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Figure 4.3: The maximum and average distance a HCW needs to travel to reach a
clock versus the number of clocks k.

to premium clocks in particular.
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CHAPTER 5
CONCLUSIONS

We have built and described a realistic simulator that can be used to answer a

wide variety of questions about infection prevention, resource allocation, and patient

care. Our simulation framework requires three primary inputs; architectural, health-

care worker, and patient data. In Chapter 1 we discussed potential architectural data

sources, our spatial model, and the construction of our hospital graph. In Chapter 2

we discussed sources of HCW location data, our model of HCW spatial distributions,

and the process for generating maximum likelihood models including an extension to

better fit observed data for HCWs with multiple foci. In Chapter 3, we discussed our

patient flow models and our process for generating patient agendas. Chapter 4 show-

cased three sample applications for our simulation and HCW and patient models: an

infectious disease simulator, a contact network generator, and identifying location to

place time clocks within the hospital to minimize some cost function.

In designing our simulator, we were able to minimize assumptions about how

HCWs and patients move, effectively avoiding the “random mixing” assumption com-

mon to many infectious disease simulators. Our HCW models are also compact, flex-

ible enough to be used for a wide variety of job roles, training is computationally

feasible even for very large hospitals, and are generative. We translated techniques

from location-aware search into the hospital environment, developed data structures

for use in efficiently processing millions of location data points in tens of thousands

of rooms for thousands of HCWs, and improved the performance of the algorithm for
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identifying optimal single-center HCWmodels. We extended our models to allow mul-

tiple centers, proved that the proposed multi-center log-likelihood functions are not

unimodal implying gradient ascent methods are not guaranteed to find the optimal

solution, and introduced heuristics for training multi-center models that outperform

existing heuristics both in required computation time and in fitting the observed data.

We leveraged our good working relationship with UIHC to get access to unusu-

ally fine-grained healthcare data. We were provided access to architectural blueprints,

19 million EMR HCW logins over a period of 22 months, and data for 104, 543 inpa-

tient visits 307, 692 patient transfers over a period of 41 months. To the best of our

knowledge, this is the first agent-level hospital-wide simulator based on fine-grained

location and interaction data for healthcare workers and patients.

The EMR login data and ADT data, despite being rather noisy, seem to have

enough “signal” to be able to provide robust estimates of spatial distributions of

HCWs and patient flows in a hospital environment. Moreover, EMR login records

are routinely available to nearly every modern healthcare facility. The estimated

spatial distributions match our expectations quite nicely. As far as we know, this is

the first model of HCW spatial distributions in the literature.

5.1 Future Work

Due to the significant and growing costs of healthcare delivery and its im-

plications for quality of life, it seems likely that the body of work concerned with

modeling and simulation within a healthcare environment will continue to attract a

lot of attention. HCW spatial modeling in particular is a relatively unexplored area,
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in which this work attempts to lay some groundwork. Because of its novelty, there

are a number of ways in which these HCW modeling efforts could be streamlined or

extended.

Training HCW models requires some notion of a metric space in which HCW

activity takes place, in our case a graph theoretic model. Constructing such a spatial

model is non-trivial, and could be improved in various ways. For example, to avoid

the laborious task of manually building a hospital graph at other facilities, we have

been exploring automated extraction of graphs from CAD files through the use of

navigation mesh generation [83]. There is also the possibility of using pedometers,

radar, or other techniques and technologies to automatically generate a graph without

CAD files.

HCW modeling requires large amounts of HCW data either collected directly

or inferred from other data sources. Our research group has been exploring the

use of inexpensive, wireless sensor networks to directly collect fine-grained location

and contact information in near real-time [56, 95, 60]. We have recently deployed

a network of these “motes” in an intensive care unit at UIHC. While this dataset

is confined to a single unit, it contains much more fine-grained data than the EMR

data used in this paper. This dataset can be used to validate our spatial distribution

models, overcome limitations in our EMR data, and to generate spatial distribution

models based on more fine-grained data.

Being relatively new territory, there are numerous directions for further study

of HCW models themselves. For example, we have begun exploring how other proba-
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bility decay functions (e.g., exponential) might be incorporated into our model. There

are also potentially numerous opportunities for refining the multi-center models and

model training. It may be possible to develop better heuristics, and there is also the

opportunity to explore whether or not some HCWs might have more than two natural

centers of activity. Future work should also focus on incorporating clinical data into

HCW and patient modeling and agenda generation. For example, the attractiveness

of patient rooms for HCWs should depend on the presence and diagnosis of patients,

and the transition probabilities and LOS in patient models should depend on patient

diagnosis and staffing levels. Additionally, HCWmovement is not likely to actually be

a random walk. Future work should explore adding higher level strategy or memory

to HCW movement, perhaps through the use of hidden Markov models.

The results of our sample applications themselves also suggest further topics

for study. Intensive care recidivism is widely acknowledged to be a problem, but

little is known about its causes or prevention. Our work suggests that overloaded

ICUs contribute to the problem, and we encourage further exploration along these

lines. Our mumps infection control policy simulations suggest that the recent policy

recommendation of a 5 day quarantine period rather than 9 days might lead to larger

mumps outbreaks. This depends to a large extent on how infectious individuals are 7-

11 days after infection. While it is difficult to pinpoint infectious disease parameters,

more data on shedding levels after the onset of symptoms would potentially shed

more light on this issue. The shedding curve we used to inform our model seems

to indicate small, but still significant infectiousness levels after one week. Because
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mumps is rarely fatal, this is a question of reducing costs and management burden.

While it may well be the case that 5 days is the most cost-effective quarantine period,

there seems to be an opportunity for further simulation or econometric analysis.

Beyond the applications highlighted in this work, there are a wealth of oppor-

tunities for improving hospital operations and patient care based on a realistic hos-

pital simulator. Reviews of hospital simulator literature by Jun et al. and England

point to dozens of applications of a realistic hospital simulator including optimizing

bed assignment, sizing facilities, scheduling surgeries and admissions, assisting with

medical decision making, etc. [70, 40]. Operational issues are becoming increasingly

important particularly in emergency departments across the country, which have seen

a nationwide decline in capacity, while simultaneously having to deal with increasing

numbers of visitors [34, 8, 35]. Our simulator could also be extended to estimate the

effects of increased geriatric patient loads over the next decade, and could be used to

test explicit policies for choosing which patients to discharge when ICUs become full

[19].

In addition to these more general operational problems discussed in the hos-

pital simulation literature, other potential applications rely more specifically on our

fine-grained location data. We present two such examples: (1) Is patient care depen-

dent on the distance from the patient bedroom to the service to which that patient

is assigned? Anecdotal evidence suggests that patients far from their physicians tend

to be seen less frequently and later in the day than other patients, and may expect to

spend more time on average in the hospital. (2) Do adverse events, e.g., patient falls
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or medication errors, cluster spatially or temporally? Our models and simulation are

particularly suited to addressing such questions after linking the appropriate datasets.

It should also be noted that this research has implications outside of health-

care. Indeed, the work was inspired by a framework developed to characterize the

centers and dispersions of search engine queries. In general, this framework seems

useful in any resource location problem where the resources are consumed by a pop-

ulation whose locations are uncertain. For example, using this framework one could

answer questions such as “Where should the Iowa City Police Department increase

its presence to combat the rise in downtown violence?”.
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APPENDIX SELECTED PROOFS AND DERIVATIONS

Proof Sketch of Non-concavity of Multi-center Log-likelihood Function

(1) We consider a simple 5 room facility with 2 HCWs. (2) We choose not-

trivial distances between the rooms. (3) We assume HCWA has one login in room 1

and one login in room 2, while HCWB has one login in room 3. (4) We let room 4

and 5 be centers in a multi-center model of HCWA. (5) We find the log-likelihood

function for such a model. (6) We find the Hessian of the log-likelihood function,

and the eigenvector of the Hessian. (7) We fix three of the four decay parameters,

and run a local search to maximize one of the eigenvalues. (8) We show that one of

the eigenvalues is positive for some choice of decay parameters. This implies that the

Hessian is not negative semi-definite, which in turn implies that the log-likelihood

function is non-concave. While the full output is too long to reproduce in its entirety,

the following Mathematica commands will reproduce our results:

(* Define the log-likelihood function *)(* Define the log-likelihood function *)(* Define the log-likelihood function *)

f [B1 , y1 ,B2 , y2 , d11 , d12 , d13 , d21 , d22 , d23 ]:=f [B1 , y1 ,B2 , y2 , d11 , d12 , d13 , d21 , d22 , d23 ]:=f [B1 , y1 ,B2 , y2 , d11 , d12 , d13 , d21 , d22 , d23 ]:=

Log[B1 ∗ d11∧ − y1 + B2 ∗ d21∧ − y2] + Log[B1 ∗ d12∧ − y1 + B2 ∗ d22∧ − y2]+Log[B1 ∗ d11∧ − y1 + B2 ∗ d21∧ − y2] + Log[B1 ∗ d12∧ − y1 + B2 ∗ d22∧ − y2]+Log[B1 ∗ d11∧ − y1 + B2 ∗ d21∧ − y2] + Log[B1 ∗ d12∧ − y1 + B2 ∗ d22∧ − y2]+

Log[1− B1 ∗ d13∧ − y1− B2 ∗ d23∧ − y2]Log[1− B1 ∗ d13∧ − y1− B2 ∗ d23∧ − y2]Log[1− B1 ∗ d13∧ − y1− B2 ∗ d23∧ − y2]

(* Assign some (arbitrarily chosen) distances from each center to each room *)(* Assign some (arbitrarily chosen) distances from each center to each room *)(* Assign some (arbitrarily chosen) distances from each center to each room *)

ll = f [B1, y1,B2, y2, 2, 5, 6, 3, 4, 5]ll = f [B1, y1,B2, y2, 2, 5, 6, 3, 4, 5]ll = f [B1, y1,B2, y2, 2, 5, 6, 3, 4, 5]

(* Find the Hessian *)(* Find the Hessian *)(* Find the Hessian *)

H = D[ll, {{B1, y1,B2, y2}, 2}]H = D[ll, {{B1, y1,B2, y2}, 2}]H = D[ll, {{B1, y1,B2, y2}, 2}]
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(* Find the eigenvalues of the Hessian *)(* Find the eigenvalues of the Hessian *)(* Find the eigenvalues of the Hessian *)

Eig = Eigenvalues[H]Eig = Eigenvalues[H]Eig = Eigenvalues[H]

(* Try to find a set a decay parameters such that one eigenvalue is positive.(* Try to find a set a decay parameters such that one eigenvalue is positive.(* Try to find a set a decay parameters such that one eigenvalue is positive.

Note that this local maximization step is not gauranteedNote that this local maximization step is not gauranteedNote that this local maximization step is not gauranteed

to find such a set of decay parameters. *)to find such a set of decay parameters. *)to find such a set of decay parameters. *)

NMaximize[{Extract[Eig/.y1→ 0.1, 3],B1 > 0.1,B1 < 0.9}, {B1}]NMaximize[{Extract[Eig/.y1→ 0.1, 3],B1 > 0.1,B1 < 0.9}, {B1}]NMaximize[{Extract[Eig/.y1→ 0.1, 3],B1 > 0.1,B1 < 0.9}, {B1}]

NMaximize[{Extract[Eig/.y1→ 0.1, 4],B1 > 0.1,B1 < 0.9}, {B1}]NMaximize[{Extract[Eig/.y1→ 0.1, 4],B1 > 0.1,B1 < 0.9}, {B1}]NMaximize[{Extract[Eig/.y1→ 0.1, 4],B1 > 0.1,B1 < 0.9}, {B1}]

NMaximize[{Extract[Eig/.y2→ 0.1, 1],B2 > 0.1,B2 < 0.9}, {B2}]NMaximize[{Extract[Eig/.y2→ 0.1, 1],B2 > 0.1,B2 < 0.9}, {B2}]NMaximize[{Extract[Eig/.y2→ 0.1, 1],B2 > 0.1,B2 < 0.9}, {B2}]

NMaximize[{Extract[Eig/.y2→ 0.1, 2],B2 > 0.1,B2 < 0.9}, {B2}]NMaximize[{Extract[Eig/.y2→ 0.1, 2],B2 > 0.1,B2 < 0.9}, {B2}]NMaximize[{Extract[Eig/.y2→ 0.1, 2],B2 > 0.1,B2 < 0.9}, {B2}]

NMaximize[{Extract[Eig, 1],B1 > 0.1,B1 < 0.9, y1 > 0.1, y2 > 0.1,B2 > 0.1,NMaximize[{Extract[Eig, 1],B1 > 0.1,B1 < 0.9, y1 > 0.1, y2 > 0.1,B2 > 0.1,NMaximize[{Extract[Eig, 1],B1 > 0.1,B1 < 0.9, y1 > 0.1, y2 > 0.1,B2 > 0.1,

B2 < 0.9}, {B1, y1,B2, y2}]B2 < 0.9}, {B1, y1,B2, y2}]B2 < 0.9}, {B1, y1,B2, y2}]

(* These two sets of decay parameter settings result in two different(* These two sets of decay parameter settings result in two different(* These two sets of decay parameter settings result in two different

eigenvalues taking a psotive value. *)eigenvalues taking a psotive value. *)eigenvalues taking a psotive value. *)

Eigenvalues[H/.{B1→ 0.9, y1→ 0.1, B2→ 0.9, y2→ 0.1}]Eigenvalues[H/.{B1→ 0.9, y1→ 0.1, B2→ 0.9, y2→ 0.1}]Eigenvalues[H/.{B1→ 0.9, y1→ 0.1, B2→ 0.9, y2→ 0.1}]

Eigenvalues[H/.{B1→ 0.2, y1→ 2.9, B2→ 0.5, y2→ 0.3}]Eigenvalues[H/.{B1→ 0.2, y1→ 2.9, B2→ 0.5, y2→ 0.3}]Eigenvalues[H/.{B1→ 0.2, y1→ 2.9, B2→ 0.5, y2→ 0.3}]
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