Anonymity in design

David Hensel Allison

University of Iowa

Copyright © 1966 David Hensel Allison. Posted with permission of the author.

This dissertation is available at Iowa Research Online: http://ir.uiowa.edu/etd/4935

Recommended Citation
http://ir.uiowa.edu/etd/4935.

Follow this and additional works at: http://ir.uiowa.edu/etd

Part of the Art and Design Commons
ANONYMITY IN DESIGN

By

David Hensel Allison

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Art in the Department of Art in the Graduate College of the University of Iowa

February 1966

Professor John H. Schulze, Chairman
ACKNOWLEDGEMENT

I wish to extend a few words of appreciation to the following people who assisted me towards the completion of this thesis.

Professor Frank Seiberling, although extremely occupied with administrative responsibilities, still found time and great patience.

Professor John H. Schulze encouraged me to pursue graduate study in the area of industrial design and made valuable suggestions for my thesis study.

Professor Wallace J. Tomasini gave constructive aid in my studies and supervision and guidance in the preparation of this thesis.
PREFACE

The term "anonymity" as it is used in this thesis will mean "the absence of idiosyncrasy in design." Thus a product that carries no obvious marks of the personality of its designer is "anonymous" in the sense intended here; it is "anonymous" in this sense whether we know the name of the designer or not. For example the Crystal Palace, highlight of the London Exposition in 1851 [see plates 1 and 2], was designed by Joseph Paxton, but it is a good example of the straightforward functionalism and absence of idiosyncratic ornamentation that are the principle marks of design that is "anonymous" in the sense used here.

The Crystal Palace was one of the seminal works in the architectural movement which later came to be associated with the Bauhaus and the "international style." This unadorned style of architecture has influenced industrial design. Its influence tends to produce functionalism and the absence of idiosyncratic ornament in the design of industrial products.

Another factor that exerts a similar influence on industrial design is the complexity of many industrial products. A study of a computer by B. Shackel is included to show that collaboration is necessary in the design of so complex an instrument. To some extent the same thing is
true of many industrial products. When several designers work on a product it tends to display the idiosyncrasies of none of them. Hence the design of such products is "anonymous" in the sense explained above.

The tendency of contemporary industrial design to be anonymous is illustrated in this thesis by a stylistic analysis of products by Braun of Hamburg. Examination of its products shows that national characteristics are less striking than an international sense of design which is anonymous.
TABLE OF CONTENTS

Preface ... iii
List of Plates ... vi

Chapter I
ANONYMITY IN DESIGN ... 1

Chapter II
THE ANONYMOUS TENDENCY OF BRAUN DESIGNS 16

Chapter III
INDUSTRY AND ANONYMOUS DESIGN 23

Chapter IV
SOCIAL PRESSURES TENDING TO PRODUCE
ANONYMOUS DESIGN ... 29

Footnotes ... 36
Plates ... 41
List Of Works Cited .. 79
LIST OF PLATES

Plate 1 The Crystal Palace, London Exposition, 1851
Plate 2 The Crystal Palace, London Exposition, 1851
Plate 3 The Bauhaus
Plate 4 Student Housing At The Bauhaus
Plate 5 Bauhaus Table Design By Member Josef Albers, 1924
Plate 6 Bauhaus Design For Teapot By Marianne Brandt, 1924
Plate 7 deStijl Design For House (Schroer House, Utrecht, 1924)
Plate 8 deStijl Designs For Furniture and Graphic Design
Plate 9 Bauhaus Rational Design For Metal Chair, Marcel Breuer, 1925
Plate 10 Frank Lloyd Wright's Plans For A Mile High Skyscraper, A Pinnacle To His Individualism
Plate 11 V.C. Morris Gift Shop, San Francisco, California
Plate 12 The Highly Individualistic Architecture of Antonio Gaudi
Plate 13 Edward's Grandious Display Case
Plate 14 Cathedral At Ronchamps, LeCorbusier Architect
Plate 15 Interior Of Ronchamps
Plate 16 Crown Hall, I.I.T., Mies van der Rohe
Plate 17 Tubular Chromed Steel Chair Designed By Mies van der Rohe, 1927
Plate 18 Olivetti Elea 9003 Electronic Computer
Plate 19 Olivetti Computer Bespeaks Of Anonymity
Plate 20 Control Panel For "Elea" Electronic Computer, Design by Ettore Sottsass, Jr.
Plate 21 The Anonymous Vertical Assembly Building

Plate 22 Happy Relationships Predominate The Architecture Of Richard Neutra

Plate 23 Beinecke Rare Book Library, Yale: Skidmore, Owens, and Merrill

Plate 24 Braun Multipress Juicer

Plate 25 Braun RT-20 Table Radio

Plate 26 FS 5 Braun Television Simply Announces Its Purpose and Its Controls

Plate 27 Braun Stereo-Phonosuper SK 61

Plate 28 Braun Hi-fi Speaker Enclosure

Plate 29 Braun LE 1 Speaker Enclosure

Plate 30 Braun Electric Shaver

Plate 31 Braun Toaster HT 1

Plate 32 Braun Automatic Slide Projector

Plate 33 Braun Desk Fan

Plate 34 Desk Fan Marketed By ESGE GmbH & Co., 1964

Plate 35 Toledo Scale

Plate 36 Anonymous Architecture Covers The Assembly Lines at Olivetti

Plate 37 Aesthetics For The Working Man's Environment

Plate 38 Leonardo Ricci's Architectural Design
Chapter I

ANONYMITY IN DESIGN

Anonymity did not appear out of nowhere. The Crystal Palace has been mentioned as a relatively early example, but the most important source of the contemporary anonymous style is probably the Bauhaus [see plates 3 and 4], established in Germany in 1924. The Bauhaus is significant in that it replaced the earlier emphasis on aesthetic considerations with an emphasis on function. Arthur Drexler, Director of Architecture and Design at the Museum of Modern Art, explains the rationale of functionalism this way:

The quantity of objects now necessary to our daily lives makes it desirable that they should be easily stored; a compact mass is to be preferred to an interesting protrusion.1

Drexler connects this functional consideration with geometrical simplicity:

The more diverse functions can be accommodated with surprisingly few shapes. Most objects we use can be housed in cubes or
cylinders. The introduction of angles and compound curves is often gratuitious and sometimes extravagant.

Geometrical simplicity, which in some cases at least has a functional justification, came to be the basis of the Bauhaus aesthetic. The founder of the Bauhaus, Walter Gropius, although he began as a designer of highly ornate fabric patterns, became an advocate of geometrical simplicity. Bauhaus designs were based on this aesthetic from the beginning [see plates 5 and 6]. The de Stijl group in Holland was doing similar work at the same time [see plates 7 and 8]. Although some architects and designers associated with this general movement retain an identifiable personal style, the tendency of the aesthetic of geometrical simplicity is toward anonymity since one man's cube or cylinder is much like another's. The functionalist school of geometrical simplicity at the Bauhaus is still widely influential in northern Europe and in the United States, and is reflected in the products of Braun. By 1928 the functionalists predominated within the Bauhaus, and it is their influence that Drexler has in mind when he says:

All things considered, and not withstanding efforts to escape, the standards of design applied to most useful objects in the 1960's are still dominated by the Bauhaus aesthetics.

The furniture designs of Marcel Breuer, for
example, are more widely appreciated today than they were when he produced them in the mid-twenties. His steel chairs are being manufactured today in Germany, Sweden, and the United States. Materials have been improved, but Breuer's design has been retained intact. Many less expensive metal chairs are also produced in imitation of his work. The question whether mail-order catalogues and American patios would be full of tubular steel chairs which closely resemble each other if Breuer had not designed the first such chair is of course unanswerable. But it suggests a wider dispute which interests designers and their critics: the dispute between the advocates of individualistic and collective approaches to design.

Lester D. Longman wrote:

At the present moment, 1949, the principle of individualistic experimentalism is somewhat under attack. Its productivity seems to be diminishing. Friends of modern art are placing more emphasis on a free search for the significant collective values of our time, on synthesis rather than analysis, on the constructive rather than the destructive aspects of tradition.

In spite of all the concern about the increasing socialistic tendency of our government, it seems likely to persist. Vance Packard says, "much of this progressive socialization of our lives will continue no matter what." Big government carries out big projects, such as the space
program, which involve design problems that are too complex for solution by an individual.

This is also the century of Frank Lloyd Wright, an outspoken advocate of individualism [see plates 10 and 11]. His announced personal creed is:

Credo:
I believe a house is more of a home by being a work of art.
I believe that man is more of a man by being an individual rather than a committee meeting.
For these two reasons, I believe Democracy (though difficult) is the highest known form of society.
I believe Democracy is the new innate aristocracy our humanity needs.
I believe success in any form consists in making these truths a reality according to ability.
I believe all agencies tending to confine and frustrate these truths are now continuous and expedient.7

Harvard seems to believe in the work of the committee meeting instead of the inspired individual. But I know you can never get it through any form of collectivism. As true work of art must be induced as inspiration and cannot be induced through communism of fascism or any ism - only as slow growth by way of democracy.8

The danger is that the aggressively individualistic architect may, in his drive for the personal masterpiece, forget the importance of the client, or substitute personal whimsy for a respect for function. He would, for example, forget the intended purpose of chairs. For Wright, chairs
were there mostly for aesthetic reasons. Wright was in many respects like that whimsical Spanish architect Gaudi in his search for personal expression [see plate 12].

At the Taliesin schools that Frank Lloyd Wright established, he encouraged individualism. Max Bill attacks Wright by saying, "He still sets them to work on the sort of problems which are a direct echo of his decidedly one-sided philosophy of design. This deliberate fostering of individualism has no place in I.I.T." (the Chicago design school established by Mies van der Rohe after he left Germany). Yet Wright may stand out as the greatest of architects. He was enough of an egotist to say that he was, at any rate, immediately upon introduction to a person or a body of persons, and he could get away with it!

However, no matter how great the work of Wright, it for the most part was not intended for the masses. Leonardo Ricci renounces Wright and those like him when he states, "In this world there is no room for you geniuses."

Edward D. Stone is one of the major architects in America today. He is usually associated with the contracts for the building of United States embassies overseas. Critic Robert Malone is not as severe as Ricci in his condemnations, but he too realizes the limitations of the individual genius. Malone properly points out Stone's mistake in letting the
decorative override the functional [see plate 13].

In spite of the greatness and all the contributions of LeCorbusier (Charles Edouard Jeanneret) to modern architecture and to the International Architecture Movement, he too has been criticized for over-emphasizing individualism. For example, in his design for Notre Dame du Haut at Ronchamp, the walls are false according to the functionalist aesthetic in that they do not actually do the supporting. The roof is supported on points on top of the walls, and the walls are structurally unnecessary. This land-locked ship is ambiguous in meaning because plasticity has predominated over structural clarity [see plates 14 and 15]. Leonardo Ricci has this to say about Ronchamps:

Here is an attempt at a synthesis of all the arts, including the word, which becomes form...a masterpiece...a synthesis of values which are his own, not those of everybody... in spite of its beauty, [it] is not true: it is false in that it is arbitrary and gratuitous at least from the viewpoint we are investigating today.

On the other hand, Mies van der Rohe can be praised for his search for a mass-produced architecture for society. It straight-forwardly announces its structural aspects [see plate 16]. Its beauty evolves from its structure and not from the idiosyncrasy of whimsy of the architect. Van der Rohe's precision of finish and appreciation for the materials themselves as a means of ornamentation show the in-
fluence of the Bauhaus [see plate 17]. Robert Malone describes man's relation to Miesian design that of an appreciative observer.16

This approach seems to make sculpture of architecture. Perhaps, however, it represents a just criticism of van der Rohe. The solid ebony walls in the Tuggenant house in Czechoslovakia (1930's) although unadorned, are rather expensive. Van der Rohe has also been criticized for artificially emphasizing the structural elements of his buildings: a fault which is potentially as dangerous to clean design as is unstructural over-ornamentation, and which might be seen as a sentimentalizing of the functional principle of design.

In 1960 the famous industrial designer Charles Eames predicted less self-expression for the designer. He stated that the personality of the designer too often stands as a barrier between the intended message and the viewer.

Our real objection arises when such an intrusion fogs subjects of interest and importance. The damage to the message can be accomplished equally well through a self-conscious concern for artistic respectibility, or a desperate drive for originality. In either case, the effort and the personality is apt to show.17

Charles Eames continues with a discussion of Leonardo da Vinci. He tells of da Vinci's complete involvement in any subject he confronted. Importantly, Eames
states that in such a climate of involvement and concern, any drive towards self-conscious originality would quickly disappear. Eames advocates a return to a more anonymous solution to design problems in general, rather than the emphasis on self-expression.

Prominent British author and lecturer Cyril Northcote Parkinson explains:

Genius is extremely rare. If all our designers had genius there would be something to be said for avoiding all professional discipline. But our designers are mostly quite ordinary people, lost if they are given too much freedom - as lost as the painter of this generation; they would be far happier in adapting an agreed style to a particular problem.18

Leonardo Ricci points out that it is "impossible for one individual man to interpret all of history, imposing his personal opinion on the evolutionary life-process."19

British Industrialist Leslie Julius says that depending on just one man is dangerous.20 Throughout the history of art we have had artists following the lead of other artists. In the eighteenth and nineteenth centuries inventions were usually produced by individuals working independently, such as Watt, Bell, McCormick, and Edison. It was not until the uniting of efforts made necessary by the World Wars that corporate teams were developed to keep pace with our technology.
Designing by teams is almost the rule now, rather than the exception. The reason that artists follow other artists, and that designing is being conducted by teams, is that human beings really are not ultimately creative in the true sense of the word. The greater portion of creative endeavors are really nothing more than refinements or combinations in variant degrees of previous results of creative activity.

The decreasing role of individuality was no mere chance occurrence. It was instead a natural development, a product of a scientific and technical age. Cyril Parkinson explains why collective designing evolved and why we should except it.

Genius will emerge most readily from a group of able people, all doing roughly the same thing. John Bach was such a genius, his background a whole generation of musicians whose technique was basically the same. He did not tower above the rest by doing something different but by doing the same thing with an intensified ability and vision. Genius, by definition, is the coincidence of outstanding ability with vision....Life is too short. An architect should not have to invent a new architectural style for every building he designs. There isn't the time and there isn't the money and it isn't what the client wants. He is far more efficient and happy when working within the framework of an accepted style. The same is true of any designer. When asked to design a chair, he shouldn't sit and gaze at the sky saying, "What is a chair? What are the elements of the problem? What is the true philosophy
of chair-making? It all takes too long and costs too much and the result is horrible anyway. Better to agree together on what a chair is. At the end of it, one designer will still be obviously better than another.21

The vision that Parkinson is talking about is a rational vision. Rational vision is foresight backed up with concentrated study, analysis, and penetrating thoughts into the unexplored. A person who is rational is generally considered a positive individual. The mature Bauhaus in its emphasis on geometry was rationalistic in conception. Its emphasis on structural factors entailed an emphasis on the engineering and mathematical aspects of design.

Engineers are usually considered to be rationalists, and engineering is often criticized because of its methodical nature and its neglect of the emotional, which is thought to be the province of the artist. But engineers are respected for their consistency and unambiguousness. They are in general agreement as to the standards employed by practitioneers within the profession. The industrial designer, on the other hand, historically has been an individualist, and only recently has he had his activities co-ordinated with others in establishing a finished product. Unfortunately, the industrial designer generally does not enjoy the same recognition as the engineer partly because of a lack of comparable standards on which to base his work.
Joseph McGarry elaborated at Aspen in 1960:

Designers are quite clear in their minds as to what industrial design is not. It is not 'week-end' or 'in and out' styling. But there is no such unanimity on what it is. 22

Good design, such as that which evolved from the Bauhaus, was good for the same reason that most engineering is good. Bauhaus design possessed standardization and professional discipline. Cyril Parkinson suggests that the problem of the designer can be handled with the establishment of a professional discipline.

The choice lies before you – the likelihood of being listened to as against the artist's freedom to express himself. It is for this Conference to move in one direction or the other. My advice, for what it is worth, is to move rapidly towards the establishment of a professional discipline. 23

After the establishment of such standards, the industrial designer will find the road to respectability not nearly so full of the pitfalls as it used to be.

Fortunately for the industrial designer of today, a professional approach to design is being established. This newly established discipline of rational designing is a combination of engineering, psychology, and design (art). Human engineering, as it is being called, is also referred to under the following titles and classifications: applied-experimental psychology, psych-technology, bio-mechanics,
ergonomics, the systems concept, biological capability, and sequential decision analysis. Basically, all these systems are concerned with the man and the machine. The purpose generally is to maximize the output of the man-machine system.

Everyday our lives become more integrated with the machine that is operated by push buttons. For example, the household telephone will soon sacrifice the dial system for the push button system. Push buttons are employed by man from the buying of a soft drink to the orbiting of man into space. The prominence of push button communication has focussed attention on the computer [see plates 18, 19 and 20].

The designing of computers is no simple task, and is far too complex a problem for one individual to handle. Therefore, collective design is necessary, and there is little room for personal whims.

What has significantly happened with the rise of the computer is that the man-tool relationship is fast being superseded by the man-machine system. Man is no longer asked to provide the initial force, guidance, and control that he was once asked to perform. Soon man will be setting foot onto the moon; however, psychologically, he will not be able to function there as he can on earth;
for the wearing of pressure suits and the necessity of breathing pure oxygen hinder man's mobility and man's ability to perform a given task. Therefore, the man must rely on the machine to make his tasks possible.

The designer must decide how much a man can be expected to do under these conditions and how much must be done by the machine.25 Hugh M. Bowen points out the fact that man's biological prominence is the result of his highly developed nervous system which is fed information by man's sensory-motor skills.26 Thus man resembles a computer, but man has additional capacities that the computer does not; he can make judgments and can react to emergencies.27 The designer's task is to allow the use of these capacities so far as conditions on the moon permit, and to provide equipment that will do what the man can not.

The computer is a part of the complex design programs that lie ahead. Such considerations as man-machine interaction, the workspace, and the computer operator's environment require extensive study, exploration, and research. The result of a study by B. Shackel, "Ergonomics in the Design of a Large Digital Computer Console,"28 are significant for this thesis. They are as follows:

Conclusions -
A. The project team made unique contributions which would not have resulted through the individual effort of the design
B. Early human factor efforts saved one month of drawing board design time by making some of the tedious, time-consuming decisions from rough sketches, simple mock-ups, and prototype observations.

C. Team efforts (design and human engineers) are required.

D. Basic research should be encouraged in order to prove some of the intuitive decisions made.

The anonymous character of design then is no chance occurrence. Arthur Drexler explains the reason for the anonymous appearance of twentieth-century design. He argues that there is no reason why a telephone should be an object of sculptured beauty. Drexler continues:

Most design today is still maively conditioned by the desire to make something distinguished, to make interesting what is intrinsically uninteresting. The designer of an appliance may, after all, really be required to provide only an acceptable box, as were the designers of the Vertical Assembly Building. What is inside the box is what is really interesting.

What is inside this building is the Apollo spacecraft that will carry our team to the moon [see plate 21].

Among architects today, Richard Neutra continues the trend of anonymity of the Bauhaus school. The idea of simplicity is retained still in the use of simple geometric shapes and planes. Also, privacy no longer holds the attraction that it once did. Neutra states his philosophy of
designing: "Homes, so much smaller than the ancient palaces and mansions of historical architectural textbooks, depend especially on the auxiliary of other ground, outer spaces, and happy relationships [see plate 22]."\(^{31}\)

The recently completed Beinecke Rare Book Library at Yale University is an example of anonymous design. Critic Vincent Sculley says about this structure [see plate 23]:

All these buildings [campus structures] are effectively swept out of existence by the Beinecke Rare Book Library, not through its strength but because of its plainness. Even more than Saarinen's rink, the Beinecke seems to reflect no sense of relationship to men, because its conception is so abstract. The wall is only a screen, structurally separate from the tower of stacks that rises within. (Most of the people involved are below ground around a sunken court). . . . It all ends by creating an atmosphere of no place, nowhere, nobody, matched only by some of De Chirico's images of human estrangement and by a few similarly motivated Italian buildings of the Thirties and the early Forties.\(^{32}\)

Whether or not Scully is justified in such harsh criticisms (evidently he has forgotten the functional aspects of architecture, in this case, to house and protect rare books from the damaging light), this building is anonymous like the architecture of such Italian architects as Luigi Figini and Giuseppe Terragni.
Chapter II

THE ANONYMOUS TENDENCY OF BRAUN DESIGN

An example of the contemporary productions of designs that are anonymous in the sense discussed in the preceding chapter is provided by the Braun company. The objectivity in Braun design is clearly evident to the observer. While the sense of drawing board design seems to accompany every Braun design, subtle aesthetic considerations also come into play. In spite of its regard for the orderly, Braun manages to design its products with finesse.

The Braun multipress juicer is very highly ordered. [see plate 24]. The simplification is such that it is almost empty. Simplicity is necessary for sanitary reasons in designs that are concerned with food making. Simplicity also ranks over ornamentation in the aesthetics of anonymous design. Compositionally, if looked at in two-dimensional terms, the juicer is made up of parallels and is balanced symmetrically.33
The Braun pocket radio is possessed of the virtue of a solid geometric form. The grill work, like that of the Braun RT-20 table radio, is arrived at by means of subtraction rather than addition (the grill has been pierced rather than added as an additional part) [see plate 25]. Note also how the two face elements visually form a frame within the face of the radio itself.

The Braun designers have paired the FS5 television down to geometric simplicity [see plate 26]. The controls are arranged for the convenience of the user. Graphically, they are well ordered, and one would not have to search for the controls in hidden compartments as is the case with many American television sets.

The Stereo-Phonosuper SK61 has a unique plexiglass lid that protects the tone arm from damage and the record from dust. The lid also traps the sound that the needle makes when it touches the record [see plate 27]. The louvered grill work where the sound escapes is in perfect alignment with the components on the top of the enclosure as well. The cabinet is constructed of metal with a white plastic covering and side sections of elm. This shows the versatile use of materials in this anonymous design.

The artfully balanced circles, which suggest the shape of the speakers within the speaker unit of the Hi-fi
Lautsprechereinheit L 60 [see plate 28], are another example of the preference for the starkly geometrical. The nickle-plated legs, which can be unscrewed and removed, act as runners, facilitating moving the unit and distributing its weight more evenly than do conventional legs. Note the influence of the Bauhaus' use of bent tubing with its highly polished surface.

The leg structure of the speaker enclosure of the Hi-fi Lautsprechereinheit LE 1 is much more consistent with the "Braun style" [see plate 29]. For an idea of the actual size of the unit, turn back to plate 12. The anonymous simplicity and economy of this unit is an asset to any living room.

The curves that comfortably form the contours of the Braun electric shaver are well controlled [see plate 30]. Evidently so effective is this design that an American competitor has copied it (or has secured the rights for its manufacture). Braun advertises the functional property of the finely operating electric shaver. The Braun trademark, although simple, does not fit in with the general economy of this design. The oversized "A", though perhaps it may linger in the consumer's memory, is somewhat cute.

Gyorgy Kepes' statement, "Mathematical calculation, human sensibility, work co-ordination, and quest of per-
fection found their common bond in geometry," explains the logic behind the design for the Toaster HT 1 [see plate 31]. Extremely well made, this toaster is effortless in its perfection. Functionally, it is styled in a space saving, slim, easy to clean form.

The Braun D40 Automatic Projector [see plate 32] is made with the precision of that other famous German firm, Leitz. In fact, the Braun firm makes the slide trays for the Leitz projectors.

The Braun desk fan (1961) is making a reputation because it emits a stream of cooling air without blowing the papers on the desk [see plate 33]. Graphically the design is perfect. The fan is balanced on a central support which graphically slopes up from the outer edges of the feet. Note how the cord balances the clear plastic vent which carries the firm's name. The base does not extend past the outer edges of the body of the fan. Finally, note the beauty and simplicity of reading and operating the switch that controls the fan. There is not a wasted element in the whole of Braun design.

Braun's designs satisfy Longman's definition of form meaning, whereby the meaning is intrinsically bound up with the form. Braun products are simple and regular, restful and quiet. Employing geometric elements, Braun, at the
same time, is giving their products ruggedness as well as straightforwardness. Finally, geometric shapes are more exciting than non-geometric shapes because non-geometric shapes tend to become "amorphous and hence inert and lifeless," as Longman says.

Dr. Traugott Malzan of Braun explained Braun's position and his own at Aspen International Design Conference in 1960.

The designer is just one and not even the most important part of industry, and therefore has to comply with the rules that rule the industry. The designer has to understand corporations and in that way understand what he has to face. I've heard the word "creating" too much with too much of aesthetic quality. The designer has the responsibility to improve the product in its function, make it less expensive, more efficient, better looking. I don't believe that freed creativity will lead us anywhere; it will lead us into chaos.

Design is never an end in itself. Design is a means to what end? I have a faint suspicion that we are talking about the "look" of something when design should be concerned with the human relations within the company and outside. The facade - the planting of coreopsis in the front yard - does not change the product.

It is extremely difficult to get a company of great volume to see that they should apply high standards; that they are responsibility to consumers, their own staff, and their own stock holders. Small leaders force big companies to change programs internally as well as externally.
Last year, another solution to the design of a desk fan was marketed [see plate 34]. This fan obviously came out in hopes of competing with the Braun fan. The designer of this fan, in keeping with the rationale of the German format, kept within the confines of the geometric.

The final anonymous product that we shall look at is the Toledo scale [see plate 35]. Less subtle than the Germans, Toledo, as have most American producers, has mistakenly let the name of their firm dominate the design. The reading of the weight takes seconds in this design. Nevertheless, the Americans are on the right tract in an attempt to simplify. What is needed is Frank Lloyd Wright's concept of simplicity: "Plainness, although simple, is not what I mean by simplicity. Simplicity is a clean, direct expression of that essential quality of the thing which is the nature of the thing itself."40

Richard Moss, writing about "Braun style," uses the word economy to mean something similar to what Wright meant by "simplicity." The basic concept involved is the idea that harmonious design should be created "by the fewest and simplest means."41 In other words, the design should contain no elements which could be removed or changed without damaging the design. Clearly, economy is something the designers of the Braun pocket radio and their speaker enclosures,
for example, were striving for. The desk fan and the speaker enclosure with the one large and three small circles are particularly striking examples of the Braun admiration for balance or visual equilibrium. These qualities, economy and balance, are qualities which were emphasized by the Bauhaus. The Braun products discussed above provide an example of the continued influence of the anonymous kind of design associated with the Bauhaus.

The problem facing this school of design is to avoid producing designs, such as the imitation of the Braun desk fan, which share the superficial qualities of the anonymous style without achieving the economy and balance of good anonymous designs as in the Braun desk fan. Inspection of the ESGE imitation reveals that it has a supporting stem, which is much too wide and short, on top of a base plate which is not long enough [see plate 34]. Visually it fails to support the fan. Even though the fan itself is white, which tends to give it the visual appearance of light weight, it still is much too offensive, since its probing lengthy mass nevertheless conveys a feeling of weight. For these reasons it lacks the balance or visual equilibrium of the Braun fan. In other words, it fails aesthetically where the Braun product succeeds.
Chapter III

INDUSTRY AND ANONYMOUS DESIGN

The problems involved in producing artistically successful designs that are "anonymous" in the sense used in this essay are connected with another meaning of "anonymous." In our time, design often is the work of a team, and designers sometimes feel that the individual talent has been supplanted by a committee and that the resulting product looks as though nobody had designed it—not exactly the sort of "anonymity" the anonymous school wants in their designs.

The well-known American industrial designer, Raymond Loewy, attacks the loss of independence in the collective tide in designing.

A cell of designers inside a huge organization must fight constantly against being reabsorbed into the engineering and marketing or other divisions of that organization. I know that I am talking to some of you tonight who do not feel at all "digested" by the corporations of which
you are a part. None of the corporate enzymes or executive gastric juices are reducing you to organic pulp, I am sure. At present you are making brilliant careers of directing design groups. But, I must argue, yours must be a major battle from day to day to keep the "cotton-picking" corporate hands off your creative enclave....Design does not fit conveniently into corporate structure. We must make an exception of the way GE has worked its design division into its charts. It seems to "wag" the company, in fact, corporate strategists have a heck of a time, generally speaking, fitting design into one of the empty boxes they draw around divisions. You know these charts. Everything balances. There is a long, black bar: that is the executive group. Everything dangling underneath balances perfectly. The chart looks stable; therefore, the company must be stable. Companies like stability.42

Raymond Loewy also stresses that the industrial designer's worth is determined by his creative ability.43

Gyorgy Kepes, on the other hand, accepts the collective tide and offers some constructive suggestions on how to cope with the anxieties of the individualists.

Collaboration in teams without losing one's identity seems to be a most urgent task lying before the new generation, not only in the field of architecture and design, but in all our endeavors. To create an integrated society a successful democracy hinges on the ability to co-operate.44

Perhaps the dispute between the individualists and the collectivists in design can be resolved by reconciling or arbitrating between two extreme viewpoints on how design
should be approached. The first approach is the artist-designer analysis which looks at the problem subjectively by means of unformalized observation. The second, or the engineering approach, can go to the other extreme by looking at design with total objectivity and by neglecting everything that can not be measured quantitatively.

We know that personal insight is necessary to both the artist and the scientist. Therefore, individualism is necessary to the corporation if the corporation is to progress. The subjective aspects of design should begin the process that results in the evolution of a design. Later, the first step can be analyzed and tested objectively. All that is asked is that the individual be free to execute the subjective.

Those who say that nothing gets created by committees are satisfied when they realize that they are allowed to work out the designs individually with the engineers before the committees become involved. Only after a solution has been reached at this level, where the individual designers design, is the result evaluated and co-ordinated with the total company design.

Some designers have been fortunate in being able to experience logical collaboration and rational design policy within industry, and the results have been excellent.
Progress is being made more rapidly today. For example, industry is attempting to keep from repeating itself. Companies are storing all design information on computers; consequently, little creative effort is wasted in redundancy, and a much firmer foundation is being provided for the designer to work from.

Gyorgy Kepes points out that the evolution of a product calls for balanced team work between the designer, scientist, engineer, analyst, and salesman. There exists the possibility for the designer to emerge as the head of this team because a team headed by a designer certainly will create a much better-designed product. Ollie Eksell commented:

If the present day designer knew all that he should about industrial design, he could be the authoritative member of the team and the stimulant in the combined efforts required to ensure a richer and sounder development.

The better working relationship needed between the corporation and the designer is being brought about in an atmosphere of flexibility.

The confidence of the industrialist gradually is being won over. He is learning that although the public may not really know what it wants; nevertheless, when it gets an article of design that conveys honesty and integrity, it knows it has received what it wanted.
In many cases it is up to the designer to make a change even though it would not appear to others that it was needed. The management of Collins Radio has given the go ahead to the design staff to initiate changes and develop new designs where necessary. They are constantly improving their designs without the consent of their customers. For the most part, the customers' reaction is positive. Usually they are glad to see an improvement made on a product that they could not have conceived as needing and improvement before. Once in a while, however, a customer will resist, and sometimes government regulations make it difficult to make design changes. Nevertheless, when the customer is told that design changes and improvements have been made without any additional cost to him, he usually is won over. He may become one of Collins' best promoters.

This is precisely the reason for the success behind Braun. The Braun Corporation has achieved great success by emphasizing modern design. When Max Braun, founder of the company, refused to conform to the stereotyped preferences of public taste for the traditional, he proceeded to lay a foundation for industrial design that combined utility with timeless beauty.

The anonymous direction of design points toward a shift from a nationally oriented feeling of design to an
international design. At one time, designers worked out of traditions and native influence in producing a design. At Aspen Eksell stressed the evolution away from regionalism in design.

Mechanical things are becoming more and more international and I cannot quote any examples of mechanical design which is essentially national. The actual looks of Sweden's currently most interesting export artical, pneumatic drills, are dominated by the functional aspect. This does not mean to say that the design of mechanical products is on a low level in Sweden. Instead, it is well suited to a large international market. Our products are beginning to look like world citizens long before our citizens are ready for it

But simple lines - which may become a little stereotyped in everyday life - are a wonderful asset to industrial design as such. In fact, I feel that I can draw a line between national design and international design. Non-mechanical things are becoming more and more international in character. The mechanical demands are great and the designer is forced into a political economic and aesthetic play which is beginning to result in international taste.53

Along with the acceleration of the technical and economic development of mankind, distances between nations have become reduced. A cross-fertilization of ideas, methods and designs has resulted in international design.
Chapter IV
SOCIAL PRESSURES TENDING TO PRODUCE ANONYMOUS DESIGN

Another pressure tending to produce an international and anonymous style is the growing socialization of life in the economically developed nations. Industrialism has meant that our environment, as Kepes says, "more than ever is man made." This fact places on the designers of the man made objects, which make up a great part of our environment, considerable responsibility for making the environment inhabitable for civilized men.

The designers at the Bauhaus thought of themselves as working for the benefit of society as a whole. Today, in 1965, the same sort of social responsibility is being taken up by the designer and to some extent by the industrialist. The Italian firm Olivetti provides clean, modern, efficient factories and facilities for employees and their families [see plates 36 and 37]. Braun meanwhile has done no more than any other business today is doing, and that is
providing the usual gymnasium. Thus far they have not gone into beautifying their factories or providing low cost functional housing for their employees.

Wilhelm Wagefield indicates that the designer's prime goal today should be the creating of an ordered existence for humanity. Leonardo Ricci stresses this also when he states: "The figure of the genius-architect, the dictator, inventor, creator of ideas, must die and yield the field to a new type of architect; the service-architect." No longer is the architect "urbanish-creator," but instead he is "citizen-urbanist" involved in the political and social life of the community. A transformation has taken place whereby the architect no longer is the master creator but now is technician-sociologist.

Recently, town and community planning has been brought into a new light. In Italy, for example, they have already engaged in regulatory planning for the entire community.

We are now in the process of a development in this age that we hope will provide the necessities and happiness possible in the life of the human being. It is hoped that the human being will come to grips with his environment after he has acquired the expected leisure time. Leonardo Ricci's visions for a world society show a great
likelihood of being accomplished in the not too distant future. His Anonymous Earth-City, as he calls it, is right now in the process of development in the communities around the globe [see plate 38].

Earth-City, accordingly is coming. But how it is to come - that depends in part on us. Even...if only by exposing errors, and the impossibility of going on along these lines. We must be as coherent as possible....The city of the future, the city of the Anonymous Earth-City, will belong only to that man who has teetered on the brink of suicide for want of values, and, finally, one morning, he has aroused himself from this state and is ready for anything, and that's that. An architect is called upon to design a certain thing...large or small, this thing exists on the earth's crust. On this piece of earth's crust, some men are living. All that matters is to provide these men with as little suffering and as much joy as possible with the means at the designers disposal. Hence we have to examine carefully the components engendering these things. The more responsible, the more expert we are about these components, the more happiness and the less suffering our building will engender....All these will grow together to create one single tissue, and will form Earth-City. Earth-City will come quickly, without wars, theories, counter-theories; thanks to everybody it would come to light anonymously.59

Gyorgy Kepes also acknowledges a progressive and continuous development in this direction.

It is by stages that men gain footholds on nature. From their range of available experience they build a structure of belief in which everything they know has its place. Each stage has its climax in a collective vision of unity and coherence, a common per-
ceptual "reality" shaped and limited by the cultural vistas of a society...today a development out of this tradition is connected physically and psychologically.

Here in the United States conscientious citizens and leaders are taking constructive action toward the planning of their cities and toward coping with the usual problems of housing, transportation, construction, deterioration, and suburban sprawl. At present 180 new towns totaling at least 1000 acres are under construction.

President Johnson asked for "A Great Society" to emerge from the efforts of the government and its citizens. What President Johnson is asking for in reality is a just society whereby everybody will be economically justified. It is more important, Dr. Robert E. Fitch says, that creativity not be neglected, and he thinks it might be neglected in a stable economy of "contented cattle." He says that a dynamic economy is needed.

A dynamic economy is one in which new factories are being built, new things are being tried. Something called an electric refrigerator first appears. You can't call it a necessity. People have ice boxes. Why do they need an electric refrigerator? It's a luxury item at the start. Somebody invents an automobile. Well, that's for cranks and crackpots and for people who like to try new things. It's a luxury item from the start....This is part of a dynamic economy, where there are new ideas. It's an economy in which what are initially capricious wants will in time become
universal needs. The refrigerator, the stove, the automobile, the airplane—all of these become essential needs in a new society.

Government and private enterprise cannot be asked to do everything in the development of the future society. Neither can the traditional institutions such as the church and school be asked to do it all. Part of the job will have to depend on the creativity of architects and designers.

Hugh M. Bowen maintains that the designer is growing away both from his role as a mere decorator and from pure engineering functionalism with its accompanying attitudes of "as long as it works it is sufficient." Bowen's description of the contemporary designer seems to fit the men who designed the Braun products described in chapter two. It also seems to fit the rationale of the new Hochschule für Gestaltung in Ulm. This school is of the Bauhaus variety and emphasizes the combination of individual experiment with team work in design projects, inculcates a sense of social responsibility, and advocates international community of culture.

The existence of this institution is not properly to be regard as a revival of the anonymous style, which has persisted and developed since the closing of the Bauhaus, but as a reinforcement of the chief tendency in contemporary design. As Kepes says:
It is by stages that men gain footholds on nature. From their range of available experience they build a structure of belief in which everything they know has its place. Each stage has its climax in a collective vision of unity and coherence, a common perceptual "reality" shaped and limited by the cultural vistas of a society.68

Art is a reflection of man's state of mind. Looked upon historically, all art of a certain period is a reflection of the thought and ideas of that period. A style is established when the age has grasped its ideas and unified its principles. LeCorbusier stated that "Man is right now determing a course of style for his age."69 The anonymous style can be said to represent the sort of synthesis of cultural influences that Kepes has in mind, and therefore to be the representative style of the western world in the twentieth century. Drexler pointed out that the Bauhaus style was intended "to transcend mere style."70 Wright says:

Where principle is put to work, not as a recipe or a formula, there will always be style and no need to bury it as a style.71

A seminal factor for the twentieth century style according to Walter Dorwin Teague is that there has been a change in attitude; we are interested not so much in "objects of luxury, but technical aids developed to relieve strenuous household labor and onerous necessities of per-
sonal toilet." With the growing leisure that is predicted for man in a flourishing society, a greater amount of time will be left for creative endeavors. Where society functions best, individualism and anonymity also flourish best. A synthesizing of ideas and things has evolved.
FOOTNOTES

2 Drexler, p. 13.

4 Drexler, p. 14.

8 Wright, p. 186.

13 Ricci, pp. 94-95.

14 Ricci, p. 95.

15 Malone, p. 56.

16 Malone, p. 56.

18 Cyril Northcote Parkinson, The Corporation and the Designer, Conference Papers of the Tenth International Design Conference in Aspen, Colorado, June 19-25, 1960, (Denver, Empire Printing Co., 1960). In this publication the various papers are untitled, though identified by author, and the pages are unnumbered.

19 Ricci, p. 173.

20 Leslie Julius, The Corporation and the Designer.

21 Parkinson, Corp. and Designer.

22 Joseph McGarry, Corp. and Designer.

23 Parkinson, Corp. and Designer.

29 Drexler, p. 15.

30 Drexler, p. 15.

34 Moss, p. 43.
35 Kepes, p. 332.
36 Longman, p. 11.
38 In Miller, p. 82.
39 In Miller, p. 83.
40 Wright, p. 187.
41 Moss, p. 43.
43 Loewy, p. 67.
44 Kepes, p. 97.
48 Eksell, Ollie, The Corporation and the Designer.
49 Kepes, p. 97.
50 Ollie Eksell, Corp. and Designer.
52 Moss, "Anatomy," p. 50.
53 Eksell, The Corporation and the Designer.
54 Kepes, p. 84.
55 Bill, p. 165.
58 Ricci, p. 243.
59 Ricci, p. 219.
60 Kepes, p. 284.
63 Fitch, p. 52.
64 Fitch, p. 52.
65 Packard, pp. 278-279.
67 Bill, p. 167.
68 Kepes, p. 284.
70 Drexler, p. 13.

73 Corp. & Designer, Ollie Eksell paraphrased.
Plate 1 - The Crystal Palace, London Exposition 1851
Plate 2 - The Crystal Palace, London Exposition 1851
Plate 3 - The Bauhaus
Plate 4 - Student housing at the Bauhaus
Plate 5 - Bauhaus table design by faculty member Josef Albers 1924
Josef Albers: Bauhaus-Tisch, aus Brettern konstruiert. 1924
Plate 6 - The Bauhaus design for teapot by Marianne Brandt, 1924
Plate 7 - deStijl design for house (Schroer House, Utrecht, 1924)
Plate 8 - *deStijl* designs for furniture and graphic design
Plate 9 - Bauhaus rational design for metal chair, Marcel Breuer, 1925
Plate 10 - Frank Lloyd's plans for a mile high skyscraper. A pinnacle to his individualism.
Plate 11 - V.C. Morris gift shop, San Francisco, Cal.
Plate 12 - The highly individualistic architecture of Antonio Gaudi
Plate 13 - Edward's grandious display case.
Huntington Hartford museum
Plate 14 - Cathedral at Ronchamps, LeCorbusier architect
Plate 15 - Interior of Ronchamps
Plate 16 - Crown Hall, I.I.T., Mies van der Rohe
Plate 17 - Tubular chromed steel chair designed by Mies van der Rohe, 1927
Ludwig Mies van der Rohe, 1927
Plate 18 - Olivetti Elea 9003 electronic computer
Plate 19 - Olivetti computer bespeaks of anonymity
Plate 20 - Control panel for "Elea" electronic computer, design by Ettore Sottsass Jr.
Plate 21 - The anonymous Vertical Assembly Building
Vertical Assembly Building, NASA, Cape Kennedy.
Plate 22 - Happy relationships predominate the architecture of Richard Neutra
Plate 23 - Beinecke Rare Book Library, Yale; Skidmore, Owens, and Merrill
Plate 24 - Braun multipress juicer
Plate 25 - Braun RC-20 Table radio
Plate 26 - FS 5 Braun television simply announces its purpose and its controls
Plate 27 - Braun stereo-phonograph SK 61
Plate 28 - Braun Hi-fi speaker enclosure
Plate 29 - Braun LE 1 speaker enclosure
Plate 30 - Braun electric shaver
Plate 31 - Braun toaster HT 1
Plate 32 - Braun D40 Automatic Slide Projector
Plate 33 - Braun desk fan
Plate 34 - Desk fan marketed by ESGE GmbH & Co., 1964
Plate 35 - Toledo scale
Plate 36 - Anonymous architecture covers the assembly lines at Olivetti
Plate 37 - Aesthetics for the working man's environment
Plate 38 - Leonardo Ricci's architectural design
LIST OF WORKS CITED

