
FINITE MODEL FINDING IN SATISFIABILITY MODULO THEORIES

by

Andrew Joseph Reynolds

A thesis submitted in partial fulfillment of the
requirements for the Doctor of Philosophy

degree in Computer Science
in the Graduate College of

The University of Iowa

December 2013

Thesis Supervisor: Professor Cesare Tinelli

Graduate College
The University of Iowa

Iowa City, Iowa

CERTIFICATE OF APPROVAL

PH.D. THESIS

This is to certify that the Ph.D. thesis of

Andrew Joseph Reynolds

has been approved by the Examining Committee for the thesis
requirement for the Doctor of Philosophy degree in Computer
Science at the December 2013 graduation.

Thesis Committee:

Cesare Tinelli, Thesis Supervisor

Aaron Stump

Hantao Zhang

Sriram Pemmaraju

Clark Barrett

For my wife and family.

ii

ACKNOWLEDGEMENTS

Many thanks to people in my life that made this possible. I would like to thank

my parents, Albert and Paige, and my sister Julie for all of their love and support.

A special thanks to my wife Marina for her patience and love for me. I would like to

thank my advisor, Cesare Tinelli, whose attention to detail and high standards for

technical writing have been invaluable to me. Many thanks to Aaron Stump, whose

course at Washington University helped inspire me to pursue a career in research. I

would like to thank Amit Goel and Sava Krstić from the Intel Corporation for their

insightful collaboration on this work. I would also like to thank Leonardo de Moura

for his time spent as an advisor to me at Microsoft Research, and whose technical

discussions inspired some of the key ideas in this thesis. Finally, I would like to thank

the development team of cvc4, especially Clark Barrett and Morgan Deters, for their

ingenuity and bug fixes over the past several years.

iii

TABLE OF CONTENTS

LIST OF FIGURES . vii

CHAPTER

1 INTRODUCTION . 1

1.1 Satisfiability Modulo Theories 1
1.2 Contributions . 4

2 SATISFIABILITY AND SATISFIABILITY MODULO THEORIES . 6

2.1 The Satisfiability Problem . 6
2.2 Satisfiability Modulo Theories 9
2.3 Applications . 12

3 HANDLING QUANTIFIED FORMULAS 14

3.1 Quantified Formulas in SMT . 14
3.1.1 Pattern-Based Instantiation 17
3.1.2 Complete Instantiation 21
3.1.3 Model-Based Quantifier Instantiation 22
3.1.4 Quantifier Elimination . 24

3.2 First-Order Theorem Proving . 25
3.2.1 Inst-Gen . 28
3.2.2 Finite Model Finding . 30

3.2.2.1 MACE-Style Model Finding 30
3.2.2.2 SEM Model Finding 32

4 FORMAL PRELIMINARIES . 34

4.1 Preliminaries . 34
4.2 DPLL(T) Procedure . 37

4.2.1 A Typical Strategy for DPLL(T) 43

5 FINITE MODEL FINDING IN SMT 45

5.1 A Model-Based Approach for Quantifiers in SMT 46
5.2 EUF with Finite Cardinality Constraints (EFCC) 48

5.2.1 Decision Procedure . 49
5.2.2 Integration into DPLL(T1, . . . , Tm) 51

iv

5.2.3 Efficient Solver . 53
5.2.3.1 Weak Effort Check 53
5.2.3.2 Strong Effort Check 57

5.2.4 Establishing Finite Cardinalities 59
5.2.4.1 Extension to Multiple Sorts 60

5.3 Constructing Candidate Models 64
5.3.1 Choosing Domain Elements 65
5.3.2 Representing Function Definitions 67
5.3.3 Constructing Function Definitions 70
5.3.4 Simplifying Function Definitions 74

5.4 Model-Based Quantifier Instantiation 75
5.4.1 Algorithm for Generalizing Evaluations 76

5.4.1.1 Generalizing Evaluations 77
5.4.1.2 Choosing Instantiations 80

5.4.2 Algorithm for Computing Interpretations for Terms . . . 83
5.4.2.1 Operations on Definitions 83
5.4.2.2 Computing Interpretations for Terms 89
5.4.2.3 Choosing Instantiations 92

5.4.3 Integration into DPLL(T1, . . . , Tm) 95
5.5 Properties . 96

5.5.1 Finite Model Completeness 96
5.5.2 Refutational Completeness 97

5.6 Enhancements . 101
5.6.1 Heuristic Instantiation . 101
5.6.2 Sort Inference . 102
5.6.3 Relevancy . 108

5.7 Results . 108
5.7.1 EFCC Solver Evaluation 109
5.7.2 Finite Model Finder Evaluation 111

5.7.2.1 Intel benchmarks 113
5.7.2.2 TPTP benchmarks 116
5.7.2.3 Isabelle benchmarks 120

6 EXTENSIONS TO OTHER DOMAINS 124

6.1 Bounded Integer Quantification 124
6.1.1 Inferring Bounds . 125
6.1.2 Establishing Finite Bounds 126
6.1.3 Constructing Candidate Models 126

6.1.3.1 Representing Function Definitions 127
6.1.3.2 Constructing Function Definitions 127

6.1.4 Quantifier Instantiation 129
6.1.5 Properties . 131
6.1.6 Results . 133

v

6.2 Strings . 134

7 CONCLUSION . 136

APPENDIX

A PREPROCESSING . 139

A.1 Negation Normal Form . 139
A.2 Miniscoping . 140
A.3 Destructive Equality Resolution 140
A.4 Eliminating Nested Quantifiers 140
A.5 Convert to a Set of Clauses . 141

B EXTENSIONS TO MODEL-BASED QUANTIFIER INSTANTIATION 142

REFERENCES . 145

vi

LIST OF FIGURES

Figure

3.1 Rules for Resolution-Based Theorem Proving 26

3.2 Rule for Paramodulation . 27

3.3 Rule for Inst-Gen . 29

4.1 DPLL(T1, . . . , Tm) rules . 39

4.2 A typical strategy check for applying DPLL(T1, . . . , Tm) rules 43

5.1 The fix region procedure . 56

5.2 The eval procedure . 77

5.3 The choose instances procedure . 81

5.4 Method for computing composition of entries 86

5.5 DPLL(T1, . . . , Tm) rule for quantifier instantiation. 95

5.6 Results for randomly generated benchmarks 110

5.7 Results for satisfiable and unsatisfiable Intel (DVF) benchmarks 114

5.8 Results for TPTP benchmarks. 117

5.9 Satisfiable TPTP problems with and without model-based instantiation. 119

5.10 Results for satisfiable and unsatisfiable Isabelle benchmarks 122

6.1 The infer bounds procedure . 125

6.2 The bound int qi procedure . 129

6.3 Results for Intel benchmarks containing bounded integer quantification . 133

B.1 Extended method for computing composition of entries 143

vii

1

CHAPTER 1

INTRODUCTION

In recent years, automated reasoning has had a growing impact on software

engineering practices. As often seen, errors in hardware and software systems can lead

to unforeseen consequences, costing governments and corporations millions of dollars,

and in some cases leading to loss of life. Consequently, there has been a high demand

for software that is verified using formal methods. These methods are of utmost

importance to software whose correctness is highly critical, including software for

managing bank records, flight control software, and software used in medical devices.

The field of formal methods has made large strides towards formally verifying

software on a large scale, thanks in part to theoretical advancements of automated

reasoning. In particular, many successful verification and synthesis applications in

recent years have relied heavily upon the use of Satisfiability Modulo Theories (SMT)

solvers for answering logical queries required for solving complex problems.

1.1 Satisfiability Modulo Theories

Many problems in first-order logic can be efficiently handled by modern Satis-

fiability Modulo Theories (SMT) solvers. In these problems, the interpretation of cer-

tain functions is constrained according to some background theory, including real and

integer arithmetic, bit-vectors, arrays, uninterpreted functions with equality (EUF)

and combinations thereof. While many of these problems have theoretical complexity

that is worst-case exponential, SMT solvers have shown surprising efficiency for an

2

overwhelming majority of problems that occur in practice. This efficiency is obtained

by exploiting the structure of such problems, which in many cases can effectively

reduce the search space for solutions dramatically.

The use of an underlying SMT solver in user applications is attractive for a

variety of reasons. Due to the wide range of problems that arise in formal methods

applications, the expressive power of SMT is often useful when encoding logical queries

for a particular task. Since many SMT solvers have built-in support for a number of

theories, this often allows the user a more natural encoding as compared to, say, purely

propositional encodings. Some applications, such as those relying on arithmetic,

would be otherwise infeasible if not for an encoding that makes use of background

theories.

The performance of SMT solvers has improved significantly in recent years,

due in part to developments in Boolean Satisfiability (SAT) technology, as well as the

development and implementation of efficient decision procedures for quantifier-free

constraints in certain theories. For the former, most SMT solvers integrate an off-the-

shelf SAT solver that incorporates many modern optimizations [47] [62], including effi-

cient techniques for unit propagation, non-chronological backtracking, conflict-driven

clause learning, decision heuristics, among others. Since most SMT solvers require

little modification of their underlying SAT solvers, these techniques often translate

into improved performance when considering problems containing both propositional

structure and theory content.

Approaches for theory decision procedures have made significant advances in

3

the past decade, both theoretically and in terms of implementation. These include

fast congruence closure for equality and uninterpreted functions [49], fast simplex

approaches for linear arithmetic [24], and efficient approaches for the theory of exten-

sional arrays [11, 30]. These decision procedures use methods for eagerly recognizing

when a set of constraints is unsatisfiable, as well as when certain constraints may be

propagated. Experimental evidence suggests that many of these theories are reaching

a mature state, as performance in recent years has stabilized for several commonly

used theories.

Due to the large number of theories supported by SMT solvers, a generalized

method for determining satisfiability in problems containing a combination of theories

is of practical interest. For quantifier-free formulas, most SMT solvers use the Nelson-

Oppen combination procedure [48] in which decision procedures for (stably infinite)

theories can be combined modularly, giving a decision procedure for the combined

theory. As a result, SMT implementers need only focus on constructing solvers for

a problem purified to contain only constraints in a single theory, with the guarantee

that their solver can be incorporated into an approach for combined theories in a gen-

eralized and even efficient manner [33]. This has been highly important in extending

the scope of SMT solvers, since most applications require the use of multiple theories.

Although many classes of SMT problems reside in decidable fragments of first-

order logic, recent work has focused on undecidable classes of problems, including

problems in certain fragments containing universal quantification [28] and non-linear

integer arithmetic [34]. Devising a general approach for these problems has been an

4

ongoing challenge in the SMT community.

1.2 Contributions

In this thesis, we provide new methods for handling SMT problems containing

universal first-order quantification. We will examine an approach known as finite

model finding, which has been used successfully by the automated proving theorem

community as a method for finding models of quantified first-order formulas. We

provide a method for finite model finding in SMT that is finite model complete for a

fragment of first-order logic that occurs commonly in practice. A secondary goal of

this thesis is to improve upon state-of-the-art approaches for answering unsatisfiable.

Most current approaches in SMT for establishing unsatisfiability in the presence of

quantified formulas rely heavily on incomplete heuristics for quantifier instantiation.

In contrast, the approach developed in this thesis is refutationally complete under

certain restrictions. Additionally, we provide experimental evidence showing that our

approach is practically feasible within various applications, including hardware and

software verification, and automated theorem proving.

Overview In Chapter 2, we introduce the satisfiability problem and commonly used

procedures for solving this problem. We also introduce its extension to Satisfiability

Modulo Theories. In Chapter 3, we review various approaches from the SMT and

automated theorem proving communities for handling first-order quantified formulas.

Chapter 4 gives a formal introduction to notions and procedures used in the remain-

der of the thesis. In Chapter 5, we describe in detail a new approach for handling

quantified formulas, finite model finding in SMT, which can be integrated into the

5

architecture commonly used by modern SMT solvers. We show several important

properties of this approach, and provide experimental evidence that it is highly com-

petitive with respect to both state of the art SMT solvers and model finders from the

automated theorem proving community. In Chapter 6, we discuss how approaches

similar to finite model finding in SMT can be extended to handle other domains of

interest, including quantification over integers where finite bounds can be inferred.

We provide preliminary evidence to show that our approach is feasible for this domain

as well.

6

CHAPTER 2

SATISFIABILITY AND SATISFIABILITY MODULO THEORIES

2.1 The Satisfiability Problem

In Boolean logic, logical formulas are composed of propositional atoms from a

fixed finite set P , the symbols true and false, and the standard logical connectives

such as ∨,∧,⇒. Given the standard interpretation for these symbols, the Boolean

satisfiability problem for a formula ϕ asks if there exists an assignment to the propo-

sitional atoms such that the ϕ evaluates to true.

For each propositional atom p in P , we refer to p or its negation ¬p as a

literal. We will commonly write l to denote the complement of literal l, e.g. p and

¬p are complements of each other. We refer to a conjunction of literals (l1 ∨ . . . ln)

as a clause. A conjunction of clauses C1 ∧ . . . Cn is a formula in conjunctive normal

form (CNF). It is possible to convert any formula ϕ into an equisatisfiable formula in

conjunctive normal form.

The DPLL procedure1 is used by a majority modern SAT solvers [26] for deter-

mining the satisfiability of Boolean formulas in conjunctive normal form. Although

SAT is a well known NP-complete problem, the optimizations used by modern SAT

solvers have made it possible to answer such problems with surprising efficiency. In

a common declarative formalism [50], the DPLL procedure is described as operating

on states of the form M ‖ F , where M is a (initially empty) sequence of literals

1DPLL is named for its authors, Davis, Putnam, Logemann, and Loveland.

7

and F is a set of clauses, initially the input clauses. For each state M ‖ F that is

reachable by this procedure, we have that each atom occurs in at most one literal

in M . Thus, the sequence M can be thought of as a partial assignment from atoms

to truth values, and we will sometimes refer to literals l as being assigned in M if

l or its complement occurs in M . We say that M is complete if all atoms in F are

assigned in M . We say that a clause C is satisfied by M if at least one of its literals

occurs in M . Dually, we say that a clause C is falsified if the complement of all of

its literals occur in M . The DPLL procedure will search for a sequence M where all

clauses in F are satisfied, in which case the problem is satisfiable. Otherwise, if the

procedure determines that every complete sequence M falsifies at least one clause in

F , the problem is unsatisfiable.

When searching for an M that satisfies F , the procedure adds literals to M

in one of two ways. Firstly, if there exists a clause C ∨ l in F such that all literals in

C are assigned to false in M , and l is unassigned in M , then we must add l to M .

In this case, we say l is asserted by propagation. Secondly, the procedure can choose

to add an arbitrary unassigned literal l to M , in which case we say l is asserted as a

decision, and commonly refer to l as a decision literal. A typical strategy for DPLL

asserts literals by propagation exhaustively before asserting any literal as a decision.

The procedure also monitors when a clause C in F becomes falsified by the

current assignment M . In this case we call C a conflicting clause, and the procedure

must remove some the literals from M . In the most basic implementation, it does so

by finding the most recent decision literal l, removing l and all subsequent literals in

8

M , and asserting l as a propagation. If M contains no decision literals and there is

a conflicting clause, then the problem is unsatisfiable.

Modern SAT solvers incorporate many optimizations beyond the basic DPLL

procedure as described here. Most significantly, most solvers use non-chronological

backtracking, where multiple decision literals can be backtracked at once when a con-

flicting clause is found. Conflict analysis techniques can be performed by maintaining

an implication graph, which indicates which clauses were the source of propagations.

This data structure can be used for determining how far the solver may backtrack

when a conflict occurs. In this process, the solver will have determined some set of

asserted literals that led us to encounter the conflict. The disjunction of the com-

plement of these literals is referred to as a conflict clause. Conflict clauses can be

learned, that is, added to the original clause set F , because they are implied by F .

Their effect is to prune the search space of the problem, since each of these clauses

imposes additional constraints on the truth assignment we are searching for. This

process is known as conflict-driven clause learning (CDCL).

Efficient techniques can be used for detecting when propagation can be applied.

The 2-watched literal approach can be used to recognize when an unsatisfied clause

contains only one unassigned literal and therefore must be propagated [47, 60]. When

choosing decision literals, heuristics can be used to judge which literal to choose next.

These heuristics can be based on how often a literal appears in conflicts [47]. SAT

solvers also have heuristics for judging the usefulness of learned clauses, for instance,

by keeping track of how often they participate in propagations and conflicts. Since

9

the performance of the solver can be highly dependent upon the size and number of

clauses we are considering, it is necessary that the solver manage the clauses occurring

in F . Clauses can be unlearned if they are determined to be unhelpful, or all at once

during a search restart if the number of learned clauses becomes too large.

2.2 Satisfiability Modulo Theories

In this section, we introduce techniques for determining the satisfiability of

quantifier-free formulas with background theories, which build upon those described

in the previous section. Whereas in the Boolean Satisfiability problem, our input

formula consisted of propositional atoms, in the following, our input formula will

consist of atoms taken from a signature Σ. A signature Σ consists of a set of function

and predicate symbols, and a set of variables. For example, the formula x+y ≥ 0 is an

atom for the theory of arithmetic, where ≥ is a binary predicate. The satisfiability

question when extended to theories is restricted by the interpretation of symbols

in the signature of the theory. We consider a theory with signature Σ to be a set of

deductively closed Σ-formulas, that is, formulas built using the symbols in Σ. We refer

to function symbols occurring in T as interpreted, and all other function symbols as

uninterpreted. In other words, conceptually a theory T contains the (possibly infinite)

axiomatization of all interpreted symbols of that theory. Informally, a formula ϕ is

satisfiable modulo a background theory T , or T -satisfiable, if there exists a model

that satisfies both ϕ and the theory T .

Approaches for satisfiability modulo theories can be broken up into two cate-

gories, eager approaches and lazy approaches. Eager approaches convert a problem

10

containing theories into a equisatisfiable problem at the propositional level. For ex-

ample, Ackermann’s reduction can be used to eliminate uninterpreted functions [1].

While eager approaches to SMT have had some success [42], they tend to be less

flexible and are therefore less frequently used.

The DPLL(T) procedure [50] 2 is a lazy approach for SMT, where the satisfi-

ability of theory literals is checked only after a satisfying assignment at the Boolean

level is found. It is a straightforward extension of the DPLL procedure, where ad-

ditional interaction is provided by solvers that are specialized for particular theories

(which we call a theory solvers). We will introduce the procedure formally in Sec-

tion 4.2, and describe the basics of the procedure in this section.

Given an input problem specified by a set of clauses F , we abstract F into

a purely propositional problem, by associating each theory atom in F with a cor-

responding propositional variable. A SAT solver determines whether a satisfying

assignment exists for the abstracted problem. If such an assignment does not exist,

we have determined that F is unsatisfiable. Otherwise, the solver produces a partial

truth assignment M . For each theory T , a theory solver for T may either accept this

assignment by determining that the set of T -literals occurring in M are consistent

according to T , or reject the satisfying assignment if it is inconsistent according to

T . In the former case, we have determined a theory-consistent assignment and have

determined that F is satisfiable. In the latter case, we may add clauses to F that

2The T in the name DPLL(T) is parameterized for a fixed theory T , possibly representing
a combination of theories T1 ∪ . . . ∪ Tn.

11

explain why the current state is theory-inconsistent, which may force the SAT solver

to find a new assignment if these clauses are falsified by M .

When analyzing a theory inconsistent state, similar principles as in the propo-

sitional case apply, namely, we wish to add a conflict clause that will effectively rule

out the current assignment M . A theory solver for T will identify a subset of the

asserted literals in M that are inconsistent with T . It will then construct an expla-

nation of the inconsistent literals in terms of a subset {l1, . . . , ln} of the literals in

M , and then add (l1 ∨ . . . ∨ ln) to set of clauses F . This clause is known as a theory

lemma, which we require to be a consequence of the theory T .

As mentioned, using the DPLL(T) procedure, SMT solvers capitalize on the

SAT community’s recent advances in performance for answering satisfiability prob-

lems at the propositional level. The performance of SMT solvers is enhanced by

propagating assignments for literals that can inferred from theory reasoning. The

challenge here is in calculating such propagations in an efficient manner such that the

resulting performance gain outweighs this cost. Eager theory propagation can be im-

plemented for many common SMT theories. A common example is propagating values

for literals that are in the symmetric transitive closure of an equivalence relation. In

other cases, such propagating disequalities in the theory of uninterpreted functions,

the performance overhead typically outweighs the corresponding performance gain.

In general, the developer of a theory solver in SMT can exploit this continuum, with

implementations that use anything from exhaustive theory propagation to no theory

propagation at all.

12

When checking the T -satisfiability of a formula is too expensive, the theory

solver for T may require reasoning by cases. This can be accomplished within the

DPLL(T) procedure by introducing additional clauses of the form (p ∨ ¬p) to our

set F for some atom p. This technique is known as splitting on demand [4], and has

been used effectively in the implementation of several methods. Termination for such

approaches is guaranteed if only a finite number of such splits are requested by the

solver before it arrives at a solution.

Beyond DPLL(T), other procedures exist for Satisfiability Modulo Theories [21,

45] that allow theory solvers fine-grained control over the search. In particular, this

may allow a theory solver to assign values for terms in that theory, instead of relying

upon propositional assignments containing these terms given by the SAT solver.

2.3 Applications

Often, SMT solvers are capable of producing useful information beyond just

knowing reporting a formula is satisfiable or not. For SMT formulas, a proof is a

trace of the reasoning used by the solver that justifies why a formula is unsatisfiable.

Dually, a model, in its most basic form, is an assignment of values to variables which

demonstrates why a formula is satisfiable.

Proofs may be useful both for the purposes of increasing the trustworthiness

of the solver, and for intuition why a formula is unsatisfiable. In applications where

correctness is highly critical, a proof checking procedure can be run on a generated

proof of unsatisfiability for the purposes of increasing the trustworthiness of the overall

system [56].

13

Further information can be extracted by some solvers for unsatisfiable queries.

Some solvers will produce a subset of the input that is also unsatisfiable, known as

a (minimal) unsatisfiable core. Finding an unsatisfiable core is useful for some ver-

ification applications where it is necessary to identify a small portion of a problem

that is relevant in some context. Some SMT solvers are capable of generating inter-

polants [46, 13, 55], or formulas that summarize why a set of formulas is inconsistent

with another one. Interpolants have found a wide variety of uses in recent applications,

including predicate abstraction and model checking, where an over-approximation of

a system’s transition relation can be constructed from interpolants [44].

For satisfiable queries, model-producing SMT solvers can provide a particular

valuation of the variables and non-built-in functions in a satisfiable formula, known as

a model. Models are useful in a variety of formal methods applications. For software

verification, a model may represent the starting state of a program for which the

program exhibits an undesired behavior. By examining such a model, one can gain

the intuition necessary for correcting the flaw in the program. Other uses include the

synthesis of loop invariants and ranking functions [20], scheduling, and automated

test case generation [29].

14

CHAPTER 3

HANDLING QUANTIFIED FORMULAS

In this chapter, we review various approaches for determining the satisfiabil-

ity of quantified first-order formulas using techniques both from the fields of SMT

and automated theorem proving. In particular, we will focus on instantiation-based

approaches for quantified formulas.

3.1 Quantified Formulas in SMT

Many modern SMT-based applications have required the use of quantified first-

order formulas for a variety of reasons. For example, quantified formulas can encode

frame axioms in software verification, model run-time behaviors of certain processes,

specify universal safety properties and provide axioms for a theory of interest not

handled natively by the solver. For the latter, a set of quantified formulas can specify

the intended interpretations for various uninterpreted symbols that represent the

symbols in that theory.

While SMT solvers are known to answer quantifier-free (that is, ground)

queries efficiently, their ability is limited when extended to problems with quanti-

fied formulas. The difficulty arises in DPLL(T) when checking the consistency of

satisfying assignments that include universally quantified formulas, since this cannot

be determined by a theory solver and moreover is undecidable in general. Although

some common use cases of quantified formulas in SMT have been identified as residing

within decidable fragments [28, 10], devising a general procedure is impossible.

15

SMT solvers must deal with both existential and universal quantification. Ex-

istentially quantified formulas are often handled by witnessing their satisfiability using

a fresh set of symbols, known as skolem symbols. For instance, to satisfy the formula

∃x.ϕ, where all variables in ϕ are in the tuple of variables x, the SMT solver will show

the satisfiability of the formula ϕ[c/x], where the notation [c/x] denotes replacing all

occurrence of variables x with the skolem constants c. Nested existentially quantified

formulas can be eliminated in a similar manner, where instead a function of possi-

bly non-zero arity is introduced. For instance, the formula ∀x.∃y.P (x, y) becomes

∀x.P (x, f(x)), where f is a fresh symbol. In many cases, this is performed by the

solver as a preprocessing step.

For universal quantification, the underlying SAT solver will consider each uni-

versally quantified formula as a unique propositional variable. The solver will then

use a scheme known as quantifier instantiation, in which ground instances of the

quantified formula are added to the ground portion of the problem as needed. In

more detail, given a formula ∀x.ϕ, a tuple of ground terms t is chosen by a heuristic,

and the formula ϕ[t/x] is added to the set of formulas being considered by the solver.

This may allow the solver to detect inconsistencies at the ground level, if they exist.

By applying quantifier instantiation, we can devise a sound but incomplete

strategy for handling quantifiers in SMT, where a stream of ground instances of

quantified formulas are considered by the solver. Such a strategy is sound since every

added instance of the quantified formula is a logical consequence of the quantified

formula, but it is incomplete because we are not in general guaranteed to ever find a

16

ground conflict and hence the process is not guaranteed to terminate. In these cases,

most SMT solvers will either run indefinitely, or return an answer of “unknown” while

reporting a candidate model to the user. A candidate model can be thought of as

a structure that demonstrates the satisfiability of the current ground portion of the

problem, but not necessarily the quantified portion.

An inability to answer satisfiable in the presence of quantified formulas poses

a major limitation to the success of verification applications. In these applications,

a satisfiable response from the SMT solver corresponds to a counterexample to a

safety property that is of interest for the system in question. If the solver is unsure

whether a formula is satisfiable and returns a candidate model, then the result must

be manually inspected by the user to see if it is an actual counterexamples to the

property in question. This is undesirable, since candidate models may have large

representations that are had to inspect, and may have a high likelihood of being

spurious. On the other hand, if the SMT solver can determine with confidence that a

candidate model extends to the quantified portion of the problem, then the user may

immediately treat it as an actual counterexample to the property in question.

In the following, current methods for handling quantifiers in SMT are reviewed,

including instantiation-based methods. These methods can be summarized in their

response to the following two questions:

1. Which instantiations of quantified formulas should we consider?

2. If universal quantified formulas are asserted, when can we answer satisfiable?

17

Much of the work on instantiation-based approaches to quantifiers in SMT has

focused on the former question rather than the latter. Recent work has focused on

latter question, including the approaches of model-based quantifier instantiation [28]

and finite model finding [53].

3.1.1 Pattern-Based Instantiation

The most widely used and arguably most successful approach to handling

quantified formulas in SMT is pattern-based quantifier instantiation, also known as

E-matching [23]. This heuristic approach attempts to find ground terms that have

the same shape as terms of interest for a quantified formula, and use them to guide

our choice of instantiations for that formula. In more detail, for a quantified formula

∀x.ϕ, we first find a term f(s1, . . . , sn) from ϕ that contains all of the variables x.

We will refer to f(s1, . . . , sn) as a pattern for ∀x.ϕ. We then find a ground term

f(t1, . . . , tn) such that f(t1, . . . , tn) and f(s1, . . . , sn)[v/x] are equivalent modulo a

set of equalities E currently entailed by the solver. If this is the case, we use v when

instantiating ∀x.ϕ. Pattern-based instantiation is used primarily when determining

the satisfiability of quantified formulas containing uninterpreted function symbols,

that is, functions with no built-in interpretation in the theory.

Example 1 Say we wish to determine the satisfiability of ∀x.f(g(x), a) ≈ b in the

theory of equality with uninterpreted function symbols (EUF), where ≈ denotes equal-

ity. Assume that a pattern term f(g(x), a) is provided for our formula. Say that the

ground term f(a, a) exists in our input, and that our current assignment contains the

set of equalities {a ≈ g(c)}. In this case, the pattern f(g(x), a) matches the ground

18

term f(a, a) with the substitution {x 7→ c}, and as a result we will instantiate the

quantified formula with c, giving us the instance f(g(c), a) ≈ b. This may contribute

to a conflict at the ground level, say in the case that the ground term f(a, a) is disequal

from b.

Typically patterns for a quantified formula ∀x.ϕ will be terms existing in ϕ.

As mentioned, since patterns are used to determine instantiations, we require that

a pattern contain all the variables in x. We impose additional requirements for

pattern terms to control the number of instantiations produced. Most commonly,

we require that a pattern have an uninterpreted function as its top-most symbol.

When a quantified formula ∀x.ϕ does not contain a term meeting the requirements

of being a pattern, we must select multiple terms t1, . . . tn, known as a multi-pattern.

To produce instantiations for a multi-pattern, we simultaneously match a tuple of

ground term with t1, . . . , tn to determine instantiations for ∀x.ϕ.

Instantiations for quantified formulas can be computed incrementally using

methods known as mod-time and pattern-element optimizations [23]. These methods

are capable of recognizing and constructing matches as they become feasible, such as

when equalities are deduced by the solver. This may be critical to the performance

of the solver, since eager approaches to quantifier instantiation have been shown to

have advantages over lazy approaches [17, 27]. Additional work [17] has focused on

optimizations such as calculating matches for many patterns in parallel, since this

may be the performance bottleneck in problems with large amounts of ground terms.

19

While pattern-based quantifier instantiation is often effective at discovering

conflicts, it has numerous shortcomings. First, it is difficult to judge which terms

within the bodies of quantified formulas should be chosen as patterns. In fact, typical

implementations will generate instantiations for all legal pattern terms. Many quan-

tified formulas have a large number of terms that meet the requirements for being a

pattern, including many that have no bearing on finding conflicts. This problem can

be addressed by having the user provide hints as to which terms should be used as

patterns. Although this solution has led to some success, it is less than ideal since

the process is no longer fully automated. Moreover it makes the performance of the

SMT solver highly sensitive to small modifications in patterns chosen by the user.

Other techniques [32] rely on heuristics for determining which symbols are relevant

for pattern selection based on the symbol’s frequency in axioms.

The performance of pattern-based quantifier instantiation can be very sensi-

tive to equivalence-preserving transformations on input formulas, since the approach

depends on the syntactic structure of formulas, in particular when using patterns that

contain interpreted symbols. Take for instance the pattern x + y. A ground term

such as 5 + 1 is a match for x + y, but strictly speaking 6 is not. Failure to find

such matches can drastically effect the performance of the solver, even leading to a

problem becoming unsolvable.

In worst-case scenarios, E-matching suffers from what is known as matching

loops. A matching loop occurs when a repeating pattern of instantiations occur, due to

terms in one iteration generating new matchable terms in the next. As an example,

20

consider the quantified formula ∀x.f(x) ≈ f(g(x)), pattern f(x) and ground term

f(a). Here, f(a) is matchable with the pattern f(x). Instantiating the quantified

formula with a for x will produce the term f(g(a)). This can subsequently can be

matched with f(x) leading to the instantiation g(a) for x and generating f(g(g(a))),

and so on. Some heuristics exist to avoid or explicitly break matching loops, such as

keeping track of a generation level for each term we produce [27]. In these heuristics, if

t is generated by instantiating a quantifier with t1, . . . , tn, then t is given a generation

level that is one higher than the maximum generation level of t1 . . . tn. By only

considering instantiations with terms having a sufficiently small generation level, we

can form a strategy that essentially performs a breadth-first search for instantiations.

Even when matching loops are avoided, many similar matchable terms will be

generated by quantifier instantiation, subsequently leading to an explosion in number

of instantiations generated on future iterations. Depending on the form of quanti-

fiers involved, this explosion can be quadratic or worse, particularly in the case of

quantifiers that rely on multi-patterns. Even when a fair strategy is used to select

instantiations, the immediate result is that the SMT solver becomes overloaded with

ground clauses, making it very difficult for the solver to continue its operation.

A way to combat this explosion of terms in E-matching is to use heuristics

for determining which literals contribute to the overall satisfiability of the input for-

mula [18]. Such literals are called relevant, and only terms residing in such literals

are considered for ground terms in the E-matching procedure. This can improve

performance significantly, but does not guarantee that the number of instantiations

21

considered will be small, since the terms constructed as a result of quantifier instan-

tiation may in turn end up being considered relevant.

Although less common, complications may also occur due to lack of generated

instantiations. When no suitable matches can be found because of a lack of ground

terms in the problem, or because our selection of pattern was too strict, the solver

will produce no instantiations and return unknown. It is important to note here that

the absence of matches does not imply that the problem is satisfiable. As a simple

case, say our input problem is ∀x.P (x)∧ ∀x.¬P (x). Although E-matching fails to find

an instantiation, clearly this formula is unsatisfiable. Here, we must either introduce

fresh ground terms arbitrarily, or relax our constraints for which patterns are usable.

Another significant disadvantage is that methods relying on pattern-based

quantifier instantiation typically have no way of answering satisfiable in the presence

of universally quantified formulas. Hence if the input formula is satisfiable, basic

pattern-based quantifier instantiation has no hope of terminating successfully.

3.1.2 Complete Instantiation

Recent work [28] has focused on methods in SMT for answering satisfiable

with input formulas containing universal quantifiers. These methods can guarantee

completeness when restricted to certain decidable fragments of first-order logic with

theories, such as when all variables in quantifiers are direct children of uninterpreted

symbols (called the essentially uninterpreted fragment), and in some restricted uses

of arithmetic.

In these cases, quantified formulas may be treated using a technique known

22

as complete instantiation. Given a set of formulas F , we first determine a relevant

domain for each quantified formula ϕ in F . Based on these terms, we construct an

equisatisfiable set of ground instances F ∗ of our formulas F . If we able to success-

fully determine that F ∗ is satisfiable, then we know that F must be satisfied by an

extension of the model for F ∗, which can be constructed based on the proof that F ∗

is equisatisfiable to F .

The calculation of the relevant domain for a particular quantified formula ϕ is

based on existing ground terms as well as the structure of the body of ϕ. For example,

t is in the relevant domain of function f for all ground terms f(t), the relevant domain

of x for a quantified formula containing the term f(x) is equal to the relevant domain

of f , and so on. The relevant domain of a quantified formula may be finite even in

cases where the actual domain of the formula’s quantifier is infinite. In such a case,

it may suffice to show a quantified formula with integer variables is satisfiable by

only showing that a finite set of instances F ∗ is satisfiable, where F ∗ is generated by

instantiating quantified formulas in F with terms from their corresponding relevant

domains. However, as mentioned, it is only possible to do so when the quantified

formulas in F are of a restricted form.

3.1.3 Model-Based Quantifier Instantiation

In practice, complete instantiation is often paired with a technique known

as model-based quantifier instantiation (MBQI), where we may recognize when a

model for quantified formulas has been constructed without explicitly considering

every instantiation occurring in F ∗ [28].

23

With MBQI, when we have a theory-consistent assignment M that satisfies

all ground clauses in our problem, we construct a candidate model M containing

interpretations for all uninterpreted function and predicate symbols in our signature.

In particular, we build M so that it is guaranteed to satisfy all ground assertions in

M . In such a candidate model, the interpretation of functions is typically given by

some non-recursive lambda term of a particular form. To check whether M satisfies

a quantified formula ∀x.ϕ, we first replace all occurrences of uninterpreted symbols

in the quantified formula ϕ by a term corresponding to their interpretation in M

to obtain the formula ϕM. Note that if all nested quantification has been removed

from ϕ, then ϕM is a ground formula containing no free uninterpreted symbols. We

then check the satisfiability of ¬ϕM[e/x], where e are fresh constants. This can be

done, for instance, by invoking another instance of the SMT solver. If this formula is

unsatisfiable in the background theory, thenM is a model for the quantified formula.

Example 2 Say we wish to determine the satisfiability of {¬P (2, 3),∀x.P (x, 0)}. We

construct a candidate model M containing an interpretation for the predicate P that

satisfies ¬P (2, 3), say PM := λxy. false, where λ is standard notation of function

definition. To check whether M satisfies ∀x.P (x, 0), we check the satisfiability of

¬PM(e, 0) = ¬(λxy. false)(e, 0) = true. Since true is satisfiable, we know that

M does not satisfy our quantified formula. On the other hand, say we give P the

interpretation PM := λxy. ¬(x ≈ 2 ∧ y ≈ 3), or in other words P is only false

when x and y are 2 and 3 respectively. This candidate model satisfies the quantified

formula, since ¬PM(e, 0) = (e ≈ 2 ∧ 0 ≈ 3) is unsatisfiable.

24

As a side effect of checking whether a model extends to a quantified formula,

model-based quantifier instantiation can be used to suggest relevant instantiations.

For ∀x.ϕ, given that the check ¬ϕM[e/x] was satisfiable with the valuation c for e, the

solver will add ϕ[c/x] to our set of clauses. By doing so, we are guaranteed to rule out

the model M on future iterations. In this way, model-based quantifier instantiation

can be viewed as a model refinement procedure. In the previous example, when P was

given the interpretation λxy. false, say our valuation of e was 0 in the model of true

(in this case, e could be assigned an arbitrary value). The method would subsequently

instantiate the quantifier with 0 for x, adding P (0, 0) to our ground constraints and

ruling out the model where PM := λxy. false on subsequent iterations, since now

the definition of P must be true when x and y are 0.

Model-based quantifier instantiation is an effective method for answering satis-

fiable for inputs that have models where all uninterpreted functions are interpreted a

certain way, such as when all integer-valued functions can be interpreted as piecewise

constant over a finite number of intervals. In practice, model-based based quantifier

instantiation can find helpful ground instantiations that E-matching cannot. It is

often beneficial to use a combination of the two approaches, as MBQI can be used

for finding unsatisfiable cases as well.

3.1.4 Quantifier Elimination

For certain classes of problems, particularly those that do not involve the use

of uninterpreted functions, quantifier elimination techniques are much more effective

than instantiation-based techniques, and can be used as a decision procedure for some

25

fragments of first-order logic. Quantifier elimination approaches determine the satis-

fiability of quantified formulas by building a equivalent set of quantifier-free formulas

for which a decision procedure may be used. This approach can be applied to some

useful cases of first-order logic, including quantified linear real arithmetic. Roughly

speaking, in the linear real arithmetic case, a conjunction of ground formulas can

be constructed that is equisatisfiable to quantified formula by taking relevant points

based on linear inequalities occurring in a quantified formula. In this setting, alter-

nating existential and universal quantifiers are a challenge, potentially leading to a

exponential blowup in the resulting size of the generated formula. This worst-case be-

havior can be addressed in various ways, for instance, by tightly integrating quantifier

elimination into the DPLL(T) search [7].

3.2 First-Order Theorem Proving

While the primary focus of SMT has been to efficient solve ground problems

over background theories, less attention has been paid to quantified formulas. How-

ever, much research from the automated theorem proving (ATP) community has

focused on quantified first-order formulas. The targeted applications of automated

theorem provers typically do not involve theory reasoning, although recent research

has focused on arithmetic [37, 6]. This omission is often intentional, since often

decidability can be lost with the addition of background theories into first-order for-

mulas. This section gives a brief introduction to methods used by theorem provers

for handling decidable fragments of first-order logic.

In contrast to DPLL-based approaches, many classic automated theorem provers

26

C ∨ A D ∨ ¬B
(C ∨D)σ

Res
C ∨ A ∨B
(C ∨ A)σ

Factor

where σ = mgu(A,B). where σ = mgu(A,B).

Figure 3.1. Rules for Resolution-Based Theorem Proving

are based on the resolution calculus for pure first-order formulas in clausal form. The

basic rules of the resolution calculus are shown in Figure 3.1. The resolution rule Res

deduces a clause from two premises, where a formula A is in one premise, ¬B is in

the other, and σ is a substitution such that Aσ = Bσ. We refer to the substitution σ

as the most general unifier (mgu) of formulas A and B. The factorization rule Factor

is used to factor redundancies from a clause by finding a unifier for two of its literals.

The basic approach of resolution-based theorem proving is to apply resolution

to input clauses until either (i) the empty clause is deduced, or (ii) the set of clauses

becomes saturated. In the latter case, we are assured that an inconsistency cannot

exist and that a model exists for our set of clauses. It can be shown that the calculus

in Figure 3.1 is refutationally complete for pure first-order logic without equality.

That is, if a set of clauses in pure first-order logic is unsatisfiable, then there exists a

set of resolution and factoring steps for deducing the empty clause.

For equational reasoning, automated theorem provers incorporate techniques

involving paramodulation [51]. Doing so gives solvers finer-grained control over the

clauses they deduce more so than solely using resolution. The rule for paramodulation

is given by the rule in Figure 3.2. Here, D[t]p represents the result of replacing the

subterm of D at position p by t. This rule states that if some clause contains the

27

C ∨ t ≈ s D
(C ∨D[t]p)σ

Para

where σ = mgu(s,D |p).

Figure 3.2. Rule for Paramodulation

equality t ≈ s, and if s is unifiable with some subterm in another clause D, then we

may replace that subterm with t and conclude the union of these two clauses.

Techniques involving paramodulation have been successfully integrated as part

of many modern theorem provers. Some of these use a form of paramodulation known

as superposition, in which certain term orderings are used to limit the application of

paramodulation steps without loss of completeness. In both resolution and paramod-

ulation, success is highly dependent upon controlling the number of generated clauses,

as these rules naively produce far too many instances in general.

Automated theorem provers employ a number of additional optimizations for

implementing calculi for first-order logic. Since many terms and clauses may exist in

a problem, automated theorem provers will employ some form of term indexing, in

which terms may be efficiently retrieved under some condition. For example, for find-

ing resolutions of the clause C∨A for resolvent A, we are interested in quickly finding

all literals ¬B in our database that unify with A. Theorem provers may also con-

tend with the large numbers of clauses produced using the aforementioned resolution

calculus using redundancy criteria such as clause subsumption for identifying clauses

that contain no useful information. If there exists C and C ′ in our set of clauses such

that C ′ is (C ∨D)σ for some substitution σ, then we say that C ′ is subsumed by C,

28

and we no longer need to consider it in our database of clauses. Data structures exist

for recognizing these cases in an efficient manner.

3.2.1 Inst-Gen

Inst-Gen is an instantiation-based calculus [38] used by several provers in the

automated theorem community. Approaches based on Inst-Gen combine proposi-

tional reasoning and instantiation in a modular fashion, taking advantage of an ex-

ternal SAT solver. The calculus of Inst-Gen is both sound and complete, and is also

terminating for the effectively propositional reasoning (EPR) fragment, also known

as the Bernays-Schonfinkel class. Problems in this class contain formulas of the form

∃∀ϕ, where ϕ is quantifier-free and contains predicate symbols and equality but no

function symbols.

In the Inst-Gen approach, all input clauses S are first instantiated with a

distinguished constant ⊥. If the resulting set of clauses S⊥ is unsatisfiable, then

S is unsatisfiable as well and the process terminates. Otherwise, the model of the

resulting set of clauses at the ground level is used to guide the instantiation process.

The basic rule of Inst-Gen is shown in Figure 3.3. It varies from the rule for resolution,

in that we instantiate both premises instead of performing the resolution step. The

rule for Inst-Gen is clearly sound since the conclusions are instances of the premises.

Furthermore, it can be shown that a set of clauses that is saturated with respect to

this rule are satisfiable, given that the clauses S⊥ were satisfiable. Note this requires

that σ is a non-empty unifier.

This approach can be enhanced by focusing on adding instantiations generated

29

C ∨ A D ∨ ¬B
(C ∨ A)σ (D ∨ ¬B)σ

Inst-Gen

where σ = mgu(A,B).

Figure 3.3. Rule for Inst-Gen.

only by unifying particular literals in our clauses, known as selection literals. The

motivation here is that if clause C has at least one literal L for which L⊥ is true,

and moreover L is not unifiable with any other literal, then we know our model

extends to satisfy the clause C. Thus, the approach establishes that all clauses are

satisfiable by saturating the set of clauses, using selection literals as a way to limit

which instantiations are required. For example, consider the following two clauses:

Example 3 Say we wish to determine the satisfiability of the set {∀xy.P (x, y)∨Q(x),

∀x.¬P (x, a)}. We instantiate these clauses with the distinguished representative ⊥

to obtain the ground clauses P (⊥,⊥) ∨ Q(⊥) and ¬P (⊥, a). Using a SAT solver,

say we find the satisfying assignment {P (⊥,⊥),¬P (⊥, a)} for these clauses. The

corresponding selection literals for our two clauses are P (x, y) and ¬P (x, a) which

are unifiable by the substitution {y 7→ a}. When applying the Inst-Gen rule, we

obtain a new instance of the first clause, ∀x.P (x, a) ∨ Q(x), and add this to our

clause set. Instantiating this clause with our distinguished representative, we add the

ground clause P (⊥, a)∨Q(⊥) to the SAT solver, Q(⊥) is assigned true and the literal

Q(x) is selected. At this point, our selection literals are P (x, y), ¬P (x, a), and Q(x),

and our clause set is saturated with respect to the Inst-Gen rule restricted to selection

literals.

30

In this example, since our clause set is saturated with respect to Inst-Gen, this

implies a model exists, in this case the one where P is true except when its second

argument is equal to a, and Q is always true. Each quantified formula is satisfied

by virtue of the first-order extension of its selection literal, noting that all relevant

instances have been processed since our clause set is saturated.

Recent work has extended this approach to handle equational reasoning [36].

However, incorporating additional theories remains a challenge.

3.2.2 Finite Model Finding

While highly studied techniques exist for resolution-based theorem proving,

other research has focused on finding models for non-theorems. The following section

covers standard techniques used for finding finite models of first-order formulas.

3.2.2.1 MACE-Style Model Finding

The most widely-used approach for model finding for first-order formulas is

the MACE-style approach [43], named for the MACE tool. In this approach, the

question of whether a first-order formula has a model of a fixed (finite) size can be

encoded as a satisfiability problem in propositional logic. Model finders that use this

approach will incrementally fix domain sizes and use an underlying SAT solver to

search for finite models.

To convert a first-order formula to propositional logic, function applications

f(x) and equality can be eliminated from a problem by introducing a set of propo-

sitional symbols representing when f(x) is equivalent to an element in our domain.

The semantics of the function f can be preserved by imposing constraints on these

31

symbols, namely its totality and that f(x) can only be equal to one value. For in-

stance, if we are searching for models with domain size 2, for a 0-ary function g,

we introduce the propositional variables g1 and g2 representing the cases that g is

the first and second element of our domain respectively, and impose that (g1 ∨ g2)

enforcing the totality of g and (¬g1 ∨ ¬g2) enforcing that g only returns one value.

Given a model can be found for the resultant propositional encoding of a problem,

then a model can be constructed for the original problem.

This form of model finding relies on an exhaustive instantiation of non-ground

(quantified) clauses. In general, a clause C[x1, . . . , xn] for domain size of k is converted

into kn ground clauses representing all instances of that clause. Thus, a downside of

a MACE-style approach is that a larger overhead may be incurred when converting

the problem to this form. Notice that introducing variables into first-order clauses by

techniques such as term flattening lead to an exponential increase in the number of

instances we need to check. To combat these problems, competitive implementations

are enhanced by a variety of methods including static symmetry reduction, clause

splitting, and sort inference.

Static symmetry reduction seeks to find additional constraints that can be

added to the solver for a problem, while preserving its satisfiability [16]. For example,

say we are searching for a model of size k for a set of clauses S containing the terms

t1 . . . tn. In the standard approach, this is done by introducing a set of k distinct

constants c1 . . . ck representing the elements of our domain. Using symmetry reduction

techniques, we may assume t1 is c1, t2 is either c1 or c2, and so on without loss of

32

generality. Such techniques have been shown to lead to significant performance in

MACE-style approaches, and are applicable to other classes of problems as well.

Clause splitting can be used to reduce the maximum number of variables for

clauses in our problem [16]. We may identify cases when a clause C[X] ∪ D[Y] can

be converted into the clauses {S(X ∩ Y)} ∪ C[X] and {S(X ∩ Y)} ∪ D[Y] where

S is a fresh predicate symbol, given some criteria for when such a split is possible.

The maximum number of variables in the resulting two clauses may be less than the

original clause, potentially reducing the number of required instantiations by an order

of magnitude.

Sort inference is another technique used for improving performance in this

setting [16]. In sort inference, we compute constraints concerning the sorts of terms

in our signature. For example, if our problem contains the equality f(t) = u, then

we know that the sort of u and f(t) must be the same, and that the argument sort

of f must be equal to the sort of t. From these constraints, we may effectively treat

certain sets of terms as having distinct sorts. This leads to improved performance,

since symmetry reduction can be applied to these sets independently, and hence

the solver can effectively assume various terms are equal without loss of generality.

Additionally, if we are able to infer that variables can be treated as having a sort with

a smaller domain, then we can reduce the instances of clauses we need to consider.

3.2.2.2 SEM Model Finding

The SEM [61] approach to model finding differs from the approach of MACE in

that it does not convert the problem to propositional logic. The technique has built-

33

in treatment for equality, and uses constraint propagation techniques that resemble

modern SMT solvers. Symmetry reduction is incorporated using heuristic techniques

including a least-number heuristic, which enables the solver to avoid searching for

isomorphic models. While MACE-style methods are generally more widely-used than

SEM-style methods, a number of model finders have been influenced by the approach

of SEM. In practice, SEM-style methods are effective for handling problems that

involve equational reasoning.

34

CHAPTER 4

FORMAL PRELIMINARIES

In this section, we formally introduce definitions used in the remainder of the

thesis, and the DPLL(T) procedure used by modern SMT solvers.

4.1 Preliminaries

We work in the context of many-sorted first-order logic with equality. A (many-

sorted) signature Σ consists of a set of sort symbols and a set of (sorted) function

symbols, f : S1 × · · · × Sn → S, where n ≥ 0 and S1, . . . , Sn, S are sorts in Σ. When

n is 0, f is also called a constant symbol. We use the binary predicate ≈ to denote

equality. We assume that Σ includes a Boolean sort Bool and constants true and

false of that sort—allowing us to encode all other predicate symbols as function

symbols of return sort Bool. For each sort S, we assume our signature contains the

if-then-else function symbol ite : Bool× S × S → S.

Given a signature Σ, a Σ-term is either a variable x, or an expression of the

form f(t1, . . . , tn), where f is a function from Σ, and t1, . . . , tn are Σ-terms. A term

t is a well-sorted term of sort S if t is a variable having sort S, or t is of the form

f(t1, . . . , tn) where f has rank S1×· · ·×Sn → S, and t1, . . . , tn are well-sorted terms of

sorts S1, . . . , Sn respectively. An atomic Σ-formula is an equality t1 ≈ t2 where t1 and

t2 are well-sorted terms of the same sort. A Σ-literal is either an atomic Σ-formula

p or its negation ¬p. A Σ-clause is a disjunction of Σ-literals, e.g. l1 ∨ . . . ∨ ln. We

will use the symbol ⊥ to denote an empty disjunction of literals. A Σ-formula is an

35

expression built from atomic Σ-formulas, and logical connectives such as ∨, ∧, and

¬. A ground term (resp. formula) is a Σ-term (resp. formula) with no variables. An

occurrence of variable x is free in a formula ϕ if it does not reside within a subformula

∀x.ψ or ∃x.ψ of ϕ. We write FV (ϕ) to denote the set of occurrences of variables that

are free in ϕ, or the free variables of ϕ. A Σ-sentence is a Σ-formula with no free

variables. Where x = (x1, . . . , xn) is tuple of sorted variables we write ∀xϕ as an

abbreviation of ∀x1 · · · ∀xn ϕ. A Σ-formula is universal if it has the form ∀xϕ where

ϕ is a quantifier-free formula.

A substitution σ is a mapping from variables to terms of the same sort, such

that the set {x | xσ 6= x}, the domain of σ (written Dom(σ)), is finite. We say σ is

a grounding substitution (for x) if σ maps each variable in x to a ground term.

A Σ-structure M maps each sort S in Σ to a non-empty set SM, the domain

of S in M, and each function symbol f : S1 × · · · × Sn → S ∈ Σ to a total function

fM : SM1 × · · · × SMn → SM. The evaluation of a term f(t1, . . . , tn) in M, denoted

M [[t]] is defined recursively, such thatM[[f(t1, . . . , tn)]] = fM(M[[t1]], . . .M[[tn]]). The

evaluation of an if-then-else term ite(ϕ, t1, t2) is defined such thatM[[ite(ϕ, t1, t2)]] =

M[[t1]] if M[[ϕ]] =M[[true]], and M[[t2]] otherwise. For Σ-structure M and a substi-

tution σ mapping variables to elements of its domain in M, we write Mσ to denote

a structure interpreting a term t as xσ, if t is a variable x in the domain of σ, and

M[[t]] otherwise. A satisfiability relation |= between Σ-structures and Σ-sentences,

written |=, is defined as follows.

- M |= t1 ≈ t2 iff M[[t1]] =M[[t2]]

36

- M |= ϕ ∧ ψ iff M |= ϕ and M |= ψ

- M |= ϕ ∨ ψ iff M |= ϕ or M |= ψ

- M |= ¬ϕ iff M 6|= ϕ

- M |= ∀x.ϕ iff Mσ |= ϕ for all grounding substitutions σ for x

A Σ-structureM satisfies (or is a model of) a Σ-sentence ϕ ifM |= ϕ. A formula is

satisfiable if and only if it has a model.

A theory given a signature Σ is defined as a set of deductively closed Σ-

formulas 1 We call function symbols occurring in T as interpreted, and all other

function symbols as uninterpreted. A formula ϕ is satisfiable modulo theory T if and

only there exists a model satisfying ϕ that also satisfies T . A set Γ of formulas T -

entails a Σ-formula ϕ, written Γ |=T ϕ, if every model of T that satisfies all formulas

in Γ satisfies ϕ as well. We say that a set of formulas Γ propositionally entails a

formula ϕ, written Γ |=p ϕ, if the set Γ ∪ {¬ϕ} is unsatisfiable. when considering all

atomic formulas in it as propositional variables.

Let F be a set of ground clauses, and let M be a satisfiable set of literals that

propositionally entails F . We will refer to M as a satisfying assignment for F . Let

TM be the set of all terms occurring in M . A set E ⊆ {s ≈ t | s, t ∈ TM} is a

congruence (for M) if it is closed under entailment: for all s, t ∈ TM , E |= s ≈ t

iff s ≈ t ∈ E. The congruence closure E∗ of E with respect to M is the smallest

1For simplicity, we define a theory here as a set of Σ-formulas Ax. More strictly, a theory
is defined as a set of (intended) interpretations that satisfy Ax.

37

congruence for M that includes E. By construction, E∗ is an equivalence relation

over TM . It can be shown (see, e.g., [2]) that E is satisfied by a structure M that

interprets each sort S as VS = {vS1 , . . . , vSnS
} consisting of an arbitrary representatives

for each equivalence class of E∗ over terms of sort S. We will callM a normal model.

Given a normal modelM, a model assignment is a pair, written t 7→ v, where

t is a term and v is a value from the domain ofM. Given a congruence closure E∗ for

M with representatives VS for sort S, we may construct a set of model assignments

AM consisting of t 7→ vi for all t ∈ TM , where vi is the representative term in the

equivalence class of E∗ containing t. We will call AM an evaluation map for M . We

will write AM(t) to denote the value that t is mapped to in AM .

4.2 DPLL(T) Procedure

This section formally presents the DPLL(T) procedure, which determines the

T -satisfiability of a ground set of clauses for a background theory T . In this section

and in the remainder of the thesis, we will consider a theory T = T1 ∪ . . .∪ Tm where

each Ti is a theory of signature Σi. We call free those sort and function symbols

whose interpretation is not restricted in any way by any of the theories, and consider

them as part of the EUF signature; we call built-in all the others. For convenience

and without loss of generality, we assume that Σ1, . . . ,Σm have the same set S of sort

symbols (including the Boolean sort Bool), and share a distinguished finite set CS of

free constants of sort S for each S ∈ S. Let C =
⋃
S∈S CS. We impose the restriction

that the signatures Σ1, . . . ,Σm share no function symbols, besides the constants in C.

We describe the DPLL(T) procedure for the theory T as a state transition

38

system. States are triples of the form 〈M,F,C〉 where

• M , the current assignment, is a sequence of literals and decision points •,

• F is a set of ground clauses derived from the original input problem, and

• C is either the distinguished value no or a clause, which we will refer to as a

conflict clause.

Each assignment M can be factored uniquely into the subsequence concatenation

M0 •M1 • · · · •Mn, where no Mi contains decision points. For i = 0, . . . , n, we call

Mi the decision level i of M and denote with M [i] the subsequence M0 • · · · •Mi.

When convenient, we will treat M as the set of its literals and call them the asserted

literals. The formulas in F have a particular purified form2 that can be assumed with

no loss of generality since any formula can be efficiently converted into that form

while preserving satisfiability in T : each element of F is a ground clause, and each

atom occurring in F is pure, that is, has signature Σi for some i ∈ {1, . . . ,m}.

Initial states have the form 〈∅, F0, no〉 where F0 is an input set of formulas to

be checked for satisfiability. The expected final states are 〈M,F,⊥〉 (which we will

call a fail state), when F0 is unsatisfiable in T ; or 〈M,F, no〉 with M satisfiable in T ,

F equisatisfiable with F0 in T (that is, F is satisfiable if and only if F0 is satisfiable),

and M |=p F .

Transition rules The possible behaviors of the system are defined by a set of non-

deterministic state transition rules, specifying a set of successor states for each current

2For details, see Appendix A.

39

Propagatei
l1, . . . , ln ∈ M l1, . . . , ln |=i l l ∈ LF ∪ IM l, l /∈ M

M := M l

Decide
l ∈ LF ∪ IM l, l /∈ M

M := M • l
Conflicti

C = no l1, . . . , ln ∈ M l1, . . . , ln |=i ⊥
C := l1 ∨ · · · ∨ ln

Explaini
C = l ∨D l1, . . . , ln |=i l l1, . . . , ln ≺M l

C := l1 ∨ · · · ∨ ln ∨D
Learn

C 6= no

F := F ∪ {C}

Learni
∅ |=i l1 ∨ · · · ∨ ln l1, . . . , ln ∈ LM|i ∪ IM ∪ Li

F := F ∪ {l1 ∨ · · · ∨ ln}

Backjump
C = l1 ∨ · · · ∨ ln ∨ l lev l1, . . . , lev ln ≤ i < lev l

C := no M := M[i] l

Figure 4.1. DPLL(T1, . . . , Tm) rules

state.3 The rules are provided in Figure 4.1 in guarded assignment form [41]. A

rule applies to a state s if all of its premises hold for s. In the rules, M, F and C

respectively denote the assignment, formula set, and conflict clause component of the

current state. The conclusion describes how each component is changed, if at all. We

write l to denote the complement of literal l and l ≺M l′ to indicate that l occurs

before l′ in M. The function lev maps each literal of M to the (unique) decision level

at which l occurs in M. The set LF (resp., LM) consists of all ground literals in F

(resp., all literals of M) and their complements. For i = 1, . . . ,m, the set LM|i consists

of the Σi-literals of LM. IM is the set of all interface literals of M: the equalities and

disequalities between constants c, d with c and d occurring in LM|i and LM|j for two

distinct i, j ∈ {1, . . . ,m}.

3To simplify the presentation, we do not consider here rules that model the forgetting
of learned lemmas and restarts of the SMT solver.

40

The index i ranges from 0 to m for the rules Propagatei, Conflicti and Ex-

plaini, and from 1 to m for Learni. In all rules, |=i abbreviates |=Ti when i > 0. In

Propagate0, l1, . . . , ln |=0 l simply means that l1 ∨ · · · ∨ ln ∨ l ∈ F. Similarly, in Con-

flict0, l1, . . . , ln |=0 ⊥ means that l1 ∨ · · · ∨ ln ∈ F; in Explain0, l1, . . . , ln |=0 l means

that l1 ∨ · · · ∨ ln ∨ l ∈ F. The rules Decide, Propagate0, Explain0, Conflict0, Learn,

and Backjump model the behavior of the SAT engine, which treats ground atoms as

Boolean variables. The rules Conflict0 and Explain0 model the conflict discovery and

analysis mechanism used by CDCL SAT solvers.

All the other rules model the interaction between the SAT engine and the

individual theory solvers in the overall SMT solver. Generally speaking, the system

uses the SAT engine to construct the assignment M as if the problem were propo-

sitional, but it periodically asks the sub-solvers for each theory Ti to check if the

set of Σi-constraints in M is unsatisfiable in Ti, or entails some yet undetermined

literal from LF ∪ IM. In the first case, the sub-solver returns an explanation of the

unsatisfiability as a conflict clause, which is modeled by Conflicti with i = 1, . . . ,m.

The propagation of entailed theory literals and the extension of the conflict analysis

mechanism to them is modeled by the rules Propagatei and Explaini. The inclu-

sion of the interface literals IM in Decide and Propagatei achieves the effect of the

Nelson-Oppen combination method [58, 12]. The rule Learni is needed to model the-

ory solvers following the splitting-on-demand paradigm [4]. When asked about the

satisfiability of their constraints, these solvers may instead return a splitting lemma,

a formula valid in their theory and encoding a guess that needs to be made about the

41

constraints before the solver can determine their satisfiability. The set Li in the rule

is a finite set consisting of literals, not present in the original formula F0, which may

be generated by such solvers.

Executions and correctness An execution of a transition system modeled as above

is a (possibly infinite) sequence s0, s1, . . . of states such that s0 is an initial state and

for all i ≥ 0, si+1 can be generated from si by the application of one of the transition

rules. A system state is irreducible if no transition rules besides Learni apply to it.

An exhausted execution is a finite execution whose last state is irreducible. A complete

execution is either an exhausted execution or an infinite execution. An application of

Learni is redundant in an execution if the execution contains a previous application

of Learni with the same premise.

Adapting results from [50, 41, 4], it can be shown that every execution ending

in 〈M,F,C〉 satisfies the following invariants: M contains only pure literals and no

repetitions; F |=T C and M |=p ¬C when C 6= no; every model of T satisfying F sat-

isfies the initial set of formulas. Moreover, the transition system is terminating : every

execution with no redundant applications of Learni is finite; and sound : for every

execution starting with a state 〈∅, F0, no〉 and ending with 〈M,F,⊥〉, the clause set

F0 is unsatisfiable in T . Under suitable assumptions on the sub-theories T1, . . . , Tm,

the system is also complete: for every exhausted execution starting with 〈∅, F0, no〉

and ending with 〈M,F, no〉, M is satisfiable in T and M |=p F0. Here, we provide a

sketch of the correctness proof for DPLL(T1, . . . , Tm).

Theorem 1 DPLL(T1, . . . , Tm) is sound, terminating, and complete for every set of

42

ground clauses F0.

Proof: (Sketch) To show soundness, notice that all reachable states of the form

〈M,F,C〉 where C 6= no are such that C is T -entailed by F . When applying Conflicti,

either C is Ti-entailed by some theory i > 0, or is a clause from F . When applying

Explaini, we replace a literal l in C with a set of literals l1, . . . , ln, which are entailed

by l either according to the theory when i > 0, or together with F when i = 0. Thus,

when a state of the form 〈M,F,⊥〉 is reachable, then ⊥ is entailed by F , and since

all clauses added to F are entailed by F0, ⊥ is entailed by F0 as well.

To show termination, notice that the set of literals LM ∪ IM ∪ L1 ∪ . . . ∪ Lm

is finite, and for all reachable states 〈M,F,C〉, we have that every literal in M and

occurring in clauses from F and C belong to this set. As a consequence, only a finite

number of states exist, and Learn and Learni can only be applied a finite number

of times. Consider a partial ordering � on assignments M , with maximal element

∅, such that (e1M1) � (e2M2) if either e1 = • 6= e2, or e1 = e2 and M1 � M2. In

addition, consider a partial ordering � on conflict clauses such that C1 � C2 if either

C1 is no, or C1 and C2 are not no and C2 ≺mulM C1, where ≺mulM is the multiset order

for ≺M . Extend this ordering to states such that 〈M1, F1, C1〉 � 〈M2, F2, C2〉 if and

only if M1 � M2 or M1 = M2 and C1 � C2. Applying all other rules (besides Learn

and Learni) to state s result in state s′ where s′ ≺ s. Since a finite number of states

exist, the procedure terminates.

To show completeness, notice that if we are in an irreducible state 〈M,F, no〉,

then M is a T -consistent satisfying assignment for F . To see this, since Decide does

43

proc check(M,F,C) ≡
(Propagate0 | . . . | Propagaten)∗;
if weak effort(M,F,C)

if ∃l ∈ LF . l, l /∈M
Decide on l

else if strong effort(M,F,C)
return 〈M,F, no〉

end
end
return check conflict(M,F,C)

proc check conflict(M,F,C) ≡
if C 6= no

(Explain0 | . . . | Explainn)∗;
if C = ∅

return 〈M,F,⊥〉
else

Learn; Backjump
end

end
return check(M,F,C)

Figure 4.2. A typical strategy check for applying DPLL(T1, . . . , Tm) rules. In this
method, weak effort and strong effort (not given) apply possibly multiple applications
of Learn1 . . . Learnn, or one application of Conflicti for some 1 ≤ i ≤ n. These
methods return false only when they apply at least one rule; strong effort(M,F,C)
returns true only when M is consistent according to T1 ∪ . . . ∪ Tm.

not apply, M must contain an assignment for all literals in F and moreover is a satis-

fying assignment for F since Conflict0 does not apply. Since Conflicti does not apply

for any i > 0, then M must be consistent according to T . Since F0 ⊆ F , we have that

M propositionally entails our input F0. Assuming we are given complete procedures

for determining when Conflicti applies, and a sufficient strategy for propagating a

set of interface literals in IM to ensure combined satisfiability between theories, we

are guaranteed that M (and thus F0) is satisfiable according to T1 ∪ . . . ∪ Tm. Thus,

since our procedure is terminating, it is also complete. �

4.2.1 A Typical Strategy for DPLL(T)

Figure 4.2 gives a typical strategy for applying the rules of DPLL(T). Given a

state 〈M,F,C〉, we apply the procedure check(M,F,C), whose pre-condition is that C

is no. We first apply the rule Propagatei for sub-theories Ti, possibly multiple times.

Afterwards, we apply a weak effort check, as given by the subprocedure weak effort,

44

which will either apply Conflicti for some 1 ≤ i ≤ n, or otherwise may apply Learni

possibly multiple times. Frequent weak effort checks are commonly used in SMT

solvers [50]. They are useful during the extension of the assignment L, to avoid

extensions that are clearly unsatisfiable in one of the theories.

When no conflicts or clauses are learned at weak effort, we apply Decide on

some unassigned literal l from LF , if one exists. Otherwise, our assignment M is

complete, and we apply a strong effort check, where the solver may apply Conflicti

or Learni possibly multiple times, and return false. Otherwise, it will return true if it

can determine that M is satisfiable in T , after which the method returns the (final)

state 〈M,F, no〉, indicating that F is satisfiable.

When a conflict clause C is discovered, either at weak or strong effort, we may

perform conflict analysis by repeated applications of Explaini. If we reach a state of

the form 〈M,F,⊥〉, then we know F is unsatisfiable, and we return. Otherwise, we

may add a learned clause via Learn, and apply Backjump to return to a previous

part of the search.

For soundness and termination, we require that each call to weak effort and

strong effort legally executes a set of DPLL(T1, . . . , Tm) rules each of which are not

redundant in the current execution. For termination, we require that weak effort and

strong effort return false only when they apply at least one rule. For completeness,

we require that strong effort returns true only when M is satisfiable in T1 ∪ . . . ∪ Tm.

45

CHAPTER 5

FINITE MODEL FINDING IN SMT

Finite model finding techniques can be used in the context of SMT for answer-

ing satisfiable in the presence of universally quantified formulas [53]. Recall that SMT

solvers work with sorted logics containing both interpreted and uninterpreted sorts.

Finite model finding focuses on finding finite models, that is, models that interpret

each uninterpreted sort as a finite set. The approach mentioned in this chapter will

be applicable to cases where each universal quantifier in the problem is either over an

uninterpreted sort, or a finite interpreted sort. Examples of interpreted finite sorts

include fixed length bit-vectors, finite (non-recursive) datatypes, as well as certain

cases of integer arithmetic where bounds on the quantifiers are explicitly provided

or can be inferred. Many applications of SMT rely on problems that fall into such

categories, given a careful encoding of the constraints they require.

An approach for finite model finding in SMT has advantages over both existing

approaches for quantifiers in SMT, as well as standard approaches to finite model

finding used by automated theorem provers. For the first, most algorithms used

by SMT solvers focus largely on finding proofs of unsatisfiability when quantified

formulas are asserted, answering unknown when a proof cannot be found. Enabling

SMT solvers to answer satisfiable for many problems containing quantifiers fills a

significant need for the automated reasoning community. In particular, when an SMT

solver fails to find a proof, it can provide a concrete counterexample. While model

46

finding methods for first-order formulas are well developed by the ATP community,

finite model finding in SMT has the advantage that (ground) decision procedures

for background theories can be combined modularly with techniques for reasoning

about quantified formulas. In industrial applications, the use of background theories

is nearly always required.

5.1 A Model-Based Approach for Quantifiers in SMT

In the following, we give an overview of our approach for finite model finding

in SMT, given an input formula ψ. Like standard approaches to handling quantifiers

in SMT, we first perform preprocessing steps to convert ψ into a purified form, as

described in Appendix A. As a result of this step, ψ is converted into a set of clauses

F0, where each clause in F0 is either ground, or an equivalence of the form a⇔ ∀xϕ,

where a is a Boolean variable, and each other occurrence of a in F0 has positive

polarity. In this procedure, a will serve as a proxy for ∀xϕ at the ground level.

Say we have converted ψ to a set of clauses F0 of this form. In the remainder of

this chapter, we will assume our input has been converted in this way. Our approach

will be based on constructing satisfying assignments M for an evolving set of ground

clauses F , where F0 ⊆ F . We will say a universally quantified formula ∀xϕ is active

in M if and only if a ∈ M , where a ⇔ ∀xϕ ∈ F . The approach is parameterized

by a quantifier instantiation heuristic H, which adds instances of active quantified

formulas to F .

47

Definition 1 (Model Finding Procedure)

1. Find a satisfying assignment M for F . Otherwise, if none exists, return

“unsatisfiable”.

2. From M , construct a candidate model M that satisfies F . Let V be the

union of the domain elements of each sort S in M.

3. Let Q be the set of quantified formulas that are active in M . Using H, for

each ∀xϕ ∈ Q where a⇔ ∀xϕ ∈ F , choose a set Ix of substitutions from x

to terms in V, and add the instances {¬a∨ϕσ | σ ∈ Ix} to F . If the union

of all these sets is empty, return “satisfiable”, otherwise go to Step 1.

In Step 3, we assume preprocessing techniques from Appendix A are applied

to each ¬a∨ϕσ, and thus each instance may correspond to multiple clauses that are

added to F .

The following sections will examine these steps in more detail. In Section 5.2,

we describe strategies for finding satisfying assignments to the ground set of clauses

F (Step 1). In particular, we will focus on finding satisfying assignments that induce

candidate models with a small number of domain elements V. In Section 5.3, we

describe various ways for representing and constructing candidate models M (Step

2). In Section 5.4, we describe methods for checking the satisfiability of our set of

active quantified formulas Q based on M, and various strategies for choosing the

48

substitutions Ix (Step 3).

5.2 EUF with Finite Cardinality Constraints (EFCC)

In this section, we introduce the theory of EUF with finite cardinality con-

straints (EFCC), which will be used as a way of finding candidate models with small

domain sizes. We describe its signature (ΣEFCC), give a decision procedure for a con-

junction of ground constraints in this theory, and describe how it can be integrated

into the DPLL(T1, . . . , Tm) architecture as described in Section 4.2. We then describe

an efficient solver for EFCC that works well in practice, and how it can be used for

minimizing the number of equivalence classes in the congruence closure maintained by

the solver. Finally, we show a strategy, fixed-cardinality DPLL(T1, . . . , Tm), for estab-

lishing finite cardinality bounds for uninterpreted sorts during the DPLL(T1, . . . , Tm)

procedure.

Definition 2 (Theory EFCC of EUF with finite cardinality constraints) The

signature ΣEFCC of EFCC extends the signature of EUF with a constant cardS,k of sort

Bool for each free sort S and integer k > 0. Its models are all ΣEFCC-interpretations

that satisfy each cardS,k exactly when they interpret S as a set of cardinality n ≤ k.

Note that the only ground atoms in EFCC besides those of the form cardS,k

are equalities. It is not difficult to show, using reductions to and from graph coloring,

that the satisfiability of ground literals in EFCC is an NP-complete problem.

49

5.2.1 Decision Procedure

This section presents a decision procedure for determining the satisfiability of

ground constraints with the theory of EUF with finite cardinality constraints. For

now, we assume a signature ΣEFCC containing a single uninterpreted sort S. As input,

our procedure takes a set M consisting of cardinality constraint literals for S, and

equalities and disequalities over ground ΣEFCC-terms of sort S.

Decision Procedure for EFCC: First, construct a congruence closure

E∗ over the terms of sort S from M . If there exists a t ≈ s ∈ E∗ for which

t 6≈ s ∈ M , return unsatisfiable. If there exists no positively asserted cardinality

literal in M , return satisfiable. Otherwise, assume k is the least integer such that

cardS,k ∈ M . If there exists ¬cardS,j in M , where j ≥ k, return unsatisfiable. If

there are k or fewer equivalence classes in E∗, return satisfiable. If there exists

two equivalence classes in E∗ with representatives s and t such that M 6|= s 6≈ t,

split the problem into M ∪ s ≈ t and M ∪ s 6≈ t, that is, return satisfiable

if either branch is satisfiable, and unsatisfiable otherwise. Otherwise, there are

k + 1 equivalence classes with representatives t1, . . . , tk+1 where M |= ti 6≈ tj for

all 1 ≤ i 6= j ≤ k + 1; report unsatisfiable. �

Lemma 1 The above procedure is sound, terminating and complete for every set of

ground ΣEFCC-literals M .

Proof: To show that the procedure is sound, first note that splitting the problem

based on equalities s ≈ t is sound, since all models satisfy exactly one of s ≈ t

50

and s 6≈ t. We either answer unsatisfiable when an equality t ≈ s is entailed by M

where t 6≈ s is also in M , when conflicting literals cardS,k and ¬cardS,j are asserted

for j ≥ k, or when k + 1 equivalence classes exist containing terms that are entailed

to be disequal by M . For conflicts of the second type, no model can be constructed

containing less than or equal to k and more than j elements in the domain of S. For

conflicts of the third type, no model can be constructed satisfying cardS,k, since more

than k equivalence classes are entailed to be disequal in M .

To show termination, assuming that no conflict is found between cardinality

literals, we will construct a congruence closure E∗, consisting of a set of equivalence

classes with a set of representatives, call them VS. If successful, it can be shown that

splitting on the equality of s and t decreases the size of the set {(s, t) | s, t ∈ VS, s 6=

t,M 6|= s 6≈ t}, or in other words, the number of equivalence classes that are pairwise

not entailed to be disequal. In either branch when splitting on s ≈ t, no equivalence

classes are created (although two existing ones are possibly merged), and (s, t) is no

longer an element of this set. When this set is empty, the algorithm is guaranteed

to terminate, since either more than k equivalence classes are entailed to be distinct,

in which case the procedure answers unsatisfiable, or otherwise there are k or fewer

equivalence classes, in which case the procedure answers satisfiable.

To show completeness, we answer satisfiable when our congruence closure E∗

contains no equality whose negation occurs in M , and either no cardinality literal is

asserted positively in M , or E∗ contains less than or equal to k equivalence classes

where k is the smallest integer such that cardS,k ∈M . In either case, we may construct

51

a model where S is interpreted as a set of size j, and j ≤ k for all cardS,k ∈ M , and

j ≥ k for all ¬cardS,k ∈ M . If j is greater than the number of equivalence classes in

E∗, new elements can be added to the domain of S without affecting the satisfiability

of the equalities and disequalities in M . Thus, since the procedure is terminating, it

is also complete. �

Corollary 1 Every satisfiable ground set of ΣEFCC-literals has a finite model.

Proof: Whenever our decision procedure answers satisfiable, we may construct a

finite model where S is interpreted as the set of representative terms from each equiv-

alence class, as well as a (finite) number of additional elements that ensure that all

literals of the form ¬cardS,j in M are satisfied. �

5.2.2 Integration into DPLL(T1, . . . , Tm)

We now describe how the decision procedure for EFCC can be integrated into

the DPLL(T1, . . . , Tm) framework, where Ti is EFCC. While updating the current

state 〈M,F,C〉, we assume a standard algorithm for computing a congruence closure

for M and for reporting conflicts when none exists.

In addition to determining M is unsatisfiable due to congruence, the decision

procedure reports “unsatisfiable” in one of two ways, each of which corresponds to a

legal application of Conflicti. First, when M contains conflicting cardinality literals

for some sort S, we may apply Conflicti with C := (¬cardS,k ∨ cardS,j) for j > k.

Second, when M contains cardS,k and entails that there are more than k equivalence

classes of sort S, we may apply Conflicti with C := (l1 ∨ . . . ∨ ln ∨ ¬cardS,k), where

52

l1, . . . , ln is a set of equalities and disequalities from M that entail that some terms

t1, . . . , tn are distinct in all models of M . In either case, the negated conjunction of

the literals from the conflict imply a contradiction.

To model the splitting as performed by the decision procedure, when M con-

tains cardS,k and more than k equivalence classes currently exist, we may apply the

rule Learni to add (s ≈ t ∨ s 6≈ t) to our set of clauses F for two terms s, t residing

in two different equivalence classes where M 6|= s 6≈ t. Since the algorithm for con-

structing a congruence closure will not introduce new terms beyond those in F0, we

are ensured that s and t are terms that exist in our original set of clauses F0.

Theorem 2 DPLL(T1, . . . , Tm, TEFCC) is sound, terminating and complete for every

set of ground clauses F0.

Proof: Following the requirements from Section 4.2, the procedure is sound since

we apply Conflicti only to clauses whose negated literals imply a contradiction and

Learni to clauses that hold in all models. To show our procedure is terminating, the

only literals introduced by applications of Learni (call them LEFCC) are equalities

and disequalities between terms occurring in F0. Since the set LEFCC is finite, by

the same argument used in Theorem 1, the procedure terminates. We can show

completeness using the same argument as Lemma 1. In particular, the procedure

is terminating, and only terminates in a final state 〈M,F, no〉 when the congruence

closure we constructed contains k or fewer equivalence classes for all cardS,k ∈M . In

such states, we are guaranteed that M is satisfiable in EFCC. �

53

5.2.3 Efficient Solver

We now describe techniques that make our solver for EFCC efficient in prac-

tice when integrated in the DPLL(T1, . . . , Tm, TEFCC) architecture. In the following,

we describe the operation of the solver during weak and strong effort checks (as in-

troduced in Section 4.2.1) given a satisfying assignment M . For now, we assume that

M contains constraints for a single uninterpreted sort S only. We also assume that

at least one cardinality literal for S has been asserted positively in M (otherwise, the

solver for EFCC acts similar to a standard solver for EUF), and that k is the smallest

integer such that cardS,k ∈M .

5.2.3.1 Weak Effort Check

At weak effort, we recognize conflicting states of three different forms, as men-

tioned in Section 5.2.1. First, if we are unable to construct a congruence closure for

M that is consistent with the disequalities from M , we report a conflict that describes

the inconsistency. Second, given cardS,k ∈ M , if ¬cardS,j is asserted in M for j > k,

we report the conflict (¬cardS,k ∨ cardS,j). Third, we may recognize cases when there

are k + 1 equivalence classes t1, . . . , tk+1 that are currently entailed to be disequal.

In this case we use Learni to add the lemma (¬distinct(t1, . . . tk+1) ∨ ¬cardS,k) to F ,

where distinct(t1, . . . tk+1) is shorthand for the conjunction of disequalities stating that

the terms t1, . . . , tk+1 are pairwise distinct elements. We will refer to the aforemen-

tioned lemma as a clique lemma. As mentioned earlier, we could alternatively apply

Conflicti to report a conflict of form (l1 ∨ . . . ∨ ln ∨ ¬cardS,k), where l1, . . . , ln are

equalities and disequalities that entail distinct(t1, . . . tk+1). However, we have found

54

that in practice that this is inefficient, as many different sets of literals can be found

for essentially the same conflict.

For the purposes of discovering unsatisfiable states of the third form, our

procedure will incrementally maintain a disequality graph D for S, whose vertices

correspond to the equivalence classes of sort S, and whose edges represent disequalities

between these equivalence classes. When convenient, we will identify these equivalence

classes with their representative terms. In this representation, a sufficient condition

for discovering a conflict reduces to finding a (k + 1)-clique in the disequality graph

D. Now, even just checking for the presence of a (k + 1)-clique in a n-vertex graph

is too expensive in general—as its worst-case complexity is O(nk+1(k+ 1)2). For this

reason, our procedure will be based on an incomplete check for candidate cliques.

This is done by partitioning the vertices of the graph into regions.

Definition 3 (k-Region) Given an undirected graph D = (V,E) and a set of ver-

tices R ⊆ V . For a vertex v ∈ R, let ext(v) be the number of edges between v and

vertices not in R. We say R is a k-region of D if for all 0 ≤ i ≤ k, the size of the

set {v | v ∈ R, ext(v) ≥ i} is less than or equal to k− i. A k-regionalization RD of D

is a partition of V into k-regions, which we will refer to as simply a regionalization

when k is understood or not important.

Lemma 2 If RD is a k-regionalization of D, and D contains a k-clique C, then all

the vertices in C reside in the same region of RD.

Proof: If k ≤ 1, the statement is trivial. Otherwise, assume by contradiction D

contains k-clique C = C1 ∪ C2 for non-empty C1, C2, where v ∈ R for each v ∈ C1

55

and v 6∈ R for each v ∈ C2, where R is some region of RD. Say | C2 |= i, and thus

| C1 |= k− i. Since C is a k-clique, we have that ext(v) must be greater than or equal

to i, for all v ∈ C1, contradicting the assumption that R is a region. �

Notice that any graphD = (V,E) has a trivial regionalization, which partitions

V into one set containing all vertices in V .

Example 4 Consider the constraints {c1 6≈ c2, c2 6≈ c3, c3 6≈ c4}, all over sort S, and

the partition {{c1, c2}, {c3, c4}}. This partition is a 3-regionalization in the disequality

graph induced by this set, because a 3-clique can span two regions only if it contains two

vertices with interregional edges, and this partition only has one such edge. Adding

the disequality c2 6≈ c4 or c1 6≈ c4 breaks the regionalization invariant.

Let us examine how to maintain a k-regionalization in an (initially empty)

evolving graph D, that is, one supporting the dynamic allocation of vertices and

edges, as well as the merge operation on vertices. These operations will be triggered

by operations performed on the congruence closure data structure maintained by

the solver. Assuming we have a regionalization RD for graph D, we show how to

construct a regionalization RD′ for the resulting graph D′ obtained as a result of each

of these operations. In the following, R(v) denotes the region in a regionalization R

that contains the vertex v.

Adding Vertices When a vertex v is added to D, RD′ is the result of adding the

singleton region {v} to RD. �

Adding Edges When we add an edge (v1, v2) to D, we have that RD′ = RD is still

56

proc fix region(R,R) ≡
if R is not a k-region

choose some R′ ∈ R, where R′ 6= R
R := R \ {R,R′} ∪ {R ∪R′}
fix region({R ∪R′},R)

end

Figure 5.1. The fix region procedure. This procedure is called on region R in k-
regionalization R. As a heuristic, we choose the R′ with the highest density of
interregional edges to R.

a partition of V . However, RD(v1) or RD(v2) may not be regions of D′. We apply the

procedure fix region from Figure 5.1 first to (RD(v1),RD′) and then to (RD(v2),RD′)

to ensure that RD′ is a regionalization. �

Merging Vertices When a vertex v1 is merged with another vertex v2 in D, we have

that D′ is a quotient graph of D, that is, D′ contains a new vertex, call it u, connected

to all vertices that are connected to either v1 or v2 in D. If RD(v1) is equal to RD(v2),

let R be (RD(v1) ∪ {u}) \ {v1, v2}. Then RD′ is equal to (RD ∪ R) \ {RD(v1)}. To

ensure RD′ is a regionalization, we apply fix region to (R,RD′). If RD(v1) is not equal

to RD(v2), let {vi, vj} = {v1, v2}, Ri = (RD(vi)∪{u})\{vi}, and Rj = RD(vj)\{vj}.

Then, RD′ is equal to (RD ∪ {Ri, Rj}) \ {RD(v1),RD(v2)}. We apply fix region to

(Ri,RD′) and subsequently to (Rj,RD′). �

Given that cardS,k is asserted in M , we are interested in finding cliques of

size k + 1 in the disequality graph D for S induced by M . For this purpose, our

solver maintains a (k + 1)-regionalization RD of D. We will call each region with at

least k + 1 vertices a large region, and all others small regions. For the purposes of

57

efficiently discovering k + 1-cliques, we will maintain a watched set of k + 1 vertices

for each large region R in RD, which we will write as w(R). This set is maintained

incrementally when vertices are added or removed from regions, and when regions are

combined.

Maintaining watched sets of vertices helps recognize conflicting states during

a weak effort check. If there exists a large region R in RD where each vertex in w(R)

is connected, then we add the clique lemma (¬distinct(t1, . . . , tk+1) ∨ ¬cardS,k) to F

using the rule Learni, where w(R) = {t1, . . . , tk+1}.

5.2.3.2 Strong Effort Check

During a strong effort check, our solver must determine that the current set

of constraints is consistent, or otherwise report a conflict or lemma. As mentioned in

Section 5.2.1, our solver does the former only when k or fewer equivalence classes of

sort S exist. Otherwise, we will choose two equivalence classes that are not currently

entailed to be distinct to identify. This choice is guided the watched set of vertices

within regions. In particular, for each large region R in RD, we know that w(R) does

not form a clique. We choose two vertices ti, tj ∈ w(R) that are not connected in D,

and use Learni to add the lemma (ti ≈ tj ∨ ti 6≈ tj) to F . We also tell the solver that

it should subsequently decide on ti ≈ tj with positive polarity. Otherwise, if no large

regions exist in RD, then either D contains fewer than k + 1 vertices, in which case

we may answer “satisfiable”, or otherwise there must exist at least two small regions.

In the latter case, we select two regions Ri and Rj based on a heuristic1, combine

1Namely, the maximum density of interregional edges.

58

them into a new region Ri ∪ Rj, apply fix region to Ri ∪ Rj, and repeat the strong

effort check.

We illustrate the operation of the EFCC solver with a couple of examples.

Example 5 Consider the constraints {a ≈ f(b), b ≈ f(c), a 6≈ b, b 6≈ c, cardS,2}

where all terms are over the single sort S. First, the EFCC solver computes the

congruence {{a, f(b)}, {b, f(c)}, {c}}. Using a, b, c as the representatives, the solver

builds the disequality graph with edges {(a, b), (b, c)}. Since cardS,2 limits the size of

S to at most 2, the solver generates the lemma a ≈ c ∨ a 6≈ c. Adding the constraint

a ≈ c produces no conflicts and allows the EFCC solver to answer “satisfiable”.

Example 6 Consider the constraints {c1 ≈ c, c4 ≈ c, c1 6≈ c2, c2 6≈ c3, c3 6≈ c4, cardS,2}

where all the constants have sort S. The corresponding disequality graph for these con-

straints contains a clique of size 3. By discovering that clique, the EFCC solver can

conclude that it is impossible to shrink the model to 2 elements, and hence reports a

clique lemma of the form ¬distinct(c1, c2, c3) ∨ ¬cardS,2.

Because of congruence constraints, guesses on merge lemmas may sometimes

lead to inconsistencies when constructing the congruence closure, unless we compute

and propagate all entailed disequalities—which is usually not the case, for efficiency

reasons. This is demonstrated in the following example.

Example 7 Consider the constraints {c3 ≈ f(c1), c4 ≈ f(c2), c3 6≈ c4, cardS,2} where

all the terms have sort S. Unless the solver propagates the entailed literal c1 6≈ c2, the

EFCC solver will construct the disequality graph ({c1, c2, c3, c4}, {(c3, c4)}) for S, and

59

may decide to assert c1 ≈ c2. The subset {c3 ≈ f(c1), c4 ≈ f(c2), c3 6≈ c4, c1 ≈ c2}

of the new assignment will then be found unsatisfiable by congruence closure. In

contrast, deciding c1 ≈ c3 and c2 ≈ c4 will produce a model of the required cardinality.

It is immediate that the solver in this section described in this section is also

sound. To argue that it is terminating, notice that fix region is terminating since

each recursive call to this procedure reduces the number of regions in RD by one,

and similarly for repeated calls of the strong effort check. Additionally, we have that

all introduced literals (either those when reporting clique lemmas at weak effort, or

when splitting on equalities at strong effort) are taken from the finite set of equalities

and disequalities between terms occurring in our original clause set F0. Since the

conditions for answering satisfiable are the same as those as mentioned in Lemma 1

and the solver mentioned in this section is terminating, it is also complete.

5.2.4 Establishing Finite Cardinalities

We have now shown that an efficient solver for EFCC can be integrated into

the DPLL(T1, . . . , Tm, TEFCC) architecture. Now, we focus our attention on how the

EFCC theory solver can be used for finding a satisfying assignment for a set of ground

clauses F containing a bounded number of equivalence classes of a particular sort S.

In other words, given a satisfiable set of ground clauses F , our procedure will find a

(ideally minimal) integer k > 0 such that F ∧cardS,k is satisfiable. Due to Corollary 1,

one trivial way to do this would be the following. First, use the solver to determine

if F ∧ cardS,1 is satisfiable, and answer satisfiable if so. If this is unsatisfiable, use the

solver to determine if F ∧cardS,2 is satisfiable, and so on. An immediate disadvantage

60

of this approach is that in the absence of conflict analysis, it will not be able to

determine that F is unsatisfiable. In contrast, the following approach does not have

this restriction.

We assume the use of the EFCC theory solver as described in the previous

section, which is based on the strategy for DPLL(T1, . . . , Tm) as introduced in Sec-

tion 4.2.1. We impose the following modifications. When the weak effort check does

not produce a conflict, we find the least integer k > 0 such that ¬cardS,k is not as-

serted in M . If cardS,k is not in M , we ensure that cardS,k is a literal in F by applying

Learni with (cardS,k∨¬cardS,k). Then, when choosing a decision literal, we insist that

Decide be applied to cardS,k.

In this approach, all other applications of Decide occur when cardS,k ∈M for

some k. In other words, all search is performed for a fixed cardinality for S. For this

reason, we call the approach mentioned here fixed-cardinality DPLL(T1, . . . , Tm, TEFCC).

5.2.4.1 Extension to Multiple Sorts

Now, let us consider the case when our signature Σ contains multiple sorts

S1, . . . , Sn, and we want to establish finite cardinalities for each of them. Given a

set of input clauses F , our goal will be to determine that either F is unsatisfiable,

or find a tuple (k1, . . . , kn) such that F ∧ cardS1,k1 ∧ . . . ∧ cardSn,kn is satisfiable. One

challenge is having a fair strategy when considering which cardinalities to increment

in the case of conflicts. For instance, consider the formula (c 6≈ d ∨ ϕ), where c and

d are constants of sort S1, and the formula ϕ entails that no finite models of sort S2

61

exist 2. Clearly this formula has a model where the cardinality of sorts S1 and S2 are

(2, 1) respectively. However, in the absence of a fair strategy, a naive approach could

search for models of size (1, 1), (1, 2), (1, 3), and so on, ad infinitum.

To extend fixed-cardinality DPLL(T1, . . . , Tm, TEFCC) so that it is fair in the

presence of multiple sorts, we extend the signature Σ of EFCC to include Boolean

constants of the form cardΣ,k for each integer k > 0. A Σ-interpretation I that

interprets each sort Si ∈ Σ as a set of size ki for 1 ≤ i ≤ n, satisfies cardΣ,k if and

only if k1 + . . .+ kn ≤ k.

We then use a two-tiered strategy for choosing decision literals. First, if no

literal of the form cardΣ,k exists in M , we decide on cardΣ,k for the least k ≥ n

such that ¬cardΣ,k 6∈ M , ensuring that this literal exists in F using Learni. Second,

we determine if cardΣ,k is in conflict with the negated cardinality literals from sorts

S1, . . . , Sn. If so, we report a conflict of the form (cardSi1,ki1 ∨ . . . ∨ cardSim,kim ∨

¬cardΣ,k), where i1, . . . , im are distinct, and ki1 + . . . + kim + n > k. In the case

when no conflict of this form is found, if no literal of the form cardSi,ki exists in M ,

we similarly apply Learni (if necessary) and subsequently decide on cardSi,ki for a

sort Si, where ki is the least ki ≥ 1 such that ¬cardSi,ki 6∈ M . The order on which

we decide cardinality literals between sorts is arbitrary. In the presentation, we will

assume we choose cardinality literals for Si before Sj where i < j.

For consistency, we assume that even in the case Σ contains a single unin-

2In reality, ϕ must contain quantifiers for this to be the case. As a result, fairness will
not be an issue until later sections where quantified formulas are addressed.

62

terpreted sort, we use the methods introduced for ensuring fairness between multi-

ple sorts. The following summarizes the invariant maintained by fixed-cardinality

DPLL(T1, . . . , Tm, TEFCC), in particular, that it decides upon (minimal) cardinality

literals positively before deciding upon any other literal.

Proposition 1 Given a signature Σ containing uninterpreted sorts S1, . . . , Sn, for

each execution of fixed-cardinality DPLL(T1, . . . , Tm, TEFCC) ending in 〈M,F,C〉, ei-

ther M contains no decision points, or M is of the form N • cardΣ,k M0 (•cardS1,k1M1)

· · · (•cardSm,km Mm) N ′, for some m, 0 ≤ m ≤ n, where N,M0,M1, . . . ,Mm contain

no decision points, N ′ contains no decision points if m < n, ¬cardΣ,j ≺M cardΣ,k for

each n ≤ j < k, and ¬cardSi,j ≺M cardSi,ki for each 1 ≤ i ≤ m, 1 ≤ j < ki.

The following lemma states that fixed-cardinality DPLL(T1, . . . , Tm, TEFCC)

eventually rules out the current cardinality k of sorts in our signature whenever no

model of that size exists. The procedure will either find a conflict that depends on the

cardinality constraint, or otherwise find a conflict that is independent of cardinality,

thereby showing the input is unsatisfiable.

Lemma 3 Given a set of ground clauses F0, if F0 ∧ cardΣ,k is unsatisfiable, then

every complete execution of fixed-cardinality DPLL(T1, . . . , Tm, TEFCC) for F0 having

a prefix ending in 〈M • cardΣ,k, F, no〉 also has a prefix ending in either a fail state,

or in 〈M N¬cardΣ,k, F
′, no〉, where N contains no decision points, and F ⊆ F ′.

Proof: Assume we have an execution e of fixed-cardinality DPLL(T1, . . . , Tm, TEFCC)

that has a finite prefix ending in state 〈M•cardΣ,k, F, no〉 for which the lemma does not

63

hold. Since fixed-cardinality DPLL(T1, . . . , Tm, TEFCC) is complete due to Theorem 2,

because of the invariant stated in Proposition 1, e must be an infinite execution where

¬cardΣ,k is not in the assignment of any state in e. In all such states, the literals LEFCC

introduced by applications of Learni consist (at most) of the set of all equalities and

disequalities between terms from F , and literals of the form cardSi,j and ¬cardSi,j for

j < (k − n) for each sort Si in Σ. Since this set is finite, using a similar argument

as the one for termination in Theorem 1, we have that e cannot be infinite, thus

contradicting our assumption. �

Theorem 3 Fixed-cardinality DPLL(T1, . . . , Tm, TEFCC) is sound, terminating and

complete for every set of ground clauses F .

Proof: Assume our signature Σ contains uninterpreted sorts S1, . . . , Sn. The pro-

cedure is sound as a result of Theorem 2, and that splitting on cardinality literals

preserves all models.

To show it is terminating, we consider two cases. In the case that F is un-

satisfiable, for each 1 ≤ i ≤ n, let ki be smallest integer greater than or equal to

the number of terms of sort Si in F , and such that the literal ¬cardSi,ki does not

occur in F . Let k be the smallest integer greater than or equal to k1 + . . . + kn,

and such that the literal ¬cardΣ,k does not occur in F . Assume that there exists an

infinite execution e of fixed-cardinality DPLL(T1, . . . , Tm, TEFCC). As a consequence

of Lemma 3 for cardinalities n, . . . , k, we can conclude there is a prefix of e ending in

〈M¬cardΣ,k, F
′, no〉. For this to be the case, either ¬cardΣ,k was added to the assign-

ment due to propagation or due to Backjump. In either case, we have that ¬cardΣ,k

64

either must exist as a literal in some clause in F ′, or must be implied by a set of

literals from our assignment. Due to our selection of k, this is a contradiction. Thus,

when F is unsatisfiable, every execution of fixed-cardinality DPLL(T1, . . . , Tm, TEFCC)

for F terminates.

In the case that F is satisfiable, since it is ground, due to Corollary 1, it

must have a model with domain size ki for Si for some finite integer ki > 0, for

each 1 ≤ i ≤ n. Let k = k1 + . . . + kn. It can be shown that the set of literals

LEFCC introduced by applications of Learni in this procedure consists (at most) of

the set of all equalities and disequalities between terms from F , literals of the form

cardΣ,j and ¬cardΣ,j for j = n, . . . , k, as well as all literals of the form cardSi,j and

¬cardSi,j for j < (k − n), for each sort Si. Since this set is finite, by the same

argument as Theorem 1, the procedure terminates, and thus for the same argument

as in Theorem 2, it is also complete. �

5.3 Constructing Candidate Models

Now that we have seen how satisfying assignments M are constructed for a

ground set of clauses F , we will focus our attention to constructing candidate models

M. Assuming a signature Σ, a candidate modelM is a Σ-structure that satisfies F ,

and may also satisfy our set of (active) quantified formulas Q as well.

We construct a candidate modelM containing a finite set of domain elements

VS for each sort S occurring in Σ, and complete definitions for all function and

predicate symbols of Σ. Our model construction uses a particular choice of domain

elements, which will ensure the finite model completeness and refutational complete-

65

ness of our approach in the presence of quantified formulas. In our construction, the

definition a function symbol f of sort S1 × . . . × Sn → S, is conceptually a (finite)

map from VS1× . . .VSn to VS. We will construct the interpretation of each function

symbol f from the set of asserted ground equalities in M with terms containing f .

Notice that collecting those equalities typically produces only a partial definition for

f . To complete the interpretation of f , one can use arbitrary values for the missing

function tuples. We will see various strategies for choosing these values in this section.

5.3.1 Choosing Domain Elements

As mentioned, for each uninterpreted sort S in our signature, the domain

elements VS in a candidate model M can be taken from the congruence closure E∗

for M . For the sake of showing termination in the presence of our quantified formulas

in Section 5.5, we will impose additional restrictions on which terms can be chosen

for VS, based on the following definition.

Definition 4 The depth of a ground term t, written depth(t), is defined inductively

such that depth(f(t1, . . . , tn)) = 1 + max({depth(ti) | 1 ≤ i ≤ n} ∪ {0}).

When choosing a representative term for an equivalence class in E∗ containing

term t, we choose a term s of minimal depth such that E∗ |= t ≈ s, where smay or may

not be a term occurring in E∗. Such a term can be found using the following algorithm.

First, for every equivalence class containing some constant term c, we choose c as the

representative term for that equivalence class. Let E0 be the set of equivalence classes

containing a constant. For n > 0, let En be the set containing En−1, as well as all

66

equivalence classes containing a term t such that E∗ |= f(t1, . . . , tn) ≈ t, and t1, . . . , tn

occur in En−1. In this case, we assign f(t1, . . . , tn) as the representative term of the

equivalence class containing t.

Example 8 Say we are given a congruence closure E∗ with equivalence classes {a, g(a)}

and {f(g(a))}. Our algorithm will choose a as the representative of the first equiva-

lence class, and subsequently choose f(a) for the second equivalence class, noting that

E∗ |= f(a) ≈ f(g(a)).

It is easy to see this algorithm eventually assigns terms to all equivalence

classes, and that depth(t) ≤| VS | for all representative terms t of sort S. To show

the latter, notice that each equivalence class occurring in Ei but not Ei−1 is assigned a

representative term having depth of exactly i. Assuming that there is a representative

term having depth j for some j >| VS | means that we computed the sets E0 (. . . (

Ej. However, this is impossible because the size of Ej is at most | VS |.

The above strategy is enough to ensure the finite-model completeness of our

approach on inputs where quantification is limited to uninterpreted sorts. To show

our approach is refutationally complete, we will require that for each equivalence class

in E∗ containing term t, we choose a representative s whereM[[s]] =M[[t]], and s has

minimal depth with respect to all such Σ-terms. Unfortunately, to find s, we must

first construct M, and thus our definition is circular. To solve this, we can assume

M is first constructed using the techniques mentioned throughout this section, and

67

afterwards the representative term for t is replaced with such an s. 3

5.3.2 Representing Function Definitions

Now that we have seen how domain elements are chosen for a candidate model

M, we focus on constructing representations for function symbols. Such functions will

be represented using the data structures described in this section. In the following,

we use symbols such as v or w to refer to values, that is, the domain elements V of

M. We use symbols u to refer to abstract values, where:

u := ⊥ | v | ∗ (5.1)

Conceptually, ⊥ is intended to mean no value, and ∗ is any value. The con-

cretization of an abstract value for uninterpreted term t, written γ(u)[t], is a formula

where:

γ(⊥)[t] := false (5.2)

γ(v)[t] := (t ≈ v) (5.3)

γ(∗)[t] := true (5.4)

An abstract value u has sort S if u is ∗, ⊥, or is a value v of sort S. For γ(u)[t]

where t is a term of sort S, we require u to have sort S as well. We order abstract

values according to a partial ordering �, such u � u′ if and only if γ(u′)[x]⇒ γ(u)[x]

is valid in the theory of equality for a variable x. We will say u generalizes u′ if u � u′.

We say u and u′ are compatible if and only if γ(u)[x] ∧ γ(u′)[x] is satisfiable in the

3While doing so allows us to show the refutational completeness of our approach, for
performance reasons (see Section 5.7), this strategy is not used in our implementation.

68

theory of equality. Define the meet of two abstract values, written u 4 u′, such that

γ(u 4 u′)[x] is equivalent to γ(u)[x] ∧ γ(u′)[x] in the theory of equality. It can be

shown that the meet of two abstract values is well defined, i.e. u 4 u′ = ⊥ if either u

or u′ is ⊥, u 4 ∗ = u, ∗ 4 u′ = u′, and v1 4 v2 = v1 if v1 = v2 and ⊥ otherwise. We

extend these notions to n-tuples of abstract values, written as symbols such as c and

d, which we call conditions. We will commonly write c.i to denote the ith element of

tuple c.

The concretization of condition c for uninterpreted terms t is defined as:

γ(c)[t] := γ(c.1)[t.1] ∧ . . . ∧ γ(c.n)[t.n] (5.5)

Two conditions are compatible if γ(c)[x] ∧ γ(d)[x] is satisfiable in the theory

of equality, where x is a tuple of distinct variables. The meet of two conditions c 4 d

is defined such that γ(c 4 d)[x] is equivalent to γ(c)[x] ∧ γ(d)[x] in the theory of

equality. Any tuple containing ⊥ as an element we will write simply as ⊥. We call

⊥ the empty condition and all others non-empty. Extend the partial order � to

conditions, such that c � d if and only if γ(d)[x] ⇒ γ(c)[x] is a tautology in the

theory of equality. The condition c 4i u refers to c with the element at position i

replaced by the element c.i 4 u. For example, (∗, v2) 41 v1 = (v1, v2).

The following data structure can be used for representing the interpretation

of functions in a candidate model.

Definition 5 (Function Definition) A definition of arity n is a list of entries c1 →

t1, . . . , cm → tm, where t1 . . . tm are terms, c1 . . . cm are non-empty n-tuples of abstract

values, and ci 6� cj for all 1 ≤ i < j ≤ m.

69

We will write ∅ to denote the definition containing no entries. A definition

is complete if and only if it contains an entry of the form (∗, . . . , ∗) → t, which we

will write simply as ∗ → t. The concretization of a complete definition is defined as

follows, where ite is the logical if-then-else operator:

γ(∗ → t) := t (5.6)

γ(c1 → t1, . . . , cm → tm, ∗ → t) := ite(γ(c1), t1, . . . ite(γ(cm), tm, t) . . .) (5.7)

In the remainder of this section, we assume we are given a set of ground

clauses F , a satisfying assignment M for F , a congruence closure E∗ for M and an

evaluation map AM for M . We will write [[t]] to denote the evaluation of a term t

that is composed of values from V, the equality predicate ≈ and logical connectives

such as ite, and ∧. For all such terms, we assume this evaluation is performed in the

obvious way.

Example 9 Say we wish to define a unary predicate P that is true for v but false

otherwise. Predicate P can be represented by the definition (v)→ true, (∗)→ false.

Example 10 Say we wish to define a binary function f that maps every pair whose

first argument is v to the value 1, every pair whose second argument is w to 2 and the

remaining pairs to 0. Function f can be represented by the definition Df := (v, ∗)→ 1,

(∗, w)→ 2, (∗, ∗)→ 0. To interpret the term f(v, w), notice that γ(Df)[(v, w)] is the

term ite(v ≈ v, 1, ite(w ≈ w, 2, 0)), and [[ite(v ≈ v, 1, ite(w ≈ w, 2, 0))]] = 1.

Notice that the interpretation of a definition may depend on the order in which

70

entries occur. In the previous example, if our definition Df was (∗, w)→ 2, (v, ∗)→ 1,

(∗, ∗)→ 0, then f(v, w) would evaluate to 2 instead.

Definition 6 (Σ-map) For a signature Σ, a Σ-map is a mapping DΣ from all un-

interpreted functions f ∈ Σ with range sort S to a corresponding complete definition

Df of the same arity, whose range is VS. Given a Σ-map DΣ, we can define a Σ

structure M, where for each uninterpreted function symbol f ∈ Σ:

fM = λx.[[γ(Df)[x]]]

In this case, we will say that M is induced by the Σ-map DΣ.

5.3.3 Constructing Function Definitions

In our approach, we only consider models that are induced by Σ-maps. As

shown in the following, every normal model (see Section 4.1) is induced by a Σ-map,

and thus this restriction is not limiting. We show how function definitions Df are

constructed for each function f in our signature Σ.

As mentioned, a satisfying assignment M contains asserted ground equalities,

for which we construct an evaluation map AM containing model assignments from

terms in M to values from V. For each entry of the form f(t1, . . . , tn) 7→ v in AM ,

we will associate a corresponding entry of the form c → v in Df , where c is an

n-tuple. For the purposes of choosing default values, we associate to each sort S a

distinguished ground Σ-term eS, which we will write ambiguously here just as e when

convenient. Given an n-tuple of values c, we write c∀ to denote the n-tuple of abstract

71

values such that for all i = 1, . . . , n:

c∀.i = ∗ if c.i = AM(e) (5.8)

c∀.i = c.i otherwise (5.9)

In other words, c∀ replaces all occurrences of the value of our distinguished

term with the abstract value ∗.

We now provide a method for constructing function definitions Df for each

f ∈ Σ, which we will use to represent the interpretation of f in candidate modelM.

Construction of Df : Let U be a subset of the ground terms TM . Then,

Df is a definition containing a minimal number of entries that satisfies the fol-

lowing set of constraints.

(AM(t1), . . . ,AM(tn))∀ → AM(f(t1, . . . , tn)) ∈ Df , ∀f(t1, . . . , tn) ∈ U

(AM(t1), . . . ,AM(tn))→ AM(f(t1, . . . , tn)) ∈ Df , ∀f(t1, . . . , tn) ∈ TM \ U

(∗, . . . , ∗)→ v ∈ Df , for some v

To show our construction of Df is well defined, say our construction gives

us the constraints c1 → v1 ∈ Df , . . ., cm → vm ∈ Df . We sort these entries

ci1 → vi1, . . . , cim → vim such that cij 6� cik for j < k. Sorting entries in this way

is always possible, since � is a partial order, and because c → vi and c → vj are

not both in Df where vi 6= vj. We show the latter by contradiction. If c → vi and

c→ vj are both in Df , then we have that for two terms, AM(f(t1, . . . , tn)) = vi and

72

AM(f(s1, . . . , sn)) = vj. Since M is a satisfying assignment and vi 6= vj, then it must

be that AM(ti) 6= AM(si) for some i. This is a contradiction: if c.i is ∗, we have that

AM(ti) = AM(si) = AM(e); otherwise, we have AM(ti) = AM(si) = c.i. Thus, our

construction of Df is well defined. Moreover, it is consistent with AM as shown in

the following lemma.

Lemma 4 For all terms of the form f(t1, . . . , tn) in TM , [[γ(Df)[AM(t1), . . . ,AM(tn)]]]

= AM(f(t1, . . . , tn)).

Proof: Since f(t1, . . . , tn) in TM , we have that t → AM(t) is in Df for some t �

(AM(t1), . . . ,AM(tn)). By contradiction assume that [[γ(Df)[AM(t1), . . . ,AM(tn)]]]

= w 6= AM(t). Let s → w be the first entry in Df whose condition is compatible

with (AM(t1), . . . ,AM(tn)), and let s = f(s1, . . . , sn) be the term associated with this

entry, where AM(s) = w, and s � (AM(s1), . . . ,AM(sn)).

Since AM is an evaluation map, we have that AM(si) 6= AM(ti) for some i.

Since AM(ti) is compatible with s.i and s.i � AM(si), we have that s.i must be ∗,

and thus s ∈ U . Additionally, we have that s.j 6� t.j for some j, since s → AM(s)

comes before t → AM(t) in Df . Since AM(tj) is compatible with both s.j and t.j,

we have that s.j is AM(tj) and t.j is ∗. Since tj must be eS, we have that s 6∈ U , a

contradiction. �

Theorem 4 Let DΣ be the Σ-map mapping function symbols f to definitions Df , as

constructed in this section. The Σ-structure M induced by DΣ satisfies F .

Proof: Let E∗ be the congruence closure for M from which AM is constructed, and

73

let R be the union of the equalities in E∗ and the disequalities {t 6≈ s | t, s ∈ TM , t ≈

s 6∈ E∗}. For all terms t in TM , from Lemma 4, and by induction on the structure

of t, we have that M[[t]] = AM(t). Since AM was constructed from E∗, we have that

M |= R, and furthermore R |=T M and M |= F . �

Notice that our model construction is parameterized by our choice of the set

U , which we call our selected terms. Two obvious choices for U are to choose no

terms, and to choose all terms in TM . The resultant models from these choices we

will call simple and fragmented models respectively. The latter we call fragmented

since they are induced by function definitions Df that map pieces of domain of f to

values based on each equality in M , instead of just mapping points to values.

Example 11 Say our satisfying assignment is

M = {g(b) ≈ a, h(a) ≈ b, h(b) ≈ b, a ≈ f(a), f(a) 6≈ g(a)}

where all terms have the same sort and a is our distinguished term for that sort. Say

our congruence closure E∗ for M consists of the equivalence classes {a, g(b), f(a)},

{b, h(a), h(b)}, and {g(a)}. We construct a candidate model M from M that is in-

duced by a Σ-map. Assuming the values V of M are {a, b, g(a)}, and U = TM , our

definitions for f , g, and h would be:

Df = (∗)→ a,

Dg = (b)→ a, (∗)→ g(a),

Dh = (b)→ b, (∗)→ b.

�

74

5.3.4 Simplifying Function Definitions

The efficiency of our approach when checking models induced by Σ-maps will

be dependent upon the size of the representation of our model. Thus, it will be crucial

to simplify definitions Df in Σ-maps. We do this as follows.

First, an entry c→ t is redundant in definition D if :

• D := . . . , c→ t,d1 → s1, . . . ,dn → sn, e→ t, . . .,

• for each 1 ≤ i ≤ n, either c is not compatible with di, or t = si, and

• e � c

When an entry c → t is redundant in definition D, notice that removing the

entry c→ t from D does not affect the meaning of D.

Example 12 Say D is the definition (v, ∗) → 1, (w,w) → 0, (∗, ∗) → 1. The entry

(v, ∗)→ 1 is redundant in D.

To simplify a definition D, we wish to remove all redundant entries from it.

While constructing a definition, we maintain a status flag for each of its entries, either

yes, no, or unknown. When an entry e → t is appended to D, we mark the entry’s

status as unknown. Then, for each c → s in D whose status is unknown and c is

compatible with e, if s = t and e � c, we mark c→ s as yes. Otherwise, if s 6= t, we

mark c → s as no. When we are finished constructing the definition, we remove all

entries marked yes.

75

Unfortunately the above procedure does not recognize certain cases when an

entry is unreachable, that is, when no ground tuple of values witnesses that entry.

For instance, consider the finite domain with two elements {v1, v2}, and the definition

(v1) → true, (v2) → true, ∗ → false. Clearly, the entry ∗ → false is unreachable.

Our implementation uses various (incomplete) heuristics for recognizing and elimi-

nating some cases of this form.

5.4 Model-Based Quantifier Instantiation

We have now seen how satisfying assignments M can be found for clause

sets in DPLL(T1, . . . , Tm), and how candidate models are constructed from M . In

this section, we describe how candidate models are used while performing quantifier

instantiation heuristics.

Recall that for a candidate model M, our quantifier instantiation heuristic

will choose a set of substitutions Ix to terms taken from V (the domain elements of

M) for each active quantified formula Q in M . When choosing the set Ix, a naive

approach is to chose all combinations of the properly sorted domain elements from

V. Doing so requires kn instantiations for a quantifier over n variables each ranging

over a domain of size k, which is feasible only if both k and n are small. An improved

and significantly more scalable approach can be used if we can recognize when sets

of ground instances are already satisfied by the current candidate model and hence

can be ignored. This approach is known as model-based quantifier instantiation.

A previous approach for model-based quantifier instantiation, as implemented

in the SMT solver Z3, uses the SMT solver itself as an oracle. That is, a separate copy

76

of the SMT solver is run on another query to determine whether a candidate model

M satisfies each quantified formula. If it does not, it adds a single instance that is

falsified by M to the current clause set. While simple to implement, this approach

incurs performance overhead for both constructing the corresponding query as well as

the initialization of the oracle. Our approach for model-based instantiation instead

relies upon specialized data structures when checking candidate models and choosing

instantiations, and may add more than one instantiation per invocation.

We present two new algorithms for model-based quantifier instantiation, both

of which can be used in the context of finite model finding. For both, we describe

which substitutions Ix are chosen for quantified formulas from Q, given a candidate

model M. As we will show, if this set is empty, then M satisfies all instances of

quantified formulas from Q, and thus all formulas in Q.

5.4.1 Algorithm for Generalizing Evaluations

We describe a model-based quantifier instantiation method in this section that

identifies entire sets of instances as satisfiable in M without actually generating and

checking those instances individually [54]. The main idea is to determine the satisfia-

bility inM of some ground instance ϕσ of a quantified formula ∀xϕ ∈ Q, generalize

ϕσ to a set of J of instances equisatisfiable with ϕσ in M, and then look for further

instances only outside that set. The set J is computed by identifying which variables

of ϕ actually matter in determining the satisfiability of ϕσ. Technically, for each

ψ = ∀xϕ ∈ Q, substitution σ = {x 7→ v} into V, and ground instance ϕ′ = ϕσ

of ψ, if M |= ϕ′ we compute a partition of x into x1 and x2 and a corresponding

77

proc eval(M, t, σ) ≡
match t with
| f(t1, . . . , tn) → for j = 1, . . . , n

let (vj, Xj) = eval(M, tj, σ)
end
choose a critical argument subset C of {1, . . . , n}
return (fM(v1, . . . , vn),

⋃
i∈C Xi)

| x → return (σ(x), {x})

Figure 5.2. The eval procedure for candidate model M.

partition of v into v1 and v2 such thatM |= ∀x2 ϕ{x1 7→ v1}; similarly, ifM 6|= ¬ϕ′

we compute a partition such that M 6|= ∀x2 ¬ϕ{x1 7→ v1}. In either case, we then

know that all ground instances of ϕ{x1 7→ v1} over V are equisatisfiable with ϕ′ in

M, and so it is enough to consider just ϕ′ in lieu of all them. We will refer to the

elements of x1 above as a set of critical variables for ϕ (under σ)—although strictly

speaking this is a misnomer as we do not insist that x1 be minimal.

5.4.1.1 Generalizing Evaluations

Treating quantifier-free formulas as Boolean terms (which evaluate to either

true or false in a Σ-structure depending on whether they are satisfied by the model

or not), we developed a general procedure that, given the Σ-map of a candidate model

M, a term t, and a substitution σ over t’s variables, computes and returns both the

value of tσ in M and a set of critical variables for σ.

The procedure, defined recursively over the input term and assuming a prefix

form for the logical operators as well, is sketched in Figure 5.2. When evaluating a

non-variable term f(t1, . . . , tn), eval determines a critical argument subset C for it.

78

This is a subset of {1, . . . , n} such that the term f(s1, . . . , sn) denotes a constant

function in M where each si is the value computed by eval for ti if i ∈ C, and is

a unique variable otherwise. If f is a logical symbol, the choice of C is dictated by

the symbol’s semantics. For instance, for ≈(t1, t2), C is {1, 2}; for ∨(t1, . . . , tn), it

is {1, . . . , n} if the disjunction evaluates to false; otherwise, we may choose {i} for

some i where ti evaluates to true. If f is a function symbol of Σ, eval computes

C by first constructing a custom index data structure for interpreting applications

of f to values. The key feature of this data structure is that it uses information

on the sets X1, . . . Xn to choose an evaluation order for the arguments of f . For

example, given the term t = f(g(x, y, z), v2, h(x)), say that eval computes the values

v1, v2, v3 and the critical variable sets {x, y, z}, ∅, {x} for the three arguments of

f , respectively. With those sets, it will use the evaluation order (2, 3, 1) for those

arguments—meaning that the second argument is evaluated first, then the third, etc.

Using the index data structure, it will first determine if f(x1, v2, x3) has a constant

interpretation in M. If so, then the evaluation of t depends on none of its variables,

and the returned set of critical variables for t will be ∅. Otherwise, if f(x1, v2, v3) has

a constant interpretation in M , then the evaluation of t depends on {x}, or else it

depends on the entire variable set {x, y, z}.

The next example gives more details on the whole process of generalizing a

ground instance to a set of ground instances equisatisfiable with it in the given model.

Example 13 Let Q = {∀x1 x2. f(x2) ≈ g(x1, b) ∨ h(x1, x2) 6≈ b}. Consider a candi-

date model M induced by a Σ-map containing the following definitions :

79

Dg = (a, a)→ c, (∗, b)→ a, (∗, ∗)→ b

Df = (b)→ b, (∗)→ a

Dh = (∗, ∗)→ b

The table below shows the bottom-up calculation performed by eval on the for-

mula ϕ = f(x2) ≈ g(x1, b) ∨ h(x1, x2) 6≈ b with M above and σ = {x1 7→ a, x2 7→ a}.

input output critical arg. subset
x2 (a, {x2})
x1 (a, {x1})
b (b, ∅) ∅

f(x2) (a, {x2}) {1}
g(x1, b) (a, ∅) {2}
h(x1, x2) (b, ∅) ∅

f(x2) ≈ g(x1, b) (true, {x2}) {1, 2}
h(x1, x2) 6≈ b (false, ∅) {1, 2}

f(x2) ≈ g(x1, b) ∨ h(y, x2) 6≈ b (true, {x2}) {1}

For most entries in the table the evaluation is straightforward. For a more interesting

case, consider the evaluation of g(x1, b). First, the arguments of g are evaluated,

respectively to (a, {x1}) and (b, ∅), but with evaluation order (2, 1). Using an indexing

data structure built from Dg for the evaluation order (2, 1), we determine that g(x, b)

has constant value a for all x. Hence we return an empty set of critical variables for

g(x1, b).

Similarly, the fact that eval returns (true, {x2}) for the original input formula

ϕ and the substitution σ = {x1 7→ a, x2 7→ a} means that we were able to determine

that all ground instances of ϕ{x2 7→ a} = (f(a) ≈ g(x1, b) ∨ h(x1, a) 6≈ b), not just

the instance ϕσ, are satisfied in M. We can then use this information to completely

avoid generating and checking those instances. �

80

5.4.1.2 Choosing Instantiations

For any given quantified formula ψ, the eval procedure allows us to identify a

set of instances over V that can be represented by a single one, as far as satisfiability

in the candidate modelM is concerned. The next question then is how to generate a

set I of instances that together represent all instances of ψ over V that are falsified

by M. This kind of exhaustiveness is crucial because it allows us to conclude that

M |= ψ by just checking that I is empty.

We present a procedure that relies on eval for computing the set I above, or

rather, a set of substitutions for generating the elements of I from ψ. The procedure is

fairly unsophisticated and quite conservative in its choice of representative instances,

which makes it very simple to implement and prove correct. Its main shortcoming is

that it does not take full advantage of the information provided by eval, and so may

end up producing more representative instances than needed in many cases.

Let ψ = ∀xϕ ∈ Q with x = (x1, . . . , xn). For i = 1, . . . , n, let Si be the sort of

xi and let Vx = VS1 × · · · ×VSn . For each S ∈ {S1, . . . , Sn}, let <S be an arbitrary

total ordering over the values VS of sort S. Let < be the lexicographic extension of

these orderings to the tuples in Vx and observe that Vx is totally ordered by <. We

write vmin to denote the minimum of Vx with respect to this ordering.

For every v = (v1, . . . , vn) ∈ Vx Let nexti(v) denote the smallest tuple u with

respect to < such that v.j <Sj
u.j for some 1 ≤ j ≤ n + 1 − i, if such a tuple

exists, and denote vmin otherwise (including when i > n). For instance, with n = 3,

S1 = S2 = S3 and VS1 = {a, b} with a <S1 b, we have that next1(a, a, a) = (a, a, b),

81

proc choose instances(M, ϕ,x) ≡
Ix := ∅; t := vmin
do

(v, {xi1 , . . . , xim}) := eval(M, ϕ, {x 7→ t})
if v = false then Ix := Ix ∪ {{x 7→ t}}
end
t := nexti(t) where i is the minimum of {i1, . . . , im, n+ 1}

while t 6= vmin
return Ix

Figure 5.3. The choose instances procedure. We assume x = (x1, . . . , xn).

next2(a, a, a) = (a, b, a), next2(a, b, a) = (b, a, a), and next2(b, b, a) = vmin = (a, a, a).

Note that except in the case that nexti(v) is vmin, we have that v < nexti(v).

Our instantiation heuristic H chooses substitutions Ix based on the procedure

choose instances described in Figure 5.3, which takes in a quantifier-free formula ϕ

with variables x and returns a set Ix of substitutions σ for x such that M 6|= ϕσ.

At each execution of its loop the procedure implicitly determines with eval a set of I

of instances of ϕ that are equisatisfiable with ϕ{x 7→ v} in M, where v is the tuple

stored in the program variable t. The next value tnext for t is a greater tuple chosen

to maintain the invariant that all the tuples between t and tnext generate instances

of ϕ that are in I. To see that, it suffices to observe that these tuples differ from t

only in positions that correspond to non-critical variables of ϕ, namely those before

position i where xi is the first critical variable of ϕ in the enumeration x1, . . . , xn.

This observation is the main argument in the proof of the following result.

Lemma 5 Let v0, . . . ,vm be all values successively taken by the variable t at the

beginning of the loop in choose instances. Let vmax be the maximum element of Vx.

82

Then for all i = 1, . . . ,m,

1. vi−1 < vi,

2. for all u with vi−1 ≤ u < vi, M |= ϕ{x 7→ u} iff M |= ϕ{x 7→ vi−1},

3. for all u with vm ≤ u ≤ vmax, M |= ϕ{x 7→ u} iff M |= ϕ{x 7→ vm}.

Proof: (Sketch) The first statement is immediate since for all i = 1 . . .m, we have

vi = nextk(vi−1) for some k and vi 6= vmin. To show the second statement for an

i, assume vi = nextk(vi−1) for some k. For each u where vi−1 ≤ u < vi, we have

that u.j = vi−1.j for all j ≥ k. For all j < k, the eval procedure determined that

the variable xj was not a critical variable for ϕ. Since u and vi−1 vary on only these

variables, we have M |= ϕ{x 7→ u} iff M |= ϕ{x 7→ vi−1}. The third statement

holds for similar reasons as the second. �

Proposition 2 The set Ix returned by choose instances(M, ϕ,x) is empty if and only

if M |= ∀xϕ.

Proof: Due to the previous lemma, when there exists an instance of ϕ that is falsi-

fied by M, then choose instances will consider at least one vi for which ϕ{x 7→ vi}

evaluates to false, and hence it will return at least one instance. Conversely, if all in-

stances of ϕ are satisfied byM, then all instances of ϕ considered by choose instances

evaluate to true, and hence it will return no instances. �

We remark that, for our model finding purposes, there is no need for the

procedure choose instances to compute the full set Ix once it contains at least one

83

substitution. Any non-empty subset would suffice to trigger a (more incremental)

revision of the current candidate model M. That said, our current implementation

does compute the whole set and adds all the corresponding instances to Q before

computing another model for it. Our experiments show that computing and using

one substitution at a time is worse for overall performance than computing and using

the full set Ix.

5.4.2 Algorithm for Computing Interpretations for Terms

In this section, we present an alternative method for choosing instantiations,

which will be based on constructing data structures that represent the interpreta-

tion of (non-ground) terms in M. We extend our representation of function defi-

nitions from Section 5.3.2 to non-ground terms t possibly containing variables x =

(x1, . . . , xn), written Dλx.t, which we use to compute the interpretation of ground

instances of t inM. We will call Dλx.t a term definition. Due to our construction, it

will be the case that [[γ(Dλx.t)[v]]] is equal toM{x 7→ v}[[t]] for all n-tuples of ground

values v. To ensure γ(Dλx.t)[v] is well-sorted, we ensure all entries c → w in Dλx.t

are such that c.i has the sort of xi for i = 1, . . . , n. First, we define several operations

over function and term definitions.

5.4.2.1 Operations on Definitions

This section explains various operations over definitions used for computing

the interpretation of terms in a candidate model. Throughout the remainder of the

section, we extend definitions from Section 5.3.2 to contain entries of the form c→ t,

where t is a tuple of terms. For the purposes of interpreting definitions of this form,

84

we extend our evaluation function such that for a tuple t = (t1, . . . , tn), we have

[[t]] = ([[t1]], . . . , [[tn]]).

Definition 7 (Entry Append) The append operation for definitions and entries,

written D · c→ t, is defined as follows:

D · c→ t := D if c is ⊥, or d � c for some d→ s ∈ D

D · c→ t := D, c→ t otherwise

Notice that for all definitions D, we have that D · c→ t is also a definition.

Definition 8 (Product) For definitions Dλx.t1 = c1 → t1, . . . , cn → tn and Dλx.t2 =

d1 → s1, . . . ,dm → sm, we define their Cartesian product, written Dλx.(t1,t2), as a

definition of arity m to pairs, as follows:

∅ · c1 4 d1 → (t1, s1) · . . . · c1 4 dm → (t1, sm) ·

. . .

cn 4 d1 → (tn, s1) · . . . · cn 4 dm → (tn, sm)

Example 14 Say Dλx1.t1 is (v) → 0, (∗) → 1 and Dλx1.t2 is (w) → 0, (∗) → 1.

Then, Dλx1.(t1,t2) is the definition (v)→ (0, 1), (w)→ (1, 0), (∗)→ (1, 1).

Example 15 Say Dλx1 x2.t1 is (v, ∗) → 0, (∗, ∗) → 1 and Dλx1 x2.t2 is (v, w) →

0,(w, ∗)→ 1,(∗, ∗)→ 2. Then, Dλx1 x2.(t1,t2) is the definition (v, w)→ (0, 0), (v, ∗)→

(0, 2), (w, ∗)→ (1, 1), (∗, ∗)→ (1, 2).

Lemma 6 If Dλx.t1 and Dλx.t2 are complete definitions, then (i) Dλx.(t1,t2) is a com-

plete definition, and (ii) [[γ(Dλx.(t1,t2))[v]]] = ([[γ(Dλx.t1)[v]]], [[γ(Dλx.t2)[v]]]), for all

values v.

85

Proof: Let Dλx.t1 be c1 → s1, . . . , cn → sn and Dλx.t2 be d1 → r1, . . . ,dm → rm.

To show (i), since Dλx.t1 and Dλx.t2 are complete, then cn and dm are ∗ and thus

Dλx.(t1,t2) contains the entry ∗ → (sn, rm).

To show (ii), since Dλx.t1 is complete, say [[γ(cj)[v]]] is true and [[γ(c1)[v]]] . . .

[[γ(cj−1)[v]]] are false. Similarly, say [[γ(dk)[v]]] is true, and [[γ(d1)[v]]] . . . [[γ(dk−1)[v]]]

are false. We know that [[γ(ci 4 d)[v]]] = [[γ(ci)[v]]] ∧ [[γ(d)[v]]] is false for any d

where 1 ≤ i < j. Similarly [[γ(c 4 di)[v]]] is false for any c where 1 ≤ i < k.

Since [[γ(cj 4 dk)[v]]] = [[γ(cj)[v]]] ∧ [[γ(dk)[v]]] is true, [[γ(Dλx.(t1,t2))[v]]] = (sj, rk) =

([[γ(Dλx.t1)[v]]], [[γ(Dλx.t2)[v]]]). �

The n-fold Cartesian product of definitionsDλx.t1 , . . . Dλx.tn , writtenDλx.(t1,...,tn),

is defined inductively for n ≥ 0:

Dλx.(t1,...,tn) := ∗ → () if n = 0 (5.10)

Dλx.(t1,...,tn) := Dλx.((t1,...,tn−1),tn) otherwise (5.11)

We will treat Dλx.(t1,...,tn) as a definition whose values are n-tuples, that is, we

flatten the left-associative chain of pairs occurring in the range of Dλx.(t1,...,tn).

Example 16 Say Dλx1.t1 is (v) → v, (∗) → w, Dλx1.t2 is (w) → w, (∗) → v, and

Dλx1.t3 is (∗) → w. Then, Dλx1.() = (∗) → (), Dλx1.((),t1) = Dλx1.(t1) = (v) →

(v), (∗) → (w), Dλx1.((t1),t2) = Dλx1.(t1,t2) = (v) → (v, v), (w) → (w,w), (∗) → (w, v),

and Dλx1.((t1,t2),t3) = Dλx1.(t1,t2,t3) = (v)→ (v, v, w), (w)→ (w,w,w), (∗)→ (w, v, w).

86

proc compose(c→ (t1, . . . , tn), (d1, . . . , dn)→ v) ≡
if n = 0

return c→ v
else if tn is xj, and c.j is compatible with dn

return compose(c 4j dn → (t1, . . . , tn−1), (d1, . . . , dn−1)→ v)
else if tn is v, and v is compatible with dn

return compose(c→ (t1, . . . , tn−1), (d1, . . . , dn−1)→ v)
else

return ⊥ → v
end

Figure 5.4. Method for computing the composition for entries. Term ti is either a
value or a variable from x = (x1, . . . xm) where di has the sort of ti for each i = 1, . . . n,
and c is an m-tuple where c.j has the sort of xj for each j = 1, . . . ,m.

Lemma 7 If Dλx.t1 . . . Dλx.tn are complete definitions, then (i) Dλx.(t1,...,tn) is a com-

plete definition, and (ii) [[γ(Dλx.(t1,...,tn))[v]]] = ([[γ(Dλx.t1)[v]]], . . . , [[γ(Dλx.tn)[v]]]),

for all v.

Proof: By induction on n using Lemma 6. �

We will refer to a variable or a value as an atomic term. For m-tuple c, n-tuple

t of atomic terms, n-tuple d, and term s, we define the composition of entries c→ t

and d→ w, written (c→ t)◦(d→ w), as the entry returned by compose(c→ t,d→

w) shown in Figure 5.4. The composition of such entries is defined only when c, t,

and d satisfy requirements that ensure the well-sortedness of the result.

Example 17 (∗)→ (x1, v1) ◦ (v2, ∗)→ w is equal to (v2)→ w.

Example 18 (∗, v1)→ (x2, x1) ◦ (v1, v2)→ w is equal to (v2, v1)→ w.

Example 19 (∗, v2)→ (v1, x1) ◦ (v1, ∗)→ w is equal to (∗, v2)→ w.

87

Lemma 8 For m-tuple c and n-tuples t and d, if (c → t) ◦ (d → v) is the entry

w→ v, then γ(w)[x] is equivalent to γ(c)[x] ∧ γ(d)[t] in the theory of equality.

Proof: By induction on n. If n = 0, then the method returns c → v, and

since d is empty, γ(c)[x] is equivalent to γ(c)[x] ∧ γ(d)[t]. If n > 0, then if tn

is the variable xj, then c.j is compatible with dn, and by the induction hypothe-

sis, the method returns w → v such that γ(w)[x] is equivalent to γ(c 4j dn)[x] ∧

γ((d1, . . . , dn−1))[(t1, . . . , tn−1)]. Since γ(c4j dn)[x] is equivalent to γ(c)[x]∧γ(dn)[xj],

and tn is xj, we have that γ(w)[x] is equivalent to γ(c)[x] ∧ γ(d)[t]. Otherwise, tn

is a value compatible with dn, and by the induction hypothesis, the method returns

w → v such that γ(w)[x] is equivalent to γ(c)[x] ∧ γ((d1, . . . , dn−1))[(t1, . . . , tn−1)].

Since tn is a value compatible with dn, we have that γ(dn)[tn] is true, and thus γ(w)[x]

is equivalent to γ(c)[x] ∧ γ(d)[t]. �

Definition 9 (Composition) For definition Dλx.(t1,...,tm) = e1, . . . , ei, and defini-

tion Df = f1, . . . , fj of arity m, we define their composition, written Dλx.f(t1,...,tm), as

the definition ∅ · e1 ◦ f1 · . . . · e1 ◦ fj · . . . · ei ◦ f1 · . . . · ei ◦ fj.

We assume the obvious restriction that the composition of definitionsDλx.(t1,...,tm)

and Df is only defined when the composition of their entries is defined, according to

requirements mentioned in Figure 5.4. Assuming our construction of Df from the

previous section, this means we will compute the composition of Dλx.(t1,...,tm) and Df

only when f(t1, . . . , tn) is a well-sorted term.

Example 20 Say Dλx1x2.(t1,t2) is (∗, ∗)→ (x2, x1) and Df is (v, w)→ v, (∗, ∗)→ w.

88

Then Dλx1x2.f(t1,t2) is the definition (w, v)→ v, (∗, ∗)→ w.

Example 21 Say Dλx1.(t1,t2) is (v1) → (v3, x1), (∗) → (v2, x1), and Df is (v2, v2) →

w1, (∗, v1) → w2, (∗, ∗) → w3. Then Dλx1.f(t1,t2) is the definition (v1) → w2, (v2) →

w1, (∗)→ w3.

Lemma 9 If Dλx.(t1,...,tn) is a complete definition, and Df is complete definition of

arity n, then (i) Dλx.f(t1,...,tn) is a complete definition, and (ii) [[γ(Dλx.f(t1,...,tn))[v]]] =

[[γ(Df)[[[γ(Dλx.(t1,...,tn))[v]]]]]], for all v.

Proof: Let Dλx.(t1,...,tn) be c1 → s1, . . . , cm1 → sm1 and Df be d1 → w1, . . . ,dm2 →

wm2. To show (i), since Dλx.(t1,...,tn) and Df are complete, then cm1 and dm2 are ∗.

By Lemma 8, we have that (cm1 → sm1) ◦ (dm2 → wm2) is an entry r → wm2 such

that γ(r)[x] = γ(cm1)[x] ∧ γ(dm2)[sm1] = true. Thus, (cm1 → sm1) ◦ (dm2 → wm2)

is the entry ∗ → wm2, and Dλx.f(t1,...,tn) is a complete definition.

To show (ii), let σ = {x 7→ v}, and say [[γ(c1)[x]σ]], . . . , [[γ(cj−1)[x]σ]] are

false, and [[γ(cj)[x]σ]] is true. Likewise, say [[γ(d1)[sj]σ]], . . . , [[γ(dk−1)[sj]σ]] are false,

and [[γ(dk)[sj]σ]] is true. First, for all 1 ≤ i < j, and all entries d → w ∈ Df , say

(ci → si) ◦ (d → w) is the entry r1 → w for some r1. By Lemma 8, [[γ(r1)[x]σ]] is

equal to [[(γ(ci)[x] ∧ γ(d)[si])σ]], which is false since [[γ(ci)[x]σ]] is false. Second, for

all 1 ≤ i < k, say (cj → sj) ◦ (di → w) is the entry r2 → w for some r2, By Lemma 8,

[[γ(r2)[x]σ]] is equal to [[(γ(cj)[x]∧γ(di)[sj])σ]], which is false since [[γ(di)[sj]σ]] is false.

Finally, say (cj → sj) ◦ (dk → wk) is the entry r3 → wk for some r3. By Lemma 8,

[[γ(r3)[x]σ]] is equal to [[γ(cj)[x] ∧ γ(dk)[sj]σ]], which is true since [[γ(cj)[x]σ]] and

89

[[γ(dk)[sj]σ]] are true. Thus, we have that [[γ(Dλx.f(t1,...,tn))[v]]] = wk = [[γ(Df)[sj]σ]] =

[[γ(Df)[[[γ(Dλx.(t1,...,tn))[x]σ]]]]] = [[γ(Df)[[[γ(Dλx.(t1,...,tn))[v]]]]]]. �

We may also apply interpreted functions to definitions whose range contains

only values. In the following definition, we assume our evaluation operation [[t]] is

extended to applications of built-in function symbols having sorts whose values inM

are interpreted ground terms, such as the sorts Int and Bool.

Definition 10 (Interpreted Composition) Given a definition Dλx.(t1,...,tn) = c1 →

t1, . . . , cm → tm, the application of interpreted function or predicate f (of arity n) to

Dλx.(t1,...,tn), written Dλx.f(t1,...,tn), is the definition c1 → [[f(t1)]], . . . , cm → [[f(tm)]].

Example 22 Say Dλx1.(t1,t2) is (v) → (1, 5), (∗) → (1, 0), where 1, 5, and 0 are

constants of sort Int. Then, Dλx1.+(t1,t2) is the definition (v) → 6, (∗) → 1, where +

is the built-in function symbol denoting addition.

We assume interpreted composition of definitions can be computed for ≈ as

well as other logical connectives by treating them as functions over terms of sort Bool,

as shown in the following example.

Example 23 Say Dλx1.(t1,t2) is (w) → (v, v), (∗) → (w, v). Then, Dλx1.≈(t1,t2) is the

definition (w)→ true, (∗)→ false.

5.4.2.2 Computing Interpretations for Terms

Using the methods described in the previous section, we can compute Dλx.t of

a term t that is model-checkable, as defined in the following: 4

4By this definition, a term is model-checkable if it is in the essentially uninterpreted
fragment, as described in [28].

90

Definition 11 A term t is model-checkable if and only if (i) t is a variable, (ii)

t is f(t1, . . . , tn), f is uninterpreted and t1 . . . tn are model-checkable, or (iii) t is

f(t1, . . . , tn), and t1 . . . tn are non-variable and model-checkable.

To construct Dλx.t, in the case that t is a variable xi, then Dλx.t is the defi-

nition ∗ → xi. In all other cases, Dλx.t is computed bottom-up using the operations

mentioned in the previous section. The following theorem states the correctness of

our construction of Dλx.t for a Σ-structure M.

Theorem 5 Let M be a Σ-structure induced by DΣ. For all model-checkable t, (i)

Dλx.t is a complete definition to atomic terms, and (ii) [[γ(Dλx.t)[v]]] = Mσ[[t]], for

all grounding substitutions σ = {x 7→ v}.

Proof: We show (i) and (ii) by induction on the structure of t.

Base case: We have that either t is a variable, or t is a constant. If t is

the variable xi, then Dλx.xi is the complete definition ∗ → xi, and [[γ(Dλx.t)[v]]] =

[[γ(∗ → xi)[v]]] = v.i = xiσ = Mσ[[t]]. Otherwise, say t is the constant f(). If f is

uninterpreted, then Df is ()→ w for some w. Thus, Dλx.f() is the complete definition

(∗ → ()) ◦ (() → w) = ∗ → w, and [[γ(Dλx.f())[v]]] = w = [[γ(Df)]] = Mσ[[t]]. If f

is interpreted, then Dλx.t is the complete definition ∗ → [[f()]], and [[γ(Dλx.t)[v]]] =

[[f()]] = Mσ[[t]].

Inductive case: Assume t is f(t1, . . . , tn). To show (i), by the induction hypoth-

esis and Lemma 7(i), Dλx.(t1,...,tn) is a complete definition. When f is uninterpreted,

since Df is a complete definition, by Lemma 9(i), Dλx.f(t1,...,tn) is a complete definition.

When f is interpreted, clearly Dλx.f(t1,...,tn) is a complete definition as well.

91

To show (ii), in the case that f is uninterpreted, then by Lemma 9(ii) we have

that [[γ(Dλx.f(t1,...,tn))[v]]] = [[γ(Df)[[[γ(Dλx.(t1,...,tn))[v]]]]]], which by Lemma 7(ii) is

equal to [[γ(Df)[([[γ(Dλx.t1)[v]]], . . . , [[γ(Dλx.tn)[v]]])]]] which by the inductive hypoth-

esis is equal to [[γ(Df)[(Mσ[[t1]], . . . ,Mσ[[tn]])]]], which, sinceM is induced by DΣ, is

equal to Mσ[[f(t1, . . . tn)]]. Otherwise if f is interpreted, let c→ v be the first entry

in Dλx.(t1,...,tn) for which [[γ(c)[v]]] is true. By the induction hypothesis, and since t

is model-checkable, v must be the n-tuple of values (Mσ[[t1]], . . . ,Mσ[[tn]]). We have

[[γ(Dλx.f(t1,...,tn))[v]]] = [[f(v)]] = [[f(Mσ[[t1]], . . . ,Mσ[[tn]])]] = Mσ[[f(t1, . . . , tn)]].

�

Extensions In some cases, we may compute the interpretation of terms that are

not model-checkable. First, we can compute the interpretation of terms whose free

variables are of sorts with finite domains, regardless of whether they contain variables

that occur as children of interpreted symbols. The idea is that we can always interpret

the variable as an explicit enumeration of its corresponding domain elements. So, for

a quantifier over one variable x1 whose sort has domain elements {v1, v2, v3}, we may

construct Dλx1.x1 as (v1)→ v1, (v2)→ v2, ∗ → v3. By doing so, we may subsequently

apply interpreted functions to Dλx1.x1 .

We can also compute interpretation for equalities with exactly one variable

child. If Dλx.t is definition c1 → v1, . . . , cn → vn, then Dλx.t≈xi (likewise Dλx.xi≈t) is

equal to c1 4i v1 → true · c1 → false · . . . · cn 4i vn → true · cn → false.

Example 24 Say Dλx1x2.t is (∗, v3)→ v4, (v1, v0)→ v1, (∗, ∗)→ v2. Then, Dλx1x2.t≈x1

is (v4, v3)→ true, (∗, v3)→ false, (v1, v0)→ true, (v2, ∗)→ true, (∗, ∗)→ false.

92

Example 25 Say x1 and x2 are variables whose sort has domain {v1, v2, v3}. Then,

Dλx1 x2.x1≈x2 is equal to (v1, v1) → true, (v2, v2) → true, (v3, v3) → true, (∗, ∗) →

false. 5

5.4.2.3 Choosing Instantiations

Constructing interpretations for terms allows us to check the satisfiability of

quantified formulas with respect to a Σ-structureM representing a candidate model.

Consider a quantified formula ∀x.(ϕ∨ψ) where ϕ is model-checkable. IfDλx.ϕ contains

no entries of the form c → false, then using Theorem 5, it can be shown that M

satisfies ∀x.(ϕ ∨ ψ). Notice that this does not depend on the fact that the sorts of x

are finite.

Our procedure for choosing substitutions Ix for a quantified formula ∀x.ϕ will

be based on the entries of the form c → false in Dλx.ϕ. For each such entry, we

will add at most one substitution to Ix. Since the simplification techniques from

Section 5.3.4 are incomplete, entries of this form may be unreachable, that is, it can

be the case that c does not generalize any tuple of ground values that evaluates to

false in Dλx.ϕ. Thus, our method will, in the worst case, search for such a tuple using

the methods described in the previous section.

The following describes the instances chosen by our heuristicH for a quantified

formula ∀x.ϕ, given a candidate model M.

5In the implementation, equality between variables (with domain size n) is handled as a
special case to avoid computing a product containing n2 entries prior to simplification.

93

H for ∀x.ϕ: Compute Dλx.ϕ using the methods mentioned in this section

(since the domain of x is finite in M, we may always compute Dλx.ϕ, regardless

of whether ϕ is model-checkable or not). For each c→ false ∈ Dλx.ϕ, let σ be the

substitution mapping xi to c.i for all i such that c.i is not ∗. Call choose instances

on M and ϕσ, which returns a set of substitutions J with domain x \ Dom(σ).

If J is non-empty, add σ · σ′ to Ix for some σ′ ∈ J .

Proposition 3 H returns an empty set of instantiations if and only if M |= ∀x.ϕ.

Proof: If Mσ[[ϕ]] is false for some σ = {x 7→ v}, by Theorem 5, [[γ(Dλx.ϕ)[v]]] is

false, and thus c→ false is an entry in Dλx.ϕ for some c such that [[γ(c)[v]]] is true.

We will call choose instances on ϕσ′, where ϕσ is an instance of ϕσ′, and hence by

Proposition 2 we will add at least one instance in this case. Conversely, if Mσ[[ϕ]] is

true for all σ, we apply choose instances in the most general case to ϕ itself, which by

Proposition 2 is guaranteed to produce no instances. �

Using this quantifier instantiation heuristic H, we may significantly reduce

the domain size for which the choose instances procedure is run, as compared to the

previous section, since it is being called on partially instantiated version of ϕ. This

is shown in the following example.

Example 26 Consider the quantified formula Q = {∀x1 x2. ϕ}, where ϕ = f(x2) ≈

g(x1, b)∨h(x1, x2) 6≈ b, and function definitions from Example 13. For the left disjunct

of ϕ, we get Dλx1 x2.f(x2)≈g(x1,b) = (∗, b)→ false, (∗, ∗)→ true. For the right disjunct,

94

we get Dλx1 x2.h(x1,x2) 6≈b = (∗, ∗) → false. Overall, our definition Dλx1 x2.ϕ is (∗, b) →

false, (∗, ∗) → true. We then find a substitution {x1 7→ v} for some v such that

ϕ{x2 7→ b} is falsified, for which we add {x1 7→ v, x2 7→ b} to Ix. �

Notice that in Example 13, the algorithm from Section 5.4.1 concluded that

all instances of the form ϕ{x2 7→ a} are satisfied by M. In light of Example 26, we

can see that all instances of form ϕ{x2 7→ w} for any value w 6= b are satisfied byM.

Whereas the previous algorithm would have concluded this independently for each

such w, the algorithm in this section avoids this repeated computation.

Optimized Heuristic for Model Checkable Formulas In many cases, deter-

mining the set of substitutions Ix from Dλx.ϕ can be done immediately based on the

following observation. We say an entry c → v is pure with respect to distinguished

values if and only if c does not contain any occurrence of AM(eS) for any sort S. If

each entry in Dλx.ϕ is pure with respect to distinguished values, then if c→ false in

Dλx.ϕ, then clearly replacing all occurrences of ∗ with AM(eS) in c results in a tuple

of values that evaluates to false in Dλx.ϕ, and hence can be used for finding a falsified

instance when constructing Ix.

(Optimized) H for ∀x.ϕ: Compute Dλx.ϕ. For each c→ false ∈ Dλx.ϕ, let

σ be the substitution mapping xi to c.i for all i such that c.i is not ∗. and xi to

AM(eS) for all i such that c.i is ∗. Add the substitution σ to Ix.

95

∀-Inst
a ∈ M a⇔ ∀xϕ ∈ F

F := F ∪ {¬a ∨ ϕ{x 7→ t}}

Figure 5.5. DPLL(T1, . . . , Tm) rule for quantifier instantiation.

When ϕ is model-checkable andM is a fragmented model 6, then Dλx.ϕ is pure

with respect to distinguished values. This can be shown by noting that all function

definitions in fragmented modelsM are pure with respect to distinguished values, and

all basic operations on definitions (product, compose, interpreted compose) preserve

this property. In this case, we use the optimized version of our quantifier instantiation

heuristic described above.

In the implementation, we call the optimizedH on all quantified formulas first.

If this produces no instances andM is a fragmented model, we call the non-optimized

version of H on all quantified formulas whose bodies are not model-checkable.

5.4.3 Integration into DPLL(T1, . . . , Tm)

To integrate our quantifier instantiation heuristics into the DPLL(T1, . . . , Tm)

architecture, we extend it with the rule shown in Figure 5.5. When a, which serves as a

proxy for the quantified formula ∀xϕ as described in Appendix A, occurs positively in

the current assignment M, the SMT solver may add ground instances of the formula

ϕ to F using the rule ∀-Inst. We assume that all preprocessing techniques from

Appendix A are applied to ϕ{x 7→ t}, and thus one application of this rule may

result in adding multiple clauses to F . For termination of DPLL(T1, . . . , Tm) with

6See Section 5.3.3.

96

quantifier instantiation, we require that the terms t are chosen from a finite set, and

that executions contain no redundant applications of ∀-Inst.

5.5 Properties

We now prove several important properties of our approach for finite model

finding in SMT. We assume the model finding procedure introduced in Section 5.1

is used, and that fixed-cardinality DPLL(T1, . . . , Tm, TEFCC) is used for finding sat-

isfying assignments for ground clauses in Step 1. In the following, we will refer to

the overall approach as fixed-cardinality DPLL(T1, . . . , Tm, TEFCC) with quantifier in-

stantiation, which is applicable to sets of clauses F0 whose quantification is limited

to uninterpreted sorts.

First, we remark that our approach is sound, due to Theorem 3 and that all

clauses added by quantifier instantiation preserve the satisfiability of F0. Second,

when fixed-cardinality DPLL(T1, . . . , Tm, TEFCC) with quantifier instantiation termi-

nates with model M, then indeed M |= F0. This is a consequence of Theorem 3,

the correctness of our preprocessing techniques for existential quantifiers, as well as

the correctness of our quantifier instantiation heuristics for universal quantifiers, e.g.

Propositions 2 and 3.

5.5.1 Finite Model Completeness

Theorem 6 Given a signature Σ with uninterpreted sorts S1, . . . , Sn, fixed-cardinality

DPLL(T1, . . . , Tm, TEFCC) with quantifier instantiation is finite model complete for ev-

ery set of Σ-clauses F0 whose quantification is limited to S1, . . . , Sn.

Proof: Assume that F0 has a model M in which S1, . . . Sn have finite domain sizes

97

k1, . . . , kn. Let Q be the set of all quantified formulas in F0, and assume that all nested

quantification in Q has been removed using the methods described in Appendix A.4,

Thus, no quantified formulas beyond those in Q are introduced during our procedure.

At any time during the procedure, as a consequence of Proposition 1, the cardinality

of any sort Si in a candidate model will be at most (k1 + . . .+ kn)− n. Furthermore,

due to our selection of representatives as described in Section 5.3.1, our procedure

will instantiate all quantified formulas in Q with terms t from Σ where depth(t) is at

most (k1 + . . .+ kn)− n.

For a quantified formula ϕ ∈ Q, let Jϕ be the set of instances of the form ϕσ,

where σ is a substitution mapping variables to terms t such that depth(t) is at most

(k1 + . . .+kn)−n. Since fixed-cardinality DPLL(T1, . . . , Tm, TEFCC) is terminating for

any set of ground clauses due to Theorem 3, and since the instantiations we consider

(the set
⋃
ϕ∈Q Jϕ) is finite, we will execute only a finite number of instantiation rounds

(Step 3 of Definition 1) before terminating with a model. �

5.5.2 Refutational Completeness

We also show refutational completeness of our approach, which however we

will restrict to the case where no background theories besides EUF are present, and a

naive approach for quantifier instantiation is used. Showing refutational completeness

in the presence of background theories and for other quantifier instantiation heuristics

is left for future work.

Theorem 7 Fixed-cardinality DPLL(TEFCC) with naive quantifier instantiation is

refutationally complete for every set of Σ-clauses F0.

98

Proof: Assume that F0 is unsatisfiable. Let Q be the set of quantified formulas

occurring in F0, where for simplicity we assume that nested quantification has been

removed from each quantified formula. As a consequence of Herbrand’s theorem

and the compactness theorem for first-order logic, there exists a finite set of ground

instances J of Q that together with F0 is unsatisfiable. Let S be the set of all Σ-terms

which were used to instantiate variables of Q in J , and let k be the smallest integer

such that depth(t) ≤ k for all t ∈ S. Let J∗ be the set of all instances of the form ϕσ,

where ϕ ∈ Q and σ is a substitution mapping variables to terms t such that depth(t)

is at most k. Since k is finite, we know that J∗ is finite, and since J ⊆ J∗, we know

that F0 ∧ J∗ is unsatisfiable.

On any instantiation round, the naive quantifier instantiation heuristic H will

add at least one instance from J∗ to our current set of clauses F . To show this is the

case, say we have constructed a candidate model M. Since J∗ ∧ F is unsatisfiable,

there must be at least one instance ϕσ from J∗ that is not satisfied by M. Let σ′

be a substitution mapping each variable x in the domain of sigma to the term from

V (the domain elements of M) that is equivalent to xσ in M. Due to our selection

of V which chooses representative terms with minimal depth, and since ϕσ ∈ J∗, we

know that ϕσ′ ∈ J∗ as well. Since ϕσ′ is also not satisfied by M, we know that the

instance ϕσ′ has not yet been added to F . Since the naive quantifier instantiation

heuristic H chooses all instances based on the domain of the model that have not yet

been added to F , it will add ϕσ′ to F , and thus the instantiation round adds at least

one instance from J∗ to F .

99

Since J∗ is a finite set, and since no execution of fixed-cardinality DPLL(TEFCC)

is non-terminating between instantiation rounds due to Theorem 3, our procedure,

in the worst case, will eventually add all instances from J∗ to our set of clauses F ,

where F0 ⊆ F . When this is the case, since J∗ ∧ F0 is unsatisfiable, and since fixed-

cardinality DPLL(T1, . . . , Tm, TEFCC) is complete due to Theorem 3, the procedure

will terminate, answering unsatisfiable. �

In this proof, we limit ourselves to the case where no background theories

occur, so that the compactness theorem for first-order logic can be trivially applied.

We would like to extend this result to prove the refutational completeness of our ap-

proach for inputs F0 containing background theories, but where quantification in F0 is

limited to uninterpreted sorts. We believe a similar argument as the one above can be

used for restricted cases of this form, but this is left as future work. Regardless, given

an argument of the form above, our approach has a weaker yet still useful property

for any unsatisfiable formula F0 containing background theories whose quantifica-

tion is limited to uninterpreted sorts. Namely, if a finite number of instantiations of

quantified formulas from F0 suffices to show F0 is unsatisfiable, our procedure will

terminate with the answer unsatisfiable. An example of when this is not the case is

demonstrated in the following example, where our algorithm does not terminate.

Example 27 Say we wish to determine the satisfiability of the clauses {∀x.f(succ(x)) ≈

f(x) + 1, ∀x.P (x)⇔ ¬P (succ(x)), P (a), P (b), f(a) ≈ f(b) + 2 ∗ k+ 1}, in the com-

bined theory of EUF and linear integer arithmetic, where the signature contains the

integer sort Int, P : S → Bool, f : S → Int, succ : S → S, a, b : S, and k : Int. Con-

100

ceptually, f is an injection mapping S to the integers, succ is a successor function

on S with respect to this mapping, and P is true for every other element of S. This

formula is unsatisfiable since P holds for both a and b, and a and b are separated by

odd number of elements due to the last clause. However, this set is satisfiable for any

finite number of quantifier instantiations since the value of k can be made arbitrarily

large.

Given the two properties mentioned in this section, for inputs F0 whose quan-

tification is limited to uninterpreted sorts, our procedure is only non-terminating

when F0 is satisfiable but has no finite models, or when F0 is unsatisfiable but any

finite subset of instances of formulas from F0 is satisfiable. In the first case, we say F0

is satisfiable but finitely unsatisfiable. Recent work [14] has focused on automatically

determining when a formula is finitely unsatisfiable using various techniques, such as

determining the existence of an automorphism that is injective but not surjective, as

shown in the following example.

Example 28 Say we wish to determine the satisfiability of the clauses {∀xy.f(x) ≈

f(y) ⇒ x ≈ y,∀x.f(x) 6≈ a} where all terms are of sort S. If this set had a model

of some finite size k, then the injective function f must map the k elements of sort

S collectively to each of the k elements of sort S. However, this is impossible since

there is at least one element, namely a, that is not mapped to by f . Thus, this set of

clauses is finitely unsatisfiable, but however has models of infinite size.

For this example, our approach will consider finite models of larger and larger

size, and thus will not terminate. Coupling techniques for recognizing infinite models

101

with the techniques described in this thesis is left for future work.

5.6 Enhancements

In this section, we mention several enhancements that can improve perfor-

mance for our approach to finite model finding in SMT.

5.6.1 Heuristic Instantiation

As mentioned, many SMT solvers rely on heuristic instantiation methods for

finding unsatisfiable instances for quantified formulas. We found that these meth-

ods can be helpful in our model finder as well, even for satisfiable problems, most

likely because the instances it generates are helpful in pruning the search space. Fol-

lowing the terminology used in this chapter, our original heuristic H for quantifier

instantiation can be enhanced with E-matching to a heuristic H as follows.

1. Choose a set of patterns Tψ for each ψ ∈ Q, and return substitutions based on

E-matching for (Tψ, F).

2. If no such substitutions exist, apply the original H.

Applying E-matching helps the model finder detect the unsatisfiability of its

input formulas more promptly in cases where a conflict is easily identifiable. Further-

more, it may accelerate the search for finding models, since the instances it generates

can help rule out candidate models more quickly.

In our approach, quantifier instantiation is applied after finding a satisfying

assignment with a bounded number of equivalence classes. By waiting to apply quan-

tifier instantiation until after a satisfying assignment of this form can be constructed,

102

we can avoid pitfalls common to E-matching-based procedures, such as matching

loops. Since only a finite number of terms will be considered for a given cardinality

bound on a sort, our approach guarantees that E-matching will eventually rule out

the current cardinality bound, or terminate with no instances produced.

5.6.2 Sort Inference

When searching for models, it is often critical to reduce symmetries inherent to

the problem. Informally, symmetries occur when a formula is satisfied by a multiple

permutations of values. One major source of symmetry reduction can be discovered

when applying sort inference to an input problem, which effectively limits the number

of models the solver needs to search for. Various automated theorem provers take

advantage of information regarding sort inference [16, 40]. This section gives a brief

overview of two approaches where sort inference can be leveraged for our approach

to finite model finding in SMT.

First, we introduce a basic sort inference technique used by several recent finite

model finding tools, and how they are typically used. Given a signature Σ and Σ-

formula ϕ, we will construct a signature Σi, with the following properties. As before,

we assume that we have a separate equality symbol in Σi for each sort. For each

interpreted function or predicate f ∈ Σ other than equality, we have that f is also

in Σi. For each uninterpreted function or predicate f ∈ Σ of arity n, there exists a

function of the same arity in Σ, but possibly with a different sort. For convenience,

we will assume this function has the same name as f . Similarly, for each variable x

in Σ, we associate a variable in Σi of the same name but possibly having a different

103

sort than the sort of x in Σ. We will say that Σi is an inferred signature for ϕ if

ϕ remains well-sorted when viewed as a Σi-term. For a sort S, we will say Sj is an

inferred subsort of S (according to Σi) if there exists a term t that has sort S in Σ,

and sort Sj in Σi.

For a Σ-formula ϕ, we wish to construct a maximally diverse signature Σi such

that ϕ is well-sorted according to Σi, that is, a signature having a maximal number

of inferred subsorts. To find such a signature Σi, we first introduce a unique sort for

each argument of functions in our signature, as well as a unique sort for the return

value for functions and variables in our signature. Then we perform a single traversal

over ϕ. Using a union-find data structure for storing an equivalence relation between

sorts, we merge classes of sorts that must be equal to ensure that ϕ is well-sorted

according to Σi.

As mentioned, in the approach used by several ATP finite model finders, the

finite satisfiability of first-order quantified formulas can be reduced to the Boolean

satisfiability problem. This reduction relies on introducing a set of constants for

representing the domain elements of a model of finite cardinality, and various other

constraints for encoding function symbols. Say we are searching for models of car-

dinality k for a sort S, and c1, . . . , ck are the domain constants associated with sort

S. All terms of sort S must be equal to one of c1, . . . , ck. For terms t1, . . . , tn of

sort S, symmetries may be reduced by adding clauses to the underlying SAT solver

corresponding to the encoding of:

(t1 ≈ c1) ∧ (t2 ≈ c1 ∨ t2 ≈ c2) ∧ . . . ∧ (tk−1 ≈ c1 ∨ . . . ∨ tk−1 ≈ ck−1) (5.12)

104

Additional clauses can enforce the canonicity of the models found by this approach,

in particular by saying that ti can be equal to cj only when ti−1 is equal to cj−1.

Information regarding inferred subsorts can strengthen these clauses even further.

Say we have an inferred signature Σi for ϕ, and t1, . . . , tm are of sort S1 in Σi and

tm+1, . . . , tn are of sort S2 in Σi. It can be shown that a model exists interpreting

these sets of terms as separate sorts if and only if a model exists interpreting them as

the same sort, and hence symmetry reduction clauses of the form 5.12 can be added

for both of these sets separately.

Symmetry Reduction Clauses in SMT Recall that our approach for finite model

finding does not rely on the introduction of domain constants, and instead enforces

cardinality constraints explicitly through a specialized theory solver for EUF with

finite cardinality constraints. Since these constants are not introduced, there is no

need to add clauses of the form shown in 5.12 for terms of the same sort. However,

sort inference information can be used to break other symmetries, using the following

approach.

Say we are given an input Σ-formula ϕ that is well-sorted according to an

inferred signature Σi. The approach mentioned in this section will still treat ϕ as

a Σ-formula, but use the sort information from Σi to add additional clauses to the

solver for the purposes of breaking symmetries.

Assume we have a total ordering on Σ-terms �. Given ground terms tn and

sm having sort S in Σ and distinct sorts in Σi, let t1, . . . , tn−1 and s1, . . . , sm−1 be the

set of all Σ-terms having the same inferred subsort according to Σi that are less than

105

tn and sm respectively according to �. Then, we may add the clause:

(tn ≈ s1 ∨ . . . ∨ tn ≈ sm−1 ∨ sm ≈ t1 ∨ . . . ∨ sm ≈ tn−1 ∨ tn ≈ sm) (5.13)

When read as an implication, this says that if tn is disequal from all terms

smaller than sm, and likewise sm is disequal from all terms smaller than tn, we have

that tn ≈ sm. This can be assumed without loss of generality for the same reasoning

that symmetry reduction can be applied to each inferred subsort separately in the

previous section. The difference in our approach is that these clauses may be added

on demand throughout the procedure for terms tn and sm for which we determine a

clause of this form is necessary.

In the implementation, the ordering � is chosen dynamically during the pro-

cedure. That is, we maintain an (initially empty) vector of terms U = [t1, . . . , tn], for

which we say that tn � . . . � t1. Say we are searching for models of size k for some

sort S. For each inferred sub-sort Si of S, we maintain a context-dependent vector

USi of at most k terms of that sort that are pairwise entailed to be disequal in the

current assignment. When a ground term t of inferred sort Si becomes disequal from

every term in USi, we append it to USi, and also append it to U if it does not already

exist in U . 7 We add clauses of the form in 5.13 for two distinct inferred subsorts Si

and Sj whenever a term t is added to USi, and the vector USj associated with Sj has

maximal length among all inferred subsorts of S. In particular, we add the clause for

t and its counterpart at the same index in USj.

7For each inferred subsort Si, we keep track of disequalities from USi to single watched
term t that is not entailed to be equal to any term in USi. If there exists any term t′ ∈ U\USi,
then t is the first such term in the vector U .

106

Using the Inferred Signature As a more direct alternative to that mentioned

in the previous section, to determine the satisfiability of the Σ-formula ϕ, we may

determine the satisfiability of the Σi-formula ϕi ∧ Cmon, where Σi is an inferred sig-

nature for ϕ, and ϕi is syntactically identical to ϕ but whose subterms may have

different sorts, and Cmon are additional constraints based on the monotonicity of ϕ

with respect to our inferred subsorts, as described below.

Definition 12 A formula ϕ is monotonic with respect to sort S if and only if when-

ever there exists a model M1 for ϕ with domain VS
1 for S, then there exists a model

M2 for ϕ with domain VS
2 for S, where | VS

2 |=| VS
1 | +1.

For example, consider the formula ϕ of the form (∀xy.x ≈ y) ∧ t 6≈ s, where

t, s, x, and y have sort S. This formula is unsatisfiable, since the first conjunct,

(∀xy.x ≈ y), only has models of size 1 for S, and the second conjunct only has

models where the size of S is greater than 1. Running our sort inference algorithm

on ϕ would assign a sort S1 for x and y and another sort S2 for t and s. Let ϕi be

the corresponding Σi-formula for ϕ. We can see that ϕi is monotonic with respect to

S2 but not to S1, and is satisfiable with a model where | VS1 |= 1 and | VS2 |= 2.

However, if we enforce that the cardinality of S1 is at least as large as S2, then ϕi

is unsatisfiable. As described earlier, we construct an additional constraint Cmon for

doing so, namely by introducing an injective function from S2 to S1.

Following the approach mentioned in [15], when checking the satisfiability of

ϕ in an inferred signature, if ϕ is not monotonic with respect to an inferred subsort

Sj of sort S, then all other inferred subsorts of S must have cardinality less than or

107

equal to Sj. Thus, our approach for constructing Cmon is as follows. For each sort

S in Σ, if there exists a inferred subsort Sj of S in Σi for which ϕ is not monotonic,

then for all other inferred subsorts Sk of S, we introduce a fresh function f of type

Sk → Sj, and add the formula ∀xy.f(x) ≈ f(y) → x ≈ y as a conjuct of Cmon to

express that f is injective. If ϕ is also not monotonic with respect to Sk, we also

introduce an injective function from Sj to Sk.

With respect to the method described in the previous section, one disadvantage

of this approach is that defining injective functions in Cmon introduces quantified for-

mulas. However, in many use cases, ϕ contains quantified formulas already, and thus

the overhead here is often negligible. Another disadvantage is that the introduction

of multiple sorts makes it more difficult to enforce a fair strategy when incrementing

cardinalities, as described in Section 5.2.4. On the other hand, the advantage of the

approach is that no clauses of the form described in 5.13 are needed for reducing sym-

metries, and hence less bookkeeping is required during the search. Another major

advantage of this approach is that we may reduce the number of ground instances

for formulas containing variables with subsorts Si of S. This occurs when a model

can be found that interprets Si as a smaller set than the interpretation of the other

inferred subsorts of S.

We infer monotonicity for formulas and sorts using incomplete methods, since

unfortunately, determining the monotonicity of a formula with respect to a sort is in

general an undecidable problem. Recently, several calculi have been proposed [15, 9]

for recognizing cases when it is possible to infer monotonicity, including the approach

108

of Monotonox [15], which encodes an incomplete check for inferring monotonicity with

respect to sorts in an input problem as a satisfiability problem. These approaches

recognize when a formula ϕ is not monotonic with respect to a sort S based on

the structure of the formula. In particular, when ϕ contains a variable of sort S

that occurs as a direct child of an equality having positive polarity, then ϕ is not

guaranteed to be monotonic with respect to S. Like other approaches, when we

cannot determine that a formula is monotonic with respect to a sort, we assume that

it is not.

5.6.3 Relevancy

Several SMT solvers, including cvc4, use heuristics for reducing the size of sat-

isfying assignments during the DPLL(T1, . . . , Tm) search. These heuristics are based

on including only literals that contribute to satisfying the given set of clauses [18].

For model-based quantifier instantiation, these techniques help performance consid-

erably, since minimizing the number of literals in the satisfying assignment reduces

the number of terms in its corresponding congruence closure. This leads to candidate

models that have fewer entries in function definitions, and thus are easier to check,

and are less likely to contain entries that falsify instances of quantified formulas.

5.7 Results

We implemented all features mentioned in this chapter into cvc4 [3], a state-

of-the-art SMT solver based on the DPLL(T1, . . . , Tm) architecture. This section

presents experimental results on this implementation. We separate this section into

two sets of experiments, the first to evaluate the relative effectiveness of various

109

strategies for the EFCC solver, and the second to evaluate the model finder’s overall

performance when used with quantified formulas. For the second set of experiments,

we compare our model finder against state-of-the-art SMT solvers and automated

theorem provers.

5.7.1 EFCC Solver Evaluation

We first examine the effectiveness of approach to handling ground problems

in the theory of EUF with finite cardinality constraints (EFCC). In this section, all

experiments were run on a Linux machine with an 8-core 2.60GHz Intel R© Xeon R©

E5-2670 processor with 16GB of RAM.

We tested various configurations of the EFCC solver, starting with the default

configuration cvc4+f, which contains the region-based enhancements described in

Section 5.2.3, where conflicting states are reported by using clique lemmas of the

form ¬distinct(c1, . . . , ck)∨¬cardS,k. We also tested a configuration, cvc4+fe, where

conflict clauses are as described in Section 5.2.2. This configuration avoids the in-

troduction of new equalities into the search (contained in the expansion of distinct),

but has the disadvantage that it can generate different conflict clauses for essentially

the same clique. Additionally, we considered configuration cvc4+f-r, which differs

from cvc4+f only in that regionalizations have always just one region per sort S,

encompassing the entire disequality graph for S.

We also evaluated the MACE-style approach to finite model finding described

in related work, which we encoded in the configuration cvc4+mace. For a basic idea

of this encoding in the simple case of a set of ground clauses F involving a single sort,

110

.1

1

10

100

.1 1 10 100

C
V
C
4
+
f

CVC4+fe

.1

1

10

100

.1 1 10 100

C
V
C
4
+
f

CVC4+f-r

.1

1

10

100

.1 1 10 100

C
V
C
4
+
f

CVC4+mace

Figure 5.6. Results for randomly generated benchmarks. Runtimes are on a log-log
scale.

if TF is the set of all terms in F and c1, . . . , ck are fresh constants serving as domain

constants, this configuration uses cvc4 to check the satisfiability of

F ∧ distinct(c1, . . . , ck) ∧
∧
t∈TF

(t ≈ c1 ∨ . . . ∨ t ≈ ck) (5.14)

for k = 1, 2, . . . until (5.14) is found satisfiable for some k. Then, the minimal

model size for F is k. As mentioned, a major shortcoming of this approach is the

introduction of unwanted symmetries in the problem. cvc4 can address this issue

to some extent since it incorporates symmetry breaking techniques directly at the

ground EUF level [22].

We considered satisfiable benchmarks encoding randomly generated graph col-

oring problems and consisting of a conjunction of disequalities between constants of

a single sort. In particular, we considered a total of 793 non-trivial problems con-

taining between 20 and 50 unique constants and between 100 and 900 disequalities,

111

and measured the time it takes each configuration to find a model of minimum size,

with a 60 second timeout. For the benchmarks we tested, the configuration cvc4+f

solves the most benchmarks within the time limit: 723. The configuration cvc4+f

was an order of magnitude faster than cvc4+fe on most benchmarks, with the latter

only being able to solve 309 benchmarks within the time limit. This strongly sug-

gests that generating explanations for cliques in conflict lemmas involving cardinality

constraints is not an effective approach in this scheme.

Figure 5.6 compares the performance of the configuration cvc4+f against

cvc4+fe, cvc4+f-r, and cvc4+mace. The second scatter plot clearly shows that

the cvc4+f configuration generally requires less time and solves more benchmarks

(723 vs. 664) than cvc4+f-r, confirming the usefulness of a region-based approach

for clique detection. The third scatter plot compares cvc4+f against cvc4+mace.

The latter configuration was able to solve only 617 benchmarks and generally per-

formed poorly on benchmarks with larger model size. The median model size of the

123 benchmarks solved only by cvc4+f was 17, whereas the median size of the 13

benchmarks solved only by cvc4+mace was 10. This suggests that for larger cardi-

nalities cvc4+mace suffers from the model symmetries created by the introduction

of domain constants, something that cvc4+f avoids.

5.7.2 Finite Model Finder Evaluation

We provide results on cvc4 with finite model finding for three sets of bench-

marks coming from different formal methods applications, including verification and

automated theorem proving.

112

In this section, we will refer to various configurations of cvc4 based on the

features they include. Configuration cvc4+f uses techniques for finding finite mod-

els. Additionally, configurations containing m in their suffix use the model-based

quantifier instantiation heuristic described in Section 5.4.1, configurations with M

use the model-based quantifier instantiation heuristic described in Section 5.4.2, con-

figurations with i use heuristic instantiation as described in 5.6.1, configurations with

s add ground clauses for breaking symmetry based on sort inference described in Sec-

tion 5.6.2, and configurations with S convert the problem into the inferred signature

also described in Section 5.6.2. All configurations of cvc4 with finite model find-

ing use techniques for relevancy as described in Section 5.6.3. In these experiments,

configurations of m used fragmented models, and M used simple models.

In the implementation, for performance reasons, we disable various features

that theoretically ensure finite model completeness and refutational completeness.

First, we did not implement a fair strategy for multiple sorts, as mentioned in Sec-

tion 5.2.4, since this source of non-termination was not observed in our experiments.

Second, we do not constrain the selection of representative terms as mentioned in

Section 5.3.1, since we found that allowing the ground solver to choose representative

terms leads to simpler ground conflicts that are found more quickly. Third, we do

not eliminate nested quantifiers of negative polarity as mentioned in Appendix A.4,

since introducing Skolem symbols leads to additional work for the model construction

procedure, namely, it must find an explicit model for symbols not in the original prob-

lem. The performance degradation for each of these features is not very significant.

113

Nevertheless, since they have a detectable negative impact on performance overall,

they are disabled by default in cvc4.

Experiments from Section 5.7.2.1 were run on a Linux machine with an 8-core

2.60GHz Intel R© Xeon R© E5-2670 processor. All others were run on a Linux machine

with an 8-core 3.20GHz Intel R© Xeon R© E5-1650 processor with 16GB of RAM.

5.7.2.1 Intel benchmarks

We evaluated the overall effectiveness of cvc4’s finite model finder for quan-

tified SMT formulas taken from verification conditions generated by DVF [31], a

tool used at Intel for verifying properties of security protocols and design architec-

tures, among other applications. Both unsatisfiable and satisfiable benchmarks were

produced, the latter by manually removing necessary assumptions from verification

conditions. All benchmarks contain quantifiers, although only over free sorts, and

span a wide range of theories, including linear integer arithmetic, arrays, EUF, and

inductive datatypes.

For comparison we looked at the SMT solvers cvc38 [5] (version 2.4.1),

Yices [25] (version 1.0.32), and z3 [19] (version 4.1). We did not consider tradi-

tional theorem provers and finite model finders because they do not have built-in

support for the theories in our benchmark set. All these solvers use E-matching as a

heuristic method for answering unsatisfiable in the presence of universally quantified

formulas. Z3 additionally relies on model-based quantifier instantiation techniques to

8cvc3 is the predecessor of cvc4. The latter was developed from scratch, and does not
have code in common with cvc3.

114

Sat german refcount agree apg bmk
(45) (6) (42) (19) (37)

solved time solved time solved time solved time solved time
cvc3 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0
yices 2 0.0 0 0.0 0 0.0 0 0.0 0 0.0
z3 45 1.1 1 7.0 0 0.0 0 0.0 0 0.0
cvc4+i 2 0.0 0 0.0 0 0.0 0 0.0 0 0.0
cvc4+f 45 0.3 6 0.1 42 15.5 18 200.0 36 1201.5
cvc4+f-r 45 0.3 6 0.1 42 18.6 15 364.3 34 720.4
cvc4+fi 45 0.4 6 0.1 42 14.2 19 492.8 36 831.0
cvc4+fm 45 0.3 6 0.1 42 23.6 19 210.2 37 375.1
cvc4+fmi 45 0.3 6 0.1 42 16.4 19 221.1 37 176.8

Unsat german refcount agree apg bmk
(145) (40) (488) (304) (244)

solved time solved time solved time solved time solved time
cvc3 145 0.4 40 0.2 457 6.8 267 77.0 229 76.2
yices 145 1.8 40 7.0 488 1475.4 304 35.8 244 25.3
z3 145 1.9 40 0.9 488 10.6 304 12.2 244 5.3
cvc4+i 145 0.1 40 0.2 484 6.8 304 11.2 244 2.9
cvc4+f 145 0.8 40 0.4 476 3782.1 298 2252.5 242 1507.0
cvc4+f-r 145 0.4 40 0.2 475 1574.3 294 3836.0 240 1930.5
cvc4+fi 145 0.7 40 0.1 488 188.7 302 342.0 244 660.3
cvc4+fm 145 0.4 40 0.3 471 5018.2 300 1122.7 242 834.1
cvc4+fmi 145 0.3 40 0.1 488 185.9 302 339.8 244 668.5

Figure 5.7. Results for satisfiable and unsatisfiable Intel (DVF) benchmarks. All
times are in seconds.

be able to detect satisfiable quantified problems in some cases [28].

The results, separated into unsatisfiable and satisfiable instances, are shown in

Figure 5.7 for five classes of benchmarks and a timeout of 600 seconds per benchmark.

The first two classes, refcount and german, represent verification conditions for

systems described in [31]; benchmarks in the third are taken from [59]; the last two

classes are verification problems internal to Intel. Due to proprietary restrictions on

these benchmarks, we report results for an older version of cvc4 (version 1.0) that

did not incorporate some of the previously mentioned enhancements.

For the satisfiable benchmarks, our finite model finder is the only tool capable

of solving any instance in the last three benchmark classes. In fact, cvc4+f is able

to solve all but two, and most of them in less than a second. When extended to

115

include techniques for model-based quantifier instantiation (configurations cvc4+fm

and cvc4+fmi), we are able to solve all satisfiable benchmarks within the timeout.

By comparing cvc4+f against cvc4+f-r, we see that the region-based approach for

recognizing cliques is beneficial, particularly for the harder classes where the latter

configuration solves fewer benchmarks within the timeout. The model sizes found

for these benchmarks were relatively small; only a handful had a model with sort

cardinalities larger than 4. To our knowledge, our model finder is the only tool

capable of solving these benchmarks.

For the unsatisfiable benchmarks, Yices and Z3 can solve all of them, with Z3

being much faster in some cases. We observe that cvc4 with finite model finding

is orders of magnitude slower than the SMT solvers on these benchmarks. This

is, however, to be expected since it is geared towards finding models, and applies

exhaustive instantiation with increasingly large cardinality bounds, which normally

delays the discovery that the problem is unsatisfiable regardless of those bounds.

However, we found that each unsatisfiable problem can be solved by either

cvc4 or cvc4+fmi, and in less than 3s. Additionally, configuration cvc4+fmi solves

all unsatisfiable benchmarks within 900s, suggesting that cvc4’s model finder makes

consistent progress towards answering unsatisfiable on provable DVF verification con-

ditions. From the perspective of verification tools, the results here seem promising. A

common strategy for handling a verification condition would be to first use an SMT

solver hoping that it can quickly find it unsatisfiable with E-matching techniques; and

then resort to finite model finding if needed to either answer unsatisfiable, or produce

116

a model representing a concrete counterexample for the verification condition.

5.7.2.2 TPTP benchmarks

We considered benchmarks from a recent version of the TPTP library [57]

(5.4.0), a widely-used library from the automated theorem proving community. The

benchmarks from this library contain no theory reasoning (other than equality), and

are composed mostly of quantified formulas.

We compared cvc4 (version 1.2) against other SMT solvers including z3 (ver-

sion 4.3) and cvc3 (version 2.4.1), as well as various automated theorem provers and

model finders for first order logic, including Paradox [16] and iProver [39] (version

0.99). Paradox is a MACE-style model finder that uses preprocessing optimizations

such as sort inference and clause splitting, among others, and then encodes to SAT

the original problem together with increasingly looser constraints on the size of the

model. iProver is an automated theorem prover based in the Inst-Gen calculus that

can also run in finite model finding mode (iprover+f). In that mode, it incremen-

tally bounds model sizes in a manner similar to MACE-style model finding. However,

it encodes the whole problem into the EPR fragment, for which it is a decision pro-

cedure. Since these two tools are limited to classical first-order logic with equality,

we considered only the unsorted first-order benchmarks of TPTP.

Figure 5.8 shows results for benchmarks from the TPTP library that are known

to be satisfiable or unsatisfiable. All experiments were run with a 10 second timeout

per benchmark. The benchmarks were placed into (exactly one) category based on

its logical and syntactic characteristics, where EPR includes benchmarks that reside

117

Sat Unsat
EPR NEQ SEQ PEQ TOTAL EPR NEQ SEQ PEQ TOTAL
(392) (639) (340) (624) (1995) (1114) (1594) (7875) (2003) (12586)

z3 320 155 164 249 888 989 412 3310 1320 6031
cvc3 27 0 0 0 27 787 381 3019 883 5070
iprover 363 128 107 396 994 835 105 2690 1523 5153
iprover+f 362 226 178 468 1234 213 1 121 48 383
paradox 340 304 185 526 1355 723 17 339 186 1265
cvc4+i 32 0 0 0 32 821 383 3152 1045 5401
cvc4+f 295 178 143 375 991 759 247 887 651 2544
cvc4+fm 298 221 178 391 1088 759 169 1010 703 2641
cvc4+fM 301 235 200 395 1131 759 198 1073 733 2763
cvc4+fMi 292 207 153 385 1037 762 236 1281 746 3025
cvc4+fMs 296 242 197 382 1117 765 199 1230 798 2992
cvc4+fMS 305 244 199 410 1158 771 201 1356 896 3224

Figure 5.8. Results for TPTP benchmarks. All experiments were run with a 10
second timeout.

in the effectively propositional fragment, NEQ are benchmarks that do not contain

any equality reasoning, SEQ are benchmarks containing some equality, and PEQ are

benchmarks containing only pure equality.

For satisfiable benchmarks, cvc4’s model finder with exhaustive instantiation

(cvc4+f) solves 991 benchmarks. Using model-based quantifier instantiation, that

number goes up to 1088 with the algorithm from Section 5.4.1 (cvc4+fm), and up to

1131 with the algorithm from Section 5.4.2 (cvc4+fM). Using further optimizations

for the latter of these algorithms, both performing heuristic instantiation (cvc4+fMi)

and adding ground clauses for symmetry breaking (cvc4+fMs) led to finding fewer

satisfiable benchmarks, while determining the satisfiability of the problem in the

inferred signature based on sort inference (cvc4+fMS) solved the most satisfiable

benchmarks of any configuration of cvc4, solving 1158 within the timeout.

While cvc4 solves more than z3, which finds 888 satisfiable benchmarks, our

model finder still trails the overall performance of the other model fingers on these

118

problems. Paradox was the overall best solver, finding 1355 satisfiable benchmarks.

We attribute this to the fact that we have not implemented advanced preprocessing

techniques, such as clause splitting, that have been shown to be critical for finding

finite models of TPTP benchmarks. Nevertheless, cvc4’s model finder is capable

of solving benchmarks that neither Paradox nor iProver can solve. In particular, it

solves more satisfiable benchmarks (200) than any other solver for classes of problems

having some equality reasoning (SEQ). Collectively, some configuration of cvc4 with

finite model finding was able to solve 41 satisfiable benchmarks that neither Paradox

nor iProver was able to solve. Additionally, some configuration of cvc4 with finite

model finding was able to solve 3 satisfiable benchmarks with 1.0 difficulty rating,

which means that no known ATP system had solved these problems when version of

5.4.0 of the TPTP library was released (in June of 2012).

Figure 5.8 also shows results for unsatisfiable problems. Although these results

are not comparable to those achieved by state-of-the-art theorem provers, such as

Vampire and E, we note that z3 solves the most benchmarks, 6031. Here, cvc4+fMS

was the best configuration of cvc4 with finite model finding, solving 3224 within the

timeout. While finite model finding configurations solved considerably fewer than

using heuristic instantiation alone, some configuration of cvc4 with finite model

finding solves 116 unsatisfiable benchmarks that were unable to be solved by any

other solver in these experiments, including z3.

To further evaluate the impact of model-based quantifier instantiation on our

model finder, we recorded statistics on the domain size of quantified formulas in

119

 1000

1e+4

1e+5

1e+6

1e+7

1e+8

1e+9

1e+10

1e+11

 800 850 900 950 1000 1050 1100

#

o
f

I
n
s
t
a
n
c
e
s

Solved

cvc4+f

cvc4+fm

cvc4+fM

Figure 5.9. Satisfiable TPTP problems with and without model-based instantiation.
A point (x, y) on this graph says the configuration solves x benchmarks each having
at most y ground instances of quantified formulas.

benchmarks solved by its various configurations. We measured the total number of

possible ground instances for all quantified formulas in the smallest model for that

benchmark (a quantified formula over n variables each with domain size k has kn

instances). For a problem with d total instances, the configuration cvc4+f must

explicitly generate these d instances, while a model-based configuration may avoid

doing so.

For these experiments, cvc4+f was only able to solve 2 problems having more

than 100K instances, the maximum having around 146K instances. On the other

hand, cvc4+fm was capable of solving 92 problems having more than 100K in-

120

stances, with the largest having more than 96.8 billion instances. Techniques from

Section 5.4.2 (configuration cvc4+fM) led to even better performance, solving 121

problems having more than 100k instances, with the largest having more than 775 bil-

lion instances. This information is plotted in Figure 5.9, showing how the model-based

instantiation approaches improves the scalability of our model finder, and allows it

to solve benchmarks where exhaustive instantiation is clearly infeasible. Note that

model finders such as Paradox have other ways of handling the explosion in the num-

ber of instances, namely by minimizing the number of variables per clause. Coupling

these techniques with model-based techniques could lead to additional improvements

in scalability. Since techniques for reducing variables in clauses rely on introducing

new symbols into the problem, we have found that they have a negative impact on

performance for several classes of benchmarks, and thus are disabled by default in

cvc4.

Recently, cvc4 participated in CASC 24, a competition evaluating the per-

formance of automated theorem provers on selected TPTP benchmarks. In the first-

order non-theorems division (FNT), cvc4 finished 3rd out of 8 solvers, solving 96 of

150 problems, just behind Paradox, which solved 99. The newest version of iProver

won the competition solving 122 problems. At the time of the competition (June of

2013), cvc4 did not incorporate enhancements based on sort inference.

5.7.2.3 Isabelle benchmarks

Recent work has shown that SMT solvers are effective at discharging proof

obligations for Isabelle, a generic proof assistant [52]. The performance of these

121

solvers can benefit from an encoding that makes use of theories [8]. We considered a

set of 13,041 benchmarks corresponding to both provable and unprovable proof goals,

corresponding to a superset of those discussed in [8]. Most benchmarks in this set

contain quantifiers, and a significant portion contain integer arithmetic. For many

of them, the quantification is limited to the free sorts, thus making our finite model

finding approach applicable. Since cvc4 does not yet have support for non-linear

arithmetic, we report results only for the 11,130 benchmarks that do not contain

(non-trivial) non-linear arithmetic constraints.

These benchmarks contained annotations corresponding to user-provided pat-

terns and weight values that were added to optimize the performance of z3. We report

on z3 with patterns (configuration z3+p) and without patterns (configuration z3).

We omit results for cvc3 and cvc4 with patterns, which both performed slightly

worse when patterns were provided.

The results are shown in Figure 5.10. For satisfiable benchmarks, all configura-

tions of cvc4’s model finder find more satisfiable problems than z3, which finds only

177 of them overall when using patterns. The model-based quantifier instantiation

technique from Section 5.4.1 (configuration cvc4+fm) was slightly less effective than

naive instantiation (configuration cvc4+f) which solves 738, suggesting that useful

instantiations were missed during the instance selection procedure. On the other

hand, the techniques from Section 5.4.2 were more effective than both of these config-

urations, as cvc4+fM solved 748 overall. Sort inference techniques (configurations

cvc4+fMs and cvc4+fMS) were able to infer many subsorts for these benchmarks,

122

Sat Arrow FFT FTA Hoare NSS QEpres SNorm TSq TSafe TOTAL
cvc3 0 9 0 0 0 0 0 8 0 17
z3 2 19 24 46 10 38 1 15 12 167
z3+p 1 19 24 46 10 47 1 17 12 177
cvc4+i 0 9 0 0 0 0 0 8 0 17
cvc4+f 26 123 163 149 56 75 12 50 84 738
cvc4+fi 26 133 158 155 61 80 12 44 87 756
cvc4+fm 22 120 152 147 36 75 12 46 87 697
cvc4+fM 28 126 163 151 44 94 12 43 87 748
cvc4+fMi 31 136 161 154 61 101 12 44 85 785
cvc4+fMs 28 125 156 148 44 93 12 43 87 736
cvc4+fMS 28 127 162 150 46 95 12 43 87 750

Unsat Arrow FFT FTA Hoare NSS QEpres SNorm TSq TSafe TOTAL
cvc3 287 250 877 577 102 291 206 552 216 3358
z3 166 238 733 497 105 251 240 495 297 3022
z3+p 254 230 797 507 135 242 240 491 329 3225
cvc4+i 253 233 749 476 99 265 234 523 267 3099
cvc4+f 123 94 350 209 41 99 83 361 127 1487
cvc4+fi 155 164 509 374 37 168 100 452 195 2154
cvc4+fm 112 86 357 212 26 119 82 349 120 1463
cvc4+fM 88 92 381 202 29 109 93 365 149 1508
cvc4+fMi 154 164 515 371 37 167 100 452 195 2155
cvc4+fMs 76 89 388 211 33 111 91 365 164 1528
cvc4+fMS 88 94 386 225 29 111 93 365 173 1564

Figure 5.10. Results for satisfiable and unsatisfiable Isabelle benchmarks. Tables
show the number of problems solved for various classes within a 10 second timeout.

and led to a slight improvement for the latter configuration, solving 750. Using heuris-

tic E-matching noticeably improved the search for models, as configuration cvc4+fi

solves 756 satisfiable benchmarks. Using both model-based instantiation and heuristic

instantiation, configuration cvc4+fMi, found more satisfiable problems (785) than

any other configuration.

For unsatisfiable problems, cvc3 is the overall winner, solving 3,358, which

was more than both z3 with patterns and cvc4+i which solved 3,225 and 3,099

respectively. Configurations of cvc4 with finite model finding generally solves less

unsatisfiable benchmarks, but is orthogonal to other solvers and configurations. In

these experiments, 170 unsatisfiable benchmarks that cvc3 cannot solve are solved by

at least one configuration of cvc4 with finite model finding. Similarly, a configuration

123

of cvc4 with finite model finding solves 365 unsatisfiable benchmarks that z3 cannot,

and 229 that cvc4+i cannot.

We are investigating new ways where model finding can be used in the context

of automated theorem proving systems. Some of these systems are based on selecting

a set of relevant background axioms that may be sufficient for proving a conjecture.

In this case, a model finder could be used to identify queries where searching for a

proof is guaranteed to fail.

124

CHAPTER 6

EXTENSIONS TO OTHER DOMAINS

In this chapter, we mention further domains for which a finite model finding

approach can be applied, including integer quantification when finite bounds can be

inferred and model finding for the theory of strings.

6.1 Bounded Integer Quantification

In this section, we examine how an approach for finite model finding can be

extended to handle problems with quantification over the built-in integer sort Int.

Our approach will be limited to quantified formulas where bounds can be inferred for

all quantified integer variables.

Definition 13 A quantified formula has bounded integer quantification if and only if

it is equivalent to ∀ x1, . . . xn : Int. `1 ≤ x1 ≤ u1 ∧ . . . ∧ `n ≤ xn ≤ un ⇒ ψ, where (i)

n > 0, and (ii) xj 6∈ FV (li, ui) for 1 ≤ i ≤ j ≤ n.

We assume we are using the model finding approach outlined in Section 5.1.

Analogous to the methods described in the previous chapter, after finding terms that

effectively bind the range of instances of a quantified formula ϕ we need to consider,

we will minimize the values of these terms in a candidate model using a strategy in

DPLL(T1, . . . , Tm), construct a candidate modelM from satisfying assignments, and

use this model to guide how we instantiate the quantified formula ϕ.

125

proc infer bounds(ϕ,X) ≡
B := ∅;
while B 6= X

for x ∈ X, x 6∈ B
if ϕ |= ` ≤ x ≤ u, FV (`, u) ⊆ B
B := B ∪ {x}
lower(x) := `, upper(x) := u

end
end

end

Figure 6.1. The infer bounds procedure. Finds terms lower(x) and upper(x) for each
x ∈ X, where X is the set of free integer variables in ϕ.

6.1.1 Inferring Bounds

To begin, we must determine if each quantified formula ∀x.ϕ in our input

has bounded integer quantification. For each integer variable x ∈ x, we wish to

find terms corresponding to the lower and upper bound for x, which we will denote

as lower(x) and upper(x). Figure 6.1 gives a method infer bounds for finding these

terms. For determining cases where ϕ |= ` ≤ x ≤ u, we consider literals equivalent to

c ·x+d ·y ≤ 0 having polarity p in ϕ, and where c 6= 0. From this, a term of the form

−d
c
· y(±1) is either a candidate lower or candidate upper bound for x, depending on

the sign of c and the polarity of the literal p. On each iteration, we infer bounds on

variables for which both an upper and lower bound (whose free variables are in B)

can be found.

Consider the term upper(x)− lower(x) for a bounded integer variable x in our

problem. If this term is ground, our strategy for DPLL(T1, . . . , Tm) will attempt to

minimize its value in the current assignment M . If this term contains free variables y,

126

we will ensure that (upper(x)− lower(x)){y 7→ v} ≤ k is satisfied for some values v,

where k is a fresh constant. We write range(x) to denote the term upper(x)− lower(x)

if this term is ground, or the fresh constant k introduced for x otherwise.

6.1.2 Establishing Finite Bounds

Our approach for bounded integer quantification relies on a strategy for DPLL(T1, . . . , Tm)

which establishes finite bounds for each quantified variable. Following the conven-

tions from Section 4.2.1, at weak effort, we check if there exists any bounded integer

variable x such that no literal equivalent to range(x) < r exists in M . If so, let r′ be

the smallest integer such that M |= range(x) ≥ r′, or 0 otherwise. Such a lower bound

on range(x) can typically be obtained from the Simplex procedure used by most SMT

solvers. Using the rule Learni, we add the lemma (range(x) < r′ ∨ ¬range(x) < r′).

Then, if there exists any bounded integer variable x such that the literal equivalent to

range(x) < r does not exist in M , we may choose range(x) < r with positive polarity

as the literal for which Decide is applied.

6.1.3 Constructing Candidate Models

Once a satisfying assignment M is found for our set of clauses F , we construct

a candidate model M satisfying M . In the remainder of this section, we assume we

are given an evaluation map AM for M . For now, we address how definitions for

functions containing only integer arguments are constructed.

127

6.1.3.1 Representing Function Definitions

We will use the representation for functions as provided in Section 5.3.2, where

our abstract values are extended to incorporate intervals :

u := ⊥ | v | ∗ | [v1, v2] (6.1)

Here, [v1, v2] represents any integer value between v1 and v2, where vi is ei-

ther an integer value, −∞, or ∞. We assume similar notions from Section 5.3.2 for

abstract values in this extension. For an interval [v1, v2], we define its concretiza-

tion γ([v1, v2])[x] as the formula v1 ≤ x ≤ v2. It can be shown that the meet of

two abstract values remains well-defined in this extension, i.e. [v1, v2] 4 [w1, w2] =

[max(v1, w1),min(v2, w2)]. Note that if v1 > v2, then [v1, v2] is equivalent to ⊥. In

the following, we may write ∗ as shorthand for [−∞,∞].

6.1.3.2 Constructing Function Definitions

Similar to Section 5.3, we consider only candidate modelsM that are induced

by Σ-maps. Thus it suffices to show how definitions Df are constructed for each

function f , given a satisfying assignment M .

Say we are given a function f of sort Int× . . .× Int→ S for some sort S. As be-

fore, our construction of Df will be based on terms in TM with top symbol f . Given

our evaluation map AM , let termsi(f(t1, . . . , tn)) ⊆ TM be the set {f(s1, . . . , sn) |

∀1 ≤ j < i.AM(tj) = AM(sj)}. Let ivali(f(t1, . . . , tn)) be the interval whose lower

bound is −∞ if AM(ti) = min({AM(si) | f(s1, . . . , sn) ∈ termsi(f(t1, . . . , tn))})

and AM(ti) otherwise, and whose upper bound is equal to min(∞, {AM(si) − 1 |

f(s1, . . . , sn) ∈ termsi(f(t1, . . . , tn)),AM(si) > AM(ti)}). For example, if f(1, 3),

128

f(1, 5), and f(2, 2) are in TM , then terms2(f(1, 3)) = {f(1, 3), f(1, 5)}, and ival2(f(1, 3)) =

[−∞, 4].

We construct the definition Df for function symbols f ∈ Σ, where f is of sort

Int× . . .× Int→ S in the following way.

Construction of Df : If TM contains at least one term of the form

f(t1, . . . , tn), then Df is a definition consisting of:

(ival1(t), . . . , ivaln(t))→ AM(t) ∈ Df for each t of the form f(t1, . . . , tn) ∈ TM

Otherwise, Df is (∗, . . . , ∗)→ v for some value v.

It is immediate that all pairs of entries c→ v and d→ w are such that c and

d are incompatible. Thus, it is easy to show thatM is consistent with our evaluation

map AM and thus satisfies M .

Example 29 Say our evaluation map AM is {f(1, 3) 7→ 0, f(1, 5) 7→ 3, f(2, 1) 7→ 5}.

Then, Df is ([−∞, 1], [−∞, 4])→ 0, ([−∞, 1], [5,∞])→ 3, ([2,∞], [−∞,∞])→ 5.

Although not shown here, if a function f contains arguments that are both

integer and uninterpreted sorts, we may combine the aforementioned model construc-

tion for Df with the one mentioned in Section 5.3.3. The idea is to partition terms in

TM with top symbol f into sets whose non-integer arguments evaluate to the same

tuple of values in AM before applying the model construction procedure described in

this section.

129

proc bound int qi(M, ϕ, i, σ, e`, eu) ≡
if i > n

return {σ}
else ifMσ[[ui − `i]] >M[[range(xi)]]

apply Learni to ((ui − `i)σ ≤ range(xi))
return fail

else
S := ∅
for j = 0 . . . (min(Mσ[[ui]], eu.i)−max(Mσ[[`i]], e`.i))
S := S ∪ bound int qi(M, ϕ, i+ 1, σ ∪ {xi 7→ `iσ + j}, e`, eu)

end
return S

end

Figure 6.2. The bound int qi procedure. Given a candidate model M and ϕ = ∀
x1, . . . xn : Int. `1 ≤ x1 ≤ u1 ∧ . . . ∧ `n ≤ xn ≤ un ⇒ ψ, this procedure, when
successful, returns all relevant substitutions for ϕ whose values are between bounds
e` and eu. The procedure is called initially with i = 1 and σ = ∅.

6.1.4 Quantifier Instantiation

Similar to the methods from the previous chapter, after we construct a candi-

date modelM from our satisfying assignment M , we apply a quantifier instantiation

heuristic to choose a set of substitutions Ix for each quantified formula ϕ that is

active in M . If ϕ has bounded integer quantification, a naive approach would be to

consider the full range of instantiations of ϕ without considering which instantiations

are already true in the model. To do this, we apply the method shown in Figure 6.2.

with e` = (−∞, . . . ,−∞) and eu = (∞, . . . ,∞).

Consider a quantifier ∀x.ϕ having bounded integer quantification, where ϕ

is equivalent to `1 ≤ x1 ≤ u1 ∧ . . . ∧ `n ≤ xn ≤ un ⇒ ψ. As before, to improve

scalability, in some cases we may use a model-based approach for quantifier instan-

tiation. In particular, if ψ is model-checkable, we compute Dλx.ψ using the methods

130

from Section 5.4.2.2. Then, for each ([`′1, u
′
1], . . . , [`′n, u

′
n]) → false ∈ Dλx.ψ, we add

one substitution to Ix for ∀x.ϕ. Because of our model construction, which con-

structs definitions that are comprised of disjoint interval entries, it can be shown that

[[γ(Dλx.ψ)[v1, . . . , vn]]] = false for all v1, . . . vn where `′1 ≤ v1 < u′1 . . . `
′
n ≤ vn < un.

We call the bound int qi procedure with with e` = (`′1, . . . , `
′
n) and eu = (u′1, . . . , u

′
n),

and add the first substitution it returns to Ix for ∀x.ϕ.

Example 30 Say we wish to determine the satisfiability of the set of clauses {f(3) ≈

1, f(90) ≈ −1, ϕ}, where ϕ is ∀x.5 ≤ x ≤ 70 ⇒ f(x) ≈ 0. After finding a satisfying

assignment f(3) ≈ 1, f(90) ≈ −1. We construct a candidate model induced by the

definition:

Df = ([−∞, 89])→ 1, ([90,∞])→ −1

When performing model-based quantifier instantiation on ϕ, we calculate Dλx.f(x)≈0,

obtaining ([−∞,∞])→ false. Our quantifier instantiation heuristic adds the instance

ϕ[5/x] to our set of clauses. After finding a satisfying assignment for our new set of

clauses, we construct a candidate model induced by the definition:

Df = ([−∞, 4])→ 1, ([5, 89])→ 0, ([90,∞])→ −1

We will calculate Dλx.f(x)≈0 again for this candidate model, obtaining ([−∞, 4]) →

false, ([5, 89])→ true, ([90,∞])→ false. After processing the first and third entries,

our quantifier instantiation algorithm will terminate with no instances produced, and

we will answer satisfiable. �

131

Example 31 Say we wish to determine the satisfiability of the set of clauses {¬P (0, 0),

∀x1x2.(0 ≤ x1 ≤ 5 ∧ 0 ≤ x2 ≤ f(x1))⇒ P (x1, x2)}. As mentioned, to bound the val-

ues of variable x2, we introduce a constant k such that we will require f(x) ≤ k for

all x. We add the lemma (k < 0 ∨ ¬k < 0), and decide on k < 0. After finding a

satisfying assignment, we construct a candidate model M induced by the definitions:

DP = (∗, ∗)→ false, Df = (∗)→ 0, Dk = ()→ −1

We compute Dλx1 x2.P (x1,x2), obtaining (∗, ∗)→ false. While applying bound int qi for

our quantified formula, we find that M[[f(0)]] = 0 > −1 = M[[k]] = M[[range(x2)]].

Thus, our quantifier instantiation heuristic fails, and instead we add the lemma

f(0) ≤ k. After finding another satisfying assignment, we build a new candidate

model where Df = (∗) → −1, our quantifier instantiation heuristic terminates with

no instances, and we answer satisfiable. �

6.1.5 Properties

Here, we show that our approach for handling bounded integer quantification

is sound, and give a sketch of how it can be extended to be model complete. In other

words, given an input F0 where all quantified formulas in F0 have bounded integer

quantification, if F0 is satisfiable, then our approach will terminate with a model.

To show soundness, we must show that all lemmas added by our procedure

preserve the satisfiability of F0. Applications of quantifier instantiation and splitting

lemmas clearly do so. The only other lemmas we add are of the form ((ui − `i)σ ≤

range(x)) during the bound int qi procedure. Due to our definition of range(x), in

this case (ui− `i) must be a non-ground term and range(x) must be a fresh constant.

132

Since range(x) is a fresh constant, we may add an arbitrarily large (finite) number of

clauses of this form without affecting the satisfiability of F0.

To show model completeness, we extend our approach in the following way.

Let B be the set of all (bounded integer) variables occurring in F0. We incorporate a

fair strategy when searching for models for F0 in a manner similar to fixed-cardinality

DPLL(T1, . . . , Tm) for multiple sorts. Assuming we use splitting on demand for in-

troducing necessary literals, instead of deciding on literals of the form range(x) < r

for each x ∈ B, we decide on a literals of the form Σx∈Bmax(range(x),−1) < r, where

max(s, t) is shorthand for the term ite(s < t, t, s).

Now, say that F0 is satisfiable with model M. For each x ∈ B, let S(x) be

the (finite) set of substitutions with domain FV (upper(x)− lower(x)) that map each

variable y to a term from the set {lower(y)σ + i | σ ∈ S(y), 0 ≤ i ≤ Mσ[[upper(y) −

lower(y)]]}. It can be shown that our procedure will terminate (at worst) when con-

sidering the bound r = Σx∈Bmax({Mσ[[upper(x) − lower(x)]] | σ ∈ S(x)}) for the

term Σx∈Bmax(range(x),−1). Now, let S ′(x) be the (finite) set of substitutions with

domain FV (upper(x) − lower(x)) that map each variable y to a term from the set

T (y) = {lower(y)σ + i | σ ∈ S ′(y), 0 ≤ i ≤ r+ |B |}, which we similarly call T (x)

for any variable x. Note that T (x) is finite for all variables x ∈ B. For a quantified

formula ϕ with bounded integer quantification, our procedure will only add instan-

tiations of the form ϕσ where each x in the domain of σ is mapped to a term from

T (x). Since the number of instantiations of this form is finite, our procedure will only

perform a finite number of instantiation rounds before terminating with a model.

133

sat (263) unsat (843)
solved time solved time

z3 257 957.9 843 20.3
cvc4+i 0 0.0 843 17.4
cvc4+fi 263 90.8 843 308.7

Figure 6.3. Results for Intel benchmarks containing bounded integer quantification.
All times are in seconds.

6.1.6 Results

We evaluated the performance of our approach for bounded integer quantifi-

cation on a set of benchmarks created by the Intel Corporation corresponding to

properties of memory within bounded integer ranges. Satisfiable benchmarks were

generated by removing necessary assumptions from proof goals. The benchmarks

contain ground theory constraints over arrays, datatypes, uninterpreted functions

and integers. All non-trivial quantified formulas in these benchmarks were either in

the bounded integer fragment described above, or otherwise had quantification only

over uninterpreted sorts. 1 All bounds on integer variables in these problems (terms

`1, . . . , `n, ui . . . , un from Defintion 13) were symbolic constants.

The results are shown in Figure 6.3 for unsatisfiable and satisfiable bench-

marks. We ran the SMT solver z3, cvc4 with heuristic instantiation (the configura-

tion cvc4+i), and cvc4 with the methods described in this section as well as using

heuristic instantiation (cvc4+fi). We did not use model-based quantifier instantia-

tion for these experiments. All configurations were run with a 600 second timeout.

In our experiments, both z3 and cvc4+i quickly solved all of the unsatisfiable

1A few unsatisfiable benchmarks had quantification over integers for the initialization of
constant arrays.

134

benchmarks. Additionally, the configuration cvc4+fi solved all unsatisfiable bench-

marks in less than 60 seconds. For satisfiable benchmarks, z3 solved most of them,

solving 257 out of 263 within the timeout. It was able to do so because the bench-

marks were in the almost uninterpreted fragment, as described in [28]. Techniques for

bounded integer quantification were effective for satisfiable benchmarks in this set,

and had the best performance overall. The configuration cvc4+fi solved each of the

263 satisfiable benchmarks in less than 20 seconds.

For most of these benchmarks, the bounded range of most quantified variables

was relatively small. The range of most quantified formulas was around 2 to 4, while

the largest range of bounded integer variable encountered in this set was 10. In

other words, for a quantified formula ∀x.` ≤ x ≤ u ⇒ P (x) where ` and u are

(symbolic) ground integer constants, a model M was found where M[[u − `]] = 10.

Other benchmarks had quantifiers where a model could be constructed such that

all variables had bounded ranges that were negative, thus eliminating the need for

quantifier instantiation altogether. Given these details, this means cvc4 with finite

model finding was able to find counterexamples to the verification conditions from

this set involving a relatively small number of memory addresses.

6.2 Strings

A finite model finding approach can be used for the theory of strings with

length constraints. Consider a basic definition for this theory, where terms are either

variables x, constants consisting of a sequence of characters from a finite alphabet, or

concatenation of strings. We assume the signature of theory of strings also contains

135

a unary function for length, which we will write as | · |, having type String → Int.

Various approaches having been proposed for handling string constraints in SMT,

including the HAMPI solver [35], which solves constraints for fixed-size string and

context-free language constraints by a reduction to bit-vector constraints.

Following a similar approach as previous sections, a finite model finding ap-

proach can be integrated into DPLL(T1, . . . , Tm) for a set of clauses F , where Ti is the

theory of strings with length constraints, in the following manner. Let x1, . . . , xn be

the string variables occurring in F . When a weak effort check produces no conflicts,

if there exists no literals of the form | x1 | + . . .+ | xn |≤ k in our current assign-

ment M , we find an (integer) lower bound k on the value of | x1 | + . . .+ | xn | in

M , where k = 0 if none exists. If necessary, we apply Learni to split on the literal

|x1 | + . . .+ |xn |≤ k and subsequently decide (positively) on |x1 | + . . .+ |xn |≤ k.

Assume we are given a decision procedure for strings of bounded length.

If F has a model where x1, . . . , xn are interpreted as strings of finite length, the

DPLL(T1, . . . , Tm) procedure will terminate, noting that only a finite number of lit-

erals of the form |x1 | + . . .+ |xn |≤ k will be introduced as a result of this extension.

We are currently working on an implementation of this approach in cvc4, as well as

a theory solver for this theory.

136

CHAPTER 7

CONCLUSION

We developed a procedure for finite model finding in SMT that is efficient for

many classes of problems that are of practical interest to formal methods applications.

Experimental evidence shows that an implementation of these methods in the SMT

solver cvc4 is a efficient approach for solving many classes of benchmarks, including

verification conditions from industry, and benchmarks from automated theorem prov-

ing libraries. The implementation is highly competitive both with respect to other

SMT solvers and automated theorem provers.

An efficient approach for finite model finding in SMT was made possible by a

search strategy that establishes finite cardinality constraints, and a specialized ground

theory solver for determining the satisfiability of these constraints. A key feature

of this theory solver is that it performs an incomplete check for eagerly recognizing

cardinality conflicts, allowing the solver to avoid parts of the search that are obviously

infeasible.

For determining the satisfiability of quantified formulas, we introduced new

methods for representing and constructing candidate models. Our representation of

candidate models can be extended in various ways, including to intervals for functions

with integer arguments. We believe the representation can be extended to incorporate

models for other theories, including numeric intervals for bit-vectors and pattern

matching constraints for inductive datatypes. We believe our model construction

137

also can be easily integrated with new frameworks for SMT, namely, those making

model assignments explicit in the search [21].

We also introduced new algorithms for model-based quantifier instantiation to

test whether candidate models satisfy universally quantified formulas, and for choos-

ing relevant instances to refine the candidate model. The first algorithm relied on

generalizing ground evaluations of quantified formulas, and grouping sets of instan-

tiations that evaluate to the same value. The second of these algorithms was based

on computing a representation of the interpretation of non-ground terms in the can-

didate model, thus allowing us to efficiently check when no instance of a quantified

formula is falsified.

We introduced various enhancements for finite model finding in SMT, includ-

ing heuristic instantiation, sort inference, and the use of relevancy for minimizing

satisfying assignments. These techniques rule out spurious candidate models, reduce

the amount of symmetry in the problem, and lower the overhead of checking candi-

date models. As demonstrated in our experiments, they improve the performance of

the solver for both satisfiable and unsatisfiable benchmarks.

Finite model finding techniques also can be generalized to other domains of

SMT, including bounded integer quantification and the theory of strings. In partic-

ular, we showed that an approach that is sound and model complete for problems

where all quantified formulas have bounded integer quantification. Preliminary re-

sults show that these techniques are highly effective at solving problems of interest

to verification and security applications.

138

Several important properties were shown for our approach for finite model

finding in the presence of quantified formulas. Firstly, our procedure is finite model

complete for any input where quantification is limited to uninterpreted sorts. This

result was guaranteed by having a fair search strategy when multiple sorts are present,

and by instantiating quantified formulas only with terms maximum depth. Secondly,

our procedure is refutationally complete when using naive quantifier instantiation

in the absence of background theories. This result was guaranteed by showing that

the procedure fairly enumerates a finite set of ground instances that is sufficient for

showing the input to be unsatisfiable. We conjecture this result can be generalized to

some cases where background theories are also present at the ground level, but this

is left for future work.

We believe the methods described in this thesis provide a starting point for

most applications that rely on models for first-order quantified formulas in SMT.

In many applications, an encoding can be used where quantification is limited to

uninterpreted sorts by abstracting the domain of each quantified formula. Provided

that a model in the resultant encoding implies that a model of interest exists in the

original problem, the procedures mentioned in this thesis are applicable, and moreover

are guaranteed to terminate successfully when a finite model exists.

139

APPENDIX A

PREPROCESSING

In this section, we describe preprocessing techniques applied to an input ϕ.

When considering a combination of theories T1 ∪ . . .∪ Tn with signatures Σ1, . . . ,Σn,

we first perform a purification step so that each ground atomic subformula ψ of ϕ

is over a single signature Σi for some i, or in other words, ψ is pure. If ϕ contains

a ground atomic formula ψ that is not pure, we replace a pure subterm t of ψ of

sort S with a constant c from a set of constants CS shared by the signatures of each

theory, and add the (pure) equality t ≈ c to our input. We repeat this process until

all ground atomic formulas in our input are pure.

Let us now turn our attention to quantified formulas occurring in ϕ. We

first rewrite all existential quantifiers in ϕ to universal quantifiers, rewriting ∃xϕ to

¬∀x¬ϕ. We then apply techniques described in A.1- A.4 to each ∀x¬ϕ occurring in

the resulting formula. Then, we convert ϕ to a set of clauses as described in A.5.

A.1 Negation Normal Form

We first rewrite the body of a quantified formula ∀x.ϕ such that the only

logical connectives in ϕ are ¬, ∧ and ∨, using the following rewrites.

ϕ1 ⇔ ϕ2 → (ϕ1 ∧ ϕ2) ∨ (¬ϕ1 ∧ ¬ϕ2) (A.1)

ϕ1 ⇒ ϕ2 → ¬ϕ1 ∨ ϕ2 (A.2)

ite(ϕ1, ϕ2, ϕ3)→ (ϕ1 ∧ ϕ2) ∨ (¬ϕ1 ∧ ϕ3) (A.3)

140

Then, we assume a standard conversion to negation normal form, where every nega-

tion is applied directly to an atomic formula.

A.2 Miniscoping

We may apply miniscoping in two ways, as shown below.

∀x.(ϕ ∨ ψ)→ (∀x.ϕ) ∨ ψ if x ∩ FV (ψ) = ∅ (A.4)

∀x.(ϕ ∧ ψ)→ (∀x.ϕ) ∧ (∀x.ψ) (A.5)

A.3 Destructive Equality Resolution

We may apply destructive equality resolution, which eliminates a variable from

a quantified formula.

∀xy.(x 6≈ t ∨ ϕ)→ ∀y.(ϕ[t/x]) if x 6∈ FV (t) (A.6)

A.4 Eliminating Nested Quantifiers

We may eliminated nested quantification from ∀x.ϕ in the following way. We

say that a literal has positive (respectively negative) polarity in a formula if it occurs

beneath an even (respectively odd) number of negations, and does not occur beneath

any quantifier.

If there exists a subformula ∀y.ψ of ϕ that has positive polarity in ϕ, we may

rewrite ∀x.ϕ to ∀xy.ϕ′, where ϕ′ is the result of replacing ∀y.ψ by ψ. If there exists

a ∀y.ψ that has negative polarity in ϕ, we may rewrite ∀x.ϕ to ∀x.ϕ′, where ϕ′ is the

result of replacing ∀y.ψ by ψ{y→ f(x)}, where f are fresh function symbols.

141

A.5 Convert to a Set of Clauses

In this section, we described how ϕ is converted into a set of clauses F0, where

each clause in F0 is either ground, or an equivalence of the form a⇔ ∀xϕ, where all

other occurrences of a in F0 have positive polarity.

Let U be a set of unprocessed formulas, initially {ϕ}, and let U ′ be the empty

set. For each ψ ∈ U , we first apply techniques from A.1- A.4 to ψ. We then replace

all occurrences of formulas ∀x θ within ψ with fresh Boolean variables a. For each

such variable a, we add a ⇔ ∀x θ to F0, and (a ∨ ¬θ[c/x]) to U ′, where c are fresh

constants. We then convert ψ to clause normal form, obtaining the clauses F . For

each clause in F containing the negation of some a where a⇔ ∀x θ ∈ F0, we replace

¬a with ¬θ[d/x], where d are fresh constants, and add the resulting formula to U ′.

We add all other clauses in F to F0. If U ′ is non-empty, we repeat the process with

U = U ′.

Example 32 Say our input ϕ is (∀x.∃y.P (x, y)) ⇔ Q, where ⇔ denotes iff and Q

is a unary predicate. After rewriting this formula to (∀x.¬∀y.¬P (x, y)) ⇔ Q, we

eliminate nested quantifiers to obtain ϕ′ = (∀x.P (x, f(x)) ⇔ Q where f is a fresh

function symbol. When processing the set U = {ϕ′}, we introduce the variable a

for ∀x.P (x, f(x)), add (a ⇔ ∀x.P (x, f(x))) to F0, add (a ∨ ¬P (c1, f(c1))) to U ′ for

fresh constant c1, and convert (a⇔ Q) to clause normal form, obtaining the clauses

a ∨ ¬Q, and ¬a ∨ Q. We replace ¬a in the second clause with ¬P (c2, f(c2)), where

c2 is a fresh constant. In the end, we obtain the set F0 = {a∨¬Q, ¬P (c2, f(c2))∨Q,

a ∨ ¬P (c1, f(c1)), a⇔ ∀x.P (x, f(x))}.

142

APPENDIX B

EXTENSIONS TO MODEL-BASED QUANTIFIER INSTANTIATION

In this section, we mention further extensions of our model-based quantifier

instantiation algorithm for computing the interpretation of terms that are not model-

checkable (see Definition 11).

We can compute interpretation for inequalities over at most one integer vari-

able. For instance, if t is model-checkable andDλx.t is definition c1 → v1, . . . , cn → vn,

then Dλx.xi≤t is the definition c1 4i [−∞, v1] → true · c1 4i [v1 + 1,∞] → false ·

. . . · cn 4i [−∞, vn]→ true · cn 4i [vn + 1,∞]→ false. Similarly, we can compute

the interpretation for Dλx.xi≥t.

Example 33 Say Dλx.t is ([−∞, 4])→ 2, ([5,∞])→ 3. Then, Dλx.x1≤t is ([−∞, 2])→

true, ([3, 4])→ false, ([5,∞])→ false.

We can further relax our constraints on the shape of terms t for which we may

produce Dλx.t based on the following definition.

Definition 14 A function fa is closed invertible if and only if (i) it is closed under

abstract values, and (ii) it has an inverse f−1
a .

For example, we can define a closed invertible function λx.(x+1) that is closed

under abstract values: ⊥ 7→ ⊥, v 7→ v + 1, [v1, v2] 7→ [v1 + 1, v2 + 1], ∗ 7→ ∗, and an

inverse can be defined: λx.(x− 1). We now relax our set of constraints on the shape

of terms we consider when applying our model-checking algorithm.

143

proc ext compose(c→ (t1, . . . , tn), (d1, . . . , dn)→ w) ≡
if n = 0

return c→ w
else if tn is fa(xi), and c.i is compatible with f−1

a (dn)
return ext compose(c 4i f

−1
a (dn), (t1, . . . , tn−1), (d1, . . . , dn−1))

else if tn is w, and w is compatible with dn
return ext compose(c, (t1, . . . , tn−1), (d1, . . . , dn−1))

else
return ⊥ → w

end

Figure B.1. Extended method for computing composition of entries. Term ti is either
a value or a closed invertible function applied to a variable from x = (x1, . . . xm)
where di has the sort of ti for each i = 1, . . . n, and c is an m-tuple where c.j has the
sort of xj for each j = 1, . . . ,m.

Definition 15 A term t is extended model-checkable if and only if (i) t is fa(xi),

where fa is a closed invertible function, (ii) t is f(t1, . . . , tn), f is uninterpreted,

t1 . . . tn are model-checkable, or (iii) t is f(t1, . . . , tn), and t1 . . . tn are model-checkable

of type (ii) or (iii).

Since the identity function is a closed invertible function, all model-checkable

terms are also model-checkable terms. When computing definitions Dλx.t for extended

model-checkable terms t, we require a method for composing entries that accounts for

when applications of closed invertible functions fa to variables xi occur in the range

of definitions we produce. This method, ext compose is given in Figure B.1. We will

write (c→ t) ◦ (d→ v) to refer to the entry returned by ext compose(c→ t,d→ v).

Example 34 (∗)→ (x1 + 2) ◦ ([3, 4])→ v is equal to ([1, 2])→ v.

Example 35 (∗, [2, 8])→ (x2−2, x1)◦([5, 9], [3, 4])→ w is equal to ([3, 4], [7, 8])→ w.

144

Lemma 10 If ext compose(c, t,d) returns w, then γ(w)[x] is equivalent to γ(c)[x]∧

γ(d)[t] in the theory of equality.

Proof: Using induction on n, the argument is similar to the proof of Lemma 8. The

only difference is when tn is fa(xi), where fa is a closed invertible function. In this case,

by the induction hypothesis, the method returns a w such that γ(w)[x] is equivalent to

γ(c4i f
−1
a (dn))[x]∧γ((d1, . . . , dn−1))[(t1, . . . , tn−1)]. We have that γ(c4i f

−1
a (dn))[x]

is equivalent to γ(c)[x]∧ γ(f−1
a (dn))[xi], which is equivalent to γ(c)[x]∧ γ(dn)[fa(xi)].

Since tn is fa(xi), we have that γ(w)[x] is equivalent to γ(c)[x] ∧ γ(d)[t]. �

We assume the composition of definitions can be computed using the extended

composition of entries using the same method as the one from Section 5.4.2. We

demonstrate this in the following example.

Example 36 Say we have that DP is ([−∞, 3])→ false, ([4, 8])→ true, ([9,∞])→

false. Then, Dλx.P (x+2) is ([−∞, 1])→ false, ([2, 6])→ true, ([7,∞])→ false.

The method for constructing definitions Dλx.t for extended model-checkable

terms t is nearly identical to the methods described in Section 5.4.2.1, with only

minor modifications. First, when t is fa(xi), we return the definition ∗ → fa(xi)

for Dλx.t. Second, we assume that composition of definitions is constructed using the

extended method for composition of entries as given in Figure B.1. Due to Lemma 10,

our construction of Dλx.t in this extension is correct using the same argument as the

one from Theorem 5.

145

REFERENCES

[1] W. Ackermann. Solvable cases of the decision problem. North–Holland, 1954.

[2] Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge
University Press, 1998.

[3] Clark Barrett, Christopher Conway, Morgan Deters, Liana Hadarean, Dejan Jo-
vanovic, Tim King, Andrew Reynolds, and Cesare Tinelli. CVC4. In Proceedings
of CAV’11, volume 6806 of LNCS, pages 171–177. Springer, 2011.

[4] Clark Barrett, Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Splitting
on demand in SAT modulo theories. In Proceedings of LPAR’06, volume 4246 of
LNCS, pages 512–526. Springer, 2006.

[5] Clark Barrett and Cesare Tinelli. CVC3. In Werner Damm and Holger Her-
manns, editors, Proceedings of the 19th International Conference on Computer
Aided Verification (CAV ’07), volume 4590 of Lecture Notes in Computer Sci-
ence, pages 298–302. Springer-Verlag, July 2007. Berlin, Germany.

[6] Peter Baumgartner, Alexander Fuchs, and Cesare Tinelli. ME(LIA) – model
evolution with linear integer arithmetic constraints. Technical Report 08-06,
Department of Computer Science, University of Iowa, 2006.

[7] Nikolaj Bjørner. Linear quantifier elimination as an abstract decision procedure.
In Proceedings of the 5th international conference on Automated Reasoning, IJ-
CAR’10, pages 316–330, Berlin, Heidelberg, 2010. Springer-Verlag.

[8] Jasmin Christian Blanchette, Sascha Böhme, and Lawrence C. Paulson. Extend-
ing Sledgehammer with SMT solvers. In Nikolaj Børner and Viorica Sofronie-
Stokkermans, editors, Automated Deduction, volume 6803 of Lecture Notes in
Computer Science, pages 116–130. Springer, 2011.

[9] Jasmin Christian Blanchette and Alexander Krauss. Monotonicity inference for
higher-order formulas. In Jürgen Giesl and Reiner Hähnle, editors, Automated
Reasoning, volume 6173 of Lecture Notes in Computer Science, pages 91–106.
Springer Berlin Heidelberg, 2010.

[10] Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. What’s decidable about
arrays? In E. Allen Emerson and Kedar S. Namjoshi, editors, Verification,
Model Checking, and Abstract Interpretation, volume 3855 of Lecture Notes in
Computer Science, pages 427–442. Springer Berlin Heidelberg, 2006.

146

[11] R. Brummayer. Efficient SMT Solving for Bit-vectors and the Extensional Theory
of Arrays. Schriften der Johannes-Kepler-Universität Linz. Trauner, 2009.

[12] Roberto Bruttomesso, Alessandro Cimatti, Anders Franzén, Alberto Griggio,
and Roberto Sebastiani. Delayed theory combination vs. Nelson-Oppen for sat-
isfiability modulo theories: a comparative analysis. AMAI, 55(1-2):63–99, 2009.

[13] Jürgen Christ, Jochen Hoenicke, and Alexander Nutz. SMTInterpol: An inter-
polating SMT solver. In SPIN, pages 248–254, 2012.

[14] Koen Claessen and Ann Lillieström. Automated inference of finite unsatisfiabil-
ity. In RenateA. Schmidt, editor, Automated Deduction CADE-22, volume 5663
of Lecture Notes in Computer Science, pages 388–403. Springer Berlin Heidel-
berg, 2009.

[15] Koen Claessen, Ann Lillieström, and Nicholas Smallbone. Sort it out with mono-
tonicity: translating between many-sorted and unsorted first-order logic. In Pro-
ceedings of the 23rd international conference on Automated deduction, CADE’11,
pages 207–221, Berlin, Heidelberg, 2011. Springer-Verlag.

[16] Koen Claessen and Niklas Sörensson. New techniques that improve MACE-style
finite model building. In CADE-19 Workshop: Model Computation – Principles,
Algorithms, Applications, pages 11–27, 2003.

[17] Leonardo de Moura and Nikolaj Bjørner. Efficient E-Matching for SMT solvers.
In Automated Deduction - CADE-21, 21st International Conference on Auto-
mated Deduction, Bremen, Germany, July 17-20, 2007, Proceedings, volume
4603 of Lecture Notes in Computer Science, pages 183–198. Springer, 2007.

[18] Leonardo de Moura and Nikolaj Bjørner. Relevancy propagation. Technical
Report MSR-TR-2007-140, Microsoft Research, 2007.

[19] Leonardo De Moura and Nikolaj Bjørner. Z3: an efficient SMT solver. In
Proceedings of the Theory and practice of software, 14th international confer-
ence on Tools and algorithms for the construction and analysis of systems,
TACAS’08/ETAPS’08, pages 337–340, Berlin, Heidelberg, 2008. Springer-Verlag.

[20] Leonardo de Moura and Nikolaj Bjørner. Bugs, moles and skeletons: Symbolic
reasoning for software development. In Automated Reasoning, 5th International
Joint Conference, IJCAR 2010, Edinburgh, UK, July 16-19, 2010. Proceedings,
volume 6173 of Lecture Notes in Computer Science, pages 400–411. Springer,
2010.

147

[21] Leonardo de Moura and Dejan Jovanović. A model-constructing satisfiability
calculus. In 14th International Conference on Verification, Model Checking, and
Abstract Interpretation, VMCAI, Rome, Italy, 2013, 2013.

[22] David Déharbe, Pascal Fontaine, Stephan Merz, and Bruno Woltzenlogel Paleo.
Exploiting symmetry in SMT problems. In Proceedings of CADE-23, volume
6803 of LNCS, pages 222–236. Springer, 2011.

[23] David Detlefs, Greg Nelson, and James B. Saxe. Simplify: A theorem prover for
program checking. Technical report, J. ACM, 2003.

[24] Bruno Dutertre and Leonardo de Moura. A fast linear-arithmetic solver for
DPLL(T). In Computer Aided Verification, 18th International Conference, CAV
2006, Seattle, WA, USA, August 17-20, 2006, Proceedings, volume 4144 of Lec-
ture Notes in Computer Science, pages 81–94. Springer, 2006.

[25] Bruno Dutertre and Leonardo De Moura. The yices smt solver. Tool paper at
http://yices. csl. sri. com/tool-paper. pdf, 2:2, 2006.

[26] Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In SAT, pages
502–518, 2003.

[27] Yeting Ge, Clark Barrett, and Cesare Tinelli. Solving quantified verification
conditions using satisfiability modulo theories. In F. Pfenning, editor, Proceed-
ings of the 21st International Conference on Automated Deduction (CADE-21),
Bremen, Germany, volume 4603 of Lecture Notes in Computer Science, pages
167–182. Springer, 2007.

[28] Yeting Ge and Leonardo de Moura. Complete instantiation for quantified for-
mulas in satisfiability modulo theories. In Proceedings of CAV’09, volume 5643
of LNCS, pages 306–320. Springer, 2009.

[29] P. Godefroid, P. de Halleux, A.V. Nori, S.K. Rajamani, W. Schulte, N. Tillmann,
and M.Y. Levin. Automating software testing using program analysis. Software,
IEEE, 25(5):30–37, Sept.-Oct.

[30] Amit Goel, Sava Krstić, and Alexander Fuchs. Deciding array formulas with
frugal axiom instantiation. In Proceedings of the Joint Workshops of the 6th
International Workshop on Satisfiability Modulo Theories and 1st International
Workshop on Bit-Precise Reasoning, SMT ’08/BPR ’08, pages 12–17, New York,
NY, USA, 2008. ACM.

[31] Amit Goel, Sava Krstić, Rebekah Leslie, and Mark Tuttle. SMT-based system
verification with DVF. In Proceedings of SMT’12, 2012.

148

[32] Krystof Hoder and Andrei Voronkov. Sine qua non for large theory reasoning. In
Nikolaj Bjrner and Viorica Sofronie-Stokkermans, editors, Automated Deduction
CADE-23, volume 6803 of Lecture Notes in Computer Science, pages 299–314.
Springer Berlin Heidelberg, 2011.

[33] Dejan Jovanović and Clark Barrett. Sharing is caring: Combination of theories.
Frontiers of Combining Systems, pages 195–210, 2011.

[34] Dejan Jovanović and Leonardo de Moura. Solving non-linear arithmetic. In Au-
tomated Reasoning - 6th International Joint Conference, IJCAR 2012, Manch-
ester, UK, June 26-29, 2012. Proceedings, volume 7364 of Lecture Notes in Com-
puter Science, pages 339–354. Springer, 2012.

[35] Adam Kiezun, Vijay Ganesh, Philip J. Guo, Pieter Hooimeijer, and Michael D.
Ernst. HAMPI: a solver for string constraints. In Proceedings of the eighteenth
international symposium on Software testing and analysis, ISSTA ’09, pages 105–
116, New York, NY, USA, 2009. ACM.

[36] K. Korovin and C. Sticksel. iProver-Eq: An instantiation-based theorem prover
with equality. In J. Giesl and R. Hähnle, editors, 5th International Joint Con-
ference, IJCAR 2010, volume 6173 of Lecture Notes in Computer Science, pages
196–202. Springer, 2010.

[37] K. Korovin and A. Voronkov. Integrating linear arithmetic into superposition
calculus. In Computer Science Logic (CSL’07), volume 4646 of Lecture Notes in
Computer Science, pages 223–237. Springer, 2007.

[38] Konstantin Korovin. Inst-gen - a modular approach to instantiation-based au-
tomated reasoning.

[39] Konstantin Korovin. iProver – an instantiation-based theorem prover for first-
order logic. In Proceedings of IJCAR’08, volume 5195 of LNCS, pages 292–298.
Springer, 2008.

[40] Konstantin Korovin. Non-cyclic sorts for first-order satisfiability. In Pascal
Fontaine, Christophe Ringeissen, and Renate A. Schmidt, editors, Frontiers of
Combining Systems, volume 8152 of Lecture Notes in Computer Science, pages
214–228. Springer Berlin Heidelberg, 2013.

[41] Sava Krstić and Amit Goel. Architecting solvers for SAT modulo theories:
Nelson-Oppen with DPLL. In Proceeding of FroCoS’07, volume 4720 of LNCS,
pages 1–27. Springer, 2007.

149

[42] Shuvendu K. Lahiri and Sanjit A. Seshia. The UCLID decision procedure. In
CAV, pages 475–478, 2004.

[43] William McCune. A Davis-Putnam program and its application to finite first-
order model search: Quasigroup existence problems. Technical report, 1994.

[44] K. L. Mcmillan. Interpolation and SAT-based model checking. pages 1–13.
Springer, 2003.

[45] Kenneth L. McMillan, Andreas Kuehlmann, and Mooly Sagiv. Generalizing
DPLL to richer logics. In CAV, pages 462–476, 2009.

[46] K.L. McMillan. Interpolants from Z3 proofs. In Formal Methods in Computer-
Aided Design (FMCAD), 2011, pages 19 –27, 30 2011-nov. 2 2011.

[47] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and
Sharad Malik. Chaff: engineering an efficient SAT solver. In Proceedings of the
38th annual Design Automation Conference, DAC ’01, pages 530–535, New York,
NY, USA, 2001. ACM.

[48] Greg Nelson and Derek C. Oppen. Simplification by cooperating decision proce-
dures. ACM Trans. Program. Lang. Syst., 1(2):245–257, October 1979.

[49] Robert Nieuwenhuis and Albert Oliveras. Fast Congruence Closure and Exten-
sions. Inf. Comput., 2005(4):557–580, 2007.

[50] Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving SAT and SAT
Modulo Theories: from an Abstract Davis-Putnam-Logemann-Loveland Proce-
dure to DPLL(T). Journal of the ACM, 53(6):937–977, November 2006.

[51] Robert Nieuwenhuis and Albert Rubio. Paramodulation-based theorem proving,
1999.

[52] Lawrence C Paulson and Markus Wenzel. Isabelle/HOL: a proof assistant for
higher-order logic, volume 2283. Springer, 2002.

[53] Andrew Reynolds, Cesare Tinelli, Amit Goel, and Sava Krstić. Finite model
finding in SMT. In Natasha Sharygina and Helmut Veith, editors, Computer
Aided Verification, volume 8044 of Lecture Notes in Computer Science, pages
640–655. Springer Berlin Heidelberg, 2013.

150

[54] Andrew Reynolds, Cesare Tinelli, Amit Goel, Sava Krstić, Morgan Deters, and
Clark Barrett. Quantifier instantiation techniques for finite model finding in
SMT. In Maria Paola Bonacina, editor, Automated Deduction CADE-24, vol-
ume 7898 of Lecture Notes in Computer Science, pages 377–391. Springer Berlin
Heidelberg, 2013.

[55] Andrew Reynolds, Cesare Tinelli, and Liana Hadarean. Certified interpolant
generation for EUF. In S. Lahiri and S. Seshia, editors, Proceedings of the 9th
International Workshop on Satisfiability Modulo Theories, 2011.

[56] Aaron Stump, Duckki Oe, Andrew Reynolds, Liana Hadarean, and Cesare
Tinelli. SMT proof checking using a logical framework. Formal Methods in
System Design, 42(1):91–118, 2013.

[57] Geoff Sutcliffe. The TPTP Problem Library and Associated Infrastructure: The
FOF and CNF Parts, v3.5.0. Journal of Automated Reasoning, 43(4):337–362,
2009.

[58] Cesare Tinelli and Mehdi T. Harandi. A new correctness proof of the Nelson–
Oppen combination procedure. In Proceeding of FroCoS’96, Applied Logic, pages
103–120. Kluwer Academic Publishers, 1996.

[59] Mark R. Tuttle and Amit Goel. Protocol proof checking simplified with SMT.
In Proceedings of NCA’12, pages 195–202. IEEE Computer Society, 2012.

[60] Hantao Zhang and Mark E. Stickel. An efficient algorithm for unit propagation.
In In Proceedings of the Fourth International Symposium on Artificial Intelli-
gence and Mathematics (AI-MATH96), Fort Lauderdale (Florida USA, pages
166–169, 1996.

[61] J. Zhang and H. Zhang. SEM: a system for enumerating models. In Proc. of
International Joint Conference on Artificial Intelligence (IJCAI95), 1995.

[62] Lintao Zhang and Sharad Malik. The quest for efficient boolean satisfiability
solvers. In Proceedings of the 14th International Conference on Computer Aided
Verification, CAV ’02, pages 17–36, London, UK, UK, 2002. Springer-Verlag.

