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Table B.4: Behavioral and ECAP baseline measures in adults 

Subj T level C level ECAP θ Low Level        Mid-Level        High Level  Max Level 

 Level 

(in CL) 

Level 

(in CL) 

Level 

(in CL) 

   Level 

  (in CL) 

    Amp 

   (in µV) 

  Norm 

Max 

Level 

(in CL) 

 Amp 

 (in µV) 

    Norm  

   Max 

    Level 

    (in CL) 

Amp 

 (in µV) 

       Norm 

       Max 

Level 

(in CL) 

 Amp 

(  (in µV) 

E2 155 193 162    180 25.27 0.4 190 63.07  1.0 190 63.07 

E21 185 220 196 200  18.8 0.21 205 49 0.54 210 91.2 1.0 210          91.2 

E22 140 216 192    200 14.97 0.59 215 20.95   0.83 220   25.31 

E34 125 175 160    165 17.21 0.44 170 39.14 1.0 170       39.14 

E5 135 240 158 170 27.2 0.17 185 77.13 0.47 205 133.38   0.81 220      164.8 

E60   65 180 122 130 28.5 0.09 145 128.6 0.39 165 250.4 0.75 180      333.9 

E90 140 215 180    195 105.86 0.48      205      211.1 

E91L   90 200 184    185 9.67 0.3 195 32.74 1.0 195       32.74 

E92 160 207 168 180 18.4 0.14 195 74 0.55 205 133.8   1.0 205     133.8 

F14 170 230 182 190 28.7 0.18 200 79.4 0.49 215 157.6   0.97 220    163 

F3R 110 210       <190    200 29.12 0.48 210 60.18   1.0 210   60.18 

F8 110 182 166    174 11.01 0.29 180 23.0 0.6 186 38.27 

F9 120 212 158 170 20.45 0.13 180 51.06    0.32 195 125.77 0.79 200       160.2 

Min   65 175 122 130 18.4 0.09 145 9.67 0.29 165 20.95  0.68 170 25.31 

Max      185 >240 196 200 28.7 0.21 205 128.5 0.59 215     250.4 1.0 220 333.9 

Mean  131.2 >206.2      170.62     173.33 23.67 0.15    185.31 51.4 0.44   196.3 94.27  0.86   200.85 116.67 

SD    33.05      19.54       19.94       24.22 4.96 0.04      16.94     38.2 0.1     17.07 68.69   0.13      15.97 89.92 
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APPENDIX C 

AMPLITUDE NORMALIZATION PROCEDURE 

A simple model underlying ECAP generation and measurement is shown in 

Figure C.1.  The top panel shows the probability of firing in a population of nerve fibers 

that are at varying distances from a stimulating electrode.  Assuming similar thresholds 

across fibers, the firing probability of the fibers may be expected to decrease 

monotonically as distance from the stimulating electrode increases.   Firing probability at 

any given place is expected to increase as stimulus level increases.    The second panel 

varied neural survival across place.  The number of fibers that respond to a single electric 

pulse at any given level and at a particular place along the cochlear array would 

approximate the product of the firing probability at that level (top panel) and the number 

of surviving fibers (second panel) at that place.  If all responding fibers fired 

synchronyously and made an equal unitary contribution to the ECAP, the amplitude of 

the ECAP would reflect the size of this population and would produce the amplitude 

growth function referred to as “population response” in the bottom left panel of Figure 

C.1.  The receptive field of the recording electrode likely does not include equal 

contributions from all responding fibers.  Rather, the ECAP at the recording electrode 

will be a weighted version of the population response.  The third panel in Figure C.1 

displays a hypothetical weighting function for a recording electrode.  The population and 

weighted responses are compared in the bottom left panel.  It is possible that even if two 

individuals had similar excitation and response patterns, their recorded ECAPs may vary 

greatly if the recording electrode placement and/or the current pathways within the 

cochlea were different.  Hence, the total population of responding fibers cannot be 
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estimated from the absolute ECAP amplitude.  Therefore, in this as in other earlier 

analyses, we have a procedure of normalization of the measured ECAP amplitudes (Hay-

McCutcheon et al, 2005; Schmidt-Clay & Brown, 2007) in order to facilitate comparison 

across subjects.   

The various ECAP amplitudes measured across the growth function have been 

normalized by the maximum recorded ECAP amplitude.  The bottom right panel shows 

the use of this normalization.  The ECAP responses at various stimulus levels may be 

normalized to the response to the highest level (Max) used to obtain the ECAP growth 

function or to another “high” level.  The use of such normalization allows changes in the 

“measured” or weighted response to parallel those of the “actual” population response 

and thus facilitates comparison across subjects.   
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Table E.1 Normalized mean ECAP amplitude at various stimulus levels in children and adults: Pulse train data 

   Children   Adults  

 

Adaptation 

 

Reference 

 

Low 

 

Mid 

Stimulus Level 

High 

 

Low 

 

Mid 

 

High 

 

Long term Baseline 
0.97 

(0.18, 10) 

1.03 

(0.1, 6) 

1.04 

(0.07, 10) 

0.79 

(0.16, 6) 

0.82 

(0.14, 10) 

0.97 

(0.17, 10) 

 

 

Steady 

state 

 

Onset 
0.71+ 

(0.39, 10) 

0.63 

(0.17, 6) 

0.72++ 

(0.16, 10) 

0.55 

(0.18, 6) 

0.57 

(0.25, 10) 

0.48 

(0.14, 10) 

Baseline 
0.69^ 

(0.37, 10) 

0.66 

(0.23, 6) 

0.75^^ 

(0.21, 10) 

0.42 

(0.11, 6) 

0.44 

(0.15, 10) 

0.5 

(0.2, 10) 

* Standard deviation and number of data points are included in parentheses. 

+
 Without subject CE 57R: Mean 0.62; SD 0.26; 

++
 without subject CE 57R: Mean 0.68; SD 0.13 

^ Without subject CE 57R: Mean 0.64; SD 0.35; ^^ without subject CE 57R: Mean 0.7; SD 0.15 



178 
 

 

APPENDIX F 

MODEL OF POPULATION RESPONSE 

The ECAP waveform is dependent on the number of action potentials as well as 

the degree of synchronous firing among the neural population.  In order to better 

understand the relationship between the ECAP and the underlying neural responses that 

comprise the ECAP, these effects can be described with a simple mathematical model.  

Goldstein and Kiang (1958) proposed such a model.  For an ensemble of ‘N’ fibers, if 

P(n, τ) and U(n, t) represent the post-stimulus time (PST) histogram and unit potential, 

respectively, of the n
th

 fiber, the compound action potential waveform, A(t) is:  

 ( )   ∑∫  (   )  (     )  
 

  

 

   

 

The PST histograms of the individual fibers maybe summed to produce a compound PST 

histogram or the ensemble firing pattern.  Further, if the unit potential of all fibers, as 

seen at the recording electrode, were identical, the above equation may simplify to the 

following (Miller, Abbas & Rubinstein, 1999): 

 ( )   ∫  ( )  (   )  
 

  

 

At present, unit responses cannot be directly measured in human subjects.  However, 

their shape, although not their amplitude, at the recording electrode may be estimated.  It 

is known that transient high level electrical stimulation of the auditory nerve produces 

highly synchronized electrical activity across nerve fibers (Kiang & Moxon, 1972).  

Thus, the ensemble firing pattern for such stimulation simplifies to an Dirac impulse or 

δ(t) (de Sauvage, Cazals, Erre & Aran, 1983) and the ECAP waveform may be thought of 

as a scaled version of the unit response.  This simplifying assumption is most likely to be 
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true for a high current level that depolarizes a large proportion of responding fibers to 

their firing thresholds simultaneously.  Thus, if we estimate the unit response from the 

ECAP at high levels and make the assumptions of homogeneity of unit responses, i.e., all 

fibers contribute equally, a deconvolution technique could be used to extract the 

ensemble firing pattern from the compound action potential (de Sauvage, Aran & Erre, 

1987).  A Fourier transform of the measured ECAP and the estimated unit response 

yields their respective spectral forms; these frequency domain signals are used to 

compute the spectral form of the firing probability distribution and finally, an inverse 

Fourier transform of this computed quantity is carried out to obtain its temporal form.   

Deconvolution of the ECAP may be particularly useful in this study which 

involves refractory and adaptation phenomena, known to impact both the size and 

synchrony of the responding neural population.  In this study, unit responses were 

assumed to have the same form as the ECAP at high stimulus level and arbitrarily 

assumed to have a peak-to-peak amplitude of 1 µV.  These unit potentials were then used 

to deconvolve the ECAP produced by probe pulses when presented singly or when 

preceded by another pulse or pulse train using the method of de Sauvage et al (1987).  

Figure 4.5.1 shows the estimated time waveforms (top panel) and spectra (bottom panel) 

of unit responses in several subjects.  It would appear that an ECAP that comprises 

narrow, symmetric, biphasic unit potentials would be most vulnerable to the effects of 

their temporal dispersion while one that comprises broad and more asymmetric unit 

potentials would be more resistant to obliteration by temporal dispersion.  Using an 

estimated unit response, calculations based on several assumptions of temporal dispersion 

demonstrate the effects on amplitude and shape of the ECAP.  The convolved ECAPs 
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(left panels) and their corresponding ensemble firing patterns (right panels) are shown in 

Figure 4.5.2.  Both overall amplitude as well as the time waveform of the ECAP are 

affected.  Although, the actual unit response and the size of the responding population are 

unknown, it appears that a small proportion of temporally dispersed action potentials may 

produce a measurable change in ECAP amplitude.   

Several simplifying assumptions underlie the deconvolution model.  Firstly, given 

that auditory nerve fibers are known to vary in size and consequently, have varied 

thresholds, it is a rather simplistic assumption, that all fibers fire similar action potentials.  

Thus, estimates of the unit response obtained from large amplitude ECAP may 

approximate an average, rather than any typical, unit response.  Secondly, even if all 

action potentials were similar at the neural membrane, their contributions at the recording 

electrode are expected to vary according to the physical distance and electrical properties 

of the intervening medium between them.  Since we use a high level stimulus, the 

estimated unit response may better approximate the average, rather than an individual 

neural contribution.  However, it is likely that a current pulse delivered at a “high” level 

produces synchronous firing within a relative large proportion of the nerve fibers so that 

the contributions of those that fire with a time lag is de-emphasized in the ECAP and 

hence, does not contaminate our estimate of the unit response.  Furthermore, given the 

short duration of the pulses, it is possible that few, if any, fibers respond with a time lag. 

Using the technique, the ECAP waveforms produced by the probe pulse presented 

singly and with a preceding pulse in the two pulse paradigm are deconvolved to estimate 

the neural firing distribution.  The waveforms and the corresponding firing distribution 
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histograms are shown in Figure 4.5.3.  Deconvolution results of the ECAP measured 

during and after the masker pulse train are shown in Figure 4.5.4 and 4.5.5 respectively. 

Deconvolution of the ECAP waveform in the two pulse paradigm (Figure 4.5.3) 

shows the decrease in the number of fibers that respond to the probe as the level of the 

masker increases relative to the probe.  Further, the difference in the ECAP amplitude 

between the two MPIs is evident in the reduction of the histogram height across the 

various measurement bins.  Further, for the mid-level masker followed by the high-level 

probe, a larger ECAP amplitude was measured at the shorter MPI of 1.2 ms as compared 

to the longer MPI of 2 ms indicating conditioning effects.  The histogram reflects the 

difference in ECAP amplitude.  Also, for the high masker – high probe condition, the 

measured ECAP amplitudes at both MPIs were nearly the same but a difference in the 

neural synchrony is apparent with lesser synchrony or more temporal dispersion of neural 

firing at the shorter MPI.     

The steady-state ECAP responses (Figure 4.5.4) of subject CF 25L for low level 

stimulation has nearly the same amplitude as the onset ECAP but there is an evident 

decrease in neural synchrony.  At higher stimulus levels, there appears to have been a 

decrease in the number of fibers that respond to an individual pulse as well as an increase 

in the temporal dispersion of neural firing.  The steady-state ECAP measures from 

subject E5 are mainly characterized by a decrease in the number of fibers that respond to 

an individual pulse.  Yet, there may also be an increase in the relative dispersion as the 

proportion of fibers responding in individual time bins is more uniform in comparison to 

the probe alone ECAP which is characterized by a large proportion of the responding 

fibers firing in the first time bin.   
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Recovery of the ECAP involved both, the restoration of neural synchrony and 

firing probability as is evident in the ECAP waveforms and the computed histograms for 

the biphasic recovery observed in subject CF 25L.  Subject CE 42R had a triphasic 

recovery function and shows considerable temporal dispersion of firing in response to a 

single probe pulse as well as following a masker pulse train.  

It is emphasized that these examples provide an indication of the neural firing 

pattern across time with no information about the varied contributions of fibers that are at 

varying distances and orientation from the stimulating and recording electrodes.  

However, this technique may be a promising method of further separating out differences 

in responses among individuals in different stimulus paradigms.           
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Figure F.1 Estimated unit potential: Waveforms and spectra. Top: Individual ECAP 

waveforms scaled down by the ECAP amplitude, to simulate unit responses.  Bottom: 

Spectra of the individual “unit responses” reveal maxima between 634 to 1269 Hz.   

Recording Electrode 
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Figure F.2 Simple model of convolution with hypothetical unit potentials and firing 

distributions.  Hypothetical ECAPs (left) obtained by convolution of an estimated unit 

response (broken line; top left) and hypothetical firing patterns (right).  It is assumed that 

a total of 20 fibers are responsive.        
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Figure F.3 Measured and reconvolved ECAP waveforms from the two-pulse study with computed firing distributions.  ECAPs shown 

for MPIs of 1.2 (left) and 2 (middle) ms with their firing patterns (right) for low (top) to high (bottom) maskers preceding a low probe.    
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Figure F.3 (continued) Measured and reconvolved ECAP waveforms from the two-pulse study with computed firing distributions.  

ECAPs shown for MPIs of 1.2 (left) and 2 (middle) ms with their firing patterns (right) for low (top) to high (bottom) maskers 

preceding a mid-level probe.     
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Figure F.3 (continued) Measured and reconvolved ECAP waveforms from the two-pulse study with computed firing distributions.  

ECAPs shown for MPIs of 1.2 (left) and 2 (middle) ms with their firing patterns (right) for low (top) to high (bottom) maskers 

preceding a high-level probe.      
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Figure F.4 Measured and reconvolved ECAP waveforms from the adaptation study with computed firing distributions.  ECAPs are 

shown for the probe alone (left) and at steady state (middle) ms with their firing patterns (right) for low (top), mid (middle) and high 

(bottom) level pulse trains. 
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Figure F.4 (continued) Measured and reconvolved ECAP waveforms from the adaptation study with computed firing distributions.  

ECAPs are shown for the probe alone (left) and at steady state (middle) ms with their firing patterns (right) for low (top), mid (middle) 

and high (bottom) level pulse trains.  Note ECAP alternation (bottom middle) and histogram (bottom right). 
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Figure F.5 Measured and reconvolved ECAP waveforms and computed firing 

distributions during recovery from adaptation.  The ECAP waveforms (left) and 

histograms (right) reveal a biphasic pattern of recovery. 

-100

-80

-60

-40

-20

0

0 0.5 1 1.5 2

V
o

lt
ag

e
 (

in
 µ

V
) 

Recovery - 0.5 ms
Reconvolved 0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10

# 
o

f 
fi

b
e

rs
 Recovery: 0.5 ms

-100

-80

-60

-40

-20

0

0 0.5 1 1.5 2

V
o

lt
ag

e
 (

in
 µ

V
) 

Recovery - 2 ms

Reconvolved 0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10

# 
o

f 
fi

b
e

rs
 

Recovery - 2 ms

-100

-80

-60

-40

-20

0

0 0.5 1 1.5 2

V
o

lt
ag

e
 (

in
 µ

V
) 

Recovery - 20 ms

Reconvolved 0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10

# 
o

f 
fi

b
e

rs
 

Recovery - 20 ms

-100

-80

-60

-40

-20

0

0 0.5 1 1.5 2

V
o

lt
ag

e
 (

in
 µ

V
) 

Recovery - 100 ms

Reconvolved 0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10

# 
o

f 
fi

b
e

rs
 

Recovery - 100 ms

-100

-80

-60

-40

-20

0

0 0.5 1 1.5 2

V
o

lt
ag

e
 (

in
 µ

V
) 

Time (in ms) 

Recovery - 250 ms

Reconvolved
0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10

# 
o

f 
fi

b
e

rs
 

Time (~ 50 µs/bin) 

Recovery - 250 ms



191 
 

 

  

       

    

  

Figure F.5 (continued) Measured and reconvolved ECAP waveforms and computed firing 

distributions during recovery from adaptation.  The ECAP waveforms (left) and 

histograms (right) reveal a triphasic pattern of recovery. 
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