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Discussion 

To identify entry cofactors for EBOV, we utilized a bioinformatics screen to 

correlate mRNA expression in a characterized cell line panel with permissivity of 

that panel to EBOV GP-mediated entry [276].  AMPK is strongly correlated with 

EBOV pseudovirion transduction (Fig. 34).  Incubation of cells with Compound C,  

an AMPK inhibitor, greatly reduced EBOV pseudovirion entry in a time and dose-

dependent manner (Fig. 35, 36).  This inhibition was specific to EBOV, as 

Compound C had no effect on LFV pseudovirion entry or VSV infection (Fig. 37, 

40).  Additionally, EBOV GP-mediated infection of MDMs, a relevant in vivo 

target of EBOV infection was also significantly reduced in the presence of AMPK 

inhibitor (Fig. 38).  The dependence on AMPK for entry was not due to a 

nonspecific effect of Compound C as MEFs lacking the α catalytic subunit were 

significantly less permissive to EBOV GP-mediated infection (Fig. 40).  Actin 

polymerization and lamellipodia extension are hallmarks of virus entry by 

macropinocytosis [145].  EBOV stimulated actin polymerization in the absence of 

AMPK, but could not stimulate lamellipodia formation, consistent with a role of 

AMPK in membrane ruffling (Fig. 41) [216].  Furthermore, in the absence of 

AMPK, reduced amounts of EBOV were able to internalize from the cell surface 

(Fig. 43), although viral particle internalization was not inhibited to as great an 

extent as virus infectivity/transduction.  This discrepancy can be explained either 

by a subsequent step of EBOV entry also requiring AMPK, which would not be 

determined by microscopy, or because FIV pseudovirions may be able to enter 

cells independently of macropinocytosis, and therefore AMPK [137,266]. 
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Both macropinocytosis and EBOV entry require several kinases including 

PI3K, PKC, and PAK1 [141,143,145,154].  Our data is consistent with previous 

reports demonstrating that macropinocytosis is a major endocytic mechanism in 

EBOV entry and with a role of AMPK in membrane ruffling during 

macropinocytosis [137,141,143,155,216,266].  Additionally, the Rho GTPase 

family member Rac1 is important in EBOV entry and is a downstream effector of 

AMPK signaling in lamellipodia formation [216,277,278,279].  However, AMPK 

plays a role in the activity of several known components of lamellipodia formation 

including vasodilator-stimulated phosphoprotein, which was strongly correlated 

with EBOV GP-mediated entry in our screen [280,281,282].  Therefore, it will be 

of interest to monitor the phosphorylation and recruitment of these proteins to the 

site of lamellipodia formation during EBOV entry. 
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CHAPTER V: DISCUSSION 

This work has elucidated several interesting aspects of EBOV entry 

previously unappreciated in the field.  I set out to identify novel EBOV entry 

cofactors by using a bioinformatics screen.  My work has confirmed the 

importance of some cellular proteins, identified other novel proteins, and hinted 

at many more that are potentially important in EBOV entry.  

The NCI-60 screen 

Attachment factors 

When our screen was performed in the summer and fall of 2007, very little 

was known about EBOV entry into cells at the molecular level.  It was 

appreciated that EBOV GP1 was responsible for cellular binding and 

internalization and GP1 residues had been identified that were believed to be 

important for EBOV entry [101,102].  Further, this viral glycoprotein was known to 

bind to certain host cells via attachment factors including the C-type lectins 

[122,123,162,163,283].  However, these attachment factors are mostly 

expressed on macrophages and dendritic cells and viral attachment to other cell 

types was poorly characterized.  Our screen confirmed and extended the 

involvement of lectins (Fig. 7).  Furthermore, the screen identified a series of 

extracellular matrix proteins that correlate with EBOV transduction (Fig. 9).  

These extracellular matrix proteins that may prove in the future to be attachment 

factors for EBOV include versican, type IV collagen, CD44, cadherin 16, and 

syndecan 4.  Additionally, it is possible that ECM components do not act as 

attachment factors and instead mediate actin polymerization.  For example, 
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CD44 is the receptor for hyaluronic acid and causes actin rearrangements and 

lamellipodia formation by signaling through Rac1 [284].  

Surface proteins 

Our screen identified several integral plasma membrane proteins that 

strongly correlated with EBOV GP-mediated transduction (Fig. 13, 14).  Several 

of these proteins had a higher correlation than that of the identified receptor, TIM-

1, but, due to a lack of available reagents and other factors, were not adequately 

studied.  It would be of interest in the future to go back and revisit this list, 

especially PARD3, ITGA3, and SGCE, all of which had a higher PCC values than 

TIM-1. 

Endocytic and trafficking genes 

Many genes that encode proteins involved in endocytic transport were 

positively correlated with EBOV transduction in our screen (Fig. 10). The 

mechanism of endocytosis which EBOV utilizes to internalize from the PM into 

the endosomal pathway is controversial and still not entirely clear.  Prior to our 

screen, EBOV was thought to enter by clathrin and caveolin-mediated 

endocytosis [139,140].  In the ensuing years this view has shifted to 

macropinocytic uptake, although this is still controversial [141,143,144].  The 

debate likely arises due to the size of the pseudotyped particle used in the 

different studies, with smaller retroviral backbones being able to enter by clathrin 

and caveolin mediated endocytosis, which are thought to exclude larger cargoes, 

although recent evidence demonstrates that the size limits are not as stringent as 

once thought [138,285].  Importantly, studies using the more physiologically 
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increases what we know about the molecular biology of EBOV entry and may 

lead to the development of novel therapeutics such as a chimeric, humanized 

form of ARD5, which may prevent virus dissemination to distal organs 

subsequent to infection.    

Several subsequent papers have shown that NPC1 is also an essential 

EBOV cofactor, likely mediating the final fusion between the viral and host cell 

membrane [228,229].  This is very interesting as NPC1 localizes exclusively in 

the late endosome, lysosome, and Golgi body; far from where the entry process 

must begin.  We have preliminary evidence that TIM-1 and EBOV colocalize in 

an endosomal compartment that has yet to be characterized.  Therefore, a model 

can be proposed where EBOV first interacts with TIM-1 on the surface in the cell 

(Fig. 44).  This binding may cause TIM-1 mediated signaling, potentially through 

RhoB/C and AMPK, and subsequent internalization from the cell surface by 

macropinocytosis.  EBOV likely continues to interact with TIM-1 upon entry of the 

endosomal pathway and the affinity between the two increases upon cleavage by 

the cathepsins [157].  At some point in the late endosomal pathway EBOV binds 

to NPC1, which likely causes a conformation change in the GP, insertion of the 

GP2 fusion loop, and subsequent membrane fusion.  The location and conditions 

of GP2 triggering and subsequent fusion between the viral and host cell 

membrane has not been characterized and, given the localization of NPC1 and 

the results discussed in Chapter 2, it would be of interest to determine if the Golgi 

body is involved.    
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Figure 44: A model slide for EBOV entry. 
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EBOV entry into polarized epithelia was previously mentioned and 

presents several interesting questions.  First, does EBOV enter these cells in an 

AMPK and macropinocytic dependent manner?  Second, does infection via the 

apical surface lead to viral release from the basolateral surface?  Third, does 

infection utilize or alter the tight junctions, which were strongly correlated with 

EBOV entry in our screen? The role of the TIM family is also highlighted in these 

polarized cells.  TIM-1 was robustly expressed in primary human airway epithelia 

[276].  Subsequent investigation found this expression to vary significantly 

between donors, likely due to genetic or environmental factors (unpublished 

data).   It would be interesting to correlate these expression differences with 

susceptibility of the individual HAE cultures to EBOV entry.  Additionally, it would 

be of interest to tie TIM-1 mediated EBOV entry in HAE with infection of 

macrophages and dendritic cells.  TIM-4 is expressed in macrophages and 

dendritic cells and mediates the clearance of apoptotic bodies [296].  Therefore, 

TIM-1 could mediate the initial infection of the host epithelia and enhance 

subsequent presentation of the virus to APCs, which may be infected in a TIM-4 

dependent manner. 
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