality f(xi) > f(xi−1) always holds. The second column reminds
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the reader which vertex we are labeling. In the third column we have computed the

distance between xi and xi+1. Finally in the last column we give the difference between

the labels f(xi) and f(xi+1). Given that f(x1) = 1, one can use the last column to

compute f(xi) by summing the first i− 1 entries of the column and then adding one

to this sum.

Claim: The function f defined in Table 3.1 is a radio labeling on Sn,s.

xi Vertex Names d(xi, xi+1) f(xi+1)− f(xi)
x1 vk k − s+ 1 k + s− 2
x2 v2k k − s+ 5 k + s− 6
x3 vk+4 k − 1 k
x4 v5 k − 2 k + 1
x5 vk+3 k k − 1
x6 v3 k − 1 k
x7 vk+2 k − 2 k + 1
x8 v4 k + 1 k − 2
x9 vk+5 k − 1 k
x10 v6 k k − 1
...

...
...

...
x2m−1 vk+m k − 1 k
x2m vm+1 k k − 1

...
...

...
...

xn−7 vk+(k−3) k − 1 k
xn−6 vk−2 k k − 1
xn−5 v2k−2 2k − 4 4
xn−4 v2 k − 1 k
xn−3 vk+1 k k − 1
xn−2 v1 2k − 2 2
xn−1 v2k−1 k k − 1
xn vk−1 n/a n/a

Table 3.1: Radio Labeling f on Sn,s where n = 2k, 2 ≤
s ≤ k − 2, k ≥ 7.
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Proof of claim: To prove that f is a radio labeling, we need to verify that the

radio condition holds for all vertices xi, xj ∈ V (Sn,s). In this case, the diameter of Sn,s

is 2k−2 so we must show that for every i, j with j > i, d(xi, xj)+f(xj)−f(xi) ≥ 2k−1.

Case 1: j = i+1. To verify the radio condition it suffices to add the entries in

the 3rd and 4th columns of the ith row of Table 3.1 and check that this sum is always

at least 2k − 1.

Case 2: j = i+ 2. Note that f(xj)−f(xi) is equal to the sum of the entries in

the last column of rows i and i+ 1 of Table 3.1. One can quickly check that in most

cases f(xj)− f(xi) ≥ 2k− 2 and therefore d(xi, xj) + f(xj)− f(xi) ≥ 1 + 2k− 2. It is

less clear that the inequality d(xi, xj) + f(xj)− f(xi) ≥ 2k− 1 holds for the following

six pairs of vertices: {x3, x1}, {x4, x2}, {xn−4, xn−6}, {xn−3, xn−5}, {xn−1, xn−3}, and

{xn, xn−2}. In Table 3.2 we compute the distance between vertices and the difference

between their labels for five of those vertex pairs. The reader can easily verify that

these pairs satisfy the radio condition.

Vertex pair d(xi, xi+2) f(xi+2)− f(xi)
{x3, x1} 4 2k + 2s− 8
{xn−4, xn−6} k − 4 k + 3
{xn−3, xn−5} k − 3 k + 4
{xn−1, xn−3} k − 2 k + 1
{xn, xn−2} k − 2 k + 1

Table 3.2: Radio labeling f found in Ta-
ble 3.1: Verifying radio condition for {xi, xj}
with j = i+ 2.



22

For the pair {x4, x2}, note that the vertex incident to the spire is vs. We

consider two cases:

(1) If s < 5, then d(x2, x4) + c(x4) − c(x2) = d(vn, v5) + 2k + s − 6 =

5 − s + 1 + 2k + s − 6 = 2k.

(2) If s ≥ 5 then c(x4) − c(x2) = 2k + s − 6 ≥ 2k + 5 − 6 = 2k − 1.

In both cases the radio condition is satisfied.

Case 3: j ≥ i + 3. Note that f(xj) − f(xi) is at least equal to the sum of

the entries in the last column of rows i, i + 1 and i + 2 in Table 3.1. As the sum of

any three consecutive entries in the column is at least 2k − 2, in this case the radio

condition is always satisfied.

And thus the claim has been proven.

Letting f(x1) = 1, the largest number in the range of the radio labeling f is

f(xn) and is therefore equal to the sum of the entries in the last column of Table

3.1 plus one. Since the sums of Group I, Group II, and Group III are 8k + 2s − 9,

(k−7)(2k−1), and 3k+4, respectively, we conclude that rn(Sn,s) ≤ 2k2−4k+2s+3

as desired.

Subcase B: s = k− 1 and k ≥ 3. As this algorithm is similar to the previous

one but simpler, we summarize the algorithm directly in Table 3.3.

By adding the third and fourth entries in each row of Table 3.3, we can verify

that d(xi, xi+1)+f(xi+1)−f(xi) ≥ 2k−1 for all i. In this case it is also easy to check

that f(xi+j)− f(xi) is at least 2k − 2 for all i and all j ≥ 2 so the radio condition is

always satisfied. Adding one to the sum of the values in the last column of Table 3.3
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xi Vertex Names d(xi, xi+1) f(xi+1)− f(xi)
x1 vk−1 k k − 1
x2 v2k−1 k + 1 k − 1
x3 v2k k k − 1
x4 v2k−2 k k − 1
x5 vk−2 k − 1 k
...

...
...

...
x2m v2k−m k k − 1
x2m+1 vk−m k − 1 k

...
...

...
...

xn−2 v2k−(k−1) k k − 1
xn−1 vk−(k−1) k − 1 k
xn vk n/a n/a

Table 3.3: Radio Labeling f on Sn,s where n = 2k,
s = k − 1 and k ≥ 3.

gives the desired upper bound for the radio number in this case.

Subcase C: s = k and k ≥ 2.

Table 3.4 corresponds to the labeling algorithm. As in Subcase B, checking

that f is a radio labeling is trivial. Again the sum of the values in the last column

plus one gives the desired upper bound for the radio number.

Case II: Now suppose that n = 2k + 1 for some k ∈ Z. Order the vertices of Sn,s as

follows:

Group I: vk−1, v2k−1, vk−2, v2k−2, vk−3, v2k−3, . . . , vk+3, v2, vk+2,

Group II: v2k+1, vk+1, v1, v2k, vk.

In this ordering Group I always contains n − 5 vertices and Group II always

contains the same 5 vertices. Now, rename the vertices of Sn,s in the above ordering
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xi Vertex Names d(xi, xi+1) f(xi+1)− f(xi)
x1 vk k − 1 k
x2 v1 k k − 1
x3 vk+1 k − 1 k
...

...
...

...
x2m vm k k − 1
x2m+1 vk+m k − 1 k

...
...

...
...

xn−2 vk−1 k k − 1
xn−1 v2k−1 k k − 1
xn v2k n/a n/a

Table 3.4: Radio Labeling f on Sn,s where n = 2k, s =
k, k ≥ 2.

by x1, x2, . . . , xn. This is the label order of the vertices of Sn,s.

Claim: The function f defined in Table 3.5 is a radio labeling on Sn,s.

Proof of claim: To prove that f is a radio labeling, we need to verify that the

radio condition holds for all vertices xi, xj ∈ Sn,s, i.e., we must show that for every

i, j with j > i, d(xi, xj) + f(xj)− f(xi) ≥ 2k.

Case 1: j = i+1. To verify the radio condition it suffices to add the entries in

the 3rd and 4th column of the ith row of Table 3.5 and check that this sum is always

at least 2k.

Case 2: j = i+ 2. Note that f(xj)−f(xi) is equal to the sum of the entries in

the last column of rows i and i+ 1 in Table 3.5. One can quickly check that in most

cases f(xj)−f(xi) ≥ 2k−1 and therefore d(xi, xj) +f(xj)−f(xi) ≥ 1 + 2k−1 = 2k.

It is less clear that d(xi, xj) + f(xj)− f(xi) ≥ 2k holds for the following five pairs of

vertices {u, v}: {xn−4, xn−6}, {xn−3, xn−5}, {xn−2, xn−4}, {xn−1, xn−3}, and {xn, xn−2}.
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xi Vertex Names d(xi, xi+1) f(xi+1)− f(xi)
x1 vk−1 k k
x2 v2k−1 k + 1 k − 1
x3 vk−2 k k
x4 v2k−2 k + 1 k − 1
x5 vk−3 k k
x6 v2k−3 k + 1 k − 1
...

...
...

...
xn−8 v3 k k
xn−7 vk+3 k + 1 k − 1
xn−6 v2 k k
xn−5 vk+2 k + 3− s k − 3 + s
xn−4 v2k+1 k + 2− s k − 2 + s
xn−3 vk+1 k k
xn−2 v1 2k − 1 1
xn−1 v2k k k
xn vk n/a n/a

Table 3.5: Radio Labeling f on Sn,s where n = 2k + 1.

In Table 3.6 we compute the distance between vertices and difference between their

labels for these vertex pairs. The reader can verify that these pairs of vertices satisfy

the radio condition keeping in mind that s ≥ 2.

Vertex pair d(xi, xi+2) f(xi+2)− f(xi)
{xn−4, xn−6} s− 1 2k − 3 + s
{xn−3, xn−5} 1 2k − 5 + 2s
{xn−2, xn−4} s 2k − 2 + s
{xn−1, xn−3} k − 1 k + 1
{xn, xn−2} k − 1 k + 1

Table 3.6: Radio Labeling f on Sn,s where
n = 2k + 1: Verifying radio condition for
{xi, xj} with j = i+ 2.
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Case 3: j ≥ i+ 3. Note that f(xj)− f(xi) is at least equal to the sum of the

entries in the last column of rows i, i + 1 and i + 2 in Table 3.5. As the sum of any

three consecutive entries in the column is at least 2k, in this case the radio condition

is always satisfied.

And thus the claim has been proven.

The largest number in the range of the radio labeling c is then f(xn) and is

therefore equal to the sum of the entries in the last column of Table 3.5 plus one.

Since the sums of Group I and Group II are (k−3)(2k−1)+2k−3+s and 3k−1+s,

respectively, we conclude that rn(G) ≤ 2k2 − 2k + 2s as desired.

3.2 Radio Number of Spire Graphs–Lower Bound

We can now prove that the upper bound for rn(Sn,s) found in Section 3.1 is

also a lower bound. The result for odd values of n follows from [8]. The proof for even

values of n is done in two steps. First we will compute a lower bound using Proposition

2 by determining maxp
∑n−1

i=1 d(xi, xi+1) where p is a bijection from V (Sn,s) to the set

{x1, ..., xn}. However this bound is not sharp so the second part of the proof shows

how to improve the bound so it reaches the upper bound we established in Section

3.1.

Theorem 4 (Lower bound for Sn,s). Let Sn,s be a spire graph, where 2 ≤ s ≤ bn
2
c.

Then,
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rn(Sn,s) ≥



2k2 − 4k + 2s+ 3 if n = 2k and 2 ≤ s ≤ k − 2,

2k2 − 2k if n = 2k and s = k − 1,

2k2 − 2k + 1 if n = 2k and s = k,

2k2 − 2k + 2s if n = 2k + 1.

Proof. If n = 2k + 1 the desired lower bound follows directly from Corollary 5 of [8]:

we observe that Sn,s is a spider (a tree with at most one vertex of degree more than

two) so

rn(Sn,s) ≥ 2k2 − 2k + 2s.

Similarly if n = 2k, and s = k− 1 or s = k, the desired bound follows from Theorem

12 of [8].

Assume then that n = 2k, and 2 ≤ s ≤ k − 2. First we determine

maxp
∑n−1

i=1 d(xi, xi+1) where p is a bijection from V (Sn,s) to the set {x1, ..., xn}.

Name the edges of S2k,s so that for 1 ≤ i ≤ n − 2, ei is the edge between vi

and vi+1 and let en−1 be the edge between vs and vn. The distance between xj and

xj+1 is the number of edges in the shortest path Pj between these two vertices in the

graph. Note that removing any edge ei from S2k,s results in a disconnected graph of

two components. By the third and fourth conclusions of Lemma 1, (see also Figure

3.1), it follows that:
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N(ei) =



2i if i ≤ s− 1,

2i+ 2 if s ≤ i ≤ k − 2,

2k − 1 if i = k − 1,

2(2k − 1− i) if k ≤ i ≤ 2k − 2,

2 if i = 2k − 1.

So maxp
∑n−1

i=1 d(xi, xi+1) ≤
∑n−1

i=1 N(ei) = 2k2 − 2s + 1. Thus we substitute

this sum into the maximum distance lower bound to find that

rn(S2k,s) ≥ 2k2 − 4k + 2s+ 1.

We now argue that this lower bound for rn(S2k,s) can be increased by 2. Recall

that if x̃1, . . . , x̃n is an ordering of the vertices of S2k,s with f̃ the associated radio

labeling, then for each i ∈ {1, ..., n − 1} there is a non-negative integer Jf̃ (x̃i, x̃i+1)

such that d(x̃i, x̃i+1) + f̃(x̃i+1) − f̃(x̃i) = n − 1 + Jf̃ (x̃i, x̃i+1). We will show that

if x̃1, . . . , x̃n is a distance maximizing ordering, then
∑n−1

i=1 Jf̃ (x̃i, x̃i+1) ≥ 2 and if

x̃1, . . . , x̃n is an almost distance maximizing ordering, then
∑n−1

i=1 Jf̃ (x̃i, x̃i+1) ≥ 1. In

either case we conclude that

rn(S2k,s) ≥ (2k2 − 4k + 2s+ 1) + 2.

Claim: Let x1, . . . , xn be an ordering of the vertices of G with f the associated

radio labeling and let {xi−1, xi, xi+1} be three consecutively labeled vertices such that

f(xi−1) < f(xi) < f(xi+1). Assume that xi−1, xi+1 ∈ {v1, v2, ..., vs, ...vk−1, vn} and
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xi ∈ {vk, vk+1, ..., v2k−1}. Let α denote xi−1 or xi+1, whichever has smaller distance

to xi, and let β denote the one with the larger distance to xi (the only case in which

the two distances are equal is when xi−1 = vn and xi+1 = vs−1 (or vice versa); in this

case let α be vn). Let Jf (xi, α) and Jf (xi, β) be non-negative integers such that

d(xi, α) + |f(xi)− f(α)| = n− 1 + Jf (xi, α) and

d(xi, β) + |f(xi)− f(β)| = n− 1 + Jf (xi, β).

Then

Jf (xi, α) + Jf (xi, β) ≥


2(d(xi, α))− n+ 1 α 6= vn,

2(d(xi, α))− n− 1 α = vn,

Proof of Claim:

Let {xi−1, xi, xi+1} be a triple of vertices satisfying the hypotheses of the claim.

We observe that

d(α, β) =


d(xi, β)− d(xi, α) α 6= vn,

d(xi, β)− d(xi, α) + 2 α = vn.

We will prove the claim in detail in the case when f(α) < f(xi) < f(β) and

α 6= vn. For the other cases we only present the final result and let the interested

reader verify the details of the computations.

The radio condition applied to the pair of vertices α and β gives

n− 1 ≤ d(α, β) + f(β)− f(α).

We substitute d(α, β) = d(xi, β)−d(xi, α) in the above equation and add and subtract

f(xi) to obtain

n− 1 ≤ d(xi, β)− d(xi, α) + f(β)− f(α) + f(xi)− f(xi).



30

Recall that

d(xi, α) + f(xi)− f(α) = n− 1 + Jf (xi, α) and

d(xi, β) + f(β)− f(xi) = n− 1 + Jf (xi, β)

where Jf (xi, α) and Jf (xi, β) are non-negative integers. We now make a series of

substitutions to obtain a lower bound for Jf (xi, α) + Jf (xi, β). First, we substitute

d(xi, β) + f(β)− f(xi) = n− 1 + Jf (xi, β) and add and subtract Jf (xi, α) to obtain

n− 1 ≤ n− 1 + Jf (xi, β)− d(xi, α)− f(α) + f(xi) + Jf (xi, α)− Jf (xi, α).

Now, we substitute n − 1 + Jf (xi, α) = d(xi, α) + f(xi) − f(α), which yields, after

canceling d(xi, α),

n− 1 ≤ 2(f(xi)− f(α)) + Jf (xi, β)− Jf (xi, α).

Solving for f(xi)− f(α) and multiplying through by (−1) shows that

f(α)− f(xi) ≤ 1
2
(−n+ 1 + Jf (xi, β)− Jf (xi, α)).

Then

d(xi, α) + f(xi)− f(α) = n− 1 + Jf (xi, α)

=⇒ d(xi, α) = n− 1 + Jf (xi, α) + f(α)− f(xi)

=⇒ d(xi, α) ≤ n− 1 + Jf (xi, α) + 1
2
(−n+ 1 + Jf (xi, β)− Jf (xi, α))

= 1
2
(n− 1 + Jf (xi, α) + Jf (xi, β))

=⇒ Jf (xi, α) + Jf (xi, β) ≥ 2(d(xi, α))− n+ 1,

and we have obtained the desired lower bound for Jf (xi, α)+Jf (xi, β). Making similar

series of substitutions in the other three cases depending on the label order of α, xi

and β and on whether or not α = vn shows that
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Jf (xi, α) + Jf (xi, β) ≥


2(d(xi, α))− n+ 1 α 6= vn,

2(d(xi, α))− n− 1 α = vn.

And this completes the proof of the claim.

From these two inequalities, we construct Table 3.7, in which each entry gives

the lower bound for the Jf (xi, α) + Jf (xi, β) associated to the corresponding xi ∈

{vk, ..., v2k−1} and α ∈ {v1, ..., vk−1, vn} based on the equation above.

vk vk+1 vk+2 ... v2k−3 v2k−2 v2k−1
v1 0 1 3 ... 2k − 7 2k − 5 2k − 3
v2 0 0 1 ... 2k − 9 2k − 7 2k − 5
v3 0 0 0 ... 2k − 11 2k − 9 2k − 7
...

...
...

... ...
...

...
...

vk−3 0 0 0 ... 1 3 5
vk−2 0 0 0 ... 0 1 3
vk−1 0 0 0 ... 0 0 1
vn ≥ 0 ≥ 0 ≥ 0 ... ≥ 0 ≥ 1 ≥ 3

Table 3.7: Lower bound for Jf (xi, α) + Jf (xi, β) asso-
ciated to corresponding xi ∈ {vk, . . . , v2k−1} and α ∈
{v1, . . . , vk−1, vn}.

Suppose x1, . . . , xn is any distance maximizing ordering of the vertices of S2k,s

with associated radio labeling f . Note that in this case nx(ek−1) = 2k − 1 so by

conclusions 3 and 4 of Lemma 1 if xi is in the set {vk, ..., v2k−1}, then xi−1 and xi+1

are in the set {v1, ..., vk−1, vn} so the hypotheses of the claim are satisfied for the

triple {xi−1, xi, xi+1}. By the claim a lower bound for Jf (xi, α) + Jf (xi, β) is given

by Table 3.7. Let m be such that xm = v2k−1. In any distance maximizing ordering,



32

nx(e2k−2) = 2. By conclusion 2 of Lemma 1, as nx(e2k−2) is even, v2k−1 is not the first

or last labeled vertex. Therefore 1 < m < n and we can use Table 3.7 to compute a

lower bound of 1 for Jf (xm, α) + Jf (xm, β).

If Jf (xm, α)+Jf (xm, β) > 1 then
∑n−1

i=1 Jf (xi, xi+1) ≥ 2 as desired. If Jf (xm, α)+

Jf (xm, β) = 1 then either xm−1 or xm+1, whichever is closest to v2k−1, is vk−1, as this

is the only row with an entry less than 2 in the last column of Table 3.7. In any

distance maximizing ordering, vk−1 must be the first or last vertex labeled because

nx(ek−2) + nx(ek−1) is odd. Without loss of generality assume that vk−1 is the first

labeled vertex and so m = 2. Since x1, . . . , xn is a distance maximizing ordering, it

follows that x3 ∈ {v1, . . . , vk−1, vn}. Now consider the vertex v2k−2 which corresponds

to some xr with r ≥ 4. Therefore r − 1 ≥ 3 so in particular xr−1, xr+1 6= vk−1. Thus

Jf (xr−1, xr) + Jf (xr, xr+1) ≥ 1 and so
∑n−1

i=1 Jf (xi, xi+1) ≥ 2 as desired.

Now we consider when x1, . . . , xn is an almost distance maximizing ordering

of the vertices of S2k,s. As the ordering is almost distance maximizing exactly one

of the nx(ei) values considered above is exactly one less. If this value is nx(ek−1),

then all values for nx(ei) would be even, contradicting conclusion 2 of Lemma 1.

Thus nx(ek−1) = 2k − 1 in this case too, so by conclusion 2 of Lemma 1 if xi is in

the set {vk, ..., v2k−1}, then the hypotheses of the claim are satisfied for the triple

{xi−1, xi, xi+1}. Therefore the above argument when xm = v2k−1 still holds and so∑n−1
i=1 Jf (xi, xi+1) ≥ 1.

In conclusion, we have shown that if an ordering x1, . . . , xn of vertices is

distance maximizing then
∑n−1

i=1 Jf (xi, xi+1) ≥ 2 and if the ordering is almost dis-
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tance maximizing then
∑n−1

i=1 Jf (xi, xi+1) ≥ 1. In either case by Proposition 1

we conclude that rn(S2k,s) ≥ 2k2 − 4k + 2s + 3. If x1, . . . , xn is neither distance

maximizing, nor almost distance maximizing then by Proposition 1 it follows that

rn(S2k,s) ≥ 2k2 − 4k + 2s+ 3 as
∑n−1

i=1 Jf (xi, xi+1) is always non-negative.

3.3 Radio number of all other diameter n− 2 graphs

In this section we will determine the radio number of all other diameter n− 2

graphs. We start with some definitions.

Definition. Let n, s ∈ Z where n ≥ 4 and 2 ≤ s ≤ n. We define the graph

S1
n,s with vertices v1, ..., vn and edges {(vi, vi+1)|i = 1, 2, ..., n − 2} together with the

edges (vs, vn) and (vs−1, vn). Without loss of generality we will always assume that

s ≤ bn+1
2
c. See Figure 3.2.

Figure 3.2: S1
n,s.

Definition. Let n, s ∈ Z where n ≥ 4 and 3 ≤ s ≤ n. We define the graph

S2
n,s with vertices v1, ..., vn and edges {(vi, vi+1)|i = 1, 2, ..., n − 2} together with the

edges (vs, vn) and (vs−2, vn). Without loss of generality we will always assume that
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s ≤ bn+2
2
c. See Figure 3.3.

Figure 3.3: S2
n,s.

Definition. Let n, s ∈ Z where n ≥ 4 and 3 ≤ s ≤ n. We define the graph S1,2
n,s

with vertices v1, ..., vn and edges {(vi, vi+1)|i = 1, 2, ..., n− 2} together with the edges

(vs, vn), (vs−1, vn), and (vs−2, vn). Without loss of generality we will always assume

that s ≤ bn+2
2
c. See Figure 3.4.

Figure 3.4: S1,2
n,s.

Note that other than the complete graph K3, these and spire graphs are all

possible n-vertex graphs with diameter n − 2. Such a graph must contain a path of

diameter n − 2 leaving one available vertex that is necessarily not part of the path.

If this vertex is adjacent to two vertices on the path, these two vertices must be a
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distance of at most 2 from each other along the path as otherwise the diameter of the

graph will be less than n − 2. The complete graph K3 also has diameter n − 2, but

since the radio number of K3 is known and a proof of it is found in [4], we do not

discuss it here.

To determine the radio numbers of these graphs, we begin with the following

remark:

Remark 5. Suppose a connected graph G′ results from removing one or more edges

from a connected graph G where D′ is the diameter of G′ and D is the diameter of

G. If D′ = D, then rn(G′) ≤ rn(G).

Theorem 6. For 2 ≤ s ≤ bn
2
c, rn(S∗n,s) = rn(Sn,s) where rn(S∗n,s) is any one of

rn(S1
n,s), rn(S2

n,s) or rn(S1,2
n,s).

Proof. For 2 ≤ s ≤ bn
2
c the graph Sn,s results from removing an edge from either S1

n,s

or S2
n,s, both of which result from removing an edge from S1,2

n,s. Since all the graphs

have diameter n− 2, by Remark 5

rn(Sn,s) ≤ rn(S1
n,s) ≤ rn(S1,2

n,s), and

rn(Sn,s) ≤ rn(S2
n,s) ≤ rn(S1,2

n,s).

By the above discussion, we only need to show that rn(Sn,s) ≥ rn(S∗n,s). We

will do that by demonstrating that the radio labeling for Sn,s given in Theorem 3

induces a radio labeling for S∗n,s with the same span. Let v1, ..., vn be the vertices

of Sn,s and let v∗1, ..., v
∗
n be the vertices of S∗n,s. Let f ∗ : V (S∗n,s) → Z+ be given by

f ∗(v∗i ) = f(vi) where f is the function in Theorem 3 (for the corresponding case).
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Notice that d(v∗i , v
∗
j ) = d(vi, vj) for all j > i except possibly when j = n and

i ≤ s− 1. Thus to verify that f ∗ is a radio labeling, we only need to verify the radio

condition for the pairs {v∗i , v∗n}, where i ≤ s− 1.

Case I: n = 2k and s ≤ k − 2.

By Theorem 3 we have that f ∗(v∗n) = f(x2) so we verify the radio condition

for all pairs {xi, x2}. Recall that we are assuming that s ≥ 2 and so k ≥ 4. By adding

the entries in the 2nd, 3rd, and 4th rows of the last column of Table 3.1, we calculate

that for all i ≥ 5, f ∗(xi)− f ∗(x2) ≥ 3k + s− 5 ≥ 2k − 1.

Thus regardless of the value of s, the radio condition is satisfied for all i ≥

5. Note that x1 corresponds to v∗k, and x3 corresponds to v∗k+4. As s ≤ k − 2,

d(vi, vn) = d(v∗i , v
∗
n) for i = k, k + 4 so the radio condition is satisfied for these pairs.

Finally we consider the pair {x4, x2}. Noting that x4 corresponds to v∗5, we have that

d(v5, vn) = d(v∗5, v
∗
n) if s ≤ 5 and the radio condition is satisfied. If s ≥ 6, then by

adding the entries in the 2nd and 3rd rows of the last column of Table 3.1, we calculate

that f ∗(x4) − f ∗(x2) = 2k + s − 6 ≥ 2k + 6 − 6 = 2k, and the radio condition is

satisfied.

Case II: n = 2k, and s = k − 1 or s = k.

As these cases are straightforward, we leave it to the reader to check them

using Tables 3.3 and 3.4.

Case III: n = 2k + 1 and 2 ≤ s ≤ k.

The reader can check these using Tables 3.5 and 3.6.

Notice that the reasoning in Case I of the above proof applies to the graphs
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whose upper bounds are shown in Appendix A. This shows that the labelings given

for Sn,s in that section are also radio labelings for rn(S∗n,s) when such a graph exists.

Theorem 6 leaves out only a few graphs with diameter n − 2. The following

theorem establishes the radio number in those cases:

Theorem 7. rn(S1
2k+1,k+1) = 2k2 + 1.

rn(S1,2
2k+1,k+1) = 2k2 + 1.

rn(S2
2k+1,k+1) = 2k2.

rn(S1,2
2k,k+1) = 2k2 − 2k + 2.

rn(S2
2k,k+1) = 2k2 − 2k + 1.

Proof. Case I: S1
2k+1,k+1.

We first prove that 2k2 + 1 is an upper bound for rn(S1
2k+1,k+1). Order the

vertices of S1
2k+1,k+1 into three groups as follows:

Group I: vk, v2k+1,

Group II: v2k, vk−1, v2k−1, vk−2, ..., vk+2, v1,

Group III: vk+1.

Now, rename the vertices of S1
2k+1,k+1 in the above ordering by x1, x2, . . . , xn.

This is the label order of the vertices of S1
2k+1,k+1.

Claim: The function f defined in Table 3.8 is a radio labeling on S1
2k+1,k+1.

Proof of Claim: We let the reader verify that the radio condition holds for all vertices

xi, xj ∈ V (S1
2k+1,k+1). In this case, the diameter of S1

2k+1,k+1 is 2k− 1 so for every i, j

with j > i, d(xi, xj) + f(xj)− f(xi) ≥ 2k must hold.
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xi Vertex Names d(xi, xi+1) f(xi+1)− f(xi)
x1 vk 1 2k − 1
x2 v2k+1 k k
x3 v2k k + 1 k − 1
x4 vk−1 k k
x5 v2k−1 k + 1 k − 1
x6 vk−2 k k
...

...
...

...
xn−4 vk+3 k + 1 k − 1
xn−3 v2 k k
xn−2 vk+2 k + 1 k − 1
xn−1 v1 k k
xn vk+1 n/a n/a

Table 3.8: Radio Labeling f on S1
2k+1,k+1.

Letting f(x1) = 1, the largest number in the range of the radio labeling f is

then f(xn) and is therefore equal to the sum of the entries in the last column of Table

3.8 plus one. We let the reader verify that rn(S1
2k+1,k+1) ≤ 2k2 + 1 as desired. And

thus the claim has been proven.

Claim: rn(S1
2k+1,k+1) ≥ 2k2 + 1.

Proof of Claim: We find a lower bound for rn(S1
2k+1,k+1) by using Proposition 2 and

determining maxp
∑n−1

i=1 d(xi, xi+1). For 1 ≤ i ≤ 2k − 1 let ei be the edge between vi

and vi+1. Let e2k and e2k+1 be the two edges incident to v2k+1 (see Figure 3.2). We

will use the terminology established in Lemma 1. Using the third conclusion of that

lemma, it follows that

N(ei) ≤


2i if i ≤ k − 1,

2(2k − i) if k + 1 ≤ i ≤ 2k − 1.

Furthermore note that any path Pj contains at most one of ek, e2k and e2k+1.
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As there are a total of 2k paths Pj, it follows that N(ek) +N(e2k) +N(e2k+1) ≤ 2k.

Therefore maxp
∑n−1

i=1 d(xi, xi+1) ≤
∑2k+1

i=1 N(ei) ≤ 2k2, and Lemma 2 shows that

rn(S1
2k+1,k+1) ≥ 4k2 + 1− 2k2 = 2k2 + 1 as desired. Thus, the claim has been proven.

Case II: S1,2
2k+1,k+1.

Note that S1
2k+1,k+1 results from removing an edge from S1,2

2k+1,k+1 (and the

graphs have the same diameter), so by Remark 5 and Case 1, rn(S1
2k+1,k+1) = 2k2+1 ≤

rn(S1,2
2k+1,k+1). We leave it to the reader to verify that the same labeling in Table 3.8

is valid.

Case III: S2
2k+1,k+1.

Notice that S2k+1,k+1 = S2k+1,k by symmetry. Then since S2k+1,k+1 results from

removing an edge from S2
2k+1,k+1 (and the graphs have the same diameter), we have

by Remark 5, Theorem 3, and Theorem 4 that rn(S2k+1,k+1) = rn(S2k+1,k) = 2k2 ≤

rn(S2
2k+1,k+1). We use the labeling of Table 3.8 making the change that f(x2)−f(x1) =

2k − 2 since now d(x1, x2) = 2 to conclude that rn(S2
2k+1,k+1) ≤ 2k2.

Case IV: S1,2
2k,k+1.

We first prove that 2k2 − 2k+ 2 is an upper bound for rn(S1,2
2k,k+1). Order the

vertices of S1,2
2k,k+1 into three groups as follows:

Group I: vk, v2k, v2k−1,

Group II: v1, vk+1, v2, vk+2, ..., vk−2, v2k−2,

Group III: vk−1.

Now, rename the vertices of S1,2
2k,k+1 in the above ordering by x1, x2, . . . , xn.

This is the label order of the vertices of S1,2
2k,k+1.
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Claim: The function f defined in Table 3.9 is a radio labeling on S1,2
2k,k+1.

xi Vertex Names d(xi, xi+1) f(xi+1)− f(xi)
x1 vk 1 2k − 2
x2 v2k k − 1 k
x3 v2k−1 2k − 2 1
x4 v1 k k − 1
x5 vk+1 k − 1 k
x6 v2 k k − 1
x7 vk+2 k − 1 k
...

...
...

...
xn−4 vk−3 k k − 1
xn−3 v2k−3 k − 1 k
xn−2 vk−2 k k − 1
xn−1 v2k−2 k − 1 k
xn vk−1 n/a n/a

Table 3.9: Radio Labeling f on S1,2
2k,k+1.

Proof of Claim: We let the reader verify that the radio condition holds for all vertices

xi, xj ∈ V (S1,2
2k,k+1). In this case, the diameter of S1,2

2k,k+1 is 2k−2 so for every i, j with

j > i, d(xi, xj) + f(xj)− f(xi) ≥ 2k − 1 must hold.

Letting f(x1) = 1, the largest number in the range of the radio labeling f is

then f(xn) and is therefore equal to the sum of the entries in the last column of Table

3.9 plus one. We let the reader verify that rn(S1,2
2k,k+1) ≤ 2k2 − 2k + 2 as desired.

Thus the claim has been proven.

Claim: rn(S1,2
2k,k+1) ≥ 2k2 − 2k + 2.

Proof of Claim: We find a lower bound for rn(S1,2
2k,k+1) by using Proposition 2 and

determining maxp
∑n−1

i=1 d(xi, xi+1). For 1 ≤ i ≤ 2k − 2 let ei be the edge between vi
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and vi+1. Let e2k−1, e2k and e2k+1 be the three edges incident to v2k where e2k−1 is

incident to vk−1, e2k is incident to vk, and e2k+1 is incident to vk+1 (see Figure 3.4).

By the third conclusion of Lemma 1 it follows that

N(ei) ≤


2i if 1 ≤ i ≤ k − 2,

2(2k − 1− i) if k + 1 ≤ i ≤ 2k − 2.

Furthermore by Lemma 2 it follows that N(ek−1) + N(e2k−1) ≤ 2(k − 1) and

N(ek) + N(e2k+1) ≤ 2(k − 1). Finally, for any ordering x1, . . . , xn of the vertices,

nx(e2k) ≤ 1 as it is only contained in a path with endpoints vk and v2k. Note

that if all three of these inequalities are equalities, then vk and v2k correspond to

x1 and x2k by the first conclusion of Lemma 1 as these are the only vertices for

which the sum of the nx(ei) for the incident edges may be odd. At the same time

vk and v2k must correspond to xi and xi+1 for some i as nx(e2k) = 1. This is a

contradiction. Therefore nx(ek−1)+nx(ek)+nx(e2k−1)+nx(e2k)+nx(e2k+1) ≤ 4(k−1).

Thus maxp
∑n−1

i=1 d(xi, xi+1) ≤ 2k2 − 2k, and Lemma 2 shows that rn(S1,2
2k,k+1) ≥

4k2 − 4k + 2− 2k2 + 2k = 2k2 − 2k + 2.

Case V: S2
2k,k+1.

We use the labeling of Table 3.9 making the change that f(x2)−f(x1) = 2k−3

since now d(x1, x2) = 2 to conclude that rn(S2
2k,k+1) ≤ 2k2−2k+1. For 1 ≤ i ≤ 2k−2

let ei be the edge between vi and vi+1. Let e2k−1 and e2k be the edges incident to v2k

where e2k−1 is incident to vk−1, and e2k is incident to vk+1. As in the previous case it

follows that
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N(ei) ≤


2i if i ≤ k − 2,

2(2k − 1− i) if k + 1 ≤ i ≤ 2k − 2.

Unlike in the previous case, here exactly one path may contain ek−1 and e2k−1

or it may contain ek and e2k. This would be the path (if such a path exists) with

endpoints vk and v2k. Without loss of generality we can assume that this path contains

ek−1 and e2k−1. Therefore in this case nx(ek−1) + nx(e2k−1) ≤ 2(k − 1) + 1 and

nx(ek) +nx(e2k) ≤ 2(k− 1). Thus maxp
∑n−1

i=1 d(xi, xi+1) ≤ 2k2− 2k+ 1, and Lemma

2 shows that rn(S1,2
2k,k+1) ≥ 4k2 − 4k + 2− 2k2 + 2k − 1 = 2k2 − 2k + 1.
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CHAPTER 4
CATERPILLAR GRAPHS

In this chapter, we use techniques from Chapter 2 to improve the lower bound

of the radio number of certain tree graphs as well as determine the radio number of

some specific tree graphs. To begin, we define the general type of graph this chapter

will address.

Definition. Let n, s, l ∈ Z+ with n = s + l. A caterpillar graph G is a tree graph

with n vertices, v1, v2, . . . , vs+l. The spine of G consists of vertices v1, v2, . . . , vs along

with edges (vi, vi+1) for i = 1, . . . , s− 1. A leg vertex is a degree one vertex adjacent

to vi for some i, 2 ≤ i ≤ s− 1. See an example in Figure 4.1.

Figure 4.1: A Caterpillar with s = 10 vertices on the
spine and l = 7 leg vertices.

4.1 Caterpillar Preliminaries

In this section, we establish notation for specific types of caterpillar graphs as

well as determine properties of those graphs that build off of techniques for trees in

general that were discussed in Chapter 2.
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There are four main categories of caterpillar graphs in terms of the center

edge definition from Section 2.1.1. There could be one center edge ec where N(ec)

is odd, there could be one center edge ec where N(ec) is even, there could be two

center edges, or there could be multiple center edges. Notice that the only way for

a caterpillar graph to have multiple center edges is if the caterpillar is a star graph.

Then every edge e is such that N(e) = 2. Since the radio number of star graphs has

been determined in [4], we will not consider this last case in this thesis.

Since are considering caterpillar graphs with one or two center edges, we use

the following notation for the rest of the thesis:

Notation. If G is a caterpillar with one center edge, ec, let vca and vcb be the vertices

incident to ec with vca in A and vcb in B. Let eca be the edge on the spine in A that

is incident to vca . Similarly, let ecb be the edge on the spine in B that is incident to

vcb . See Figure 4.2.

If G is a caterpillar and there are two center edges, call the center edges eca

and ecb . Let vc be the vertex incident to both eca and ecb . Let vca and vcb be the

vertices on the spine of G adjacent to vc such that vca is incident to eca and vcb is

incident to ecb . Let A be the component vca is in when eca is removed from G and B

be the component vcb is in when ecb is removed from G. See Figure 4.3.

Now we use ideas from Section 2.1 along with the structure of caterpillars

in regard to their center edge(s) to determine when
∑n−1

i=1 nx(ei) is maximized for a

specific ordering x1, . . . , xn of the vertices of a caterpillar graph.

Proposition 4. Let G be a caterpillar with n vertices. Let x1, . . . , xn be an ordering
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Figure 4.2: A caterpillar G with one center edge ec.

Figure 4.3: A caterpillar G with two center edges eca
and ecb .

of the vertices of G. Let e1, e2, . . . , en−1 be the edges of G. Then we have the following:

• If there is one center edge and N(ec) is odd, the sum
∑n−1

i=1 nx(ei) is maximized

when nx(ei) = N(ei) for all ei ∈ E(G).

• If there is either one center edge with N(ec) even or there are two center edges,

the sum
∑n−1

i=1 nx(ei) is maximized when
nx(ek) = N(ek)− 1 for some edge ek ∈ E(G)

nx(ei) = N(ei) for all edges ei 6= ek ∈ E(G).

When this maximized sum occurs, there is only one edge in E(G) such that

nx(e) is odd.

Proof. First, we consider when G has one center edge and N(ec) is odd.
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By (1) of Remark 2, the only time N(e) is odd for some edge e in a tree is

when N(e) = n− 1. Thus, in this case, N(ec) = n− 1. Note that N(e) for all other

edges of G is even. Remark 2 (2) indicates that for the ordering x1, . . . , xn, there

must be at least one edge e with nx(e) odd. Since nx(ec) is already odd,
∑n−1

i=1 nx(ei)

is maximized when nx(ei) = N(ei) for all ei ∈ E(G) for the ordering x1, . . . , xn.

Next, we consider when G has one center edge with N(ec) even or when G has

two center edges. In each of these cases, all of the N(ei) values are even. Thus, by

Remark 2 (2), there has to be at least one edge ek such that nx(ek) 6= N(ek) because

nx(ek) must be odd. To maximize
∑n−1

i=1 nx(ei), it follows that there is exactly one

edge ek such that nx(ek) 6= N(ek). Specifically, nx(ek) = N(ek) − 1. Therefore,

∑n−1
i=1 nx(ei) is maximized when


nx(ek) = N(ek)− 1 for some edge ek ∈ E(G)

nx(ei) = N(ei) for all edges ei 6= ek ∈ E(G)

for the ordering x1, . . . , xn.

In both of these cases, when
∑n−1

i=1 nx(ei) was maximized, there was only one

edge with an odd nx(e) value.

Remark 8. Notice that Propositions 3 and 4 show that in a distance maximizing

ordering x1, . . . , xn of the vertices of a caterpillar G, there is only one edge e such

that nx(e) is odd. Then, from (3) of Remark 2, it follows that in a distance maximizing

ordering of the vertices of G, the vertices x1 and xn are adjacent.

Notation. For a distance maximizing ordering x1, . . . , xn of the vertices of a caterpillar

G, let e∗ denote the edge that is incident to both x1 and xn.

In Section 4.2, we consider a specific type of caterpillar. In order to define this
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particular caterpillar, we need the following proposition.

Proposition 5. Let G be a tree with n vertices and one center edge ec. The value of

N(ec) is odd if and only if n is even and |V (A)| = |V (B)| = n
2
.

Proof. (⇐) Suppose ec is the only center edge and |V (A)| = n
2

= |V (B)|. Note that

since n = 2(n
2
) is the total number of vertices in the graph, n is even.

Since |V (A)| = n
2

= |V (B)|, it follows that 2 min{|V (A)|, |V (B)|} = 2(n
2
) = n.

By Lemma 1 (4), N(ec) 6= n = 2 min{|V (A)|, |V (B)|}. Therefore, N(ec) = n − 1

which is odd.

(⇒) First note that there is no tree with n odd where the removal of an edge

will result in two disconnected components A and B such that |V (A)| = n
2

= |V (B)|.

Thus, n is even.

Let A and B be the components of G after the removal of ec. Suppose by

way of contradiction that |V (A)| 6= |V (B)|. Without loss of generality, suppose

|V (A)| > |V (B)|. Notice that |V (B)| < n
2
. Since

N(ei) =


n− 1 if min{|V (Ai)|, |V (Bi)|} = n

2

2 min{|V (Ai)|, |V (Bi)|} else,

N(ec) = 2|V (B)| which is even, contradicting the assumption that N(ec) is odd.

Therefore, |V (A)| = n
2

= |V (B)|.

Applying results from Proposition 5 to caterpillars, we have the following

definition:
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Definition. A caterpillar is edge-balanced if there is an edge so that removing this

edge results in exactly two components with an equal number of vertices. By Propo-

sition 5, this is a caterpillar with one center edge where N(ec) is odd. Let G be an

edge-balanced caterpillar with n vertices (note that by Proposition 5, n is necessarily

even). Name the vertices of G as follows: The vertices of the spine will be denoted

u1, ..., us (note that D = s − 1). If there are t leg vertices adjacent to ur, we will

denote them l1r−1, ..., l
t
r−1 if they are to the left of the center edge and l1r+1, ..., l

t
r+1 if

they are to the right. See Figure 4.4 for an example.

Figure 4.4: An edge-balanced caterpillar with nine vertices on each
side of the center edge ec.

Note that the distance between any two vertices on opposite sides of the center

edge is given by the absolute difference of their subscripts.

To stay consistent with earlier notation, for an edge-balanced caterpillar G, let

uca and ucb be the vertices on the spine of G incident to ec. This means 1 ≤ ca < cb ≤ s

with ca + 1 = cb. Notice that this means we refer to A as the component to the left

of the center edge and B as the component to the right of the center edge.
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4.2 Algorithm for Edge-Balanced Caterpillars

In this section, we determine an algorithm for an ordering of the vertices of

an edge-balanced caterpillar to provide an optimal radio labeling of that caterpillar.

Consider Table 4.1. We will construct this type of table to help us determine

an ordering for a radio labeling of an edge-balanced caterpillar.

Group 1 Group 2
Column 1 Column 2 Column 3 Column 4

2 1 n− 1 n
6

7
3

4
8 5
12

13
9

10
14 11
18

19
15

16
20 17

...
...

...
...

j + 3
j + 4

j
j + 1

j + 5 j + 2
...

...
...

...

Table 4.1: Grid for Edge-Balanced Caterpillars.

For a particular edge-balanced caterpillar G, a table can be constructed in the

same manner as Table 4.1. The last number placed in the table is n − 2. Notice

that n − 2 will be the first column or the fourth column. We will use two copies of

Table 4.1 to determine two orderings of a given edge-balanced caterpillar G using the

algorithm below.

Algorithm 1. Consider an edge-balanced caterpillar G with n vertices. Construct
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two tables like Table 4.1 with n numbered cells. Call these tables Table A and Table

B.

Place the names of the vertices of G in Table A as follows: Vertices that

are to the left of the center edge are consecutively inserted into Column 1 starting

with u1 with non-decreasing subscripts where leg vertices are inserted after spine

vertices with the same subscript. Similarly vertices to the right of the center edge are

consecutively inserted in Column 3 starting with us with non-increasing subscripts

where leg vertices are inserted after spine vertices with the same subscript. In Column

2, consecutively insert vertices from the right side of the center edge starting with

ucb keeping the subscripts in non-decreasing order and inserting leg vertices before

spine vertices with the same subscript. Finally, in Column 4, insert vertices to the

left of the center edge, starting with uca with subscripts in non-increasing order and

inserting leg vertices before spine vertices with the same subscript.

Next, place the names of the vertices of G into Table B as follows: Vertices to

the right of the center edge are consecutively inserted into Column 1 starting with us

with non-increasing subscripts where leg vertices are inserted after spine vertices with

the same subscript. Similarly vertices to the left of the center edge are consecutively

inserted into Column 3 starting with u1 with non-decreasing subscripts where leg

vertices are inserted after spine vertices with the same subscript. In Column 2,

consecutively insert vertices from the left of the center edge starting with uca , keeping

the subscripts in non-increasing order and inserting leg vertices before spine vertices

with the same subscript. Finally, in Column 4, insert vertices to the right of the
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center edge, starting with ucb with subscripts in non-decreasing order and inserting

leg vertices before spine vertices with the same subscript.

Algorithm 1 provides two tables corresponding to a given edge-balanced cater-

pillar. For each table, when the table has been completely filled in, each vertex of G

is contained in exactly one numbered cell of the table.

For Table A, all the vertices to the right of the center edge are in Columns 2

and 3 while vertices to the left of the center edge are in Columns 1 and 4. For Table B,

all vertices to the left of the center edge are in Columns 2 and 3 while vertices to the

right of the center edge are in Columns 1 and 4. Since the center edge divides G into

two components with n
2

vertices each, this means that the total number of vertices in

the middle two columns is n
2

and the total number of vertices in the outside columns

is n
2
.

The numbers in the cells with the names of the vertices are the subscripts i

for the orderings of the vertices given by Algorithm 1.

Applying the process of Algorithm 1 to the caterpillar in Figure 4.4 gives

Tables 4.2 and 4.3.

We introduce the following definitions and notation to help us determine when

Algorithm 1 gives an ordering which corresponds to a radio labeling of G that gives

the radio number of G.

Notation. Let x1, . . . , xn be an ordering of the vertices of G. For a fixed i let αxi , βxi

be the vertices xi−1 and xi+1 with the names chosen so that d(xi, αxi) ≤ d(xi, βxi).

Note: for i = 1, consider x2 as αxi and for i = n, consider xn−1 as αxi .
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Group 1 Group 2
Column 1 Column 2 Column 3 Column 4

u1 2 u7 1 u12 17 u6 18
u2 6

u8 7
u11 3

u5 4
l12 8 l111 5
l22 12

l19 13
u10 9

l14 10
u3 14 l110 11

u9 15
u4 16

Table 4.2: Table A for Edge-Balanced Caterpillar of
Figure 4.4 given by Algorithm 1.

Group 1 Group 2
Column 1 Column 2 Column 3 Column 4

u12 2 u6 1 u1 17 u7 18
u11 6

u5 7
u2 3

u8 4
l111 8 l12 5
u10 12

l14 13
l22 9

l19 10
l110 14 u3 11

u4 15
u9 16

Table 4.3: Table B for Edge-Balanced Caterpillar of
Figure 4.4 given by Algorithm 1.

Definition. Let G be a caterpillar with an ordering x1, . . . , xn of its vertices. For a

given i, let tαxi
=


1 if αxi is a leg

0 otherwise.

.

Definition. Let G be an edge-balanced caterpillar. Let y1, . . . , yn be an ordering of

the vertices of G given by Algorithm 1. If the following conditions hold for at least

one of the orderings given by Algorithm 1, then G is called a jumpless caterpillar.

1. Suppose the distance between any pair of vertices that are in horizontally ad-
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jacent cells in Group 1 (respectively Group 2) is at most D+1
2

+ t where t is 1 if

the vertex in Column 2 (respectively Column 4) is a leg vertex and 0 otherwise.

2. Suppose d(yn−2, yn−3) ≤ D+1
2

+ tαyn−2
.

Remark 9. If an edge-balanced caterpillar G is a jumpless caterpillar, we will repre-

sent G so that the ordering given by Table A in Algorithm 1 satisfies the conditions

in the definition of a jumpless caterpillar. Note that a redrawing of G may be needed

for this to be the case.

For the rest of this thesis, we let y1, y2, . . . , yn represent the vertices of G in the

order they are labeled under Table A of Algorithm 1 and refer to this as the ordering

given by Algorithm 1. This means the vertex in the cell of Table A with the number

1 in it is the vertex that is labeled first, or thought of as y1 under the ordering given

by this algorithm.

Notice that the orderings given in Tables 4.2 and 4.3 satisfy the conditions of

a jumpless caterpillar. Thus, the graph G of Figure 4.4 is a jumpless caterpillar.

Proposition 6. Let G be an edge-balanced caterpillar with y1, . . . , yn the ordering of

vertices given by Algorithm 1. Then this ordering is a distance maximizing ordering.

Proof. First note that the structure of an edge-balanced caterpillar G means that ec

divides G into two components, each with n
2

vertices. Thus, N(ec) = n− 1.

Under Algorithm 1, y1 and yn are adjacent and both are incident to ec. It can

be checked that the pattern of Algorithm 1, which alternates labeling a vertex in A

and then a vertex in B, causes ny(e) = N(e) for all edges in G.
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Thus, by Proposition 4,
∑n−1

i=1 ny(ei) is maximized and therefore, by Propo-

sition 3,
∑n−1

i=1 d(yi, yi+1) is maximized. Thus, y1, . . . , yn is a distance maximizing

ordering of G.

Lemma 3. Let yi−1, yi, yi+1 be a triple of vertices under the order given by Al-

gorithm 1, with {yi−1, yi+1} = {αyi , βyi} such that d(yi, αyi) ≤ d(yi, βyi). When

yi /∈ {y1, yn−2, yn}, the following statements are true:

• If yi is entered in Column 1 of Table 4.1, then αyi is entered in Column 2 of

Table 4.1.

• If yi is entered in Column 2 of Table 4.1, then αyi is entered in Column 1 of

Table 4.1. In particular, αyi = yi+1.

• If yi is entered in Column 3 of Table 4.1, then αyi is entered in Column 4 of

Table 4.1.

• If yi is entered in Column 4 of Table 4.1, then αyi is entered in Column 3 of

Table 4.1. In particular, αyi = yi+1.

When yi = y1, it follows that αy1 = y2. When yi = yn−2, it follows that αyn−2 = yn−3.

When yi = yn, it follows that αyn = yn−1.

In particular, αyi is always in a cell that is horizontally adjacent to the cell for

yi where both αyi and yi are in Group 1 or both are in Group 2 of Table 4.1.

Proof. First, we consider the case when yi /∈ {y1, yn−2, yn}.

Case I: Suppose yi is in Column 1 of Table 4.1.



55

Then, by the structure of the table, yi−1, yi+1 are in Columns 2 and 3 of Table

4.1. Let {u, v} = {αyi , βyi} with u in Column 2 and v in Column 3. Under the process

of Algorithm 1 d(yi, u) ≤ d(yi, v). When the inequality is strict, αyi is the vertex in

Column 2.

If d(yi, u) = d(yi, v), either both u and v are leg vertices or u is a leg vertex

and v is on the spine of G. Note that either way, a leg vertex is in Column 2. By

convention, let αyi be the leg vertex in Column 2.

Case II: Suppose yi is in Column 2 of Table 4.1.

Then, by the structure of the table, both yi−1 and yi+1 are in Column 1.

Therefore, αyi is in Column 1.

In particular, by Algorithm 1, d(yi−1, yi) ≥ d(yi, yi+1) when yi−1, yi+1 are in

Column 1 and yi is in Column 2 of Table 4.1. The distances are equal when both yi−1

and yi+1 are leg vertices or yi−1 is on the spine of G and yi+1 is a leg vertex. Thus, by

convention, when the distances are equal, let αyi be the leg vertex entered into the

i+ 1 cell of Table 4.1.

Case III: Suppose yi is in Column 3 of Table 4.1.

The proof is analogous to the proof of Case I.

Case IV: Suppose yi is in Column 4 of Table 4.1.

The proof is analogous to the proof of Case II.

Now we consider the case when yi is in {y1, yn−2, yn}.

When yi = y1, then it is not part of a triple of vertices yi−1, yi, yi+1. In this

case, as before, consider y2 as αy1 . Note that αy1 is in Column 1 of Table 4.1.
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When yi = yn−2, yi is in Column 1 or Column 4 of Table 4.1. If yn−2 is in

Column 4, then both yn−3 and yn−1 are in Column 3. If yn−2 is in Column 1, then

either both yn−3 and yn−1 are in Column 3 or yn−3 is in Column 2 and yn−1 is in

Column 3. In each case, by the process of Algorithm 1, d(ucb , yn−3) ≤ d(ucb , yn−1). In

the case where the distances are equal, yn−3 is a leg vertex and yn−1 is on the spine.

In that case, we choose αyn−2 = yn−3, the leg vertex. Therefore, αyn−2 is yn−3 in all

cases.

When yi = yn then it is not part of a triple of vertices yi−1, yi, yi+1. In this

case, consider yn−1 as αyn . Note that αyn is in Column 3 of Table 4.1.

In all of the above cases, it can be checked that the cells of Table 4.1 that yi

and αyi are in are horizontally adjacent cells in Group 1 or in horizontally adjacent

cells in Group 2.

Definition. Let G be a caterpillar. Let mi := d(xi, αxi)−(D+1
2

+tαxi
), if the quantity

is positive and zero otherwise.

Theorem 10. Let G be an edge-balanced caterpillar with ordering y1, y2, . . . , yn of

vertices as given by Algorithm 1. Define a labeling g such that g(y1) = 1 and g(yi+1) =

D+ 1− d(yi, yi+1) + g(yi) for all i, 1 ≤ i ≤ n− 1. If G is a jumpless caterpillar, then

g is a radio labeling of G and is therefore the associated radio labeling to the ordering

given by Algorithm 1.

Proof. We begin by showing that mi = 0 for all i.

We start by considering when yi 6= yn−2. Then we have the following cases:
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Case I: Consider a vertex in Column 1 or Column 3 of Table 4.1 as yi in a triple

of vertices yi−1, yi, yi+1. By Lemma 3, αyi and yi are in horizontally adjacent cells in

Group 1 or in Group 2 of Table 4.1. Since G is a jumpless caterpillar, this means

d(yi, αyi) ≤ D+1
2

+ tαyi
. Thus, mi = 0 for all yi when yi is in Columns 1 or 3 of Table

4.1.

Case II: Consider a vertex in Column 2 or Column 4 of Table 4.1 as yi in a triple of

vertices yi−1, yi, yi+1. Then we consider the following two cases:

Subcase A: Suppose yi is on the spine of G. Then, since yi is in Column 2

or Column 4 and G is a jumpless caterpillar, d(yi, yi−1) ≤ D+1
2

+ 0 and d(yi, yi+1) ≤

D+1
2

+ 0 because both yi−1 and yi+1 are in cells that are horizontally adjacent to the

cell for yi such that all three vertices are in Group 1 or all three are in Group 2 of

Table 4.1. Note that this means d(yi, αyi) ≤ D+1
2

.

1. Suppose αi is on the spine of G. Then mi = d(yi, αyi) − (D+1
2

+ 0) ≤

D+1
2
− (D+1

2
+ 0) = 0 so by definition of mi, it follows that mi = 0.

2. Suppose αi is a leg vertex. Then mi = d(yi, αyi) − (D+1
2

+ 1) ≤ D+1
2
−

(D+1
2

+ 1) = −1 so by definition of mi, mi = 0.

Therefore, when yi is on the spine of G, it follows that mi = 0.

Subcase B: Suppose yi is a leg vertex of G. Then, since yi is in Column 2

or Column 4, by definition of G being a jumpless caterpillar, d(yi, yi−1) ≤ D+1
2

+ 1

and d(yi, yi+1) ≤ D+1
2

+ 1 because both yi−1 and yi+1 are in cells that are horizontally

adjacent to the cell for yi such that all three vertices are in Group 1 or all three

vertices are in Group 2 of Table 4.1. This means d(yi, αyi) ≤ D+1
2

+ 1.
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1. Suppose both yi−1 and yi+1 are on the spine of G. Then, tαyi
= 0. Thus,

mi = d(yi, αyi)− D+1
2

. The only time when this is not zero is if d(yi, αyi) = D+1
2

+ 1.

If this were the case, notice that both d(yi, yi−1) = D+1
2

+ 1 and d(yi, yi+1) = D+1
2

+ 1

because if one were smaller, than d(yi, αyi) would be smaller. However, this cannot

happen because, by Algorithm 1, yi−1 and yi+1 are in the same component of G. In a

caterpillar, there is a unique vertex on the spine in component A (or component B)

that is distance D+1
2

+ 1 from yi. Therefore, if both yi−1 and yi+1 are on the spine,

mi = 0.

2. Suppose at least one of yi−1 or yi+1 is a leg. Then mi = d(yi, αyi) −

(D+1
2

+ tαyi
). The only time this is not necessarily 0 is if d(yi, αyi) = D+1

2
+ 1 and

tαyi
= 0. This would mean that d(yi−1, yi) = D+1

2
+ 1 = d(yi, yi+1) (because otherwise

d(yi, αyi) <
D+1
2

+ 1) and that αyi is on the spine of G. However, since d(yi−1, yi) =

d(yi, yi+1) and one of yi−1 or yi+1 is a leg vertex, as in Lemma 3, let the one that is a

leg be αyi . Then, mi = 0.

Now, we consider yn−2 in the triple of vertices yn−3, yn−2, yn−1.

From Lemma 3, we know that αyn−2 = yn−3. Thus, from condition (2) of the

definition of G being a jumpless caterpillar, mn−2 = d(yn−2, αyn−2)− (D+1
2

+ tαyn−2
) ≤

D+1
2

+ tαyn−2
− (D+1

2
+ tαyn−2

) = 0.

Therefore, when G is a jumpless caterpillar, mi = 0 for all i. Notice that this

means d(yi, αyi) ≤ D+1
2

+ tαyi
for 1 ≤ i ≤ n.

Now, consider the labeling g such that g(y1) = 1 and g(yi+1) = D + 1 −

d(yi, yi+1) + g(yi) for 1 ≤ i ≤ n− 1. We claim g is a radio labeling of G.
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By the definition of g, the radio condition is satisfied for any pair of vertices

yi, yi+1.

We will next verify the radio condition for pairs of vertices yi−1, yi+1. Notice

that

d(αyi , βyi) = d(yi, βyi)− d(yi, αyi) + sαyi

where sαyi
= 0 if αyi is on the spine of G and sαyi

= 2 if αyi is a leg vertex.

From the definition of g it follows that,

d(yi, αyi) + |g(yi)− g(αyi)| = D + 1 and

d(yi, βyi) + |g(yi)− g(βyi)| = D + 1.

Consider the case when g(αyi) < g(yi) < g(βyi). (The other case is proven

similarly.) We start with the radio condition for the vertices αyi and βyi and make a

series of substitutions as follows:

d(αyi , βyi)+g(βyi)−g(αyi) = d(yi, βyi)−d(yi, αyi)+sαyi
+g(βyi)−g(yi)+g(yi)−g(αyi)

= d(yi, βyi)− d(yi, αyi) + sαyi
+D + 1− d(βyi , yi) +D + 1− d(αyi , yi)

= 2D + 2− 2d(yi, αyi) + sαyi

≥ 2D + 2− 2

(
D + 1

2
+ tαyi

)
+ sαyi

= 2D + 2−D − 1− 2tαyi
+ sαyi

= D + 1.
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Therefore the radio condition is satisfied for vertices yi−1 and yi+1.

By the definition of g, g(yi+1) − g(yi) = D + 1 − d(yi, yi+1). Also, from the

definition of G being a jumpless caterpillar, for all pairs of vertices yi and yi+1 that

are in horizontally adjacent cells with both vertices in Group 1 or both vertices in

Group 2 of Table 4.1, d(yi, yi+1) ≤ D+1
2

+ 1. Thus, for yi and yi+1 in horizontally

adjacent cells both in Group 1 or both in Group 2 of Table 4.1, we have that

g(yi+1)− g(yi) = D + 1− d(yi, yi+1)

≥ D + 1−
(
D + 1

2
+ 1

)

= D − D + 1

2

=
D − 1

2
(4.1)

Now consider the pair of vertices yi and yj where j = i + k for some positive

integer k ≥ 3. Then

g(yj)− g(yi) ≥ g(yi+3)− g(yi)

= g(yi+3)− g(yi+2) + g(yi+2)− g(yi+1) + g(yi+1)− g(yi). (4.2)

From Algorithm 1, two of the label differences for a pair of successively labeled

vertices in (4.2) correspond to vertices that are in horizontally adjacent cells of Table

4.1 in Group 1 or horizontally adjacent cells in Group 2. For those two pairs, we

get a bound from (4.1). The other label difference is at least 1 because all labels are
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unique. Thus, (4.1) and (4.2) give

g(yj)− g(yi) ≥ D−1
2

+ D−1
2

+ 1 = D.

Also, since d(yj, yi) ≥ 1, it follows that g(yj) − g(yi) + d(yj, yi) ≥ D + 1.

Therefore, the radio condition is satisfied for yi and yj whenever |i− j| ≥ 3. Thus, g

is a radio labeling of G.

Corollary 1. Let G be an edge-balanced caterpillar. If G is a jumpless caterpillar,

then rn(G) = g(yn).

Proof. From Proposition 6, the ordering y1, . . . , yn given by Algorithm 1 is a distance

maximizing ordering of G. From Theorem 10, we know that when G is a jumpless

caterpillar, g is a radio labeling. By how the labeling g in Theorem 10 was defined,

g(yi+1)−g(yi) = D+1−d(yi, yi+1) for 1 ≤ i ≤ n−1. Summing these n−1 equations

and solving for g(yn) gives g(yn) = (n− 1)(D + 1) + 1−max
∑n−1

i=1 d(yi, yi+1). From

Proposition 2, it follows that rn(G) = g(yn).

A technique used in the proof of Theorem 10 is useful when considering char-

acteristics of a distance maximizing ordering of an edge-balanced caterpillar that does

not require jumps. We include this in the next proposition.

Proposition 7. Let G be an edge-balanced caterpillar. Let x1, . . . , xn be a distance

maximizing ordering of the vertices of G such that the associated radio labeling f

does not require jumps. Then for every triple of vertices xi−1, xi, xi+1, d(xi, αyi) ≤

D+1
2

+ tαyi
.
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Proof. Since f does not require jumps,
∑n−1

i=1 Jf (xi, xi+1) = 0 which means that

Jf (xi, xi+1) = 0 for 1 ≤ i ≤ n− 1. From this we have,

|f(xi)− f(αxi)| = D + 1− d(xi, αxi) and

|f(xi)− f(βxi)| = D + 1− d(xi, βxi).

Notice that d(αxi , βxi) = d(xi, βxi) − d(xi, αxi) + sαxi
where sαxi

= 0 if αxi is

on the spine of G and sαxi
= 2 if αxi is a leg vertex.

Consider the radio condition for xi−1 and xi+1:

f(xi+1)− f(xi) + f(xi)− f(xi−1) ≥ D + 1− d(xi−1, xi+1)

⇒ 2D + 2− d(αxi , xi)− d(xi, βxi) ≥ D + 1− d(αxi , βxi)

⇒ D + 1 ≥ d(xi, αxi) + d(xi, βxi)− d(αxi , βxi)

⇒ D + 1 ≥ d(xi, αxi) + d(xi, βxi)

−[d(xi, βxi)− d(xi, αxi) + sαxi
]

⇒ D + 1 ≥ 2d(xi, αxi)− sαxi

⇒
D + 1 + sαxi

2
≥ d(xi, αxi)

⇒ D + 1

2
+ tαxi

≥ d(xi, αxi).

The occurrence of a vertex xi being considered as αxj in relation to the vertex

xj is important in the arguments of the next theorem. This leads to the following

definition:

Definition. Let G be an edge-balanced caterpillar. Let x1, . . . , xn be an ordering of

the vertices of G with associated radio labeling f . For all 1 < i < n, xi is labeled

after xi−1 and before xi+1. Then xi is in two triples of successively labeled vertices
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such that xi is not the middle vertex of the triple, namely, the triples {xi−2, xi−1, xi}

and {xi, xi+1, xi+2}. Therefore, it is possible that xi is αxi−1
and/or αxi+1

. When xi

is considered αxi−1
or αxi+1

, we refer to xi as an alpha vertex. Notice that xi could be

considered an alpha vertex zero, one, or two times under the ordering x1, . . . , xn of

the vertices of G.

When i = 1 or i = n, xi is only part of one triple of successively labeled

vertices. Thus, in those cases, xi can be considered an alpha vertex either zero or one

time under the ordering x1, . . . , xn of the vertices of G.

We will use the above definition to make arguments based on how many times

certain vertices are considered to be alpha vertices under a given ordering of vertices

of a caterpillar G in the proof of the following theorem.

Theorem 11. Let G be an edge-balanced caterpillar with n vertices. If G is not a

jumpless caterpillar, then rn(G) ≥ (n − 1)(D + 1) + 1 −maxp(
∑n−1

i=1 d(xi, xi+1)) + 1

where the maximum is taken over all possible bijections p from V (G) to {x1, . . . , xn}.

Proof. First we consider an ordering x1, . . . , xn of the vertices of G that is not a

distance maximizing ordering. It follows that

n−1∑
i=1

d(xi, xi+1) ≤ max
p

(
n−1∑
i=1

d(xi, xi+1)

)
− 1

where the maximum is taken over all bijections p from the vertices of G to the set
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{x1, . . . , xn}. Then from Proposition 1,

f(xn) ≥ (n− 1)(D + 1) + f(x1)−

(
max
p

(
n−1∑
i=1

d(xi, xi+1)

)
− 1

)
+

n−1∑
i=1

Jf (xi, xi+1)

= (n− 1)(D + 1) + f(x1)−max
p

(
n−1∑
i=1

d(xi, xi+1)

)
+ 1 +

n−1∑
i=1

Jf (xi, xi+1)

≥ (n− 1)(D + 1) + f(x1)−max
p

(
n−1∑
i=1

d(xi, xi+1)

)
+ 1.

Next, we consider when the vertices of G have a distance maximizing ordering.

By the hypothesis, G is not a jumpless caterpillar. Then for the ordering

y1, . . . , yn of the vertices of G given by Algorithm 1, either

(i) there exists a pair of vertices in horizontally adjacent cells of Group 1 (or Group

2) of the table given by Algorithm 1 such that their distance is greater than

D+1
2

+ t where t is 1 if the vertex in Column 2 (or Column 4) is a leg vertex and

0 otherwise, or

(ii) d(yn−2, yn−3) >
D+1
2

+ tαyn−2
.

Let h be the associated radio labeling to the ordering y1, . . . , yn.

Case I: Suppose condition (i) is satisfied.

Consider the vertex of this pair that is in Column 1 (or Column 3) as yi for

some i 6= n− 2. By Lemma 3, αyi is in Column 2 (or Column 4) and thus it follows

that d(yi, αyi) >
D+1
2

+ tαyi
. By Proposition 6, y1, . . . , yn is a distance maximizing

ordering of the vertices of G and thus by the contrapositive of Proposition 7, the
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associated radio labeling requires jumps. Thus, h(yn) ≥ (n − 1)(D + 1) + h(y1) −

(
∑n−1

i=1 (yi, yi+1)) + 1.

Suppose by contradiction that there exists another distance maximizing order-

ing x1, . . . , xn of the vertices of G with associated radio labeling f such that f does not

require jumps. From Proposition 7, this means that for all j, d(xj, αxj) ≤ D+1
2

+ tαxj
.

Suppose xj is the same vertex as yi. From the above assumptions, d(yi, αyi) >

D+1
2

+ tαyi
and d(xj, αxj) ≤ D+1

2
+ tαxj

where αxj 6= αyi . This means that d(xj, αxj) ≤

d(yi, αyi).

Claim: If the pair of vertices is {y1, y2} or {yn−1, yn}, by the structure of an

edge-balanced caterpillar, no such αxj exists.

Proof of Claim: For the pair {y1, y2}, y2 = u1 is in Column 1 and y1 = ucb is in Column

2 so y1 = αy2 and d(y2, αy2) >
D+1
2

. By the structure of an edge-balanced caterpillar,

every vertex w in component B is such that d(u1, w) > d(u1, ucb). Therefore, it is not

possible to have d(xj, αxj) ≤ d(y2, αy2). A similar argument shows that no such αxj

exists when i = n− 1 and thus the claim has been proven.

By the above claim, if the pair of vertices satisfying condition (i) is {y1, y2}

or {yn−1, yn}, we have already reached a contradiction to the assumption that f does

not require jumps.

Now we consider when i 6= 2, n− 1 and look at the following cases to reach a

contradiction to the assumption that f does not require jumps.

Subcase A: d(xj, αxj) < d(yi, αyi).

Since the arguments for yi in Column 1 or yi in Column 3 of Table 4.1 are
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analogous, we give the argument only once. We suppose yi is in Column 1 for this

proof.

Let A be the set of all vertices that are entered into cells above the cell for

αyi in Column 2 of Table 4.1. Let B be the set of all vertices that are entered into

cells above the cell for yi in Column 1 of Table 4.1.

Claim: αxj is in A .

Proof of Claim: Under Algorithm 1, vertices are entered into Column 2 of Table 4.1

so that the subscripts of the vertices are in non-decreasing order and leg vertices are

entered before spine vertices with the same subscript. A vertex v is entered in the

table above αyi means d(ucb , v) ≤ d(ucb , αyi). Since d(xj, αxj) < d(yi, αyi), it follows

that d(αxj , ucb) < d(αyi , ucb). Thus, αxj ∈ A and we have proven the claim.

We consider two possible situations depending on where yi is located in Table

4.1. Consider arbitrary entries into Columns 1 and 2 of Table 4.1: cells m,m+1,m+2

where m and m+2 denote cells in Column 1 whose entries have their associated alpha

vertex in the m+ 1 cell of Column 2.

1. yi is in the m entry of Table 4.1 (meaning that m = i in this case).

By the structure of Table 4.1, we see that |B| = 2|A | − 1.

Now consider the elements in A . In a distance maximizing ordering of the

vertices of G, every element in A except for ucb could be an alpha vertex for two

vertices in component A. The vertex ucb can be an alpha vertex for only one vertex

in component A. Thus, in general, the possible number of uses of vertices in A as

alpha vertices under a distance maximizing ordering is 2|A | − 1.
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For the distance maximizing ordering x1, . . . , xn, vertex αxj has already been

used as an alpha vertex for one vertex of component A. Therefore, there are 2|A |−2

remaining possible number of uses of vertices in A as alpha vertices under the ordering

x1, . . . , xn. Since |B| = 2|A | − 1 > 2|A | − 2, we conclude that there exists at least

one vertex xk in B such that αxk is not in A but is in component B.

By nature of how the sets A and B were formed,

d(ucb , αyi) ≤ d(ucb , αxk) and

d(yi, uca) ≤ d(xk, uca). (?)

Since d(xk, αxk) = d(xk, uca)+d(uca , ucb)+d(ucb , αxk) and d(yi, αyi) = d(yi, uca)+

d(uca , ucb) + d(ucb , αyi), whenever at least one of the inequalities of (?) is strict,

d(xk, αxk) > d(yi, αyi). By hypothesis, it follows that d(xk, αxk) > d(yi, αyi) ≥ D+1
2

+1

which implies that d(xk, αxk) > D+1
2

+ 1. By contrapositive of Proposition 7, this

means the associated radio labeling f for the ordering x1, . . . , xn requires jumps,

contradicting the assumption.

To consider when the inequalities of (?) are both equalities, we notice the

following:

• αxk /∈ A means that αxk is entered in Column 2 below αyi , is αyi , or is entered

into Column 3 of Table 4.1.

• Leg vertices are entered into Column 2 before spine vertices with the same
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subscript.

Note that if αxk = αyi , then since d(xk, αxk) = d(yi, αyi) > D+1
2

+ tαyi
=

D+1
2

+ tαxk
, by the contrapositive of Proposition 7, f requires jumps, which is a

contradiction to the assumption.

Now suppose αxk 6= αyi . Since d(ucb , αyi) = d(ucb , αxk), αyi and αxk have the

same subscript in the original edge-balanced caterpillar notation. Therefore, either

both αxk and αyi are leg vertices or αxk is a vertex on the spine of G while αyi is a

leg vertex.

Since αyi is a leg vertex, tαyi
= 1 and thus d(yi, αyi) > D+1

2
+ 1. Since

d(yi, αyi) = d(xk, αxk), it follows that d(xk, αxk) > D+1
2

+ 1 ≥ D+1
2

+ tαxk
. Therefore,

by the contrapositive of Proposition 7, the associated radio labeling f for the ordering

x1, . . . , xn requires jumps, which is a contradiction to the assumption.

2. yi is in the m+ 2 entry of the table (meaning i = m+ 2 in this case).

By the structure of Table 4.1, we see that |B| = 2|A |. Notice that B has the

vertex entered in cell m which is why the set B in this case has one more element

than the set B of the previous case.

By the same arguments as in the previous case, αxj ∈ A . Since the set A is

the same as in the previous case, we use the same argument to see that the number

of possible uses of vertices in A as alpha vertices that have not been used yet under

the ordering x1, . . . , xn is 2|A | − 2. Since |B| = 2|A | > 2|A | − 2, we conclude that

there exists at least one vertex xk in B such that αxk is not in A but is in component

B.
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The same arguments as in Case I: Subcase A:1 show that f requires a jump

which is a contradiction to the assumption.

Subcase B: d(xj, αxj) = d(yi, αyi).

Note that the only way this can happen is if αyi is a vertex on the spine of G,

αxj is a leg vertex, and d(xj, αxj) = D+1
2

+ 1 = d(yi, αyi). Also, this means that αyi

and αxj have the same subscript in the original edge-balanced caterpillar notation.

As before, since the arguments for yi in Column 1 or yi in Column 3 of Table

4.1 are analogous, we give the argument only once. We suppose yi is in Column 1 for

this proof.

From Lemma 3, we know αyi is entered into Column 2 of Table 4.1. Let A be

the set of all vertices that are entered into cells above the cell for αyi in Column 2 of

Table 4.1. Let B be the set of all vertices that are entered into cells above the cell

for yi in Column 1 of Table 4.1 by Algorithm 1.

Algorithm 1 inserts leg vertices into Column 2 before spine vertices with the

same subscript in the edge-balanced caterpillar notation. Thus, since αxj is a leg

vertex and αyi is on the spine of G, it follows that αxj ∈ A . The proof now follows

the proof of Case I: Subcase A.

In all of the above cases, we have shown that when G is not a jumpless caterpil-

lar such that condition (i) above is satisfied, the labeling associated with an arbitrary

distance maximizing ordering requires jumps. Therefore, from Propositions 1 and 2
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and the definition of a labeling requiring jumps, we have that

rn(G) ≥ (n− 1)(D + 1) + f(x1)−max
p

(
n−1∑
i=1

d(xi, xi+1)

)
+ 1.

where the maximum is taken over all bijections p from the vertices of G to the

set {x1, . . . , xn}.

Case II: Suppose condition (ii) is satisfied.

By Lemma 3 αyn−2 = yn−3. Condition (ii) shows that d(yn−2, αyn−2) >
D+1
2

+

tαyn−2
. By Proposition 6, y1, . . . , yn is a distance maximizing ordering of the vertices

of G and thus by the contrapositive of Proposition 7, the associated radio labeling

requires jumps. Thus, h(yn) ≥ (n− 1)(D + 1) + h(yn)− (
∑n−1

i=1 d(yi, yi+1)) + 1.

Let x1, . . . , xn be an arbitrary distance maximizing ordering of the vertices of

G. Suppose by contradiction that the associated radio labeling f does not require

jumps. From Proposition 7, this means that for all j, d(xj, αxj) ≤ D+1
2

+ tαxj
.

Suppose xj is the same vertex as yn−2. From the above assumptions,

d(yn−2, αyn−2) >
D+1
2

+ tαyn−2
and d(xj, αxj) ≤ D+1

2
+ tαxj

. This means d(xj, αxj) ≤

d(yn−2, αyn−2).

Now we consider the following cases to find a contradiction to the assumption

that f does not require jumps.

Subcase A: d(xj, αxj) < d(yn−2, αyn−2).

1. yn−2 is in Column 1 of Table 4.1.

Notice that yn−3 = αyn−2 could be in Column 2 or Column 3 of Table 4.1.
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a) yn−3 is in Column 2 of Table 4.1.

This means that for cells m,m+ 1,m+ 2 where m and m+ 2 are in Column

1 and m + 1 is in Column 2 of Table 4.1, yn−2 is in the m + 2 entry. Therefore, the

proof of the case is the same argument as Case I: Subcase A:2 with yn−2 as yi.

b) yn−3 is in Column 3 of Table 4.1.

Let A be the set of all vertices entered into cells in Column 2 of Table 4.1.

Let B be the set of all vertices entered into cells above the cell for yn−2 in Column 1

of Table 4.1. Note that |B| = 2|A | − 1.

Claim: αxj is in A .

Proof of Claim: Since d(xj, αxj) < d(yn−2, αyn−2), it follows that d(ucb , αxj) <

d(ucb , αyn−2). In Algorithm 1, vertices are entered into Column 3 in non-increasing or-

der. Since αyn−2 is the last vertex entered into Column 3 and d(ucb , αxj) < d(ucb , αyn−2),

it follows that αxj is in Column 2 of Table 4.1. Therefore, αxj is in A and the claim

has been proven.

In a distance maximizing ordering of G, every element in A except for ucb

could be an alpha vertex for two vertices in component A. The vertex ucb can be

an alpha vertex for only one vertex in component A. Thus, in general, the possible

number of uses of vertices in A as alpha vertices under a distance maximizing ordering

is 2|A | − 1.

In the distance maximizing ordering x1, . . . , xn, the vertex αxj has already been

used as an alpha vertex for one vertex in component A. Therefore, the remaining

possible number of uses of vertices in A as alpha vertices under the ordering x1, . . . , xn
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is 2|A | − 2. Since |B| = 2|A | − 1 > 2|A | − 2, we conclude that there exists at least

one vertex xk in B such that αxk is not in A but is in component B. By nature of

how the sets A and B were formed,

d(ucb , αyn−2) ≤ d(ucb , αxk) and

d(yn−2, uca) ≤ d(xk, uca). (†)

Since d(yn−2, αyn−2) = d(yn−2, uca)+d(uca , ucb)+d(ucb , αyn−2) and d(xk, αxk) =

d(xk, uca) + d(uca , ucb) + d(ucb , αxk), whenever one of the above inequalities is strict,

d(yn−2, αyn−2) < d(xk, αxk). Thus, we have that d(xk, αxk) > d(yn−2, αyn−2) ≥ D+1
2

+1

which implies that d(xk, αxk) > D+1
2

+ tαxk
. Therefore, by the contrapositive of

Proposition 7, the associated radio labeling f requires jumps which is a contradiction

to our assumption.

If both of the inequalities of (†) are equalities, d(xk, αxk) = d(yn−2, αyn−2).

Since αxk /∈ A , αxk is either the same vertex as αyn−2 or is entered in Column 3 of

Table 4.1 and in a cell above the cell for yn−3 = αyn−2 .

Note that if αxk = αyn−2 , then since d(xk, αxk) = d(yn−2, αyn−2) > D+1
2

+

tαyn−2
= D+1

2
+ tαxk

, by the contrapositive of Proposition 7, f requires jumps, which

is a contradiction to the assumption.

Now, suppose αxk 6= αyn−2 . Since d(αyn−2 , ucb) = d(αxk , ucb), αyn−2 and αxk

have the same subscript in the original edge-balanced caterpillar notation. Also, since

αxk is in Column 3 of Table 4.1 in a cell above the cell for αyn−2 , this means that
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either both αxk and αyn−2 are leg vertices or αyn−2 is a leg vertex and αxk is on the

spine of G. Now use the same argument as in the proof of Case I: Subcase A:1 with

yn−2 instead of yi to contradict the assumption that f does not require jumps.

2. yn−2 is in Column 4 of Table 4.1.

From Lemma 3, it follows that αyn−2 is in Column 3. Consider the triple of

vertices yn−4, yn−3, yn−2. From Lemma 3, yn−2 = αyn−3 .

We now consider the following two cases.

a) Suppose αyn−2 is on the spine ofG, yn−2 a leg vertex, and d(yn−2, αyn−2) =

D+1
2

+ 1.

Since αyn−2 is on the spine of G, tαyn−2
= 0 so by Proposition 7, the radio

labeling associated with the ordering y1, . . . , yn requires a jump. We would like to

use the pair of vertices yn−3, αyn−3 to make a similar argument to that of Case I:

Subcase A:1 to reach a contradiction to the assumption that f does not require jumps.

However, when considering yn−3 and αyn−3 , since αyn−3 is a leg vertex, tαyn−3
= 1 so

d(yn−3, αyn−3) does not cause the associated radio labeling to have jumps.

We now argue why the radio labeling associated with the ordering y1, . . . , yn

given by Algorithm 1 still requires jumps in this case and then set up analogous

arguments to those found in Case I to reach a contradiction to the assumption that

f requires jumps.

Consider the vertices yn−7, the vertex in the cell directly above the cell for

yn−3 in Table 4.1, and yn−8, the vertex in the cell directly above the cell for yn−2 in

Table 4.1. By Lemma 3, yn−8 = αyn−7 .
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Recall that Algorithm 1 enters vertices into Column 3 of Table 4.1 so that the

subscripts of the vertices are non-increasing and leg vertices are inserted after spine

vertices with the same subscript. Since yn−3 is on the spine of G and the last entry in

Column 3, it follows that the subscript for yn−7 is exactly one more than the subscript

of yn−3. This means d(ucb , yn−7) = d(ucb , yn−3) + 1.

Also, Algorithm 1 enters vertices into Column 4 of Table 4.1 so that the

subscripts of the vertices are non-increasing and leg vertices are inserted before spine

vertices with the same subscript. Since yn−2 is a leg vertex and is the last entry in

Column 4, either

• yn−8 is a leg vertex with the same subscript as yn−2 which means that d(yn−8, uca) =

d(yn−2, uca), or

• yn−8 is on the spine of G where its subscript is exactly one more than the

subscript of yn−2 which means that d(yn−8, uca) = d(yn−2, uca)− 1.

Then we get the following bounds for d(yn−8, yn−7).

If yn−8 is a leg vertex, tαyn−7
= 1 and

d(yn−8, yn−7) = d(yn−8, uca) + d(uca , ucb) + d(ucb , yn−7)

= d(yn−2, uca) + d(uca , ucb) + d(ucb , yn−3) + 1

= d(yn−2, yn−3) + 1

= D+1
2

+ 2

> D+1
2

+ tαyn−7
.

If yn−8 is on the spine of G, tαyn−7
= 0 and
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d(yn−8, yn−7) = d(yn−8, uca) + d(uca , ucb) + d(ucb , yn−7)

= d(yn−2, uca)− 1 + d(uca , ucb) + d(ucb , yn−3) + 1

= d(yn−2, yn−3)

= D+1
2

+ 1

> D+1
2

+ tαyn−7
.

This shows that the radio labeling associated with y1, . . . , yn requires a jump

when labeling the triple of vertices yn−8, yn−7, yn−6. Let xm be the same vertex as yn−7.

By the assumption that f does not require jumps and Proposition 7, d(xm, αxm) ≤

D+1
2

+ tαxm
.

If yn−8 is a leg vertex, d(xm, αxm) ≤ D+1
2

+ 1 < D+1
2

+ 2 = d(yn−7, yαn−7). The

proof now follows the proof of Case I: Subcase A:2.

If yn−8 is on the spine of G, d(xm, αxm) ≤ D+1
2

+1 = d(yn−7, yαn−7). When this

is a strict inequality, the proof now follows the proof of Case I: Subcase A:2. If this

is an equality, the proof now follows the proof of Case I: Subcase B.

b) Suppose it is not the case that αyn−2 is on the spine of G, yn−2 is a

leg vertex, and d(yn−2, αyn−2) = D+1
2

+ 1.

In this case, d(yn−3, αyn−3) >
D+1
2

+ tαyn−3
and thus, by the contrapositive

of Proposition 7, the radio labeling associated with the ordering y1, . . . , yn requires

jumps when labeling the triple of vertices yn−4, yn−3, yn−2. Let xm be the same vertex

as yn−3. By assumption, f does not require jumps and therefore d(xm, αxm) ≤ D+1
2

+

tαxm
. We can now use an analogous argument to that of Case I: Subcase A:1 if

d(xm, αxm) < d(yn−3, αyn−3) by considering the original yn−3 as yi in a triple of vertices.
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If d(xm, αxm) = d(yn−3, αyn−3), the proof is analogous to the proof of Case I: Subcase

B. From these analogous arguments, we conclude that f would also require jumps,

which is a contradiction.

Subcase B: d(xj, αxj) = d(yn−2, αyn−2).

Note that the only way this can happen is when d(xj, αxj) = D+1
2

+ 1 =

d(yn−2, αyn−2) where αyn−2 = yn−3 is on the spine of G and αxj is a leg vertex.

1. yn−2 is in Column 1 of Table 4.1.

a) yn−3 is in Column 2 of Table 4.1.

The proof of this case is the same as that of Case I: Subcase B with i = n− 2.

b) yn−3 is in Column 3 of Table 4.1.

Let A be the set of all vertices entered into cells in Column 2 of Table 4.1.

Let B be the set of all vertices entered into cells above the cell for yn−2 in Column 1

of Table 4.1.

Claim: αxj is in A .

Proof of Claim: Algorithm 1 inserts leg vertices into Column 3 after spine vertices

with the same subscript. Since yn−3 is on the spine of G and is the last vertex entered

in Column 3 of Table 4.1, it follows that αxj , a leg vertex with the same subscript

as yn−3, is in Column 2 of Table 4.1. Therefore, αxj is in A and the claim has been

proven.

By the same argument as in the proof of Case II: Subcase A:1b, we conclude

that there exists a vertex xk ∈ B such that αxk /∈ A . The same argument holds

when at least one of the inequalities of (†) is strict.
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Claim: In this case, it is not possible for both inequalities of (†) to be equal.

Proof of Claim: Suppose by contradiction that both inequalities of (†) are equalities.

Algorithm 1 inserts leg vertices into Column 3 of Table 4.1 after spine vertices with the

same subscript. The last vertex entered into Column 3 is yn−3 which is on the spine

of G. Since yn−3 and αxk have the same subscript in the edge-balanced caterpillar

notation, αxk is in A which is a contradiction and thus the claim has been proven.

2. yn−2 is in Column 4 of Table 4.1.

From Lemma 3, it follows that yn−3 is in Column 3. If yn−2 is a leg vertex,

the proof is the same as the proof of Case II: Subcase A:2a. If yn−2 is on the spine of

G, use the triple of vertices yn−4, yn−3, yn−2 to reach a contradiction like in the proof

of Case II: Subcase A: 2b.

In all of the above cases, we have shown that when G is not a jumpless caterpil-

lar such that condition (ii) above is satisfied, the labeling associated with an arbitrary

distance maximizing ordering requires jumps. Therefore, from Propositions 1 and 2

and the definition of a labeling requiring jumps, we have that

rn(G) ≥ (n− 1)(D + 1) + f(x1)−max
p

(
n−1∑
i=1

d(xi, xi+1)

)
+ 1.

where the maximum is taken over all bijections p from the vertices of G to the set

{x1, . . . , xn}.



78

4.3 Bounds for Radio Number of Other Caterpillars

In Section 4.2, we determined a specific labeling that gives the radio number

of edge-balanced caterpillars that are jumpless caterpillars. However, not all edge-

balanced caterpillars are jumpless caterpillars. In Section 4.3.1, we establish some

definitions and propositions to help improve the lower bound of the radio number

of some other edge-balanced caterpillars. Many of these propositions have analogous

results for caterpillars with two center edges. Thus, we include results about some

caterpillars with two center edges in this section as well. Then, in Section 4.3.2, we

determine an improved lower bound for the radio number of the caterpillars discussed

in Section 4.3.1. In Section 4.3.3, we discuss some results for caterpillars with one

center edge where N(ec) is even. Finally, Section 4.3.4 gives conclusions from the

results of these sections.

4.3.1 Preliminaries

To help refer to caterpillars with two center edges, we include the following

definitions:

Definition. Let G be a caterpillar with two center edges. Let c be the number of leg

vertices adjacent to vc.

• If c = 0, we call G vertex-balanced.

• If c 6= 0, we call G almost vertex-balanced.

To help improve the lower bounds of some caterpillars, we have the following

definition:
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Definition. Let G be a caterpillar with n vertices and diameter D.

• If G has one center edge, a vertex v∗ is a problem vertex if v∗ ∈ A and d(v∗, vcb) ≥

D+2
2

(or v∗ ∈ B and d(v∗, vca) ≥ D+2
2

).

• If G has more than one center edge, a vertex v∗ is a problem vertex if d(v∗, vc) ≥

D+2
2

.

As some of the results will rely on characteristics of caterpillars based on where

legs are located on the caterpillar, we use the following notation for the rest of the

paper.

Notation. Let G be a caterpillar. Let a be the number of legs in component A and

let b be the number of legs in component B. If there are two center edges, let c be

the number of leg vertices adjacent to vc.

Remark 12. For an edge-balanced, vertex-balanced, or almost vertex-balanced cater-

pillar, |V (A)| = |V (B)|. Without loss of generality, let a ≥ b.

The next results are useful in categorizing caterpillar graphs based on the

location of their legs. This helps to determine which types of caterpillars have an

improved lower bound due to a problem vertex.

Proposition 8. Let G be a caterpillar such that G is edge-balanced, vertex-balanced,

or almost vertex-balanced.

(i) If D is odd and a ≥ b+ 2, then there exists at least one problem vertex.

(ii) If D is even and a > b, then there exists at least one problem vertex.
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Proof. We prove this by considering the different cases of G being an edge-balanced

caterpillar or G being a vertex-balanced or almost vertex-balanced caterpillar.

Case I: G is an edge-balanced caterpillar. Thus, G has one center edge and N(ec) is

odd.

Then there are
N(ec) + 1

2
=: w vertices in A and w vertices in B. This means

there are w − a vertices on the spine of G in A and w − b vertices on the spine of G

in B. Note that there exists a vertex u ∈ B such that d(vca , u) = w − b. Also, the

number of vertices on the spine of G is w − a+ w − b and thus D = 2w − a− b− 1.

(i) D is odd. By hypothesis, a ≥ b+ 2.

Consider

D + 2

2
=

2w − a− b+ 1

2

≤ 2w − (b+ 2)− b+ 1

2

=
2w − 2b− 1

2

= w − b− 1
2

< w − b

.

Therefore, d(vca , u) = w − b > D+2
2

. So, by definition, u is a problem vertex.

(ii) D is even. By hypothesis, a > b.

Consider
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D + 2

2
=

2w − a− b+ 1

2

<
2w − b− b+ 1

2

=
2w − 2b+ 1

2

= w − b+ 1
2

.

Thus,
D + 2

2
< w − b +

1

2
. Since D is even,

D + 2

2
is an integer so

D + 2

2
≤ w − b.

Therefore, d(vca , u) = w − b ≥ D+2
2

. So, u is a problem vertex.

Case II: G is a vertex-balanced or almost vertex-balanced caterpillar. Thus, G has

two center edges eca and ecb .

Since G has two center edges, there are
N(eca)

2
=
N(ecb)

2
=: w vertices in A

and w vertices in B. Then there are w− a vertices in A on the spine of G and w− b

vertices in B on the spine of G. Note that this means there exists a vertex u ∈ B

such that d(vc, u) = w− b. Also, since vc is on the spine, there are w− a+w− b+ 1

vertices on the spine of G. So D = 2w − a− b.

(i) D is odd. By hypothesis, a ≥ b+ 2

Consider

D + 2

2
=

2w − a− b+ 2

2

≤ 2w − (b+ 2)− b+ 2

2

=
2w − 2b

2

= w − b

.

Therefore, d(vc, u) = w − b ≥ D+2
2

. So, u is a problem vertex.

(ii) D is even. By hypothesis, a > b.

Consider
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D + 2

2
=

2w − a− b+ 2

2

<
2w − b− b+ 2

2

=
2w − 2b+ 2

2

= w − b+ 1

.

Since D is even,
D + 2

2
is an integer. So, since

D + 2

2
< w − b + 1, it follows

that
D + 2

2
≤ w − b. Therefore, d(vc, u) = w − b ≥ D+2

2
. So, by definition, u is a

problem vertex.

The previous proposition showed what conditions are needed for D, a, and

b for an edge-balanced, vertex-balanced, or almost vertex-balanced caterpillar G to

have a problem vertex. The following propositions show what values of D, a, and

b are not possible for edge-balanced, vertex-balanced and almost vertex-balanced

caterpillars. The combined results of Proposition 8 and the following propositions

help us determine which types of caterpillars have an improved radio number due to

a problem vertex and which caterpillars could potentially be labeled without jumps.

Proposition 9. Let G be an edge-balanced caterpillar with n vertices.

(i) If D is odd, then a 6= b+ 1.

(ii) If D is even, then a 6= b.

Proof. Recall that G has one center edge with N(ec) odd and thus by Proposition 5,

n is even.

(i) D is odd. Suppose by contradiction that a = b+1. Since D is the diameter,

there are D + 1 vertices on the spine of G. Also, since D is odd, this means that
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there are an even number of vertices on the spine of G. Let D + 1 = 2y + 2 for some

y ∈ Z. Then

n = 2y + 2 + a+ b

= 2y + 2 + b+ 1 + b

= 2y + 2 + 2b+ 1,

which is odd, a contradiction to Proposition 5. Therefore, when D is odd, a 6= b+ 1.

(ii) D is even. Suppose by contradiction that a = b. By Proposition 5,

|V (A)| = |V (B)|. Let w :=
N(ec) + 1

2
= |V (A)| = |V (B)|. There are w − a vertices

on the spine in A and w − b vertices on the spine in B. So, there are w − a + w − b

vertices on the spine of G. Thus, D = w− a+w− b− 1 = 2w− 2a− 1 which is odd,

a contradiction to the assumption. Therefore, when D is even, a 6= b.

Proposition 10. Let G be a vertex-balanced or almost vertex-balanced caterpillar

with n vertices. If D is odd, then a 6= b.

Proof. Suppose by contradiction that D is odd and a = b. Let w :=
N(eca)

2
=
N(ecb)

2
.

Then there are w − a vertices on the spine that are in A and w − b vertices on the

spine in B. Since vc is also on the spine, there are w − a+ w − b+ 1 = 2w − 2a+ 1

vertices on the spine of G. Thus, D = 2w − 2a which is even, contradicting the fact

that D is odd. Therefore, a 6= b.

4.3.2 Improved Bounds

We now use results from Section 4.3.1 to improve the lower bound for the

radio number of certain edge-balanced, vertex-balanced, and almost vertex-balanced
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caterpillars.

Proposition 11. Let G be an edge-balanced caterpillar with a problem vertex v∗.

Then G is not a jumpless caterpillar.

Proof. Without loss of generality, assume v∗ ∈ B. Note that ucb cannot be a problem

vertex so ucb 6= v∗.

Use Algorithm 1 to place the vertices of G into Table 4.1. From Proposition 6,

the corresponding ordering y1, . . . , yn is distance maximizing. Since this is a distance

maximizing ordering and N(ec) is odd, by Propositions 3 and 4, ec is the only edge

with ny(e) odd. By Remark 8, y1 and yn are both incident to ec. Thus {uca , ucb} =

{y1, yn}. Since ucb is not a problem vertex, v∗ is not the first or last labeled vertex.

Thus, v∗ = yi for some triple of vertices yi−1, yi, yi+1.

By definition of being a problem vertex, d(v∗, uca) ≥ D+2
2

. Also, by the struc-

ture of an edge-balanced caterpillar, d(uca , v∗) ≤ d(uca , us). Therefore,

d(uca , us) ≥ d(uca , v∗) ≥
D + 2

2
>
D + 1

2

⇒ d(uca , us) >
D + 1

2
. (4.3)

The ordering of vertices of G given by Algorithm 1 has yn−1 = us and yn = uca .

Thus, by Lemma ??, uca = αyn . So, αyn is a vertex on the spine of G and by (4.3),

d(yn, αyn) > D+1
2

= D+1
2

+ tαyn
. Since yn and yn−1 = αyn are in horizontally adjacent

cells in Group 2 of Table 4.1, this contradicts condition (1) of the definition of a

jumpless caterpillar. Therefore, G is not a jumpless caterpillar.
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Corollary 2. Let G be an edge-balanced caterpillar with n vertices. Suppose G is

such that either

(i) D is odd and a ≥ b+ 2 or

(ii) D is even and a > b.

Then

rn(G) ≥ (n− 1)(D + 1) + f(x1)−maxp(
∑n−1

i=1 d(xi, xi+1)) + 1

where the maximum is taken over all possible bijections p from the vertices of G to

the set {x1, . . . , xn}.

Proof. From Proposition 8, G has a problem vertex. So, by Proposition 11, G is not

a jumpless caterpillar. Therefore, the bound follows from Theorem 11.

We also determine an improved lower bound for some vertex-balanced and

almost vertex-balanced caterpillars. The following lemmas are used to find this im-

proved lower bound in Theorem 13.

Lemma 4. Let G be a vertex-balanced or almost vertex-balanced caterpillar. Let

x1, . . . , xn be a distance maximizing ordering of the vertices of G with associated radio

labeling f . Then vc has to be x1 or xn.

Proof. Let maxe∈E(G)N(e) = M . By definition of center edges, N(eca) = M =

N(ecb). Note that since x1, . . . , xn is a distance maximizing ordering, by Propositions

3 and 4 nx(e∗) = N(e∗)− 1.
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If e∗ ∈ {eca , ecb}, then we are done.

If e∗ /∈ {eca , ecb}, then we consider the following cases:

Case I: G is vertex-balanced. So G has no legs incident to vc.

Since e∗ /∈ {eca , ecb} and there are no legs incident to vc, e∗ is not incident to

vc. Thus, nx(eca) = M = nx(ecb). This means that all vertices in A are endpoints of

two paths Pj from xj to xj+1 and all vertices in B are endpoints of two paths Pj. Thus

none of the vertices in A or B can be the first or last labeled, giving a contradiction.

Case II: G is almost vertex-balanced. So G has legs incident to vc.

Since e∗ /∈ {eca , ecb}, nx(eca) = M = nx(ecb). This means that all vertices in A

are endpoints of two paths Pj from xj to xj+1 and all vertices in B are endpoints of

two paths Pj. Therefore, e∗ is not in A or in B. Thus, e∗ is one of the edges incident

to both vc and a leg vertex. Therefore, vc is incident to e∗.

Lemma 5. Let G be a vertex-balanced or almost vertex-balanced caterpillar. Let

x1, . . . , xn be a distance maximizing ordering of the vertices of G with associated radio

labeling f . If there is a problem vertex v∗, then v∗ is not x1 or xn.

Proof. By Lemma 4, vc ∈ {x1, xn}. Since D > 0, d(vc, v∗) > 1. Since x1, . . . , xn is a

distance maximizing ordering, by Propositions 3 and 4 there is only one edge which

has an odd nx(e) value. This is the edge e∗. Since e∗ is incident to vc, and vc and v∗

are not adjacent, it follows that v∗ /∈ {x1, xn}.

Theorem 13. Let G be a vertex-balanced or almost vertex-balanced caterpillar with

n vertices. Let x1, . . . , xn be an arbitrary ordering of the vertices of G with associated

radio labeling f . If G has a problem vertex v∗, then
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rn(G) ≥ (n− 1)(D + 1) + f(x1)−maxp(
∑n−1

i=1 d(xi, xi+1)) + 1

where the maximum is taken over all possible bijections p from the vertices of G to

the set {x1, . . . , xn}.

Proof. First, we consider when x1, . . . , xn is a distance maximizing ordering. For this

proof, assume v∗ ∈ B (the proof of if v∗ ∈ A is analogous). By Lemma 4, vc is incident

to e∗. Also, by Lemma 5, v∗ is not the first or last labeled vertex. Thus, v∗ = xi

for some triple of vertices xi−1, xi, xi+1. Since x1, . . . , xn is distance maximizing and

v∗ ∈ B, xi−1 and xi+1 associated with v∗ = xi are not in B. Let {α, β} be {xi−1, xi+1}

with v∗ = xi where d(v∗, α) ≤ d(v∗, β). By the structure of G and the definition of v∗

being a problem vertex,

d(v∗, α) ≥ d(v∗, vc) ≥
D + 2

2
, (4.4)

where the first inequality is an equality only when vc = α. Notice that

d(α, β) =


d(v∗, β)− d(v∗, α) if α is on the spine of G

d(v∗, β)− d(v∗, α) + 2 if α is a leg vertex.

Let Jf (v∗, α) and Jf (v∗, β) be non-negative integers such that

d(v∗, α) + |f(v∗)− f(α)| = D + 1 + Jf (v∗, α) and

d(v∗, β) + |f(v∗)− f(β)| = D + 1 + Jf (v∗, β).

Consider the case when f(α) < f(v∗) < f(β). (The other case is proven
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similarly.) The radio condition applied to vertices α and β gives the following:

d(α, β) + f(β)− f(α) ≥ D + 1

⇒ d(α, β) + f(β)− f(v∗) + f(v∗)− f(α) ≥ D + 1

⇒ d(α, β) +D + 1 + Jf (v∗, β)− d(v∗, β) + f(v∗)− f(α) ≥ D + 1

⇒ d(α, β)+D+1+Jf (v∗, β)−d(v∗, β)+D+1+Jf (v∗, α)−d(v∗, α)+f(α)−f(α) ≥ D+1

⇒ D + 1 + Jf (v∗, β) + Jf (v∗, α) ≥ d(v∗, β) + d(v∗, α)− d(α, β) (4.5)

Case I: Suppose α is on the spine of G.

Then d(v∗, β) + d(v∗, α)− d(α, β) = 2d(v∗, α).

Then, (4.5) becomes

D + 1 + Jf (v∗, β) + Jf (v∗, α) ≥ 2d(v∗, α)

⇒ D + 1 + Jf (v∗, β) + Jf (v∗, α)

2
≥ d(v∗, α) (4.6)

By (4.4), d(v∗, α) ≥ D+2
2

. This and (4.6) give the following:

D + 1 + Jf (v∗, β) + Jf (v∗, α)

2
≥ d(v∗, α) ≥ D + 2

2

⇒ D + 1 + Jf (v∗, β) + Jf (v∗, α)

2
≥ D + 2

2

⇒ Jf (v∗, β) + Jf (v∗, αj) ≥ 1.
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Case II: Suppose α is not on the spine of G.

Then d(v∗, β) + d(v∗, α)− d(α, β) = 2d(v∗, α)− 2.

Then, (4.5) becomes

D + 1 + Jf (v∗, β) + Jf (v∗, α) ≥ 2d(v∗, α)− 2

⇒ D + 3 + Jf (v∗, β) + Jf (v∗, α)

2
≥ d(v∗, α) (4.7)

By (4.4) and since d(vc, α) ≥ 1, d(v∗, α) ≥ D+2
2

+ 1. This and (4.7) give the

following:

D + 3 + Jf (v∗, β) + Jf (v∗, α)

2
≥ d(v∗, α) ≥ D + 2

2
+ 1

⇒ D + 3 + Jf (v∗, β) + Jf (v∗, α)

2
≥ D + 2

2
+ 1

⇒ Jf (v∗, β) + Jf (v∗, α) ≥ 1.

Therefore, in both cases, Jf (v∗, β)+Jf (v∗, α) ≥ 1. Using this result along with

Propositions 1 and 2, we get

rn(G) ≥ (n− 1)(D + 1) + f(x1)−maxp(
∑n−1

i=1 d(xi, xi+1)) + 1.

Now consider when x1, . . . , xn is not distance maximizing. The proof is now

the same as the proof of Theorem 11 when considering an ordering that is not distance

maximizing.

Corollary 3. Let G be a vertex-balanced or almost vertex-balanced caterpillar. If G

is such that either
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(i) D is odd and a ≥ b+ 2 or

(i) D is even and a > b,

then

rn(G) ≥ (n− 1)(D + 1) + f(v1)−maxp(
∑n−1

i=1 d(xi, xi+1)) + 1

where the maximum is taken over all possible bijections p from the vertices of G to

the set {x1, . . . xn}.

Proof. This follows from Proposition 8 and Theorem 13.

4.3.3 Caterpillars with one center edge such that N(ec) is even

The remaining type of caterpillar in terms of center edges that have not yet

been discussed in this thesis are caterpillars with one center edge such that N(ec)

is even. Determining the radio number and bounds for the radio number of these

caterpillars is slightly more complicated than the other types of caterpillars discussed

previously. The following lemma helps provide a case when an improved bound for

the radio number of this type of caterpillar can be found.

Lemma 6. Let G be a tree with one center edge and N(ec) is even. Suppose compo-

nent A has more vertices than component B. Let x1, . . . , xn be a distance maximizing

ordering of the vertices of G with f the associated radio labeling. Then e∗ is either ec

or in component A.

Proof. If e∗ = ec, we are done.
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If e∗ 6= ec, then nx(ec) = N(ec) which is even. Since the maximum n(ec) value

is achieved and B is the smaller component, all vertices in B are endpoints to two

paths Pj. Thus, none of the vertices in B are x1 or xn. Therefore, e∗ /∈ B and since

e∗ 6= ec by assumption, it follows that e∗ ∈ A.

Theorem 14. Let G be a caterpillar with n vertices with one center edge and N(ec)

is even. Let component A have more vertices than component B. Let x1, . . . , xn be

an arbitrary ordering of the vertices of G with f the associated radio labeling. If G

has a problem vertex v∗ ∈ B, then

rn(G) ≥ (n− 1)(D + 1) + f(x1)−maxp(
∑n−1

i=1 d(xi, xi+1)) + 1

Proof. First, suppose x1, . . . , xn is a distance maximizing ordering. Since component

A has more vertices than component B and x1, . . . , xn is a distance maximizing or-

dering, by Lemma 6, e∗ is either ec or in component A. This means that v∗ is not x1

or xn. Thus, v∗ is xi in a triple of vertices xi−1, xi, xi+1. Since x1, . . . , xn is distance

maximizing,

nx(ec) =


N(ec) if e∗ 6= ec

N(ec)− 1 if e∗ = ec.

Note that in either case, vcb cannot be the vertex v∗. To ensure that this nx(ec)

value is achieved, every path with an endpoint in B must include the edge ec. Thus,

xi−1, xi+1 ∈ A. Let {α, β} be {xi−1, xi+1} associated with v∗ = xi with α the vertex

such that d(α, v∗) ≤ d(β, v∗).
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By the structure of G and the definition of v∗ being a problem vertex,

d(v∗, α) ≥ d(v∗, vca) ≥ D + 2

2
, (4.8)

where the first inequality is an equality only when vca = α.

The proof now follows the same as the proof of Theorem 13 with vca replacing

vc when applicable.

4.3.4 Some Conclusions about Caterpillars

Theorem 14 in Section 4.3.3 gives an improved lower bound for a particular

type of caterpillar with one center edge such that N(ec) is even, but the exact radio

number has not yet been determined. However, some more specific conclusions can be

made about edge-balanced, vertex-balanced, and almost vertex-balanced caterpillars

from Section 4.3.2

Corollaries 2 and 3 establish a way to determine when the bound for the radio

number given by Proposition 2 is increased for an edge-balanced, vertex-balanced, or

almost vertex-balanced caterpillar G based on the structure of G.

The results of Corollary 2 and Proposition 9 indicate that edge-balanced cater-

pillars with the potential to have radio labelings that require no jumps are such that

D is odd and a = b.

When there is exactly one leg adjacent to each vertex on the spine expect for

u1 and us, this is a thorn graph. The radio number of this particular thorn graph has

been determined in [10].
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In other cases when D is odd and a = b, one can enter the vertices of G into

Table 4.1 using Algorithm 1 to determine if G is a jumpless caterpillar. If it is, then

G can be labeled without jumps and the label ordering is given by Algorithm 1.

Similarly, the results of Corollary 3 and Proposition 10 indicate that vertex-

balanced and almost vertex-balanced caterpillars with the potential to have radio

labelings that require no jumps are such that either D is odd and a = b + 1 or D is

even and a = b.

There are a couple of these types of caterpillars whose radio number has al-

ready been found. When G has exactly one leg adjacent to each vertex on the spine

(including vc) except for v1 and vs, the radio number of G has been found in [10].

When G is a complete binary tree of height two, the radio number has been found in

[7].
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APPENDIX A
LABELINGS OF GRAPHS OF ORDER N = 2K WITH K < 7 AND

DIAMETER N − 2

The figures below give upper bounds for the radio number of spire graphs with

k < 7 and n = 2k since these particular cases were not covered in Theorem 3. These

upper bounds match the lower bounds for these graphs found in Theorem 4 to show

that these bounds are the actual radio number of the graphs.

Figure A.1: rn(S8,2) ≤ 23

Figure A.2: rn(S10,2) ≤ 37
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Figure A.3: rn(S10,3) ≤ 39

Figure A.4: rn(S12,2) ≤ 55

Figure A.5: rn(S12,3) ≤ 57

Figure A.6: rn(S12,4) ≤ 59



96

APPENDIX B
EDGE-BALANCED CATERPILLARS WITH N < 8

Theorem 11 in Chapter 4 improved the lower bound for the radio number

of edge-balanced caterpillars that are not jumpless caterpillars. In some cases, the

proof assumed that n ≥ 8. Recall that for an edge-balanced caterpillar, n is even.

Thus, we only need to check for edge-balanced caterpillar graphs for n = 2, 4, and 6.

The following graphs in Figure B.1 show all the edge-balanced caterpillars such that

n < 8. Most of these are jumpless caterpillars and thus would not be considered in

Theorem 11. In all the cases shown below, whether the caterpillar is jumpless or not,

the radio number of these graphs is known either from previous results or from work

in this thesis.

The graph (a) in Figure B.1 is the path P2. This is a complete graph whose

radio number is known: rn(P2) = 2. The graphs (b) and (c) are paths P4 and P6. The

radio numbers for these paths were determined in [9]: rn(P4) = 6 and rn(P6) = 14.

The graphs (d) and (e) are spire graphs, S6,2 and S6,4. The radio number of S6,2

was determined in Chapter 3: rn(S6,2) = 12. The spire S6,4 can be redrawn as S6,2.

Thus, rn(S6,4) = 12. Finally, it can be checked that the graph (f) of Figure B.1 is a

jumpless caterpillar. Thus, using Algorithm 1 from Chapter 4, rn(G) = 8.
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Figure B.1: Edge-Balanced Caterpillars with n < 8.



98

REFERENCES

[1] K. Benson, M. Porter, and M. Tomova. The Radio numbers of all graphs of order
n and diameter n− 2. Le Matematiche.

[2] Gary Chartrand. Introductory Graph Theory. Dover, 1977.

[3] Gary Chartrand and Ping Zhang. Radio colorings of graphs—a survey. Int. J.
Comput. Appl. Math., 2(3):237–252, 2007.

[4] C. Fernandez, A. Flores, M. Tomova, and C. Wyels. The Radio Number of Gear
Graphs. ArXiv e-prints, September 2008.

[5] John P. Georges, David W. Mauro, and Marshall A. Whittlesey. Relating path
coverings to vertex labellings with a condition at distance two. Discrete Math.,
135(1-3):103–111, 1994.

[6] W.K. Hale. Frequency assignment: Theory and applications. Proceedings of the
IEEE, 68(12):1497 – 1514, dec. 1980.

[7] Xiangwen Li, Vicky Mak, and Sanming Zhou. Optimal radio labellings of com-
plete m-ary trees. Discrete Appl. Math., 158(5):507–515, 2010.

[8] Daphne Der-Fen Liu. Radio number for trees. Discrete Math., 308(7):1153–1164,
2008.

[9] Daphne Der-Fen Liu and Xuding Zhu. Multilevel distance labelings for paths
and cycles. SIAM J. Discrete Math., 19(3):610–621 (electronic), 2005.

[10] Ruxandra Marinescu-Ghemeci. Radio number for some thorn graphs. Discuss.
Math. Graph Theory, 30(2):201–222, 2010.

[11] Amanda Niedzialomski. Consecutive Radio Labelings and the Cartesian Product
of Graphs. PhD thesis, The University of Iowa, 2013.


	University of Iowa
	Iowa Research Online
	Summer 2013

	On Radio Labeling of Diameter N-2 and Caterpillar Graphs
	Katherine Forcelle Benson
	Recommended Citation


	tmp.1381781525.pdf.Ctiic

