
University of Iowa
Iowa Research Online

Theses and Dissertations

Summer 2013

Operations on Infinite x Infinite Matrices and Their
Use in Dynamics and Spectral Theory
Corissa Marie Goertzen
University of Iowa

Copyright 2013 Corissa Marie Goertzen

This dissertation is available at Iowa Research Online: http://ir.uiowa.edu/etd/4849

Follow this and additional works at: http://ir.uiowa.edu/etd

Part of the Mathematics Commons

Recommended Citation
Goertzen, Corissa Marie. "Operations on Infinite x Infinite Matrices and Their Use in Dynamics and Spectral Theory." PhD (Doctor of
Philosophy) thesis, University of Iowa, 2013.
http://ir.uiowa.edu/etd/4849.

http://ir.uiowa.edu?utm_source=ir.uiowa.edu%2Fetd%2F4849&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F4849&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F4849&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=ir.uiowa.edu%2Fetd%2F4849&utm_medium=PDF&utm_campaign=PDFCoverPages


OPERATIONS ON INFINITE × INFINITE MATRICES, AND THEIR USE IN

DYNAMICS AND SPECTRAL THEORY

by

Corissa Marie Goertzen

A thesis submitted in partial fulfillment of the
requirements for the Doctor of Philosophy

degree in Mathematics
in the Graduate College of

The University of Iowa

August 2013

Thesis Supervisor: Professor Palle Jorgensen



Graduate College
The University of Iowa

Iowa City, Iowa

CERTIFICATE OF APPROVAL

PH.D. THESIS

This is to certify that the Ph.D. thesis of

Corissa Marie Goertzen

has been approved by the Examining Committee for the
thesis requirement for the Doctor of Philosophy degree
in Mathematics at the August 2013 graduation.

Thesis Committee:

Palle Jorgensen, Thesis Supervisor

Isabel Darcy

Victor Camillo

Colleen Mitchell

Ionut Chifan



To
Mom and Dad

ii



ACKNOWLEDGEMENTS

It has been a long journey with many detours along the way. I would like to

thank my parents who were with me every step of the way, even across country and

back. I am more thankful than words can say. I would also like to thank my sister,

Kelly, who showed me what true strength is and who kept me laughing through my

toughest times.

I would like to thank my advisor, Palle Jorgensen, for helping me through each

step of the research and thesis process, even when I was completely overwhelmed.

Finally, I would like to thank my grandfather who taught me how to count in

base 2 and 3 before I was 5 years old.

iii



ABSTRACT

By first looking at the orthonormal basis:

Γ = {
∑

i 4
ibi : bi ∈ {0, 1}, finite sums }

and the related orthonormal basis:

5Γ = {5
∑

i 4
ibi : bi ∈ {0, 1}, finite sums }

we find several interesting relationship with the unitary matrix Uα,β arising from the

operator U : Γ → 5Γ. Further, we investigate the relationships between U and the

operators S0 : Γ → 4Γ defined by S0eγ = e4γ where eγ = e2πiγx and S1 : Γ → 4Γ + 1

defined by S1eγ = e4γ+1.

Most intriguing, we found that when taking powers of the aforementioned Uα,β

matrix that although there are infinitely many 1’s occurring in the entries of Uα,β only

one such 1 occurs in the subsequent higher powers Uk
α,β. This means that there are

infinitely many γ ∈ Γ ∩ 5Γ, but only one such γ in the intersection of Γ and 5kΓ for

k ≥ 2.
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CHAPTER 1
INTRODUCTION

1.1 Motivation

The general theme of this thesis is the scaling in a Fourier duality of certain

infinite Bernoulli convolutions. We will pay special attention to the scaling by 1
4
.

The Bernoulli measure µ1/4 (from now on referred to as just µ) is supported on the

Cantor set obtained by dividing the line segment [0, 1] into 4 equal intervals and

retaining only the first and third intervals. The process is repeated infinitely many

times. By [21], we know that L2(µ) has an orthogonal Fourier basis, {eλ : λ ∈ Γ}

where Γ = {l0 + 4l1 + 42l2 + · · · : li ∈ {0, 1}, finite sums}. The pair (µ,Γ) is called a

spectral pair. Its rigid structure will be studied.

In earlier papers we learned that scaling this spectral pair by 5 opens up

interesting spectral theoretic problems for the initial Fourier duality problem. It is

surprising that if we scale the set Γ by 5, turning it into 5Γ that it is once again an

orthogonal Fourier basis in L2(µ). Therefore we can introduce a unitary operator U in

L2(µ), such that U : Γ→ 5Γ. The aim of this thesis is to study this operator’s spectral

properties as they relate to ergodic theory of the initial spectral pair. Specifically,

if Γ = {l0 + 4l1 + 42l2 + · · · : li ∈ {0, 1}, finite sums} = {0, 1, 4, 5, · · · } (see [21]) is

the natural Fourier basis in L2(µ), then the orthonormal property is preserved under

scaling by 5; meaning 5Γ = {0, 5, 20, 25, · · · } is also a Fourier basis (see [11]). This is

somewhat surprising since 5Γ seems ”smaller” or more ”thin” than Γ.



2

Although U is a unitary operator, it cannot be induced by a measure-preserving

transformation in the measure space (X,µ). In fact, as it turns out, the spectral rep-

resentation, and the spectral resolution, for U is surprisingly subtle. There is a large

literature on spectral theory for affine dynamical systems. For example, we point to

related papers, by Jorgensen with co-authors, S. Pedersen, D. Dutkay, K.A. Kornel-

son; J.-L. Li and others; see the reference list.

1.2 Overview

In Chapter 2, we will review the definitions and basic operations of infinite

matrices. Although similar to the finite dimensional case, we must pay special atten-

tion to whether such operations are well-defined. Chapter 3 will expound upon the

orthonormal basis Γ = {l0 +4l1 +42l2 + · · · : li ∈ {0, 1}, finite sums} = {0, 1, 4, 5, · · · },

focusing on the paper, [21], by P. Jorgensen and S. Pedersen. In Chapter 4, we will

introduce four operators S0 : Γ → 4Γ, S1 : Γ → 4Γ + 1, M1 : Γ → Γ + 1 and

U : Γ → 5Γ and discover relationships between their infinite matrix representations.

Finally, in Chapter 5, we will focus solely on properties of U . The big theorem we

will set out to prove is discovering where entries of 1 occur in the matrix Uα,β and

powers of Uα,β, Uk
α,β.
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CHAPTER 2
INFINITE MATRICES

In Chapters 4 and 5, we will be looking at Uα,β, the infinite matrix rep-

resentation of the operator U : Γ → 5Γ with respect to the orthonormal basis,

Γ = {l0 + 4l1 + 42l2 + · · · : li ∈ {0, 1}, finite sums}. This chapter presents the

definitions and lemmas needed to understand Uα,β.

Henri Poincaré is given the credit of originating the theory of infinite matrices

in 1884. The study was furthered by Helge von Koch (1893) and David Hilbert (1906).

Back in the nineteenth century, mathematicians thought of infinite matrices in terms

of determinants. Today, however, we think of these in terms of subspaces and linear

operators. [For more information on the history of infinite matrices see [30] and [4]].

2.1 Inner Product

Before we start performing operations with infinite matrices, we need to estab-

lish some basic definitions and lemmas that we will be using throughout the following

chapters. Let’s first have a reminder of some basic properties of the inner product.

The following definitions and propositions can be found in [24].

Definition 2.1. Let X be a vector space over C. An inner product is a map < ·, · >:

X ×X → C satisfying, for x, y and z in X and scalars c ∈ C.

1. < x, y >= < y, x >

2. < x, x > ≥ 0 with < x, x >= 0 if and only if x = 0
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3. < x+ y, z >=< x, z > + < y, z >

4. < cx, y >= c < x, y >

The next Lemma is the Cauchy-Schwarz Inequality (see [7]), which we will use

in the proof of the major theorem of this thesis, Theorem 5.12.

Lemma 2.2. (Cauchy-Schwarz Inequality) If < ·, · > is an inner product on a vector

space X, then for all x and y in X we have

| < x, y > |2 ≤< x, x >< y, y >

The norm of an element x ∈ X can be defined in the following way:

Lemma 2.3. (norm) If < ·, · > is an inner product on a vector space X, then

||x|| :=< x, x >1/2

is a norm on X.

Proof. Proposition 1.15 in [24]

The following theorem (especially parts (2), (3), and (5)) will also be used in

the proof of theorems in Chapter 5.

Theorem 2.4. If {en} is an orthonormal sequence in a Hilbert space H, then the

following conditions are equivalent

1. {en} is an orthonormal basis

2. If h ∈ H and h⊥en for all n, then h = 0
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3. For every h ∈ H, h =
∑

< en, h > en: equality here means the convergence in

the norm of H of the partial sums to h

4. For every h ∈ H, there exists complex numbers an so that h =
∑
anen

5. For every h ∈ H,
∑
| < h, en > |2 = ||h||2

6. For all h and g in H,
∑

< h, en >< en, g >=< h, g >

Proof. Theorem 1.33 in [24]

With these properties in mind, we can now move on to defining infinite ma-

trices.

2.2 From Bounded Linear Operators to Infinite Matrices

This section covers the basic definition of an infinite matrix and serves as the

basis for all computation used in Chapters 4 and 5. To begin, in order to create a

’nice’ infinite matrix (meaning one that is well-defined for such operations such as

multiplication), we first need a (bounded) linear operator and an orthonormal basis.

The following definitions from [27] and [30] describe a bounded linear operator and

the basic definition of an infinite matrix:

Definition 2.5. A linear operator A : X → Y with X and Y normed spaces with

norm

||A|| = sup{||Ax|| : x ∈ X, ||x|| ≤ 1}

is bounded if ||A|| <∞
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Definition 2.6. Given a bounded linear operator A on a Hilbert spaceH and {en}n∈I

an orthonormal basis for H, then the matrix that arises from A and the orthonormal

basis is denoted Am,n = (amn) where amn =< em, Aen >.

Am,n =


a11 a12 · · · a1j · · ·

a21 a22 · · · a2j · · ·

...
...

...
...

. . .


where the inner product on L2(X,µ) for a positive measure space (X,µ) is

< f, g >=
∫
X
f̄ gdµ

Remark 2.7. In this paper, we will denote operators with capital letters, such as A,

U or S0. When referring to the infinite matrix that arises from these operators with

respect to an orthonormal basis, we will use capital letters along subscripts, such as

Ai,j, Uα,β, or S0α,β. This not only distinguishes the operator from the infinite matrix,

it has the added benefit of reiterating the importance of the orthonormal basis (which

i, j or α, β come from). Finally, if we discuss a particular element of the matrix, we

will use lower case letters with subscripts, such as aij, uαβ or s0αβ. Again, i, j or α, β

come from the orthonormal basis and refer to the (row, column) entry of the matrix.

2.2.1 Matrices and Unbounded Operators

Notice that in the above definition (Definition 2.6), we are defining how a

matrix arises from a bounded operator. Yet, it is possible to have an infinite ×

infinite matrix that does not arise from a bounded operator (see [16],[1]).

The following is an example of such a case (see [1]):
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Example 2.1. Consider the matrix where each (i, j)th entry is Ai,j = 1

1 1 1 · · · 1 · · ·

1 1 1 · · · 1 · · ·

1 1 1 · · · 1 · · ·

...
...

...
...

...
. . .


(2.1)

Notice that if we take x = {1, 0, 0, · · · } we have that ||x|| ≤ 1 but

||Ax|| =
√

12 + 12 + · · ·+ 12 + · · · → ∞

so the operator A is unbounded. �

Matrices arising from unbounded operators will cause problems in the area of

multiplication, as we will see later.

2.3 Boundedness of a Matrix

How can we tell if a matrix arises from a bounded operator? The answer is

not succinct. For instance, it is necessary for each row and each column of the matrix

to be square summable (in other words all rows and columns must be in `2). This

is because if we let ei = {0, 0, · · · , 1, 0 · · · 0} be a vector with 1 in the i-th position,

then if A is a bounded operator, by Definition 2.5 ||Aei|| < ∞ and Aei refers to the

i-th column. So each column must be in `2. Similarly, if A is bounded then A∗ is

bounded, so each row is also in `2.

Although it is a necessary condition, it is not sufficient as we can see in the

following example from [16].

Example 2.2. Consider the matrix
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Ai,j =



1 0 0 · · · 0 · · ·

0 2 0 · · · 0 · · ·

0 0 3 · · · 0 · · ·

...
...

...
...

...
. . .


where, for each row n, the only non-zero entry is n on the diagonal. Note that each row

and each column is square summable. If we let the vector f =
(
0, 1

2
, 0, 1

4
, 0, 0, 0, 1

8
, 0 · · ·

)
,

where for m = 1, 2, 3, · · · each 2m term is 1
2m

, we have that ||f || ≤ 1 but ||Ai,jf || =∞.

�

Now that we have a necessary condition for a matrix to arise from a bounded

operator, what is a sufficient condition? In [16], a sufficient condition is stated that

for a matrix (aij) to arise from a bounded operator A we must have
∑

i

∑
j |aij|2 <∞.

To see this, consider a vector f with ||f || ≤ 1. We have that

|
∑

j aij < f, ej > |2 ≤
∑

j |aij|2||f ||2

for each i and f . Then, by taking the sum over all the i’s,

||
∑

i

∑
j aij < f, ej > ei||2 ≤

∑
i

∑
j |aij|2 · ||f ||2.

Since we have that
∑

i

∑
j |aij|2 <∞ and ||f || ≤ 1, we get that ||A|| ≤ ∞. However,

this is not necessary as is seen in the identity matrix.

2.3.1 Hilbert Matrix

As we have seen, when given an infinite matrix, it is difficult to tell whether

it arises from a bounded operator or not. The Hilbert matrix
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

1 1
2

1
3
· · · 0 · · ·

1
2

1
3

1
4
· · · 0 · · ·

1
3

1
4

1
5
· · · 0 · · ·

1
4

1
5

1
6
· · · 0 · · ·

...
...

...
...

...
. . .


is probably the most famous example of a matrix that arises from a bounded operator.

In fact, it arises from an operator A with ||A|| ≤ π (the details can be seen in [16]

and a different proof can be seen in [5]). Also of interest, is the matrix referred to as

the exponential Hilbert matrix.

Example 2.3. The exponential Hilbert matrix (as it is called in [16]) is an example

of a matrix with a bounded operator:

aij = 2−(i+j+1), where i, j = 0, 1, 2, · · · .

It is also a Hankel matrix of the form
1

x+ 1
(a Hankel matrix is a matrix Ai,j = (aij)

where aij = i+ j). To find the norm of this matrix, consider that the rows, ri, of the

matrix are all multiples of r0 = (2−(0+j+1))j =
(

1
2
, 1

4
, 1

8
, · · ·

)
. Then Ar = 2 < r, r0 > r0

and ||A|| = 2||r0||2 = 2
∑

1
4n

= 2
3

(see [16] for more information). �

With these basic definitions in hand, we are now ready to start making com-

putations with these infinite matrices.

2.4 Basic Operations on Infinite Matrices

The basic operations of infinite matrices that we will be using in the last

chapter are multiplication, inverse, and the conjugate transpose. Although we would
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like infinite matrices to work exactly like finite matrices, there are some complications

to consider such as existence.

2.4.1 Conjugate and Transpose

Remark 2.8. We will be using the notation Ai,j = (aij) to represent the conjugate

of the matrix Ai,j, A
′
i,j = (aj,i) = Aj,i to represent the transpose of the matrix Ai,j

and A∗i,j to represent the conjugate transpose of Ai,j, where A∗i,j = (aji).

Two other definitions that come up later on in this thesis are Hermitian and

symmetric matrices (both definitions are from [7]):

Definition 2.9. An infinite matrix Ai,j = (aij) is said to be symmetric if aij = aji

Example 2.4. An example of a symmetric matrix in infinite dimensions is the Hilbert

matrix. The infinite Hilbert Matrix is made up of reciprocals of natural numbers,

ai,j =
1

i+ j + 1
(2.2)

with i, j = 0, 1, 2, · · · : 

1 1
2

1
3
· · · 0 · · ·

1
2

1
3

1
4
· · · 0 · · ·

1
3

1
4

1
5
· · · 0 · · ·

1
4

1
5

1
6
· · · 0 · · ·

...
...

...
...

...
. . .


�

An extension of symmetric matrices into C-space are Hermitian matrices.
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Definition 2.10. Ai,j is said to be Hermitian if A∗i,j = Ai,j

Example 2.5. An example of a Hermitian matrix in finite-dimensional space is
1 1 + i 2 + i

1− i 2 3 + i

2− i 3− i 3


Notice that in the case of Hermitian, the diagonal entries must be real since they

must equal their own conjugate (aii = aii). �

Example 2.6. The (infinite and finite) identity matrix is an example of both a

symmetric and a Hermitian matrix. �

2.4.2 Addition

The addition of infinite matrices is exactly like the arithmetic of finite matrices.

Let Ai,j = (aij) where aij represents the (i, j)th entry of the infinite matrix Ai,j and

Bi,j = (bij) where bij represents the (i, j)th entry of the infinite matrix Bi,j, then we

can add component wise with matrix (A + B)i,j = (cij) can be determined in the

(i, j)th entry as

cij = aij + bij (2.3)

We do not have to worry whether or not Ai,j and Bi,j arise from unbounded or

bounded operators since if Ai,j and Bi,j exist then (A + B)i,j exists. Here, exist

means that each entry is finite.
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2.4.3 Multiplication

Multiplication will be the operation we will use the most in discovering re-

lationships with the matrix Uα,β. Multiplying infinite matrices is done in a similar

fashion to multiplying finite matrices. Given the same matrices Ai,j and Bi,j as above,

multiplication can be defined component wise like multiplication of finite matrices

with the (i, j)th entry of matrix (AB)i,j as

∑
k

ai,kbk,j (2.4)

Although this would seem to be just an extension of the finite multiplication oper-

ation, for infinite matrices we need to be concerned with multiplication being well

defined. It is possible that the matrices Ai,j and Bi,j exist, but (AB)i,j does not exist

(in other words
∑

k aikbkj diverges). The following example is an example of such a

case:

Example 2.7. Consider

Ai,j = Bi,j =



1 1 1 · · · 1 · · ·

1 1 1 · · · 1 · · ·

1 1 1 · · · 1 · · ·

...
...

...
...

...
. . .


Then (AB)ij is not defined since the (i, j) entry (1, 1) is

∑
k aikbkj =

∑
k 1→∞

�
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If both Ai,j and Bi,j arise from bounded operators, then (AB)i,j exists. We

need to check for absolute convergence of the matrix product because when we have

convergent sums for each entry, then the matrix is well defined.The following lemma

from [20] details this added requirement:

Lemma 2.11. Let A and B be linear operators densely defined on `2(N0) and A∗

represent the conjugate transpose of A, such that Aej, A
∗ej, and Bej are defined and

in `2(N0) for every element of the standard orthonormal basis {ej}j∈N0. Then Ai,j

and Bi,j, the infinite matrix representation of A and B respectively, are defined and

the matrix product (AB)i,j is well defined.

Proof. [20]

2.4.4 Inverse

Multiplication of infinite matrices leads to the question of how to tell whether

the matrix Ai,j has an inverse. In finite dimensions, a square matrix A has an inverse

if detA 6= 0. In fact, determinants play a large roll in calculating the matrix A−1 in

finite dimensions. Perhaps it is not surprising that back in the nineteenth century,

mathematicians thought of infinite matrices in terms of determinants. As time went

on, the study of infinite matrices became less about determinants and more about

subspaces and linear operators (see [4]).

In the case of infinite matrices, we can define (formally) one-to-one and onto

as stated in [5].

Definition 2.12. An infinite matrix Ai,j = (aij) is one-to-one if the trivial sequence
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is the only sequence (xk) such that
∑

j aijxj = 0

Definition 2.13. An infinite matrix Ai,j = (aij) is onto if for each (yk) there exists

a (xk) such that
∑

j aijxj = yj

Not all books agree on the definition of inverse for infinite matrices (see [20]

vs [5] vs [30]). We will be using the following definition from [5] which is very similar

to the finite case.

Definition 2.14. An infinite matrix Aij has an inverse if there exists Bi,j such that

(AB)ij = (BA)ij = Iij, where Iij is the infinite identity matrix,

Iij =


1 if i = j

0 if i 6= j

There is no actual correlation between one-to-one, onto, and inverse (see [5])

as one can see in the following example of the infinite Hilbert Matrix from [5].

Example 2.8. The infinite Hilbert Matrix is made up of reciprocals of natural num-

bers,

Ai,j =
1

i+ j + 1
(2.5)

with i, j = 0, 1, 2, · · · . So, the matrix looks like

1 1
2

1
3
· · · 0 · · ·

1
2

1
3

1
4
· · · 0 · · ·

1
3

1
4

1
5
· · · 0 · · ·

1
4

1
5

1
6
· · · 0 · · ·

...
...

...
...

...
. . .


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In [5] we discover that this matrix is formally one-to-one, meaning
∑

j aijαj = 0 only

for the trivial sequence (αj) and it is not onto since if A maps an infinite sequence

(b1, b2, b3, · · · ) to (1, 0, 0, · · · ), then A maps (0, b1, b2, · · · ) to (0, 0, 0, · · · ), therefore

(1, 0, 0, · · · ) is not in the range of A. Which also means that A does not have an

inverse. �

2.5 Unitary Operators and Matrices

In this section we will discuss the unitary matrices which we will use in dis-

cussing the matrix Uα,β.

Definition 2.15. An operator A is unitary if A∗A = I = AA∗ where A∗ is the

conjugate transpose of A

Another way to state this definition (as is seen in [30]) is that an operator

A : H → K is unitary if

< Ax,Ay >=< x, y > for all x, y ∈ H.

From this definition we can see that A is unitary as an operator if and only if

its infinite matrix representation Ai,j is unitary (see [30] and [20]

Since U : Γ → 5Γ, both orthonormal basis, we have that U is unitary which

means that Uα,β is a unitary infinite matrix.

2.6 Hadamard Product

We will be looking at the results of the Hadamard product in relation to the

matrix Uα,β in Chapter 5.
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The Hadamard product, or Schur product as it is sometimes called, is a differ-

ent way for multiplying matrices that is by term. It is based on the fact discovered

by Schur in 1911 that if (aij) and (bij) are bounded matrix operators on `2 then

||(aijbij)|| ≤ ||(aij)|| · ||(bij)|| (see [29] for more details). We define the Hadamard

product as follows:

Definition 2.16. Given matrices Ai,j = (aij) and Bi,j = (bij) the Hadamard product

of the two is the termwise multiplication:

(A ∗B)i,j = (aijbij)

To see the Hadamard product in action, consider a finite dimension example

first.

Example 2.9. Given the matrices

A =

1 2

3 4

 B =

4 3

2 1

 (2.6)

The Hadamard product A ∗B =

4 6

6 4

 �

The Hadamard product is commutative, associative, and distributive. Com-

mutative since (A ∗ B)i,j = (aijbij) = (bijaij) = (B ∗ A)i,j. Associative since

((A ∗ B) ∗ C)i,j = ((aijbij)cij) = (aij(bijcij)) = (A ∗ (B ∗ C))i,j. Distributive since

(A ∗ (B + C))i,j = (aij) ∗ (bij + cij) = (aij(bij + cij)) = (aijbij + aijcij) = (A ∗ B)i,j +

(A ∗ C)i,j.
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The identity under the Hadamard product is different from the normal identity.

If we define the identity as Ei,j = (eij) such that for any matrix Ai,j = (aij) we have

that (A ∗E)i,j = (aijeij) = (aij) and (E ∗A)i,j = (eijaij) = (aij), then E must be the

matrix with 1 in all the entries. This means that the the matrix Ai,j has an inverse

iff it contains nonzero entries.

Example 2.10. The following is an example in the finite dimensional case. The

inverse of

1 4

2
3

7

 is

1 1
4

3
2

1
7

 �
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CHAPTER 3
INTRODUCTION TO ORTHONORMAL BASIS Γ

In this chapter, we will look at Γ = {
∑

i 4
ibi : bi ∈ {0, 1}, finite sums }. Sum-

marizing parts of the papers [11] and [21], we will show that Γ is an orthonormal basis

for L2(µ) as described below. The goal of this chapter is to give all the background

necessary to understand

U : Γ→ 5Γ

where 5Γ = {0, 5, 20, 25, · · · } is an orthonormal basis for L2(µ).

3.1 Measure

If µ is a Lebesgue measure on I = [0, 1], then

{en} = {e2πinx : n ∈ N0}

spans the Hardy space, H2, of analytic functions on T = R/Z and {en} is an or-

thonormal basis for L2(I) with normalized Lebesgue measure.

It is known (see [18]) that there is a special probability measure µ such that

∫
fdµ = 1

2

(∫
f
(
x
4

)
dµ(x) +

∫
f
(
x
4

+ 1
2

)
dµ(x)

)
for all continuous f on R with compact support on the Cantor set obtained by dividing

the line segment [0, 1] into 4 equal intervals and retaining only the first and third

intervals. This chapter will focus on showing that

Γ = {0, 1, 4, 5, · · · } = {
∑

4ibi : bi ∈ {0, 1}, finite sums }
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is an orthonormal basis for L2(µ) (see [21]).

First, we will look into a more general case in ν dimensions. In [21] a system

(R,B,L) is considered, where R is a real ν × ν matrix with integer entries and B

and L are subspaces of Rν . The subset B is required to satisfy an open set condition,

namely that for x ∈ Rν ,

σb(x) = R−1x+ b. (3.1)

B is a subset of Rν which is finite and the number of elements in B is N . Also,

RB ⊂ Zν and 0 ∈ B. Further, the difference between any two elements, b1 and b2,

in B is not in Zν when b1 6= b2. L is another subset of Rν where L ⊂ Zν and 0 ∈ L.

The number of elements in L is the same as the number of elements in B. Finally,

the Hadamard matrix HBL = N−1/2
(
e2iπb·l) where b ∈ B and l ∈ L (with N being

the number of elements in B the same as the number of elements in L) is a unitary

complex matrix.

It is known, by [17], that there is a unique probability measure µ on Rν of

compact support such that

∫
fdµ =

1

N

∑
b∈B

∫
f (σb(x)) dµ(x) (3.2)
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where σb(x) = R−1x + b, x ∈ Rν and N and B as defined above (see [21] for more

information). Further calculation leads to the following equality (see [21]):

∫
fdµ =

1

N

∑
b∈B

∫
f (σb(x)) dµ(x)

=
1

N

∑
b∈B

∫
ei2πt·(σb(x))dµ(x)

=
1

N

∑
b∈B

∫
ei2πt·(R

−1x+b)dµ(x)

=
1

N

∑
b∈B

∫
ei2πR

∗−1
t·xe2πit·bdµ(x)

=
1

N

∑
b∈B

e2πit·b
∫
ei2πR

∗−1
t·xdµ(x)

If we set

et(x) := e2πit·x, (t, x ∈ Rν)

we get the following definition that defines what we mean by Γ being orthogonal in

L2(µ) (from [11]):

Definition 3.1. Let Γ ∈ Rν be some discrete subset and let

E(Γ) := {eγ : γ ∈ Γ}.

We say that Γ is orthogonal in L2(µ) iff the functions in E(Γ) are orthogonal. That

is,

< eγ1 , eγ2 >=


0 for all γ1 6= γ2 ∈ Γ

1 if γ1 = γ2 ∈ Γ
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where µ̂ is defined as the Fourier transform

µ̂(t) =

∫
ei2πt·xdµ(x) (3.3)

where t · x =
∑n

i=1 tixi.

From [21], we have the following lemma introduces a set P such that

{eλ : λ ∈ P}

are mutually orthogonal in L2(µ). This is the general case in ν dimensions described

above. We will use it as a basis to introduce the orthonormal basis Γ that we desire.

Lemma 3.2. With the assumptions introduced above for the (R,B,L) system, set

P := {l0 +R∗l1 + · · · : li ∈ L, finite sums}

Then the functions {eλ : λ ∈ P} are mutually orthogonal in L2(µ) where eλ := ei2πλ·x

Proof. Lemma 3.1 in [21]

In particular, we are interested in the case where N = 2, and (R,B,L) =(
4,

{
0,

1

2

}
, {0, 1}

)
in R. Directly from the previous lemma, we get the following

corollary in which we introduce the orthonormal basis Γ:

Corollary 3.3. Let µ be the measure on the line R given by

∫
fdµ = 1

2

(∫
f
(
x
4

)
dµ(x) +

∫
f
(
x
4

+ 1
2

)
dµ(x)

)
for all continuous f

with Hausdorff dimension dH = 1
2
. (We have R = 4, B = {0, 1

2
} and L = {0, 1})

Then
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Γ := {l0 + 4l1 + 42l2 + · · · : li ∈ {0, 1}, finite sums}

and {eλ : λ ∈ Γ} is an orthonormal subset of L2(µ).

Proof. Corollary 3.2 in [21]

Of course, this only shows that it is an orthonormal subset of L2(µ), but it is

proven in [21], that Γ is indeed an orthonormal basis for L2(µ).

3.2 5Γ

Throughout the rest of the paper we will working with the orthonormal basis

found in [21]. From this point forward it will be referred to as Γ:

Γ : = {l0 + 4l1 + 42l2 + · · · : li ∈ {0, 1}, finite sums}

= {
∑
i

4ibi : bi ∈ {0, 1}, finite sums }

= {0, 1, 4, 5, 16, 17, 20, · · · }

This thesis will look into what happens if we look at 5Γ

5Γ : = {5(l0 + 4l1 + 42l2 + · · · ) :: li ∈ {0, 1}, finite sums}

= {0, 5, 20, 25, · · · }

From the paper by D.E. Dutkay and P.E.T. Jorgensen, (see [11]) we know that 5kΓ

is an orthonormal basis for for L2(µ) for k = 1, 2, 3 · · · . With this, we can create a

unitary operator

U : Γ→ 5Γ.
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This operator is of interest as it illustrates what happens when mapping between two

different orthonormal basis (one is not a subset of the other).
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CHAPTER 4
MORE INFINITE MATRICES

This chapter is an extension of the orthonormal basis and system (R,B,L)

from [21] described in the last chapter: N = 2, and (R,B,L) =

(
4,

{
0,

1

2

}
, {0, 1}

)
in R and Γ = {l0 + 4l1 + 42l2 + · · · : li ∈ {0, 1}, finite sums}. Much of the work in

this chapter will be with the Fourier transform µ̂ from the last chapter (described in

[21]).

In the proofs throughout this chapter we will using the fact that

µ̂(odd number) = 0

and

for γ ∈ Γ, µ̂(γ) = 0 unless γ = 0.

To see this, it is easier to use the definition for µ̂ as follows:

µ̂(t) =
∞∏
n=0

1

2

(
1 + ei

iπ
4n

)
= eiπ

2t
3

∞∏
n=0

cos

(
πt

2 · 4n

)
(4.1)

The following lemma gives a short proof of why this is true.

Lemma 4.1. With the above, (R,B,L) and Γ, µ̂(t) = 0 if t ∈ Γ − {0} or t ∈

{4k × n|n ∈ 2Z + 1, k = {0, 1, 2, · · · }}

Proof. We have R = 4, N = 2, and B =

{
0,

1

2

}
, using the definitions in chapter 3
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we get that:

µ̂(t) =

(
1

N

∑
b∈B

e2iπb·t

)
µ̂
(
R∗−1t

)
=

1

2

(
1 + eiπt

)
µ̂

(
t

4

)
By using the same process again, but this time for µ̂( t

4
) we get:

=
1

2

(
1 + eiπt

) 1

2

(
1 + eiπt/4

)
µ̂

(
t

42

)
Continuing this process infinitely many times, we end up with

=
∞∏
n=0

1

2

(
1 + eiπt/4

n)
=
∏

eiπt/(2·4
n)

(
e−iπt/(2·4

n) + eiπt/(2·4
n)

2

)
= e1/2iπt

∑ 1
4n

∏
cos

(
πt

2 · 4n

)
= eiπt2/3

∏
cos

(
πt

2 · 4n

)
So, µ̂(t) = 0 if t ∈ Γ− {0} or t ∈ {4k × n|n ∈ 2Z + 1, k = {0, 1, 2, · · · }}.

Remark 4.2. Notice that by the definition of µ̂(t) (see Equation 4.1) we can both

take out powers of 4 and multiply by powers of 4 without changing µ̂(·). In other

words µ̂(4kt) = µ̂(t).

Remark 4.3. We will be looking at three major operators:

S0 : Γ→ 4Γ, S1 : Γ→ 4Γ + 1

and U : Γ→ 5Γ. Before we start delving into the operators, it will be useful to make

note of the fact that since 4Γ (and 4Γ + 1) are subsets of Γ, an orthonormal basis, for

α, β ∈ Γ we have that
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< eα, e4β >=


1 if 4β = α

0 else

(follows similarly for 4β+1). It is also know, by [11], that 5Γ is an orthonormal basis.

In fact 5kΓ is an orthonormal basis for k = 0, 1, 2, · · · (see [11]).

4.1 Operators S0, S1 and U

Now, we will formally introduce our three major operators. Let (µ,Γ) be a

spectral pair.

µ̂(t) = eiπt2/3
∏

cos

(
πt

2 · 4n

)
and

Γ =
{∑finite

0 bi4
i|bi ∈ {0, 1}

}
We are going to be looking at three major operators. Again, we will refer to

the operators by capital letters (such as U) and to the infinite matrices by capital

letters and subscripts (such as Uα,β), and to the entries of the infinite matrices with

lower case letters (such as uαβ). First, consider

S0 : L2(µ)→ L2(µ)

be determined by

S0eλ = e4λ

Notice that S0 : Γ→ 4Γ and that 4Γ ⊂ Γ. We can consider the infinite matrix

of S0 together with the orthonormal basis Γ to be S0α,β = (s0αβ) where

s0αβ =< eα, S0eβ >= µ̂(4β − α) (4.2)
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The matrix representation is:

S0α,β =



1 0 0 0 0 · · ·

0 0 0 0 0 · · ·

0 1 0 0 0 · · ·

0 0 0 0 0 · · ·

0 0 1 0 0 · · ·

...
...

...
...

...
. . .


Similarly, define

S1 : L2(µ)→ L2(µ)

to be determined by

S1eλ = e4λ+1

Notice that S1 : Γ→ 4Γ + 1 and that 4Γ + 1 ⊂ Γ. If we combine this operator

with the orthonormal basis Γ, then we can create the infinite matrix S1α,β = (s1αβ)

where

s1αβ =< eα, S1eβ >= µ̂(4β + 1− α) (4.3)

The matrix itself looks like:

S1α,β =



0 0 0 0 0 · · ·

1 0 0 0 0 · · ·

0 0 0 0 0 · · ·

0 1 0 0 0 · · ·

0 0 0 0 0 · · ·

...
...

...
...

...
. . .


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Finally, we will introduce our last major operator, U . Let

U : L2(µ)→ L2(µ)

be determined by

Ueλ = e5λ

and Uα,β = (uαβ) where

uαβ =< eα, Ueβ >= µ̂(5β − α) (4.4)

Notice that U : Γ→ 5Γ. Unlike 4Γ and 4Γ + 1, 5Γ is not a subset of Γ. For example

Ue5 = e25 but 25 = 1 + 2 · 4 + 42 and so is not in Γ. Therefore, the matrix of Uα,β is

a bit more complicated than that of S0α,β or S1α,β. As we can see from the following

matrix representation, there are entries of the matrix that are neither 0 nor 1.

Uα,β =



1 0 0 0 0 · · ·

0 0 0 µ̂(6) 0 · · ·

0 0 0 0 0 · · ·

0 1 0 0 0 · · ·

0 0 0 0 0 · · ·

0 0 0 µ̂(2) 0 · · ·

0 0 1 0 0 · · ·

...
...

...
...

...
. . .


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4.2 Commuting between S0α,β, S1α,β and Uα,β

Looking at the three infinite matrices S0α,β, S1α,β and Uα,β, one of the first

questions that arises is whether these matrices commute. As the following lemmas

show, only one of the pairings actually commutes.

Lemma 4.4. The infinite matrices S0α,β and S1α,β as described in the above section,

do not commute.

Proof. First, consider (S0S1)α,β. For γ ∈ Γ, each entry in the infinite matrix can be

represented by

(s0s1)αβ =
∑
γ

µ̂(4γ − α)µ̂(4β + 1− γ)

From Remark 4.3 we have that µ̂(4β+ 1−γ) = 0 unless 4β+ 1 = γ. This means that

(s0s1)αβ = µ̂(16β + 4− α)

=


1 if (α, β) = (16β + 4, β)

0 else

On the other hand, for (S1S0)α,β each entry can be represented by

(s1s0)αβ =
∑
γ

µ̂(4γ + 1− α)µ̂(4β − γ)

From Remark 4.3 we have that µ̂(4β − γ) = 0 unless 4β = γ. This means that

(s0s1)αβ = µ̂(16β + 1− α)

=


1 if (α, β) = (16β + 1, β)

0 else

In particular, (s0s1)4,0 = 1 while (s1s0)4,0 = 0. Therefore, they do not commute.
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Another way to look at the previous lemma is to look at the operators S0

and S1 and how they together act on an element in the orthonormal basis {eγ}:

S0S1eγ → S0e4γ+1 → e16γ+4 while S1S0eγ → S1e4γ → e16γ+1.

When dealing with the operator U , we run into difficulties since U : Γ → 5Γ

and 5Γ is not a subset of Γ.

Lemma 4.5. The infinite matrices Uα,β and S0α,β as described above with the or-

thonormal basis Γ = {l0 + 4l1 + 42l2 + · · · : li ∈ {0, 1}, finite sums} commute

Proof. Let’s first look at (US0)α,β where each entry can be written as

(us0)α,β =
∑
γ

µ̂(5γ − α)µ̂(4β − γ)

Since 4β and γ are in Γ by Remark 4.3 we have that

µ̂(4β − γ) =


1 if 4β = γ

0 else

which means that

(us0)α,β = µ̂(5(4β)− α)

= µ̂(20β − α)

On the other hand, we have

(s0u)α,β =
∑
γ

µ̂(4γ − α)µ̂(5β − γ)

We can use Lemma 4.1 and its following remark to get

=
∑
γ

µ̂(4γ − α)µ̂(20β − 4γ)
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Again, by Remark 4.3 we have that µ̂(4γ − α) = 0 unless 4γ = α. So,

(s0u)α,β = µ̂(20β − α)

= (us0)α,β

Therefore, Uα,β and S0α,β commute.

Since Uα,β and S0α,β commute, one might assume that Uα,β and S1α,β also

commute; however as the following lemma shows, this is not the case:

Lemma 4.6. The infinite matrices S1α,β and Uα,β do not commute

Proof. Let’s first look at the infinite matrix (US1)α,β where each entry is:

(us1)αβ =
∑
γ

µ̂(5γ − α)µ̂(4β + 1− α)

By Remark 4.3 we have that:

= µ̂(5(4β + 1)− α)

= µ̂(20β + 5− α)

At this point, we can tell that nonzero terms of (us1) occur when α ∈ 4Γ + 1.

Now, let’s look at (S1U)α,β with entries:

(s1u)αβ =
∑
γ

µ̂(4γ + 1− α)µ̂(5γ − β)

By Remark 4.3 we have that nonzero terms only occur when 4γ + 1 = α. We can

rewrite (5γ − β) as 20γ − 4β by Remark 4.2. Also,

20γ − 4β = 5(4γ)− 4β

= 5(4γ + 1)− 5− 4β
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With this notation, we can conclude that

(s1u)αβ = µ̂(5(4γ + 1)− 5− 4β)

= µ̂(5α− 5− 4β)

Since (us1)1,0 = µ̂(5 − 1) = 0 and (s1u)1,0 = µ̂(5 − 5 − 0) = 1 then (US1)α,β 6=

(S1U)α,β

4.3 Operator Mk

In this section we introduce a new operator

Mk : Γ→ Γ + k

for γ ∈ Γ = {l0 + 4l1 + 42l2 + · · · : li ∈ {0, 1}, finite sums} such that

Mkeγ = eγ+k

With this operator we can find even more relations between U , S0 and S1. First we

will look at M1 : Γ → Γ + 1 where M1eγ = eγ+1 with respect to the orthonormal

basis Γ. We define the matrix M1α,β = (m1αβ) of the operator M1 with respect to Γ

to consist of entries

m1αβ =< eα,M1eβ >= µ̂(β + 1− α)

which has entries that are neither 0 nor 1 (unlike S0α,β and S1α,β).
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M1α,β =



0 µ̂(2) 0 µ̂(6) 0 µ̂(18) 0 µ̂(22) · · ·

1 0 0 0 0 0 0 0 · · ·

0 µ̂(2) 0 µ̂(2) 0 µ̂(14) 0 µ̂(18) · · ·

0 0 1 0 0 0 0 0 · · ·

0 µ̂(14) 0 µ̂(10) 0 µ̂(2) 0 µ̂(6) · · ·

...
...

...
...

...
...

...
...

. . .


The first thing we will consider is what happens when we take powers of the

matrix M1α,β. In the best of worlds, the powers of M1α,β, Mk
1α,β will be the equivalent

to Mkα,β where each entry of the matrix is mkαβ = µ̂(β + k − α). At first it looks

promising, as we look at the case when k = 2.

Lemma 4.7. Let Mk : Γ → Γ + k where Mkeγ = eγ+k with the orthonormal basis

Γ = {l0+4l1+42l2+· · · : li ∈ {0, 1}, finite sums} represent the matrix Mkα,β = (mkαβ)

where mkαβ =< eα,Mkeβ >= µ̂(β + k − α). Then we have that M2
1α,β = M2α,β

Proof. Each (α, β) element in the matrix (M2
1 )αβ is

=
∑

γ µ̂(γ + 1− α)µ̂(β + 1− γ)

Notice that µ̂(γ + 1− α) = 0 unless γ ∈ 4Γ + 1. Let γ = 4ξ + 1 where ξ ∈ Γ. Then

=
∑
ξ

µ̂(4ξ + 2− α)µ̂(β − 4ξ)

By Remark 4.3, µ̂(β − 4ξ) = 0 unless β = 4ξ where we have µ̂(β − 4ξ) = µ̂(0) = 1
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Therefore, each (α, β) entry of the matrix

= (µ̂(β + 2− α))

= (m2αβ)

Therefore (M2
1 )α,β = M2αβ.

Unfortunately, although it works out in the case of k = 2, in general, (Mk
1 )α,β 6=

Mkα,β as is seen in the following lemma:

Lemma 4.8. With Mkα,β as described in Lemma 4.7, (M3
1 )α,β 6= M3α,β

Proof. By Lemma 4.7 we know that (M2
1 )α,β = M2α,β, so we have that that each

(α, β) entry in the matrix (M3
1 )α,β is

=
∑
γ

m2α,γm1γ,β

=
∑
γ

µ̂(γ + 2− α)µ̂(β + 1− γ)

Case 1: If β ∈ 4Γ we have that by Lemma 4.1 µ̂(β + 1− γ) =


1 if γ = β + 1

0 else

So,

we have that for β ∈ 4Γ, m3
1αβ = µ̂(β + 3− α) = m3α,β.

Case 2: But, if β ∈ 4Γ + 1 we have that by Lemma 4.1, γ ∈ 4Γ and (M3
1 )α,β =∑

γ µ̂(4γ + 2− α)µ̂(β + 1− 4γ) and, therefore, for α ∈ 4Γ we have nonzero terms.

In particular, (m1)3
0,1 =

∑
γµ̂(γ + 2)µ̂(2− γ), while m3(0,1) = µ̂(1 + 3− 0) =

0.

Now that we have established what Mk
1α,β looks like, we will now see how it

relates to S0α,β, S1α,β and Uα,β.
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4.4 Relationships between S0α,β, S1α,β and Uα,β and M1α,β

First, we will look at which of the matrices S0α,β, S1α,β and Uα,β commute with

M1α,β. This will give us insight into other ways that the first three operators relate.

Since M1 : Γ→ Γ + 1 and Γ + 1, much like 5Γ, is not a subset of Γ we anticipate that

not all of the matrices will commute with M1α,β. However, it may be surprising that

none of them actually commute.

Lemma 4.9. The infinite matrices with respect to the orthonormal basis

Γ = {l0 + 4l1 + 42l2 + · · · : li ∈ {0, 1}, finite sums},

S1α,β, S0α,β, and Uα,β, do not commute with M1α,β

Proof. For (S1M1)α,β, the entries of the matrix will be:

∑
γ

s1αγm1γβ =
∑
γ

µ̂(4γ + 1− α)µ̂(β + 1− γ)

since µ̂(4γ + 1− α) = 0 for all but α = 4γ + 1, we get

= µ̂(4β + 4− 4γ)

= µ̂(4β + 4− (α− 1))

= µ̂(4β + 3− α)

Now let’s consider (M1S1)α,β where each (α, β) entry in the matrix is:

∑
γ

m1αγs1γβ =
∑
γ

µ̂(γ + 1− α)µ̂(4β + 1− γ)

Since µ̂(4β + 1− γ) = 0 except when γ = 4β + 1

= µ̂(4β + 2− α)
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In particular, we have that (s1m1)0,5 = 0, while (m1s1)0,5 = µ̂(22) 6= 0

Next, let’s look at (S0M1)α,β where each (α, β) entry is:

∑
γ

µ̂(4γ − α)µ̂(β + 1− γ) = µ̂(4β + 4− α)

since µ̂(4γ − α) = 0 unless 4γ = α.

On the other hand, each (α, β) entry of (M1S0)α,β is:

∑
γ

µ̂(γ + 1− α)µ̂(4β − γ) = µ̂(4β + 1− α)

since µ̂(4β−γ) = 0 unless 4β = γ. Notice that this shows that (M1S0)α,β = S1α,β. So,

S0α,β and M1α,β do not commute since, in particular, we have that (s0m1)0,1 = µ̂(2),

while (m1s0)0,1 = 0

Finally, let’s look at (M1U)α,β where each (α, β) entry is:

∑
γ

µ̂(γ + 1− α)µ̂(5β − γ)

On the other hand, each entry of (UM1)α,β is

∑
γ

µ̂(5γ − α)µ̂(β + 1− γ)

In particular, (m1u)1,0 =
∑

γ µ̂(γ+ 1−1)µ̂(0−γ) = 1 since Γ is an orthonormal basis

and (m1u)1,0 =
∑

γ µ̂(5γ − 1)µ̂(1− γ) = µ̂(5− 1) = 0

Although none of the matrices commute, as we have seen in the proof of

Lemma 4.9, there is a relationship between S0α,β, S1α,β and M1α,β:

Lemma 4.10. Given S1, S0 and M1 with respect to the orthonormal basis

Γ = {l0 + 4l1 + 42l2 + · · · : li ∈ {0, 1}, finite sums},
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The matrix S1α,β = (M1S0)α,β. In other words, for each α, β ∈ Γ, we get s1α,β =∑
γm1α,γs0γ,β

Proof. Shown in the proof of Lemma 4.9

Remark 4.11. Another way of looking at the above Lemma is to consider that for

any γ ∈ Γ, M1S0eγ = M1e4γ. Since 4γ ∈ Γ, we get that M1e4γ = e4γ+1 = S1eγ.

4.4.1 Block Matrix

Another interesting way to relate Uα,β, S0α,β and S1α,β is where the zero and

nonzero entries occur in the block matrix: S∗0M1S0 S∗0M1S1

S∗1M1S0 S∗1M1S1

 (4.5)

Before we start calculating the matrix, we will need the following lemma:

Lemma 4.12. Given S0 and S1 with orthonormal basis

Γ = {l0 + 4l1 + 42l2 + · · · : li ∈ {0, 1}, finite sums},

for the corresponding infinite matrices S∗0α,β =
(
s∗0αβ

)
and S1α,β = (s1αβ) we have that

(S∗0S1)α,β = (0)α,β the zero matrix.

Proof. For the infinite matrix (S∗0S1)α,β each entry is

∑
γ

∑
γ

s∗0αγs1γβ =
∑
γ

µ̂(4α− γ)µ̂(4β + 1− γ)

= µ̂(4α− (4β + 1))

= 0

since both 4α and 4β + 1 are in Γ
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With the previous lemma in place, we can now discover where the zero terms

of the complicated block matrix, Matrix 4.5.

Theorem 4.13. The matrix (S∗0M1S0)α,β (S∗0M1S1)α,β

(S∗1M1S0)α,β (S∗1M1S1)α,β

 =

 0 v

w 0


where v and w are nonzero.

Proof. First, consider (S∗0M1S0)α,β. By Lemma 4.10 and Lemma 4.12 we have that

(S∗0M1S0)α,β = (S∗0S1)α,β = (0)α,β.

Next, we have that (S∗1M1S1)α,β = (0)α,β because each entry of (S∗1M1S1)α,β

is:

∑
γ

∑
ξ

µ̂(4α + 1− γ)µ̂(ξ + 1− γ)µ̂(4β + 1− ξ) =
∑
γ

µ̂(4α + 1− γ)µ̂(4β + 2− γ)

since 4µ̂(4β + 1− ξ) = 0 unless 4β + 1 = ξ. So each (α, β) entry becomes

=
∑
γ

µ̂(4α + 1− 4γ)µ̂(4β + 2− 4γ)

=
∑
γ

µ̂(4(α− γ) + 1)µ̂(4β + 2− 4γ) = 0

Also, (S∗0M1S1)α,β has nonzero entries since

∑
γ

∑
ξ

µ̂(4α− γ)µ̂(ξ + 1− γ)µ̂(4β + 1− ξ) =
∑
γ

µ̂(4α− γ)µ̂(4β + 2− γ)

= µ̂(4β + 2− 4α)

which is nonzero since (S∗0M1S1)1,1 = µ̂(2).

Finally, S∗1M1S0 is nonzero because (S∗1M1S0)α,β = (S∗1S1)α,β = Iα,β
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When considering powers of the above matrix, we will have 0 S∗0M1S1

S∗1M1S0 0


2

=

 S∗0M1S1S
∗
1M1S0 0

0 S∗1M1S0S
∗
0M1S1



=

 S∗0(M1)2S0 0

0 S∗1(M1)2S1


From the above lemma 4.10 we have that M1S0 = S1 so that S∗0M

k+1
1 S0 = S∗0M

k
1S1

Lemma 4.14. For k ∈ Z, the infinite matrix
(
S0
∗Mk

1S1

)
α,β

with respect to the or-

thonormal basis Γ = {l0 + 4l1 + 42l2 + · · · : li ∈ {0, 1}, finite sums} is equivalent to the

zero matrix,(0)α,β if k is even and
(
S0
∗Mk

1S1

)
α,β
6= (0)α,β if k is odd.

Proof. For the case where k is even, consider first the case when k = 2 M2
1 = M2 we

have

(S∗0M
2
1S1)α,β = (S∗0M2S1)α,β

Each entry (α, β) will be

=
∑
γ1

∑
γ2

µ̂(4α− γ1)µ̂(γ2 + 2− γ1)µ̂(4β + 1− γ2)

So we have that 4β + 1 = γ2 and 4α = γ1 so each entry in (S∗0M
2
1S1)α,β is = µ̂(4β +

3− 4α) = 0 since 4β + 3− 4α is odd.

In general, (S∗0M
2k
1 S1)α,β = (S∗0M

k
2S1)α,β, so each entry (α, β) will be

=
∑

γ1,γ2,··· ,γk+1

µ̂(4α− γ1)µ̂(γ2 + 2− γ1)µ̂(γ3 + 2− γ2) · · · µ̂(γk+1 + 2− γk)µ̂(4β + 1− γk+1)



40

. Therefore, any nonzero terms will occur when 4α = γ1, so we get

=
∑

γ2,γ3,···γk+1

µ̂(γ2 + 2− 4α)µ̂(γ3 + 2− γ2) · · · µ̂(γk+1 + 2− γk)µ̂(4β + 1− γk+1)

This means that γ2 ∈ 4Γ and γ3, γ4 · · · , γk+1 ∈ 4Γ. But, then since γk+1 ∈ 4Γ we get

µ̂(4β + 1− γk+1) = 0 by Lemma 4.1.

We have already shown in Theorem 4.13 that (S∗0M1S1)α,β has nonzero entries.

For the general case, consider (S∗0M
2k+1
1 S1)α,β. The entries (α, β) will be:

=
∑

γ1,γ2,··· ,γ2k+2

µ̂(4α− γ1)µ̂(γ2 + 1− γ1) · · · µ̂(γ2k+2 + 1− γ2k+1)µ̂(4β + 1− γ2k+2)

since this is nonzero only when 4α = γ1, we get:

=
∑

γ2,··· ,γ2k+2

µ̂(γ2 + 1− 4α)µ̂(γ3 + 1− γ2) · · · µ̂(γ2k+2 + 1− γ2k+1)µ̂(4β + 1− γ2k+2)

This is nonzero only when γ2 ∈ 4Γ + 1, so we get that

=
∑

γ2,··· ,γ2k+2

µ̂(4γ2 + 2− 4α)µ̂(γ3 − 4γ2) · · · µ̂(γ2k+2 + 1− γ2k+1)µ̂(4β + 1− γ2k+2)

This means that γ3 = 4γ2 in order for nonzero terms. Continuing on in this manner,

we get:

=
∑

γ2,γ4,··· ,γ2k+2

µ̂(4γ2 + 2− 4α)µ̂(4γ4 + 2− 4γ2) · · · µ̂(4β + 2− 4γ2k+2)

which has nonzero terms.

4.4.2 Hadamard Product

Previously, we have been viewing the results normal matrix multiplication.

In this section, we will look at what happens when we use the Hadamard product
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to multiply the matrices. Recall that the Hadamard product, unlike regular matrix

multiplication, multiplies just the entries together. In this case, when a 1 occurs in

the Hadamard product, that means that since |µ̂(·)| ≤ 1, that both matrices have a 1

in the exact same spot. It is an interesting way to examine where the related nonzero

terms of the matrices are located.

Lemma 4.15. Given the matrices Uα,β and S0α,β the Hadamard product of the two

is

(U ∗ S0)α,β = (uαβs0αβ) where uαβs0αβ =


1 at (0, 0)

0 else

Proof. uαβs0α,β = µ̂(5β − α)µ̂(4β − α). Since s0αβ = 0 for all (α, β) except when

α = 4β, then

(u ∗ s0)α,β = µ̂(5β − α)µ̂(4β − α)

= µ̂(5β − 4β)

= µ̂(β)

=


1 when β = 0

0 else

.

So, the only nonzero entry is (α, β) = (0, 0)

Remark 4.16. The conjugate transpose entries of S0α,β are s∗0α,β = µ̂(4α − β) and

the conjugate transpose entries of S1α,β are s∗1α,β = µ̂(4α + 1− β)

Lemma 4.17. Given the matrices Uα,β and S∗0α,β the Hadamard product of the two

is (U ∗ S∗0)α,β = (uαβs
∗
αβ) where
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uαβs
∗
0αβ =


1 at (0, 0)

0 else

Proof.

uαβs
∗
0αβ = µ̂(5β − α)µ̂(4α− β)

Notice that µ̂(4α − β) = 0 unless 4α = β in which case µ̂(4α − β) = 1. So, we have

β = 4α which implies that uαβs
∗
0αβ = µ̂(19α). If α is odd, then µ̂(19α) = 0. But, if

α 6= 0 is even, we get that α =
∑

i 4
iai where a0 = 0. Considering µ̂(19

∑
i 4

iai), by

Remark 4.2 we can take out the smallest power of 4, leaving us with µ̂(19
∑

i 4
iai)

where a0 = 1, which means µ̂(19α) = 0. So, we have that

µ̂(19α) =


1 if α = 0

0 else

.

So, when (α, β) = (0, 0), we get 1 · 1 = 1, otherwise we get 0.

Lemma 4.18. Given the matrices Uα,β and S1α,β the Hadamard product of the two

is (U ∗ S1)α,β = (uαβs1αβ) where

uαβs1αβ =


1 at (5, 1)

0 else

Proof. Each entry uαβs1αβ = µ̂(5β − α)µ̂(4β + 1− α). The only time s1αβ is nonzero

is when α = 4β + 1, which means uαβs1αβ = µ̂(5β − (4β + 1)) = µ̂(β − 1). Since

1 ∈ Γ, µ̂(β − 1) = 1 for β = 1 and is zero everywhere else. Since α = 4β + 1 = 5, the

only nonzero entry is at (α, β) = (5, 1).
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So far, these results have not been too exciting. The last Hadamard product

we will take is Uαβ and S∗1α,β. Surprisingly, unlike the previous results, the Hadamard

product of these two has infinitely many nonzero terms:

Lemma 4.19. Given the matrices Uα,β and S∗1α,β the Hadamard product of the two

is (U ∗ S∗1)α,β = (uαβs
∗
1αβ). (U ∗ S∗1)α,β has infinitely many nonzero entries.

Remark 4.20. For the following proof we will be making use of the fact that since

Γ = {
∑

i 4
ibi : bi = {0, 1}, finite sums } every γ ∈ Γ can be written in base 4 notation

with only zeros and ones occurring. For example, 20 ∈ Γ and 20 = 42 + 4 = (110)4.

If a number, x has a 2 or 3 occurring in its base 4 representation, then x 6∈ Γ.

Proof. The entries in (U ∗ S∗1)α,β are

uαβs
∗
1αβ = µ̂(5β − α)µ̂(4α + 1− β) (S∗1)α,β = 1

if β = 4α + 1 and zero otherwise. So, (U ∗ S∗1)α,β = µ̂(5(4α + 1)− α) = µ̂(19α + 5),

which is zero is α is even. However, if α is odd, 19 = (103)4 multiply by a number

that ends in (01)4 the last two numbers are (03)4 If we add 5 = (11)4 we end up with

a number ending in (20)4 which is not in Γ. Since there are infinitely many γ ∈ Γ

that end in (01)4 there are infinitely many nonzero entries in (U ∗ S∗1)α,β.

Now that we have clarified the relationships between S0α,β, S1α,β, M1α,β and

Uα,β we will turn our attention in the next chapter solely to Uα,β.
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CHAPTER 5
THE Uα,β MATRIX

In this chapter, we will look in depth at the matrix Uα,β and the subsequent

powers, Uk
α,β. In doing so, we will also be discovering what γ ∈ Γ ∩ 5kΓ for k =

1, 2, 3 · · · .

5.1 The 1’s of Uα,β

An interesting question is where do 1’s occur in the entries of the infinite

matrix Uα,β; in detail, given Uα,β = (uαβ), for what (row , column) = (α, β) does

uαβ = 1. Since uαβ = µ̂(5β − α) if uαβ = 1, then 5β = α. In other words, we are

finding γ ∈ Γ such that γ ∈ 5Γ ∩ Γ. The answer to this question is complicated by

the fact that U : Γ→ 5Γ and 5Γ 6⊂ Γ (as is seen by Ue5 = e25 and 25 6∈ Γ).

To get a sense of how this question can be answered, let’s first look at the

entries of the infinite matrices S0α,β and S1α,β. These should be easier to find since,

for example, s0αβ = µ̂(4β − α). Therefore, if we find where s0αβ = 1 we are finding

γ ∈ Γ such that γ ∈ 4Γ ∩ Γ. Since 4Γ ⊂ Γ, we can already know the answer to this

question.

Lemma 5.1. For α, β ∈ Γ, S0α,β = (µ̂(4β + 1− α)) has infinitely many entries of 1.

These 1’s of the matrix S0α,β occur at entries (row, column)= (4β, β).

Proof. This can be easily seen as each entry, s0αβ, of the infinite matrix S0α,β is

s0αβ = µ̂(4β − α)
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Since 4β − α ∈ Γ, µ̂(4β − α) = 0 unless 4β = α, in which case µ̂(4β − α) = 1. Since

4β ∈ Γ for all β there are infinitely such (α, β).

Remark 5.2. The 1’s of the matrix S0α,β occur at (0, 0), (4, 1), (16, 4), etc. A 1

occurs once in every even row. All other entries are 0. Again, another way of looking

at these points (α, β) is that we found all values of α such that α ∈ Γ ∩ 4Γ.

Lemma 5.3. For α, β ∈ Γ, S1α,β = (µ̂(4β + 1− α)) has infinitely many entries of 1.

The 1’s of the matrix S1α,β occur at entries (4β + 1, β).

Proof. Very similar to the previous lemma, we have that each entry of S1α,β is

s1αβ = µ̂(4β + 1− α)

which is zero unless 4β + 1 = α, in which case µ̂(4β + 1− α) = 1. Since 4Γ + 1 ⊂ Γ

there are infinitely such entries (α, β).

Remark 5.4. The 1’s of the matrix S1α,β occur at (1, 0), (5, 1), (17, 4), etc. In other

words, a 1 occurs once in every odd row. Again, by looking at all these points (α, β),

we have found all values α such that α ∈ Γ ∩ 4Γ + 1.

Finding the entries of 1 in these infinite matrices was made easier by the fact

that these operators map Γ back into Γ. Now, let’s take a look at what happens with

the infinite matrix Uα,β.

Theorem 5.5. Let (µ,Γ) be a spectral pair.

µ̂(t) = eiπt2/3
∏

cos

(
πt

2 · 4n

)
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and

Γ =
{∑finite

0 bi4
i|bi ∈ {0, 1}

}
Let U : L2(µ)→ L2(µ) be determined by

Ueλ = e5λ

For α, β ∈ Γ, Uα,β = (µ̂(5β − α)) has infinitely many entries of 1’s and they occur

at (α, β) where α = 5β when for ci = 0 or 1, β =
∑

i ci4
i such that if ci = 1 then

ci+1 = 0.

Proof. If µ̂(5β − α) = 1 then 5β = α. It might be more helpful if we look at it more

generally as: 5β ∈ Γ

Then we have that since β ∈ Γ,

5β = 5
∑

i ci4
i = (1 + 4)

∑
i ci4

i =
∑

i ci4
i +
∑

i ci4
i+1

Since we want 5β ∈ Γ, we need
∑

i ci4
i +

∑
i ci4

i+1 =
∑

j aj4
j where aj = 0 or 1.

Notice that
∑

i ci4
i +
∑

i ci4
i+1 = c0 + 4(c0 + c1) + 42(c1 + c2) + · · · + 4k(ck−1 + ck).

This is in Γ if ci = 1 then ci+1 = 0. Now we will look at α = 5β. As stated above

α =
∑

j aj4
j = c0 + 4(c0 + c1) + 42(c1 + c2) + · · ·+ 4k(ck−1 + ck)

where if ci = 1 then ci+1 = 0 for i = 0, 1, 2, 3, · · · , n and j = 0, 1, 2, 3, · · · ,m such

that if ck = 1, then ak = 1 and ak+1 = 1, otherwise ai = 0. (One way to see this is to

consider that if 1 = β, then c0 = 1. We would then have a0 = 1 and a1 = 1, so that

α = 1 + 4 · 1 = 5 and so we would haveµ̂(5β − α) = 1). By construction, there are

infinitely many such entries (α, β).
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Remark 5.6. Some of the (α, β) such that uα,β = 1 are (0, 0), (5, 1), (20, 4), (80, 16),

etc. We asked earlier what γ ∈ Γ are also in 5Γ. The answer is the α described in

the proof of Theorem 5.5: α ∈ Γ ∩ 5Γ (notice that 0, 5, 20, · · · ∈ 5Γ ∩ Γ).

5.2 Powers of Uα,β

The next question to ask is where the 1’s occur in the powers of the Uα,β

matrix, Uk
α,β. This question is more complicated than it may first appear.

5.2.1 Hadamard Product

It is not as easy as it would be looking at, say, the Hadamard product. By

construction of the Hadamard product, (U ∗ U)α,β = (uαβuαβ) = 1 when uαβ = 1.

Consider the case of (U ∗ U∗)α,β.

Lemma 5.7. The Hadamard product of Uα,β and U∗α,β, (U ∗U∗)α,β = 1 only at (0, 0)

Proof. uαβ ∗ u∗αβ = µ̂(5β − α)µ̂(5α − β) = 1 iff both µ̂(5β − α) and µ̂(5α − β) are 1

(since µ̂(γ) ≤ 1 by definition). This happens only if 5α = β and 5β = α. So, when

25β = β which happens only at β = 0.

Remark 5.8. It is not nonzero for all other entries. For example for all entries (α, 5α)

we get that the entries of U ∗ U∗ are

uαβu
∗
αβ = µ̂(24α) = µ̂(6α)

which is nonzero for all α

5.2.2 Squaring S0α,β and Uα,β

Now, let’s go back to regular matrix multiplication and look at S2
0α,β.
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Lemma 5.9. S2
0α,β has infinitely many entries of 1, occurring at (16β, β).

Proof. Each entry of S2
0α,β can be represented by s0αβ =

∑
γ µ̂(4γ − α)µ̂(4β − γ).

Since 4γ, 4β, α, β ∈ Γ, the only nonzero terms are when 4γ = α and 4β = γ. In other

words, when 42β = α. When this happens µ̂(4γ−α) = µ̂(4β−γ) = 1. Since 16β ∈ Γ

for all β, there are infinitely such entries.

What worked out nicely in this case is that 4β and 4γ were elements of an

orthonormal basis Γ (see remark 4.3). We cannot use the same quick solution in the

case of U2
α,β = (u2αβ) since

u2α,β =
∑

γ µ̂(5γ − α)µ̂(5β − γ)

and 5γ and 5β may or may not be in Γ. Before we can use a similar method to

discover where the 1’s of the matrix Uk
α,β = (ukαβ) we will need a way to check when

∑
γ1,γ2,···γk−1

µ̂(5γ1 − α)µ̂(5γ2 − γ1) · · · µ̂(5β − γk−1) = 1

First, though, we will need the following lemma:

Lemma 5.10. Given Γ = {
∑

i 4
ibi : bi ∈ {0, 1}, finite sums } and the set 25Γ =

{25
∑

i 4
ibi : bi ∈ {0, 1}, finite sums } = {0, 25, 100, 125, · · · }, β ∈ Γ ∩ 25Γ iff β = 0.

Remark 5.11. From [11] we know that 5kΓ is an orthonormal basis of L2(µ) for all

k = 0, 1, 2, 3, · · · .

Proof. Note that 0 ∈ Γ and since 25 ·0 = 0, 0 ∈ 25Γ. If we break down 52 into
∑

i 4
ici

form we get:



49

52 = 42 + 4 · 2 + 1

First, since β ∈ Γ then β =
∑

i 4
ici where ci = 0 or 1. Therefore, we have that:

52β =
(
42 + 4 · 2 + 1

)
β

=
(
42 + 4 · 2 + 1

)∑
ci4

i

=
∑

4i+2ci + 2
∑

ci4
i+1 +

∑
4ici

where each of the ci = 0 or 1. We want this to be in Γ so we want

∑
4i+2ci + 2

∑
ci4

i+1 +
∑

4ici =
∑

4jaj for aj = 0 or 1. (5.1)

If we rewrite the left hand side of the equation by expanding the sums, we get

= 42c0 + 2 · 4c0 + c0 + 43c1 + 2 · 42c1 + 4c1 + 44c2 + 2 · 43c2 + 42c2 · · ·

= c0 + 4(2x0 + c1) + 42(c0 + 2c1 + c2) + 43(c1 + 2c2 + c3) + · · ·

= c0 + 4(2c0 + c1) +
∑
i=2

4i(ci−2 + 2ci−1 + ci)

Let’s first consider the case where c0 = 1. This means that 2c0 + c1 = 2 + c1.

Since c1 = 0 or 1, 2 + c1 = 2 or 3. Conflicts with equation 5.1. So, c0 6= 1.

Next, consider the case where c0 = 0. Then, 2c0 + c1 = c1, so c1 = 0 or 1. If

c1 = 1, then as in the first case we get that c0 + 2c1 + c2 = 2 + c2 = 2 or 3. So c1 6= 1.

If c1 = 0, then c0 + 2c1 + c2 = c2 = 0 or 1.

Suppose that ck is the first ci 6= 0. As we have shown, k ≥ 2. So we have

4k(ck) + 4k+1(2ck + ck+1) + 4k+2(ck + 2ck+1 + ck+2) + · · ·

But, this means that 2ck +ck+1 = 2+ck+1 = 2 or 3, which cannot happen. Therefore,

the only time 52β ∈ Γ is when β =
∑

i 4
ici = 0.
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Theorem 5.12. Given the operator U along with the orthonormal basis

Γ = {l0 + 4l1 + 42l2 + · · · : li ∈ {0, 1}, finite sums},

the (α, β) entry of the infinite matrix Uk
α,β represented by

∑
γ1,γ2,···γk−1

µ̂(5γ1 − α)µ̂(5γ2 − γ1) · · · µ̂(5β − γk−1) = 1 (5.2)

iff each µ̂(·) = 1.

Proof. One way is trivial since if each µ̂(5λi− ξi) = 1 then 5λi = ξi for each i and we

get that 1 · 1 · · · 1 = 1.

For the other direction, assume
∑

γ1,γ2,···γk−1
µ̂(5γ1 − α)µ̂(5γ2 − γ1) · · · µ̂(5β −

γk−1) = 1 Since Γ is an orthonormal basis we have that
∑

ξ∈Γ |µ̂(t− ξ)|2 = 1.

Let’s first look at the case when k = 2.

By Cauchy-Schwarz inequality (Lemma 2.2) we know that since we have an

orthonormal basis,

|u2αβ|2 ≤
∑
γ

(
|µ̂(5β − γ)|2

) 1
2
(
|µ̂(5γ − α)|2

) 1
2 (5.3)

We want to find when an entry in |u2αβ|2 is 1, so we want the above inequality

to be equality. In order for equality to occur in Cauchy-Schwarz the vectors need to

be aligned. This means that

µ̂(5γ − α) = cαβµ̂(5β − γ) (5.4)

for all γ ∈ Γ where α, β are fixed and cαβ depends on α, β ∈ Γ and |cαβ| = 1.

Substitute back into Equation 5.11 to get
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|u2αβ|2 =
∑

γ cαβ (µ̂(5β − γ))2

Since c does not depend on γ we can take it out of the sum:

|u2αβ|2 = cαβ
∑
γ

(µ̂(5β − γ))2 (5.5)

Notice that we no longer have the right hand side depending on α so

cαβ = cβ.

We can rewrite Equation 5.12 as

< eα, e5γ > = cβ < eγ, e5β > (5.6)

where |cβ| = 1.

The question is: Is there more than one term that is nonzero? If there is not,

then the theorem is true.

Let’s look at the case when γ0 = 0 in Equation 5.6:

< eα, e0 > = cβ < e0, e5β >

Since < eα, e0 >= 0 unless α = 0, and < e0, e5β > = 0 unless β = 0, then α = β = 0

is the only nonzero term.

Now, let’s look at the case of γ1. Then < eα, e5 > = 0 unless α = 5 and

< e5β, e1 > < 1 so there are no nonzero terms.

Let’s consider the general case of γ ∈ Γ. Let γ1 be the first γ ∈ Γ such that

both

|µ̂(5γ − α)| < 1 and |µ̂(5β − γ)| < 1. (5.7)
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where the equation

µ̂(5γ − α) = cαβµ̂(5β − γ) (5.8)

holds. So, we have multiple γi : γ1 < γ2 < γ3 < · · · such that

e5β = Aeγ1 +Beγ2 + · · ·

eα = cβ (Ae5γ1 +Be5γ2 + · · · )

Therefore, we have the equation

Ue5β = cβeα (5.9)

which means that

β → 5β → α→ 5α (5.10)

which implies that

25β = α

But since α ∈ Γ, by Lemma 5.10 we know that this only happens when β = 0 = α.

Now let’s return to:

µ̂(5γ − α) = cβµ̂(5β − γ)

< eα, e5γ > = cβ < eγ, e5β >

c∗β < eα, e5γ > =< eγ, e5β >

e5β = c∗β
∑
γ

< eα, e5γ > eγ

cβe5β =
∑
γ

< eα, e5γ > eγ
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Notice that the left side is only dependent on β and the right side is only

dependent on α and since there is only one nonzero term and µ̂(5γ−α)µ̂(5β−γ) = 1

only when µ̂(5γ − α) = 1 and µ̂(5β − γ) = 1

Now, suppose that for k, Uk
α,β has an entry of one iff each µ̂(·) = 1 of

ukαβ =
∑

γ1,γ2,...γk
µ̂(5β − γk)µ̂(5γk − 5γk−1)...µ̂(5γ1 − α).

Looking at k + 1:

For Uk+1
α,β = Uk

α,γk
Uγk,β,

By Cauchy-Schwarz inequality (Lemma 2.2) we know that since we have an

orthonormal basis,

|u(k+1)αβ|2 ≤
∑
γ

(
|ukαγk |2

) 1
2
(
|µ̂(5γk − α)|2

) 1
2 (5.11)

We want to find when an entry in |u(k+1)αβ|2 is 1, so we want the inequality

to be equality. In order for equality to occur in Cauchy-Schwarz the vectors need to

be aligned. This means that

ukαγk = cαβµ̂(5β − γ) (5.12)

for all γ ∈ Γ where α, β are fixed and cαβ depends on α, β ∈ Γ and |cαβ| = 1.

Substitute back to get

|u(k+1)αβ|2 =
∑

γ cαβ (µ̂(5β − γ))2

And so, we end up with the same scenario we had for U2
α,β. So in order for |u(k+1)αβ| =

1, we must have that µ̂(5β − γk) = µ̂(5γk − γk−1) = · · · = µ̂(5γ1 − α) = 1.

Now, finally, let’s find the 1’s of the matrix Uk
α,β for k = 2, 3, 4, · · · .



54

Theorem 5.13. Consider the infinite matrix Uk
α,β with respect to the orthonormal

basis

Γ = {l0 + 4l1 + 42l2 + · · · : li ∈ {0, 1}, finite sums}.

Each (α, β) entry of Uk
α,β = (ukαβ) will be represented by ukαβ. For k ≥ 2, ukα,β = 1

if and only if (α, β) = (0, 0)

Proof. To begin, let’s look at the case where k = 2: Let α, β ∈ Γ. Since

uα,β =< eα, Ueβ >=
∑
µ̂(5β − α) then each entry of U2

α,β

will be

u2α,β =
∑

γ µ̂(5γ − α)µ̂(5β − γ)

If (α, β) 6= (0, 0) then 52β ∈ Γ since in order for U2
α,β =

∑
µ̂(5γ−α)µ̂(5β− γ)

by Theorem 5.12 we need 5γ = α and 5β = γ. This means that 5(5β) = α. By

Lemma 5.10 we know this happens only when β = 0 = α.

Now, let’s look at the general k:

If (α, β) = (0, 0) then the entry of Uk
α,β is:

=
∑

γ1,γ2,··· ,γk−1

µ̂(5γ1 − α)µ̂(5γ2 − γ1) · · · µ̂(5β − γk−1)

=
∑

γ1,γ2,··· ,γk−1

µ̂(5γ1)µ̂(5γ2 − γ1) · · · µ̂(5γk−1 − γk−2)µ̂(γk−1)

Since γk−1 ∈ Γ, in order for µ̂(γk−1) 6= 0, then γk−1 = 0. In a similar fashion,

γk−1 = 0 ⇒ 0 = γk−2 = γk−3 = γk−4 = · · · = γ1. So that the (α, β) = (0, 0) entry of

Uk
α,β is 1.

Suppose there is a k such that an element of the matrix Uk
α,β, ukαβ = 1, then
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ukαβ =
∑

γ1,γ2,··· ,γk−1
µ̂(5γ1 − α)µ̂(5γ2 − γ1) · · · µ̂(5β − γk−1)

Using the results from Theorem 5.12 we have that all µ̂(·) = 1, which means that

µ̂(5β − γk−1) = 1 so that 5β = γk−1 and µ̂(5γk−1 − γk−2) = 1 which means that

5γ1 = γk−2 then we have that 25β ∈ Γ. Based on , Lemma 5.10, β = 0. If β = 0, then

0 = 5β = γk−1 and since γk−1 = 0, then γk−2 = 0 and so on until γ1 = 0⇒ α = 0.

This somewhat surprising result. It means that there are infinitely many γ

such that γ ∈ Γ ∩ 5Γ, but only 0 ∈ Γ ∩ 25Γ. In fact, only 0 ∈ Γ ∩ 5kΓ for all k ≥ 2.

5.3 Conclusion

By first looking at the orthonormal basis found in [21]:

Γ = {
∑

i 4
ibi : bi ∈ {0, 1}, finite sums}

and the related orthonormal basis found in [11]

5Γ = {5
∑

i 4
ibi : bi ∈ {0, 1}, finite sums }

we found several interesting relationship with the unitary matrix Uα,β arising from

the operator U : Γ → 5Γ. Investigating the relationships between S0 : Γ → 4Γ,

S1 : Γ → 4Γ + 1, and M1 : Γ → Γ + 1 we discovered that Uα,β commutes with S0α,β

although it does not commute with S1α,β nor M1α,β.

Most intriguing, when we searched for 1’s in the infinite matrix Uk
α,β we have

found that given

ukαβ =
∑

γ1,γ2,··· ,γk−1
µ̂(5γ1 − α)µ̂(5γ2 − γ1) · · · µ̂(5β − γk−1)
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in order for uk = 1, we must have each µ̂(·) = 1. Although there are infinitely many

1’s occurring in the entries of Uα,β, only one such 1 occurs in the higher powers of

Uk. This means that there are infinitely many γ ∈ Γ∩ 5Γ, but γ ∈ Γ∩ 5kΓ = {0} for

k ≥ 2.
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